
Vol.:(0123456789)

Computing
https://doi.org/10.1007/s00607-023-01193-7

1 3

REGULAR PAPER

A distributed and energy‑efficient KNN for EEG 
classification with dynamic money‑saving policy 
in heterogeneous clusters

Juan José Escobar1  · Francisco Rodríguez2 · Beatriz Prieto2 · Dragi Kimovski3 · 
Andrés Ortiz4 · Miguel Damas2

Received: 4 March 2023 / Accepted: 14 June 2023 
© The Author(s) 2023

Abstract
Due to energy consumption’s increasing importance in recent years, energy-time 
efficiency is a highly relevant objective to address in High-Performance Computing 
(HPC) systems, where cost significantly impacts the tasks executed. Among these 
tasks, classification problems are considered due to their great computational 
complexity, which is sometimes aggravated when processing high-dimensional 
datasets. In addition, implementing efficient applications for high-performance 
systems is not an easy task since hardware must be considered to maximize 
performance, especially on heterogeneous platforms with multi-core CPUs. 
Thus, this article proposes an efficient distributed K-Nearest Neighbors (KNN) 
for Electroencephalogram (EEG) classification that uses minimum Redundancy 
Maximum Relevance (mRMR) as a feature selection technique to reduce the 
dimensionality of the dataset. The approach implements an energy policy that 
can stop or resume the execution of the program based on the cost per Megawatt. 
Since the procedure is based on the master-worker scheme, the performance of 
three different workload distributions is also analyzed to identify which one is 
more suitable according to the experimental conditions. The proposed approach 
outperforms the classification results obtained by previous works that use the same 
dataset. It achieves a speedup of 74.53 when running on a multi-node heterogeneous 
cluster, consuming only 13.38% of the energy consumed by the sequential version. 
Moreover, the results show that financial costs can be reduced when energy policy is 
activated and the importance of developing efficient methods, proving that energy-
aware computing is necessary for sustainable computing.

Extended author information available on the last page of the article

http://crossmark.crossref.org/dialog/?doi=10.1007/s00607-023-01193-7&domain=pdf
http://orcid.org/0000-0002-4258-0264


 J. J. Escobar et al.

1 3

Keywords Parallel and distributed programming · Heterogeneous clusters · Energy-
aware computing · EEG classification · KNN · Money-saving

Mathematics Subject Classification 68W15

1 Introduction

In general, society is unaware of the enormous impact of Information and Communi-
cations Technology (ICT) on greenhouse gas emissions caused by energy consump-
tion. Its constant increase is due to the significant proliferation of electronic devices 
and applications frequently used for routine tasks. Also, the Internet of Things (IoT) 
paradigm has caused the appearance of new devices that, despite their low individual 
consumption, have a significant global impact given their enormous quantity. Accord-
ing to the predictive models on electricity use by ICT developed by Andrae and Edler 
[1], consumption of these technologies will increase from 13% of global electricity 
use in the world in 2022 to 21% in 2030 and could reach more than half (51%) of 
the earth’s total demand in the worst-case scenario. This would mean that ICT could 
contribute up to 23% of global greenhouse gas emissions in 2030 [2]. Therefore, it is 
necessary to analyze different options, as in this work, to reduce the contribution of 
ICT to environmental impact. Fortunately, the most pessimistic forecasts of the ICT 
are not being fulfilled since consumption is lower than expected. This is because the 
industry around ICT is aware of the problem and is investing resources in developing 
policies to reduce consumption. Another way to reduce the carbon footprint produced 
by ICT is through the electric tariff with hourly discrimination [3]. This consists of 
executing the applications during the hours when the tariff is lower, and the wind 
and/or solar electricity production is higher. The result is that the economic cost of 
the energy necessary for the execution of the programs could decrease, and the use of 
alternative fuels is also encouraged. Some countries digitally report the energy price 
in real-time, making it possible to combine this information with scheduled execu-
tions of the applications. This is one of the aspects dealt with in this work. Specifi-
cally, the contributions of this paper are the following:

• Provide an energy-efficient, parallel, and distributed exploration approach 
based on mRMR+KNN that exploits heterogeneous clusters with Non-
Uniform Memory Access (NUMA) nodes.

• Apply mRMR for feature selection and KNN for subsequent classification to 
solve an EEG classification problem that involves a dataset of the University 
of Essex. The mRMR+KNN combination had not previously been applied to 
that dataset.

• Analyze the proposed application from three fundamental metrics: energy 
consumption, execution time, and accuracy of the results. The study aims to 
show how greater energy efficiency can be achieved by adequately exploiting the 
hardware architecture on which the application runs. This is especially useful to 
save time and energy in future research based on the mRMR+KNN combination.



1 3

A distributed and energy‑efficient KNN for EEG classification…

• Provide an energy policy to save money or energy, depending on the user prefer-
ences. The policy is intended to be easily adaptable to other HPC applications.

The approach developed in this work implements a hybrid MPI-OpenMP 
model to achieve higher performance by increasing parallelism and minimizing 
communications and overhead. Message-Passing Interface (MPI) is mainly used 
for inter-node communications and OpenMP for multi-threaded parallelization 
in each node. Figure 1 shows how the implementation of the proposed approach 
(Fig. 1b) maps to the physical architecture of the clusters for which the application 
has been designed (Fig. 1a). In this sense, each MPI process is in charge of (i) 
managing the execution of a NUMA node; (ii) exchange information between 
nodes through the network, and (iii) process their part of the work by distributing 
computational load between the different CPU cores with OpenMP threads.

After this introduction, the rest of the document is structured as follows: 
Sect. 2 reviews different works in the literature related to the topic addressed in 
this paper. Section 3 details the different parallel implementations of the proposed 
approach and its energy policy for money-saving. Then, Sect.  4 analyzes the 
experimental results and discusses the importance of energy awareness in HPC 
systems. Finally, Sect. 5 provides the paper’s conclusions.

2  Related work and background

Given the great importance that a good balance between performance and energy 
efficiency has in computing, different methods and solutions have been proposed to 
address this problem. The work [4] compiles an extensive list of works on HPC and 
categorizes them based on compute device type, optimization metrics, and energy 

NUMA node

CPU

Socket 1

CPU

Socket 2

M 
E 
M 
O 
R 
Y 

NUMA node

CPU

Socket 1

CPU

Socket 2

M 
E 
M 
O 
R 
Y 

Interconnection network

(a) Computing nodes with multi-core CPUs.

MPI process

FORK

JOIN

OpenMP 
threads

MPI process

FORK

JOIN

OpenMP 
threads

Message-passing interface

(b) Hybrid MPI-OpenMP model.

Fig. 1  Architecture of HPC clusters and the corresponding hybrid MPI-OpenMP model implemented in 
this work to take advantage of their computing nodes



 J. J. Escobar et al.

1 3

methods. The compatibility of employing techniques for HPC systems, such as 
workload balancing or Dynamic Voltage and Frequency Scaling (DVFS), has also 
been discussed in several studies [5, 6]. The environmental impact produced by ICT 
is also being combated in different ways. Among those actions are [7]:

• Technological improvements in electronic components The increase in the 
number of devices in the ICT makes the energy efficiency of the devices acquire 
greater relevance. Changing the internal architecture of microchips has been 
some outstanding action in this field. For example, special-purpose processors 
such as Graphics Processing Units (GPUs) and Tensor Processing Units (TPUs) 
have been developed, which have turned out to be very efficient in specific 
applications. Neuromorphic computing [8] and the integration of cooling directly 
into the chip using microfluidic systems [9] are also booming. The change from 
Hard Disk Drive (HDD) to Solid State Drive (SSD) technology has significantly 
reduced energy consumption in mass data storage.

• Scheduling and resource management The objective is to use the different 
resources available in the system to reduce energy consumption. For example, 
implementing power management features to dynamically switch between 
different power states [10], depending on the workload, is a suitable option to 
make data centers more energy efficient [11]. Power could be saved in different 
ways: by using standby modes on resources that are not currently needed [12], 
or by setting a hardware energy consumption cap [13]. The use of parallelism 
makes it possible to speed up applications and reduce their energy consumption 
by avoiding idle processing cores.

• Scale changes This is intended to migrate small specialized systems (calculators, 
alarm clocks, etc.) to more energy-efficient equipment like smartphones. In 
distributed systems, the energy consumption of consumer devices is decreasing 
because application execution is offloaded to networks and data centers [14].

Regarding bioinformatics, this field has experienced exponential growth in recent 
years. As a result, biological datasets have grown considerably in size, as in the 
case of Electroencephalography. This discipline deals with EEG signals, which 
represent the electrical activity of different brain parts. For example, EEG signals 
are used to aid in the diagnosis of disorders such as schizophrenia [15], dyslexia 
[16], depression [17], autism [18], sleep problems [19], epilepsy [20] and seizure 
manifestations, in general [21–24]. They are also used to classify motor functions, 
such as movement of limbs or eyes [25], and for the classification of human emotions 
[26]. Some emerging areas of Artificial Intelligence, such as Machine Learning, aim 
to recognize patterns in these signals for their subsequent classification [27]. This 
tasks can be addressed through various Machine Learning methods using non-brain-
inspired or brain-inspired techniques. KNN algorithm, used in this work, belongs to 
the first ones. In this context, this paper considers a case that falls within the scope 
of Motor-Imagery (MI) classification due to its social interest in Brain-Computer 
Interface (BCI) tasks [28]. The problem consists of identifying from EEG signals 
different motor-imagery movements without its real execution [29]. However, the 



1 3

A distributed and energy‑efficient KNN for EEG classification…

main problem of working with EEG signals is their high dimensionality, which 
makes their correct prediction difficult since most of them do not contain relevant 
information. Therefore, it is important to apply feature selection techniques, such as 
mRMR, to obtain the most relevant ones.

Among the different existing datasets in the literature, this work focuses on 
a dataset [30] that belongs to the BCI laboratory of the University of Essex. It 
correspond to a human subject coded as 104 and includes 178 EEG signals for 
training and another 178 for testing, each with 3,600 features. As the signals can 
belong to three different motor-imagery movements (left hand, right hand, and feet), 
the proposed approach deals with a 3-class classification problem.

There are different works that have dealt with this dataset. The first one [30] 
analyzed the performance of the Linear Discriminant Analysis (LDA) classifier 
depending on the MultiResolution Analysis (MRA) approach used to preprocess the 
data. In addition, they propose a new MRA method called Graph Lifting Scheme 
(GLS), which is compared with others such as Linear Lifting Scheme (LLS), Db5, 
and Haar. Subsequently, in the works [31, 32], three alternatives were analyzed: 
OPT1, OPT2, and OPT3, which carry out the classification process by varying 
the number of LDA classifiers according to the majority voting. In [33, 34], two 
filter methods that use Non-dominated Sorting Genetic Algorithm II (NSGA-II) 
for multi-objective feature selection are proposed. In this case, the filter method 
is based on a set of label-aided utility functions that do not require the accuracy 
or the generalization of the classifier. The procedure defines a function for each 
label in the classification problem that is used as the objective (or fitness) function 
by NSGA-II. The paper [35] analyzes the dataset using Sparse Representation 
(SR) in combination with LDA and Support Vector Classifier (SVC), while [36] 
presents LeOCCEA, a wrapper procedure that hybridizes concepts of Cooperative 
Co-Evolutionary Algorithms (CCEAs) and lexicographic optimization to make 
possible the simultaneous optimization of two interdependent problems: finding 
the best hyperparameter values for the classifier applied within the wrapper method 
while minimizing the number of features that best describe the dataset. The wrapper 
is compared with other classifiers such as Support Vector Machine (SVM), Naive 
Bayesian Classifier (NBC), and KNN. It is also used as a feature selection method 
prior to using these classifiers.

The application of more modern classification methods to these datasets, such as 
neural networks, has been studied in [37–39], where [38, 39] also provides meas-
ures of energy consumption and execution time. On the one hand, [37] analyzes the 
performance of a Deep Belief Network (DBN) when combined with LDA to reduce 
the dimensionality of the datasets. On the other hand, in [38] several Convolutional 
Neural Networks (CNNs), Feed-Forward Neural Networks (FFNNs), and Recurrent 
Neural Networks (RNNs) are analyzed when their hyperparameters are optimized 
(or not) by means of a Genetic Algorithm (GA). It is also studied whether previ-
ously applying feature selection to the dataset through logistic regression affects the 
quality of the results. Finally, in [39] a framework is proposed to automatically opti-
mize the hyperparameters of the classifiers through an NSGA-II. The results exceed 
those obtained by the EEGNet [40] and DeepConvNet [41] neural networks without 



 J. J. Escobar et al.

1 3

optimization. A complete comparison of the results of all the methods mentioned 
above can be seen in Table 1.

As can be seen, none of the previous works applied the mRMR+KNN com-
bination to the University of Essex dataset, although the KNN algorithm has 
been studied in [36]. KNN classifier has been chosen in this work due to its good 

Table 1  Kappa values from 
previous works dealing with the 
University of Essex dataset 104

The best value is shaded bold
fs Feature selection; opt Hyperparameter optimization

Works Approach Average ± 
standard 
deviation

Asensio-Cubero et al. [30] Haar 0.421
Db5 0.361
LLS 0.453
GLS 0.790

Ortega et al. [31] OPT1 0.698 ± 0.062
Ortega et al. [32] OPT2 0.614

OPT3 0.606
Martín-Smith et al. [33, 34] FOPT1 0.639 ± 0.045

FOPT1* 0.661 ± 0.015
Ortega et al. [35] SR+LDA 0.696

SR+SVC 0.664
González et al. [36] KNN 0.704 ± 0.031

NBC 0.642 ± 0.029
LDA+KNN 0.647 ± 0.053
LDA+NBC 0.677 ± 0.047
LeOCCEA+SVM 0.578 ± 0.046
LeOCCEA+KNN 0.543 ± 0.053
LeOCCEA+NBC 0.639 ± 0.061

Ortega et al. [37] DBN 0.733
DBN+opt 0.750
LDA+DBN 0.651 ± 0.052

León et al. [38] CNN 0.729
CNN+opt 0.754
CNN+fs 0.635
FFNN 0.587
FFNN+fs 0.678
FFNN+opt+fs 0.728
RNN 0.610
RNN+fs 0.677
RNN+opt+fs 0.712

Aquino-Brítez et al. [39] DeepConvNet 0.38 ± 0.04
EEGNet 0.44 ± 0.08
EEGNet+opt 0.63 ± 0.01



1 3

A distributed and energy‑efficient KNN for EEG classification…

effectiveness in motor-imagery applications, as shown in [42]. However, KNN 
is very sensitive to the curse of dimensionality, worsening its performance with 
high-dimensional datasets. Thus, as mRMR is able to reduce the dimensional-
ity of the patterns and KNN has proven to be efficient with a small number of 
input features [36], the combination of mRMR+KNN could achieve good results. 
In addition, mRMR has shown great effectiveness in other fields of biomedicine, 
such as those dealing with microarray gene expression data [43].

3  The proposed approach

EEG classification has been approached using the KNN algorithm together with the 
mRMR technique [44]. KNN generally tries to classify the instances (patterns) by 
assigning them to the predominant class among their K nearest neighbors. The steps 
required to classify each new instance are: 

1. Calculate the distance between the instance to classify and the training ones. In 
this work, the Euclidean distance has been used.

2. Sort the distances in increasing order.
3. Identify the predominant class among the nearest K distances.
4. Assign the new instance to the predominant class.

Although interpretability is the main advantage of this method, the computing time 
depends linearly on the dataset size since each new instance must be compared with 
all the training ones. In this regard, multiple improvements over the basic procedure 
have been proposed [45]. However, one of the most useful ways to reduce execution 
times without decreasing accuracy is to use parallelism techniques. Parallelism is 
especially useful in clusters that include multiprocessors and accelerators, such as 
GPUs, since it allows us to take advantage of these devices’ potential. Regarding 
mRMR, this method tends to select the subset of features that has the highest 
correlation to the class (output) and the lowest correlation between them. It ranks 
the N

F
 features of the datasets according to the minimum-redundancy-maximum-

relevance criterion, whose implementation in this work is based on the one 
proposed in [43] and takes the F-test Correlation Quotient (FCQ) to select the next 
feature. mRMR helps to deal with the dimensionality problem [46] and to reduce 
computation time by avoiding the evaluation of all 2NF possible subsets of features. 
Instead, the proposed approach only evaluates N

F
 of them, where in each one, the 

next feature from the list provided by mRMR is added. For each subset, all possible 
values of the K parameter are evaluated to get the best classification accuracy.



 J. J. Escobar et al.

1 3

Since finding the best K and feature subset is computationally complex, the 
algorithm has been parallelized to reduce execution time and, in turn, energy 
consumption. In fact, parallelization occurs at two levels through a hybrid approach 
with MPI and OpenMP libraries: distributing subsets among worker nodes with MPI 
and distributing the test instances to classify among CPU threads with OpenMP. 
The latter can be seen in the #pragma omp parallel for directive of 
Algorithm 1 (Line 4). The evaluation of all values of K for a test instance has been 
optimized by calculating its distance from all training instances (Line 6). In this way, 
the array D is reused in the loop of Line 7 to obtain the predominant class according 
to the value of K (Line 8). If the prediction is correct, the value of the k-th position 
of the prediction vector, C

P
 , is incremented by one. Once all instances have been 

classified, the prediction vector is sorted, and the first position is used to calculate 
the classification accuracy of the best K (Lines 14 and 15).

The algorithmic complexity of a standard KNN to classify all instances of the test 
dataset is O(K ⋅ Tr ⋅ Te ⋅ N

F
) , where K is the number of neighbors of the KNN algo-

rithm, Tr the number of instances in the training dataset, Te the number of instances in 
the test dataset, and N

F
 the data dimensionality. However, the proposed approach evalu-

ates all the K possible values for each subset of features, which have a different compu-
tational load since the number of features in each subset is greater. As the 



1 3

A distributed and energy‑efficient KNN for EEG classification…

computational load also grows when increasing the value of K (more neighbors to com-
pare), the complexity of the procedure when executed on a single-processor machine is 
O(K ⋅ log2(K) ⋅ Tr ⋅ Te ⋅ NF

⋅ log2(NF
)) . Taking into account that the program takes 

advantage of all processors and is designed to be executed on many multi-core 
machines, the final time complexity of the proposed approach is 
O(K⋅log2(K)⋅Tr⋅Te⋅NF ⋅log2(NF))

P⋅NWk

 , being P the number of processors (CPU threads) and N
Wk

 the 
number of worker nodes.

3.1  A distributed master‑worker scheme for node‑level parallelization



 J. J. Escobar et al.

1 3

The proposed application, whose pseudocode can be found in Algorithm 2, follows a 
master-worker scheme where the master tells each worker which feature subset must 
use to evaluate a KNN. The MPI process #0 is assigned to the master process and 
the rest to the workers. The algorithm receives the input parameters: the datasets, 
the number of workers, and the maximum chunk size to send to the workers. The 
execution ends when there is no more work to process and the function returns the 
best accuracy found (Line 41). The operation is as follows: the master waits in Line 
8 for some worker to request its first job or to return the result of one of them, which 
is also implicitly associated with the assignment of a new job. The message type is 
identified by the MPI tags described in Table 2. When the master receives a result, it 
checks if the accuracy of that job (feature subset) is better than the current one. If so, 
update its value (Lines 9 to 11) and send a new chunk with the JOB_DATA  tag (Line 
14). Before sending work to a worker, the master checks for unprocessed chunks. If 
there is no availability, the worker will receive the STOP tag and stop its execution 
since there is no more work to do (Line 16). As all workers must receive the tag to 
finish, the master must track how many workers have received it (Line 17).

Regarding the workers (Lines 20 to 40), they apply the mRMR algorithm on the 
training dataset to obtain the ranked list of features. As the index of features changes, 
datasets are reordered to speed up computation by making use of Coalescing [47] 
(Line 22). This technique allows multiple memory accesses to be combined into a 
single transaction. At this point, a worker is ready to request jobs by sending a mes-
sage with the FIRST_JOB tag (Line 23). For each chunk of features received (Lines 
26 to 36), if the energy price is cheap the worker obtains the accuracy of the corre-
sponding feature subset by calling in Line 32 to the evaluateFeatureSubset 
function of Algorithm 1. If the accuracy of the processed feature subset is greater 
than the existing one, it will be update. Once all the possible subsets of the received 
chunk have been processed, the worker returns the best accuracy obtained to the mas-
ter by sending a message with the RESULT tag, and waits for the assignment of a 
new job (Lines 37 and 38). This process is repeated until the STOP tag is received, 
indicating that the worker can end its execution.

3.2  Implementation of the energy policy for money‑saving

The proposed master-worker algorithm also incorporates an energy policy that auto-
matically pauses the algorithm during the hours when the energy price is higher 
and resumes execution when the price is lower. Consequently, this policy would 
allow data centers to save money but at the cost of extending the execution time 
and the energy consumed, although the computing devices would still be on even if 

Table 2  MPI tags used during 
communications between master 
and workers

MPI tag Description Sender Receiver

FIRST_JOB Request for the first job Worker Master
JOB_DATA There is work to do Master Worker
RESULT Return the result of the job Worker Master
STOP No more work to be done Master Worker



1 3

A distributed and energy‑efficient KNN for EEG classification…

the algorithm is paused. This policy is a client that opens a secure communication 
socket with the energy Application Programming Interface (API) [48]. In this way, 
the client sends HyperText Transfer Protocol (HTTP) requests to port 443 to obtain 
the price of energy according to the regulated tariff of the Spanish energy market, 
called Voluntary Price for Small Consumers (VPSC). The API returns a data struc-
ture that contains attributes associated with the energy market. Among them, those 
used by the policy are:

• The price of energy, expressed in €/MW·h.
• A parameter indicating whether the price of energy is low.
• A parameter indicates whether the energy price is below the average for the day.

The user can disable the policy by unchecking the money-saving option in the 
program’s configuration file. Otherwise, the MPI process that controls each worker 
node will be in charge of checking the price of energy in two possible circumstances 
(see Algorithm 2):

• When the worker receives a work chunk from the master. If the energy price at 
that moment is expensive, the execution is paused, and the MPI process sleeps 
until the next hour. Through the program’s configuration file, the user can 
indicate that values below the daily average are also considered cheap or define 
a custom price threshold. However, this is risky since if the specified value is not 
in the range of upcoming prices, the algorithm will never start.

• When the MPI process is asleep and the next hour is reached. In this case, 
the process wakes up, checks the price, and resumes execution if the price is 
acceptable or goes back to sleep until the next hour (when the tariff changes).

3.3  Ways of distributing the workload

As previously seen in Sect. 3.1, feature chunks are sent to workers via the message-
passing interface provided by the MPI library. This allows the application to distrib-
ute the workload among the different nodes of the cluster [49]. However, in the algo-
rithm proposed here, the workload of each feature subset is asymmetric since the 
number of features in each one is variable. For example, suppose a dataset with ten 
features, two worker nodes, and a chunk size of 2. In this scenario, the first chunk 
that the master will send contains the indices 1 and 2, corresponding to the sub-
sets {1} and {1, 2} . The second worker will receive indices 3 and 4 to compute the 
subsets {1, 2, 3} and {1, 2, 3, 4} . In other words, a higher index implies computing 
more features within the KNN and, consequently, a longer execution time. To deal 
with workload imbalance, by default, the procedure distributes chunks dynamically 
according to the specified chunk size. Although this has the disadvantage of increas-
ing communications, it is essential in heterogeneous systems to avoid performance 
drops. If the user wants, the master can also give each worker a chunk of features at 
the start of the algorithm by dividing the number of total chunks by the number of 
workers. This can be done in two ways: contiguous or striding blocks (see Fig. 2). 



 J. J. Escobar et al.

1 3

The strided assignment could reduce the workload imbalance [50] present in the 
contiguous blocks alternative since each node would compute similar subsets. The 
impact of the different workload distributions and the chunk size on performance is 
discussed in Sect. 4.

4  Experimental work

This section analyzes the classification results obtained by the proposed approach 
and compares the energy-time performance of each workload distribution when 
using multiple nodes. In addition, a benchmark is performed to demonstrate the ben-
efits of using the energy policy when computing over long periods. All experiments 
are repeated ten times to obtain more reliable measurements of the application’s 
behavior.

4.1  Experimental setup

The application has been executed in an HPC cluster composed of eight heteroge-
neous Non-Uniform Memory Access (NUMA) nodes interconnected via Giga-
bit Ethernet and whose CPU devices are detailed in Table 3. The cluster runs the 
Rocky Linux distribution (v8.5) and schedules the jobs using the Slurm task manager 
(v20.11.7) [51]. The C++ source codes have been compiled with the GCC compiler 
(v8.5.0), the OpenMPI library (v4.0.5) with support for the MPI API (v3.1.0), and 
optimization flags -O2 -funroll-loops.

The energy measurements of each node have been obtained from a custom watt-
meter called Vampire, which is based on the ESP32 microcontroller [52], capable 
of capturing in real-time information of instantaneous power (W) and accumulated 
energy consumed (W ⋅ h). This meter allows the monitoring of multiple computers 
in a synchronized and independent way, accurately measuring the energy consump-
tion of a program that is running in a distributed manner in a multi-node cluster. 
Since the meter reads the voltage (V) and current (A) every second, the total energy 
consumed by the application over a given time can be determined. Although the 
data obtained is transmitted to a remote server via WiFi or Bluetooth and stored in 
an InfluxDB database for further processing, it can be viewed in real-time using the 
Grafana user interface.

Fig. 2  The two different static workload distributions used by the master node



1 3

A distributed and energy‑efficient KNN for EEG classification…

4.2  Classification analysis

The proposed algorithm achieves a Kappa index of 0.83 using the first 62 features of 
mRMR and K = 18 . This solution widely outperforms a run without mRMR (0.34), 
and other approaches in the literature that use the same dataset (see Table 4). The 
result has been validated by replicating its value when executing the KNN with the 
Python and Matlab languages and the same input parameters. Figure 3a shows the 
corresponding confusion matrix, which reveals an overall accuracy rate of 88.8%. 
The evolution of the accuracy rate and the Kappa index depending on the number of 
selected features can be observed in Fig. 3b. The general trend is that both metrics 
increase as new features are added until reaching the peak (62), and then progres-
sively fall. It seems that the algorithm’s convergence is penalized with the selection 
of many features, which are irrelevant. It is also observed that the values of accuracy 
and Kappa distance themselves for extreme values of the graph.

The statistical validation of the results has been carried out using 10,000 itera-
tions of a permutation test. This ensures that the results obtained are not achieved by 

Table 3  Characteristics of the cluster used in the experiments

1The Thermal Design Power (TDP) parameter indicates the amount of heat that a chip will generate in 
normal operation, measured in watts (W), which is often used to estimate the energy consumption of the 
chip

Node CPU RAM

Model Total 
cores/
threads

TDP1 (W) Frequency (MHz) Frequency (MHz) Size (GB)

Master 1x Intel Xeon
E5-2620 v4

12/24 160 2100 1600 32

1 1x Intel Xeon
E5-2620 v4

8/16 85 2133

2 2x Intel Xeon
E5-2620 v4

16/32 170

3 to 7 2x Intel Xeon
Silver 4214

24/48 170 2200 2933 64

Table 4  Comparison of Kappa 
values between the proposed 
approach and the top 3 of 
Table 1

The best value is shaded bold
opt Hyperparameter optimization.

Works Approach Value

This work mRMR+KNN 0.83
Asensio-Cubero et al. [30] GLS 0.790
León et al. [38] CNN+opt 0.754
Ortega et al. [37] DBN+opt 0.750



 J. J. Escobar et al.

1 3

chance when testing the null hypothesis. In our case, the null hypothesis consists in 
obtaining higher performance values (Kappa index values) in the permuted dataset 
than in the non-permuted one. In the test, a p-value < 1.10−7 has been obtained, 
showing that the null hypothesis can be rejected since its value is less than 0.01. 
Despite the good results, there are limitations inherent to the use of the KNN clas-
sifier in the global optimization method proposed in this work. For example, it is 
well-known that the appropriate value of K can vary greatly depending on the data-
set used, especially if it is characterized by the curse of dimensionality, which can 
deteriorate the generalizability of the KNN classifier when few samples are avail-
able. However, this is a common limitation for most classifiers and should not be 
a particular drawback compared to other classical alternatives, although classifiers 
such as SVM have proven to be efficient with high-dimensional datasets. An exam-
ple of this can be seen in [53], where an adaptive SVM is used in conjunction with 
neural networks to address the BCI Competition IV 2a dataset. It could be interest-
ing to study if this approach could be applied to the dataset addressed in this work 
since both datasets share similarities, although it is also worth noting that KNN is 
less prone to overfitting than classifiers based on neural networks. There are other 
types of limitations as well. On the one hand, deal with unbalanced datasets: KNN 
assumes that instances within the same class are grouped together. However, in 
some cases, the decision boundaries may be complex or non-linear, and KNN may 
have difficulty capturing them accurately. In other words, unbalanced data can lead 
to biased predictions. In the dataset discussed here, the classes are balanced, without 
any appreciable bias (33%, 37%, and 30%). On the other hand, for very large data-
sets, the computational load and memory consumption associated with the training 
process could be a limitation, since it requires the comparison of a test instance with 
all the training samples.

4.3  Energy‑time performance

Figure 4 shows the application’s performance after running on Node 3 without using 
the power policy. The goal is to depict the speedup scalability of the first parallelism 
level, which occurs within each computing node when the number of logical CPU 

Hand (R) Hand (L) Feet
True class

H
an

d 
(R

)
H

an
d 

(L
)

Fe
et

P
re

di
ct

ed
 c

la
ss

46
25.8%

9
5.1%

0
0.0%

83.6%
16.4%

5
2.8%

60
33.7%

0
0.0%

92.3%
7.7%

4
2.2%

2
1.1%

52
29.2%

89.7%
10.3%

83.6%
16.4%

84.5%
15.5%

100%
0.0%

88.8%
11.2%

(a) Confusion matrix of the
best case (62 features)

10 30 62 180 450 900 1800 3600
Number of features

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

V
al

ue

Accuracy rate
Kappa index

(b) Accuracy rate and Kappa index when adding features

Fig. 3  Classification results of the proposed approach when using mRMR and K = 18



1 3

A distributed and energy‑efficient KNN for EEG classification…

cores is increased. From Fig. 4a, it can be seen that the maximum speedup of 12.67 
is obtained using the 48 threads available in the node. Its behavior is approximately 
linear, up to four threads, and logarithmic for higher values. The main reason is that 
the motherboard supports quad-channel memory. Increasing the number of threads 
above four causes competition for memory accesses since not all of them can do so 
simultaneously. It is also due, although to a lesser extent, because the workload for 
each thread decreases and the cost of managing threads becomes important. This 
means that the speed gain could increase with larger datasets that allow threads to 
compute for longer periods. It has also been found that distributing the instances 
to be classified among the threads statically provides the best performance (Line 4 
of Algorithm 1). This is expected, as indicated in [54], because the computational 
workload is the same for each thread, so a dynamic distribution has been discarded. 
Regarding energy consumption, also for the case of using 48 threads, it provides the 
lowest total energy consumption. This may seem contradictory since the use of more 
resources is associated with a higher instantaneous power (see Fig. 4b). However, 
energy consumption also depends linearly on execution time, and since speedup 
increases at a greater rate than energy, total energy consumption is less. This behav-
ior has been widely demonstrated in the literature for a wide variety of parallel and 
distributed applications.

The performance of the hybrid MPI-OpenMP approach that corresponds to the 
second level of parallelism is shown in Figs. 5 and 6. Again, the power policy has 
not been activated in order to measure the performance scalability of the applica-
tion. On the one hand, Fig. 5 exposes the behavior of the application when all nodes 
are used, and the workload distribution is dynamic. Figure  5a reveals that a very 
large chunk size leads to worse execution time and energy consumption mainly due 
to workload imbalance. It is also noteworthy that a chunk size of 1 provides good 
results, which suggests that the cost of communications in this application is very 
low. The instantaneous power of each node for a chunk size of 4 is plotted in Fig. 5b. 
Although the optimal size ranges from 1 to 64, the value 4 has been set as defini-
tive since it works well with few nodes and should do so with more than 7. What is 

0

2

4

6

8

10

12

14

16

S
pe

ed
up

1 2 4 8 16 32 48
Number of threads

0

20

40

60

80

100

120

140

160

180

200
E

ne
rg

y 
co

ns
um

pt
io

n 
(W

 · 
h)

Energy consumption
Speedup

(a) Speedup and energy consumption

0 1000 2000 3000 4000
Execution time (s)

90

120

150

180

210

240

270

300

In
st

an
ta

ne
ou

s 
po

w
er

 (W
)

48 threads
32 threads
16 threads
8 threads
4 threads
2 threads
1 thread

(b) Instantaneous power

Fig. 4  Performance obtained by the proposed approach in a single-node configuration when varying the 
number of OpenMP threads



 J. J. Escobar et al.

1 3

observed in the figure, and in the other 9 repetitions of this experiment, is that most 
nodes end up simultaneously, which is expected in dynamic workload distributions.

On the other hand, Fig.  6 compares the different workload distributions. The 
number of computation nodes indicated in Fig. 6a does not correspond to the order 
shown in Table 3. Instead, the nodes in the graph correspond to homogeneous and 

0

20

40

60

80

100

120

E
xe

cu
tio

n 
tim

e 
(s

)

1 2 4 8 16 32 64 128 256 512
Chunk size

0

10

20

30

40

50

60
E

ne
rg

y 
co

ns
um

pt
io

n 
(W

 · 
h)

Energy consumption
Execution time

(a) Execution time and energy consumption
when the chunk size is increased

0 10 20 30 40 50 60 70
Execution time (s)

90

120

150

180

210

240

270

300

In
st

an
ta

ne
ou

s 
po

w
er

 (W
)

Node 1
Node 2
Node 3
Node 4
Node 5
Node 6
Node 7

(b) Instantaneous power of the best chunk size
found (4)

Fig. 5  Performance obtained by the dynamic workload distribution when using all nodes

0

1

2

3

4

5

6

7

8

S
pe

ed
up

1 2 3 4 5 6 7
Number of nodes

0

10

20

30

40

50

60

70

80

E
ne

rg
y 

co
ns

um
pt

io
n 

(W
 · 

h)

Energy consumption: dynamic
Energy consumption: strided
Energy consumption: static
Speedup: dynamic
Speedup: strided
Speedup: static

(a) Speedup and energy consumption when increasing the number of computing nodes

0 20 40 60 80 100
Execution time (s)

90

120

150

180

210

240

270

300

In
st

an
ta

ne
ou

s 
po

w
er

 (W
)

Node 1
Node 2
Node 3
Node 4
Node 5
Node 6
Node 7

(b) Instantaneous power of the strided distri-
bution when using all nodes

0 20 40 60 80 100 120 140
Execution time (s)

90

120

150

180

210

240

270

300

In
st

an
ta

ne
ou

s 
po

w
er

 (W
)

Node 1
Node 2
Node 3
Node 4
Node 5
Node 6
Node 7

(c) Instantaneous power of the static distribu-
tion when using all nodes

Fig. 6  Comparison of performance between the different workload distributions



1 3

A distributed and energy‑efficient KNN for EEG classification…

heterogeneous ones in that order. That is first Nodes 3 to 7, and later Nodes 1 and 
2. In this way, the scalability of the program can be analyzed according to the type 
of node added. As expected, for all distributions, the observed speedup grows lin-
early as more nodes are used, but up to 5 and in different magnitudes. From this 
point on, only dynamic distribution continues to scale its performance, although to 
a lesser extent since heterogeneous nodes begin to be used. In fact, it can be seen 
that the increase in speedup is in line with the added heterogeneous node: adding 
Node 2 boosts speed up more than adding Node 1 (the slowest one), until reaching 
a maximum speedup of 5.88. With respect to a sequential execution (1 thread), the 
application achieves a speedup of 74.53, consuming only 13.38% of energy. The use 
of heterogeneous nodes also negatively affects static and dynamic distributions but 
in different ways. In the case of strided, speedup plummets for 6 nodes and improves 
slightly after adding the last one. Not so for the static distribution, which worsens 
its performance for each node added. The instantaneous power in Fig.  6c reveals 
that workload imbalance is responsible. Here, the nodes finish computing in a stag-
gered manner, with a long interval between the first ( t = 30 ) and the last ( t = 125 ). 
In the strided case (Fig. 6b), only the homogeneous nodes finish at the same time, 
but before the heterogeneous nodes, causing a bottleneck. Based on the results, it 
can be affirmed that the dynamic distribution provides the best results in speedup, 
energy consumption, and scalability since the speed gain is very close to the number 
of nodes used to compute. Extrapolating the data, if all the nodes were homogene-
ous, a speedup of approximately 6.4 could be achieved.

It should also be noted that the speedup has been calculated with respect to 
the time depicted in Fig.  4b, where the master-worker scheme does not exist and 
therefore Node 3 does all the work. The objective is that the data shown in the 
figure take into account the overhead caused by the existence of the master and its 
communications with the worker nodes involved. As a consequence, all speedup 
values are somewhat less than those calculated based on the single-node time of the 
dynamic distribution. For this reason, and although it is difficult to see in the figure, 
the speedup of the 3 distributions is slightly below 1 when one computing node is 
used. Furthermore, it is the only case in which the static and strided distributions 
are slightly better than the dynamic one. This makes sense because if only one node 
computes, there is no need to continuously distribute chunks of work.

4.4  Energy policy benchmark

As discussed in Sect. 3.2, the energy policy checks the price of energy every hour 
and decides whether to pause, continue, or resume the execution of the application. 
However, its execution time, as has been observed in previous figures, sometimes 
does not even reach one hour. In order to measure the energy and economic impact 
of the policy, the application has been running in a loop for a total of 24 h using 
dynamic distribution and 7 nodes, each computing with the maximum number of 
OpenMP threads available. Figure 7 shows the price of energy and the sum of the 
instantaneous power of all the nodes during the execution. In the slots where the 
price is cheaper (shown in green), the instantaneous power increases, meaning that 



 J. J. Escobar et al.

1 3

the nodes are computing. This can be seen in the slots [00:00–03:00, 04:00–07:00, 
08:00–09:00, 12:00–19:00, 21:00–00:00]. In the rest of them, the nodes pause their 
execution, and therefore the power drops. Now suppose the need to compute a task 
that requires 6 h of execution without the use of the policy. Depending on the time 
window in which it runs, using the policy could save or lose money for the user as 
the total number of hours needed could be much higher. This is analyzed in Table 5.

The results obtained are very different. On the one hand, for the first seven time 
slots, using the policy loses money. In the first two, despite the fact that the com-
putation takes an hour or two more, the price of energy in the expensive slots is 

00
:00

01
:00

02
:00

03
:00

04
:00

05
:00

06
:00

07
:00

08
:00

09
:00

10
:00

11
:00

12
:00

13
:00

14
:00

15
:00

16
:00

17
:00

18
:00

19
:00

20
:00

21
:00

22
:00

23
:00

00
:00

Time slots

0
50

100
150
200
250
300
350
400
450
500

0

200

400

600

800

1000

1200

1400

1600

In
st

an
ta

ne
ou

s 
po

w
er

 (W
)

Energy price
Instantaneous power

Fig. 7  Activity of the nodes and energy price for a 24-hour period. The cheap time slots, colored green, 
are those where the price is below the daily average (171.48 €/MW ⋅ h)

Table 5  Energy consumption and money-saving for a 6-hour run when the policy is activated

The cases where financial costs are reduced are shaded bold

Time slots (#) Energy consumption 
(W ⋅ h)

Total cost (€) Money-saving (%)

00:00–07:00 (7) 8,917.62 0.094 − 0.35
01:00–09:00 (8) 9,827.05 0.122 − 23.42
02:00–13:00 (11) 12,364.64 0.236 −106.29
03:00–14:00 (11) 12,377.91 0.239 − 102.27
04:00–14:00 (10) 11,501.40 0.221 −76.66
05:00–15:00 (10) 11,500.09 0.218 − 32.56
06:00–16:00 (10) 11,527.15 0.221 − 2.00
07:00–17:00 (10) 11,551.10 0.220 2.81
08:00–18:00 (10) 12,049.94 0.217 0.84
09:00–18:00 (9) 10,666.98 0.199 9.92
10:00–18:00 (8) 9,790.01 0.176 11.89
11:00–18:00 (7) 8,913.34 0.136 8.77
12:00–18:00 (6) 8,037.21 0.095 0
13:00–19:00 (6) 8,038.20 0.096 0
14:00–22:00 (8) 9,777.85 0.154 − 13.84
15:00–23:00 (8) 9,875.08 0.145 10.29
16:00–24:00 (8) 9,854.34 0.138 12.78



1 3

A distributed and energy‑efficient KNN for EEG classification…

only slightly higher than in the cheap ones, making it not worth it. The same, but 
in a more extreme form, occurs in the following four. What happens here is that 
in all execution windows, in addition to the above, there is also a period of three 
consecutive expensive slots, causing the amount of energy consumed to be much 
more than if the policy were not used. On the other hand, for the rest of the time 
slots in the table, the policy saves money or at least does not lose it, except for the 
slot [14:00–22:00]. The reason why in the slots [12:00–18:00, 13:00–19:00] the sav-
ing is 0 is that the number of computing hours, whether the policy is used or not, 
is the same (6 h). Finally, it must be taken into account that the results have been 
obtained considering cheap areas whose price is below the daily average. However, 
as discussed in Sect. 3.2, the application allows the user to configure the threshold 
that defines each slot. This means that the results could be worse or better depending 
on the threshold value, so a study that determines the optimal threshold is essential. 
Also, the user could estimate the best time of day to run the program: the energy 
price is known a priori and the energy consumption both in idle and active states 
always has the same pattern.

5  Conclusions and future work

This work has proposed to investigate the energy efficiency of a bioengineering 
application capable of exploiting the qualities of distributed and heterogeneous 
parallel platforms. The use of mRMR for the selection of features has allowed for 
the improvement of the performance of existing approaches in the literature that use 
the same dataset. Another contribution of this article has been to consider energy 
efficiency as a fundamental parameter, contrary to other works that focus only on 
the accuracy of the results and on the execution time. Experiments have been carried 
out with the synchronization of the executions in time slots with different energy 
costs. In addition, different workload distributions for the proposed procedure have 
been analyzed. The results have verified that a dynamic distribution is the most 
appropriate option to distribute asymmetric jobs in heterogeneous systems, reaching 
speedups of up to 74.53 consuming only 13.38% energy of sequential execution. 
Even so, the next step is to improve this result using accelerators such as GPUs and 
increasing data parallelism through vectorization techniques [55].

Regarding the energy policy, it allows for saving money or energy depending on 
the needs of the user, stopping or resuming the program execution according to the 
cost per megawatt. One of the advantages of this method is that it does not depend 
on the implemented application, so it can be easily adapted to other applications 
without major changes. Another advantage is that running the algorithm in the low-
est cost time slots also contributes to reducing greenhouse gas emissions, since dur-
ing these periods the generation of energy from renewable sources (wind, photo-
voltaic, hydraulic, etc.) is greater. However, while it has proven useful under some 
circumstances, the following drawbacks have been identified:

• The price difference between expensive or cheap slots must be substantial to 
offset the energy consumption of overtime.



 J. J. Escobar et al.

1 3

• A period of consecutive expensive slots makes it difficult to save money since 
the total computing time is much higher.

• It is not possible to save if the proportion of expensive slots is much higher than 
that of cheap ones. According to other benchmarks carried out, savings can be 
made if the number of cheap slots is greater than 65% unless the difference in 
cost between the expensive and cheap periods is very abrupt. However, although 
it is common for cheap slots to predominate, finding abrupt differences with 
expensive slots is less likely. A quick solution could be to adjust the threshold to 
define which slots are considered expensive or cheap.

The common problem with those points is that the application consumes energy 
during the expensive slots without advancing the computation. In future work, dif-
ferent alternatives are proposed to improve the policy. One of them would consist of 
applying the DVFS technique to reduce the frequency and voltage of the CPU, mini-
mizing energy consumption and, therefore, the monetary cost. The policy should 
consider the consumption of standby devices as one more parameter and completely 
turn off the devices when possible. Another improvement would be to not pause the 
execution of the procedure or to do it as little as possible. For example, if the system 
had a big.LITTLE architecture, only the so-called low-performance cores should 
be used during the expensive slots. This would allow computing but with moderate 
energy consumption, shortening the execution time and minimizing the probability 
of falling into expensive slots. Also, in cases where a company has processing cent-
ers in different countries, it would also be possible to dynamically reallocate the 
workload in those where the cost of energy is lower [56]. In this way, the execution 
of the procedure would never be paused, but the counterpart is that the application 
must be redesigned to be able to transfer its execution status and data to other com-
puters, which entails an extra cost for communications.

Acknowledgements The authors would like to thank Dr. Alberto Prieto, from the Department of Com-
puter Engineering, Automation, and Robotics of the University of Granada, Spain, for his valuable col-
laboration in this work.

Author Contributions Conceptualization: JJE and FR; Methodology: JJE and MD; Software: FR; 
Validation: BP and DK; Formal analysis: JJE; Investigation: FR; Resources: FR and MD; Data curation: 
DK and AO; Writing—original draft preparation: JJE and FR; Writing—review and editing: BP and 
DK; Visualization: JJE and FR; Supervision: AO and MD; Project administration: AO and MD; Funding 
acquisition: AO and MD.

Funding Funding for open access publishing: Universidad de Granada/CBUA. This research was funded 
by the Spanish Ministry of Science, Innovation, and Universities under Grants PGC2018-098813-B-C31, 
PID2022-137461NB-C32, and the ERDF fund. Funding for open access charge: University of Granada/
CBUA.

Declarations 

Conflict of interest The authors declare that they have no conflict of interest.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative 



1 3

A distributed and energy‑efficient KNN for EEG classification…

Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit 
line to the material. If material is not included in the article’s Creative Commons licence and your 
intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain 
permission directly from the copyright holder. To view a copy of this licence, visit http:// creat iveco 
mmons. org/ licen ses/ by/4. 0/.

References

 1. Andrae ASG, Edler T (2015) On global electricity usage of communication technology: Trends to 
2030. Challenges 6(1):117–157

 2. Freitag C, Berners-Lee M, Widdicks K, Knowles B, Blair G, Friday A (2021) The climate impact of 
ict: a review of estimates, trends and regulations. arXiv

 3. Tushar W, Yuen C, Smith DB, Poor HV (2017) Price discrimination for energy trading in smart 
grid: a game theoretic approach. IEEE Trans Smart Grid 8(4):1790–1801

 4. Czarnul P, Proficz J, Krzywaniak A (2019) Energy-aware high-performance computing: Survey of state-
of-the-art tools, techniques, and environments. Sci Progr. https:// doi. org/ 10. 1155/ 2019/ 83487 91

 5. Wang Z, Wang H, Zhao W, Cheng L (2019) Energy optimization of parallel programs in a het-
erogeneous system by combining processor core-shutdown and dynamic voltage scaling. Futur 
Gener Comput Syst 92:198–209

 6. Li H, Wei Y, Xiong Y, Ma E, Tian W (2021) A frequency-aware and energy-saving strategy 
based on DVFS for spark. J Supercomput 77(10):11575–11596

 7. Manganelli M, Soldati A, Martirano L, Ramakrishna S (2021) Strategies for improving the sus-
tainability of data centers via energy mix, energy conservation, and circular energy. Sustainabil-
ity 13(11):6114

 8. Marković D, Mizrahi A, Querlioz D, Grollier J (2020) Physics for neuromorphic computing. Nat 
Rev Phys 2(9):499–510

 9. Wei T (2020) All-in-one design integrates microfluidic cooling into electronic chips. Nature 585:188–189
 10. Feller E, Rohr C, Margery D, Morin C (2012) Energy management in iaas clouds: a holistic 

approach. In: 5th international conference on cloud computing. pp 204–212. CLOUD’2012, 
IEEE, Honolulu, HI, USA, Jun 2012

 11. Hotta Y, Sato M, Kimura H, Matsuoka S, Boku T, Takahashi D (2006) Profile-based optimiza-
tion of power performance by using dynamic voltage scaling on a PC cluster. In: 20th inter-
national parallel and distributed processing symposium. pp 1–8. IPDPS’2006, IEEE, Rhodes, 
Greece, Apr 2006

 12. Lin M, Wierman A, Andrew LLH, Thereska E (2011) Dynamic right-sizing for power-pro-
portional data centers. In: 30th annual joint conference: INFOCOM. pp 1098–1106. INFO-
COM’2011, IEEE, Shanghai, China, Apr 2011

 13. Lefurgy C, Wang X, Ware M (2008) Power capping: a prelude to power shifting. Clust Comput 
11(1):183–195

 14. Kumar K, Lu YH (2010) Cloud computing for mobile users: Can offloading computation save 
energy? Computer 43(4):51–56

 15. Akbari H, Ghofrani S, Zakalvand P, Tariq Sadiq M (2021) Schizophrenia recognition based on 
the phase space dynamic of EEG signals and graphical features. Biomed Signal Process Control 
69:102917

 16. Zainuddin AZA, Mansor W, Khuan LY, Mahmoodin Z (2018) Classification of EEG signal from 
capable dyslexic and normal children using KNN. Adv Sci Lett 24(2):1402–1405

 17. Saeedi M, Saeedi A, Maghsoudi A (2020) Major depressive disorder assessment via enhanced 
K-nearest neighbor method and EEG signals. Phys Eng Sci Med 43(3):1007–1018

 18. Ibrahim S, Djemal R, Alsuwailem A (2018) Electroencephalography (EEG) signal processing for 
epilepsy and autism spectrum disorder diagnosis. Biocybern Biomed Eng 38(1):16–26

 19. Sharma H, Sharma K (2016) An algorithm for sleep apnea detection from single-lead ECG using 
hermite basis functions. Comput Biol Med 77:116–124

 20. Choubey H, Pandey A (2021) A combination of statistical parameters for the detection of epi-
lepsy and EEG classification using ANN and KNN classifier. SIViP 15(3):475–483

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2019/8348791


 J. J. Escobar et al.

1 3

 21. Subasi A, Erçelebi E (2005) Classification of EEG signals using neural network and logistic 
regression. Comput Method Programs Biomed 78(2):87–99

 22. Subasi A (2007) EEG signal classification using wavelet feature extraction and a mixture of 
expert model. Expert Syst Appl 32(4):1084–1093

 23. Richhariya B, Tanveer M (2018) EEG signal classification using universum support vector 
machine. Expert Syst Appl 106:169–182

 24. Truong ND, Nguyen AD, Kuhlmann L, Bonyadi MR, Yang J, Ippolito S, Kavehei O (2018) Con-
volutional neural networks for seizure prediction using intracranial and scalp electroencephalo-
gram. Neural Netw 105:104–111

 25. Sabancı K, Koklu M (2015) The classification of eye state by using kNN and MLP classification 
models according to the EEG signals. Int J Intell Syst Appl Eng 3(4):127–130

 26. Li M, Xu H, Liu X, Lu S (2018) Emotion recognition from multichannel EEG signals using 
K-nearest neighbor classification. Technol Health Care 26(S1):509–519

 27. Kubat M, Flotzinger D, Pfurtscheller G (1993) Discovering patterns in EEG-signals: com-
parative study of a few methods. In: 6th European conference on machine learning. pp 366–371. 
ECML’1993, Springer, Vienna, Austria, Apr 1993

 28. Rupp R, Kleih SC, Leeb R, Millan J del R, Kübler A, Müller-Putz GR (2014) Brain-computer inter-
faces and assistive technology, Springer, pp 7–38

 29. Lotze M, Halsband U (2006) Motor imagery. J Physiol Paris 99(4):386–395
 30. Asensio-Cubero J, Gan JQ, Palaniappan R (2013) Multiresolution analysis over simple graphs for 

brain computer interfaces. J Neural Eng 10(4):21–26
 31. Ortega J, Kimovski D, Gan JQ, Ortiz A, Damas M (2017) A parallel island approach to multiobjec-

tive feature selection for brain-computer interfaces. In: 14th international work-conference on artifi-
cial neural networks. pp 16–27. IWANN’2017, Springer, Cádiz, Spain, Jun 2017

 32. Ortega J, Asensio-Cubero J, Gan JQ, Ortiz A (2015) Evolutionary multiobjective feature selection 
in multiresolution analysis for BCI. In: 3rd international conference on bioinformatics and biomedi-
cal engineering. pp 347–359. IWBBIO’2015, Springer, Granada, Spain, Apr 2015

 33. Martín-Smith P, Ortega J, Asensio-Cubero J, Gan JQ, Ortiz A (2015) A label-aided filter method for 
multi-objective feature selection in EEG classification for BCI. In: 14th international work-conference 
on artificial neural networks. pp 133–144. IWANN’2015, Springer, Palma de Mallorca, Spain, Jun 2015

 34. Martín-Smith P, Ortega J, Asensio-Cubero J, Gan JQ, Ortiz A (2017) A supervised filter method for 
multi-objective feature selection in EEG classification based on multi-resolution analysis for BCI. 
Neurocomputing 250:45–56

 35. Ortega J, Asensio-Cubero J, Gan JQ, Ortiz A (2016) Classification of motor imagery tasks for BCI with 
multiresolution analysis and multiobjective feature selection. BioMedical Eng OnLine 15(1):149–164

 36. González J, Ortega J, Escobar JJ, Damas M (2021) A lexicographic cooperative co-evolutionary 
approach for feature selection. Neurocomputing 463:59–76

 37. Ortega J, Ortiz A, Martín-Smith P, Gan JQ, González J (2017) Deep belief networks and multiob-
jective feature selection for BCI with multiresolution analysis. In: 14th international work-confer-
ence on artificial neural networks. pp 28–39. IWANN’2017, Springer, Cádiz, Spain, Jun 2017

 38. León J, Escobar JJ, Ortiz A, Ortega J, González J, Martín-Smith P, Gan JQ, Damas M (2020) 
Deep learning for eeg-based motor imagery classification: accuracy-cost trade-off. PLoS ONE 
15(6):e0234178

 39. Aquino-Brítez D, Ortiz A, Ortega J, León J, Formoso MA, Gan JQ, Escobar JJ (2021) Optimiza-
tion of deep architectures for eeg signal classification: An automl approach using evolutionary algo-
rithms. Sensors 21(6):2096

 40. Lawhern VJ, Solon AJ, Waytowich NR, Gordon SM, Hung CP, Lance BJ (2018) EEGNet: A 
compact convolutional neural network for EEG-based brain-computer interfaces. J Neural Eng 
15(5):e056013

 41. Schirrmeister RT, Springenberg JT, Fiederer LDJ, Glasstetter M, Eggensperger K, Tangermann M, 
Hutter F, Burgard W, Ball T (2017) Deep learning with convolutional neural networks for EEG 
decoding and visualization. Hum Brain Mapp 38(11):5391–5420

 42. Khan J, Bhatti MH, Khan UG, Iqbal R (2019) Multiclass EEG motor-imagery classification with 
sub-band common spatial patterns. J Wirel Commun Netw 174

 43. Ding C, Peng H (2003) Minimum redundancy feature selection from microarray gene expression 
data. In: computer society bioinformatics conference. pp 523–528. CSB’2003, IEEE, Stanford, CA, 
USA, Aug 2003



1 3

A distributed and energy‑efficient KNN for EEG classification…

 44. Jo I, Lee S, Oh S (2019) Improved measures of redundancy and relevance for mRMR feature selec-
tion. Computers 8(2):42

 45. Deng Z, Zhu X, Cheng D, Zong M, Zhang S (2016) Efficient kNN classification algorithm for big 
data. Neurocomputing 195:143–148

 46. Raudys SJ, Jain AK (1991) Small sample size effects in statistical pattern recognition: Recommen-
dations for practitioners. IEEE Trans Pattern Anal Mach Intell 13(3):252–264

 47. Escobar JJ, Ortega J, González J, Damas M (2016) Improving memory accesses for heterogeneous 
parallel multi-objective feature selection on EEG classification. In: 4th international workshop on 
parallelism in bioinformatics. pp 372–383. PBIO’2016, Springer, Grenoble, France, Aug 2016

 48. Luz Precio de la (2022) Public api for the pvpc regulated tariff of the spanish electricity market. 
https:// api. preci odela luz. org. Accessed 18 Nov 2022

 49. Kale V, Gropp W (2010) Load balancing for regular meshes on SMPs with MPI. In: 7th European 
MPI User’s group meeting. pp 229–238. EuroMPI’2010, Springer, Stuttgart, Germany, Sep 2010

 50. Ding F, Wienke S, Zhang R (2015) Dynamic MPI parallel task scheduling based on a master-worker 
pattern in cloud computing. Int J Auton Adapt Commun Syst 8(4):424–438

 51. Gvozdetska N, Globa L, Prokopets V (2019) Energy-efficient backfill-based scheduling approach 
for SLURM resource manager. In: 15th international conference on the experience of designing and 
application of CAD systems. pp 1–5. CADSM’2019, IEEE, Polyana, Ukraine, Feb 2019

 52. Babiuch M, Foltýnek P, Smutný P (2019) Using the ESP32 microcontroller for data processing. In: 
20th international conference on carpathian control. pp 1–6. ICCC’2019, IEEE, Kraków-Wieliczka, 
Poland, May 2019

 53. Judith AM, Priya SB, Mahendran RK, Gadekallu TR, Ambati LS (2022) Two-phase classification: 
ANN and A-SVM classifiers on motor imagery BCI. Asian J Control. https:// doi. org/ 10. 1002/ asjc. 2983

 54. Dong Y, Chen J, Yang X, Deng L, Zhang X (2008) Energy-oriented openmp parallel loop schedul-
ing. In: 6th international symposium on parallel and distributed processing with applications. pp 
162–169. ISPA’2008, IEEE, Sydney, NSW, Australia, Dec 2008

 55. Hassaballah M, Omran S, Mahdy YB (2008) A review of SIMD multimedia extensions and their 
usage in scientific and engineering applications. Comput J 51(6):630–649

 56. Tripathi R, Sivaraman V, Tamarapalli V (2021) Distributed cost-aware fault-tolerant load balancing 
in geo-distributed data centers. IEEE Trans Green Commun Netw 6(1):472–483

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps 
and institutional affiliations.

Authors and Affiliations

Juan José Escobar1  · Francisco Rodríguez2 · Beatriz Prieto2 · Dragi Kimovski3 · 
Andrés Ortiz4 · Miguel Damas2

 * Juan José Escobar 
 jjescobar@ugr.es

 Francisco Rodríguez 
 cazz@correo.ugr.es

 Beatriz Prieto 
 beap@ugr.es

 Dragi Kimovski 
 Dragi.Kimovski@aau.at

 Andrés Ortiz 
 aortiz@ic.uma.es

https://api.preciodelaluz.org
https://doi.org/10.1002/asjc.2983
http://orcid.org/0000-0002-4258-0264


 J. J. Escobar et al.

1 3

 Miguel Damas 
 mdamas@ugr.es

1 Department of Software Engineering, CITIC, University of Granada, Granada, Spain
2 Department of Computer Engineering, Automation and Robotics, CITIC, University 

of Granada, Granada, Spain
3 Institute of Information Technology, University of Klagenfurt, Klagenfurt, Austria
4 Department of Communications Engineering, University of Málaga, Málaga, Spain


	A distributed and energy-efficient KNN for EEG classification with dynamic money-saving policy in heterogeneous clusters
	Abstract
	1 Introduction
	2 Related work and background
	3 The proposed approach
	3.1 A distributed master-worker scheme for node-level parallelization
	3.2 Implementation of the energy policy for money-saving
	3.3 Ways of distributing the workload

	4 Experimental work
	4.1 Experimental setup
	4.2 Classification analysis
	4.3 Energy-time performance
	4.4 Energy policy benchmark

	5 Conclusions and future work
	Acknowledgements 
	References


