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Abstract: (1) Background: This study aimed to determine the effect of repeated pre-polymerization
heating on the color and translucency of a one-shaded resin-based composite and to evaluate whether
the heating cycles affect its color stability. (2) Methods: Fifty-six samples of 1-mm thickness were
fabricated from Omnichroma (OM) after applying different heating cycles (for one, five, and ten
times at 45 ◦C) before polymerization (n = 14/group) and afterwards were stained with a yellow
dye solution. CIE L*, a*, b*, C*, h◦ coordinates were recorded, and color differences, whiteness, and
translucency were calculated, before and after staining. (3) Results: Heating cycles significantly
influenced the color coordinates, WID00, and TP00 of OM being higher after one heating cycle and
decreasing as the number of heating cycles increased. The color coordinates, WID, and TP00 after
staining significantly differed for each group. The color and whiteness differences calculated after
staining exceeded the acceptability thresholds for all groups. The color and whiteness variations after
staining were clinically unacceptable. (4) Conclusions: Repeated pre-polymerization heating induces
a clinically acceptable color and translucency change to OM. Although the color changes resulting
after staining are clinically unacceptable, increasing the number of heating cycles up to ten times
slightly reduces the color differences.

Keywords: one-shaded resin-based composite; heating; color difference; color stability

1. Introduction

Resin-based composites (RBCs) are widely used as direct restorative materials due
to their versatility in different clinical scenarios, good mechanical properties, and ex-
cellent aesthetics [1–4]. Since nanotechnology was introduced in the manufacturing of
dental RBCs, nanocomposites have demonstrated superior properties compared to their
predecessors [1,5].

Chromatic properties are primarily responsible for the aesthetic integration of a restora-
tion. In most cases, to mimic the natural tooth, the selective reflection of wavelengths is
determined by pigments in the composition of the restorative material [4]. More recently,
the phenomenon of “structural color” [6] has been used in RBCs to match better the wide
color range that characterizes natural dentition. One study [7] reported that spherical
nanofillers with a diameter smaller than the wavelength of visible light (<380 nm) could
produce structural angle-independent color without adding pigments. Consequently, a
“smart chromatic technology” allowed the development of RBCs without pigments, which
are claimed to match all VITA shades through reflected wavelengths inside the tooth color
space [8–11]. Omnichroma (OM) is a one-shaded nanofilled RBC that uses structural color
and has uniform supra-nanospherical fillers (260 nm spherical particles of SiO2-ZrO2,
79%wt.) dispersed in a resin matrix containing urethane dimethacrylate (UDMA) and
triethylene glycol dimethacrylate (TEGDMA) [8].
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Due to the immense advantages of using a one-shaded RBC in different clinical situa-
tions, a significant amount of research followed the introduction of OM on the market. The
color and optical behavior of OM were intensely investigated in recent studies [4,5,9,12–16].
It was found that the filler system with supra-nanospherical particles demonstrated in-
creased light transmission [17]. Several studies demonstrated that OM has an excellent
color adjustment potential (CAP) and can blend with enamel and dentin, leading to per-
fectly color-matched dental restorations, mostly in cavities surrounded by dental struc-
tures [12,14,15,18]. However, one study found that multi-shaded universal RBCs in complex
anterior restorations showed better color matching than one-shaded RBCs [13]. A higher
thickness of OM would not influence the color adaptation to cavity walls due to its char-
acteristics (high translucency, structural color), as a conventional resin-based composite
has a greater color maladjustment to tooth structure as the thickness of the composite
increases [19]. In a retrospective study of 2 years, in which OM and another universal
resin-based composite were tested for diastema closures and direct veneers, OM reached
higher scores for luster and color match [19].

RBCs can be used at room temperature or warmer by heating the syringes or mono-
doses in heating units (Calset, ENA Heat, Ease-it) at 54–68 ◦C [20,21]. Due to a larger
delivery system than mono-doses, syringes are preheated several times in daily prac-
tice [22]. Preheating RBCs reduces the viscosity and stickiness and improves the handling
of materials [23–26], which leads to an improved marginal adaptation to enamel and dentin,
minimizing the risk of secondary caries [27,28]. Moreover, preheating RBCs can reduce the
discoloration effect of different staining solutions [29]. However, one study concluded that
repeated preheating negatively influenced the flexural strength of RBCs [30]. Considering
the temperature level, previous research demonstrated that preheating the composites to
45 ◦C would not affect the dental pulp [31–33], while temperatures over 68 ◦C may affect
the pulp and are not recommended [34].

The Commission Internationale de L’Eclairage (CIE) has developed various color sys-
tems, the CIELAB system being the most frequently used in color research in dentistry [35].
The CIELAB color space can be illustrated by a Cartesian system where lightness is repre-
sented on a vertical axis by the L* coordinate, and the chromatic coordinates a* and b* are
represented on two horizontal axes (red–green and yellow–blue axis, respectively). Based
on these coordinates, a difference in color between two objects can be computed using color
difference formulae (∆Eab or ∆E00) [35]. The whiteness index (WID) is also calculated from
the CIELAB values and expresses the amount of white within a sample [36]. Translucency
is a state between transparency and complete opacity and is defined as the color difference
between the color coordinates of a sample measured over black and white backgrounds
(TP) [37]. Clinical interpretation of color, translucency, and whiteness differences is possible
by comparing their values with the respective visual thresholds [35–37].

The evolution of the optical properties of RBCs over time is variable [10,38–42]. Color
stability is given by the ability of a material to maintain the apparent color after being ex-
posed to challenging conditions such as daylight, humidity, pH modifications, mechanical
stress, foods, and beverages with staining potential [10]. Color and translucency stability
of RBCs can be influenced by the light-curing process, material aging, and external fac-
tors [43,44]. Recent studies concluded that one-shaded RBCs immersed in wine, coffee, and
black tea showed more significant color change than multi-shaded RBCs [40–42], while
nanohybrid and microhybrid resin-based composites showed important color change when
stained in turmeric or saffron powder and in grape juice [45].

Although several material-dependent factors were investigated about structural-
colored RBCs, to our knowledge, there are no studies investigating the influence of heating
cycles on the color and translucency of these materials. Furthermore, the effect of staining in
relation to the different number of heating cycles is also unknown. Therefore, the objectives
of the study were to assess the effect of repeated pre-polymerization heating cycles on the
color and translucency of a one-shaded RBC and to evaluate whether its color stability is
affected by the heating cycles. The tested hypotheses were (1) the repeated heating cycles
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did not affect the color, whiteness, and translucency of the one-shaded RBC, and (2) the
staining procedure had the same effect upon the color, whiteness, and translucency of the
one-shaded RBC, regardless of the number of heating cycles.

2. Materials and Methods
2.1. Sample Preparation, Heating, and Staining Protocols

A priori sample size calculation for an effect size f of 0.25, α error probability 0.05,
power 0.95, and 4 groups led to a total sample size of 56 (n = 14/group). Therefore, fifty-six
samples (10.0 mm diameter and 1.0 mm thickness) were fabricated from a novel one-shaded
RBC (Omnichroma, Tokuyama Dental, Tokyo, Japan) using different heating cycles.

The sample fabrication is summarized in Figure 1. The first group was considered
as the control (group 1), for which the resin-based composite syringe was not heated. For
the test groups, the number of heating cycles varied from one (group 2) to five (group 3)
or ten times, respectively (group 4). For each group, a different syringe from the same
batch was used. The syringes were heated to 45 ◦C in a resin composite heating unit
(Ease-it, Ronvig, Daugaard, Denmark) and were maintained for 1 h in the heating unit
to reach the selected temperature. The temperature of the material was verified with a
sonde thermometer introduced into the middle of the composite mass. A heating cycle was
considered from the syringe’s introduction into the heating unit to the end of the heating
time. After each heating cycle, the composite was left for eight hours to cool completely to
room temperature (21 ◦C).
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Figure 1. Schematic representation of the experimental methodology: sample fabrication, heating
groups, staining protocol, and color measurements.

Omnichroma (OM) was packed into a metal cylinder (Porcelain Sampler, Smile Line,
Saint Imier, Switzerland), and a Mylar strip was placed over the top of the sample. The
samples were polymerized for 40 s on each side using a light-curing unit with an output
power of 1800 mW/cm2 (Led.H Orto, Woodpecker, Guilin, China) and immersed for 24 h
in 3 mL of distilled water, in a dark environment, at room temperature. All specimens
were polished with sandpaper (1000 and 2000 grit) for 30 s on each side of the specimen for
each granulation and cleaned with distilled water in an ultrasonic bath to remove debris
from the surface. The samples were examined for surface defects, and the final thickness
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(1.00 ± 0.01 mm) was verified using a digital caliper (Z22855, Milomex Ltd., Pulloxhill,
UK).

Each specimen was stored for 48 h in 3 mL of staining solution in a dark environment
at room temperature. The staining solution was prepared by diluting 2 mL of dye (natural
yellow dye, Dr. Oetker, Bielefeld, Germany) in 100 mL distilled water at room temperature
(Figure 1). After the staining procedure, the specimens were washed with distilled water
and dried.

2.2. Color Measurement

The color measurements were performed before (T0) and after (T1) the staining proce-
dure for each heating group (Figure 1). A dental spectrophotometer (SpectroShade Micro,
MHT, Niederhasli, Switzerland) was used for recording the CIE L*, a*, b*, C*, h◦ color
coordinates of the samples over white (L* = 91.83; a* = −1.89; b* = 0.16), grey (L* = 46.53; a*
= −1.55; b* = −1.28), and black backgrounds (L* = 1.60; a* = 2.09; b* = −2.90). A trained
operator performed three consecutive measurements for all samples, and the instrument
was calibrated before each measurement.

The total color differences (∆E00) between different groups of heating cycles and
for the same groups after staining were calculated using the CIEDE2000 color difference
formula [35,46], with the same parameter values used in previous studies [47–49]:

∆E00 =

[(
∆L′

kLSL

)2

+

(
∆C′

kCSC

)2

+

(
∆H′

kHSH

)2

+ RT

(
∆C′

kCSC

)(
∆H′

kHSH

)] 1
2

(1)

All values of the color differences were clinically interpreted by comparison with
their respective 50:50% visual thresholds for perceptibility (PT00) and acceptability (AT00),
determined in the literature [50,51] and recommended by the Technical Report ISO/TR
28642:2016 [52]: PT00 = 0.8 and AT00 = 1.8 ∆E00 units. Moreover, the ∆E00 units analyzed
were divided into the three components: lightness (∆L00), chroma (∆C00), and hue (∆H00),
defined as follows [53]:

∆L00 =
∆L′

kLSL
; ∆C00 =

∆C′

kCSC
; ∆H00 =

∆H′

kHSH
(2)

In addition, the whiteness index for dentistry (WID) [48] was calculated for each
sample from the measured CIE L* a* b* color coordinates over the grey background using
the following formula [36]:

WID = 0.511L∗ − 2.324a∗ − 1.100b∗ (3)

Whiteness differences (∆WID) between different groups of heating cycles and for the
same groups after staining were calculated [54]. ∆WID units were analyzed according to
perceptibility (WPT) and acceptability (WAT) 50:50% thresholds for whiteness differences
established at 0.72 and 2.62 WID units, respectively [51,54].

Translucency was evaluated using the translucency parameter (TP) [55], which was cal-
culated as the CIEDE2000 color difference (TP00) between the CIE L* a* b* color coordinates
of each sample over black (B) and white (W) backgrounds, using the formula [37]:

TP00 =

[(
L′B − L′W

kLSL

)2

+

(
C′B −C′W

kCSC

)2

+

(
H′B −H′W

kHSH

)2

+ RT

(
C′B −C′W

kCSC

)(
H′B −H′W

kHSH

)] 1
2

(4)

Differences in translucency (∆TP00) between different groups of heating cycles and for
the same groups after staining were evaluated following the 50:50% perceptibility (TPT00)
and acceptability (TAT00) thresholds for translucency: TPT00 = 0.62 and TAT00 = 2.62 TP00
units, respectively [37,51].



Materials 2023, 16, 3793 5 of 14

2.3. Statistical Analysis

The Shapiro–Wilk test was performed to test the normal distribution of the data
(α = 0.05). Based on the outcomes of this test, to assess the differences between groups
of heating cycles, the Kruskal–Wallis test was used. Contrasts between groups were
performed using the Mann–Whitney U test with a Bonferroni correction (p = 0.005). Data
were analyzed using the statistical analysis software SPSS Statistics 20.0.0 (IBM Armonk,
New York, NY, USA).

3. Results

Mean values and standard deviation of CIE L*, a*, b*, C*, h◦ color coordinates and
WID over grey background, and TP00 of the different heating groups before staining (T0),
are shown in Table 1.

Table 1. Mean values and standard deviation of color coordinates, WID (over grey background) and
TP00 before staining (T0).

L* a* b* C* h◦ WID TP00

Group 1
(0 cycles) 74.0 (1.1) 1.2 (0.2) a 14.0 (0.8) a,b 14.1 (0.8) a,b 84.9 (1.1) a 19.6 (0.7) 23.9 (0.9) a

Group 2
(1 cycle) 75.4 (0.4) 0.6 (0.2) 14.1 (0.7) a,c 14.2 (0.7) a,c 87.5 (0.8) 21.6 (0.5) 22.1 (0.5)

Group 3
(5 cycles) 75.1 (1.0) a 1.4 (0.2) 13.5 (0.6) 13.6 (0.6) 84.1 (1.0) 20.3 (0.6) a 24.4 (0.3) b

Group 4
(10 cycles) 75.1 (1.0) a 1.1 (0.2) a 13.8 (0.7) b,c 13.9 (0.7) b,c 85.3 (0.9) a 20.5 (0.6) a 24.0 (0.7) a,b

Same lowercase letter, for each column, shows no statistically significant difference among the different groups
evaluated (p > 0.005).

Heating cycles initially increased the L* coordinate statistically significantly, which
stabilized after 5 cycles, since between 5 and 10 heating cycles, no difference was found
(p = 0.159). The a* coordinate showed no characteristic behavior. It decreased signifi-
cantly after 1 heating cycle and then significantly increased for 5 heating cycles, while
after 10 heating cycles, the value of the a* coordinate was not significantly different from
0 heating cycles (p = 0.021). C* and b* color coordinates significantly decreased after
5 heating cycles, but similar to the a* coordinate, after 10 heating cycles, their values were
not significantly different from 0 heating cycles (p = 0.133 and p = 0.101, respectively). The
h◦ coordinate had the opposite behavior compared to the a* coordinate, since it shifted
significantly toward the yellow region after 1 heating cycle. However, after 5 heating
cycles, the values decreased, while after 10 heating cycles, the values were not significantly
different from the control group either (p = 0.167).

The WID values significantly increased after 1 heating cycle, yet after 5 and 10 heating
cycles, the WID values decreased but were still significantly higher than 0 heating cycles.
No significant difference was found between 5 and 10 cycles (p = 0.458).

TP00 significantly decreased after 1 heating cycle; however, after 5 cycles, TP00 in-
creased, and after 10 cycles, its values were not significantly different from the control
group (p = 0.561).

Figure 2 shows the ∆E00 between the tested and the control group for T0. The most
important color difference was found between 0 and 1 heating cycles. All comparisons
were below the AT00, and even the color differences between 0–10 heating cycles were
below the PT00. For all cases, the lightness shift contributed most significantly to the color
difference.
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Figure 2. ∆E00 of the one-shaded resin-based composite (G1) after 1 (G2), 5 (G3) and 10 (G4) heating
cycles. Abbreviations: G1—Group 1; G2—Group 2; G3—Group 3; G4—Group 4.

The ∆WID of each tested group and the control group for T0 (Figure 3) was above the
WPT in all cases, yet the highest whiteness variation was at 1 heating cycle and the smallest
at 5 heating cycles.
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Figure 3. ∆WID of the one-shaded resin-based composite (G1) after 1 (G2), 5 (G3) and 10 (G4) heating
cycles. Abbreviations: G1—Group 1; G2—Group 2; G3—Group 3; G4—Group 4.

The ∆TP00 between all tested groups and the control groups for T0 is shown in Figure 4,
where only at 1 heating cycle the ∆TP00 value exceeded the TPT00. However, after 5 heating
cycles, the ∆TP00 increased without becoming perceptible.
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Figure 4. ∆TP00 of the one-shaded resin-based composite (G1) after 1 (G2), 5 (G3), and 10 (G4) heating
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The results of the experimental staining of OM subjected to different regimens of
heating before polymerization are presented in Table 2, where the mean values and standard
deviations of L*, a*, b*, C*, h◦ color coordinates and WID over grey background and TP00
are shown.

Table 2. Mean values and standard deviation of color coordinates, WID (over grey background) and
TP00 after the staining procedure (T1).

L* a* b* C* h◦ WID TP00

Group 1
(0 cycles) 72.1 (0.7) −0.7 (0.5) 24.2 (1.7) 24.2 (1.7) 91.7 (1.0) 11.9 (1.0) 25.9 (0.7)

Group 2
(1 cycle) 72.5 (0.5) −0.6 (0.4) 23.8 (1.5) 23.8 (1.5) 91.4 (0.8) 12.3 (1.0) 25.7 (0.5)

Group 3
(5 cycles) 72.6 (0.3) −0.3 (0.3) 22.4 (1.1) 22.4 (1.1) 90.7 (0.7) 13.2 (0.6) 26.4 (0.3)

Group 4
(10 cycles) 73.0 (0.5) 0.0 (0.4) 20.9 (1.1) 20.9 (1.1) 90.0 (1.0) 14.4 (0.7) 25.8 (0.5)

All comparisons between groups for each evaluated parameter were statistically significant (p < 0.005).

After the staining process, all the color coordinates, WID, and TP00 of the control and
tested groups were statistically significantly different from their respective baseline values
(p < 0.005). The L* and a* coordinates slightly decreased after staining, while b*, C*, and h◦

coordinates significantly increased. The WID of the stained samples was lower than the
baseline, while the TP00 increased.

Figure 5 shows the color differences after the staining procedure, where it can be
observed that for all groups, the ∆E00 exceeded the AT00. For groups with 0, 1, and
5 heating cycles, the color difference values were more than three times higher than the
AT00, while for the group with 10 heating cycles, the values were more than two times
higher. In all situations, ∆C00 had the most significant contribution to the total color
difference.
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The ∆WID values after the staining procedure are shown in Figure 6, decreasing below
twice the value of WAT for all groups, being even three times lower for the group with one
heating cycle.
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Figure 6. ∆WID after staining of the one-shaded resin-based composite for each group of heating
cycles. (∆WID between T0 and T1). Abbreviations: G1—Group 1; G2—Group 2; G3—Group 3;
G4—Group 4; T0—Before staining procedure; T1—After staining procedure.

The ∆TP00 values obtained after the staining procedure are shown in Figure 7 and
exceeded the TPT00 in all situations with similar values, except for group 2, which was
higher than the TAT00.
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4. Discussion

Heating RBCs before curing is a clinical procedure frequently used by dentists to
improve materials handling before placement in the oral cavity.

Even though preheating of the resin composite is not mandatory, the advantages of
this procedure have been proven from a clinical point of view [22]. In addition, preheating
of the resin-based composites is indicated by some manufacturers. The heating effect was
previously investigated but most studies focused on the effect of one heating cycle [29,56,57].
However, it is common in clinical practice to reuse composite syringes, and therefore,
heating of the same syringe can occur up to 20 times, mainly if a multi-layering technique
is used [30].

Our results showed that all color coordinates, as well as WID and TP00, varied after
repeated heating cycles; therefore, the first tested hypothesis was rejected. The most
significant variation was observed for lightness, which increased after 1 heating cycle but
remained relatively constant after 5 or 10 heating cycles. However, a*, b*, C*, h◦ coordinates,
and TP00 after 10 heating cycles, were not significantly different from the unheated control
group. Although the WID increased significantly after one cycle, it dropped slightly after 5
cycles but remained higher than the reference WID values corresponding to the unheated
control group. Moreover, the TP00 values calculated for 1.0-mm thick samples fabricated
from OM without heating were similar to those reported by a previous study that analyzed
the optical behavior of different one-shaded RBCs [9].

Although the color coordinates varied significantly after repeated heating cycles,
the color differences were below the acceptability threshold even after 10 heating cycles
(Figure 2). In particular, the color, whiteness, and translucency differences found were
higher after one heating cycle and followed a decreasing trend as the number of heating
cycles increased. This finding has an important clinical relevance since the results of our
study demonstrated that repeated heating of OM induces a clinically acceptable color
change.

Previous research investigated the effect of preheating on the color stability of a
nanohybrid composite [29]. In that study, the RBC was heated once to 68 ◦C, and after light-
curing and surface finishing, the samples were immersed in distilled water, coffee, and tea.
The authors concluded that the preheated RBC showed significantly lower discoloration
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than the unheated group when immersed in coffee, but the difference was not significantly
different for the immersion in tea [29].

Translucency changes in an RBC can occur due to light-curing or aging [43]. In our
study, the TP00 dropped significantly after one heating cycle, but after 5 and 10 heating
cycles, the values were close to those of the no-heating group (Figure 4). This result could
be explained by the increase in the L* coordinate of the RBC. Possibly after the first heating
cycle, the homogeneity of the material was affected, but after repeated heating, it returned
to the baseline. Nevertheless, additional studies are necessary to support this speculation.

Different studies investigating OM have aimed to characterize it by evaluating me-
chanical properties, light transmission, and cell toxicity. The filler system with supra-
nanospherical particles demonstrated an increased light transmission [17]. Furthermore,
the cell viability was comparable for structural and pigment-colored materials [4]. However,
it was concluded that the particular composition of structural-colored materials induced
similar or poorer mechanical properties than the pigment-colored materials [16], which is
associated with higher sensitivity to aging and lower reliability [17].

Currently, there is no agreement on how heating influences some of these properties.
Previous research showed that after heating (one cycle of 40 s), the mechanical properties of
RBC were unaltered [27], while another study demonstrated that after 40 preheating cycles
of 12 min to 45 ◦C, the mean flexural strength of both microhybrid and nanofilled RBC
showed a significant decrease [30]. Furthermore, another study concluded that when a
universal RBC and a silorane composite were preheated for 40 cycles of 12 min at 55–60 ◦C,
the color changes were more significant than for the unheated composites [38].

The second tested hypothesis was also rejected since the color coordinates, WID,
and TP00 of the samples after the staining process were significantly different for each
heating group. Furthermore, the number of heating cycles affected all the parameters
analyzed since the ∆E00, ∆WID, and ∆TP00 values obtained decreased sequentially from 1
to 10 heating cycles. However, the values were above the acceptability thresholds in all the
studied parameters except ∆TP00.

The ∆E00 values obtained for all heating groups were greater than three times the AT00
after staining, which, according to the AT00 rating from Paravina et al. [51], would represent
an extremely unacceptable match (Figure 5), except for group 4, which after 10 heating
cycles showed a clearly unacceptable match [51], being only more than twice the AT00. In
all cases, ∆E00 were mainly due to the increase in chroma, followed by the shift toward the
yellow region of the color space. These results are consistent due to the yellow die used to
prepare the staining solution, which was selected because it is often found in many foods
and beverages.

Consequently, the WID values decreased for all the heating groups analyzed with
a similar pattern, obtaining a ∆WID with a clearly unacceptable match, according to the
WAT00 rating described by Paravina et al. [51], except for group 2, which, after a single
heating cycle, reached an extremely unacceptable match (Figure 6). These results are
consistent with the color variations obtained and the staining procedure, where again, it is
notable to find the slightest variations in group 4, after 10 heating cycles.

One study concluded that the color changes of a universal RBC and a silorane-based
composite after immersion in tea were lower for the heated group than the unheated
group [38]. In our study, the color changes resulting after staining the one-shaded RBC
were similar for the unheated group and heating groups 2 and 3 (after 1 and 5 heating cycles).
After 10 heating cycles, the color change after the staining procedure was significantly
lower than for the unheated group, which is consistent with the results obtained by Abed
Kahnamouei et al. [38], although their results were obtained after 40 heating cycles.

It is well known that increasing the polymerization temperature leads to a higher
degree of dimethacrylate monomers conversion [58]. This effect is limited to near 90 ◦C for
bisphenol A-glycidyl methacrylate (Bis-GMA) and ethoxylated bisphenol-A dimethacrylate
(Bis-EMA). Above this temperature, the degree of conversion drops due to reactant evapo-
ration and photoinitiator degradation [58,59]. However, although the degree of monomer
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conversion influences the chemical properties of the resin composites, one study [20]
concluded that preheating a nanohybrid composite to 60 ◦C increased the monomer con-
version but did not influence the optical properties significantly (color stability and opacity
variation).

Although there are recent studies published on the color stability of OM, the results
reported are inconsistent. When OM was compared to a multi-shaded nanocomposite to
evaluate the color stability and gloss retention when immersing them in tea and red wine,
it was concluded that for OM, the ∆E00 values were statistically significantly higher [20].
Similar results were reported by another study investigating the color stability of two
one-shaded RBCs compared to multi-shaded RBCs [42]. These results could be explained
by the chemical composition of the organic matrix of the one-shaded RBCs. Both OM
and Vitra Unique, another one-shaded RBC, have in their composition TEGDMA, which
might be responsible for the higher susceptibility to discoloration due to its higher water
absorption properties than Bis-GMA [60].

On the contrary, another study reported that when OM was compared with other
nanofilled resin composites, no significant differences were found regarding color stability
after immersion in tea [41]. Moreover, other research concluded that accelerated aging
effects were material-dependent, where OM exhibited significantly lower color change than
other tested RBCs in general [10].

The current study used different RBC syringes of the same material (OM) for sample
fabrication. However, this material is a one-shaded RBC without an inherent color and
with excellent color adjustment potential. In addition, RBC syringes from the same lot
and with the same expiry date were used. On the other hand, although only one type of
staining solution was evaluated, it induced a significant color change in the one-shaded
RBC samples.

Another limitation of the study is that the initial roughness of the samples was not
evaluated using surface roughness measurement methods. However, the polishing of the
samples was standardized and the variation of the surface roughness within and between
the groups was controlled.

Further studies should be carried out, including other one-shaded RBCs, different
staining solutions, and artificial aging to assess the color stability and to compare their
optical behavior upon repeated heating. Moreover, further studies on the variation of the
color adjustment potential of one-shaded RBCs after repeated heating and staining would
be of high clinical interest.

5. Conclusions

Within the limitations of the present study, it was concluded that, in general, the color,
whiteness, and translucency of OM showed the highest variations after the first heating
cycle. Although clinically acceptable, these changes decreased as heating cycles increased.
Except for the translucency changes, the color and whiteness variations that occurred
after the staining were clinically unacceptable; however, these changes were smaller as the
number of heating cycles increased.
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