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Abstract

A central issue in avian ecology deals with the trade-off between investment life-
history components, such as reproductive effort, and parasite and disease resistance.
During reproduction, differences in the particular needs of males and females may
further affect the outcome of such trade-off. However, most studies performed to
date on avian species have focused on males, while less is known about this sub-
ject in females. We investigated haemoparasite infections (genera Haemoproteus,
Plasmodium and Leucocytozoon) in relation to sex, year, body condition and
plasma concentrations of carotenoids in wild-breeding Red-legged partridges (Alec-
toris rufa). Our aim was to examine whether there are differences in infections
between sexes and how parasite infections relate to carotenoid levels, physical con-
dition and breeding parameters in non-passerine wild birds. Males captured early in
the breeding season were in better body condition than females, indicating a
marked sexual difference in this trait in wild Red-legged partridges. The prevalence
of blood parasites in males was higher than in females. However, we found that
females infected by blood parasites had lower plasma carotenoid concentrations
than uninfected females, whereas no association between infection and carotenoid
levels was found in males. This suggests sex-related differences in the use of carot-
enoids to fight infections or for parasite resistance. A possible explanation of this
contrasting pattern between sexes is that reproduction may not have to involve the
same costs for males and females. We suggest that males would be under strong
sexual selection and would trade health for signalling, which could simultaneously
explain highest parasite prevalence being found in males and the contrasting pat-
terns in blood carotenoid levels between males and females. Females in contrast,
that were in worst body condition during early breeding season, were more sensi-
tive to infections, diverting carotenoids to immune function more than males.

Introduction

Parasites cause deleterious effects on their hosts, having poten-
tially negative effects on the survival and fitness, being power-
ful drivers of natural and sexual selection (e.g. Clayton &
Moore, 1997; Wilson et al., 2019). Parasite prevalence and
intensity can vary in relation to several factors that determine
host’s susceptibility to infections, like age, sex, densities of
vectors or host behaviour (Atkinson & Van Riper III, 1991). In
a wide range of animals, the prevalence and intensity of infec-
tions is higher in males than in females, mainly due to sex dif-
ferences in exposure, and hormonal or immunological
differences between males and females (review in Klein, 2000).

Although males are often more susceptible than females to
many parasites (review in Klein, 2000), there are some parasite
species to which females are more susceptible than males
(McCurdy et al., 1998), and differential exposure to vectors or
endocrine–immune interactions (oestrogen-based effects on
immunity) have been proposed to explain this sex reversal.
Within the framework of host–parasite interactions, much

attention has been given to the connection between parasites
and sexually selected traits, as these characters have been
hypothesized to be particularly sensitive to parasites, acting as
reliable signals of health status (Hamilton & Zuk, 1982). Most
research in this sense has focused on carotenoid-based colora-
tions, which are paradigms of sexually selected traits
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(McGraw, 2006). This is because carotenoids, which can only
be acquired through diet, are often a limited resource and their
use for pigmenting teguments must be traded off with other
potential functions of these molecules, such as acting as immu-
nostimulants or antioxidants in the organism (Chew &
Park, 2004; Lozano, 1994; P�erez Rodr�ıguez, 2009). Indeed,
parasites elicit an immune response that is often associated to
oxidative stress (Costantini & Møller, 2009), thus strengthening
this hypothetical trade-off and leading to a reduction in circu-
lating carotenoids that may be mirrored by carotenoid-based
ornaments. In agreement with this hypothesis, there is a good
number of empirical studies on birds—largely, the most studied
taxa on this topic—supporting the negative impact of parasites
on blood carotenoids and carotenoid colorations of skin, cere,
beaks and plumages (e.g. H~orak et al., 2004; Mart�ınez-Padilla
et al., 2007; Mougeot et al., 2007; Mougeot, Martinez-Padilla,
et al., 2009; see also Simons et al., 2012 for a review). How-
ever, most available studies, including those mentioned above,
have been performed on intestinal parasites (particularly cocci-
dia and nematodes). Although there is some evidence that host
responses against these kind of parasites involve oxidative
stress (Allen, 1997; Mougeot, Martinez-Padilla, et al., 2009;
Sepp et al., 2012), their impact on host’s carotenoid levels—
and on host condition—could also be explained by the direct
damage caused to the gut mucosa that may impair its capacity
to absorb dietary carotenoids and other nutrients (Amerah &
Ravindran, 2015; Figuerola et al., 2014; Watson et al., 1987).
Unlike intestinal parasites, blood parasites would allow a more
direct test of a potential association between infection and
carotenoid levels, avoiding the interference effects derived from
gut damage. However, studies relating haemoparasite infection
and carotenoid-based coloration are scarcer than for intestinal
parasites, and the results are highly variable depending on the
parasite and host species investigated, the methods used to
quantify parasites, the signal trait studied or the sex of the
bearer (Biard et al., 2010; del Cerro et al., 2010; Dias
et al., 2016; Freeman-Gallant & Taff, 2017; Henschen
et al., 2017; H~orak et al., 2001; Janas et al., 2018; L�opez
et al., 2011; Lumpkin et al., 2014; Penha et al., 2020). Even
more scarce are works evaluating the effect of blood parasites
on blood levels of carotenoids, apparently unrelated in a large
sample of passerine species (Figuerola et al., 2014).
Most studies performed to date in birds about carotenoids,

immune response and parasites have focused on males, typi-
cally of passerines with marked sexual dimorphism while less
is known about this subject in females and in species of other
avian groups (e.g. Martinez-Padilla et al., 2011). This is a seri-
ous concern, as males and females of the same species may
experience different ecological and physiological trade-offs.
For instance, males may experience relatively higher suscepti-
bility to parasite infections due to their higher testosterone
levels, which would reduce their carotenoid levels (and, poten-
tially, their carotenoid-based ornamentation, when present; Fol-
stad & Karter, 1992; Lozano, 1994). But, at the same time,
these high testosterone levels would increase the bioavailability
of carotenoids, enhancing their absorption in the intestine or its
transport capacity in the bloodstream (Blas et al., 2006;
Peters, 2007). Female birds, whose testosterone levels are

overall lower, are probably less exposed to these processes.
But, in turn, they have to deal with a strong allocation trade-
off on the use of available carotenoids for self-maintenance
versus egg production, as the yolk formation requires signifi-
cant amounts of these molecules (Surai, 2002). The investiga-
tion of sex differences in parasite resistance or susceptibility
and its connection with carotenoids in wild birds is therefore
important for sex-specific resource allocation theory, as sexual
dimorphism in infections may influence reproductive effort and
survival (Dawson & Bortolotti, 2001).
In this study, we investigated haemoparasite infection in

relation to sex, year, body condition and plasma concentrations
of carotenoids in wild-breeding Red-legged partridges (Alec-
toris rufa) during early breeding season. This is a medium-
sized Galliform where males exhibit a high parental invest-
ment, as they often incubate alone the first clutch laid by
females (Casas et al., 2009; Green, 1984). It is one of the few
Galliform species with low sexual dimorphism (both in size
and ornamentation), and both sexes show bright red legs, bill
and eye rings that may be important intraspecific signals of
quality (Alonso-Alvarez et al., 2012; Cantarero et al., 2019;
Mougeot, Perez-Rodriguez, et al., 2009; P�erez-Rodr�ıguez
et al., 2010; P�erez-Rodr�ıguez & Vi~nuela, 2008). The red colour
of these traits is due to carotenoids (Garc�ıa-de Blas
et al., 2011; P�erez-Rodr�ıguez, 2008) and is more intense in
males than in females (P�erez-Rodr�ıguez, 2008, 2022; Villa-
fuerte & Negro, 1998). Experiments in captivity have shown
that carotenoid intake and circulating carotenoids correlate with
the intensity of ornament redness in this species (Garcia-de
Blas et al., 2016; P�erez-Rodr�ıguez, 2008). Indeed, experiments
on captive males have shown that circulating carotenoids are
increased by testosterone and reduced by intestinal parasite
(coccidia) infection, immune system activation and oxidative
stress, which can eventually be mirrored by ornament redness
(Alonso-Alvarez et al., 2008, 2009; Alonso-Alvarez &
Galv�an, 2011; Blas et al., 2006; P�erez-Rodr�ıguez, 2008). How-
ever, little is known about the sources of variation of circulat-
ing carotenoids in females or in wild individuals, which have
higher levels of blood carotenoids and redder ornaments that
captive ones (Garc�ıa-de Blas et al., 2013; the authors, unpub-
lished data). In addition, knowledge on malaria parasites of
this species is limited to a handful of studies (Encinas, 1982;
Garc�ıa et al., 2021; H€ofle et al., 2022; Mill�an et al., 2002; Tiz-
zani et al., 2020) and is missing from recent disease reviews
(see D�ıaz-S�anchez et al., 2022; Welchman, 2016). Furthermore,
nothing is known about occurrence and intensity of haemopar-
asite infections, and their possible relationships with physical
condition, sex or carotenoid levels, albeit these parasites are
known to occur with relatively high prevalence in this species
(Garc�ıa et al., 2021).

Our aim here is to examine whether haemoparasites affect
body condition, if there are differences in parasite infections
between sexes, and how infections relate to carotenoids levels,
physical condition and breeding parameters in wild birds. In
particular, we predict that (1) uninfected birds should have
higher body condition than infected birds, and (2) an overall
higher parasite occurrence in males than in females, due to the
immunosuppressive effect of testosterone. Finally, if both sexes
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used carotenoids to cope with infections, we predicted (3)
lower plasma carotenoid concentration in infected birds as
compared with uninfected ones but no differences between
sexes.

Materials and methods

Study area and data collection

The study was conducted in Campo de Calatrava (Central
Spain, 38°800 N, 3°800 W, 610 m a.s.l.). Habitat is character-
ized by undulated farmland mainly aimed to cereal cultivation
(mostly barley Hordeum spp.), with interspersed patches of
olive groves, vineyards, dry annual legume crops (mainly vetch
Vicia sativa) and sugar beet (Beta rubra). Natural vegetation
areas are very scarce, limited to crop field edges, pasturelands,
fallow and small patches of Mediterranean scrub, mainly on
the top of hills.
In early spring (February–April) 2003–2005, 115 wild adult

red-legged partridges were caught using cage traps with a live
decoy (an adult male red-legged partridges) and baited with
wheat (2003: n = 39, 2004: n = 44, 2005: n = 32). Captured
individuals were ringed, weighed (with a 1000 g Pesola� pre-
cision scale) and measured (tarsus width and length with a dig-
ital calliper to the nearest 0.01 mm, and wing and tail length
with a ruler to the nearest 0.5 mm; see Svensson, 1992). All
measurements were taken by the same person (FC), yet not all
measurements were possible in all birds accurately under field
conditions (e.g. when temperature or rain conditions would
have caused excessive stress or unacceptable delays in proces-
sing birds). Therefore, sample sizes differ slightly among
response variables. Blood samples were taken from the bra-
chial vein (0.5–1 mL) and kept refrigerated for less than 8 h
until centrifugation (7200 g, 10 min). Plasma and cellular frac-
tion were stored at �20°C until analysis. The birds were then
released at the capture site with a 5 g radiotag manufactured
by Biotrack (Biotrack Incl., Biotrack, Dorset, UK) and sur-
veyed by radiotracking until reproduction to record breeding
success and reproductive parameters. We used AOR-AR8200
multiband receptors and three element YAGI antennas for
radiotracking. The research complies with the Spanish laws
and were performed with the corresponding legal authoriza-
tions and following recommended guidelines for animal
welfare.

Body condition of birds and breeding
parameters

We considered body mass relative to structural body size as an
estimate of body condition. Our first step was to derive indices
of body size for each individual, by conducting a principal
component analysis (PCA) with body measurements (tarsus
width and length, and wing, and tail length) for males and
females separately. The PCA generated a first principal compo-
nent (PC1) which accounted for 45.5% of the variance for
males and 41.7% for females. This component was a good
index of structural size of birds, since it included the lengths

of all morphological traits with significant loads (males: tarsus
length = �0.76; tarsus width = �0.58; wing = �0.62;
tail = �0.72; females: tarsus length = �0.61; tarsus
width = �0.49; wing = �0.75; tail = �0.69). High PC1 scores
thus corresponded to birds with low structural size. To explore
the effect of variations in the body condition of birds, we con-
sidered body mass of individuals as a dependent variable and
the structural size (i.e. first component of the PCA) as a covar-
iate in the analyses (Garc�ıa-Berthou, 2001). We first confirmed
that structural size was significantly correlated with body mass
(general linear model, GLM: F1,109 = 4.89, P < 0.02) and that
the relationship was similar for males and females through the
non-significant interaction sex x PC1 (F1,109 = 0.78,
P = 0.38).
Radio-tagged birds were followed at least weekly until the

end of the reproduction. For each female we recorded laying
date, laying success (1 = laying, 0 = no laying), clutch size
and hatching success (1 = at least 1 egg successfully hatched;
0 = no egg hatched). Since some males also incubate alone the
first clutch laid by females, we recorded also for each male:
incubation (1 = incubation, 0 = no incubation), and breeding
success (eggs successfully hatched in their incubated clutches).
Individuals that died before laying due to predation and/or
hunting activity (n = 18 females, n = 15 males) were excluded
from these analyses on breeding parameters. To allow compari-
sons, date of capture and laying date were calculated as the
number of days from 1st February within each study year until
the day of capture/laying.

Molecular sexing of wild birds

Red-legged partridges are sexually dimorphic in size, and only
slightly dimorphic in coloration, but the sex of birds is difficult
to determine accurately in the field using those traits. There-
fore, we sexed them genetically using the primers 2550F and
2718R and the procedure described by (Fridolfsson &
Ellegren, 1999).

Detection of haemoparasite infections in
wild birds

Total DNA was extracted from blood samples of the 115
caught birds by using standard phenol/chloroform protocol and
diluted to a working DNA concentration of 25–50 ng/lL. We
excluded three samples that had very low DNA concentrations
(<5 ng/lL). In the remaining 112 samples, we searched para-
site infections using a nested PCR method (Hellgren
et al., 2004) designed to amplify 479 bp of the cytochrome b
gene of Plasmodium spp., Haemoproteus spp., and Leucocyto-
zoon spp. parasites from avian total blood DNA. We evaluated
2.5 lL of each final reaction on 2% agarose gels stained with
ethidium bromide. All this procedure was done twice to check
for repeatability of the results (the results were identical in
both repetitions). We included negative controls in all reactions
(distilled water instead of genomic DNA). This method, allow
to detect accurately the presence/absence of blood parasites
belonging to (1) Haemoproteus/Plasmodium spp. Group, and
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(2) Leucocytozoon spp. group (Hellgren et al., 2004). Since we
do not sequence all positive PCR reactions, we are unable to
differentiate Haemoproteus from Plasmodium spp. For that rea-
son, we consider both genera together in our analyses (see
Garc�ıa et al., 2021 for further details on the same protocol).
To check that our method was working properly, some sam-

ples (n = 5) with positive PCR reactions for Haemoproteus
were sequenced with ‘HaemF’ primer. All sequences were cor-
rectly classified as Haemoproteus sp. according to sequence
similarity with known parasites published in GenBank. The
complete sequence is available from GenBank under the acces-
sion number EF473863. Birds in our sample set were then
classified as infected or non-infected.

Plasma carotenoid measurements

Plasma carotenoid concentration was determined by diluting
60 lL of plasma in acetone (dilution 1:10). The mixture was
vortexed and centrifuged at 11 000 g for 10 min to precipitate
the flocculent proteins. The supernatant was examined in a
Shimadzu UV-1603 spectrophotometer at 446 nm (see, for
more details, P�erez-Rodr�ıguez et al., 2007). Finally, plasma
carotenoid concentration (lg/mL) was calculated using a stan-
dard curve of lutein (Sigma Chemicals, St Louis, MO, USA).

Statistical analysis

We examined differences in infection status in relation to sex,
year and date of capture using Generalized Linear Model
(GLZ, StatSoft Inc, 2008). We fitted a binomial logistic model
with log-link function, including infection status (presence/
absence of blood parasites) as dependent variable. The model
included year, sex and their interaction as predictors. Date of
capture was incorporated as a continuous predictor to account
for its possible effect on the infection probability.
To examine differences in the body condition and carotenoid

levels of birds we used general linear models. We used body
mass or carotenoid level as dependent variables, and sex, year,
infection status and their two-way interactions as predictors.
The date of capture (i.e. day in which the measures of caroten-
oids and body condition was taken within each year) was
included in the model relativized to the start of the breeding
season (by subtracting the first lay date recorded each year),
since both dependent variables may vary throughout the repro-
ductive season. In the model for body mass, we also included
structural size (first component of the PCA, see above) as a
continuous predictor. We also test for an effect of condition on
plasma carotenoid levels by including the condition as continu-
ous predictor (residuals of mass regressed against PC1).
Differences in breeding parameters between infected and

uninfected females were explored by means of generalized
non-linear model (GLZ), fitting a binomial logistic model with
log-link function, and including laying date as continuous
explanatory variable. Since we could not accurately estimate
the laying date in those nests in which males incubate, we
used simple Mann–Whitney U tests to compare breeding
parameters between infected and uninfected males.

Analyses were performed with Statistica 8 (StatSoft
Inc, 2008). We performed post hoc Tukey tests to examine sig-
nificance levels (P value) for the respective pairs of weighted
marginal means in some interactions resulted from analyses.
Vales are shown as means � standard error (SE).

Results

Differences in phenology and capture dates
among years

There were significant differences in date of capture between
years (F2,109 = 74.55, P < 0.001). The average capture date for
females was marginally earlier than for males (F1,109 = 2.96,
P = 0.088) and the interaction year 9 sex was non-significant
(F2,109 = 0.55, P = 0.57). Earliest dates of captures were
obtained in 2004 (18.5 � 3.12 and 26.9 � 3.12 for females and
males, respectively; 1 = February 1th), followed by 2005
(females: 34.95 � 3.27, males: 39.3 � 4.23), and 2003
(61.1 � 3.45 and 62.7 � 3.20, females and males, respectively).

Infection by blood parasites in relation to
sex, year and date of capture

We detected avian malaria parasites in 64 birds from the 112 avail-
able samples (28 out of 60 females and 36 out of 52 males; overall
prevalence of 57.1%). Individuals infested exclusively with para-
sites belonging to Haemoproteus/Plasmodium spp. were 28.3% of
females (n = 17 of 60) and 36.5% of males (n = 19 of 52). In
general, birds sampled with positive PCR reactions for Leucocyto-
zoon spp. were also infested by Haemoproteus/Plasmodium
spp., with combined infection (Haemoproteus/Plasmodium
spp. + Leucocytozoon spp.) found in 16.6% of females (n = 10)
and 32.7% of males (n = 17). In contrast, only one bird (a female)
was infested exclusively by Leucocytozoon spp.
For both sexes, plasma carotenoid concentration did not dif-

fer significantly between single infections with Haemoproteus/
Plasmodium spp. and combined infections (Haemoproteus/
Plasmodium spp. + Leucocytozoon spp.; Two-Way ANOVA,
type of parasite 9 sex: F1,56 = 0.37, P = 0.54). The same
result was found when analysing body condition (Two-Way
ANOVA, type of parasite 9 sex: F1,52 = 0.07, P = 0.78). For
this reason, we will treat both groups of parasites together in
the following analyses and simply considered infected vs. non-
infected individuals.
The model explaining the probability of infection showed sig-

nificant differences according to capture date and sex (Table 1).
Birds captured later in the season had more chances of being
infected than birds from early dates (Table 1). On average, males
are more likely than females to be infected by malaria parasites,
and this difference was consistent between years (Table 1).

Body condition in relation to sex, parasite
infection and date

There were significant differences in body condition between
years, sexes and their interaction (Fig. 1; Table 2). Females
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presented poorer body condition than males in all years (all
Tukey test: P < 0.001). The condition of females in 2003 was
significantly better than in 2004 and 2005 (Tukey test:
P < 0.001) while no significant differences were found
between these 2 years (Tukey test P > 0.7). Males, in contrast,
did not differ significantly in condition among years (all Tukey
test P > 0.5). No significant differences in body condition were
found between infected and uninfected individuals (Table 2).
The body mass of infected and uninfected partridges each year
is shown in Table 3.

Blood carotenoids in relation to sex, parasite
infection and date

Blood carotenoids varied according to year and sex (Tables 3
and 4), but were unaffected by date of capture (Table 4). We
found a significant interaction sex x infection status (see
Table 4 and Fig. 2): infected females presented markedly lower
carotenoid concentration than that of uninfected ones (Tukey
test: P = 0.001), whereas no significant differences were found

between infected and uninfected males (Tukey test: P = 0.72).
Carotenoid concentration was similar for uninfected males and
females (Tukey test: P = 0.99), whereas carotenoid concentra-
tions were significantly lower in females with infections than
in infected males (Tukey test: P = 0.0001; Figs 2 and 3).
Including body condition (residuals of mass regressed against
PC1) as continuous predictor in the analysis does not change
the results, being the effect of condition not significant (GLM:
F1,94 = 0.005, P = 0.94) and remaining significant the interac-
tion sex x infection status (GLM: F1,94 = 5.71, P = 0.018).

Effects of parasite infection on reproductive
parameters

Infected and uninfected males incubated clutches with similar
frequency (Mann–Whitney U test: U = 90.50, P = 0.42), and

Table 1 Results of the generalized linear model (binomial distribution

and log-link function) analysing the factors predicting the infection by

blood parasites (infected vs. non-infected, dependent variable) in wild

adult red-legged partridges the during breeding period

Source of variation d.f. Wald P

Year 2 0.95 0.62

Sex 1 3.88 0.04

Year 9 sex 2 2.18 0.33

Date of capture 1 5.83 0.015

Date of capture 9 sex 1 0.27 0.60

Figure 1 General linear model interaction plot shows changes in body condition (weighted means and standard errors of body mass) by sex and

year. The general linear model (GLM) model included the categorical effects of year, sex and infection status and the continuous effect of

structural size and date of capture. Males are indicated in blue and females in orange.

Table 2 Results of the general linear model analysing the factors

affecting body mass (dependent variable) of wild adult red-legged par-

tridges during the breeding period

Source of variation d.f. F P

Year 2.98 10.42 <0.001

Sex 1.98 221.3 <0.001

Infection status 1.98 0.04 0.83

Year 9 sex 2.98 3.88 0.023

Year 9 infection status 2.98 1.39 0.25

Sex 9 infection status 2.98 0.17 0.68

Date 1.98 0.09 0.76

Structural size index (PC1) 1.98 25.19 <0.001

Date was included in the model relativized to the start of the breed-

ing season each year.

Journal of Zoology �� (2023) ��–�� ª 2023 The Authors. Journal of Zoology published by John Wiley & Sons Ltd on behalf of Zoological Society of London. 5

J. T. Garc�ıa et al. Trade-off between carotenoids and immunity

 14697998, 0, D
ow

nloaded from
 https://zslpublications.onlinelibrary.w

iley.com
/doi/10.1111/jzo.13071 by U

niversidad D
e G

ranada, W
iley O

nline L
ibrary on [12/06/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



the hatching success of the nests incubated by each sex did
not differ (Mann–Whitney U test: U = 12, P = 0.78). After
controlling for laying date, laying success did not differ signifi-
cantly between infected and uninfected females (GLZ preva-
lence: Wald statistic = 0.00, P = 0.99, d.f. = 1; GLZ laying
date, Wald statistic = 0.13, P = 0.71, d.f. = 1). In addition,
clutch size did not differ significantly between infected and
uninfected females (ANOVA prevalence: F1,28 = 1.29,
P = 0.26; laying date effect: F1,28 = 0.17, P = 0.68), and the
same results were found when analysing hatching success
(GLZ prevalence: Wald statistic = 1.27, P = 0.26, d.f. = 1;
GLZ laying date effect: Wald statistic = 1.37, P = 0.24,
d.f. = 1).

Discussion

Body condition and parasite prevalence

The results show no significant differences in body condition
between infected and uninfected partridges, which would sug-
gest that these haemotozoan parasites are not causing serious
health damage at the sampling time, as reported in other spe-
cies, or that effects on body condition cannot always be accu-
rately measured in the field (e.g. if captures are biased towards
good health individuals). Little is known about the pathological
effects of these blood parasites on partridges, and there has
been much discussion about their general pathogenicity in
birds (Dawson & Bortolotti, 2001; Merino, Møller,
et al., 2000). In fact, a large revision of the effect of

haemoparasites on body mass did not found any effect on this
trait (Bennett et al., 1988), whereas in other avian hosts caused
significant damage in both adults and nestlings (Calero-Riestra
& Garc�ıa, 2016; Marzal et al., 2005; Nordling et al., 1998; Sol
et al., 2003; Valkiunas, 2005). Furthermore, we do not find
any correlation between prevalence of parasites and breeding
parameters in males or females. But detrimental effects of par-
asites on reproduction and condition have been demonstrated
experimentally even in species very commonly infected
(Merino, Moreno, et al., 2000), those in which chronic non-
pathogenic infections would be expected (Atkinson & Van
Riper III, 1991; Merino, Moreno, et al., 2000). Unfortunately,
in our study we do not know which, if any, are chronic or
new infections, and we lack data on the level of parasitaemia
in the samples analysed and other relevant parameters such as
age of hosts. Hosts could be increasingly exposed to parasites
as they aged (Deviche et al., 2001; Marzal et al., 2016), but
they could also be very susceptible to infections when they are
young and the immune system is not fully developed (e.g.
Calero-Riestra & Garc�ıa, 2016). Research involving more sen-
sitive parameters (e.g. parasitaemia) or longitudinal studies
(repeated samples on the same individuals, samples on individ-
uals of know age) would help to deepen our knowledge on the
consequences of parasitic infections for birds.

Sex-related differences in parasite
prevalence and carotenoid levels

The prevalence of blood parasite in males was higher than in
females. The prevalence of protozoan parasites belonging to
Plasmodium genus has often been found to differ between
sexes in vertebrate hosts, mainly humans and rodents (Schalk
& Forbes, 1997; Zuk & McKean, 1996). Among birds, higher
haemoparasite prevalence in males during breeding season has
been found in several species (e.g. Calero-Riestra &
Garc�ıa, 2016; Freeman-Gallant & Taff, 2017), particularly early
in the breeding season (Sundberg, 1995), but this is not a gen-
eral rule (McCurdy et al., 1998; Ricklefs et al., 2005). These
sexual differences have been usually attributed to proximate
causes, mainly the immunosuppressive effect of testosterone
(Folstad & Karter, 1992; Zuk & McKean, 1996), although
overall evidence supporting that immunosuppressive effect is
still weak or even contradictory (Evans et al., 2000; Roberts
et al., 2004).

Table 3 Mean and 95% confidence intervals (in parenthesis) of body mass (g) and carotenoid concentration (lg/mL) in red legged partridges in

relation to year, sex and infection status

Year Sex

Uninfected Infected

Body mass Carotenoids Body mass Carotenoids

2003 Male 484 (411–578) 8.78 (1.66–15.89) 493 (480–506) 11.82 (9.62–14.02)

Female 448 (417–478) 9.04 (0–18.15) 433 (420–446) 5.67 (3.91–7.44)

2004 Male 496 (482–509) 12.07 (10.47–13.67) 483 (464–501) 11.76 (9.54–13.99)

Female 399 (382–416) 11.34 (9.56–13.13) 415 (389–441) 7.40 (2.39–12.42)

2005 Males 466 (422–511) 12.06 (�11.17–35.31) 490 (469–512) 13.97 (10.69–17.25)

Female 399 (387–411) 12.58 (10.15–15.01) 401 (389–413) 10.76 (8.34–13.18)

Table 4 Results of the general linear model analysing the factors

affecting plasma carotenoid levels (dependent variable) of wild adult

red-legged partridges during the breeding season

Source of variation d.f. F P

Year 2.97 4.02 0.020

Sex 1.97 8.59 0.004

Year 9 sex 2.97 0.58 0.56

Infection status 1.97 0.70 0.40

Year 9 infection status 2.97 0.92 0.40

Sex 9 infection status 1.97 7.98 0.005

Date 1.97 0.00 0.98

Date was included in the model relativized to the start of the breed-

ing season each year.
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Infected birds showed contrasted sexual patterns in caroten-
oid levels: whereas infected and uninfected males did not differ
in circulating carotenoids, infected and uninfected females did.

A previous study in captivity have found a significant reduc-
tion of carotenoid levels immediately after mounting a cell-
mediated immune response in male partridges (Perez-

Figure 2 General linear model interaction plot shows changes in plasma carotenoids (weighted means + SE) by sex and infection status. The

GLM model included the categorical effects of year, sex and infection status and the continuous effect of date of capture. Males are indicated in

blue and females in orange.
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tridges showing no infection, and infected by Haemoproteus/Plasmodium parasites, by Leucocytozoon parasites or showing combined infections

(Haemoproteus/Plasmodium + Leucocytozoon).
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Rodriguez et al., 2008), which led us to expect an overall
reduction in circulating carotenoids among infected birds. Par-
tridges were captured during mating season, when maintaining
intense carotenoid-based sexual signals could be more impor-
tant for males searching mates and defending territories than
for females. A possible explanation of this contrasting pattern
between sexes is that reproduction may not have to involve
the same costs for males and females. Infections were more
common as breeding season advanced, probably reflecting
abundance of vectors and suggesting that a significant percent-
age of infections were occurring during the study season. Per-
haps female partridges, that were in worst body condition
during early breeding season, were more sensitive to the infec-
tions, diverting carotenoids to immune function more than
males. The latter might significantly affect the trade-off
between immune response and reproductive effort in females,
since during egg-laying, females should remove a large amount
of carotenoids from blood to incorporate them into the eggs
(Biard et al., 2005; Bortolotti et al., 2003). For example,
female sticklebacks (Gasterosteus aculeatus) trade-off caroten-
oids for the colouration of spines and for allocation to eggs,
and redder females put less carotenoids into their eggs (Nor-
deide et al., 2006). Plasma and egg yolk carotenoid levels of
captive female red-legged partridges are correlated, at least
early in the breeding season (Bortolotti et al., 2003). The sug-
gested use of carotenoids by females to cope with the infec-
tions could reduce carotenoids available for eggs. As
carotenoids are a limited resource, the amount of carotenoids
removed could impair the carotenoid supply to the eggs, jeop-
ardizing the immunity and health of chicks (Blount
et al., 2000, 2002). Future studies should explore carotenoid
use by females at a time near laying, since our data were gath-
ered at least 18 days before laying date.
The unexpected, contrasted association between infection

and carotenoids in wild males and females could be due to sex
differences in the allocation trade-off between immune system
and signalling traits. The lack of association between caroten-
oids and parasite prevalence in males might thus be related to
the different selection pressures suffered by both sexes during
this stage of the reproduction (Freeman-Gallant et al., 2001).
Increased parasite loads of males may be one mechanism by
which the costs of reproduction are paid (Dawson & Borto-
lotti, 2001). In this period, males would be under strong sexual
selection and would trade health for signalling, which could
simultaneously explain highest parasite prevalence found in
males, and the contrasting patterns in blood carotenoid levels
between males and females (Ots & H~orak, 1996; Tschirren
et al., 2003). For example, ornament coloration of male mag-
nificent frigatebird (Fregata magnificens) during reproduction
is testosterone-dependent and showed significant correlation
with blood parasites and mate status (Madsen et al., 2007),
suggesting a close relationship between hormones and condi-
tion at the time of trait expression. Similar data to those pre-
sented in this paper obtained at other stages of the breeding
cycle, or even out of breeding season would be valuable to
confirm this hypothesis.
Finally, it is also important to stress the need to consider

both sexes together in this kind of studies, which too often

focus on males alone, as previously pointed out by other
authors (Zuk & McKean, 1996). Indeed, the expression of
ornamental traits in females has been traditionally dismissed,
but a recent review highlights their functional value as reliable
signals of quality that may play a role in sexual selection (Her-
nandez et al., 2021). Interestingly, that study revealed that
carotenoid-based colorations of birds (and specially those of
bare parts, such as those exhibited by partridges) are particu-
larly good proxies of female fitness-related traits and cues of
male mate choice in birds (Hernandez et al., 2021). The com-
parison between sexes in patterns of infection, effects of para-
sites and carotenoid use are of crucial importance to
understand the roles of proximate and ultimate causes of sus-
ceptibility to parasites and of the trade-offs between investment
on immune system and on other biological functions.
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