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ABSTRACT

Context. The phenomenon of limb-darkening is relevant to many topics in astrophysics, including the analysis of light curves of
eclipsing binaries, optical interferometry, measurement of stellar diameters, line profiles of rotating stars, gravitational microlensing,
and transits of extrasolar planets
Aims. Multiple parametric limb-darkening laws have been presented, and there are many available sources of theoretical limb-
darkening coefficients (LDCs) calculated using stellar model atmospheres. The power-2 limb-darkening law allows a very good
representation of theoretically predicted intensity profiles, but few LDCs are available for this law from spherically symmetric model
atmospheres. We therefore present such coefficients in this work.
Methods. We computed LDCs for the space missions Gaia, Kepler, TESS, and CHEOPS and for the passbands uvby, UBVRIJHK,
and SDSS ugriz, using the PHOENIX-COND spherical models. We adopted two methods to characterise the truncation point, which sets
the limb of the star: the first (M1) uses the point where the derivative dI(r)/dr is at its maximum – where I(r) is the specific intensity as
a function of the normalised radius r – corresponding to µcri, and the second (M2) uses the midpoint between the point µcri and the point
located at µcri−1. The LDCs were computed adopting the Levenberg–Marquardt least-squares minimisation method, with a resolution
of 900 equally spaced µ points, and covering 823 model atmospheres for a solar metallicity, effective temperatures of 2300–12 000 K,
log g values from 0.0 to 6.0, and microturbulent velocities of 2 km s−1. As our previous calculations of LDCs using spherical models
included only 100 µ points, we also updated the calculations for the four-parameter law for the passbands listed above, and compared
them with those from the power-2 law.
Results. Comparisons between the quality of the fits provided by the power-2 and four-parameter laws show that the latter presents
a lower merit function, χ2, than the former for both cases (M1 and M2). This is important when choosing the best approach for a
particular science goal.

Key words. binaries: close – binaries: eclipsing – planetary systems

1. Introduction

Stars show a decrease in specific intensity from their centre to
their limb. This is because opacity causes the sightlines of the
observer to penetrate less far when they enter the photosphere at
an angle. This effect, known as limb-darkening, occurs both for
real stars and for theoretical stellar atmosphere models, and is
important in any situation where a star is spatially resolved, such
as the study of eclipsing binaries, transiting planetary systems,
stellar interferometry, microlensing, and spectral line profiles.

The specific intensity profiles generated by model atmo-
spheres with spherical symmetry differ from their plane-parallel
equivalents mainly in the region near the limb, where the for-
mer shows a sharp drop while the latter presents a finite specific
intensity. This important difference is due to the fact that in the
plane-parallel case, the curvature of the atmosphere is neglected.
⋆ Tables 1–12 are only available at the CDS via anonymous ftp

to cdsarc.cds.unistra.fr (130.79.128.5) or via https://
cdsarc.cds.unistra.fr/viz-bin/cat/J/A+A/674/A63

Neglecting curvature effects is justified in stars with low atmo-
spheric scale heights, but not for cool giants or supergiants. In
plane-parallel model calculations, the medium is infinite, there
is no natural boundary condition, and the specific intensity is
not zero at the limb but depends on the local temperature in this
region. However, in the case of models with spherical symme-
try, the temperature tends to zero at small optical depths (see
Eq. (7.182) in Mihalas 1978). A concise explanation for this cru-
cial difference can be found in Mihalas (1978, p. 246–247); see
also Larson (1969). In the theoretical-observational context of
flux and polarisation calculations, Kostogryz et al. (2017) report
the superiority of spherical models over plane-parallel models
in some configurations, such as systems with grazing eclipses,
transits with Earth-size planets, or for hotter planet host stars
(effective temperatures Teff > 6000 K).

In Claret & Southworth 2022 (hereafter Paper I) we showed
the superiority of the power-2 law (Hestroffer 1997) in terms of
the quality of fits of limb-darkening coefficients (LDCs) to theo-
retical predictions over the other two-parameter laws in the case
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of plane-parallel model atmospheres. However there remain few
sources of LDCs calculated for the power-2 law, especially using
spherical model atmospheres. The exceptions are LDCs for DA,
DB, and DBA white dwarfs using plane-parallel models (Claret
et al. 2020), solar-type stars using 3D models (Maxted 2018),
extensive tables using the ATLAS plane-parallel models
(Paper I), and LDCs for the CHEOPS space mission, where
spherical models are adopted (Claret 2021).

The aim of this work is to provide users with LDCs for the
power-2 law based on spherical model atmospheres, covering a
wide range of Teff values, surface gravities, and passbands. The
passbands adopted here are Strömgren uvby, Johnson–Cousins
UBVRIJHK, and SDSS ugriz photometric systems, plus those
for the space missions Gaia, Kepler, TESS, and CHEOPS. The
results of the present study supersede those of Claret (2021) for
the CHEOPS mission.

The structure of the paper is as follows. Section 2 is dedicated
to the description of the spherical models (PHOENIX-COND)
and the numerical details of the calculations of the LDCs. A
comparison between the power-2 and four-parameter LDCs is
presented in Sect. 3. Section 4 gives a comparison between the
plane-parallel and spherical LDCs, and Sect. 4 summarises our
findings.

2. The spherical atmosphere models and numerical
methods

In this paper, we use specific intensity profiles from the
PHOENIX-COND spherical model atmospheres. The main char-
acteristics of these models are described in Husser et al. (2013);
see also Claret et al. (2012). We adopt a Levenberg-Marquardt
least-squares minimisation method to compute the LDCs. The
specific intensities for the uvby, UBVRIJHK, ugriz, Gaia,
Kepler, TESS, and CHEOPS photometric systems were inte-
grated using the following equation:

Ia(µ) = (hc)−1

∫ λ2

λ1
I(λ, µ)λS (λ)ad λ∫ λ2

λ1
S (λ)a d λ

, (1)

where h is Planck’s constant, c is the speed of light in vac-
uum, λ is the wavelength in Å, and µ is given by cos(γ), where
γ is the angle between the line of sight and the outward sur-
face normal. Ia(µ) is the specific intensity for a given passband
a, I(λ, µ) is the monochromatic specific intensity, and S a(λ) is
the response function. For the uvby, UBVRIJHK, and ugriz
photometric systems, the response function includes the trans-
mission of one airmass of the Earth’s atmosphere. The passbands
used were obtained from Spanish Virtual Observatory Filter
Profile Service1. For the specific case of Strömgren uvby, the
response function was obtained from the Observatorio de Sierra
Nevada, Granada, Spain (C. Cárdenas, priv. comm.). For JHK,
the corresponding S (λ) were obtained from the Observatorio del
Teide-IAC, Spain (Alonso et al. 1994).

The specific intensities generated by the spherical model
atmospheres show a much more pronounced curvature near
the limb than the plane-parallel models, making it much more
difficult to obtain a good fit to them. For example, the four-
parameter law is able to fit the full profiles well but only for
some filters (see e.g. Fig. 1 in Claret et al. 2012). Some alterna-
tive methods have been proposed to better describe the specific
intensity profiles for models with spherical symmetry, such as
1 http://svo2.cab.inta-csic.es/theory/fps/

Fig. 1. Angular distribution of the specific intensity for a model with
Teff = 4500 K, log g = 4.5, [M/H] = 0.0, and Vξ = 2 km s−1 for the TESS
passband. The red line represents the specific intensity distribution and
the red cross indicates µcri,1. The green line denotes the fitting adopting
the power-2 law, while the green cross indicates the fitting at µcri,1. The
blue line denotes the four-parameter law approach and the blue cross
indicates the fitting at µcri,1. This plot is for case M1, and the specific
intensity profiles have not been re-scaled.

Claret & Hauschildt (2003), where the concept of quasi-
spherical models was introduced.

Later, Wittkowski et al. (2004) introduced a more elaborate
method: instead of truncating the models at a certain value of
µ, the truncation was defined by searching for the maximum of
the derivative of the specific intensity with respect to r, where
r =
√

(1 − µ2). This point corresponds to τR ≈ 1.0, where τR
is the Rosseland mean optical depth. Fortunately, the PHOENIX
models were computed with sufficient points in the drop-off
region to enable us to accurately determine the corresponding
derivatives. Wittkowski et al. (2004) gave two ways to deter-
mine this critical point. The first method (M1) uses the point
where the derivative is maximum, which is known as the point
µcri, while the second method (M2) uses the midpoint between
the point µcri and the point located at µcri−1 (G. Morello, priv.
comm.). The specific intensity using M2 at this average point is
larger than that obtained by the M1 method. Therefore, it gives
rescaled profiles that are more similar to the plane-parallel mod-
els than those provided by M1. However, M2 does not accurately
represent the specific intensity at the critical point as defined
by Wittkowski et al. (2004). The corresponding critical points
for both methods are characterised by µcri,1 and µcri,2. In the
current work, we present calculations for both M1 and M2 for
completeness.

The LDC calculations were performed adopting 823
PHOENIX stellar model atmospheres for solar metallicity, sur-
face gravities log g from 0.0 to 6.0, Teff values from 2300 K
to 12 000 K, and microturbulent velocities Vξ = 2.0 km s−1. We
adopted 900 equally spaced-points in µ, rather than the 78 origi-
nal ones adopted in the PHOENIX models. In our previous papers
on LDCs from spherical models, we used only 100 µ points, and
so we have updated our calculations using 900 points for the
photometric systems studied in this work.

The power-2 LD law introduced by Hestroffer (1997) is

I(µ)
I(µ = 1)

= 1 − g(1 − µh), (2)
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Fig. 2. Same as in Fig. 1, except for case M2 and µcri,2 instead of case
M1 and µcri,1.

where g and h are the corresponding LDCs. Given that the pro-
files generated by PHOENIX are much more complicated and
difficult to adjust than in the plane-parallel approximation, we
also calculated LDCs using the four-parameter law (Claret 2000)
which is

I(µ)
I(µ = 1)

= 1 −
4∑

k=1

ak(1 − µ
k
2 ), (3)

where ak are the four LDCs. The greater flexibility of the
four-parameter law allows it to reproduce the specific intensity
profiles to a higher precision than limb-darkening laws using
only two LDCs.

We define a merit function, which measures the quality of
the fit to a given set of I(µ) values as

χ2 ≡

N∑
i=1

(yi − Yi)2 , (4)

where yi is the model intensity at point i, Yi is the fitted function
at the same point, and N is the number of µ points.

3. Results

An extensive comparison of the different limb-darkening laws
was carried out in Paper I. It was found that the power-2
law produced better fits to the specific intensities from plane-
parallel model atmospheres than the other two-parameter laws
(quadratic, logarithmic, and square-root). Given this result and
the increased complexity of the specific intensities from spher-
ical model atmospheres, it was not thought necessary to repeat
that analysis here. However, we find it useful to investigate the
relative success of the power-2 and four-parameter laws, as this
information is helpful to users of the LDCs.

The resulting χ2 values are generally small and are dom-
inated by the difficulty of fitting the µcri,1 and µcri,2 points,
which is most conspicuous for the power-2 laws in the M1 case.
Figures 1–4 show the specific intensity profiles for the M1 and
M2 cases using both the power-2 (Eq. (2)) and four-parameter
(Eq. (3)) law. For the sake of clarity, only the regions near the
limb are shown, because the fits for µ > µcri are almost perfect.
For main-sequence stars (Figs. 1 and 2), and in both the M1 and
M2 cases, the four-parameter law (Eq. (3)) provides better fits

Fig. 3. Same as in Fig. 1, except for log g = 2.5 instead of log g = 4.5.

Fig. 4. Same as in Fig. 2, except for log g = 2.5 instead of log g = 4.5.

than those provided by the power-2 law (Eq. (2)). The situation
is the same but even clearer for the giant stars (Figs. 3 and 4). It is
important to emphasise that one of the main differences between
the plane-parallel models and the spherical ones is in the drop-
off region, and so it is necessary to characterise this region well
through the LDCs. The best test of the spherical models would
be achieved using Eq. (3) and case M1.

The relative quality of the fits can be computed using the
following expression:

α(passband) =
χ2(power-2, case M1)

χ2(four-parameter, case M1)
. (5)

Figures 5–10 show the quantity logα for the M1 case, a range
of Teff and log g values, and for the Gaia GBP, G, GRP, Kepler,
TESS, and CHEOPS passbands. It can be seen that the χ2 pro-
vided by Eq. (3) is typically a factor of 8 ± 2 smaller than the
χ2 given by Eq. (2), depending on the effective wavelength of
the passband. We also see that there is a common maximum in
all passbands centred on log Teff ≈ 3.65 (≈4500 K), where the
four-parameter law performs much better than the power-2 law.
A comparison of the effects for the SDSS u and z passbands (not
shown) indicates that the ratio α is larger at shorter wavelengths,
which is in agreement with the results for the Gaia GBP pass-
band (Fig. 5). It is also apparent that the power-2 law has a better
relative performance at higher Teff values, but this is still poorer
than the four-parameter law.
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Fig. 5. Comparison of the quality of fits provided for the Gaia GBP
passband. The quantity α is the ratio between the χ2 for the power-2
law and the χ2 for the four-parameter law (both for case M1), for all
823 models. The red line traces the results for the most compact models
(log g = 6.0) whilst the green line indicates the results for subgiant ones
(log g = 3.5).

Fig. 6. Same as in Fig. 5, but for the Gaia G passband.

Fig. 7. Same as in Fig. 5, but for the Gaia GRP passband.

In Figs. 5–10, we trace the relative performance for two
surface gravities: log g = 6.0 for the most compact stars and
log g = 3.5 to represent subgiants. This shows how the relative
quality of the fits depends on the surface gravity of a star. In

Fig. 8. Same as in Fig. 5, but for the Kepler passband.

Fig. 9. Same as in Fig. 5, but for the TESS passband.

Fig. 10. Same as in Fig. 5, but for the CHEOPS passband.

general, the power-2 law is better at higher surface gravities, but
is still not as good as the four-parameter law. This is the same
in all passbands except for the interval 3.4 ⪆ log T ⪆ 3.55 in the
GBP band. For models in radiative equilibrium, there is also a
tendency for the relative quality of the fits to not depend strongly
on the surface gravity.
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Fig. 11. Comparison between the power-2 g (upper panel) and h (lower
panel) LDCs in the case of plane-parallel model atmospheres (solid
lines) and spherical model atmospheres for cases M1 (dotted lines) and
M2 (dashed lines).

4. Comparison between plane-parallel and
spherical LDCs

A comparison between the power-2 LDCs predicted by plane-
parallel and spherical model atmospheres is useful. For the
plane-parallel model atmospheres, we adopted the results from
Paper I, which were calculated using the ATLAS code. For
the spherical model atmospheres, we used the results from the
current work for both cases M1 and M2.

Figure 11 shows the variation of the g and h LDCs as a
function of Teff , for log g = 4.0, solar metallicity, and Vξ =
2.0 km s−1. Cases M1 and M2 show much closer agreement than
the ATLAS LDCs, in particular at lower Teff values where spher-
ical model atmospheres are more reliable. The anti-correlation
between g and h is also clear, particularly at low Teff values for
M1 and M2, and at 6000 < Teff < 8000 K for the ATLAS LDCs.

An important use of the LDCs presented in the current
work is in calculating the light curves of planetary transits
(see Fig. 12). We explored this by using the JKTEBOP code
(Southworth 2013) to calculate the transit light curve of a system
similar to HAT-P-7 (Pál et al. 2008), using the transit parame-
ters from Southworth (2011). This system was chosen because
the small ratio of the radii of the planet and star gives a good
spatial sampling of the limb-darkening over the disc of the star.
To avoid interpolating LDCs to specific atmospheric parame-
ters, we adopted fixed values of Teff = 6000 K, log g = 4.0, solar
metallicity, and Vξ = 2.0 km s−1. The differences between the
ATLAS and PHOENIX LDCs cause a change in the transit shape
that reaches approximately 70 ppm around second and third con-
tact. In principle, this change is large enough to be measured
from space-based missions such as Kepler and TESS, especially
when many transits can be averaged together, but correlations
between the measured LDCs and other parameters of the system
will reduce the significance of the signal. The M1 and M2 LDCs

Fig. 12. Top panel: comparison between the transit shapes using the
power-2 LDCs for the plane-parallel (ATLAS) and spherical (cases
M1 and M2) model atmospheres (labelled). Lower panels: differences
between the transit shapes in each case (labelled).

give much more similar transit light curves – the greatest devia-
tion is only 4 ppm –, which suggests that the choice of which to
use is unimportant.

5. Summary and final remarks

We computed LDCs for the power-2 law using specific inten-
sities from spherical model atmospheres, as such results were
only previously available for a small range of stellar parame-
ters. To this end, we used the PHOENIX-COND models for Teff
values from 2300 K to 12 000 K, log g values from 0.0 to 6.0,
solar metallicity, Vξ = 2.0 km s−1, and with 900 µ points. We also
computed LDCs for the four-parameter law, which supersede our
previous calculations based on only 100 µ points. For both laws,
we computed coefficients for the uvby, UBVRIJHK, and SDSS
ugriz passbands, and for the Gaia, Kepler, TESS, and CHEOPS
photometric systems. Two approaches were used to define the
limb of the star based on the drop-off of intensity in the spherical
model atmosphere predictions. We emphasise that the µ values
have been rescaled to remove those beyond the limb of the star,
and so this need not be done by users of the LDCs.

We performed comparisons between the merit function χ2

for the power-2 and the four-parameter laws, finding that the four-
parameter law is superior in all cases to the power-2 law. The
performance of the power-2 law is better at higher temperatures
and at redder wavelengths. Additional calculations of LDCs for
other photometric systems not covered in this paper are available
upon request to the first author.
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We recommend that the four-parameter law be used when-
ever high precision is needed for specific intensity profiles. If
a less complex law is preferred, we recommend the power-2
law as it reproduces the theoretical intensity profiles to a higher
precision than the other two-parameter laws (see Paper I); we
also recommend not using the linear and quadratic laws because
they provide the least good fit to theoretical specific intensity
profiles. For modelling eclipsing binary star and transiting plan-
etary systems, the choice of which limb-darkening law to use
has a relatively small effect on the best-fitting parameter values
(Southworth 2023).

The current work, together with Paper I, provides three sets
of LDCs for any given set of stellar parameters and passbands,
within those covered in this work. These are LDCs from plane-
parallel ATLAS model atmospheres (Paper I) and LDCs from
spherical model atmospheres (this work) calculated using meth-
ods M1 and M2. Those from methods M1 and M2 are very
similar, whereas the LDCs from ATLAS are moderately different.
We show that these LDCs could be tested using high-precision
photometry of transits or eclipses. In our experience, planetary
transits are the best approach for this because the small size of
the planet relative to the star provides a finer spatial sampling
of the star’s specific intensity profile, but the size of the differ-
ences between the transit light curves from different LDCs is
not large.
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Appendix A: Description of Tables 1-12 (available at the CDS)

Table A.1: Power-2 and four-parameter LDCs for the Gaia, Kepler, TESS, CHEOPS, ugriz, uvby, and UBVRIJHK photometric systems.

Name Source Teff values (K) log g (c.g.s.) [M/H] (dex) Vξ (km s−1) Photometric system Method/equation
Table1 PHOENIX 2300 – 12000 0.0 – 6.0 0.0 2 Gaia, Kepler, TESS, CHEOPS M1/Eq. 2
Table2 PHOENIX 2300 – 12000 0.0 – 6.0 0.0 2 Gaia, Kepler, TESS, CHEOPS M2/Eq. 2
Table3 PHOENIX 2300 – 12000 0.0 – 6.0 0.0 2 Gaia, Kepler, TESS, CHEOPS M1/Eq. 3
Table4 PHOENIX 2300 – 12000 0.0 – 6.0 0.0 2 Gaia, Kepler, TESS, CHEOPS M2/Eq. 3
Table5 PHOENIX 2300 – 12000 0.0 – 6.0 0.0 2 ugriz M1/Eq. 2
Table6 PHOENIX 2300 – 12000 0.0 – 6.0 0.0 2 ugriz M2/Eq. 2
Table7 PHOENIX 2300 – 12000 0.0 – 6.0 0.0 2 ugriz M1/Eq. 3
Table8 PHOENIX 2300 – 12000 0.0 – 6.0 0.0 2 ugriz M2/Eq. 3
Table9 PHOENIX 2300 – 12000 0.0 – 6.0 0.0 2 uvbyUBVRIJHK M1/Eq. 2
Table10 PHOENIX 2300 – 12000 0.0 – 6.0 0.0 2 uvbyUBVRIJHK M2/Eq. 2
Table11 PHOENIX 2300 – 12000 0.0 – 6.0 0.0 2 uvbyUBVRIJHK M1/Eq. 3
Table12 PHOENIX 2300 – 12000 0.0 – 6.0 0.0 2 uvbyUBVRIJHK M2/Eq. 3
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