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A B S T R A C T   

Biophysical characterization analyses of protected areas (PA) that provide information on their ecological values 
and potential areas with similar characteristics are needed to make informed PA network planning and man
agement decisions. This study combines and further develops methodologies that use remote sensing and 
modelling to identify habitat functional types in PAs and map similar areas at the ecoregion level. The study also 
develops new terrestrial habitat diversity and irreplaceability indices at habitat and PA scale that allow the 
comparison and ranking of PAs in terms of biophysical gradients and singular environmental conditions. Six PAs 
were selected to highlight and discuss the results of the proposed methodology. Both individual and composite 
indices should be considered when trying to compare PAs to understand the overall complexity and ecological 
values of each PA. Results can inform planning and management of individual and protected area networks as 
well as identify new areas for conservation. The information provided by the model about similar habitats 
outside protected areas can also help assess their representativeness and support studies to strengthen ecological 
connectivity. Besides systematic comparisons, detailed assessments of protected areas can also be performed 
using medium and high-resolution input variables. This is especially relevant for protected areas in developing 
countries where undertaking fieldwork is very difficult and the budget devoted to conservation is limited.   

1. Introduction 

Human life on Earth is threatened by two global interlinked envi
ronmental crises: the climate change and the biodiversity crisis (De Vos 
et al., 2015; IPBES, 2019; IPCC, 2021; Keesing and Ostfeld, 2021; 
Rosenberg et al., 2019). Anthropogenic activities have severe environ
mental consequences, including increased frequency of flooding, soil 
erosion and biodiversity loss (Estrada et al., 2017; Hannah, 2008; 
Thomas and Gillingham, 2015). Globally, there has been an average 
decline of 68% in monitored vertebrate species populations between 
1970 and 2016 (Almond et al., 2020). There are no cost-effective, man- 
made substitutes for natural ecosystems, which, besides housing pop
ulations of different species, also provide several ecosystem services, 
upon which society relies (Albert et al., 2021; Cardinale et al., 2012). 

Protected areas contain valuable ecosystems, such as grasslands, peat
lands and forests, whose conservation can preserve and enhance their 
role as carbon pools, their protection capacity against floods or the 
replenishment of groundwater reserves (Griscom et al., 2017; Marques 
et al., 2019). The conservation of protected areas is consequently a good 
option to protect biodiversity, fight climate change and preserve the 
health and economies of human societies (Lehikoinen et al., 2019; 
Thomas and Gillingham, 2015). 

Modelling and remote sensing methods whose outputs can be 
translated into information that decision-makers can use at a scale that is 
relevant for PA network planning and management are increasingly 
needed (Lucas et al., 2015; Wiens et al., 2009). In this regard, tools that 
generate environmental stratifications of protected areas to provide in
formation on ecological values, as well as on potential areas with similar 
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characteristics are needed at a regional and global scale (Martínez-López 
et al., 2021; Signorello et al., 2018). 

Previous studies concerning the characterizations of PAs (Martínez- 
López et al., 2021) have recommended that these analyses should extend 
beyond specific habitat or ecosystem mapping and assessment methods 
so that a variety of habitats and ecosystem types can be identified. 
Ideally, the resulting habitat and ecosystem types identified and mapped 
within PAs should be comparable with existing global typologies and 
efforts to better deal with uncertainty, contribute to filling the gaps in 
current knowledge and more easily translate the results into information 
that can be used by policy and decision-makers. Moreover, models 
should be flexible methodologies capable of using large scale and time 
series derived input datasets, representative of longer periods, for 
regional and global assessments. At the same time, they should be 
capable of dealing with higher resolution input variables that could 
provide a more detailed assessment of specific PAs, thus facilitating 
regular monitoring of these areas. 

In this regard, assessing habitat diversity through free and open- 
source modelling and remote sensing tools can be useful to support 
management plans for individual PAs (e.g., each of the identified habitat 
types should be managed differently) or system-level plans for PA net
works (e.g. by evaluating the representativeness of PAs in relation to the 
full range of existing ecosystems within a given ecoregion; (Corbane 
et al., 2015; Nagendra et al., 2013). This is especially the case in 
developing countries where undertaking fieldwork is very difficult and 
the budget devoted to conservation is limited (Buchanan et al., 2018; 
Turner et al., 2015). On the other hand, measuring habitat similarity and 
irreplaceability can be also useful to identify new potential protected 
areas in order to increase connectivity within similar habitat types or 
between irreplaceable habitats. 

Several studies have focused on species diversity to measure irre
placeability and rank PAs (Ejrnæs et al., 2018; Hoffmann et al., 2018). 
However, biophysical characterizations can complement those species- 
based studies and have also been used to perform gap analysis and 
representation in PAs (Forero-Medina and Joppa, 2010; Sayre et al., 
2020). As part of the Digital Observatory for Protected Areas (DOPA; 
(Dubois et al., 2013a) proposed a methodology to assess the irreplace
ability of PAs based on biophysical variables by mapping similar areas at 
the ecoregion level. Subsequently, the methodology developed by 
Martínez-López et al. (2016) breaks down PAs into distinct areas with 
homogeneous ecological characteristics to identify habitat functional 
types (eHabitat+ model). However, none of these methods originally 
assessed both habitat diversity and irreplaceability of PAs, which is 
crucial to perform integrated assessments and prioritisation analyses. In 
this study, we have combined and further developed these methodolo
gies to create single and composite indicators for each PA that reflect 
both the PA’s biophysical diversity and the irreplaceability of their 
habitats. 

The main goal of the model and indices proposed in this study is to 
allow the comparison and ranking of PAs in terms of biophysical gra
dients and singular environmental conditions at a national, regional or 
global scale. This kind of information is especially useful when PAs are 
located in the same region (or ecoregion) since it can support an 
improved design of regional PA networks. 

2. Methods 

The software described here supports a fully automated analysis and 
builds upon different modelling tools developed over time for the DOPA 
(Dubois et al., 2016), which are described in the following subsections 
and partly already published as individual modules (Dubois et al., 
2013a; Martínez-López et al., 2016). This study combines these meth
odologies into a single workflow and further develops new standalone 
and composite terrestrial habitat diversity and irreplaceability indices at 
habitat (within each PA), as well as at PA level. Six PAs located in 
different continents were selected, covering a range of biomes, 

ecoregions and habitats, to show and discuss the results of the proposed 
methodology. In addition to the five PAs that were already used in our 
original study (Martínez-López et al., 2016), we added Udzungwa 
Mountains National Park in Tanzania, to which we had applied the 
eHabitat+ model in a separate analysis (Brink et al., 2016). Fig. 1 shows 
the combination of existing and newly developed methodologies and 
indices carried out in this study, which will be described in detail in the 
following subsections. 

Apart from the newly implemented modules and indices, over time, 
the eHabitat+ model has been further developed, some minor bugs have 
been solved and new parameters have been added. In this study, we used 
the latest version (v1.3) of the model (Martinez-Lopez, 2021). Appendix 
D describes the default and optional model parameters used in this 
study. A flowchart to demonstrate the calculation processes of the 
various indices and their relationship, described in Sections 2.1 and 2.2, 
can be seen in Fig. 2. 

2.1. Characterization of PAs in terms of the diversity and irreplaceability 
of their habitats 

The eHabitat+ model (Martínez-López et al., 2016) was developed to 
systematically stratify PAs globally into different habitat functional 
types (HFTs) based on remote sensing data and modelling. The meth
odology uses a combination of several multivariate statistical analyses 
based on different global predictors that account for the climate, 
topography, vegetation and water content within each PA. 

In this study we use the same set of nine input variables as in Mar
tínez-López et al. (2016), some of them representing long-term averages, 
such as the mean annual precipitation; the percentage of grassland and 
woody vegetation cover, the Normalised Difference Water Index (NDWI; 
an indicator of vegetation and soil water content), the maximum and 
minimum Normalised Difference Vegetation Index (NDVImin and 
NDVImax; indicating maximum and minimum vegetation activity), 
slope, mean annual biotemperature (temperature excluding below zero 
values) and aridity. A more detailed description of the variables, 
including data sources, can be found in Martínez-López et al. (2016). 
While the use of global datasets for the systematic assessment of PAs 
does not always reflect the specific environmental conditions within 
single PAs, it allows a proper comparison among them and between 
HFTs from different PAs. The use of medium or long-term derived 
datasets also helps capture representative trends. 

First, using the eHabitat+ model, we produced maps of the different 
HFTs found in a PA, together with a graphical description of their 
ecological features and the relative differences among them. These 
outputs help to understand the main biophysical gradients within each 
PA and compare habitat diversity between different PAs. 

Second, to identify and characterise potential similar areas, we 
mapped and quantified the similarity between the habitats found in each 
PA and the surrounding areas based on a set of ecological indicators 
within the corresponding terrestrial ecoregion. The methodology behind 
this step was originally proposed by Dubois et al. (2013a, 2013b) to map 
and quantify the similarity between a single PA and the surrounding 
areas, but here we used an updated method, now implemented in the 
eHabitat+ model (Martinez-Lopez, 2021), which uses as reference areas 
each of the different HFTs found in a PA, obtained through the automatic 
segmentation method (Martínez-López et al., 2016) and includes the 
computation of new landscape pattern analysis and metrics. Previous 
applications of the original methodology using PAs as reference areas 
(Dubois et al., 2013b), which are usually composed of different habitats, 
led to an overrepresentation of similar areas mostly based on the PAs’ 
largest habitat type(s). 

Apart from assessing the relative similarity values of all pixels con
tained in the corresponding terrestrial ecoregion for each HFT, the 
model now identifies all contiguous areas showing similarity values 
equal or higher than the mean (or optionally the median) similarity 
within the reference HFT (see Section 2.2.2). Thus, output raster maps 
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are both quantitative, corresponding to the similarity values (ranging 
from 0 to 1 representing lower and higher similarity), and qualitative, 
corresponding to the presence of all landscape patches complying with 

the abovementioned criteria. The list with the set of landscape metrics 
computed based on the resulting similarity maps can be found in ap
pendix A. 

Fig. 1. Overview of existing (ellipses) and newly developed (rectangles) methodologies and indices combined in this study. Legend: PA (protected area); HFT 
(habitat functional type); HSR (habitat similarity ratio); SIH (Shannon’s diversity index based on the number of habitats and their relative abundance); THD 
(terrestrial habitat diversity index); THR (terrestrial habitat replaceability index); THDI (terrestrial habitat diversity and irreplaceability index). See Subsections 2.1 
and 2.2 for more information about the indices. 

Fig. 2. Conceptual diagram showing the calculation of the maps and indices at protected area (ellipses) and habitat scale (rectangles with solid line pattern). The 
total number of Habitat Functional Types identified in a protected area is represented by the sub-index ‘n’. Acronyms highlighted in bold refer to indices. Number of 
marine and terrestrial ecoregions used in the calculation of the indices are represented within dashed line rectangles. 
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2.2. Composite indices of terrestrial habitat diversity and irreplaceability 
in PAs 

2.2.1. Terrestrial habitat diversity 
We defined and calculated a terrestrial habitat diversity index 

(THD), using the following variables: (a) the number of terrestrial and 
marine ecoregions present or adjacent to the PA; (b) Shannon’s diversity 
index based on the percentage of the area occupied by each HFT in the 
PA. The number of ecoregions in a PA is obtained by intersecting the 
global ecoregions layer (Olson et al., 2001) with the PA boundary using 
the WDPA layer (UNEP-WCMC, 2021). Marine ecoregions (Spalding 
et al., 2007) are also included in this metric together with the number of 
terrestrial ones since their presence indicates adjacency to coast, which 
accounts for the presence of coastal habitats. 

We first calculated the percentage of the area occupied by each HFT 
in a PA (PercAreaHFT) and then computed the Shannon’s diversity 
index based on the number of habitats and their relative abundance 
(SIH) as follows: 

SIH = − 1×
∑n

1
( PercAreaHFTi× ln (PercAreaHFTi) )

Where i stands for a given HFT out of the total number of HFTs 
present in the PA (n) and ln stands for the natural logarithm. The higher 
the number of habitats and the more similar their relative abundances, 
the higher the SIH. 

Finally, we computed the THD as follows: 

THD = Nr.of terrestrial and marine ecoregions× SIH 

The larger the value of the THD, the more diverse a PA is in terms of 
different ecoregions and equally represented habitats present. For the 
case when there is only one type of HFT in a given PA, then the SIH value 
would be zero and the model would automatically assign it a value of 
one so that the THD would correspond to the number of terrestrial and 
marine ecoregions. 

2.2.2. Terrestrial habitat replaceability 
We defined and computed a Habitat Similarity Ratio (HSR) for each 

HFT as the ratio between (a) the total number of pixels contained in all 
similar landscape patches (representing contiguous pixels with similar
ity values equal or higher than the mean - or optionally the median - 
similarity within the reference HFT) with an area equal to or larger than 
the HFT (otherwise only the largest one) and (b) the number of pixels of 
the reference HFT. The larger the HSR, the more potential similar areas 
to the HFT were found. An HSR value below 1 indicates that all the 
similar landscape patches found are smaller than the HFT of reference. It 
is important to note that the total amount of similar areas (all similar 
pixels regardless of their spatial pattern and patch size) to an HFT is 
often much larger than the number of similar areas meeting the criteria 
used by the HSR (only contiguous pixels, i.e. landscape patches, nor
malised by the area of the reference HFT). Hence, using this more 
restrictive metric allows us to provide more realistic replaceability 
assessments. 

We then defined a terrestrial habitat replaceability index (THR) as 
the median HSR value of all HFTs found in a PA divided by the number 
of terrestrial ecoregions that are present in the PA. The higher the THR, 
the more potentially replaceable would tend to be the HFTs present in a 
PA. By using the median value of the HSR values, we tried to represent 
the most frequent situation of the HFTs in the PA. Dividing by the 
number of terrestrial ecoregions present in a PA is used as a way to 
normalise the THR value, given that PAs that are contained in several 
ecoregions might tend to show more similar areas (see appendix I). 

2.2.3. Terrestrial habitat diversity and irreplaceability 
As a combined metric of habitat diversity and irreplaceability, we 

defined and calculated a terrestrial habitat diversity and irreplaceability 
index (THDI) as follows: 

THDI =
THD
THR 

The larger the value of the THDI, the more diverse and/or irre
placeable a PA is. In this case, increasing THDI values do not necessarily 
imply both higher THD and lower THR scores, since one of them might 
be comparatively much higher or lower, representing a trade-off. 

3. Results 

3.1. Diversity and irreplaceability of habitats within protected areas 

Overall, a maximum of six HFTs per PA was found and HSR values 
were very low for most HFTs, in contrast to some of them, present in 
Canaima and Virunga National Parks, which showed very high values. A 
more detailed description of the results for each PA studied can be found 
in appendix H, including the HFT maps, together with the maps con
taining the similar landscape patches (appendix B and G) and the HSR 
values for all HFTs (appendix E). A more detailed description of the PAs 
analysed can be found in previous studies (Brink et al., 2016; Martínez- 
López et al., 2016). 

In Canaima National Park (Venezuela) six HFTs were found, two of 
them showing very contrasting patterns and one other HFT notably 
presenting the highest seasonality and slope values. HFTs in this PA 
show contrasting HSR values, ranging from 0.07 to 13.85. Some HFTs 
show abundant and partially overlapping landscape patches with similar 
areas that can be found mostly inside and around the PA, indicating a 
potential ecological corridor with other PAs, but also in distant areas of 
Venezuela, Brazil and French Guiana, very often also overlapping with 
different PAs. Other HFTs show fewer similar areas, most of them in or 
around the PA. 

In Kakadu National Park (Australia) six HFTs were found. Some HFTs 
present similar characteristics, being mostly differentiated by NDVI 
(min and max), NDWI and vegetation cover. All HFTs in this PA have 
low values on HSR (ranging from 0.01 to 0.59), indicating that these 
HFTs are all highly irreplaceable. Most similar landscape patches are 
located around the HFTs, often pointing to the presence of ecotone areas 
between them. Some similar areas located directly outside the current 
PA boundary suggest that an expansion of the PA could provide more 
complete protection for these HFTs. 

In the Okavango Delta (Botswana) six HFTs were found. Two of them 
are similar in most variables, showing a clear predominance of grassland 
vegetation in contrast to the other HFTs. On the contrary, other HFTs are 
characterised either by more abundant woody vegetation cover or by 
lower vegetation cover and higher slope values. A general North-South 
gradient of increasing aridity can be observed across the PA. All HFTs in 
this PA have very low values of HSR, ranging from 0.01 to 0.11, indi
cating that these HFTs are all extremely irreplaceable. Similar areas to 
the HFTs are therefore very scarce and are located around the border of 
the PA, often indicating the presence of ecotone areas among HFTs. 

In Sierra Nevada Protected Area (Spain) five HFTs were found. Some 
HFTs show similar patterns in most variables, while others are similar in 
terms of vegetation type but show very contrasting values for climatic 
and topographic variables. Two of the HFTs represent high mountain 
areas, presenting similar climatic patterns but showing very different 
characteristics in terms of vegetation. All HFTs in this PA have low 
values of HSR, ranging from 0.04 to 1, indicating that most of these HFTs 
are highly irreplaceable. Several landscape patches containing similar 
areas to the different HFTs can be found in their proximity, as well as 
along other mountainous areas across the Mediterranean region. Since 
this PA is mostly a high mountain, it contains several bioclimatic zones 
which are also present in other northernmost latitudes within the Ibe
rian Peninsula. These areas can be identified in the similarity maps. 

In the Udzungwa Mountains National Park (Tanzania) five HFTs 
were found showing a clear gradient of increasing woody vegetation 
cover from HFT 1 to HFT 5, accompanied by a decreasing gradient of 
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grassland vegetation cover. In general, there is also an increasing 
gradient of NDWI values from HFT 1 to HFT 5. All HFTs are quite 
different from each other, with HFT 3 showing average values in several 
variables in comparison to other HFTs. All HFTs in this PA have low 
values of HSR, ranging from 0.06 to 0.77, indicating that these HFTs are 
all highly irreplaceable. Very few similar landscape patches can be 
found around some HFTs, sometimes indicating the presence of ecotone 
areas between them. On the contrary, other HFTs show dispersed similar 
areas, some of them very distant from the PA. 

In Virunga National Park (Democratic Republic of the Congo) five 
HFTs were found. Two of the HFTs show very contrasting patterns, 
especially in terms of aridity and vegetation cover, whereas others show 
more similarities. Seasonality (difference between the minimum and 
maximum NDVI) is also one of the variables that clearly distinguishes 
some HFTs from others in this PA. HFTs in this PA have very contrasting 
values of HSR, ranging from 0.14 to 62.04. Some similar areas are 
around the HFTs, often pointing to the presence of ecotone areas be
tween them, while others are several kilometres away, sometimes in the 
proximity of lakes or overlapping with existing PAs, such as the Bokkora 
Wildlife Reserve, the Pian Upe Game Reserve or the Nyungwe Forest 
National Park. Some similar areas located directly outside the current 
PA boundary suggest that an expansion of the PA could provide more 
complete protection for these HFTs. 

3.2. Comparison of composite habitats diversity and irreplaceability 
indices between protected areas 

In this section, we compare the selected PAs based on the scores of 

the composite indices at PA scale and explain the differences among 
them, moving from the lowest to the highest THDI value (Fig. 3 and 
appendix F). Kakadu shows a large SIH value but a low number of 
ecoregions, leading to a rather low THD value. Besides, it also has a 
rather high THR value, leading to the lowest THDI of this set of PAs. 
Sierra Nevada also has a high SIH value but a slightly higher number of 
ecoregions than Kakadu, leading to a higher THD. Since the THR in Si
erra Nevada is only slightly higher than in Kakadu, this PA finally scores 
a higher THDI. Udzungwa has the same number of ecoregions as Sierra 
Nevada but a lower SIH, leading to a lower THD. However, the THR in 
Udzungwa is much lower than in Sierra Nevada, leading to a higher 
THDI. Canaima shows a higher number of ecoregions and a higher SIH 
value than Udzungwa, leading to a much higher THD value. Although 
the THR value is also higher than in Udzungwa, the final THDI score is 
slightly higher in Canaima. Virunga has the same number of ecoregions 
as Canaima and a higher SIH value, which leads to a higher THD value. 
Moreover, the THR is lower in Virunga than in Canaima, both resulting 
in a higher THDI value. Okavango has a lower number of ecoregions 
than Virunga and a similar SIH value, which leads to a lower THD value. 
However, Okavango has a much lower THR value, which finally results 
in the highest THDI of this set of PAs. 

The THDI undoubtedly represents a trade-off between the THD and 
the THR, being very much influenced by the number of ecoregions, the 
extent of potential similar areas and the habitat diversity (see appendix 
C with the relative percentage of area occupied by each HFT in the 
different PAs, which is used to compute the SIH). Although most HSR 
values across PAs tend to be very low (see appendix E), with only a few 
HFTs showing very large values, the THR index manages to minimise the 

Fig. 3. Results for the different indices by protected area. Legend: TotEco (Total number of terrestrial and marine ecoregions); SIH (Shannon’s diversity index based 
on the number of habitats and their relative abundance); THD (Terrestrial habitat diversity index); THR (Terrestrial habitat replaceability index); THDI (Terrestrial 
habitat diversity and irreplaceability index). Protected areas are ordered from left to right and from top to bottom in increasing order of THDI value. 
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effect of extreme values producing a gradient of scores across PAs. In 
general, higher THD values tend to yield higher THDI values, except for 
Okavango, while lower THR values tend to yield higher THDI values. 

4. Discussion 

The new methodology and indices proposed in this study allow the 
comparison and ranking of PAs in terms of biophysical gradients and 
singular environmental conditions at a local, regional or global scale. 
Several new and complementary indices are provided by our model at 
different scales - habitat type versus protected area, as well as diversity 
versus irreplaceability - which should be taken into account when trying 
to compare different PAs to better understand the overall score of the 
final THDI value for each PA, in order to make more informed decisions. 
This is especially relevant at the regional and global scale given that 
there is limited systematic data on habitat diversity and irreplaceability 
in protected areas, which is needed for effective conservation manage
ment to support the design and evaluation of large-scale conservation 
plans based on prioritisation studies, one of the targets of the new Global 
Biodiversity Framework (Cazorla et al., 2021; CBD, 2022; Keith et al., 
2022). Additionally, by providing information about existing and po
tential habitats in and outside protected areas, our model can help to 
assess whether protected areas are representative of their surrounding 
ecoregions. 

One of the strengths of the methodology is to allow the comparison 
between PAs at large scales, rather than the precise delimitation and 
characterization of HFTs in single PAs, the latter being especially 
dependent on the scale at which the analysis is done. However, more 
detailed standalone assessments of a single or a set of PAs (e.g., PAs 
located in a specific ecoregion) could also be performed using higher- 
resolution input data, which could vary depending on the main 
ecological drivers in the ecoregion(s) where the PA is located. Besides, 
environmental impact assessments could be performed using temporal 
data corresponding to before and after the implementation of a specific 
human intervention in a PA. 

If used in conjunction with forecasted bioclimatic data, the 
eHabitat+ model can partially help identify new areas for conservation 
by considering current and climate change scenarios. Our model does 
not only use climatic variables but changes in those inputs would 
certainly influence results. Therefore, the similarity maps that are pro
duced can be used, under current and future predicted conditions, to 
redesign the current boundaries and network of PAs, identify new po
tential areas to be protected and strengthen ecological connectivity 
among PAs. Also, the indices computed for individual HFTs within a PA 
could support management interventions at the habitat level. In this 
regard, results of our model could be used to integrate remote sensing 
with in-situ observations to produce essential biodiversity variables 
(Pereira et al., 2013). 

Regarding the THD, it could be argued that the total number of 
ecoregions plays a major role in comparison with the SIH. This is indeed 
the case because we wanted to weigh the fact that PAs containing a 
higher number of ecoregions tend to provide a significantly higher 
representation of relevant bioclimatic conditions over larger scales. 
However, an alternative could be to compute the Shannon’s diversity 
index based on the number of ecoregions and their relative abundance, 
and combine it with the SIH (e.g., by calculating the THD as the sum or 
the mean value). In this case, the inclusion of marine ecoregions to 
indirectly account for the presence of coastal ecosystems should be done 
differently. Therefore, the THD index could be eventually redefined 
after being tested in a larger set of PAs. 

Regarding the THR, there is a risk of overlooking a single or few very 
irreplaceable (maybe even endemic to the PA) HFTs if all other HFTs in 
the PA are quite common and therefore have high HSR values. It is also 
interesting to note that larger HFTs will tend to show lower HSR scores, 
given that in general, it is more difficult to find such large contiguous 
similar areas. To address this concern, the THR uses the median value of 

the single HSR values, which is much more representative of the PA than 
using the mean values. In this regard, we recommend always looking at 
the indices at HFT and PA scales (single HSR values versus the THR) to 
include information from different scales in our assessments. The same 
can be said regarding the THDI, for which increasing values do not 
necessarily imply both higher and lower THD and THR scores, respec
tively, but rather represent a trade-off between both indices. Therefore, 
diversity and irreplaceability indices should be taken into account 
individually as well. Moreover, instead of using the proposed THDI, the 
THD or the THR could be used in isolation or be differently weighted for 
computing the final THDI, depending on the ultimate objective of the 
analysis. 

Regarding the specific results in the set of PAs analysed in this study, 
it is not surprising that the Okavango Delta yields the highest THDI 
values among them given that this is the world’s largest inland delta 
comprising a unique composition of terrestrial and freshwater habitats 
(Ramberg et al., 2006). However, the values of the proposed set of 
indices are easier to interpret and compare among PAs located in the 
same ecoregion(s), where results are more comparable and potential 
similar areas could be studied also in relation to other PAs, especially for 
the design of potential corridors among them. 

Often, similar landscape patches are inside other PAs (see the case of 
Virunga for example), which could be systematically quantified and 
integrated into new indices to assess to what extent similar areas are 
already protected. This could, for instance, be taken into account in the 
calculation of a future version of the THR that would eventually 
distinguish between the amount of unprotected and protected similar 
areas available. Also, pressure levels on PAs could be taken into account 
in these or new indices, such as pressures coming from roads, agriculture 
or population (Dubois et al., 2013b; Dubois et al., 2015, 2016). 

New input variables should also be added for large-scale assess
ments, as suggested by (Martínez-López et al., 2021), such as mean solar 
radiation, fire frequency, cloud cover frequency, water seasonality, or 
soil-related variables. This could improve the assessment and eventually 
make it more comparable to other assessment methodologies at different 
scales (Jung et al., 2020; Keith et al., 2020; Lucas et al., 2015; Sayre, 
2014; Sayre et al., 2020; Tuanmu and Jetz, 2015). 
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