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Abstract
Meniere disease (MD) is a rare disorder of the inner ear defined by sensorineural hearing loss (SNHL) associated with episodes 
of vertigo and tinnitus. The phenotype is variable, and it may be associated with other comorbidities such as migraine, respira-
tory allergies, and several autoimmune disorders. The condition has a significant heritability according to epidemiological and 
familial segregation studies. Familial MD is found in 10% of cases, the most frequently found genes being OTOG, MYO7A, 
and TECTA​, previously associated with autosomal dominant and recessive non-syndromic SNHL. These findings suggest a 
new hypothesis where proteins involved in the extracellular structures in the apical surface of sensory epithelia (otolithic and 
tectorial membranes) and proteins in the stereocilia links would be key elements in the pathophysiology of MD. The ionic 
homeostasis of the otolithic and tectorial membranes could be critical to suppress the innate motility of individual hair cell 
bundles. Initially, focal detachment of these extracellular membranes may cause random depolarization of hair cells and will 
explain changes in tinnitus loudness or trigger vertigo attacks in early stages of MD. With the progression of the disease, a 
larger detachment will lead to an otolithic membrane herniation into the horizontal semicircular canal with dissociation in 
caloric and head impulse responses. Familial MD shows different types of inheritance, including autosomal dominant and com-
pound recessive patterns and implementation of genetic testing will improve our understanding of the genetic structure of MD.

Keywords  Meniere’s disease · Hearing loss · Exome sequencing · Genetic · Genomics · Tectorial membrane · Otolithic 
membrane · OTOG gene · MYO7A gene · TECTA gene

Introduction

Meniere disease (MD) is a term used to describe patients 
with an audio-vestibular phenotype that includes episodes 
of vertigo associated with variable aural symptoms (hearing 

loss, tinnitus, and aural pressure) [1]. The phenotype is not 
limited to the inner ear, and it may be associated with other 
comorbidities such as migraine, allergic rhinitis, asthma, 
and several autoimmune or autoinflammatory disorders 
[1–4]. Most of the episodes are reported as spontaneous, but 
some patients report that a loud noise may trigger vestibular 
symptoms [5]. There is a great variability in the onset of the 
symptoms [6], and many patients initially show a partial syn-
drome [7]. This clinical heterogeneity makes the diagnosis a 
challenge in the first few years, since no biological marker 
is available to define MD [8].

The diagnostic criteria were initially proposed by the 
Japanese Ménière’s disease study group in 1974. The Ameri-
can Academy of Otolaryngology-Head and Neck Surgery 
(AAO-HNS) developed guidelines for diagnosis and ther-
apy evaluation of MD in 1972 and revised them in 1985 
and 1995 [9]. In this century, the criteria were redefined 
by the Classification Committee for Vestibular Disorders 
of the Bárány Society, the Japan Society for Equilibrium 
Research, the European Academy of Otology and Neurotol-
ogy (EAONO), the Equilibrium Committee of the American 
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Academy of Otolaryngology-Head and Neck Surgery (AAO-
HNS), and the Korean Balance Society in 2015 [10]. These 
criteria improved the clinical diagnosis by excluding patients 
with conductive hearing loss or isolated high-frequency 
sensorineural hearing loss (SNHL) and may include several 
comorbidities such as allergy, migraine, or autoimmune dis-
eases in the condition [8].

Histopathological studies in human temporal bones have 
consistently shown an accumulation of endolymph, termed 
endolymphatic hydrops, in the vestibular end organs (saccule 
and utricle) and the cochlear duct in most patients with MD 
[11, 12]. This finding probably reflects a histopathological 
damage in the inner ear, since it has also been found in other 
patients with SNHL > 50 dB without episodes of vertigo 
[13] or patients with vestibular migraine [14].

Two major hypotheses are currently accepted to explain 
the pathophysiology of MD: a chronic autoinflammatory 
process defined by a immune dysfunction with high levels of 
several cytokines and chemokines [15, 16], and rare allelic 
variants in coding regions reported in several genes, many 
of them previously associated with non-syndromic SNHL 
[17]. Although there have been considerable advances in 
the last 10 years, the contribution of genetic factors to the 
occurrence of MD symptoms is not yet fully understood.

The purpose of this review is to summarize the evidence 
that supports the genetic contribution to MD, including 
familial aggregation and exome sequencing studies. Fur-
thermore, we describe the main genes reported in multiplex 
familial MD and elaborate a hypothesis regarding the poten-
tial role of stereocilia, otolithic membrane (OM), and tecto-
rial membrane (TM) proteins in MD. For this, we conducted 
a Pubmed search with the following keywords: (familial 
[Title/Abstract] OR family [Title/Abstract] OR gene [Title/
Abstract] OR genes [Title/Abstract] OR inheritance [Title/
Abstract] OR variation [Title/Abstract] OR mutation [Title/
Abstract]) AND (meniere disease [Title/Abstract] OR 
meniere’s disease [Title/Abstract]). The search was filtered 
by the last 22 years (2000–2022) and limited to publication 
written in English, including original and review papers.

Familial MD

Madeleine Ray Brown was the first that reported two fam-
ilies with MD in 1941. The first family consisted of two 
sisters and a brother in one French Canadian consanguine-
ous family with paroxysmal vertigo associated with senso-
rineural hearing loss. All started with tinnitus before the 
vertigo attacks and the age of onset were 46, 32, and 35 
respectively [18]. In the second family, two identical twins 
showed audio-vestibular symptoms; one reported a sudden 
increase of deafness, tinnitus, and paroxysmal attacks of 

vertigo since he was 31 years old; the second only showed a 
non-progressive hearing loss [18].

Bernstein described in 1965 seven families in which more 
than one member had episodic vertigo or hearing loss. Two 
families had histories of allergy and members of three other 
families were suffering from migraine headaches [19]. 
Although some of these patients were partial syndromes 
and cannot be defined as MD, these early studies started 
to define clinical subgroups of MD patients that have been 
confirmed in large MD cohorts [8].

Morrison et al. reported a series of 46 British families 
with MD. Most of these families showed an autosomal 
dominant inheritance with reduced penetrance [20]. Antici-
pation was also observed, although this could be a bias of 
the search strategy. In this set of British families, maternal 
transmission was more frequent than paternal inheritance.

Familial clustering has been reported in about 9% of cases 
in Spanish population [21], and in 6% of cases in South 
Korea [22]. The sibling recurrence risk ratio for MD that 
estimates the odds to develop MD if the proband has a first 
degree relative with MD compared to the prevalence in the 
general population was 16–48 [21].

Most MD patients do not report relatives with the same 
clinical picture; however, it is not uncommon to find rela-
tives with SNHL or episodic vertigo that have not been 
investigated in detail and could be partial syndromes [23]. 
For this reason, most cases are considered sporadic, but 
familial MD (FMD) has been repeatedly described in Euro-
pean descendent population in 5–20% of cases [24].

Several types of inheritance have been reported in FMD, 
including autosomal dominant (AD) and autosomal reces-
sive (AR) inheritance [18, 25]. Moreover, digenic and multi-
allelic inheritance have also been found in FMD [26]. These 
findings start to define a complex inheritance that combined 
with some environmental triggers may result in a familial 
disorder with variable expressivity [23] that it is observed 
even in the same family (i.e., uni/bilateral hearing loss, early/
late age of onset).

Exome Sequencing Studies in Familial MD

The application of exome sequencing technology to the 
diagnosis of MD has contributed to decipher the genetics 
underpinnings of familial MD [24, 25]. Several rare muta-
tions and target genes have been reported in different fami-
lies with MD in Spain, South Korea, Finland, Sweden, and 
Iran [27]. The first Spanish family was reported by Requena 
et al. in 2015 [28]. The family consisted of three women with 
the complete MD phenotype over three generations which 
segregated two heterozygous rare variants in FAM136A and 
DTNA genes which were classified as pathogenic [28].
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The first variant was a nonsense novel variant in 
the FAM136A gene leading to a stop codon (GRCh38 
chr2:70300842G > A; NM_032822.3); the second vari-
ant was an ultrarare missense heterozygous variant found 
in the DTNA gene (GRCh38 chr18: 34882130G > T; 
NM_001390.5) that results in a p.Val715Phe substitution and 
generates a novel splice-site sequence predicted as a constitu-
tive acceptor [28].

Thirteen genes have been associated with AD or AR 
familial MD. Intriguingly, each of these genes has a dif-
ferent function within the inner ear ranging from playing 
a role in the cytoskeleton structure of cochlear hair cells, 
the stress oxidative to axonal guidance pathways [29]. The 
main criticism on these familial studies is that most of the 
reported variants were only found in one family, and it can-
not be ruled out that these mutations were private mutations 
restricted to each one of these families. For this reason, addi-
tional families with pathogenic or likely pathogenic variants 
in the same gene segregating the phenotype are needed to 
support the association between these candidate genes and 
FMD, according to the criteria for variant prioritization of 
the American College of Medical Genetics modified for 
hearing loss genes [30].

However, this issue was solved by Roman-Naranjo 
et al. in 2020, with the report of 6 Spanish families seg-
regating 2 missense variants in the OTOG gene [25]. Two 
heterozygous variants of unknown significance (VUS), 
chr11:17557227G > A and chr11:17611374C > T (GRCh38; 
NM_001292063.2), were found in four unrelated patients 
from four different families with MD. Moreover, another 
heterozygous variant (chr11:17553211G > A), classified as 
pathogenic, was observed in two MD cases from another two 
unrelated families; both families also shared a novel variant 
chr11:17573200G > A, and one of them also had a third vari-
ant, chr11:17606001G > A. Although a double Otog mutant 
mouse will be needed to confirm the functional effect of 
these VUS, these findings support that OTOG gene is associ-
ated with heterozygous compound recessive inheritance in 
the 6 families [25].

Multiple MD families carrying rare variants in genes 
encoding proteins involved in the architecture of the hair 
cells stereocilia and their attachment to the TM have been 
found [31]. Roman-Naranjo et al. found co-segregation in 
several novels and rare variants in the MYO7A gene with 
other genes including CDH23, PCDH15, and ADGRV1 
involved in the mechanoelectric transduction (MET) com-
plex and the interciliary links of the hair cells in several 
MD families, suggesting a digenic inheritance model 
[31] (Fig. 1).

CDH23 and PCDH15 genes encode for cadherin-23 and 
protocadherin-15, two calcium-dependent cell adhesion 
proteins that show a direct interaction in the apical sur-
face of hair cells to form the tip links between stereocilia. 

These links are required for maintaining the proper organi-
zation of the stereocilia bundle of hair cells in the sensory 
epithelia of the organ of Corti and the vestibular organs 
during embryonic and early postnatal development [32]. 
Furthermore, cadherin-23 and protocadherin-15 mediate 
SNHL and Usher syndrome type 1 by digenic recessive 
inheritance [32]. They are part of the functional gene net-
work formed by USH1C (harmonin b), USH1G (SANS), 
CDH23, and MYO7A (myosin-VIIa) that regulate MET in 
cochlear hair cells [33, 34].

Moreover, by using a gene burden analysis and applying 
multiallelic inheritance models in SNHL genes, enrich-
ment of rare missense variants in the OTOG gene were 
found in 15 families with MD suggesting multiallelic 
inheritance, including the 6 families previously mentioned 
with compound recessive inheritance [25]. Finally, the 
presence of rare missense variants and frameshift deletions 
in the TECTA​ gene within 6 MD families suggests a role 
of this gene in the pathophysiology of the disease [35].

Although familial MD has been associated to several 
genes, the incomplete penetrance and variable expressivity 
within families remain unexplained and the role of regu-
latory elements (promoters, enhancers, non-coding RNA 
species) in the MD phenotype deserves further research. 
Several microRNAs and other non-coding elements are 
known to be associated with SNHL and they are candi-
date targets for therapy [36]. An epigenetic study was per-
formed using whole-genome bisulfite sequencing (WGBS) 
suggesting that the DNA methylation signature could 
allow distinguishing between MD patients and controls 
[37]. In this study, a great number of differentially meth-
ylated CpGs were found when comparing MD patients to 
controls. Of note, few of these CpGs involved several hear-
ing loss genes, including CDH23, PCDH15, or ADGRV1, 
that encode for stereocilia link proteins [37]; however, the 
study was performed in a small group of sporadic patients 
with MD and further studies in familial cases are needed 
to clarify the role of methylated CpGs in these genes.

All these studies point to a complex inheritance model, 
including digenic and multiallelic inheritance. Genes 
encoding proteins linking the hair cells stereocilia in the 
sensory epithelia and proteins in the TM and OM should 
be considered potential molecular targets associated with 
the onset of FMD.

Types of Inheritance and Genes in MD

Autosomal Dominant MD

Nine genes including FAM136A, DTNA, PRKCB, COCH, 
DPT, SEMA3D, TECTA​, GUSB, and SLC6A7 have been 
reported in autosomal dominant familial MD (Table 1) [27, 
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35]. However, TECTA​ gene is the only gene that have been 
involved in 2 unrelated families with autosomal dominant 
MD [35].

In this study, Roman-Naranjo et al. have reported 6 fami-
lies with rare missense and frameshift variants [35]. The 
variant p.Val1494Ala was found in two families and one spo-
radic case and with a minor allelic frequency 8.8 × 10–5 in 
Non-Finish European was classified as VUS. Further studies 
are needed to clarify the functional effect of this variant.

Of note, two of the 6 families showed two heterozygous 
frameshift deletions that were classified as likely pathogenic 
(p.Asn1474LysfsTer91 in exon 14 and p.Gly2118ProfsTer22 
in exon 23, respectively). Both deletions generate a shorter 
α-tectorin with a modified C‐terminal region that involves 

the glycosylphosphatidylinositol (GPI) anchorage sig-
nal. This signal peptide is essential to prevent diffusion of 
secreted TM proteins, and these deletions lead to a random 
aggregation of collagen fibrils and thinner TM with low tol-
erance to changes in endolymphatic pressure [38].

COCH is the causal gene for DFNA9, characterized by a 
progressive high-frequency SNHL with variable progressive 
vestibular impairment [39]; however, a family was reported 
in South Korea with episodic vertigo and bilateral SNHL 
with the mutation p.Cys162Tyr was considered a MD-like 
phenotype [40]. In the adult mouse cochlea, Cochlin is also 
a protein expressed in the fibrocytes of spiral ligament and 
spiral limbus, but not in the organ of Corti or the stria vas-
cularis. In the vestibular, cristae show intense staining in the 

Fig. 1   Schematic representation of the mammalian cochlear hair cell 
stereocilia. Proteins and their coding genes are listed for the stereocilia 
links (tip links, horizontal top connectors, shaft connectors, and ankle 
links) and between the stereocilia and the tectorial membrane. In addi-
tion, proteins that are part of the mechanoelectrical transduction (MET) 
complex [61], the tectorial membrane [62], and some of the most rel-
evant proteins that constitute the stereocilium are indicated [63, 64]. 
Mutated structural proteins in familial Meniere disease are indicated 
in bold. Ankle links and shaft connectors are not found in mature hair 
cells, although they are found during hair cell development. ADGRV1: 
adhesion G-protein coupled receptor V1; CAPZA1: Capping Actin 
Protein of Muscle Z-Line Subunit Alpha 1; CAPZB2: Capping Actin 
Protein of Muscle Z-Line Subunit Beta 2; CEACAM16: carcinoem-
bryonic antigen-related cell adhesion molecule 16; CIB2: calcium and 

integrin-binding family member 2; Clic5: chloride intracellular chan-
nel protein 5; EPS8: epidermal growth factor receptor kinase substrate 
8; EPS8L2: epidermal growth factor receptor kinase substrate 8-like 
protein 2; LHFPL5: LHFPL (lipoma HMGIC fusion partner-like) tet-
raspan subfamily member 5 protein; MAGI-1: membrane-associated 
guanylate kinase, WW and PDZ domain-containing protein 1; PDZD7: 
PDZ domain-containing protein 7; PMCA2: plasma membrane cal-
cium-transporting ATPase 2; PTPRQ Protein Tyrosine Phosphatase 
Receptor Type Q; RIPOR2: RHO Family Interacting Cell Polarization 
Regulator 2; SANS: pre-mRNA splicing regulator USH1G; TMIE: 
transmembrane inner ear expressed protein; TMC1/2: Transmembrane 
channel-like protein 1 and 2 dimer; TRIOBP: TRIO And F-Actin Bind-
ing Protein; TUB: tubby protein homolog; XIRP2: Xin actin-binding 
repeat-containing protein 2. Figure created with BioRe​nder.​com

https://www.biorender.com/
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fibrocytes and stroma underlying the sensorineural epithe-
lium and the ampullary wall [41].

DTNA encodes α-dystrobrevin, a structural component 
of the dystrophin-glycoprotein complex, leading to progres-
sive brain oedema in the knockout mouse [42]. Evidence 
to involve α-dystrobrevin in familial MD have been from a 
Drosophila model [43]. Requena et al. (2022) have investi-
gated two Drosophila homologues, Dystrobrevin (Dyb) and 
Dystrophin (Dys), in Johnston’s Organ function, showing 
that Dyb mutant flies exhibit defects in proprioception and 
early onset hearing loss caused by a progressive loss MET 
associated with a reduction of sensitive transducers [43].

However, for the seven remaining genes, pathogenicity is 
based on bioinformatic predictors and additional evidence 
from new families segregating rare variants in these genes 
are required to support the association.

Autosomal Recessive MD

Table 2 list the 4 genes that have been reported in AR famil-
ial MD, including HMX2, LSAMP, OTOG, and STRC. 

The most relevant gene in familial MD is OTOG which 
encodes for otogelin Spanish families have compound reces-
sive inheritance in 6% of the cases, but rare VUS or likely 
pathogenic variants are found in 15% of the families [25].

Otogelin is a secreted protein related to epithelial mucins 
required for the anchoring of the OM to the hair cell stereo-
cilia in the sensory epithelia in the vestibule and the organ of 
Corti [44]. It is involved in the organization and stabilization 
of the structure of the TM in the organ of Corti, and it may 
play a role in MET [45]. In the adult mouse, otogelin is still 
produced by the vestibular supporting cells, which suggests 
a continuous process of otogelin renewal in the OM. In con-
trast, in the TM, otogelin should be a long-lasting protein 
since OTOG gene has a low expression in the adult cochlear 
supporting cells [46].

A novel heterozygous missense variant p.Tyr273Asn was 
found in the HMX2 gene in a Finnish family with MD affect-
ing a child and his paternal grandfather [47]. The HMX2 
gene encodes a highly conserved protein involved in the 
inner ear development in mice [48] and zebrafish [49].

The gene encoding the limbic system associated mem-
brane protein (LSAMP) was described in two sisters from a 
consanguineous Iranian Lur family [50]. The homozygous 
variant p.Tyr273Asn was classified as likely pathogenic and 
segregated the MD phenotype. The gene LSAMP is a neu-
ronal surface adhesion glycoprotein in cortical and subcorti-
cal regions of the limbic system [51], but its function in the 
inner ear is not known.

STRC​ encodes stereocilin, a protein that interacts with 
otogelin and otogelin-like to form crowns in the TM attach-
ment to stereocilia tip and horizontal top connectors in 
mouse cochlear hair cells [45]. A non-consanguineous 

Swedish-Norwegian family consisting of two brothers and 
their first cousin with moderate SNHL and a history of epi-
sodic vertigo starting before 6 years old was reported [52]. 
This child onset MD-like phenotype segregated the homozy-
gous nonsense variant p.Gln1343 in the STRC​ gene [52].

Variants in STRC​ gene cause DFNB16B representing at 
least 10% of cases with AR, non-syndromic SNHL [53]; 
however, vestibular symptoms are usually missing.

Taken together, OTOG is the most common gene found 
in familial MD, but cellular or animal models are required to 
demonstrate the pathogenic effect, particularly in variants of 
unknown significance with compound recessive inheritance.

Digenic Inheritance in MD

The MYO7A gene encodes a motor protein with a key role 
in the organization of stereocilia in auditory and vestibu-
lar hair cells. Rare variants in the MYO7A gene may cause 
AD or AR SNHL accompanied by vestibular dysfunction or 
retinitis pigmentosa (Usher syndrome type 1B) [54]. Nine 
rare coding variants in MYO7A gene have been reported in 
familial MD [31]. Two of them (p.Met1? and p.Trp1545) 
were loss of function variants, leading to a start loss and 
stop codon in the sequence, respectively, and classified as 
likely pathogenic (Table 3); however, the rest of the variants 
were classified as VUS or likely benign. Of note, some of 
these families showed a second missense variant in the genes 
ADGRV1, CDH23, PCDH15, USH1C, or SHROOM2 which 
also segregated the phenotype, leading to the hypothesis of 
digenic/polygenic inheritance in familial MD associated 
with protein in the stereocilia links.

Molecular Hypothesis to Explain Episodic Symptoms 
in Meniere Disease

The TM may contribute to regulating Ca2+ levels around 
the hair cell stereocilia and MET channel adaptation [55]. 
Apparently, behind this function are the VFWD domains 
of α-tectorin and otogelin, which can bind Ca2+ ions acting 
as a reservoir for Ca2+ cations [56, 57]. Several constitu-
tive proteins of the OM and TM, including otogelin and 
α-tectorin, show rare variations that may result in new 
electrostatic interactions affecting the 3D structure [25. 
35]. These changes may affect the formation of the OM 
or TM or the attachment of these extracellular structures 
to the hair cells stereocilia [3]. Since α-tectorin functions 
as a structural organizer on the surface of the supporting 
cells to establish the layers of the TM, mutations involving 
the glycosylphosphatidylinositol anchorage sequence will 
produce a release of α-tectorin into the luminal space and 
impair the TM self- assembly process [38].

Moreover, proteins involved in the stereocilia links 
seems to be also involved in the pathophysiology of MD, 
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including myosin VIIa, cadherin-23, protochadherin-15, or 
adhesion G-protein coupled receptor V1 (ADGRV1) [31].

The stereocilia in the mature outer hair cells have 2 
types of links: the tip links, a filamentous protein forma-
tion that connect adjacent stereocilia formed by two cad-
herin-related proteins, cadherin-23, and protochadherin-15, 
which is linked to the MET channel [33], and the crown-
shaped structures located at the tips of the tall stereocilia 
that form the TM-attachment crown that involve otogelin, 
otogelin-like, stereocilin [43], tubby protein homolog, and 
microtubule‑associated protein 1 A [58].

The network of proteins that connects stereocilia, OM, 
or TM is essential to preserve not only the OM or TM 
architecture but also the ionic microenvironment in hair 
cell bundles. The ionic homeostasis of the otolithic and 
TM could be critical to suppress the innate motility of 
individual hair cell bundles and focal detachment of these 
membranes may cause random depolarization of hair cells 
and explaining the changes in tinnitus loudness or trigger-
ing vertigo attacks [59].

With the progression of the disease, a large detachment 
will lead to an otolithic membrane herniation into the hori-
zontal semicircular canal with dissociation in caloric and 
head impulse responses [60]. However, further studies 
in cellular and animal models are needed to confirm this 
hypothesis.
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