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Abstract
The Coronavirus Disease 2019 (COVID-19) pandemic has had an unprecedented impact
on healthcare systems, prompting the need to improve the triaging of patients in the
Emergency Department (ED). This could be achieved by automatic analysis of chest
X-rays (CXR) using Artificial Intelligence (AI). We conducted a research project to
generate and thoroughly document the development process of an intelligent system
for COVID-19 diagnosis. This work aims at explaining the problem formulation, data
collection and pre-processing, use of base convolutional neural networks to approach our
diagnostic problem, the process of network building and how our model was validated
to reach the final diagnostic system. Using publicly available datasets and a locally
obtained dataset with more than 100,000 potentially eligible CXR images, we developed
an intelligent diagnostic system that achieves an average performance of 93% success.
Then, we implemented a web-based interface that will allow its use in real-world
medical practice, with an average response time of less than 1 second. There were
some limitations in the application of the diagnostic system to our local dataset which
precluded obtaining high diagnostic performance. Although not all these limitations are
straightforward, the most relevant ones are discussed, along with potential solutions.
Further research is warranted to overcome the limitations of state-of-the-art AI systems
used for the imaging diagnosis of COVID-19 in the ED.
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1. Introduction

The Coronavirus Disease 2019 (COVID-19) pandemic caused
by severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) has had an unprecedented impact on healthcare sys-
tems, with terrible consequences for the health and welfare of
people worldwide. To date, nearly 200 million deaths due to
COVID-19 and significant morbidity associated with the so-
called ‘long-COVID syndrome’ have been reported [1]. No
health care system was prepared for such an outbreak, and
urgent measures and procedures were needed to face such a
critical situation, especially in the early stages of the pandemic,
when the lack of access to protectionmeasures such as personal
protective equipment [2], effective treatments [3], and triage
protocols [4] was evident, particularly in low-income countries
[5]. In this context, one of the most critical deficiencies
in hospitals and health centers, which were overwhelmed by
patients suffering from a number of symptoms requiring rapid
diagnosis, was access to efficient diagnostic tests. As a conse-
quence, many patients weremanaged on the basis of symptoms

and imaging findings by computed tomography (CT) or chest
X-ray (CXR).
Although the gold standard technique for a reliable diag-

nosis of SARS-CoV-2 infection is the reverse transcriptase-
polymerase chain reaction (RT-PCR) test [6], the shortage
of test kits in low-resource settings along with the need to
wait several hours to obtain an accurate diagnosis remain
factors limiting patient triage in the emergency department
(ED). These limitations have led researchers to seek alternative
screening solutions.
The rest of this section is organized as follows. First, how

artificial intelligence (AI) can be applied on CXRs to detect
COVID-19 infections is addressed followed by a review on the
use of AI techniques for medical diagnosis.

1.1 The role of radiography and artificial
intelligence in the diagnosis of COVID-19
One of the main effects of SARS-CoV-2 in the human body is
a particular form of pneumonia. Thus, proper visualization of
the lungs using medical imaging techniques (e.g., CXR or CT)
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should reveal COVID-19 infection when there is pulmonary
involvement. Accordingly, an automatic procedure to identify
the particular pattern of this disease on a CXR seems an
efficient way for patient triage in the ED. The advantages of
CXRs include its speed, wide availability, accessibility, and
portability. Therefore, automatic analysis of CXR images
seeking specific imaging patterns would suffice to obtain a
rapid diagnosis. The automation of this specific diagnosis can
be approached by using AI systems, the so-called ‘intelligent
systems’.
One of the most outstanding fields in which AI has been

applied in the last decade is computer vision, and the diagnosis
of COVID-19 from CXR images seems a proper task to be
tackled using this approach. In fact, many groups around the
world have explored this idea, and several articles have been
published on the subject to date [7–10]. Unfortunately, the
quality of reported research is quite diverse and most proposals
cannot be reproduced due to several issues, including lack of
data availability, missing details in the description of processes
or parameters, or incomplete descriptions of the methods fol-
lowed. Hence, it is very difficult to build an intelligent system
for this endeavor solely based on the information published in
the scientific literature.

1.2 Artificial intelligence for medical
diagnosis
The use of AI in medical diagnosis began with the use of
expert systems. Instead of designing an ‘all-in-one’ algorithm,
expert systems combine knowledge with a general algorithmic
problem-solving method to reach a required solution, e.g., a
diagnosis in medical problems. By using this architecture,
expert systems provide transparency (explain their solutions),
flexibility (knowledge can be improved), user-friendliness (no
programming skills are needed), and competence (high capa-
bility of solving problems) [11]. Expert systems raise the work
of a medical expert to a new qualitative level, reducing the risk
of misdiagnosis [12].
Machine learning (ML) techniques focus on increasing

knowledge through automated application of statistics. The
underlying idea is to make the computer learn from data.
Since large amounts of medical data exist, new knowledge
can be acquired and applied in medicine. For instance, in
prognostics, an ML model can learn the patterns of health
trajectories of a vast number of patients and this can help
physicians to anticipate the course of a given condition [13].
Regarding disease detection and diagnosis, the utilization
of several ML artifacts, like Bayesian networks, K-means
clustering or Support vector machines, has proved to be very
successful [14].
Artificial neural networks (ANN) are part ofML techniques.

These networks try to mimic the structure of the brain and are
formed by a set of layers of neurons. Each neuron is connected
to some of the neurons of the previous layer (in fact, to all of
them if it is fully connected) and produces an output using a
weighted sum of its inputs (which are the outputs of neurons
in the previous layer). These weights are the model parameters
to be adjusted during the training phase. The larger the number
of neurons, the more parameters have to be learned, especially

in the case of fully connected networks, where each neuron is
connected to all the neurons of the previous layer.
With the recent advances in parallel computing, the ca-

pabilities of ANNs have improved significantly, and larger
networks with many layers of artificial neurons are built and
trained. Deep Learning (DL) studies these networks along
with all the algorithms that work with them [15]. There are
many applications of DL in medicine, but the most common
ones concern medical image analysis [16]. Traditional ML
techniques can achieve results in the range of small-sized
ANNs, although it is difficult to reach the performance of state-
of-art DL networks in the field of image analysis [17]. Such
performance levels are obtained at the cost of computationally
intensive model creation processes.
All these ML techniques address different problems. One of

them is classification, i.e., the process of assigning a class to
each object under consideration. These objects are usually de-
scribed in data terms by the value of some of their features (e.g.,
size, weight, age, color). However, sometimes the available
data about the object is an image, described by a matrix of the
color value of each pixel (points of the image). This is called
‘image classification’, which should not be confused with
object detection or image labeling, where more than one label
is assigned to a given image. Medical image classification aims
to differentiate different types of medical images according to
a certain criterion, such as clinical conditions [18].
Many methods have been proposed to classify images. Im-

age classification systems usually require extensive prepro-
cessing to prepare images for analysis, including edge de-
tection, color feature extraction or normalization [19]. With
the advent of DL, some of this preprocessing is addressed
directly within the network layers [20]. Auto-encoders and
convolutional ANNs address this preprocessing, being able
to improve image classification and obtain striking results.
This automatic annotation process has been used for a wide
variety of medical image classification analyses, including
histopathological classification of colon cancer [18] or skin
cancer [21].
Despite a very high number of papers have been published

presenting different attempts to create automatic systems for
image detection of COVID-19 [10, 18, 22], unfortunately,
most of them suffer from several weak points and usually
fail to provide enough information to allow for their repro-
duction [23]. In this article, we strive to provide not only a
comprehensive description of the process followed to build a
robust and effective system for that purpose, but also to make it
easy to understand and fully reproducible. This article reports
the work performed, as well as the results obtained by our
research team, and provides all the necessary information to
allow interested researchers to reproduce all the work carried
out. It also discusses the issues we have run through and
provides hints to avoid or mitigate them.
The diagnosis of COVID-19 can be approached as a normal

data science problem: it can be formulated as a classifica-
tion problem and different models can be built by applying
any of a diverse set of possible ML techniques. However,
a rigorous process involving data pre-processing and many
technical details need to be undertaken to eventually achieve
an effective system. Such process can be structured in the



93

following steps: problem formulation, data collection and pre-
processing, model definition and construction, validation, and,
finally, deployment.

2. Methods

This section presents detailed formulation of the problem being
tackled along with the computational tools that were applied
to develop a solution. Moreover, the image preprocessing
techniques that were used and assembled into a preprocessing
pipeline and the neural networks used to build the diagnosis
system are explained.

2.1 Problem formulation
The goal of the present work was to develop an automatic
diagnostic system for COVID-19 based on CXRs. The gold
standard diagnostic test for COVID-19 is the RT-PCR test, but
several factors may hinder its application, including the short-
age of test kits or the time required to obtain the result. Since
one of the main effects of COVID-19 is lung involvement, a
faster diagnostic approach is possible by analyzingCXRs. If an
automatic procedure without the intervention of a radiologist
could be developed, the approach would take shorter times and
demand fewer resources.
The resulting systemwould take a CXR as the only input and

feed it to a computer system which, in turn, would provide an
answer in terms of whether the patient is affected by COVID-
19 or not. The diagnostic challenge boils down to an image
classification problem. However, the task is not that simple
and several issues need to be addressed:
• Enough data to train the AI system are required, which

entails having a large amount of correctly labeled CXRs.
• The system should properly distinguish COVID-19 lung

involvement from other types of effects produced by other
diseases.
• Real-world CXRs are not perfect. They may suffer from

several technical deficiencies that must be addressed before
images are processed.
The starting point for the model we need relies on recent

ML-based solutions for problem classification. These systems
have been built out of the last generation ofANNs, an extensive
set of models collectively known as DL models [24].
DL generically refers to the whole area, including models,

architectures, training algorithms and roughly anything related
to them. The most relevant early models for images were built
byGoogle researchers on the ImageNet dataset [25]. ImageNet
is a research project that has developed a large database of
images with diverse annotations. The dataset contains over 14
million images (out of 1 million annotated) for 21,000 classes.
This dataset also served as the basis for an image classification
challenge fromwhich several related but different models have
been developed using the dataset as a starting point. Some of
the most notable models are VGG16-VGG19 [26], MobileNet
[27], ResNet [28], Inception [29], DenseNet [30] or Xception
[31].
Creating a brand new model for image classification im-

poses a high tax in terms of necessary data and resources.
These requirements are usually hard to satisfy. However, the

knowledge extracted by the networks along their training is
embedded within their structure (both topology and weight
values). Most of their general knowledge can be useful for
other classification problems. Based on this premise, a neural
network able to address other classification problems can be
built. This requires making some adaptation to the network
topology, particularly, input and output layers, and a relevant
dataset.

2.2 Data collection and preprocessing
The availability of a high-quality dataset is a key ingredient
in any data-driven solution. Research groups all over the
world have been gathering their own datasets as the COVID-19
pandemic evolved. However, only a few have been published
for general use. To face the challenge posed by the present
research work, two datasets have been considered: a publicly
available one and a locally gathered one.
During the pandemic time, a few repositories with CXRs (or

other kinds of radiological images) have been published on the
Internet. However, the quality of the data or the representa-
tiveness of the sample hinder their final effectivity. They can
be used for exploring purposes, but not to develop a robust
real-world system. Among all the public repositories, the one
that has probably received the most attention is COVIDx from
the COVID-Net Open Source Initiative [32]. COVIDx is a
dataset of CXR images that comprises 15,190 samples. It has
been generated by combining five different publicly available
data repositories. The images in the dataset are labeled and
therefore divided into three groups: “Normal”, “Pneumonia”
and “COVID-19”. For the purpose of our problem, we aggre-
gated the first two classes into a single one (“Non-COVID”).
The distribution for each group are: Non-COVID-19 CXR
images (91.5%) and COVID-19 CXR images (8.5%). This is
the original version of the dataset, as published in [32]. Wewill
refer to it as COVIDx 1. The dataset, nevertheless, has been
updated in successive versions. The last one was published
in November 2021. It is now composed of ~30,000 images
divided into two categories (Non-COVID-19 and COVID-19),
extracted from several health institutions all over the world.
The percentages of the two classes are 14,192 COVID-19-
negative CXR images and 16,690 COVID-19-positive CXR
images.
The second dataset to consider was collected locally in

the province of Granada, Andalusia, southern Spain. It is
composed of 114,251 anonymized Digital Imaging and Com-
munication in Medicine (DICOM) files from patients that
attended several public hospitals in the province of Granada.
More specifically, these hospitals were: Hospital Universitario
Virgen de las Nieves of Granada, Hospital Comarcal Santa
Ana de Motril and Hospital Comarcal de Baza. These DICOM
files contain, among other information, high resolution (4000
× 3000 pixels) CXR images. We will refer to this dataset as
GranaCov.
Since CXR images are not in perfect condition, a thor-

ough cleaning and preprocessing step was necessary, and a
subsequent filtering process had to be applied. The images
can be both lateral and frontal radiographs showing the lung
area. During the extraction of images from the DICOM files,
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only the frontal images were selected, discarding the lateral
ones, resulting in a total of 68,360 frontal images. Moreover,
because labels (frontal, lateral) assigned to the images were not
completely consistent, a separate image classification neural
network was trained to distinguish between frontal CXR im-
ages from the rest. This not only allowed us to discard images
that showed a lateral view (i.e., mislabeled), but also some
other images not related to this project which were erroneously
included in the dataset. The accuracy level obtained on this
specific task was 98.6%. This model automatically filtered out
images of children, mislabeled images, and images that do not
correspond to the lung area, such as arms, hips or undefined
objects. After this process, the total number of available frontal
images was 64,790.
From the filtered frontal images, due to the poor quality of

some CXRs, a process of image quality improvement was nec-
essary. In this regard, two types of problems were identified:
some images with a white background presented inverted color
tones and some were excessively saturated. The images with
the white background were improved by inverting the colors,
while the saturated ones underwent a process of histogram
equalization to increase contrast. Both types of problems are
automatically detected by our preprocessing pipeline and do
not require human intervention. Fig. 1 shows examples of
these cases.
The labels for the CXR images were obtained from an

anonymized hospital database. In this database, each patient
can have more than one associated CXR and the COVID-19
infection identification criterion is based on PCR test results. It
contains 40,751 records of PCR, Immunoglobulin G (IgG) and
Immunoglobulin M (IgM) antibody tests (antibody tests were
not used in this study). On this subject, we encountered several
problems as we learned that the database also contained CXRs
associated with previous, non-COVID-19 related, episodes.
This required another filtering process to select only images ac-
quired during the same episode in which the PCR test outcome
was obtained. Once these problems were solved, the database
for the studywas limited to 6569COVID-19 negative and 1267
COVID-19 positive images, yielding a final dataset with 7836
instances (Table 1).

TABLE 1. Class distribution of GranaCov instances.

COVID-19 Negative COVID-19 Positive

6569 1267

COVID-19, coronavirus disease 2019.

2.3 Base Convolutional Neural Networks
A review of the scientific literature reveals that Convolutional
Neural Networks (CNN) are generally used to address image
classification problems. These networks are a special type
of neural network where each layer performs a convolutional
operation (or set of operations) on the input image or the
result of the previous layer. In contrast to neurons of regular
fully connected networks, convolutional neurons perform a

convolutional operation (whose associated weights have to
be learned during the training phase) only on a region of
the input image or the result produced by the previous layer.
This reduces the number of parameters to be estimated in
comparison to a fully connected network applied to the same
type of data. It has to be noted that the dimensionality of inputs
like images is very high even for low-resolution input samples
as each pixel is an input element. If no additional classification
model is used, the last layers of CNNs are fully connected ones
that are only geared to produce the output, i.e., a classification
label. In summary, the layers of a CNN are trained to learn a
set of convolutional filters which should be helpful to extract
relevant features for the classification task.
CNNs are not usually built from scratch but rather pre-

trained networks are employed. To this end, Transfer Learning
approaches are used. Transfer Learning provides the possibil-
ity to re-use the previous parameter values acquired by training
one network and adapt it to another—similar—problem. The
knowledge acquired by the network is, thus, re-used to solve a
different problem. The reasoning behind this procedure is that
this type of neural network, during the training phase, learns
a set of filters that are useful for extracting features from any
image and that these filters can be re-used, although a fine-
tuning step is always required (network re-training step). In
other words, a neural network that can classify regular images
can be re-engineered to classify CXR images. Therefore, it
is a good starting point and helps to save a great amount of
computing time.
After some initial tests with different models, MobileNetV2

[33] and VGG16 [26] were the state-of-art neural network
models chosen as the base to build our diagnosis system.
Trained versions of these models are available to download
from the official TensorFlow site12 (version core 2.8.0 at the
time of writing). VGG16 is a representative of models with a
very large number of parameters (~138 million). The network
is composed of five convolutional blocks. The first two blocks
consist of two convolutional layers and a Pooling layer (224
× 224 × 64 and 112 × 112 × 128), while the others consist
of three convolutional layers (56 × 56 × 256, 28 × 28 ×
512, 14 × 14 × 512). Three Fully-Connected layers of
different depths (4096, 4096, and 1000) follow the stacked
convolutional blocks. The final layer is a soft-max layer.
MobileNetV2, with ~3.5 million parameters is a network of

smaller size. The architecture contains an initial convolutional
layer (224 × 224 × 3), followed by seven bottleneck blocks
(112 × 112 × 32, 112 × 112 × 16, 56 × 56 × 24, 28 × 28 ×
32, 14× 14× 64, 12× 12× 96, 7× 7× 160), to finish again
with two convolutional layers (7 × 7 × 320, 1 × 1 × 1280).
The same parameters have been used as in the previous model.
Both models had already been pre-trained using the ImageNet
dataset with images of size 224 × 224.

1https://www.tensorflow.org/api_docs/python/tf/keras/applications/
mobilenet_v2/MobileNetV2
(Accessed February 2022)

2https://www.tensorflow.org/api_docs/python/tf/keras/applications/vgg16/VGG16
(Accessed February 2022)
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FIGURE 1. Image preprocessing examples of chest X-rays (CXR). a. Color inversion. a1. CXR with white background
(i.e., negative). a2. Result from color inversion. b and c. histogram equalization. b1. Black saturated CXR (i.e., overexposure).
b2. Histogram equalization. c1. White saturated CXR (i.e., underexposure). c2. Histogram equalization.

2.4 Building of the network
As mentioned above, the networks used are not trained from
scratch, but rather a Transfer Learning approach is used. Our
starting points were ImageNet pre-trained networks. From the
different choices, VGG16 and MobileNetV2 were the models
finally selected. The original formulations of the model had
to be adapted to the task of classifying CXR images to detect
COVID-19 lung involvement. Accordingly, the last two layers
were removed and some new trainable layers were added on
top of the remaining ones: a dense layer with 1024 units, a
dropout layer with 0.5 rate of units to drop and, finally, a new
dense layer, as it is completely dependent on the number of
classes. In the original problem, the number of classes was
over 1000, but in our case, it is just two.
The detailed architecture of the VGG16 network is provided

(Fig. 2). The first two layers are convolutional, with 64 3 × 3
filters (per layer). The stride value used is 1. The convolutional
filter size and the stride value are maintained constant for the
whole network. The third layer is a max-pooling layer of size
2 × 2 with a 2 × 2 stride. This layer down-samples input data
computing the maximum over a 2 × 2 window. The fourth
and the fifth layers are also convolutional, with 128 filters
(per layer). The sixth layer is another max-pooling layer of

the same type as the preceding one. The next three layers are
convolutional, with 256 3 × 3 filters. Max-pooling is applied
by the tenth layer. The previous scheme (three convolutional
layers followed by a max-pooling one) is repeated twice with
512 filters per convolutional layer. Finally, the data is flattened
and passed to two fully connected layers of size 4096, each
followed by a dropout layer. Dropout layers randomly set some
of the inputs to 0 to prevent overfitting.
As the last layer, a fully connected one is used to produce the

classification result. Its output size depends on the number of
classes of the classification problem. This layer uses the soft-
max function to produce a result in the (0, 1) range associated
with each possible class. The sum of all outputs of a layer of
this type is equal to 1.
The architecture of the VGG16 net can be summarized as

follows: a series of convolutional layers followed by a max-
pooling one. The dimension of the data gets progressively
reduced while the number of filters per convolutional layer
is progressively increased before data reaches a pair of fully
connected layers and the final softmax one.
Regarding domain adaptation, since our datasets were not

large enough for these networks to learn, we used various
openly available CXR image datasets. The first dataset used
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FIGURE 2. Schematic layer representation of a
VGG16 neural network used for classifying CXR images
of COVID-19. The type and size of each layer is included.
Conv, convolutional.

was the one made available to the scientific community by
the National Institute of Health (NIH) Clinical Center [34].
The dataset contains more than 130,000 anonymized CXR
images with 14 categories of lung diseases. Remarkably, it
does not contain any COVID-19 cases. Nevertheless, it serves
the purpose of letting the network discover features specific
to CXR images. The networks trained on this CXRs of non-
COVID-19 images were then further trained to build the actual
models that would diagnose suspected COVID-19 patients.
The tasks performed for model adaptation include the fol-

lowing:
• Network architecture tuning: light adjustments to the

number of layers/blocks to learn how the network size was
related to the results.
• The pre-trained layers were frozen to allow only the initial

and last layers to be modified during the re-training phase to
keep intact most of the pre-learned features. This test was
carried out to account for the possibility that the number of
CXR images was not large enough to re-train networks of this
size.
• Different parameters related to the re-training phase were

tested, e.g., optimizer method or learning rate.
• Data augmentation: the dataset was artificially modified

by adding modified versions of the original data. These mod-
ifications included horizontal and vertical flips, zoom and up
to 20 degrees of rotation.
Then the networks were trained on the COVIDx 1 dataset

since this was the only one available at the early stages of the
research. By following the established empirical methodology,
the dataset was randomly split into two independent parts:
training set (70%) and test set (30%). Only the training set was
used in the model building tasks, including hyperparameter
selection identification, reserving the test set for the exclusive

task of model testing. The COVIDx 1 dataset showed a
clear class imbalance problem as the number of COVID-19
negative samples was clearly higher than the positive ones.
This required the use of the well-known majority class (i.e.,
COVID-19 negative) under-sampling technique. By having a
similar number of samples of both classes, the learning process
does not get biased towards mostly generating majority class
predictions because it is sufficient to achieve global accuracy
levels.
The employed training procedure used the following param-

eters: as an optimizing procedure, both Stochastic Gradient
Descent (SGD) and Adam were tested. SGD always yielded
higher accuracy values. After some initial test-and-error exper-
iments, the remaining parameters were set as learning rate at
0.001, decay at 0.000001, and momentum at 0.9. The network
performance is measured based on its accuracy, defined as the
rate between right answers and the total number of instances.
A deeper insight is offered by the confusion matrix: each row
represents the instances of each actual class while each column
represents how the test samples of each class were labeled by
the classification system.

3. Results

This section presents the experimental results as well as the
latter validation procedure. Finally, a description of the appli-
cation developed to deploy the diagnosis model is included.

3.1 Experimental results
While data augmentation was applied at different intensifica-
tion levels, no improvement in the results was observed. Thus,
the process was eventually not applied, and only the original
set was used for training.
The results obtained in terms of classification accuracy for

the VGG-16 and MobileNetV2 were 92% and 91%, respec-
tively (both on the COVIDx 1 test set). The confusion matrices
are shown in Table 2 and Table 3.

TABLE 2. Confusion matrix obtained using VGG16 on
the COVIDx 1 dataset.

Actual

Predicted
COVID-19
negative

COVID-19
positive

COVID-19 negative 90 10

COVID-19 positive 7 93

F1-scores for both networks were 0.9163 and 0.91282, re-
spectively, pointing to a lightly better performance of VGG16
over MobileNetV2.
COVIDx dataset has been updated several times, the last one

in November 2021. This version is composed of 30,000 CXR
images with 16,690 positive cases, the rest being negative. We
named this updated version as COVIDx 2. We reproduced
the same procedure applied to COVIDx 1 with this enlarged
version of the dataset. On this occasion, VGG16 achieved a
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TABLE 3. Confusion matrix obtained using
MobileNetV2 on the COVIDx 1 dataset.

Actual

Predicted
COVID-19
negative

COVID-19
positive

COVID-19 negative 94 6

COVID-19 positive 11 89

TABLE 4. Confusion matrix obtained using VGG16 on
the COVIDx 2 dataset.

Actual

Predicted
COVID-19
negative

COVID-19
positive

COVID-19 negative 194 6

COVID-19 positive 29 171

TABLE 5. Confusion matrix obtained using
MobileNetV2 on the COVIDx 2 dataset.

Actual

Predicted
COVID-19
negative

COVID-19
positive

COVID-19 negative 190 10

COVID-19 positive 9 191

91% accuracy rate in the test, whileMobileNetV2 showed 95%
accuracy. The confusion matrices are shown in Table 4 and
Table 5.
F1-scores for both networks were 0.9072 and 0.9526, re-

spectively, resulting in a better result for the simpler architec-
ture of MobileNetV2.
The experiments have been replicated by using different

random partitions of the dataset into training and test sets.
The accuracy values and confusion matrices obtained are quite
similar to those reported above, with a standard deviation of
2.0 units of accuracy level.
Our final goal was to have a system tailored to the pa-

tients undergoing a CXR with suspicion of COVID-19 in
the province of Granada. Thus, a local CXR image dataset
was needed. The gathering of the local dataset was severely
delayed due to administrative and technical reasons, but after
one year the dataset, GranaCov, described in section 3.2, was
assembled.
Once the dataset was available, we made a straight evalua-

tion of the COVIDx trained network on the GranaCov dataset.
Since the two datasets (i.e., COVIDx and GranaCov) are as-
sumed to represent the same problem and to be samples of the
same phenomenon, similar results, in terms of accuracy were
expected. Surprisingly, the results on the GranaCov dataset

were quite different to the ones obtained on COVIDx. This
unexpected issue triggered the search for explanations. The
following causes were identified:
• COVID-19 positive cases with no lung involvement. In

this case, no information can be obtained from the CXR image.
A review process conducted on our database has made this
issue surface.
• Doubtful or interim cases in which even trained radiolo-

gists find it difficult to reach a diagnosis with no additional
information (i.e., only using CXR information).
• Mislabeled images due to errors produced when the infor-

mation was added to the database. The unprecedented admis-
sion rates, especially during the first months of the pandemic,
increased the chance of human errors of this kind.
To address the first of the above points, a model capable

of discerning between lung-involved and non-lung-involved
images was generated, so that it could be used to filter out CXR
images of COVID-19 patients with no lung involvement, that
is, images that may be hindering the development of a model.
The COVIDx dataset was used for this purpose. Instead of us-
ing the COVID/Non-COVID labeling of the data, we opted to
label CXRs as normal-pneumonia/COVID, i.e., joining the last
two classes into a single one. The generated model achieved
a 91% test performance for the task of classifying between
pulmonary versus non-pulmonary-involved CXR images. The
application of this model to the local dataset produces some
interesting outcomes: it establishes 3557 images labeled as
Non-COVID as being pulmonary-involved cases, and 444
COVID-19 positive images as unaffected cases.
Analogously, a segmentation process was applied to opti-

mize the training process as non-relevant parts of the images
are eliminated and substituted with a solid black background
color. For this task, U-net, which is a pre-existing CNN
designed for biomedical data segmentation was used [35].
This model was trained using pre-segmented CXR images and
achieved 98% accuracy on our images.
The output of the U-net is a binary mask of the same size as

the input image. The application of this mask to the original
image results in any pixels not associated with the lung area
being transformed into black pixels (background). Therefore,
U-net is only used during the pre-processing step to remove
pixel data not belonging to lung areas and it is not used to obtain
a COVID-19 diagnosis. Fig. 3 shows a sample of the image
obtained from the DICOM file and the resulting segmented
image using U-net.

FIGURE 3. Example of CXR image segmentation using
U-net.
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FIGURE 4. Intelligent diagnosis system blocks. DICOM, Digital Imaging and Communication in Medicine.

The segmentation process avoids any learning effort to be
wasted outside the area of interest and does not require any
human intervention, except a small percentage of very low-
quality images that cannot be repaired using the image prepro-
cessing pipeline explained in this section.
All the adjustments performed on the processing pipeline

were geared towards achieving competitive performance on
the GranaCov dataset too. The steps composing the currently
deployed processing pipeline are depicted in Fig. 4.

3.2 Validation
The validation process of all the steps explained in previous
sections is based on the use of independent training and test
sets. The error or accuracy achieved in the training set is
useful for understanding how the model is learning, but it is
not a realistic estimate of how the model behaves in the case
of new observations. To achieve a more accurate estimate, it
is necessary to use a previously ‘unseen’ dataset, the test set.
The model validation strategy adopted in this work consisted
of dividing the dataset into training and test subsets, and
additionally into a validation subset. The validation set was
used to choose the best training model.
All the accuracy values included in this work refer to the

behavior of the model on the test set, not on the training or
validation set. The training and validation sets used during
the learning process contain 70% and 10% of the images,
respectively. The remaining ones are used in the test set
to classify using the trained model and evaluate the model
performance.
The accuracy of every trained network described above on

the training set was over 99%, meaning perfect learning on the
instances used for the network weights adaptation. However,
the most relevant figure is the accuracy on unknown instances,
totally independent of those used during training, namely, the
test set. As previously indicated, the average performance
of VGG16 models on both COVIDx 1 and COVIDx 2 was
91%, and the performance of the MobileNetV2 was 92% and
95%, respectively. These percentages are average values over
several independent partitions of the dataset, so they are a

valuable approximation of the real values. On the other hand,
the performance on the GranaCov dataset in training was again
over 98%. However, the performance observed on the test set
was rather low. Thus, further research is necessary before an
intelligent model reliable enough is available.
Once the models are trained and validated, they are tested

for some time in medical practice. The intention of this is to
validate the models in a real-world environment (Emergency
Department) by medical professionals. The workflow and a
web application have been developed to allow its implementa-
tion but have not been implemented in clinical practice yet.

3.3 Deployment of the final system
The AI-based diagnosis system was fully implemented us-
ing the Python programming language using Tensorflow with
Keras for all the DL related tasks as stated previously.
In order to make the use of the developed tool easier for

physicians, a user-friendly web application has been designed
and implemented. The architecture of the tool is quite straight-
forward, including the image database, the intelligent sys-
tem model and the user interface. This application has been
developed using the JavaScript and PHP programming lan-
guages. The image database is stored in a Redundant Array
of Independent Disks (RAID) storage device, with an ext4
file system. The database is managed by PostgreSQL. All the
components of the application are deployed with containers—
through docker services—scattered along with several servers
with Linux based operating systems. Therefore, only open-
source software is used.
The workflow supported by the application is quite straight-

forward: as new patients arrive at the Emergency Department,
their data are captured, a CXR is obtained and, once it is
available, the physician retrieves the patient’s data and requests
a diagnosis from the tool. Once the image is analyzed and
the result is available (it takes less than one second), the latter
is displayed on the web page. This way, the application can
be used from any device with an Internet connection, namely
universally accessible. This workflow is illustrated in Fig. 5.
As the initial motivation for the usage of these intelligent
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FIGURE 5. Medical diagnosis application. DICOM, Digital Imaging and Communication in Medicine. App,
application.

systems was a fast triaging system, measurements of running
times are necessary. The most computationally intensive task
is the image analysis step, which takes an average running time
of 0.75 seconds per image. This is not the limiting time for
the whole process, but the acquisition of the CXR, which is
the longest step. A screenshot of the current version of the
application as used during physician evaluation is shown in
Fig. 6.

4. Discussion

The work described in this paper includes both a scientific and
engineering process. From the scientific perspective, we have
addressed the problem of building a computer-based system
to identify patients possibly affected by COVID-19 from their
CXR images. The supporting hypothesis is that if a patient has
been infected by COVID-19, then his or her lungs suffer from a
specific type of pneumonia and that it can be identified from the
image of the lungs. A program developed with ML techniques
can be tuned to extract and identify relevant signs of that
infection and, thus, provide a reliable radiological diagnosis.
The idea seemed promising, and a number of research

groups scattered around the globe have put it into practice.
Unfortunately, it is not completely straightforward, and
several technical issues need to be thoroughly addressed. The
available literature on research projects conducted on this
topic is extensive. However, most of the published articles
suffer from several weak points. A recent systematic review of
the literature performed by Wang et al. [36] (2021) identified
common pitfalls in the research reported in over 2200 papers.
Due to the limitations of previous papers on the topic, we

intend to build a reliable and robust intelligent system for
COVID-19 screening. While the idea is easy to catch on, it
is not completely straightforward. We have gone through a
rigorous process that has been thoroughly described in this
paper and have been able to build a fully operational system
that assists physicians in COVID-19-suspected patient triage.
While other publications with a similar objective usually omit
details—both major and minor—, we provide detailed in-
formation allowing for reliable reproduction of the scientific
and engineering procedures followed in this project. This
contribution is a major highlight of this paper.
Another important fact, which is barely mentioned—let

alone recognized—in the literature is that, while the effects of
SARS-CoV-2 are expected to be equal all over the world, CXR
image datasets assembled from different populations might not
be from the same—statistical/epidemiological—population.
That is, a screening system performing well on a given dataset
may not perform so well on a different dataset. Thus, an
effective data engineering procedure is required to allow the
creation of adapted versions of the models. This preprocessing
step is held responsible for over 60 to 70% of the time in data
science tasks. Detailing the actual problem faced during this
stage is of the highest relevance for scientists and engineers
when their goal is to develop a real-world intelligent system.

5. Conclusions, limitations and future
research

As the COVID-19 pandemic has stormed all over the world
with devastating effects on the health of the population, fast
tools for screening COVID-19-suspected patients are needed.
One promising approach is to develop a system based on
CXR image analysis to assess whether the lung involvement
pattern is compatible with that caused by SARS-CoV-2. This
hypothesis has been analyzed by a host of researchers reporting
varying degrees of success. Accordingly, a project to build a
robust system is on execution by our research team. While it
is not over yet, interesting results have been obtained and are
described in this article.
The first relevant conclusion is that indeed it is feasible

to develop an effective intelligent system based on ML and
computer vision techniques to automatically diagnose COVID-
19 from CXR images. Starting from well-known image clas-
sification neural networks, we have developed a system that
achieves a performance in line with state-of-the-art published
results. With an average performance of 93% success, the
system is rather reliable on CXR of the same population. This
has been reached using a publicly available CXR dataset.
A reliable and fully operative system has been developed,

endowed with a friendly user interface—a web application.
The average running time of the image analysis is 0.75 s, so it
greatly reaches the target of becoming a fast screening system.
Next, it is not straightforward to adapt a particular system

to a different population. A full understanding of the causes
is not yet available, but different patient populations may
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FIGURE 6. Diagnosis application screenshot.
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produce very different CXR datasets. This leads to a data drift
situation and trained networks on a specific dataset might not
be effective on different datasets for this problem.
When seeking to adapt the system to a different dataset,

a number of pitfalls arise that require careful analysis. The
analysis of the dataset has surfaced different properties of
the data so images require careful preprocessing. Several
filtering and transformation steps have been developed—e.g.,
segmentation, histogram equalization, inversion—which has
led to enhanced quality data. Unfortunately, a completely sat-
isfactory solution has not been found yet and further research is
needed. The future research will therefore focus on increasing
the performance of our system on the GranaCov dataset to
match the results obtained on COVIDx.
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