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Abstract: In this paper, defect detection and identification in aluminium joints is investigated based
on guided wave monitoring. Guided wave testing is first performed on the selected damage feature
from experiments, namely, the scattering coefficient, to prove the feasibility of damage identification.
A Bayesian framework based on the selected damage feature for damage identification of three-
dimensional joints of arbitrary shape and finite size is then presented. This framework accounts for
both modelling and experimental uncertainties. A hybrid wave and finite element approach (WFE) is
adopted to predict the scattering coefficients numerically corresponding to different size defects in
joints. Moreover, the proposed approach leverages a kriging surrogate model in combination with
WFE to formulate a prediction equation that links scattering coefficients to defect size. This equation
replaces WFE as the forward model in probabilistic inference, resulting in a significant enhancement
in computational efficiency. Finally, numerical and experimental case studies are used to validate
the damage identification scheme. An investigation into how the location of sensors can impact the
identified results is provided as well.

Keywords: guided waves; joints/bounded structures; damage identification; Bayesian inference;
hybrid wave and finite element; surrogate model

1. Introduction

Structural joints are essential to connect different components within any large struc-
ture. These elements typically play a vital role in the load-bearing capacity of the struc-
ture [1–3]. One typical application of a joint in a steel structure is shown in Figure 1. During
the service stage of joints, defects caused by corrosion or fatigue can lead to catastrophic
failure of the structure. Even when these defects are visible, they are not easily accessible
for visual inspection [4]. Therefore, there is a compelling need for accurate and efficient
detection and identification of information on the health state of such joints.
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Figure 1. Illustrative example of joints in a steel structure.

In the context of sustainable industrial development, ensuring the reliability and
sustainability of structures is of paramount importance. There are numerous established
techniques for structural health monitoring (SHM) and non-destructive testing (NDT)
which can help to this objective. Ultrasonic guided waves comprise one of these techniques,
and are currently revolutionizing the approach to NDT and SHM [5] because of their
high sensitivity to minor damage and their online monitoring capabilities. Guided wave
testing has been applied to various structural forms, including plates [6,7], beams [8,9],
pipes [10,11], and adhesive joints [12], and several different damage assessment methods
have been presented.

Recent works have contributed to damage quantification and characterization in
joint structures using guided waves. Rucka [13] performed longitudinal and flexural wave
propagation modelling using the spectral element method in the time domain. Wave speeds
and reflection times were used for damage detection. Allen [12] investigated detection of
debonding at the adhesive joint using a nonlinear Lamb wave mixing approach. Fakih [14]
proposed a novel framework for damage detection, localization, and assessment using
ultrasonic measurements in a dissimilar material joint. A hybrid method for damage
detection and condition assessment of hinge joints in hollow slab bridges using physical
models and vision-based measurements was proposed in [15]. Allen and Ng [16] proposed a
method to evaluate applied torque levels in bolted joints by combining harmonics generated
due to nonlinear Lamb wave mixing and contact acoustic nonlinearity. Lyathakula [17]
developed an integrated damage diagnostic–prognostic framework for remaining useful life
estimation in adhesively bonded joints under fatigue loading. Wu et al. [18] developed a fast
inspection technique for weld defects in a steel T-welded joint structure using Rayleigh-like
feature guided waves. Their method utilized the semi-Analytical Finite Element method
to acquire modal solutions. Except for the first and last mentioned studies for damage
detection in joints, these studies rely on traditional finite element simulations for guided
wave propagation and damage interaction, which can be inefficient. Additionally, there
is ample room for further research and exploration in the field of damage identification
in joints.

As evidenced by the above reviewed papers, numerical models of wave propagation
and wave damage interaction play an important role in damage characterization, in par-
ticular for physics-based methods [7,8,19]. WFE is one of the most popular approaches; it
can fully exploit the advantage of the traditional finite element model while being even
more efficient. Below, we provide a review of works that simulate joints using WFE. Renno
and Mace [20] combined finite element and wave finite element methods to calculate the
scattering coefficients of a joint; the numerical cases of an L-frame, lap-jointed laminated
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beams, and an orthotropic beam with a slot were used to illustrate their approach. Mi-
tou [21] investigated the wave propagation and scattering coefficients of joined structures
composed of one joint and different numbers of plates. Aimakov [22] proposed a semi-
analytical method for computing energy scattering coefficients for joints connecting an
arbitrary number of semi-infinite orthotropic plates. Denis [23] assessed the reflection
and transmission coefficients of waves around defects and curved joints. An optimization
procedure was proposed to magnify the amplitude of the signals reflected by defects to
guide the design of curved joints. Chronopoulos [24] quantified guided wave interaction
effects modelled using the WFE with localized structural nonlinearities within complex
composite structures. The proposed approach enabled generation of higher harmonics and
sub-harmonics through harmonic balance projection. Malik [25] proposed a WFE-based
approach for complete transient simulation of ultrasonic guided waves in one-dimensional
waveguides. The scattering coefficients of composite beams with three types of damage,
namely, notches, cracks, and delamination, were calculated, and a model reduction strategy
was adopted to reduce the calculation time. Takiuti [26] conducted an initial investigation
of Lamb wave scattering from discontinuities associated with high-frequency corrosion-like
damage. However, few works have considered the use of wave–damage interactions for
practical applications in joints.

The calculation efficiency is one of the main bottlenecks complicating successful imple-
mentation of physics-based damage identification approaches [6]. Wu et al. [27] developed
a dedicated physics-based Bayesian framework for extracting damage characteristics from
ultrasound measurements in plate-like structures. A semi-analytical forward model was
employed to perform rapid computations of wave–damage interactions, improving the
robustness and efficiency of the inversion procedure. Fakih [14] used an artificial neural
network-based surrogate model with Approximate Bayesian Computation for increased
computational efficiency. However, analytical solutions have restricted application, and it
is not always appropriate to increase efficiency by including them. Additionally, the latter
study’s method employed a neural network, which often necessitates additional sample
data [28].

The goal of the current study is to create a novel method for dealing with damage
identification goals in three-dimensional joints with any shape and finite size. To this end,
a method for identifying the size of circular holes in a joint formed in an aluminium plate
is proposed using the Bayesian inverse procedure. The proposed Bayesian framework uses
a kriging-based surrogate model of the WFE approach to obtain the scattering coefficients
corresponding to different defect sizes numerically. The continuity and equilibrium condi-
tions of the joint with respect to each waveguide are used to solve the scattering feature.
This study uses a particular joint form as a case study. However, using WFE it is simple to
extend it to any shape. The referenced surrogate model is trained on a database contain-
ing measured scattering properties to alleviate the computational burden. Furthermore,
considering that the geometry of the joint is relatively small, the scattered signal caused by
the defect is difficult to distinguish from the signal reflected from the boundary; thus, a
clear scattered signal cannot be obtained. Therefore, the steady-state waveform is chosen
to excite the joint in the monitoring test. Then, a damage feature in the frequency domain
is obtained using a specific signal processing method, by which scattering coefficients are
extracted from the time-domain experimental signals. Finally, the proposed method is
validated through a full finite element simulation and a physical experimental case. Finally,
the consequences of different sensor locations are assessed and discussed.

The rest of this manuscript is organized as follows. Section 2 introduces the exper-
imental study on plate joints using guided wave monitoring tests. Section 3 outlines
the physics-based Bayesian inference framework used to identify the amount of dam-
age, including the formulation of the wave finite element model described in Section 3.2
and the kriging surrogate model described in Section 3.3. In Sections 4 and 5, numerical
and experimental cases are respectively provided. Finally, our conclusions are presented
in Section 6.
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2. Guided Wave Monitoring Testing of Joints and Damage Feature Extraction

This section explores the feasibility of damage identification in aluminium joints
through experimental studies. Defect-related scattering coefficients are extracted and as-
sessed. To highlight the universality of the damage identification framework, an arbitrarily-
shaped joint, shown in Figure 2, is used. The joint is based on a central plate attached to
four rectangles to represent the braces of the joint, with the elements cut using a water
jet for geometrical accuracy. The material properties of the aluminium plate are shown
in Table 1.

Waveguide

Waveguide

Waveguide

Joint

Waveguide

(a) (b)

Figure 2. Panel (a): Schematic view of the aluminium joint. (b): detailed geometry of the joint, including
its braces.

Table 1. Mechanical properties of aluminium plate.

Thickness (mm) Young’s Modulus (GPa) Poisson’s Ratio Density (kg/m3)

1.2 69 0.33 2705

Piezoelectric (PZT) sensors are placed where maximum damage sensitivity is achieved,
i.e., on different braces next to the edge of the central plate. The signals and associated
damage-sensitive features extracted from these data are expected to change in a monotonic
fashion with increasing damage levels [29]. The position of different sensors is shown
in Figure 3. The sensors are 7 mm in diameter and 0.2 mm in thickness with radial mode
vibration and a resonant frequency of 300 kHz. Sensor #1 is used to generate an input
waveform, and the rest of the PZT sensors receive the reflected and scattered signals.
The ends of the braces are covered by plasticine to effectively reduce the influence of the
reflections and create a pseudo-absorbing boundary condition. Thus, the performance of
the signals scattered by the defect is enhanced.

The overall experimental setup is shown in Figure 4. A Keysight 33512B arbitrary
waveform generator was used to generate a steady-state sinusoidal waveform in a specific
frequency and a DSOX2014A oscilloscope was used to digitize the signals using a sampling
frequency of 9.6 MHz, with an average of 32 measurements to increase the signal-to-
noise ratio.
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Figure 3. The aluminium joint with surface mount transducers and damage; there are four transducers
in total, with the No. 1 transducer used to excite the signal, that is Sensor 1. The other sensors are
used to receive the signal, named Sensor 2, 3 and 4 respectively.

Figure 4. Experimental setup, comprising a laptop, an arbitrary waveform generator, and an oscillo-
scope connected to the PZT transducers, attached in turn to the aluminium joint.

The time domain signals at 240 kHz for pristine and different damage states are shown
in Figure 5. Note that after 0.25 ms the signal amplitude stabilizes, which is because the
steady-state output is obtained when the steady-state waveform is excited in the linear
system. After the defect is introduced, the amplitude becomes larger after stabilization. The
larger the defect is, the smaller the observed amplitude of scattered waves. In this context,
the scattering properties of defects are proposed for use as damage indicators. In this
work, the frequency domain technique for calculation of the scattering coefficients [30–32]
is adopted, which requires the three steps schematically illustrated in Figure 6. First, the
fast Fourier transform of the incident wave is computed. Second, the incident wave is
subtracted from the wave of the different damage states to obtain the scattered wave and the
fast Fourier transform is computed. Finally, the coefficients are computed by dividing the
frequency spectra of the reflected/transmitted part of the signal by that of the incident part.
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Figure 5. (a) Time domain experimental signals of different damage states at 240 kHz; (b) zoomed−in
portion of (a).

Figure 6. Workflow of signal processing technique used to obtain damage features in the frequency
domain, namely, scattering coefficients.
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3. Method
3.1. Outline of Bayesian Inference

Based on the damage feature analysis in Section 2, scattered fields between waves and
damage interaction depend on the size of the defect. In this section, a Bayesian inference
framework is presented to infer the sizes of defects based on their scattering coefficients
along with quantification of the uncertainty.

The framework is based on Bayes’ theorem, as shown below [33]:

p(λλλ|D,M) =
p(D|λλλ,M)p(λλλ|M)

p(D|M)
(1)

where p(D|λλλ,M) is the likelihood function, which provides a measure of the agreement
between the available measurement data and the corresponding numerical model output.
The denominator p(D|M) is known as the evidence, and is a measure of how well the
model explains the data D. It acts as a normalization constant in Bayes’ theorem [34].
The prior PDF p(λλλ|M) is the state of knowledge before any measurement is available.
The posterior probability p(λλλ|D,M) is the state of knowledge of the distribution of the
model parameters after updating the prior information with the measurement data. The
data D can be obtained by numerical (e.g., FEM) or experimental methods (e.g., using
PZT transducers, a signal generator, and an oscilloscope). M is the model class, which
specifies an input/output model. The error term e is used to define the probabilistic damage
interaction model, as follows [35,36]:

sD = sM(λλλ) + e. (2)

where sM(λλλ) describes the modelled scattering coefficients obtained from the deterministic
physical model and sD is the scattering coefficients obtained by processing the data D
according to the signal processing techniques in Section 2. The deterministic physical model
for determining sM(λλλ) is described in the following section. To apply the above theorem, a
set of unknown model parameters λλλ are used, which include the radius of defects (r) and
the error (e) between the modelled scattering coefficients and the scattering coefficients
derived from experiments. A zero-mean Gaussian distribution with covariance matrix
Σe = diag(σ2

e,1, σ2
e,1, . . . , σ2

e,Ns
) is selected to model the error term in order to produce the

largest prediction uncertainty, i.e., e ∼ N (0, Σe), while Ns refers to the dimension of the
scattering coefficients based on the principle of Maximum Information Entropy [37,38].
The stochastic version of the model is provided by a Gaussian distribution

p(sD |sM, λλλ,M) =
(

2πσ2
e

)− Ns
2 exp

(
−1

2

(
J (λλλ,D)

σe

)2
)

, (3)

where J (λλλ,D) is a goodness-of-fit function selected to be the L2-norm of the experimental
and modelled data, defined as

J (λλλ,D) =
( Ns

∑
i=1

(sM,i − sD,i)
2
)1/2

(4)

with sM,i and sD,i being the ith element of the vectors sM and sD , respectively.
The evaluation of Equation (1) involves calculating multi-dimensional integrals, for

which Markov Chain Monte Carlo (MCMC) methods are widely used to estimate the
posterior probability density function (PDF). MCMC methods enable direct sampling
from the posterior distribution while bypassing computation of the evidence. Among
the many MCMC algorithms available in the literature, the Metropolis–Hastings (M-H)
algorithm [39,40] is employed here as a stochastic simulation method due to its versatility
and ease of implementation. The MH algorithm is capable of avoiding calculation of the
evidence, which allows Equation (1) to be rewritten as follows:
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p(λλλ|D,M) ∝

{
N

∏
k=1

p
(

D(k) | λλλ,M
)}

p(λλλ|M) (5)

The MH algorithm involves a random walk process that selects samples according to
certain selection criteria during the sampling process. Appendix A provides more details
on the implementation of the algorithm.

3.2. Numerical Calculation of Ultrasound Scattering for Systems Involving Beam Connections and
Solid Joints of Arbitrary Complexity

A numerical approach to deriving the scattering features is presented in this section.
Although traditional finite element methods for solving time-domain ultrasonic signals
have proven useful, the models require large geometry to prevent unwanted reflections
from boundaries, which is time-consuming. In addition to the fact that multiple modes
must propagate simultaneously, this approach can lead to a substantial increase in the
required geometric size of the model, especially in the presence of scatterers [41,42]. The
WFE method is employed here to derive the scattering coefficients in the frequency domain,
which is more computationally efficient and avoids the need for extensive signal processing.
The WFE method is a technique for studying wave motion in periodic structures, for
example, a short section of a waveguide or a small segment of a 2D structure [43]. The
equation of motion for time-harmonic motion is obtained from a full FE model in terms
of a discrete number of nodal degrees of freedom (DoFs) and forces in the same form as
the dynamic stiffness method. Periodicity conditions are then applied and an eigenvalue
problem is formulated, the solutions of which provide the dispersion curves and wave
modes. The waveguides are modelled using the wave finite element method, and the joint
is modelled using the standard FE. The DoFs at the interfaces of the waveguides and the
joint are compatible. The continuity and equilibrium conditions can be used to yield the
scattering coefficients [20,21,32].

3.2.1. Wave Propagation in Beam Connections

If the structure undergoes time-harmonic motion at frequency ω, and in the absence
of external forces, the nodal displacements and forces are related through the frequency
dependent dynamic stiffness matrix of the segment as follows [44]:[

K + iωC−ω2M
]
q = f (6)

where K, C, and M are the stiffness, viscous damping, and mass matrices, respectively, q
denotes the displacement, and f denotes the forcing vectors. The dynamic stiffness matrix
can be rearranged based on its left and right side as follows:[

DLL DLR
DRL DRR

]{
qL
qR

}
=

{
fL
fR

}
(7)

where the subscripts L and R denote the left and right sides of the segment, respectively.
If there are non-interface nodes in the waveguides, dynamic condensation needs to be
used [20,21]. Using Equation (7) and continuity of displacements and equilibrium of forces
at the cross-section between sections, the following eigenvalue problem can be formulated:

λ

{
qL
fL

}
= T

{
qL
fL

}
(8)

The transfer matrix T consists of block matrices of the dynamic stiffness matrix. The
solution of the eigenvalue problem yields the wavenumber and wavemode shapes. The
positive and negation-going waves can be separated, then the right and left eigenvectors
grouped as in Equation (9):
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Φ =
[

Φ+ Φ−
]
, Ψ =

[
Ψ+

Ψ−

]
(9)

The wave modes can then be normalized based on the orthogonality of the left and
right eigenvectors. Finally, the displacement and forcing vectors can be expressed as

qL = Φ+
q a+ + Φ−q a−; fL = Φ+

f a+ + Φ−f a−. (10)

3.2.2. Calculation of Scattering Coefficients of Arbitrary Joints

Next, the calculation of scattering coefficients of arbitrary joints is illustrated. Different
wave modes propagate through the waveguides, meaning that the waveguides can be
considered as actuators and sensors. The time-harmonic behaviour of the joint is described
through the following equation:[

D̃ii D̃in
D̃ni D̃nn

]{
Qi
Qn

}
=

{
Fi
Fn

}
(11)

where Q and F are the vectors of the DoFs and internal nodal forces, respectively, repre-
sented in the global coordinate system, and the subscripts i and n respectively represent
interface and non-interface nodes. If there are no external loads, Equation (11) can be
condensed as follows:

DiiQi = Fi, Dii = D̃ii − D̃inD̃−1
nn D̃ni and Qn = −D̃−1

nn D̃niQi (12)

Based on the continuity and equilibrium conditions for the joint with respect to each
waveguide, we obtain

Qi = Rq, Fi − Rf = 0 (13)

The vectors q and f are derived in the last section; thus,[
RΦ+

f −DiiRΦ+
q

]
a+ +

[
RΦ−f −DiiRΦ−q

]
a− = 0 (14)

Finally, the scattering matrix can be obtained as

s = −
[
RΦ−f −DiiRΦ−q

]−1[
RΦ+

f −DiiRΦ+
q

]
. (15)

3.3. Kriging Surrogate Model with WFE

The Bayesian identification framework requires evaluation of the forward model thou-
sands of times in order to obtain scattering coefficients corresponding to each candidate
damage size. This creates a huge computational burden. Therefore, a surrogate model is used
to replace the WFE forward model in order to overcome these computational challenges.

Surrogate models approximate a function based on a set of training points and then
predict the function at new points. In this study, the surrogate model is used to establish
the mapping relationship between the size of the damage defects and the scattered fields.
Due to its fast training speed and accurate training results, a kriging surrogate model is
used to map the input and outputs of the WFE model presented above. A kriging predictor
is denoted by the following with an initial Design Of Experiments generated by the Latin

Hypercube Design, denoted by R =
{

r(1), r(2) · · · r(ns)
}T

, and the predicted scattering
coefficients at each sample point based on the WFE model [32,45,46]:

η(r∗) = m(r∗) + χ(r∗) (16)

where r∗ is the input vector, which in this study represents the geometrical parameters of
the damage; m(r∗) denotes the mean function (polynomial in r∗), an optional regression
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model estimated from available data; and χ(r∗) is a Gaussian process with zero mean and
the covariance function

Cov
(
ri, rj

)
= σ2Corr

(
ri, rj

)
, i, j = 1 . . . ns (17)

where ns denotes the number of sampled points. In the last equation, Corr represents
a correlation function and σ2 represents the process variance. A classical choice for this
correlation function is the exponential function provided by

Corr
(

r(i), r(j)
)
=

np

∏
k=1

exp
(
−ϑk

∣∣∣r(i)k − r(j)
k

∣∣∣δ), 0 < δ ≤ 2 (18)

where np denotes the number of damage characterization parameters to be inferred and
ϑk denotes scale factors that can be estimated using maximum likelihood. After building
the kriging surrogate model, the WFE model is replaced in the computation of the model
output by

sM(r) = η(r∗) (19)

It is worth noting here that all scattering coefficients are frequency-dependent. The
scattering coefficients from 230 kHz to 270 kHz predicted by the surrogate model are
compared with their counterparts obtained by the WFE model in Figure 7. The results
show that the kriging surrogate model can predict the scattering coefficients accurately.
Note that the errors induced by the surrogate model are subsumed within the error term of
the Bayesian inference equation (refer to Equation (2)).

Figure 7. Comparison of scattering coefficients obtained by the surrogate model and WFE model; the
dotted line represents the results of WFE model, the solid line represents the results of the surrogate
model, and S2 and S4 represent the different locations of sensors.

3.4. Workflow of the Proposed Framework

The step-by-step workflow of the proposed Bayesian framework is shown below, and
is summarized in Figure 8.

1. Obtain the scattering coefficients sD for joints from ultrasonic guided wave mea-
surements or FE model (according to the signal processing procedure provided
in Figure 6).

2. Construct a kriging surrogate model to establish the relationship between the scatter-
ing coefficients and the damage geometry information r using the hybrid wave and
finite model introduced in Section 3.2.
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3. Formulate the likelihood function by introducing an error term that measures the
difference between the modelled and experimental ultrasound data according to
Equations (2), (3) and (19).

4. Approximate the posterior distribution of the model parameters using the MH algorithm.

Figure 8. Workflow of Bayesian inference for damage identification with scattering coefficients
obtained from the WFE−assisted surrogate model.

4. Numerical Validation

A full FE model of the joint shown in Figure 2 is presented here to validate the damage
identification framework. The ultrasonic signalD is generated using Abaqus FEM, whereby
the scattering coefficients are obtained. Figure 9 shows the FE geometry configuration.
The centre of a through-thickness circular hole with radius 5 mm is located 35 mm to the
left of the joint and 15 mm to the lower side. An incident steady wave is generated by
applying in-plane displacement to the centre of the actuator, with a forcing function based
on a steady-state sinusoidal waveform with different frequencies. The model is meshed by
using 8-node general purpose linear brick elements (C3D8R) [47], with reduced integration
and a maximum element edge length of 0.3 mm. The in-plane displacements are monitored
at the centre of the sensors. Then, following the signal processing procedure presented in
Section 2, the monitored displacements are processed to obtain the scattering field.

High damping zone

High damping zone

High damping zone

High damping zone

Monitoring

place (S3)

Incident

wave

Circular

hole

Monitoring

place (S2)

Monitoring

place (S1)

Figure 9. Schematic of the full finite element model for calculating scattering coefficients.
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Samples from the posterior PDFs of model parameters are obtained through the
MH algorithm (refer to Appendix A) using 100,000 samples and a Gaussian proposal
distribution. The burn-in period is specified as 20,000. A uniform prior distribution was
used with bounds [2.125 mm, 2.875 mm] for radius r and [1× 10−4, 1× 10−2] for standard
deviation of the error term σe. The signals from different locations were used simultaneously.
The inferred results, including the maximum a posteriori values (MAP), mean, standard
deviation (Std), and coefficients of variation (COV) [37], are described in Table 2. The
COV is a measure of the dispersion of a variable, and is defined as the variable’s standard
deviation divided by the mean. The posterior distribution of identified parameters (the
radius and standard deviation) are shown in Figure 10. In terms of the MAP, the error of
the radius is 2.4%, which shows a remarkable agreement between the real and inferred
defect sizes.

Table 2. Identified results of the numerical case from full FE.

Parameters True Value MAP Mean Std COV (%)

r (mm) 2.5 2.56 2.5146 4.9638× 10−5 2.464× 10−9

σe - 8.256× 10−4 9.8091× 10−4 2.1799× 10−4 4.7519× 10−8

Figure 10. Posterior distribution of different parameters and contours of two−dimensional simulation
densities inferred from full finite element model; the diagonal plots indicate the marginal distributions
of the inferred parameters.

It should be noted here that the signals from sensors at different locations can be
used for damage characterization. Three different locations are investigated here, with
the inferred results shown in Table 3. The sequence of the sensors is the same as that
shown in Figure 9. Note that the error of the inference results varies with the position
from which the signal is emitted, and is minimal when signals from S1, S2, and S3 are
used simultaneously. These results demonstrate that a single SHM configuration based
on a sensor–actuator pair is sufficient to identify damage; however, the inference error is
reduced when signals from different locations are used simultaneously.
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Table 3. Comparison of results obtained by inversion of sensor signals at different positions under
the numerical model.

Parameters S1 S2 S3 S1 & S2 & S3

Errors in terms of MAP (%) 10.36 −3.74 10.2 2.4

5. Validation against Physical Experiments

In this section, a case study involving a physical experimental is presented to verify the
proposed framework. The experimental equipment, monitoring methods, and specimen
size are exactly the same as those explained in Section 2. After obtaining the time domain
signal, the frequency domain damage features are determined using the procedure de-
scribed in Figure 6. A uniform prior distribution is used with bounds [1.2 mm, 3.8 mm] for
the radius r and [1× 10−2, 1× 10−1] for the standard deviation σe. Similar to the previous
case study, the inferred process is carried out using the MH algorithm with 10,000 samples,
and signals from different locations are used simultaneously. The inferred results, including
the MAP, mean, standard deviation, and COV of the model parameters, are shown in Ta-
ble 4. The posterior distribution and contour plots of the inferred parameters are shown
in Figure 11. Note that the error of the inferred radius of the damage in terms of MAP is
22.0%. This relatively large error is mainly caused by the inconsistency between the ideal
structural model in the finite element model and the actual specimen in the experiment, as
well as to the differences between the crack shape and the actual model.

Table 4. Identified results from the ultrasonic experiments.

Parameters True Value MAP Mean Std COV (%)

r (mm) 2.5 3.05 2.5540 7.0795× 10−4 5.0119× 10−7

σe - 0.031 0.0391 0.0127 1.6247× 10−4

Figure 11. Posterior distribution of different parameters and contours of two−dimensional simulation
densities inferred from physical experiments; the diagonal plots indicate the marginal distributions
of the inferred parameters.
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Similarly, three different locations are compared here, with the results shown in Table 5.
Unlike from the inference based on the FE model, the inversion error based on S1 is the
smallest. Again, simultaneous use of signals from three locations improves inversion accuracy.

Table 5. Comparison of results obtained by inversion of sensor signals at different positions under
the physical experiment.

Parameters S1 S2 S3 S1 & S2 & S3

Errors in terms of MAP (%) −17.2 26.0 40.0 22.0

6. Conclusions

In this paper, a Bayesian inference framework is presented for identifying the size
of circular holes in joints using frequency-domain damage features. It is demonstrated
that the guided wave monitoring technique is able to detect a circular hole in plate joints
by exciting the steady-state waveform. A WFE model is presented to obtain the damage
features numerically. To leverage the computational strategy, a kriging surrogate model
is used within the Bayesian inversion scheme. Numerical and experimental studies are
conducted to validate the proposed damage identification framework. In addition, the
inferred accuracy as a function of sensor location is studied, finding that differences in
sensor locations introduce uncertainties of varying magnitudes. In physical experiments, a
pseudo-absorbing boundary condition was used to reduce the impact of boundary reflection
waves on the scattering coefficient. The proposed physical model in this study theoretically
avoids the influence of boundary reflection. However, when using this model, care should
be taken to minimize the effect of boundary reflections on the results. Furthermore, the
WFE model employed in this study cannot handle joints with bolts or other discontinuous
interfaces, as these may introduce complex scattering behaviour [26]. The following
conclusions can be drawn:

• The proposed framework provides a viable approach for damage characterization of
bounded structures;

• The kriging surrogate model greatly improves the computational efficiency of the
inversion process;

• The inversion error varies depending on the signal source.

Future research perspectives to be considered might include: (1) combining a neural
network model with the proposed WFE model to reduce the error of the simulated experi-
mental results and (2) investigating the effect of the frequency range on the inference error.
However, selecting a suitable frequency range is beyond the scope of the current subject.
We intend to investigate this topic further in our future work.
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Appendix A. Metropolis–Hastings Simulation for Bayesian Updating

The MH algorithm generates samples from a specially constructed Markov chain with
a stationary distribution that is the required posterior PDF p(λλλ|D,M). By sampling a can-
didate model parameter λλλ

′
from a proposal distribution q(λλλ

′ |λλλζ), the MH algorithm obtains
the state of the chain at ζ + 1 given the state at ζ, specified by θζ . The candidate parameter
λλλ
′

is accepted (i.e., λλλζ+1 = λλλ
′
) with probability min{1, r} and rejected (i.e., λλλζ+1 = λλλζ) with

the remaining probability 1−min{1, r}, where

r =
p(D|λλλ′ ,M)p(λλλ

′ |M)q(λλλζ−1|λλλ′)
p(D|λλλζ−1,M)p(λλλζ−1|M)q(λλλ′ |λλλζ−1)

(A1)

The process is repeated until Ts samples have been generated such that the monitored
acceptance rate (ratio between accepted MH samples over total amount of samples) reaches
asymptotic behaviour. A pseudo-code description of this method is provided below
as Algorithm A1.

Algorithm A1: Metropolis–Hastings algorithm.

1 Initialize λλλζ=0 by sampling from the prior PDF: λλλ0 ∼ p(λλλ|M);
2 for ζ = 1 to Ts do
3 Sample from the proposal: λλλ

′ ∼ q(λλλ
′ |λλλζ−1);

4 Compute r from Equation (A1);
5 Generate a uniform random number: α ∼ U [0, 1];
6 if r > α then
7 Set λλλζ = λλλ

′
;

8 else
9 Set λλλζ = λλλζ−1;

10 end
11 end
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