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A B S T R A C T   

Despite the natural occurrence of global and local daylight changes in natural scenes, the human visual system 
typically adapts well to these changes and develops stable colour perception. In a previous study, the influence of 
daylight characterized by its Correlated Colour Temperatures (CCT) on different chromatic descriptors was 
analysed (Ojeda et al., 2017). The results showed that chromatic information is almost constant for CCT values 
above 14,000 K, with local extremes occurring in the range of low CCTs. The aim of this work is to extend the 
analysis of the CCT dependence of the illuminant to those that consider the spatio-chromatic structure, including 
second order descriptors (gradients, spectral slope, spectral signature, and PCA) and higher order descriptors 
(kurtosis, skewness, and number of relevant colours). Our results show that most of the descriptors exhibit 
horizontal asymptotic behaviour for CCTs above 15,000 K and local extremes in the range of 3,900 K-9,600 K. 
For those descriptors that could be analysed in CIELAB space, sufficient statistical evidence was obtained to 
consider skewness, kurtosis, and the independent spectral slopes of the L* channel as equal in the range of CCTs 
used. However, the slight variations in spectral signatures and the directions of the principal components when 
applying PCA to image patches are not statistically significant and cannot be considered equal under different 
illuminants. The number of relevant colours (NRC) exhibits sensitivity to temperature variations and behaves 
similarly to the other descriptors, due to its small number.   

1. Introduction 

The statistical characterization of natural images has not only 
allowed for the consideration of the probabilistic relationship between 
these images and the tasks being performed, as well as the quantum 
fluctuations inherent to light absorption and the noisy nature of neural 
chemical processes (Geisler, 2008), but also the confirmation that the 
human visual system has evolved to efficiently process this type of 
stimuli (Geisler, 2008; Simoncelli and Olshausen, 2001). 

In adapting to the environment, the human visual system provides 
stable colour perception that is independent of local and global changes 
in daylight occurring in natural images. This phenomenon, known as 
colour constancy, is not perfect (Foster, 2011) and the effects of different 
illuminations on the colour and visibility of objects can be significant, 
particularly in terms of chromatic reproduction (Schanda, 2007; Masuda 
and Nascimento, 2013). As the colour signal characterizing the light 
entering the eye depends on both the spectral reflectance of objects and 
the spectral power distribution of the light illuminating them, charac-
terized by their correlated colour temperature (CCT), the dependence of 

aspects related to the efficient encoding of the spectral distribution of 
the colour signal and chromatic diversity on different illumination 
conditions has been studied in previous work. 

When applying principal component analysis (PCA) to the colour 
signal of hyperspectral images of terrestrial environments under 
different illuminants (Chiao et al., 2000), the principal components 
obtained provide similar amounts of variance and spectra, demon-
strating the low influence of the first principal components with natural 
illumination variations and supporting colour constancy in these envi-
ronments (Chiao et al., 2000). 

However, other descriptors related to the chromatic richness of 
natural scenes do show some dependence on the illuminant. Martínez- 
Verdu et al. (2007) found that both the content and shape of colour 
solids in uniform colour spaces under different illuminants depend on 
the illuminant used. The colour gamuts corresponding to illuminants 
with CCTs in the range of 5,500–10,000 K (unless they have a very 
narrow bandwidth) are larger than those for illuminants outside of this 
range, with different colours appearing discernible under different 
illumination conditions. 
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Masaoka et al. (2013) proposed that the number of discernible col-
ours depends on the colour appearance model (hue, lightness, and 
chroma), the colour space, and the threshold of colour differences used. 
Their results showed that the number of discernible colours, without any 
Von Kries transformation of chromatic adaptation to the data, has a 
maximum around 4,000 K in the CIELAB and CIE94 colour spaces. 

Masuda and Nascimento (2013) analysed the fidelity, or degree of 
naturalness, of the reproduced colours and the attractiveness, or pref-
erence, of 12 hyperspectral images of food counters as a function of the 
CCT of physically existing daylight and metameric illuminants (illumi-
nant D65). For both types of illuminants, they found a clear dependence 
of these indices on the CCT of the illuminant source, with the most 
natural colours obtained at a CCT of 6,040 K for daylight and the most 
preferred colours at a temperature of 4,410 K for daylight, slightly 
higher at 6,200 K and 4,550 K, respectively, for the metamers of the D65 
illuminant. When these descriptors were related to the chromatic range 
corresponding to each illuminant, it was found that the illuminants 
chosen for chromatic preference were related to those with the largest 
colour gamut, while those selected to optimize naturalness had more 
symmetrical ranges (with an aspect ratio closer to unity). 

Foster (2021) used the spectral properties of the light reflected by 
each surface in hyperspectral image samples and the principles of in-
formation theory to computationally determine the minimum upper 
bound of the number of surfaces that can be considered chromatically 
the same over a given time period. While the average number of 
distinguishable surfaces was 10,000 in CIECAM02 space, the number of 
surfaces that could be considered the same after a 2-minute interval was 
600, after 10 min it was 200, and after one hour it was 70. This signif-
icant reduction in the recognition of surfaces by colour, even at short 
time intervals, is much smaller when only pure global changes of the 
spectrum are considered. In this case, Foster (2021) estimated the 
number of chromatically equal surfaces under 4,000 K and 6,500 K il-
luminants to be between 4,400 and 5,500, depending on the internal 
noise model used. 

In a previous study (Ojeda et al., 2017), the influence of daylight on 
different first-order statistical descriptors of colour (such as colour 
gamut characterized by the best-fitting ellipse parameters, colour vol-
ume, and number of discernible colours (NDC)) of 350 colour images 
simulated under 108 natural illuminants with CCTs in the range of 
2,735 K to 25,889 K was analysed. The results suggested a low depen-
dence of all descriptors for illuminants with CCTs above 10,000 K, as 
well as local extremes in a similar temperature range (2,950 K-6,300 K) 
to that in which the most natural and preferred colours or the highest 
NDC were obtained in previous studies (Masuda and Nascimento, 2013; 
Masaoka et al., 2013). 

However, a comparison of means test applied to the distributions of 
colour volume and number of discernible colours for each category and 
the different illuminants determined that, at a 95% confidence interval, 
these descriptors could be considered statistically significantly equal. 
This result indicates that the palette of all colours in the scene at all 
available intensities, as well as the number of unit cubes into which we 
can segment the CIELAB colour space containing at least one pixel, are 
invariant, which could be due to the process of chromatic adaptation in 
the first stages involved in the phenomenon of colour constancy. 

Our main hypothesis was that changes in CCT would have a signif-
icant impact on spatio-chromatic descriptors, and that understanding 
these changes would provide a more complete understanding of the 
impact of lighting on visual perception. For instance, visual segmenta-
tion requires to extract and to classify image statistics by pixel correla-
tions (Haralick and Shapiro, 1992). Implicitly or explicitly, computer 
vision algorithms usually compare neighbouring image areas to get a 
region-based segmentation. In such approaches, understanding if CCT 
would change the chromatic properties of image features would help to 
implement those algorithms. We must consider that natural vision can 
easily segment image regions (and without effort can disambiguate 
surface changes from illuminant changes). Based on the hypothesis that 

changes in CCT can have a significant impact on spatio-chromatic de-
scriptors, the knowledge of the influence of the illuminant on these 
descriptors is an important step towards understanding the ability of the 
visual system to adapt to different lighting conditions and may have 
practical implications such as lighting design or colour management. In 
order to further explore this dependence, the aim of this work is to 
extend the analysis of illuminant dependence from a previous study 
focused on chromatic descriptors (Ojeda et al., 2017) to second-order 
statistics such as gradients, spectral slope, spectral signature, and PCA, 
as well as higher-order ones like kurtosis, skewness, and number of 
relevant colours (NRC), which jointly take into account the spatio- 
chromatic structure of natural images. 

2. Methods 

2.1. Images 

In the present work we have used 600 colour images from the MIT 
Scene UNderstanding (SUN) database (Xiao et al., 2010). Because some 
semantic categories did not contain enough examples to be represen-
tative, we decided not to use the whole set of images and categories and 
classified them into twelve semantic categories (of 50 images per cate-
gory) depending on the content of the images: Forests and parks, fields, 
coasts, flowers and fruits, mountains, beaches, rivers and waterfalls, 
highways, cities, buildings, interiors, and streets. These in turn are 
grouped into two global categories (Rosch et al., 1976) called rural 
images (the first seven classes) and human environments (the last five). 

To study the influence of the illuminant on the statistics of the nat-
ural images, each RGB image was normalized to the range (0,1) and its 
CIE tristimulus values calculated and simulated under a set of 108 
spectral power distributions (SPD) characterized by their respective 
correlated colour temperatures (CCTs) in the wavelength range 
400–700 nm (Hernández-Andrés et al., 2001). The simulation was done 
using Bradford’s chromatic matching algorithm (Süsstrunk et al., 2000). 

For the spectral power distribution (SPD) of the illumination source 
the data from Hernández-Andrés et al. (2001) obtained for hemispher-
ical daylight were used. This data set is based on global spectral irra-
diances over a horizontal surface from direct sunlight, if present, and 
from the whole sky (Peyvandi et al., 2016), under different atmospheric 
conditions, over two years in Granada, Spain (a non-industrial urban 
area, of geographical coordinates 37⁰11′N 3⁰37′W and 680 m altitude) 
and covering a wide range of CCTs from 3,766 K to the 25,889 K 
(Hernández-Andrés et al., 2001). SPDs of daylights covering the range of 
CCTs below 3,766 K were simulated with SBDART (Peyvandi et al., 
2016; Ricchiazzi et al., 1998) (since hemispheric daylight with CCTs 
below 3,600 K can be observed in rare conditions), a computer tool that 
allows to calculate radiative energy transfer within the atmosphere 
through parallel planes on the Earth’s surface under different climatic 
conditions. 

To take advantage of the property of uniform colour spaces in which 
the chromatic properties of the environment correspond to those of its 
visual representation (McDermott and Webster, 2012), finally the 
simulated images were transformed to CIELAB colour space (Ruzon, 
2020). 

2.2. Data analysis 

The pixels of an image, in addition to the L*, a*, and b* values that 
define their colour, also contain information about their relative posi-
tion in the scene. To account for this, it is necessary to use statistical 
descriptors of second-order (between pairs of pixels) or higher order 
(groups of more than two pixels). 

2.2.1. Second order descriptors between adjacent pixels: Gradients 
The second-order colour space information between adjacent pixels, 

which have been previously defocused using a Gaussian filter to reduce 
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noise and the effect of local edges, is characterized by the intensity 
gradients of the different signal planes. A large absolute value in the 
gradient of the L*, a*, or b* channel reflects an abrupt change in lumi-
nance or colour between adjacent pixels, allowing for the localization of 
edges of objects or surfaces. 

To characterize the simultaneity of edges in the three planes L*, a*, 
and b*, and as an approximation of the joint probability density, the 
three joint histograms corresponding to the gradients in the different 
planes of each scene were calculated. Fig. 1 shows the edges and 
respective gradients joint histograms in a logarithmic scale, corre-
sponding to an image of the flowers and fruits category, in which a 
greater grey darkness is associated with a higher frequency in the 
combination of values. 

2.2.2. B.2 s order descriptors between non-adjacent pixels: Spectral slope 
and signature and PCA 

The approximation of the second-order spatio-chromatic informa-
tion for pixels that are not necessarily adjacent can be done both in the 
frequency domain and in the spatial domain. In the former, the spectral 
formulation of the autocorrelation based on the Wiener-Khinchin The-
orem (Khintchine, 1934) is used to determine power and spectral 
signature descriptors. In the spatial domain, the covariance of each 
plane of an opponent colour space is used in the calculation of the PCA. 

To focus on variations of pixel values and discard the mean value of 

each channel, we set the mean value of each plane to zero by subtracting 
its corresponding mean from the original values of each channel. To 
equalize the values of the edges of our images and reduce spectral 
dispersion that can generate unwanted effects when calculating the 
power spectrum (square of the modulus of the Fourier transform), we 
used the Kaiser-Bessel window function, which maximizes energy in 
frequency space for a limited energy and spatial extent (Harris, 1978). 

When working with individual images, the dependence of the power 
spectrum on frequency can vary significantly, even between images of 
the same semantic category. However, when averaged across images of 
each semantic class on a logarithmic scale, results for spectral slopes 
close to 2 are obtained (Field, 1987; Burton and Moorehead, 1987; 
Tolhurst et al., 1992; Ruderman and Bialek, 1994). Table 1 shows the 
spectral slope values obtained for the two general categories in the L*, 
a*, and b* planes and three different orientations 0◦, 45◦, and 90◦. 

Although the spectral signature of a set of images is defined as the 
mean of the amplitude spectrum for all the images in the set (Torralba 
and Oliva, 2002), the term soon became associated with the isoline plot 
obtained by cutting the amplitude or power spectrum with different 
horizontal planes, so that the points enclosed by each isoline contain a 
certain percentage of the total energy of the amplitude or spectrum 
(Torralba and Oliva, 2003). Fig. 2 shows us in the first column, the 
neperian logarithm of the power spectrum for the three channels L*, a*, 
and b* of an image of the “beach” category. In the second column, each 

Fig. 1. In the top row, original image. The second row represents the edges corresponding to the three planes L*, a* and b*. Bottom row, joint histograms of the 
different channels. 
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of the spectra is intersected by three horizontal planes so that the part of 
the signal above them encompasses 60, 80, and 90% of the total energy 
of the signal (blue, red, and green planes, respectively). Finally, the last 
column represents the spectral signature corresponding to the three 
channels for the described energy levels (60% light green, 80% dark 
green, and 90% blue). The geometric structures obtained by maintaining 
certain amounts of energy provide us with global, non-localized infor-
mation about the dominant orientations and the different spatial scales 

that compose the image. The components of the spectral signature at 
high frequencies indicate significant changes and details of the image 
texture; on the other hand, the components at low frequencies represent 
the main structure of the image (Fang et al., 2013). 

To improve the representation of the global characteristics of the 
power spectrum as well as to include the variability that the individual 
images of each class would introduce in it, instead of a spectral signa-
ture, some authors (Fang et al., 2013) have proposed a distribution map 

Table 1 
Mean slopes of the fit lines between the logarithm of the power spectrum and the logarithm of the spatial frequency for the three channels L*, a* and b* in three 
directions (horizontal θ = 0⁰, diagonal θ = 45⁰ and vertical θ = 90⁰) for rural and human environment images.   

L* a* b*  

Horizontal Vertical Diagonal Horizontal Vertical Diagonal Horizontal Vertical Diagonal 

Rural images − 2,33 − 2,48 − 2,67 − 2,16 − 2,31 − 2,58 − 2,21 − 2,37 − 2,55 
Images of human environments − 2,28 − 2,46 − 2,82 − 2,18 − 2,28 − 2,60 − 2,19 − 2,31 − 2,63  

Fig. 2. Power spectra of the top image for the three channels L*, a* and b* (first column); intersection of horizontal planes with the power spectrum giving us the 
regions enclosing 60% (blue plane), 80% (red plane) and 90% (green plane) of the total energy (second column) and the corresponding spectral signatures (60% light 
green, 80% dark green and 90% blue) (third column). 
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that consists in representing the contours of all the images of the class 
with a certain degree of transparency in a shared domain. This new 
representation provides more information about the less predominant 
orientations (other than horizontal and vertical) and at high frequencies 
so its use can improve the semantic classification of images. Fig. 3 shows 
the spectral signatures and their corresponding distribution maps along 
with the 80% energy contour (red line) of the rural and human envi-
ronment images. 

Principal component analysis (PCA) is a statistical technique that 
consists of a linear transformation of the coordinate system, so that the 
new orthogonal axes are oriented in the directions that capture, in a 
decorrelated way, the greatest amount of variance in the data. Principal 
components can be found by ordering the eigenvectors of the covariance 
matrix of our data, so that the corresponding eigenvalues are ordered in 
decreasing order. 

To study the spatio-chromatic structure of our images, we applied 
PCA to a selection of 17,500 square patches of 8x8 pixels from both rural 
and human environment images (50 patches in each image from the first 
and 70 patches from the second). The pixel data of each patch were 
ordered as a column vector, where the values corresponding to the first 
dimension of the colour space were followed by those of the second and 
finally the values of the third (Tailor et al., 2000). The first column of 
Fig. 4 shows the principal components obtained from our rural images in 
the RGB colour space arranged from left to right and from top to bottom, 
according to the decreasing order of their eigenvalues (variance). From a 
spatial point of view, the principal components are neither localized nor 
oriented, and their variance decreases with increasing spatial frequency. 
By showing (Fig. 4 (b)) the chromaticities of the 192 pixel values of some 
of their components in an isoilluminant plane, where the horizontal axis 
corresponds to variations in R-G and the vertical axis to changes in B-Y 
and where the luminance is deduced from the luminosity of the points, 
they can be classified into three types (Provenzi et al., 2016): 

• Homogeneous chromatic components: These have the greatest vari-
ance, no spatial structure, and are highly selective to one colour 
(Kellner and Wachtler, 2013).  

• Achromatic components: They encode the luminance variations and 
have a greater variance than the opposite chromatic colour 
components. 

• Non-homogeneous chromatic components: They are colour oppo-
nents, so their representation corresponds to a line that crosses 
opposite quadrants (44 and 190 of RGB) not necessarily coinciding 
with the direction of the axes. Within the latter, the variances 
decrease from the BY opponent characteristics to the RG opponents. 

To quantify the pixel alignment directions of the principal compo-
nent pixels of the individual patches, we again ran PCA on the co-
ordinates of all pixels of each principal component and used the 
eigenvectors to estimate the same, (Kellner and Wachtler, 2013) 

α = atan
PC12

PC11
(1) 

where α is the angle formed by the first principal component with the 
horizontal positive semi-axis, and PC11 and PC12 are the coordinates of 
the first principal component obtained by applying PCA to the chromatic 
values of the different patches, considering them in an isoilluminant 
plane. The third column of Fig. 4 shows the histogram of the angles 
obtained for the 192 principal components. We see that most of them are 
close to a horizontal 0⁰ or vertical 90⁰ alignment, these corresponding to 
the colour opposition mechanisms in the different colour spaces used. 
However, a small number of components show different angles, as well 
as colours of their pixels that are different from the main ones (e.g., 81 
and 108 of the RGB space), indicating that the opposing colour di-
rections are still correlated to some degree in the data (Wachtler et al., 
2001). 

Fig. 3. Spectral signatures of L*, a*and b* planes of rural and human environment images (on columns 1 and 3) corresponding to 60% (green), 80% (red) and 90% 
(blue), and power spectrum neperian logarithm distribution maps (on columns 2 and 4) with the 80% energy contour (red line). 
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2.2.3. Higher order descriptors 
Since second-order statistics only uses amplitude information in the 

frequency domain, skewness and kurtosis are the simplest global sta-
tistics that can capture the phase structure in the spectral domain of the 
distribution of our data. (Reinhard et al., 2001; Thomson et al., 2000). 
These dimensionless measures which are worth by definition 0 and 3 
respectively for Gaussian distributions of the data are defined as 
respectively, 

S =
E
{
(x − c)3 }

E
{
(x − c)2 }3/2 K =

E
{
(x − c)4 }

E
{
(x − c)2 }2 (2) 

Skewness characterizes the degree of skewness of a distribution 
around its mean being an indicator of the difference between the mean 
and median of a data set. Kurtosis is a measure of the lack of “normality” 
of the data distribution, focusing on the extent (size) of the tails of the 
distribution relative to a Gaussian. Prior to the study of these de-
scriptors, the data were whitened using PCA, which not only removes 
second-order dependencies, but provides us with a distribution of zero 
mean and unit variance. 

In a proposal in which it is not necessary to introduce predefined 
colour categories or to determine which areas are visually salient in the 
scene, Nieves et al. (2020) establish, based on the colorimetric content of 
each image, the novel concept of relevant colours, defined as the cate-
gorical discernible colours that describe the chromatic diversity of a 
pictorial work. The computational algorithm they applied allowed them 
to estimate a reliable colour palette for each of them based on 4 pa-
rameters: size of the cube into which the CIELAB space is divided, a 
minimum percentage (or general threshold) of the total pixels in a cube 
and to take into account that Milojevic et al. (2018) found that the most 
saturated colours can act as predictors of how an observer would cate-
gorize the colour distribution of natural objects, they considered as 
relevant colours also those that corresponded to those cubes that showed 
values of L* or C*=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
a*2 + b*2

√
greater than a given value. The colours 

considered as relevant are determined as the mean values of the pixel 
colours in each selected cube. The mean number of relevant colours 
(NRC) for all images analysed in that work was 18 (with a SD of 6). 

In this work, we apply this algorithm to our set of natural images by 
setting the parameter value to 20 CIELAB units for the cube edge size, 

Fig. 4. (a) 192 principal components obtained from our rural images in RGB colour space arranged from left to right and from top to bottom according to the 
decreasing order of their eigenvalues. (b) Chromaticities of the 192 pixel values of some components in an isoilluminant plane. The horizontal axis corresponds to 
variations in the RG channel while the vertical axis corresponds to changes in the BY channel. The luminance can be deduced from the luminance of the points. (c) 
Circular histogram showing the alignment angles (between 0⁰ and 180⁰) of the pixels of the principal components obtained. 

Fig. 5. Schematic of the algorithm for the calculation of the number of relevant colours (adapted from Nieves et al. [Nie20]) that we have applied to determine the 
NRC of each of our natural images. 

J. Ojeda et al.                                                                                                                                                                                                                                   



Vision Research 208 (2023) 108234

7

4% for the threshold, a value of L* >80, and a percentile value of C* >
50. Fig. 5 shows a schematic of the algorithm used. Once the CIELAB 
colour space has been divided into edge cubes of the size of 20 CIELAB 
units (ΔE* = 20) and the RGB components of each pixel of an image 
have been transformed to that colour space (L*, a*, and b* components), 
we calculate the number of pixels that would be inside each of the cubes 
into which the colour space has been divided, and the mean value of the 
L*, a*, and b* components that we associate with the colour of the cube. 
From which we also determine the chroma of the cube. 

If the number of pixels in the cube is greater than the overall 
threshold, then the colour of the cube will be relevant. If the number of 
pixels in the cube is between the threshold value and one-eighth of the 
threshold, we will also consider it relevant in the case where we can 
consider the colour of the cube as a saturated colour, i.e., when it is 
satisfied that L* ≥ 80 and the percentile (C*) ≥ 50. The number of cubes 
that, for each image, fulfil these conditions is the number of relevant 
colours, and the colour of each of the cubes, the colour of the “palette” of 
chromatically relevant colours in the corresponding image (Fig. 5 left). 

The algorithm also allows for easy segmentation of the original 
image by simply checking for each pixel of the original image if it cor-
responds to a relevant colour. If this is the case, the pixel colour is 
replaced by its corresponding relevant colour; otherwise, the pixel 
colour is replaced by the colour of the nearest cube (from a Euclidean 
view) in the CIELAB colour space (Fig. 5 right). 

Our results shown in Table 2 for the different semantic categories of 
natural images is like the one already mentioned in Nieves et al. (2020). 

3. Results 

3.1. Second order descriptors between adjacent pixels: Gradients. 

Fig. 6 illustrates the joint histograms in logarithmic scale of the mean 
gradients in various planes for each scene for the categories of rural and 
human environment images under three different illuminants charac-
terized by colour temperatures of 2,735 K, 6,478 K, and 25,889 K. All of 
them display a maximum near zero (since most pixels in both rural and 
human environment images do not correspond to the edges of the im-
ages, regardless of the daylight under which they are exposed), an 
approximately ellipsoidal distribution, and some degree of symmetry 
with similar widths in different regions. 

However, when examining rural images, we see that in the L*-a* and 
L*-b* joint histograms, the luminance channel (L*) has a height that 
remains practically constant for the three temperatures, while for illu-
minants around 6,478 K, the chromatic channels (a* and b*) have higher 
frequencies for higher values in absolute value of their gradients (the 
histogram widens in that direction). In the a*-b* joint histogram, it is the 
yellow-blue opponent channel that has practically the same height, with 
the red-green channel having a histogram with higher frequencies for 
higher gradients around CCTs of the 6,478 K illuminant. This increase in 
edges is not in the direction of b* but in the direction of the bisector of 
the second and fourth quadrants of the joint histogram, resulting in a 
greater presence of light green edges. Images of human environments 
have joint histograms covering larger areas, indicating a greater pres-
ence of edges in the three channels than in rural images. With respect to 
the influence of these with illuminant temperature, we can observe that 
the highest frequency of higher gradients in the red-green plane is 
reached at 25,889 K in both the L*-a* and a*-b* histograms, while the 

highest number of edges in the yellow-blue plane occurs at low illumi-
nant temperatures (2,735 K) in both the L*-b* histogram and the a*-b* 
histogram. When we extend the analysis to all values of the temperature 
range, the variations of the heights of the different channels with respect 
to their maximum values in the joint histograms decrease from the L* 
channel (8.3% in both categories), to the a* channel (33.3% for human 
environments and 50% for rural images) to the b* channel, which is the 
one with the highest dependence on the illuminant (42.8% for human 
environments and 57.2% for rural images). 

It is observed that most edges combine information from two chan-
nels. The level of independence of these channels was determined by 
calculating the average mutual information between the gradients of the 
different channels, measured in bits (since 64 elements were used, the 
range should be between 0 and 6 bits). When analysing the mutual in-
formation in relation to the illuminant temperature, it varies between 
0.01 and 0.594 bits, indicating that a gradient in one dimension cannot 
predict the most probable gradient in the other dimension. The mutual 
information between the red-green and yellow-blue channels has the 
largest range of variation with illuminant temperature, ranging from 
0.123 to 0.306 bits for rural images and 0.158 to 0.260 bits for images of 
human environments. This decrease is observed across all semantic 
categories at a colour temperature of 5,858 K. This small mutual infor-
mation suggests that the edges corresponding to the yellow-blue and 
red-green channels are not entirely independent and exhibit greater 
dependence between them, particularly at lower illuminant tempera-
tures, than between the luminance channel and one of the chromatic 
channels. 

3.2. Second order descriptors between non-adjacent pixels: Spectral slope. 

When studying the behaviour of the spectral slope under different 
illuminants characterized by their colour temperature, and for three 
different orientations (0 degrees (horizontal), 45 degrees (diagonal) and 
90 degrees (vertical)) and different semantic categories, we observed 
that the chromatic channels appear to be dependent on the illuminant, 
with their ranges varying between 0.027 and 0.25 for channel a* and 
between 0.087 and 0.664 for channel b*. 

A statistical analysis of the mean slope distributions at different 
orientations in the L* plane was made using the Kruskall-Wallis test. A p 
value of 1.000 was obtained for all the semantic categories studied and 
the three orientations (horizontal 0◦, diagonal 45◦ and vertical 90◦) with 
a degree of freedom 107 and the values of the chi-squared of the table 
shown in the Appendix. These results revealed the mean slope of each 
category at each orientation can be considered significantly equal for 
different illuminants characterized by the CCT, at a 95% confidence 
interval. 

3.3. Second order descriptors between non-adjacent pixels: Spectral 
signature. 

Fig. 7 displays the spectral signatures and their distribution maps for 
all semantic categories and three illuminants corresponding to the 
colour temperature of 2,735 K, 6,498 K, and 25,889 K. The geometric 
structures obtained indicate that they are practically independent of the 
illuminant for the luminance channel. However, for the two chromatic 
channels, there are changes in the details and texture of the image, with 
variations in the high frequencies corresponding to directions other than 

Table 2 
NRC obtained for the different sets of natural images.  

Forests 
and 
parks 

Fields Coasts Flowers 
and fruits 

Mountains Beaches Rivers and 
waterfalls 

Rural 
images 

Highways Cities Buildings Interiors Streets Images of human 
environments 

15 ± 4 10 ±
4 

15 ±
6 

22 ± 6 15 ± 5 10 ± 4 15 ± 5 15 ± 6 14 ± 5 20 ±
4 

18 ± 5 19 ± 5 22 ± 5 19 ± 6  
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0⁰ and 90⁰ being clearly observed in the distribution maps. These vari-
ations are more pronounced for illuminants corresponding to the more 
extreme temperatures than for 6,478 K, which are more concentrated in 
the 45⁰ orientation. Meanwhile, the main structure of the image (asso-
ciated with the low frequencies) remains generally stable, as well as the 

higher frequencies in the horizontal and vertical directions. 

3.4. Second order descriptors between non-adjacent pixels: PCA. 

In Fig. 8, the upper part shows the 192 principal components 

Fig. 6. Joint histograms in logarithmic scale for the three channels L*, a* and b* of the rural images and the images of human environments under three illuminants 
characterized by temperatures of 2,735 K, 6,478 K and 25,889 K. 
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Fig. 7. Spectral signature (the first three rows of each figure) and distribution maps (the last three rows of each figure) for the three channels L*, a* and b* and the 
different semantic categories for three illuminants characterized by colour temperatures 2,735 K (the first row and the fourth row), 6478 K (the second row and the 
fifth row) and 25,889 K (the third row and the sixth row). 
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obtained from the selection of patches of rural images (first row) and 
images of human environments (second row) in the CIELAB colour space 
under three illuminants (CCTs corresponding to 2,735 K, 6,478 K, and 
25,889 K). The lower part displays the circular histograms of the angles 
(between 0⁰ and 180⁰) of the directions obtained for the same. It is 

observed that the orientations, for both rural and human environment 
images, present three predominant directions: a first direction corre-
sponding to values close to a horizontal alignment (10⁰ for rural images 
under an illuminant with medium or high CCTs or 170⁰ in other cases) 
and two directions approaching perpendicular to each other as the 

Fig. 8. The 192 principal components corresponding to 17,500 patches of rural (first row) and human environment (second row) images simulated in CIELAB colour 
space under three illuminants: 2,735 K, 6,478 K and 25,889 K, circular histograms corresponding to the angle (between 0⁰ and 180⁰) formed by these components 
with the positive horizontal semi-axis for rural(third row) and human environment(fourth row) images. 
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illuminant CCT increases, varying between 30⁰ − 40⁰ and 100⁰ − 120⁰, 
corresponding to colour opponent mechanisms. These directions coin-
cide with those presented by the principal components of the original 
images. Also, for medium or high CCTs of the illuminant, more principal 
components appear with angles different from the most frequent ones 
noted, indicating a higher correlation between the colour opponent di-
rections for illuminants with higher temperatures. Since the eigenvalue 
associated with each eigenvector of the eigenvector decomposition of 
the covariance matrix of the data explains the percentage of variance 
associated with that principal component, Fig. 9 shows the histogram 
corresponding to the eigenvalues of the first 25 principal components of 
the image patches under the three illuminants already discussed. As 
expected, for each illuminant, it shows a rapid decrease in the first 
components explaining >90% of the variance of the data with the 13 
first components for rural images and 9 for those of human environ-
ments. Moreover, the variance explained by the first component is 
higher as the illuminant temperature increases (67.3%, 70.9%, and 
71.0% for rural images and 69%, 71.5%, and 72.4% for those of human 
environments, respectively) and the differences from the fifth compo-
nent onwards are less than half a percentage point. 

3.5. Higher order descriptors: Skewness and kurtosis. 

In Fig. 10, the top two plots show the skewness of the luminance 
channel for simulated images under 108 different illuminants. The 
skewness for the luminance channel is consistently negative, indicating 
that images have more light pixels than dark pixels, and is relatively 
independent of illuminant temperature in all semantic categories, except 
for a few outliers for rural images. The skewness of the chromatic 
channels, on the other hand, is relatively constant with illuminant 
temperature for temperatures above 15,000 K. In particular, the red- 
green channel, which is the most symmetric of the channels, shows 
local maxima in the range 4,600 K − 6,173 K for rural image categories 
with less asymmetric distributions and local minima at higher temper-
atures in the remaining categories. For the skewness of the a* channel in 
images of human environments, there is a local maximum around an 
illuminant temperature of 4,600 K. Depending on the category, this 
relative extreme can translate into an asymmetric distribution. Lastly, 
the skewness of the yellow-blue channel, which is always positive, 
shows the greatest dependence on the illuminant and a rapid growth for 
low temperatures up to the range of 4,600 K − 6,339 K, where all cat-
egories reach a local maximum, more pronounced for those categories 
that are more asymmetric, before decreasing more slowly to a horizontal 
asymptotic trend that indicates a lack of dependence of the descriptor 
with the colour temperature of the illuminant for high temperatures 
(>15,000 K). 

The behavior of the kurtosis descriptor was analysed in a similar 
manner to the skewness descriptor. The results indicate that all semantic 
categories in all channels display a positive mean kurtosis and higher 
values in human environment categories. The luminance channel ex-
hibits practical independence of its value over the entire temperature 

range, while the chromatic channels display little dependence on the 
CCT of the illuminant for high temperatures (>15,000 K). As seen in 
Fig. 11, a marked relative maximum in both chromatic channels is found 
in the range 5,345 K − 6,340 K. The relative variation of kurtosis with 
respect to the maximum kurtosis value was on average 25.1% and 
33.75% for the red-green and yellow-blue opponent channels respec-
tively in rural images, and slightly lower at 24.1% and 26.1% in human 
environment images. 

3.6. Relevant colours under different illuminant conditions 

Lastly, Fig. 12 illustrates the relationship between the number of 
significant colours and the illuminant temperature within the range 
studied. Like other measures of colour richness, such as colour volume 
and NDC, it displays an asymptotic behaviour at temperatures above 
15,000 K, with greater variations at lower temperatures and relative 
extremes and local maxima in the range of 3,900 K to 6,000 K. 

When comparing the distributions of colour volume and number of 
discernible colours for each category and different illuminants using a 
mean comparison test, it was determined that for a 95% confidence 
interval, these descriptors can be considered statistically equal. Never-
theless, there is not enough statistical evidence to make the same 
conclusion when categorizing them using the NRC. 

4. Discussion and conclusions 

The analysis of the relationship between different descriptors used in 
this work and the variation of the spectral power distribution of 
daylight, as characterized by its correlated colour temperature (CCT), 
reveals three notable aspects. First, an asymptotic behaviour is observed 
for CCTs above 15,000 K, indicating that the statistics are independent 
of the CCT in that range. Second, the largest variations in the descriptors 
with CCT are found for illuminants with the lowest colour temperatures. 
This dependence is not caused by the use of two data sets to characterize 
the spectral power distribution of the illuminant source. Finally, in cases 
where a strictly monotonic relationship is not shown, the descriptors 
exhibit a relative extreme in the CCT range of 3,900 K-9,600 K. This 
temperature range coincides with those in which previous studies 
(Masuda and Nascimento, 2013) have found the most natural and 
preferred images by observers and the largest colour ranges in uniform 
colour spaces (4,410 K and 6,200 K respectively). Masaoka et al. (2013) 
found the maximum NDC without any chromatic adaptation of the data 
in CIELAB and CIE94 colour spaces around a CCT of 4,000 K, and 
Martínez-Verdu et al. (2007) found the largest colour ranges of colour 
solids in uniform colour spaces in the CCT interval 5,500 K-10,000 K. 
The location of these relative extremes around 6,500 K, which is asso-
ciated with daylight, suggests that other aspects of colour vision may be 
optimized for these illuminations (Ojeda et al., 2017). 

For those descriptors where it was possible to analyse the degree of 
their dependence on illuminant temperature for each of the different 
viewing mechanisms in CIELAB space (L*, a*, and b* channels), the L* 

Fig. 9. Normalized eigenvalues of the first 25 principal components corresponding to the PCA of rural and human environment image patches under three illu-
minants: 2,735 K, 6,478 K and 25,889 K. 
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channel shows the least dependence on CCT. There is sufficient statis-
tical evidence to consider the descriptors standard deviation, skewness, 
kurtosis, and spectral slopes independent of it. Of the two chromatic 
channels, a* and b*, it is always the latter that shows the greatest 
sensitivity to illuminant variations. This behaviour can be explained by 
the proximity of the spectral absorption peaks of the L and M cones 
(Lovell et al., 2005). From an evolutionary perspective, the lower 
sensitivity of the a* channel to changes in the illuminant allows 
trichromatic visual systems to optimally detect edible fruits or leaves 
throughout the day, except at dawn and sunset when the b* channel is 
more effective. However, other studies (Panorgias et al., 2012) have 
suggested that the vision mechanisms in higher primates related to blue- 
yellow variations have been greatly affected by the physical character-
istics of daylight. 

When all three viewing mechanisms in CIELAB space are considered 
simultaneously, there is not enough statistical evidence to consider them 
all independent of the CCT of the illuminant at a 95% confidence in-
terval. While descriptors of chromatic diversity, such as colour volume 
and the number of discernible colours (i.e. first order descriptors), can 
be considered statistically significant, others, such as the patchy index (i. 
e. high order descriptors), are not, showing greater sensitivity to vari-
ations in the illuminant temperature, which could be due to the process 
of chromatic adaptation involved in the phenomenon of colour con-
stancy (Ojeda et al., 2017). 

The slight variations obtained in the orientations of the principal 
components and in their eigenvalues when applying PCA to image 

patches to study their spatio-chromatic structure, suggest a low depen-
dence on the CCT of the illuminant, as indicated by the results of Chiao 
et al. (2000) and Nascimento et al. (2016) when applying this analysis to 
the colour signal spectra of natural hyperspectral ground images under 
different illuminants or local illumination conditions. However, these 
small differences, from a statistical significance point of view (Kruskall- 
Wallis test) for a 95% confidence interval, are not sufficient to consider 
the orientations of the principal components of the image slices equal 
under different illuminants, although they are sufficient to consider the 
eigenvalues equal. 
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Fig. 12. NRC for rural (left plot) and human environment (right plot) images as a function of illuminant CCT.  
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Appendix 

A statistical analysis of the mean slope distributions at different orientations in the L* plane was made using the Kruskall-Wallis test. A p value of 
1.000 was obtained for all the semantic categories studied and the three orientations (horizontal 0◦, diagonal 45◦ and vertical 90◦) with a degree of 
freedom 107 and the values of the chi-squared shown here:    

Forests and parks Fields Coasts Flowers and fruits Mountains Beaches Rivers and waterfalls Highways Cities Buildings Interiors Streets 

0◦ 0.545  0.226  0.337  0.889  0.501  0.321  0.223  0.191  0.267  0.097  0.108  0.296 
45◦ 0.511  0.570  0.739  0.690  0.722  1.478  0.524  1.143  0.694  0.327  0.406  0.402 
90◦ 0.564  0.139  0.217  0.906  0.374  0.239  0.071  0.380  0.150  0.179  0.279  0.523  
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