
Citation: Guerrero-Ulloa, G.;

Rodríguez-Domínguez, C.; Hornos,

M.J. Agile Methodologies Applied to

the Development of Internet of

Things (IoT)-Based Systems: A

Review. Sensors 2023, 23, 790.

https://doi.org/10.3390/s23020790

Academic Editor: Anfeng Liu

Received: 21 November 2022

Revised: 5 January 2023

Accepted: 7 January 2023

Published: 10 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Review

Agile Methodologies Applied to the Development of Internet of
Things (IoT)-Based Systems: A Review
Gleiston Guerrero-Ulloa 1,2 , Carlos Rodríguez-Domínguez 2,* and Miguel J. Hornos 2

1 Faculty of Engineering Science, State Technical University of Quevedo, Quevedo 120301, Ecuador;
gleiston@correo.ugr.es or gguerrero@uteq.edu.ec

2 Software Engineering Department, Higher Technical School of Computer and Telecommunications
Engineering, Aynadamar Campus, University of Granada, 18071 Granada, Spain; mhornos@ugr.es

* Correspondence: carlosrodriguez@ugr.es

Abstract: Throughout the evolution of software systems, empirical methodologies have been used
in their development process, even in the Internet of Things (IoT) paradigm, to develop IoT-based
systems (IoTS). In this paper, we review the fundamentals included in the manifesto for agile software
development, especially in the Scrum methodology, to determine its use and role in IoTS development.
Initially, 4303 documents were retrieved, a number that was reduced to 186 after applying automatic
filters and by the relevance of their titles. After analysing their contents, only 60 documents were
considered. Of these, 38 documents present the development of an IoTS using some methodology,
8 present methodologies focused on the construction of IoTS software, and 14 present methodologies
close to the systems life cycle (SLC). Finally, only one methodology can be considered SLC-compliant.
Out of 38 papers presenting the development of some IoTS following a methodology for traditional
information systems (ISs), 42.1% have used Scrum as the only methodology, while 10.5% have used
Scrum combined with other methodologies, such as eXtreme Programming (XP), Kanban and Rapid
Prototyping. In the analysis presented herein, the existing methodologies for developing IoTSs
have been grouped according to the different approaches on which they are based, such as agile,
modelling, and service oriented. This study also analyses whether the different proposals consider
the standard stages of the development process or not: planning and requirements gathering, solution
analysis, solution design, solution coding and unit testing (construction), integration and testing
(implementation), and operation and maintenance. In addition, we include a review of the automated
frameworks, platforms, and tools used in the methodologies analysed to improve the development
of IoTSs and the design of their underlying architectures. To conclude, the main contribution of this
work is a review for IoTS researchers and developers regarding existing methodologies, frameworks,
platforms, tools, and guidelines for the development of IoTSs, with a deep analysis framed within
international standards dictated for this purpose.

Keywords: Internet of Things (IoT); development methodologies; agile methodologies; software
engineering; Model-Based Engineering; Model-Driven Engineering

1. Introduction

Several methodologies have been proposed to develop traditional information systems
(ISs), some of them being universally known. The first methodology for the development
of ISs was the waterfall methodology, presented by Winston Royce [1]. Then, other well-
known and used methodologies emerged, such as Spiral [2], Rapid Prototyping (RP) [3,4],
and agile methodologies [5,6]. Among the latter, some popular ones are Scrum [7–9] and
Extreme Programming (XP) [9–11]. These methodologies have been widely used for the
development of ISs, but with the emergence of Web(-based) Information Systems (WISs),
the need for new methodologies also arose. Some examples of such methodologies are the
Object-Oriented Hypermedia Design Method (OOHDM) [12,13], Hypermedia Data Bases

Sensors 2023, 23, 790. https://doi.org/10.3390/s23020790 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23020790
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-5990-2357
https://orcid.org/0000-0001-5626-3115
https://orcid.org/0000-0001-5722-9816
https://doi.org/10.3390/s23020790
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23020790?type=check_update&version=2

Sensors 2023, 23, 790 2 of 35

(HDM) [14,15], Enhanced Object-Relationship Model (EORM) [16–18], and Relationship
Management Methodology (RMM) [19,20].

Nowadays, a new type of systems is currently emerging, due to the advancement and
popularisation of technologies related to the Internet of Things (IoT). In this paper, we name
those systems as IoT-based Systems (IoTSs). IoTSs are intended to monitor and control the
environment through the deployment of sensors and actuators that can interact with each
other and with Internet services. IoTSs allow us to remotely monitor the current state of any
physical object or “thing”, modify the conditions of the environment, obtain data to predict
or infer events and make decisions in real time [21–24]. To achieve those goals, physical
objects become digital objects that can be manipulated from anywhere and connected to the
Internet [22,25–28]. IoTSs have been applied to multiple fields, such us improving people’s
lifestyles, health, work productivity, entertainment, etc. [22,24,25,29–33].

IoTSs are systems that are changing the world and will change it even more in the
future. However, to fully exploit the potential of IoT, well-defined development method-
ologies are required, so as to improve the success rate of the development process and the
quality of the resulting system.

Faced with this recent paradigm of systems, the Software Engineering (SE) research
field has been tasked to propose methodologies that can specifically cover the development
lifecycle of IoTS, since such systems have notable differences with traditional ISs and WISs.
It should be noted that IoTSs are composed not only of software applications but have two
additional components: hardware (sensors/actuators), and communication mechanisms
to allow the interaction between that hardware and the Internet [34,35]. Moreover, the
interaction between things and people through well-defined interfaces should also be
considered too [29,36–38]. In short, there is a need to formulate and validate methodologies
for the development of IoTSs.

Therefore, scientists and developers of this new type of systems, namely IoTSs, need
a methodology to ensure the quality of their work. At the time of writing, there is no
universally adopted methodology for the development of IoTSs. This is evidenced by the
many IoTS development methodologies presented in research papers found in ScDBs (see
Section 3), and by previous state-of-the-art review papers on IoTS development method-
ologies [39,40]. Furthermore, among the methodologies found in the literature, only one
of them complies with international standards on system and/or software development
lifecycles (Sections 3 and 4).

The following subsections present a background on software engineering, the ob-
jectives that guided the writing of this paper, and a state-of-the-art review of previously
published works on IoTS development methodologies.

1.1. Background

As it was previously mentioned, the first software development methodology was the
waterfall methodology, presented by Winston Royce [1]. This methodology is commonly
used for the elaboration, manufacture, or construction of any physical product, with the
particularity that the original waterfall methodology considers that the developer could
return to any previous stages when necessary, even if it could be difficult or unfeasible in
many cases [41]. In contrast, hardware construction methodologies do not consider that
possibility, since it would involve a great economic impact.

Given the delays and limited achievements in the implementation of the waterfall
methodology, it is necessary to identify the reasons for its low impact on the software indus-
try. One of those reasons is that the waterfall methodology encompasses the development
of large information systems as a whole [5,42–44]. In contrast, others, such as the spiral
methodology, help to detect when it is not possible to develop the planned system and,
consequently, abandon its development before investing resources in it [10,45].

Another reason is that in the analysis stage of a software system, usually end users
(customers) do not have a very clear picture of the functionalities and quality properties
that need to be covered. Therefore, the prototyping methodology [46] arose to formalize

Sensors 2023, 23, 790 3 of 35

the presentation of iterative versions of the product to the end users for their evaluation.
Prototyping is currently used as part of other methodologies, especially agile methodologies.

Agile methodologies emerged to reduce the risk of not completing the develop-
ment of large systems due to budget, technological or resource constraints, among other
reasons [47,48]. The emergence of agile methodologies made it possible to improve the
success rate of software development projects and reduce the budget consumption of
projects that are finally abandoned [49,50].

Agile methodologies divide the overall system into deliverables (modules or subsys-
tems), so that the customer uses or checks those deliverables before the entire system is
completed. Agile methodologies are based on 4 values and 12 principles included in the
Manifesto for Agile Software Development [42]. These methodologies focus only on the
development of a part of the overall system, deploying fully functional products for that
part of the system in a short period of time (maximum of 4 to 6 weeks).

In addition, some of the characteristics of agile software development methodologies,
in contrast with traditional methodologies, are: teams must be small, the deliverables
to be developed must be negotiated with the client and changes can be introduced in
the project at any time [43,44]. However, in some cases, those features could turn into
disadvantages [51]. For example, in an enterprise software development project, a small
team of developers, as suggested by agile methodologies (in Scrum, 8 developers), is not
sufficient when time is pressing [52]. Additionally, whenever an unexpected change needs
to be performed to software, there could be budget issues, since the development team
could have to deal with it using the original budget [53]. Moreover, if the decision for the
development priority of each deliverable primarily relies on the customer [52,54], this may
not help the development team to be productive.

Regarding IoTSs, we found in the analysis presented herein that the authors have usu-
ally completed their developments using ad hoc methodologies or without any explicitly
mentioned methodology at all. One example is the work of Gea et al. [55], which presents
a system developed to integrate existing sensor networks and an intelligent front-end
application built with the technology of the moment, but without mentioning the devel-
opment methodology used. Another example is the work done by Yelamarthi et al. [56]
which describes several IoTSs developed for different purposes, including healthcare, struc-
tural health monitoring, agriculture, and tourist guidance. However, the research process
suggests that no definite methodology has been followed in the development process.
Additionally, some authors have developed IoTSs following methodologies not specifically
designed for this type of system. A couple of examples of this are the combination of Scrum
with XP [57,58] and the combination of Scrum with RP [59,60].

1.2. Objectives

This paper aims to guide researchers and developers on methodologies that

• Have been proposed for IoTS development.
• Comply with the life cycle of software systems according to standards issued jointly

by the International Organization for Standardisation (ISO), the International Elec-
trotechnical Commission (IEC), and the Institute of Electrical and Electronics Engineers
(IEEE). The application of ISO/IEC/IEEE 15289:2019 [61] to the development of IoTSs
contributes to the delivery of a quality product on time and within budget [62].

• Consider the specific developmental aspects of IoTSs.

Therefore, we present an in-depth analysis of the state-of-the-art IoTS development
methodologies, so that researchers and developers could choose the most appropriate
methodology for the development of their IoTSs. Moreover, researchers could work on this
analysis to define a methodology specifically designed for the development of IoTSs, and
that complies with the ISO/IEC/IEEE 15289:2019 standards and that covers all aspects of
the life cycle of such systems [61].

Sensors 2023, 23, 790 4 of 35

1.3. State of the Art in Methodologies to Develop IoTSs

SE is responsible for providing an adequate methodology for the development of all types
of computer systems [63,64]. Therefore, researchers in this field have been working to provide
optimal methodologies to develop the different types of systems that have recently emerged [64].

In the literature, there are several methodologies for the development of IoTSs. For
example, INTER-METH, which was presented by Fortino et al. [65], is a methodology
for the development of IoTSs based on the waterfall methodology, making it iterative.
Likewise, Test-Driven Development Methodology for IoTSs (TDDM4IoTS), presented by
Guerrero-Ulloa et al. [37], is based on the manifesto for agile software development and
complies with the stages of the system development lifecycle [66,67]. However, none of
them is universally accepted [39,40]. This fact is evident in the state-of-the-art reviews of
methodologies for IoTS development found in the ScDBs considered, which are presented
below. However, those works pursue different objectives from those set out in this article
or follow substantially different methodologies for their study.

Bouanaka et al. [40] present a state-of-the-art review of IoTS development method-
ologies applied to smart traffic lights. They consider that there is a limited number of
methodologies that can be used to develop these types of IoTSs and clearly represent their
specific characteristics. The authors provide information to support the decision-making of
a small group of developers when deciding on which methodology to follow.

Fortino et al. [39] have also addressed the analysis of existing methodologies for the
development of IoTSs. However, the products analysed in the study are based on third-
party surveys, rather than on scientific publications. Some aspects that are analysed in the
revised methodologies match with those of the present study, such as the development life
cycle stages. To unify the terminology found (methodology, framework, platform, tool)
during their review process, Fortino et al. [39] refer to ISO/IEC/IEEE 24765 [68], SEBoK
(Systems Engineering Body of Knowledge) [69], and PMBoK (Project Management Body of
Knowledge) [70,71]. However, none of the previous state-of-the-art review works mention
the ISO/IEC/IEEE standards on which they base the analysis.

The present document is proposed as a result of not having found in the literature an
exhaustive review of the state-of-the-art IoTSs concluding whether there is a universally
adopted methodology for developing IoTSs. This work also aims to present a review of
the minimum conditions of exclusion and a thorough analysis of the existing literature.
Moreover, this work analysis if the existing proposals adhere to international standards, so
as to guarantee the quality of the IoTSs developed.

So far, no IoTS development methodology has been set in ISO/IEC/IEEE 15289:2019 [61]
as a standard that unifies the processes specified in ISO/IEC/IEEE 12207:2017 [72] and
ISO/IEC/IEEE 15288:2015 [67]. Although none of the proposed methodologies covers all
the technical aspects of the software systems life cycle set out in ISO/IEC/IEEE 15289:2019,
findings from extant literature suggest that TDDM4IoTS [37] is the only methodology
whose IoTS development life cycle follows that standard.

The remainder of this document is organised as follows: Section 2 presents IoTSs de-
veloped with traditional software development methodologies. Section 3 discusses existing
methodologies for developing IoTSs. Section 4 provides a study of the automated tools
and frameworks used for the development of IoTSs. Section 5 is dedicated to architectures
for IoTSs, but from a dual point of view: those incorporated into the developed IoTSs
and those used in the development methodologies. Finally, Section 6 presents the main
conclusions of the analysis carried out.

2. Methodologies Designed for the Development of IoTSs

A system development methodology can be defined as “a series of stages of a software
or hardware creation following a pattern based on experience and theory of program de-
sign” [73]. On the other hand, a possible definition of software development methodology
would be “a process of dividing software development work into smaller, parallel, or
sequential steps or sub-processes to improve design, product management” [74]. Therefore,

Sensors 2023, 23, 790 5 of 35

both systems and software development methodology may include the predefinition of
specific deliverables and artifacts that a project team creates and completes to develop or
maintain an application or system [75].

Developing IoTSs using methodologies that are designed for the development of
traditional ISs has the great disadvantage that they do not cover specific aspects of IoTSs,
such as the design and deployment of hardware (e.g., sensors, actuators, processors, and
so on) in the environment to be controlled. Moreover, other aspects that, although not
unique to IoTSs, are essential in this type of system, such as the incorporation of artificial
intelligence (AI) techniques to help the system in decision-making and to be context-
aware, i.e., it reacts appropriately according to the context or the existing conditions in the
environment [39,42]. Therefore, and if we also consider the heterogeneity of the components
and application domains of IoTSs [76,77], it is obvious to conclude that professionals from
different areas should be part of their development team in order to carry out the activities
included in the different stages of its development, either to act throughout the whole life
cycle or to carry out specific tasks [78].

2.1. Stages or Processes of the Software System Development Life Cycle

To make an analysis of system development methodologies, we could go back to the
40s, when the digital or general-purpose computer called EDVAC was created [79], or to the
50s and 60s, when many programming languages appeared, such as Fortran, Cobol or Basic,
to name a few [80]. The first software development methodologies for desktop systems
were defined according to the paradigm on which the programming language to implement
the system was based. For example, to develop using structured programming languages,
structured development methodologies appeared [37,81], while for development using
object-oriented programming languages, object-oriented methodologies appeared [37,82].
Subsequently, the methodologies were reoriented according to the type of system to be
developed, such as desktop or web [37].

The waterfall methodology comprised the following phases or stages: (a) system
requirements analysis, (b) software requirements analysis, (c) preliminary program design,
(d) system analysis, (e) software design, (f) coding, (g) testing, and (h) operation.

Subsequently, agile methodologies, among which some popular ones are XP, Kanban,
and the Scrum framework [83], consider that the values and principles of the agile mani-
festo should be present in the development methodology of any software product that can
be broken down and developed into parts. In the development of any IoTS, it is necessary
to consider: the deployment of different hardware components (e.g., sensors, actuators,
processors, and so on) in the environment to be controlled, communication and interaction
between objects or “ things” connected, and the development of the means for user inter-
action with the system (e.g., web application, mobile application, and so on) [22,84–86],
among other aspects, which will eventually become deliverables. These deliverables will
be developed by carrying out different activities. Therefore, we can conclude that this type
of system can be developed using agile methodologies.

2.2. Standards That Define the Stages and Processes of the Software Systems Life Cycle

ISO/IEC 12207:2017 [72] addresses software lifecycle processes, while ISO/IEC/IEEE
15288:2015 [67] addresses systems lifecycle processes. In turn, the ISO/IEC/IEEE 15289:2019
standard [61] proposes a common life cycle for systems and software engineering, based on
the life cycle processes specified in the two standards. Similarly, the purpose of ISO/IEC/IEEE
24748-1:2018 [87] is to facilitate the joint use of the content of ISO/IEC/IEEE 15288 and
ISO/IEC/IEEE 12207, providing unified and consolidated guidance on systems and software
lifecycle management. On the other hand, ISO/IEC/IEEE 24748-3:2020 [88] provides guidance
on the application of the software lifecycle process standard, i.e., ISO/IEC/IEEE 12207:2017.
In addition, ISO/IEC/IEEE 24748-4:2016 [89] provides detailed requirements and guidance
on the application of system lifecycle processes, i.e., ISO/IEC/IEEE 15288. Figure 1 has been

Sensors 2023, 23, 790 6 of 35

prepared after reviewing the standards to show the life cycles and processes that these
standards involve.

Sensors 2023, 23, x FOR PEER REVIEW 6 of 36

of ISO/IEC/IEEE 24748-1:2018 [87] is to facilitate the joint use of the content of
ISO/IEC/IEEE 15288 and ISO/IEC/IEEE 12207, providing unified and consolidated guid-
ance on systems and software lifecycle management. On the other hand, ISO/IEC/IEEE
24748-3:2020 [88] provides guidance on the application of the software lifecycle process
standard, i.e., ISO/IEC/IEEE 12207:2017. In addition, ISO/IEC/IEEE 24748-4:2016 [89] pro-
vides detailed requirements and guidance on the application of system lifecycle processes,
i.e., ISO/IEC/IEEE 15288. Figure 1 has been prepared after reviewing the standards to
show the life cycles and processes that these standards involve.

Figure 1. Summary of the stages and processes of the life cycle of software systems considered in
the different reviewed ISO/IEC/IEEE standards [61,67,72,87,88].

Methodologies are free to specify how to execute the stages and technical processes
that the ISO/IEC/IEEE standards propose, their execution order, and even select which
processes will be executed [67]. However, presumably, at least the following processes
must be present in the lifecycle: (1) planning and requirements gathering, (2) solution
analysis, (3) solution design, (4) solution coding and unit testing (construction), (5) inte-
gration and testing (implementation), and (6) operation and maintenance [64,90–92]. Ad-
ditionally, all the work done in each of the activities carried out should be well docu-
mented. Therefore, the difference between the methodologies must be in the processes to
be considered, in the way they are executed, and in their execution order [61,67,72,87–
89,91].

2.3. IoTS Development Methodologies Based on the Agile Manifesto
These methodologies split the system to be developed into deliverable products,

which in turn are organised into tasks that last from 2 to 4 weeks (called sprint in Scrum)
[92,93]. This way of organising the work contrasts with other development methodolo-
gies, such as Waterfall, Spiral, RP, etc., that take the problem to be solved in its entirety.

2.3.1. Guidelines for Project Risk Management

Figure 1. Summary of the stages and processes of the life cycle of software systems considered in the
different reviewed ISO/IEC/IEEE standards [61,67,72,87,88].

Methodologies are free to specify how to execute the stages and technical processes
that the ISO/IEC/IEEE standards propose, their execution order, and even select which
processes will be executed [67]. However, presumably, at least the following processes must
be present in the lifecycle: (1) planning and requirements gathering, (2) solution analysis,
(3) solution design, (4) solution coding and unit testing (construction), (5) integration and
testing (implementation), and (6) operation and maintenance [64,90–92]. Additionally, all
the work done in each of the activities carried out should be well documented. Therefore,
the difference between the methodologies must be in the processes to be considered, in the
way they are executed, and in their execution order [61,67,72,87–89,91].

2.3. IoTS Development Methodologies Based on the Agile Manifesto

These methodologies split the system to be developed into deliverable products, which
in turn are organised into tasks that last from 2 to 4 weeks (called sprint in Scrum) [92,93].
This way of organising the work contrasts with other development methodologies, such as
Waterfall, Spiral, RP, etc., that take the problem to be solved in its entirety.

2.3.1. Guidelines for Project Risk Management

Agile methodologies treat risks indirectly, by establishing the characteristics of work
teams. Thus, for example, Pico-Valencia et al. [94] present a methodology for small teams
based on the principles defined in Scrum [95]. In this way, they try to make up for the
lack of clear guidelines on the agile software development manifesto to specify stages
or activities that deal with risks during the development of the systems. The authors
consider that building small development teams and holding daily face-to-face meetings
are two characteristics that can lessen the risks inherent when people are involved. The
gradual delivery of deliverables can also reduce the risks inherent to the technology itself

Sensors 2023, 23, 790 7 of 35

(its non-availability in the market, degree of dominance on the part of developers, etc.),
and the budget (acquisition of components, staff training, and so on).

According to Abrahamsson et al. [5], the agile manifesto (and, consequently, Scrum)
does not specify anything regarding software development processes. Consequently, Scrum
could be considered a project management methodology rather than a software develop-
ment methodology, since it does not specify the activities that must be carried out during
the development life cycle, while it specifies how to manage the project lifecycle [44,70,71].
Muntés-Mulero et al. [96] incorporate risk analysis as an integral part of each sprint in the
Scrum methodology.

In agile methodologies, which are the focus of this work, the processes that are
specified will be carried out more than once, depending on the number of deliverables into
which the system has been divided. The order in which they are executed may be different,
depending on the design of the methodology. For example, tests in Scrum are performed
at the end [92], while in XP they are written at the beginning of the development cycle, as
stipulated by TDD (Test-Driven Development) [97].

2.3.2. End-User Needs and Requirements Definition Process

One of the reasons behind the success of agile methodologies is the distinguishing
feature of being able to make changes during the development of the system at any stage.
Ideally, all requirements should be known and clear from the beginning of development,
although this is not always the case. The elicitation of requirements is a problem known to
developers [98] and causes developers to take the changes suggested by customers or end
users throughout the whole development process.

For agile methodologies, ISO/IEC/IEEE 26515:2018 defines user stories, scenarios,
and characters as tools for obtaining and analysing requirements, while use cases are
proposed as a design technique [99]. For example, Scrum proposes to use user stories as a
tool for acquiring requirements [7,8,92,100]. User stories are simple narratives that illustrate
a user requirement from the perspective of a person or actor [98]. User stories must be
thoroughly understood by developers to express system and software requirements. User
stories are written in natural language. Therefore, they are unstructured tools and could be
misinterpreted by developers [101].

It is imperative that there is a consensus among developers on how to properly ob-
tain system requirements, as they are necessary to define the initial system architecture.
Obtaining the requirements is complicated, and it is unlikely to obtain all of them at the
beginning of the development of the system [102]. Therefore, in this scenario, it is foresee-
able that there will be changes throughout the development of the system. Undoubtedly,
the possibility of adapting to such changes, like agile methodologies can do, would be an
important point to include in the guidelines of a methodology specifically designed for the
development of IoTSs.

2.3.3. Non-Functional Requirements

It is very important to reflect on non-functional requirements (NFRs) in the devel-
opment of an IoTS. The security and privacy of data captured by sensors [103,104], the
durability of power supplies (batteries) [91,105], the resilience of communications [105,106],
and the intrusiveness of sensors [103,107], among other NFRs, must be considered at each
stage of an IoTS development. Therefore, for example, there are research lines on different
methods, protocols, and guidelines to guarantee data security and privacy [30,108–110],
low energy consumption [110–113], or to integrate sensors with different levels of intru-
siveness [114,115], among others.

Consequently, the importance given to NFRs in IoTSs could make agile methodologies
inappropriate for their development, since requirements are elicited through user stories,
due to the problems mentioned in Section 2.3.2. User stories could be used to identify
NFRs when they are user needs [98], but according to Sachdeva and Chung [116], Scrum
has no clear way to check whether NFRs are met or not. This risk can be reduced or even

Sensors 2023, 23, 790 8 of 35

avoided if acceptance criteria are defined in detail, and NFRs are clearly described in user
stories from the outset, relying on additional information and subsequent activities to
this end, as advised by Pecchia et al. [98]. To ensure success in obtaining requirements, the
writing of user stories (if such a tool is used to obtain requirements) should be carried out
by both parties, i.e., developers and end users, who should also need to be involved in the
development of the IoTS [96], to ensure that it will finally meet their needs and expectations.

2.3.4. Number of Development Team Members

PMBoK [70,71] provides guidelines for managing work teams from small to large.
However, popular agile methodologies have been thought to work with small teams of
a maximum of 15 people, including the product owner [117]. For example, Kanban indi-
cates a maximum of 14 developers [118], XP and Scrum, and a maximum of 11 members,
with the scrum master and the owner of the product [117,118]. Regarding the roles of
the team in Scrum, Kettunen, and Laanti [119] raise the need to create other roles addi-
tional to those defined in Scrum for larger software companies. Along the same lines,
Morais dos Santos et al. [120] also raise the need to adapt Scrum for large software projects.
In fact, they adopt the Scrum of Scrums (SoS) technique and add two new roles, called
General Product Owner (GPO) and General Scrum Master (GSM). These new roles will
serve to coordinate and assist other roles.

2.4. Modeling as a Key in IoTS Development Methodologies

From the perspective of software developers, IoTSs are mainly characterized by the
heterogeneity of their components and the technologies they involve, in addition to the
scarce processing capacity of each component [121]. For example, due to the lack of
well-established standards at the hardware level, manufacturers often provide different im-
plementations and/or operational features, which often leads to a heterogeneous software
and communications platform (i.e., with different communication technologies and proto-
cols) [34,122]. In addition, developers typically must deploy a shared set of functionalities
across multiple and different devices [123–125]. Consequently, in that scenario, hardware
heterogeneity leads to different source codes of the same software design, just to be able to
support the different features of the underlying hardware.

Model-driven development methodologies can help address hardware heterogeneity.
In fact, these methodologies were introduced with the aim of focusing on the design
of a system’s functionalities, mainly at a platform-independent level of abstraction. Its
main objective is to be able to obtain final implementations of the system with as little
platform-dependent code as possible written by the developers.

The most important model-driven development methodologies known so far are
Model-Based Engineering (MBE) [126,127], Model-Driven Engineering (MDE) [127], Model-
Driven Development (MDD) [127], and Model-Driven Architecture (MDA) [127,128]. Al-
though the similarity between them is easy to recognise, their difference lies in the im-
portance they place on the models themselves, how they conceptually define “what is” a
model, and how they are used to ultimately obtain an implementation of the system. In
addition, they differ in the stages of development involved and the tools they propose to
enable modelling [129].

Both MDD and MDA are guidelines to follow during the software development stages.
The difference between them is that MDD can be written in any modelling language, while
MDA is a standard specification that clarifies that UML (Unified Modelling Language)
should be used as the main modelling language, while any transformation should be
specified using the Query/View/Transform (QVT) language. MDA also specifies that
models should be transformed following a descending abstraction level order, that is, from
computationally independent models (CIMs) to platform-independent models (PIMs),
and these two platform-specific models (PSMs) [127,128]. As expressed in the standard
specification, MDA is an approach to software design, development, and implementation
spearheaded by the Object Management Group (OMG) [130]. MDA provides guidelines

Sensors 2023, 23, 790 9 of 35

for structuring software specifications that are expressed as models [131]. Thus, MDA
aims to set aside the technical particularities of implementations, and instead focuses on
“modelling” software solutions. On the other hand, it separates itself from requirement
elicitation, assuming it as a preliminary work already completed at an earlier stage.

In MBE, neither model definition nor automatic code generation constitute key as-
pects of the development process. In addition, it considers models as plans that must be
understood by programmers to write program code in a target programming language.
Instead, MDE is governed by models, as models are expected to be defined to generate
(semi-)automatically at least one partial codebase, or even other models from them [132].
This process is commonly referred to as model-to-text (M2T) or model-to-model (M2M)
transformation. In addition, in MDE, models and transformations can be defined in any
modelling language and can refer to different levels of abstraction.

3. Methodologies for Traditional IS Development Applied to IoTS Development

As mentioned above, methodologies devised for the development of conventional
I’S have been used, and even some of them have been adapted for the development of
IoTSs. To review the literature on this subject and analyse the existing proposals, the related
articles have been retrieved and reviewed, consulting several scientific databases (ScDBs),
namely, Web of Science (WoS) (https://www.webofscience.com/wos/alldb/advanced-
search, accessed on 21 November 2022) and Scopus (https://www.scopus.com/search/
form.uri?display=advanced, accessed on 22 November 2022), IEEE (https://ieeexplore.ieee.
org/search/advanced, accessed on 23 November 2022), and ACM (https://dl.acm.org/
search/advanced, accessed on 24 November 2022), to ensure that we consider the largest
number of articles published on this research topic.

Figure 2 shows the flowchart of the procedure carried out for the retrieval of documents
for the review of the state-of-the-art that is being presented in this article. It shows the
processes that the authors had to perform manually and the processes that were executed
automatically with the help of the tools provided in the ScDBs consulted. The objective
of our search was to retrieve the documents in which some Methodology, Framework,
Platform, Tool, or Guidelines for IoTS Development (MFPTG4IoTSD) is proposed, in
addition to those in which the development of an IoTS is described, provided that the
methodology applied to develop it is specified.

The search carried out was very extensive, as can be seen by consulting Table 1, which
shows the search statements entered in each of the ScDBs consulted, as well as the number
of documents initially retrieved and the number of documents resulting after applying
each of the filters indicated in the procedure described in Figure 2. The execution of the
queries was carried out on 14 October 2022, and alerts were registered in the databases so
that the data of the new documents that meet the search criteria established for this work
are sent to the email of one of the researchers (last revision on 22 December 2022). At the
time of submitting this article, no new matches have been received.

Making use of the analysis tools of the WoS platform, Figure 3 shows the distribution
in time of the jobs retrieved with our search sentence (3201 records) since the beginning of
the popularisation of the term IoT in 2009 [133], having obtained only 2 works published in
that year. The appearance of articles related to IoT is constantly growing, although in 2020
there was a decrease in the number of publications of research papers, probably due to the
COVID-19 pandemic, which led to health problems and restrictions on the mobility of the
population [134,135]. However, this growth resumed in 2021. It should be noted that from
2022 onwards, papers published up to the date of submission for publication of this article
have been considered.

Of the filters applied (see Table 1 and Figure 2), the first two, that is, by title and
language, were automatic filters. The Type column in Table 1 indicates the number of
papers that meet to be peer-reviewed articles and published in standard publication sources,
such as journals, conferences, book chapters, and books. The Language column shows the
number of articles that have been written in English or Spanish (only one of the finally

https://www.webofscience.com/wos/alldb/advanced-search
https://www.webofscience.com/wos/alldb/advanced-search
https://www.scopus.com/search/form.uri?display=advanced
https://www.scopus.com/search/form.uri?display=advanced
https://ieeexplore.ieee.org/search/advanced
https://ieeexplore.ieee.org/search/advanced
https://dl.acm.org/search/advanced
https://dl.acm.org/search/advanced

Sensors 2023, 23, 790 10 of 35

selected is written in Spanish). However, the filter by title was carried out manually. The
Title column shows the number of articles whose title was considered significant for the
present investigation.

Sensors 2023, 23, x FOR PEER REVIEW 10 of 36

Figure 2. Flowchart of the state-of-the-art review process. Figure 2. Flowchart of the state-of-the-art review process.

Sensors 2023, 23, 790 11 of 35

Table 1. Search statements for each ScDB were consulted and a number of results were consulted
after executing them and after applying the corresponding filters. As usual, the wildcard character
“*” is used to indicate that it could be substituted for any string (0 or more characters) at that place in
the query.

ScDB Search Sentence Results
Filters

Type Language Title

ACM Keyword:((IoT OR “Internet of Things”) AND (“develop* method*”
OR “design* method*” OR “construct* method*” OR “implement*
method” OR “develop* framework” OR “design* framework” OR
“construct* framework” OR “implement* framework” OR “develop*
tool*” OR “design* tool*” OR “construct* tool*” OR “implement* tool*”
OR “develop* guidelines” OR “design* guidelines” OR “construct*
guidelines” OR “implement* guidelines” OR “develop* lifecycle” OR
“design* lifecycle” OR “construct* lifecycle” OR “implement* lifecycle”
OR “develop* platform*” OR “design* platform*” OR “construct*
platform*” OR “implement* platform*”))

3 3 3 3

IEEE (“Index Terms”:IoT OR “Index Terms”:”Internet of Things”) AND
(“Index Terms”:”develop* method*” OR “Index Terms”:”design*
method*” OR “Index Terms”:”construct* method*” OR “Index
Terms”:”implement* method” OR “Index Terms”:”develop*
framework” OR “Index Terms”:”design* framework” OR “Index
Terms”:”construct* framework” OR “Index Terms”:”implement*
framework” OR “Index Terms”:”develop* tool*” OR “Index
Terms”:”design* tool*” OR “Index Terms”:”construct* tool*” OR “Index
Terms”: “implement* tool*” OR “Index Terms”:”develop* guidelines”
OR “Index Terms”:”design* guidelines” OR “Index Terms”:”construct*
guidelines” OR “Index Terms”:”implement* guidelines” OR “Index
Terms”:”develop* lifecycle” OR “Index Terms”:”design* lifecycle” OR
“Index Terms”:”construct* lifecycle” OR “Index Terms”:”implement*
lifecycle” OR “Index Terms”:”develop* platform*” OR “Index
Terms”:”design* platform*” OR “Index Terms”:”construct* platform*”
OR “Index Terms”: “implement* platform*”)

452 429 429 40

WoS TS=(IoT OR “Internet of Things”) AND TS=(“develop* method*” OR
“design* method*” OR “construct* method*” OR “implement* method”
OR “develop* framework” OR “design* framework” OR “construct*
framework” OR “implement* framework” OR “develop* tool*” OR
“design* tool*” OR “construct* tool*” OR “implement* tool*” OR
“develop* guidelines” OR “design* guidelines” OR “construct*
guidelines” OR “implement* guidelines” OR “develop* lifecycle” OR
“design* lifecycle” OR “construct* lifecycle” OR “implement* lifecycle”
OR “develop* platform*” OR “design* platform*” OR “construct*
plat-form*” OR “implement* platform*”)

3201 2475 2344 83

Scopus KEY ((IoT OR “Internet of Things”) AND (“develop* method*” OR
“design* method*” OR “construct* method*” OR “implement* method”
OR “develop* framework” OR “design* framework” OR “construct*
framework” OR “implement* framework” OR “develop* tool*” OR
“design* tool*” OR “construct* tool*” OR “implement* tool*” OR
“develop* guidelines” OR “design* guidelines” OR “construct*
guidelines” OR “implement* guidelines” OR “develop* lifecycle” OR
“design* lifecycle” OR “construct* lifecycle” OR “implement* lifecycle”
OR “develop* platform*” OR “design* platform*” OR “construct*
platform*” OR “implement* platform*”))

647 646 636 60

Sensors 2023, 23, 790 12 of 35

Sensors 2023, 23, x FOR PEER REVIEW 12 of 36

lifecycle” OR “design* lifecycle” OR “construct* lifecycle” OR “imple-
ment* lifecycle” OR “develop* platform*” OR “design* platform*” OR
“construct* platform*” OR “implement* platform*”))

Making use of the analysis tools of the WoS platform, Figure 3 shows the distribution
in time of the jobs retrieved with our search sentence (3201 records) since the beginning
of the popularisation of the term IoT in 2009 [133], having obtained only 2 works pub-
lished in that year. The appearance of articles related to IoT is constantly growing, alt-
hough in 2020 there was a decrease in the number of publications of research papers,
probably due to the COVID-19 pandemic, which led to health problems and restrictions
on the mobility of the population [134,135]. However, this growth resumed in 2021. It
should be noted that from 2022 onwards, papers published up to the date of submission
for publication of this article have been considered.

Figure 3. Year of publication of the documents selected for analysis.

Of the filters applied (see Table 1 and Figure 2), the first two, that is, by title and
language, were automatic filters. The Type column in Table 1 indicates the number of pa-
pers that meet to be peer-reviewed articles and published in standard publication sources,
such as journals, conferences, book chapters, and books. The Language column shows the
number of articles that have been written in English or Spanish (only one of the finally
selected is written in Spanish). However, the filter by title was carried out manually. The
Title column shows the number of articles whose title was considered significant for the
present investigation.

Another of the manual filters, and the most important, was the filter for the infor-
mation contained in the body of the document. Thus, to be considered a document, it must
present: (1) The development of any IoTS, application or device, provided that its authors
present evidence of having used any MFPTG4IoTSD; or (2) A development methodology,
so that (2.1) the main objective of the authors of that MFPTD4IoTSD has been the design
and construction stages of the corresponding system, or (2.2) the work presents some
broader MFPTD4IoTSD, that is, it does not only specify the design and construction
phases of the system.

After the application of this last manual filter, 60 documents of interest for the present
research were found, of which 38 documents present the development of some IoTS fol-
lowing a development methodology for traditional IS (see Figure 4), 8 papers present

0

100

200

300

400

500

600

700

2008 2010 2012 2014 2016 2018 2020 2022 2024

Figure 3. Year of publication of the documents selected for analysis.

Another of the manual filters, and the most important, was the filter for the information
contained in the body of the document. Thus, to be considered a document, it must present:
(1) The development of any IoTS, application or device, provided that its authors present
evidence of having used any MFPTG4IoTSD; or (2) A development methodology, so that (2.1)
the main objective of the authors of that MFPTD4IoTSD has been the design and construction
stages of the corresponding system, or (2.2) the work presents some broader MFPTD4IoTSD,
that is, it does not only specify the design and construction phases of the system.

After the application of this last manual filter, 60 documents of interest for the present
research were found, of which 38 documents present the development of some IoTS
following a development methodology for traditional IS (see Figure 4), 8 papers present
MFPTG4IoTSDs that address the design and construction phases of the software for IoTSs,
i.e., they differ greatly from the life cycle presented in the ISO/IEC/IEEE 15289:2019
standards, and 14 documents present MFPTG4IoTSDs that can be considered to be within
the ISO/IEC/IEEE standards mentioned. Documents presenting the development of any
IoTS where the development methodology used is not clearly specified were not considered.

Figure 4 shows the frequency or number of times that methodologies devised for the
development of conventional ISs have been applied to the development of IoTSs in the set
of documents analysed in the study we have carried out.

As can be seen in Figure 4, most of these IoTSs have been developed using the
Scrum methodology [60,116,120,136–148], specifically in 42.11% of the IoTSs considered,
with RP [149–163] being the other most used methodology, with 39.47%. In addition,
Scrum has been used in combination with other methodologies in 10.53% of cases. So,
for example, there are developments by combining Scrum with XP [57,58], or using a
combination of Scrum, XP, and Kanban [164], or combining Scrum with RP [59]. The least
used methodologies have been Rapid Application Development (RAD), V-Model [165],
and SDLC (System Development Lifecycle) [166], representing 2.63% each, while Kanban
has only been used for the development of IoTSs in combination with Scrum and XP.

In the works represented in Figure 4, the areas or fields of application in which
the IoTSs proposed them have been developed have also been identified. The results of
this analysis can be seen in Figure 5, where it can be seen that the domain in which the
development of IoTSs has been most formalised is Health Care, with 18.42%, followed by
those of Smart Car and Air Quality, with 10.53% in each of them with respect to the total of
the works considered for this analysis.

Sensors 2023, 23, 790 13 of 35

Sensors 2023, 23, x FOR PEER REVIEW 13 of 36

MFPTG4IoTSDs that address the design and construction phases of the software for IoTSs,
i.e., they differ greatly from the life cycle presented in the ISO/IEC/IEEE 15289:2019 stand-
ards, and 14 documents present MFPTG4IoTSDs that can be considered to be within the
ISO/IEC/IEEE standards mentioned. Documents presenting the development of any IoTS
where the development methodology used is not clearly specified were not considered.

Figure 4 shows the frequency or number of times that methodologies devised for the
development of conventional ISs have been applied to the development of IoTSs in the set
of documents analysed in the study we have carried out.

Figure 4. Number of IoTSs developed with methodologies designed for the development of ISs.

As can be seen in Figure 4, most of these IoTSs have been developed using the Scrum
methodology [60,116,120,136–148], specifically in 42.11% of the IoTSs considered, with RP
[149–163] being the other most used methodology, with 39.47%. In addition, Scrum has
been used in combination with other methodologies in 10.53% of cases. So, for example,
there are developments by combining Scrum with XP [57,58], or using a combination of
Scrum, XP, and Kanban [164], or combining Scrum with RP [59]. The least used method-
ologies have been Rapid Application Development (RAD), V-Model [165], and SDLC
(System Development Lifecycle) [166], representing 2.63% each, while Kanban has only
been used for the development of IoTSs in combination with Scrum and XP.

In the works represented in Figure 4, the areas or fields of application in which the
IoTSs proposed them have been developed have also been identified. The results of this
analysis can be seen in Figure 5, where it can be seen that the domain in which the devel-
opment of IoTSs has been most formalised is Health Care, with 18.42%, followed by those
of Smart Car and Air Quality, with 10.53% in each of them with respect to the total of the
works considered for this analysis.

Although the growth of IoT and IoTSs has been dizzying in recent years, not every-
one has access to the Internet yet. According to the World Bank [167], only 49. 72% of the
population has access to the Internet. In fact, there are countries whose population with
Internet access is below 25%. An even smaller percentage of people probably know what
IoT is and how IoT can benefit them. One of the methodologies that has been successful
when the client is not clear about their requirements, either because they do not know the
use they can give to the existing technology, or because they are not very clear about the
requirements of the system to be developed, is the prototyping methodology. Therefore,
these data suggest that the use of prototyping for the development of this type of system

Figure 4. Number of IoTSs developed with methodologies designed for the development of ISs.

Although the growth of IoT and IoTSs has been dizzying in recent years, not everyone
has access to the Internet yet. According to the World Bank [167], only 49. 72% of the
population has access to the Internet. In fact, there are countries whose population with
Internet access is below 25%. An even smaller percentage of people probably know
what IoT is and how IoT can benefit them. One of the methodologies that has been
successful when the client is not clear about their requirements, either because they do not
know the use they can give to the existing technology, or because they are not very clear
about the requirements of the system to be developed, is the prototyping methodology.
Therefore, these data suggest that the use of prototyping for the development of this type
of system will be a success and will be well-valued by customers. Moreover, the possibility
of not continuing with the development of the system, whether due to lack of budget,
technological issues (such as unavailable technology), or of any other nature, is another
characteristic that supports the success of agile development.

3.1. Methodologies, Tools, and Frameworks Focused on the Design and Construction of Software
for IoTSs

For this classification of documents, those with an MFPTG4IoTSD that do not specify
the stages of the system life cycle were considered. These methodologies focus on the
design and construction stages of IoTSs. In these MFPTG4IoTSDs, the design is mostly
based on models and metamodels. For software construction, technologies are presented
that are capable of automatically generating code in various languages. Most of them
focus on generating code in C, C++, or variants, as they are the most popular type of
languages on computer boards (controllers) used in the development of IoTSs. Another
programming language in which they generate code is Java, and only one of the references
found mentions the generation of code for the Node.js environment. Table 2 shows the main
characteristics of non-traditional methodologies that address the design and construction
stages of IoTSs. In addition, it shows the tools they have used or proposed to carry out
their objectives.

Sensors 2023, 23, 790 14 of 35

Sensors 2023, 23, x FOR PEER REVIEW 14 of 36

will be a success and will be well-valued by customers. Moreover, the possibility of not
continuing with the development of the system, whether due to lack of budget, techno-
logical issues (such as unavailable technology), or of any other nature, is another charac-
teristic that supports the success of agile development.

Figure 5. IoTSs application areas are developed with methodologies designed for ISs.

3.1. Methodologies, Tools, and Frameworks Focused on the Design and Construction of Software
for IoTSs

For this classification of documents, those with an MFPTG4IoTSD that do not specify
the stages of the system life cycle were considered. These methodologies focus on the de-
sign and construction stages of IoTSs. In these MFPTG4IoTSDs, the design is mostly based
on models and metamodels. For software construction, technologies are presented that
are capable of automatically generating code in various languages. Most of them focus on
generating code in C, C++, or variants, as they are the most popular type of languages on
computer boards (controllers) used in the development of IoTSs. Another programming
language in which they generate code is Java, and only one of the references found men-
tions the generation of code for the Node.js environment. Table 2 shows the main charac-
teristics of non-traditional methodologies that address the design and construction stages
of IoTSs. In addition, it shows the tools they have used or proposed to carry out their
objectives.

To start the software design and construction stages, you must first go through the
stages of analysing the needs of the stakeholders and the elicitation of system require-
ments, and then move on to the stage of analysing both system and software require-
ments. These stages are considered as very important stages in some works [168,169]
(those marked with in the Requirements column of Table 2), being these stages, the
providers of the information needed to continue with the design and construction. How-
ever, other works [170,171] (those marked with ~ in the Requirements column of Table 2)
take them as resolved, putting a lower emphasis on them than in the previous works, and
without specifying any analysis method or tools to be used. Moreover, the methodologies
presented in other works [172,173] do not mention the requirements.

0 1 2 3 4 5 6 7 8

Air Quality
Animal Live

Business
Comunications

Education
Elderly Care

Flight Simulator
Hardware Development

Health Care
Industrial 4.0

Security
Smart Agriculture

Smart Building
Smart Car

Smart Cities
Smart Environment

Smart Home
Smart Storage

Figure 5. IoTSs application areas are developed with methodologies designed for ISs.

To start the software design and construction stages, you must first go through the
stages of analysing the needs of the stakeholders and the elicitation of system requirements,
and then move on to the stage of analysing both system and software requirements. These
stages are considered as very important stages in some works [168,169] (those marked
with

Sensors 2023, 23, x FOR PEER REVIEW 17 of 36

encompasses the stages of low-level design, simulation-based validation, and JADE-ori-
ented implementation. However, it does not present information on how the authors ap-
proach the stages of planning, elicitation, and analysis of requirements, in addition to the
integration, operation, and maintenance stages.

All the development methodologies presented in this section are focused on the de-
sign and construction (automatic code generation) stages, based on a model transfor-
mation approach to obtain the IoTS software code. However, some of them
[168,169,172,174–176] are specifically based on the transformation of models, while others
[170,175] are based on patterns, and another [171] is based on agents.

3.2. Methodologies Designed for IoTS Development in Accordance with ISO/IEC/IEEE
Standards

Fifteen documents were found presenting some development methodology for
IoTSs, out of the several documents obtained from the ScDBs consulted. Table 3 shows
the methodologies found. The analysis carried out on these documents was oriented to
the formality of the methodologies, that is, they present the stages or processes of systems
and software engineering, as well as the tools that they recommend using to obtain the
deliverable product at each stage. In a quick review of the selected documents, it has been
possible to determine that most of them comply below 50% of the stages that
ISO/IEC/IEEE standards establish in the life cycle of systems/software [61,67,72,87–89].
For this reason, we have reviewed the literature to determine which stages should have
an appropriate life cycle and if there is a consensus in the literature on this matter. Com-
mon stages in systems life cycles are (1) planning, (2) analysis (of requirements and soft-
ware/system), (3) solution design, (4) solution coding and testing (construction), (5) inte-
gration and testing (implementation), and (6) operation and maintenance [64,90,178,179].
Therefore, we have considered that these stages are the ones that a methodology should
specify.

Table 3. Methodologies specifying the stages of the life cycle.

Year Name Bases
(Methodology/Approach)

(1) (2) (3) (4) (5) (6) Other

2022 RASPSS a [180] DDD b
2021 Schauer and Falas [181] AS c ~ ~
2020 TDDM4IoTS d [37] Agile
2019 Pico-Valencia et al. [94] Agile (SCRUM) ±
2019 Gogineni et al. [86] V Model XT
2018 INTER-METH [65] Iterative waterfall ~
2018 SERVUS [102] SOA
2018 Sosa-Reyna et al. [123–125] MDD and SOA
2017 SEM e [182] Metamodel
2017 Arrowhead [183] SOA f
2016 IDeA g [184] MBSE h, OOSEM i ± ± ± ±
2015 Patel and Cassou [78] Concerns-Oriented
2015 Fortino et al. [185] Metamodel ~
2013 AMG [38] Model Transformation ~

a Rehabilitation Assistive Smart Product-Service System; b Data-Driven Development; c Atomic Ser-
vices; d Test-Driven Development Methodology for IoTSs; e Smart Environment Metamodel; f Ser-
vice-Oriented Architecture; g IoT DevProcess and AppFramework; h Model-Based Systems Engi-
neering; i Object-Oriented Systems Engineering Method.

The analysis of the documents presenting these methodologies was able to determine
the degree of compliance (expressed with an adequate clarity in the corresponding paper)
of these 6 stages, whose score was as follows:

in the Requirements column of Table 2), being these stages, the providers of
the information needed to continue with the design and construction. However, other
works [170,171] (those marked with ~ in the Requirements column of Table 2) take them
as resolved, putting a lower emphasis on them than in the previous works, and without
specifying any analysis method or tools to be used. Moreover, the methodologies presented
in other works [172,173] do not mention the requirements.

Table 2 shows other aspects of the methodologies and tools reviewed in this study.
More specifically, it shows whether the requirements analysis is considered, or it is only
mentioned, or it is not specified in the corresponding methodology, as well as their respec-
tive modelling languages, and the artifacts used to obtain and analyse the requirements,
model and/or generate the code.

The contribution of Lekidis et al. [168] consists of an IoTS design flow based on
MDE and SOA. These authors focus on models for IoT Wireless Personal Area Network
(WPAN) systems. This proposal also supports the modelling and implementation of the
application functions to their deployment in the IoT system. The steps specified by the
flow are (1) translation for the construction of the application model, (2) translation for the
synthesis of the OS/kernel model, (3) transformation for the construction of the system
model, (4) code generation, (5) space state exploration, (6) calibration, (7) verification
of statistical models, and (8) injection of failures. Design activities are supported by
requirements verification and validation processes, facilitating system model refinement.
This ensures compliance with NFRs related to application performance and efficiency, as
well as functional requirements (FRs). Their work focuses on the Contiki platform, which
uses a proprietary DSL (Domain Specific Language) that serves to write the REST services
that run on that platform.

Sensors 2023, 23, 790 15 of 35

Table 2. Methodologies focused on IoTS development, and the artifacts used and/or recommended
to achieve their objectives.

Year

R
ef

er
en

ce

R
eq

ui
re

m
en

ts
* Artifacts for

A
pp

ro
ac

h

A
pp

li
ca

ti
on

M
od

el
li

ng
La

ng
ua

ge

A
na

ly
si

s
an

d
M

od
el

li
ng

C
od

e
G

en
er

at
io

n

2018 Lekidis et al. [168]

Sensors 2023, 23, x FOR PEER REVIEW 17 of 36

encompasses the stages of low-level design, simulation-based validation, and JADE-ori-
ented implementation. However, it does not present information on how the authors ap-
proach the stages of planning, elicitation, and analysis of requirements, in addition to the
integration, operation, and maintenance stages.

All the development methodologies presented in this section are focused on the de-
sign and construction (automatic code generation) stages, based on a model transfor-
mation approach to obtain the IoTS software code. However, some of them
[168,169,172,174–176] are specifically based on the transformation of models, while others
[170,175] are based on patterns, and another [171] is based on agents.

3.2. Methodologies Designed for IoTS Development in Accordance with ISO/IEC/IEEE
Standards

Fifteen documents were found presenting some development methodology for
IoTSs, out of the several documents obtained from the ScDBs consulted. Table 3 shows
the methodologies found. The analysis carried out on these documents was oriented to
the formality of the methodologies, that is, they present the stages or processes of systems
and software engineering, as well as the tools that they recommend using to obtain the
deliverable product at each stage. In a quick review of the selected documents, it has been
possible to determine that most of them comply below 50% of the stages that
ISO/IEC/IEEE standards establish in the life cycle of systems/software [61,67,72,87–89].
For this reason, we have reviewed the literature to determine which stages should have
an appropriate life cycle and if there is a consensus in the literature on this matter. Com-
mon stages in systems life cycles are (1) planning, (2) analysis (of requirements and soft-
ware/system), (3) solution design, (4) solution coding and testing (construction), (5) inte-
gration and testing (implementation), and (6) operation and maintenance [64,90,178,179].
Therefore, we have considered that these stages are the ones that a methodology should
specify.

Table 3. Methodologies specifying the stages of the life cycle.

Year Name Bases
(Methodology/Approach)

(1) (2) (3) (4) (5) (6) Other

2022 RASPSS a [180] DDD b
2021 Schauer and Falas [181] AS c ~ ~
2020 TDDM4IoTS d [37] Agile
2019 Pico-Valencia et al. [94] Agile (SCRUM) ±
2019 Gogineni et al. [86] V Model XT
2018 INTER-METH [65] Iterative waterfall ~
2018 SERVUS [102] SOA
2018 Sosa-Reyna et al. [123–125] MDD and SOA
2017 SEM e [182] Metamodel
2017 Arrowhead [183] SOA f
2016 IDeA g [184] MBSE h, OOSEM i ± ± ± ±
2015 Patel and Cassou [78] Concerns-Oriented
2015 Fortino et al. [185] Metamodel ~
2013 AMG [38] Model Transformation ~

a Rehabilitation Assistive Smart Product-Service System; b Data-Driven Development; c Atomic Ser-
vices; d Test-Driven Development Methodology for IoTSs; e Smart Environment Metamodel; f Ser-
vice-Oriented Architecture; g IoT DevProcess and AppFramework; h Model-Based Systems Engi-
neering; i Object-Oriented Systems Engineering Method.

The analysis of the documents presenting these methodologies was able to determine
the degree of compliance (expressed with an adequate clarity in the corresponding paper)
of these 6 stages, whose score was as follows:

7 DSML a C/C++ MDE, SOA b Smart
Buildings

2017 MDE4IoT c [172] 7 UML, DSML 7 Java, C/C++ MDE Smart Cities

2017 IOPT d [174] 7 Petri net IOPT
networks ANSI C Petri Net Smart Car

2017 Brambilla et al. [170] ~ mobile IFML e ~ NS f Components
and patterns

Several
domains

2017 Harbouche et al. [169]

Sensors 2023, 23, x FOR PEER REVIEW 17 of 36

encompasses the stages of low-level design, simulation-based validation, and JADE-ori-
ented implementation. However, it does not present information on how the authors ap-
proach the stages of planning, elicitation, and analysis of requirements, in addition to the
integration, operation, and maintenance stages.

All the development methodologies presented in this section are focused on the de-
sign and construction (automatic code generation) stages, based on a model transfor-
mation approach to obtain the IoTS software code. However, some of them
[168,169,172,174–176] are specifically based on the transformation of models, while others
[170,175] are based on patterns, and another [171] is based on agents.

3.2. Methodologies Designed for IoTS Development in Accordance with ISO/IEC/IEEE
Standards

Fifteen documents were found presenting some development methodology for
IoTSs, out of the several documents obtained from the ScDBs consulted. Table 3 shows
the methodologies found. The analysis carried out on these documents was oriented to
the formality of the methodologies, that is, they present the stages or processes of systems
and software engineering, as well as the tools that they recommend using to obtain the
deliverable product at each stage. In a quick review of the selected documents, it has been
possible to determine that most of them comply below 50% of the stages that
ISO/IEC/IEEE standards establish in the life cycle of systems/software [61,67,72,87–89].
For this reason, we have reviewed the literature to determine which stages should have
an appropriate life cycle and if there is a consensus in the literature on this matter. Com-
mon stages in systems life cycles are (1) planning, (2) analysis (of requirements and soft-
ware/system), (3) solution design, (4) solution coding and testing (construction), (5) inte-
gration and testing (implementation), and (6) operation and maintenance [64,90,178,179].
Therefore, we have considered that these stages are the ones that a methodology should
specify.

Table 3. Methodologies specifying the stages of the life cycle.

Year Name Bases
(Methodology/Approach)

(1) (2) (3) (4) (5) (6) Other

2022 RASPSS a [180] DDD b
2021 Schauer and Falas [181] AS c ~ ~
2020 TDDM4IoTS d [37] Agile
2019 Pico-Valencia et al. [94] Agile (SCRUM) ±
2019 Gogineni et al. [86] V Model XT
2018 INTER-METH [65] Iterative waterfall ~
2018 SERVUS [102] SOA
2018 Sosa-Reyna et al. [123–125] MDD and SOA
2017 SEM e [182] Metamodel
2017 Arrowhead [183] SOA f
2016 IDeA g [184] MBSE h, OOSEM i ± ± ± ±
2015 Patel and Cassou [78] Concerns-Oriented
2015 Fortino et al. [185] Metamodel ~
2013 AMG [38] Model Transformation ~

a Rehabilitation Assistive Smart Product-Service System; b Data-Driven Development; c Atomic Ser-
vices; d Test-Driven Development Methodology for IoTSs; e Smart Environment Metamodel; f Ser-
vice-Oriented Architecture; g IoT DevProcess and AppFramework; h Model-Based Systems Engi-
neering; i Object-Oriented Systems Engineering Method.

The analysis of the documents presenting these methodologies was able to determine
the degree of compliance (expressed with an adequate clarity in the corresponding paper)
of these 6 stages, whose score was as follows:

UML AD g, SD h NesC, Java MDE Health Care
2016 Chauhan et al. [175] DL i Holder AL j, UIL k Node.js MDD Smart Home
2012 ROOD [176] NDE l SsML m SOM n J2ME o MDA Smart Gym

2012 ELDAMeth [171] ~ 7
ELDA p,
MMM q Java Agents Mobile

Agents
a Domain-Specific Modelling Language; b Service-Oriented Architecture; c MDE for IoT; d Input-Output Place-
Transition; e Interaction Flow Modelling Language; f NOT specified; g Activity Diagrams; h Sequence Diagrams;
i Domain Language; j Architecture Language; k User Interaction Language; l Environmental Context Model;
m Smart Space Modelling Language; n Smart Object Model; o Java 2 Micro ©Edition; p ELDA (Event-driven
Lightweight Distilled state charts-based Agents) [177]; q MAS (Multi-Agent System) Meta-Model.

Sensors 2023, 23, x FOR PEER REVIEW 17 of 36

encompasses the stages of low-level design, simulation-based validation, and JADE-ori-
ented implementation. However, it does not present information on how the authors ap-
proach the stages of planning, elicitation, and analysis of requirements, in addition to the
integration, operation, and maintenance stages.

All the development methodologies presented in this section are focused on the de-
sign and construction (automatic code generation) stages, based on a model transfor-
mation approach to obtain the IoTS software code. However, some of them
[168,169,172,174–176] are specifically based on the transformation of models, while others
[170,175] are based on patterns, and another [171] is based on agents.

3.2. Methodologies Designed for IoTS Development in Accordance with ISO/IEC/IEEE
Standards

Fifteen documents were found presenting some development methodology for
IoTSs, out of the several documents obtained from the ScDBs consulted. Table 3 shows
the methodologies found. The analysis carried out on these documents was oriented to
the formality of the methodologies, that is, they present the stages or processes of systems
and software engineering, as well as the tools that they recommend using to obtain the
deliverable product at each stage. In a quick review of the selected documents, it has been
possible to determine that most of them comply below 50% of the stages that
ISO/IEC/IEEE standards establish in the life cycle of systems/software [61,67,72,87–89].
For this reason, we have reviewed the literature to determine which stages should have
an appropriate life cycle and if there is a consensus in the literature on this matter. Com-
mon stages in systems life cycles are (1) planning, (2) analysis (of requirements and soft-
ware/system), (3) solution design, (4) solution coding and testing (construction), (5) inte-
gration and testing (implementation), and (6) operation and maintenance [64,90,178,179].
Therefore, we have considered that these stages are the ones that a methodology should
specify.

Table 3. Methodologies specifying the stages of the life cycle.

Year Name Bases
(Methodology/Approach)

(1) (2) (3) (4) (5) (6) Other

2022 RASPSS a [180] DDD b
2021 Schauer and Falas [181] AS c ~ ~
2020 TDDM4IoTS d [37] Agile
2019 Pico-Valencia et al. [94] Agile (SCRUM) ±
2019 Gogineni et al. [86] V Model XT
2018 INTER-METH [65] Iterative waterfall ~
2018 SERVUS [102] SOA
2018 Sosa-Reyna et al. [123–125] MDD and SOA
2017 SEM e [182] Metamodel
2017 Arrowhead [183] SOA f
2016 IDeA g [184] MBSE h, OOSEM i ± ± ± ±
2015 Patel and Cassou [78] Concerns-Oriented
2015 Fortino et al. [185] Metamodel ~
2013 AMG [38] Model Transformation ~

a Rehabilitation Assistive Smart Product-Service System; b Data-Driven Development; c Atomic Ser-
vices; d Test-Driven Development Methodology for IoTSs; e Smart Environment Metamodel; f Ser-
vice-Oriented Architecture; g IoT DevProcess and AppFramework; h Model-Based Systems Engi-
neering; i Object-Oriented Systems Engineering Method.

The analysis of the documents presenting these methodologies was able to determine
the degree of compliance (expressed with an adequate clarity in the corresponding paper)
of these 6 stages, whose score was as follows:

Very
important; ~ Mentioned; 7 They don’t mention them; * Collection and analysis of requirements.

MDE4IoT [172] is a methodology based on MDE that is focused on modelling and
generating the final product. This methodology does not mention the stages of planning,
obtaining, and analysis of requirements, operation, maintenance, or deployment. The
elicitation of system requirements is also not addressed by its authors. To achieve the
transformation of models to executable artifacts, MDE4IoT leverages a combination of
Domain-Specific Modelling Languages (DSMLs). Modelling is done from three points of
view: (1) specific software application domain, (2) physical devices, and (3) both software
and hardware of a specific application domain.

IOPT-Tools [174] allows control modelling for embedded systems through a class of
Petri nets called “Input-Output Place-Transition nets”. IOPT works through a Web interface
and allows you to obtain the control code from a single graphical model. However, if you
want to communicate different controllers with each other, then you must manually write
and adapt the generated code. Therefore, although it is a tool for IoT devices in general, it
does not consider how to implement the interaction with other components of an IoTS or
with the users themselves.

Brambilla et al. [170] present an approach for building mobile applications for IoTSs.
This approach is based on an extension of UML, known as Interaction Flow Modelling
Language (IFML), designed to express the content, user interaction, and control behaviour
of the front-end of mobile applications. To model both the events and actions associated
with IoT devices, new elements have been added to this set of graphical notations (IFML)
to create models that visually represent the behaviour of systems in the face of user interac-
tions. To define patterns that encompass the most common IoT use cases, the authors define
content class models and interaction class models. The patterns addressed are specific to
IoT, user interaction, and data synchronization. It is not specified in which programming
languages the software code is generated. In addition, this proposal covers some limited
areas of application, and even in those areas it is limited to only certain types of systems.

Harbouche et al. [169] propose an MDE approach that allows developers to derive a
system design from the overall specification of their requirements. Their design methodol-

Sensors 2023, 23, 790 16 of 35

ogy follows the top-down paradigm, and they bet on automatic processes for the derivation
of the behaviours of the global requirements of the system towards a set of collaborative
components to eliminate possible errors. Each level of abstraction is described using a
specific metamodel. Therefore, the application of an MDE approach requires the definition
of the appropriate metamodels and the corresponding model transformations.

Chauhan et al. [175] present a development framework that encompasses the follow-
ing: the domain specification, application architecture design specification, architecture
framework generation, domain framework generation, definition of a set of abstract user
interactions, generation of user interfaces, and description of the implementation specifica-
tion. Another of its considerations is the generation of the code of the programs that can
be deployed in the devices themselves. For each of these aspects of the methodology, a
language is defined that will be used by the different members of the development team.

ROOD (Resource-Oriented and Ontology-Driven Development) [176] is a methodol-
ogy based on an MDA approach, although it is supported by MDE-based tools. ROOD is
oriented to the development of intelligent spaces from two points of view: (1) of the contex-
tual activities or behaviour of the resources, being these the sensors and actuators, and (2) of
the intelligent object. It includes Environmental Context Models (ECMs) and Smart Object
Models (SOMs). Among MDE-based tools, ROOD incorporates a UML profile known
as Smart Space Modelling Language (SsML). This methodology presents 3 main stages,
namely, the first stage, ECM, which is related to the MDA CIM. The second stage, SOM
is represented by the MDA PIM, and finally, the PSM. At each stage, Corredor et al. [176]
address the verification of model consistency and semantic consistency from the point of
view of ECM or SOM with the respective viewpoints, and according to domain concepts
on the knowledge base. Although ROOD has been considered a methodology that is not in
accordance with ISO standards [61], it clearly exposes the work that each professional must
do along the development process, including analysis, modelling and implementation.

Finally, ELDAMeth [171] is a simulation-based methodology for Distributed Agent
Systems (DASs), which allows rapid prototyping based on visual programming, validation,
and automatic code generation for DASs based on the Java Agent Development (JADE)
framework. ELDAMeth is an iterative development process for DASs that encompasses the
stages of low-level design, simulation-based validation, and JADE-oriented implementation.
However, it does not present information on how the authors approach the stages of
planning, elicitation, and analysis of requirements, in addition to the integration, operation,
and maintenance stages.

All the development methodologies presented in this section are focused on the design
and construction (automatic code generation) stages, based on a model transformation
approach to obtain the IoTS software code. However, some of them [168,169,172,174–176]
are specifically based on the transformation of models, while others [170,175] are based on
patterns, and another [171] is based on agents.

3.2. Methodologies Designed for IoTS Development in Accordance with ISO/IEC/IEEE Standards

Fifteen documents were found presenting some development methodology for IoTSs,
out of the several documents obtained from the ScDBs consulted. Table 3 shows the
methodologies found. The analysis carried out on these documents was oriented to the
formality of the methodologies, that is, they present the stages or processes of systems
and software engineering, as well as the tools that they recommend using to obtain the
deliverable product at each stage. In a quick review of the selected documents, it has been
possible to determine that most of them comply below 50% of the stages that ISO/IEC/IEEE
standards establish in the life cycle of systems/software [61,67,72,87–89]. For this reason,
we have reviewed the literature to determine which stages should have an appropriate
life cycle and if there is a consensus in the literature on this matter. Common stages in
systems life cycles are (1) planning, (2) analysis (of requirements and software/system),
(3) solution design, (4) solution coding and testing (construction), (5) integration and testing

Sensors 2023, 23, 790 17 of 35

(implementation), and (6) operation and maintenance [64,90,178,179]. Therefore, we have
considered that these stages are the ones that a methodology should specify.

Table 3. Methodologies specifying the stages of the life cycle.

Year Name Bases
(Methodology/Approach) (1) (2) (3) (4) (5) (6) Other

2022 RASPSS a [180] DDD b 7

Sensors 2023, 23, x FOR PEER REVIEW 17 of 36

encompasses the stages of low-level design, simulation-based validation, and JADE-ori-
ented implementation. However, it does not present information on how the authors ap-
proach the stages of planning, elicitation, and analysis of requirements, in addition to the
integration, operation, and maintenance stages.

All the development methodologies presented in this section are focused on the de-
sign and construction (automatic code generation) stages, based on a model transfor-
mation approach to obtain the IoTS software code. However, some of them
[168,169,172,174–176] are specifically based on the transformation of models, while others
[170,175] are based on patterns, and another [171] is based on agents.

3.2. Methodologies Designed for IoTS Development in Accordance with ISO/IEC/IEEE
Standards

Fifteen documents were found presenting some development methodology for
IoTSs, out of the several documents obtained from the ScDBs consulted. Table 3 shows
the methodologies found. The analysis carried out on these documents was oriented to
the formality of the methodologies, that is, they present the stages or processes of systems
and software engineering, as well as the tools that they recommend using to obtain the
deliverable product at each stage. In a quick review of the selected documents, it has been
possible to determine that most of them comply below 50% of the stages that
ISO/IEC/IEEE standards establish in the life cycle of systems/software [61,67,72,87–89].
For this reason, we have reviewed the literature to determine which stages should have
an appropriate life cycle and if there is a consensus in the literature on this matter. Com-
mon stages in systems life cycles are (1) planning, (2) analysis (of requirements and soft-
ware/system), (3) solution design, (4) solution coding and testing (construction), (5) inte-
gration and testing (implementation), and (6) operation and maintenance [64,90,178,179].
Therefore, we have considered that these stages are the ones that a methodology should
specify.

Table 3. Methodologies specifying the stages of the life cycle.

Year Name Bases
(Methodology/Approach)

(1) (2) (3) (4) (5) (6) Other

2022 RASPSS a [180] DDD b
2021 Schauer and Falas [181] AS c ~ ~
2020 TDDM4IoTS d [37] Agile
2019 Pico-Valencia et al. [94] Agile (SCRUM) ±
2019 Gogineni et al. [86] V Model XT
2018 INTER-METH [65] Iterative waterfall ~
2018 SERVUS [102] SOA
2018 Sosa-Reyna et al. [123–125] MDD and SOA
2017 SEM e [182] Metamodel
2017 Arrowhead [183] SOA f
2016 IDeA g [184] MBSE h, OOSEM i ± ± ± ±
2015 Patel and Cassou [78] Concerns-Oriented
2015 Fortino et al. [185] Metamodel ~
2013 AMG [38] Model Transformation ~

a Rehabilitation Assistive Smart Product-Service System; b Data-Driven Development; c Atomic Ser-
vices; d Test-Driven Development Methodology for IoTSs; e Smart Environment Metamodel; f Ser-
vice-Oriented Architecture; g IoT DevProcess and AppFramework; h Model-Based Systems Engi-
neering; i Object-Oriented Systems Engineering Method.

The analysis of the documents presenting these methodologies was able to determine
the degree of compliance (expressed with an adequate clarity in the corresponding paper)
of these 6 stages, whose score was as follows:

3

Sensors 2023, 23, x FOR PEER REVIEW 17 of 36

encompasses the stages of low-level design, simulation-based validation, and JADE-ori-
ented implementation. However, it does not present information on how the authors ap-
proach the stages of planning, elicitation, and analysis of requirements, in addition to the
integration, operation, and maintenance stages.

All the development methodologies presented in this section are focused on the de-
sign and construction (automatic code generation) stages, based on a model transfor-
mation approach to obtain the IoTS software code. However, some of them
[168,169,172,174–176] are specifically based on the transformation of models, while others
[170,175] are based on patterns, and another [171] is based on agents.

3.2. Methodologies Designed for IoTS Development in Accordance with ISO/IEC/IEEE
Standards

Fifteen documents were found presenting some development methodology for
IoTSs, out of the several documents obtained from the ScDBs consulted. Table 3 shows
the methodologies found. The analysis carried out on these documents was oriented to
the formality of the methodologies, that is, they present the stages or processes of systems
and software engineering, as well as the tools that they recommend using to obtain the
deliverable product at each stage. In a quick review of the selected documents, it has been
possible to determine that most of them comply below 50% of the stages that
ISO/IEC/IEEE standards establish in the life cycle of systems/software [61,67,72,87–89].
For this reason, we have reviewed the literature to determine which stages should have
an appropriate life cycle and if there is a consensus in the literature on this matter. Com-
mon stages in systems life cycles are (1) planning, (2) analysis (of requirements and soft-
ware/system), (3) solution design, (4) solution coding and testing (construction), (5) inte-
gration and testing (implementation), and (6) operation and maintenance [64,90,178,179].
Therefore, we have considered that these stages are the ones that a methodology should
specify.

Table 3. Methodologies specifying the stages of the life cycle.

Year Name Bases
(Methodology/Approach)

(1) (2) (3) (4) (5) (6) Other

2022 RASPSS a [180] DDD b
2021 Schauer and Falas [181] AS c ~ ~
2020 TDDM4IoTS d [37] Agile
2019 Pico-Valencia et al. [94] Agile (SCRUM) ±
2019 Gogineni et al. [86] V Model XT
2018 INTER-METH [65] Iterative waterfall ~
2018 SERVUS [102] SOA
2018 Sosa-Reyna et al. [123–125] MDD and SOA
2017 SEM e [182] Metamodel
2017 Arrowhead [183] SOA f
2016 IDeA g [184] MBSE h, OOSEM i ± ± ± ±
2015 Patel and Cassou [78] Concerns-Oriented
2015 Fortino et al. [185] Metamodel ~
2013 AMG [38] Model Transformation ~

a Rehabilitation Assistive Smart Product-Service System; b Data-Driven Development; c Atomic Ser-
vices; d Test-Driven Development Methodology for IoTSs; e Smart Environment Metamodel; f Ser-
vice-Oriented Architecture; g IoT DevProcess and AppFramework; h Model-Based Systems Engi-
neering; i Object-Oriented Systems Engineering Method.

The analysis of the documents presenting these methodologies was able to determine
the degree of compliance (expressed with an adequate clarity in the corresponding paper)
of these 6 stages, whose score was as follows:

Sensors 2023, 23, x FOR PEER REVIEW 17 of 36

encompasses the stages of low-level design, simulation-based validation, and JADE-ori-
ented implementation. However, it does not present information on how the authors ap-
proach the stages of planning, elicitation, and analysis of requirements, in addition to the
integration, operation, and maintenance stages.

All the development methodologies presented in this section are focused on the de-
sign and construction (automatic code generation) stages, based on a model transfor-
mation approach to obtain the IoTS software code. However, some of them
[168,169,172,174–176] are specifically based on the transformation of models, while others
[170,175] are based on patterns, and another [171] is based on agents.

3.2. Methodologies Designed for IoTS Development in Accordance with ISO/IEC/IEEE
Standards

Fifteen documents were found presenting some development methodology for
IoTSs, out of the several documents obtained from the ScDBs consulted. Table 3 shows
the methodologies found. The analysis carried out on these documents was oriented to
the formality of the methodologies, that is, they present the stages or processes of systems
and software engineering, as well as the tools that they recommend using to obtain the
deliverable product at each stage. In a quick review of the selected documents, it has been
possible to determine that most of them comply below 50% of the stages that
ISO/IEC/IEEE standards establish in the life cycle of systems/software [61,67,72,87–89].
For this reason, we have reviewed the literature to determine which stages should have
an appropriate life cycle and if there is a consensus in the literature on this matter. Com-
mon stages in systems life cycles are (1) planning, (2) analysis (of requirements and soft-
ware/system), (3) solution design, (4) solution coding and testing (construction), (5) inte-
gration and testing (implementation), and (6) operation and maintenance [64,90,178,179].
Therefore, we have considered that these stages are the ones that a methodology should
specify.

Table 3. Methodologies specifying the stages of the life cycle.

Year Name Bases
(Methodology/Approach)

(1) (2) (3) (4) (5) (6) Other

2022 RASPSS a [180] DDD b
2021 Schauer and Falas [181] AS c ~ ~
2020 TDDM4IoTS d [37] Agile
2019 Pico-Valencia et al. [94] Agile (SCRUM) ±
2019 Gogineni et al. [86] V Model XT
2018 INTER-METH [65] Iterative waterfall ~
2018 SERVUS [102] SOA
2018 Sosa-Reyna et al. [123–125] MDD and SOA
2017 SEM e [182] Metamodel
2017 Arrowhead [183] SOA f
2016 IDeA g [184] MBSE h, OOSEM i ± ± ± ±
2015 Patel and Cassou [78] Concerns-Oriented
2015 Fortino et al. [185] Metamodel ~
2013 AMG [38] Model Transformation ~

a Rehabilitation Assistive Smart Product-Service System; b Data-Driven Development; c Atomic Ser-
vices; d Test-Driven Development Methodology for IoTSs; e Smart Environment Metamodel; f Ser-
vice-Oriented Architecture; g IoT DevProcess and AppFramework; h Model-Based Systems Engi-
neering; i Object-Oriented Systems Engineering Method.

The analysis of the documents presenting these methodologies was able to determine
the degree of compliance (expressed with an adequate clarity in the corresponding paper)
of these 6 stages, whose score was as follows:

Sensors 2023, 23, x FOR PEER REVIEW 17 of 36

encompasses the stages of low-level design, simulation-based validation, and JADE-ori-
ented implementation. However, it does not present information on how the authors ap-
proach the stages of planning, elicitation, and analysis of requirements, in addition to the
integration, operation, and maintenance stages.

All the development methodologies presented in this section are focused on the de-
sign and construction (automatic code generation) stages, based on a model transfor-
mation approach to obtain the IoTS software code. However, some of them
[168,169,172,174–176] are specifically based on the transformation of models, while others
[170,175] are based on patterns, and another [171] is based on agents.

3.2. Methodologies Designed for IoTS Development in Accordance with ISO/IEC/IEEE
Standards

Fifteen documents were found presenting some development methodology for
IoTSs, out of the several documents obtained from the ScDBs consulted. Table 3 shows
the methodologies found. The analysis carried out on these documents was oriented to
the formality of the methodologies, that is, they present the stages or processes of systems
and software engineering, as well as the tools that they recommend using to obtain the
deliverable product at each stage. In a quick review of the selected documents, it has been
possible to determine that most of them comply below 50% of the stages that
ISO/IEC/IEEE standards establish in the life cycle of systems/software [61,67,72,87–89].
For this reason, we have reviewed the literature to determine which stages should have
an appropriate life cycle and if there is a consensus in the literature on this matter. Com-
mon stages in systems life cycles are (1) planning, (2) analysis (of requirements and soft-
ware/system), (3) solution design, (4) solution coding and testing (construction), (5) inte-
gration and testing (implementation), and (6) operation and maintenance [64,90,178,179].
Therefore, we have considered that these stages are the ones that a methodology should
specify.

Table 3. Methodologies specifying the stages of the life cycle.

Year Name Bases
(Methodology/Approach)

(1) (2) (3) (4) (5) (6) Other

2022 RASPSS a [180] DDD b
2021 Schauer and Falas [181] AS c ~ ~
2020 TDDM4IoTS d [37] Agile
2019 Pico-Valencia et al. [94] Agile (SCRUM) ±
2019 Gogineni et al. [86] V Model XT
2018 INTER-METH [65] Iterative waterfall ~
2018 SERVUS [102] SOA
2018 Sosa-Reyna et al. [123–125] MDD and SOA
2017 SEM e [182] Metamodel
2017 Arrowhead [183] SOA f
2016 IDeA g [184] MBSE h, OOSEM i ± ± ± ±
2015 Patel and Cassou [78] Concerns-Oriented
2015 Fortino et al. [185] Metamodel ~
2013 AMG [38] Model Transformation ~

a Rehabilitation Assistive Smart Product-Service System; b Data-Driven Development; c Atomic Ser-
vices; d Test-Driven Development Methodology for IoTSs; e Smart Environment Metamodel; f Ser-
vice-Oriented Architecture; g IoT DevProcess and AppFramework; h Model-Based Systems Engi-
neering; i Object-Oriented Systems Engineering Method.

The analysis of the documents presenting these methodologies was able to determine
the degree of compliance (expressed with an adequate clarity in the corresponding paper)
of these 6 stages, whose score was as follows:

Sensors 2023, 23, x FOR PEER REVIEW 17 of 36

encompasses the stages of low-level design, simulation-based validation, and JADE-ori-
ented implementation. However, it does not present information on how the authors ap-
proach the stages of planning, elicitation, and analysis of requirements, in addition to the
integration, operation, and maintenance stages.

All the development methodologies presented in this section are focused on the de-
sign and construction (automatic code generation) stages, based on a model transfor-
mation approach to obtain the IoTS software code. However, some of them
[168,169,172,174–176] are specifically based on the transformation of models, while others
[170,175] are based on patterns, and another [171] is based on agents.

3.2. Methodologies Designed for IoTS Development in Accordance with ISO/IEC/IEEE
Standards

Fifteen documents were found presenting some development methodology for
IoTSs, out of the several documents obtained from the ScDBs consulted. Table 3 shows
the methodologies found. The analysis carried out on these documents was oriented to
the formality of the methodologies, that is, they present the stages or processes of systems
and software engineering, as well as the tools that they recommend using to obtain the
deliverable product at each stage. In a quick review of the selected documents, it has been
possible to determine that most of them comply below 50% of the stages that
ISO/IEC/IEEE standards establish in the life cycle of systems/software [61,67,72,87–89].
For this reason, we have reviewed the literature to determine which stages should have
an appropriate life cycle and if there is a consensus in the literature on this matter. Com-
mon stages in systems life cycles are (1) planning, (2) analysis (of requirements and soft-
ware/system), (3) solution design, (4) solution coding and testing (construction), (5) inte-
gration and testing (implementation), and (6) operation and maintenance [64,90,178,179].
Therefore, we have considered that these stages are the ones that a methodology should
specify.

Table 3. Methodologies specifying the stages of the life cycle.

Year Name Bases
(Methodology/Approach)

(1) (2) (3) (4) (5) (6) Other

2022 RASPSS a [180] DDD b
2021 Schauer and Falas [181] AS c ~ ~
2020 TDDM4IoTS d [37] Agile
2019 Pico-Valencia et al. [94] Agile (SCRUM) ±
2019 Gogineni et al. [86] V Model XT
2018 INTER-METH [65] Iterative waterfall ~
2018 SERVUS [102] SOA
2018 Sosa-Reyna et al. [123–125] MDD and SOA
2017 SEM e [182] Metamodel
2017 Arrowhead [183] SOA f
2016 IDeA g [184] MBSE h, OOSEM i ± ± ± ±
2015 Patel and Cassou [78] Concerns-Oriented
2015 Fortino et al. [185] Metamodel ~
2013 AMG [38] Model Transformation ~

a Rehabilitation Assistive Smart Product-Service System; b Data-Driven Development; c Atomic Ser-
vices; d Test-Driven Development Methodology for IoTSs; e Smart Environment Metamodel; f Ser-
vice-Oriented Architecture; g IoT DevProcess and AppFramework; h Model-Based Systems Engi-
neering; i Object-Oriented Systems Engineering Method.

The analysis of the documents presenting these methodologies was able to determine
the degree of compliance (expressed with an adequate clarity in the corresponding paper)
of these 6 stages, whose score was as follows:

2021 Schauer and Falas [181] AS c 7 3 3 ~ ~ 7 7

2020 TDDM4IoTS d [37] Agile 3 3 3 3 3 3 3

2019 Pico-Valencia et al. [94] Agile (SCRUM) ±

Sensors 2023, 23, x FOR PEER REVIEW 17 of 36

encompasses the stages of low-level design, simulation-based validation, and JADE-ori-
ented implementation. However, it does not present information on how the authors ap-
proach the stages of planning, elicitation, and analysis of requirements, in addition to the
integration, operation, and maintenance stages.

All the development methodologies presented in this section are focused on the de-
sign and construction (automatic code generation) stages, based on a model transfor-
mation approach to obtain the IoTS software code. However, some of them
[168,169,172,174–176] are specifically based on the transformation of models, while others
[170,175] are based on patterns, and another [171] is based on agents.

3.2. Methodologies Designed for IoTS Development in Accordance with ISO/IEC/IEEE
Standards

Fifteen documents were found presenting some development methodology for
IoTSs, out of the several documents obtained from the ScDBs consulted. Table 3 shows
the methodologies found. The analysis carried out on these documents was oriented to
the formality of the methodologies, that is, they present the stages or processes of systems
and software engineering, as well as the tools that they recommend using to obtain the
deliverable product at each stage. In a quick review of the selected documents, it has been
possible to determine that most of them comply below 50% of the stages that
ISO/IEC/IEEE standards establish in the life cycle of systems/software [61,67,72,87–89].
For this reason, we have reviewed the literature to determine which stages should have
an appropriate life cycle and if there is a consensus in the literature on this matter. Com-
mon stages in systems life cycles are (1) planning, (2) analysis (of requirements and soft-
ware/system), (3) solution design, (4) solution coding and testing (construction), (5) inte-
gration and testing (implementation), and (6) operation and maintenance [64,90,178,179].
Therefore, we have considered that these stages are the ones that a methodology should
specify.

Table 3. Methodologies specifying the stages of the life cycle.

Year Name Bases
(Methodology/Approach)

(1) (2) (3) (4) (5) (6) Other

2022 RASPSS a [180] DDD b
2021 Schauer and Falas [181] AS c ~ ~
2020 TDDM4IoTS d [37] Agile
2019 Pico-Valencia et al. [94] Agile (SCRUM) ±
2019 Gogineni et al. [86] V Model XT
2018 INTER-METH [65] Iterative waterfall ~
2018 SERVUS [102] SOA
2018 Sosa-Reyna et al. [123–125] MDD and SOA
2017 SEM e [182] Metamodel
2017 Arrowhead [183] SOA f
2016 IDeA g [184] MBSE h, OOSEM i ± ± ± ±
2015 Patel and Cassou [78] Concerns-Oriented
2015 Fortino et al. [185] Metamodel ~
2013 AMG [38] Model Transformation ~

a Rehabilitation Assistive Smart Product-Service System; b Data-Driven Development; c Atomic Ser-
vices; d Test-Driven Development Methodology for IoTSs; e Smart Environment Metamodel; f Ser-
vice-Oriented Architecture; g IoT DevProcess and AppFramework; h Model-Based Systems Engi-
neering; i Object-Oriented Systems Engineering Method.

The analysis of the documents presenting these methodologies was able to determine
the degree of compliance (expressed with an adequate clarity in the corresponding paper)
of these 6 stages, whose score was as follows:

Sensors 2023, 23, x FOR PEER REVIEW 17 of 36

encompasses the stages of low-level design, simulation-based validation, and JADE-ori-
ented implementation. However, it does not present information on how the authors ap-
proach the stages of planning, elicitation, and analysis of requirements, in addition to the
integration, operation, and maintenance stages.

All the development methodologies presented in this section are focused on the de-
sign and construction (automatic code generation) stages, based on a model transfor-
mation approach to obtain the IoTS software code. However, some of them
[168,169,172,174–176] are specifically based on the transformation of models, while others
[170,175] are based on patterns, and another [171] is based on agents.

3.2. Methodologies Designed for IoTS Development in Accordance with ISO/IEC/IEEE
Standards

Fifteen documents were found presenting some development methodology for
IoTSs, out of the several documents obtained from the ScDBs consulted. Table 3 shows
the methodologies found. The analysis carried out on these documents was oriented to
the formality of the methodologies, that is, they present the stages or processes of systems
and software engineering, as well as the tools that they recommend using to obtain the
deliverable product at each stage. In a quick review of the selected documents, it has been
possible to determine that most of them comply below 50% of the stages that
ISO/IEC/IEEE standards establish in the life cycle of systems/software [61,67,72,87–89].
For this reason, we have reviewed the literature to determine which stages should have
an appropriate life cycle and if there is a consensus in the literature on this matter. Com-
mon stages in systems life cycles are (1) planning, (2) analysis (of requirements and soft-
ware/system), (3) solution design, (4) solution coding and testing (construction), (5) inte-
gration and testing (implementation), and (6) operation and maintenance [64,90,178,179].
Therefore, we have considered that these stages are the ones that a methodology should
specify.

Table 3. Methodologies specifying the stages of the life cycle.

Year Name Bases
(Methodology/Approach)

(1) (2) (3) (4) (5) (6) Other

2022 RASPSS a [180] DDD b
2021 Schauer and Falas [181] AS c ~ ~
2020 TDDM4IoTS d [37] Agile
2019 Pico-Valencia et al. [94] Agile (SCRUM) ±
2019 Gogineni et al. [86] V Model XT
2018 INTER-METH [65] Iterative waterfall ~
2018 SERVUS [102] SOA
2018 Sosa-Reyna et al. [123–125] MDD and SOA
2017 SEM e [182] Metamodel
2017 Arrowhead [183] SOA f
2016 IDeA g [184] MBSE h, OOSEM i ± ± ± ±
2015 Patel and Cassou [78] Concerns-Oriented
2015 Fortino et al. [185] Metamodel ~
2013 AMG [38] Model Transformation ~

a Rehabilitation Assistive Smart Product-Service System; b Data-Driven Development; c Atomic Ser-
vices; d Test-Driven Development Methodology for IoTSs; e Smart Environment Metamodel; f Ser-
vice-Oriented Architecture; g IoT DevProcess and AppFramework; h Model-Based Systems Engi-
neering; i Object-Oriented Systems Engineering Method.

The analysis of the documents presenting these methodologies was able to determine
the degree of compliance (expressed with an adequate clarity in the corresponding paper)
of these 6 stages, whose score was as follows:

3 3

Sensors 2023, 23, x FOR PEER REVIEW 17 of 36

encompasses the stages of low-level design, simulation-based validation, and JADE-ori-
ented implementation. However, it does not present information on how the authors ap-
proach the stages of planning, elicitation, and analysis of requirements, in addition to the
integration, operation, and maintenance stages.

All the development methodologies presented in this section are focused on the de-
sign and construction (automatic code generation) stages, based on a model transfor-
mation approach to obtain the IoTS software code. However, some of them
[168,169,172,174–176] are specifically based on the transformation of models, while others
[170,175] are based on patterns, and another [171] is based on agents.

3.2. Methodologies Designed for IoTS Development in Accordance with ISO/IEC/IEEE
Standards

Fifteen documents were found presenting some development methodology for
IoTSs, out of the several documents obtained from the ScDBs consulted. Table 3 shows
the methodologies found. The analysis carried out on these documents was oriented to
the formality of the methodologies, that is, they present the stages or processes of systems
and software engineering, as well as the tools that they recommend using to obtain the
deliverable product at each stage. In a quick review of the selected documents, it has been
possible to determine that most of them comply below 50% of the stages that
ISO/IEC/IEEE standards establish in the life cycle of systems/software [61,67,72,87–89].
For this reason, we have reviewed the literature to determine which stages should have
an appropriate life cycle and if there is a consensus in the literature on this matter. Com-
mon stages in systems life cycles are (1) planning, (2) analysis (of requirements and soft-
ware/system), (3) solution design, (4) solution coding and testing (construction), (5) inte-
gration and testing (implementation), and (6) operation and maintenance [64,90,178,179].
Therefore, we have considered that these stages are the ones that a methodology should
specify.

Table 3. Methodologies specifying the stages of the life cycle.

Year Name Bases
(Methodology/Approach)

(1) (2) (3) (4) (5) (6) Other

2022 RASPSS a [180] DDD b
2021 Schauer and Falas [181] AS c ~ ~
2020 TDDM4IoTS d [37] Agile
2019 Pico-Valencia et al. [94] Agile (SCRUM) ±
2019 Gogineni et al. [86] V Model XT
2018 INTER-METH [65] Iterative waterfall ~
2018 SERVUS [102] SOA
2018 Sosa-Reyna et al. [123–125] MDD and SOA
2017 SEM e [182] Metamodel
2017 Arrowhead [183] SOA f
2016 IDeA g [184] MBSE h, OOSEM i ± ± ± ±
2015 Patel and Cassou [78] Concerns-Oriented
2015 Fortino et al. [185] Metamodel ~
2013 AMG [38] Model Transformation ~

a Rehabilitation Assistive Smart Product-Service System; b Data-Driven Development; c Atomic Ser-
vices; d Test-Driven Development Methodology for IoTSs; e Smart Environment Metamodel; f Ser-
vice-Oriented Architecture; g IoT DevProcess and AppFramework; h Model-Based Systems Engi-
neering; i Object-Oriented Systems Engineering Method.

The analysis of the documents presenting these methodologies was able to determine
the degree of compliance (expressed with an adequate clarity in the corresponding paper)
of these 6 stages, whose score was as follows:

Sensors 2023, 23, x FOR PEER REVIEW 17 of 36

encompasses the stages of low-level design, simulation-based validation, and JADE-ori-
ented implementation. However, it does not present information on how the authors ap-
proach the stages of planning, elicitation, and analysis of requirements, in addition to the
integration, operation, and maintenance stages.

All the development methodologies presented in this section are focused on the de-
sign and construction (automatic code generation) stages, based on a model transfor-
mation approach to obtain the IoTS software code. However, some of them
[168,169,172,174–176] are specifically based on the transformation of models, while others
[170,175] are based on patterns, and another [171] is based on agents.

3.2. Methodologies Designed for IoTS Development in Accordance with ISO/IEC/IEEE
Standards

Fifteen documents were found presenting some development methodology for
IoTSs, out of the several documents obtained from the ScDBs consulted. Table 3 shows
the methodologies found. The analysis carried out on these documents was oriented to
the formality of the methodologies, that is, they present the stages or processes of systems
and software engineering, as well as the tools that they recommend using to obtain the
deliverable product at each stage. In a quick review of the selected documents, it has been
possible to determine that most of them comply below 50% of the stages that
ISO/IEC/IEEE standards establish in the life cycle of systems/software [61,67,72,87–89].
For this reason, we have reviewed the literature to determine which stages should have
an appropriate life cycle and if there is a consensus in the literature on this matter. Com-
mon stages in systems life cycles are (1) planning, (2) analysis (of requirements and soft-
ware/system), (3) solution design, (4) solution coding and testing (construction), (5) inte-
gration and testing (implementation), and (6) operation and maintenance [64,90,178,179].
Therefore, we have considered that these stages are the ones that a methodology should
specify.

Table 3. Methodologies specifying the stages of the life cycle.

Year Name Bases
(Methodology/Approach)

(1) (2) (3) (4) (5) (6) Other

2022 RASPSS a [180] DDD b
2021 Schauer and Falas [181] AS c ~ ~
2020 TDDM4IoTS d [37] Agile
2019 Pico-Valencia et al. [94] Agile (SCRUM) ±
2019 Gogineni et al. [86] V Model XT
2018 INTER-METH [65] Iterative waterfall ~
2018 SERVUS [102] SOA
2018 Sosa-Reyna et al. [123–125] MDD and SOA
2017 SEM e [182] Metamodel
2017 Arrowhead [183] SOA f
2016 IDeA g [184] MBSE h, OOSEM i ± ± ± ±
2015 Patel and Cassou [78] Concerns-Oriented
2015 Fortino et al. [185] Metamodel ~
2013 AMG [38] Model Transformation ~

a Rehabilitation Assistive Smart Product-Service System; b Data-Driven Development; c Atomic Ser-
vices; d Test-Driven Development Methodology for IoTSs; e Smart Environment Metamodel; f Ser-
vice-Oriented Architecture; g IoT DevProcess and AppFramework; h Model-Based Systems Engi-
neering; i Object-Oriented Systems Engineering Method.

The analysis of the documents presenting these methodologies was able to determine
the degree of compliance (expressed with an adequate clarity in the corresponding paper)
of these 6 stages, whose score was as follows:

2019 Gogineni et al. [86] V Model XT

Sensors 2023, 23, x FOR PEER REVIEW 17 of 36

encompasses the stages of low-level design, simulation-based validation, and JADE-ori-
ented implementation. However, it does not present information on how the authors ap-
proach the stages of planning, elicitation, and analysis of requirements, in addition to the
integration, operation, and maintenance stages.

All the development methodologies presented in this section are focused on the de-
sign and construction (automatic code generation) stages, based on a model transfor-
mation approach to obtain the IoTS software code. However, some of them
[168,169,172,174–176] are specifically based on the transformation of models, while others
[170,175] are based on patterns, and another [171] is based on agents.

3.2. Methodologies Designed for IoTS Development in Accordance with ISO/IEC/IEEE
Standards

Fifteen documents were found presenting some development methodology for
IoTSs, out of the several documents obtained from the ScDBs consulted. Table 3 shows
the methodologies found. The analysis carried out on these documents was oriented to
the formality of the methodologies, that is, they present the stages or processes of systems
and software engineering, as well as the tools that they recommend using to obtain the
deliverable product at each stage. In a quick review of the selected documents, it has been
possible to determine that most of them comply below 50% of the stages that
ISO/IEC/IEEE standards establish in the life cycle of systems/software [61,67,72,87–89].
For this reason, we have reviewed the literature to determine which stages should have
an appropriate life cycle and if there is a consensus in the literature on this matter. Com-
mon stages in systems life cycles are (1) planning, (2) analysis (of requirements and soft-
ware/system), (3) solution design, (4) solution coding and testing (construction), (5) inte-
gration and testing (implementation), and (6) operation and maintenance [64,90,178,179].
Therefore, we have considered that these stages are the ones that a methodology should
specify.

Table 3. Methodologies specifying the stages of the life cycle.

Year Name Bases
(Methodology/Approach)

(1) (2) (3) (4) (5) (6) Other

2022 RASPSS a [180] DDD b
2021 Schauer and Falas [181] AS c ~ ~
2020 TDDM4IoTS d [37] Agile
2019 Pico-Valencia et al. [94] Agile (SCRUM) ±
2019 Gogineni et al. [86] V Model XT
2018 INTER-METH [65] Iterative waterfall ~
2018 SERVUS [102] SOA
2018 Sosa-Reyna et al. [123–125] MDD and SOA
2017 SEM e [182] Metamodel
2017 Arrowhead [183] SOA f
2016 IDeA g [184] MBSE h, OOSEM i ± ± ± ±
2015 Patel and Cassou [78] Concerns-Oriented
2015 Fortino et al. [185] Metamodel ~
2013 AMG [38] Model Transformation ~

a Rehabilitation Assistive Smart Product-Service System; b Data-Driven Development; c Atomic Ser-
vices; d Test-Driven Development Methodology for IoTSs; e Smart Environment Metamodel; f Ser-
vice-Oriented Architecture; g IoT DevProcess and AppFramework; h Model-Based Systems Engi-
neering; i Object-Oriented Systems Engineering Method.

The analysis of the documents presenting these methodologies was able to determine
the degree of compliance (expressed with an adequate clarity in the corresponding paper)
of these 6 stages, whose score was as follows:

3 3 3 3 7 7

2018 INTER-METH [65] Iterative waterfall ~ 3 3 3 3 3 7

2018 SERVUS [102] SOA 7 3 3 3 3 7 7

2018 Sosa-Reyna et al. [123–125] MDD and SOA 7 3 3 3 3 7 7

2017 SEM e [182] Metamodel 7 3 3 3

Sensors 2023, 23, x FOR PEER REVIEW 17 of 36

encompasses the stages of low-level design, simulation-based validation, and JADE-ori-
ented implementation. However, it does not present information on how the authors ap-
proach the stages of planning, elicitation, and analysis of requirements, in addition to the
integration, operation, and maintenance stages.

All the development methodologies presented in this section are focused on the de-
sign and construction (automatic code generation) stages, based on a model transfor-
mation approach to obtain the IoTS software code. However, some of them
[168,169,172,174–176] are specifically based on the transformation of models, while others
[170,175] are based on patterns, and another [171] is based on agents.

3.2. Methodologies Designed for IoTS Development in Accordance with ISO/IEC/IEEE
Standards

Fifteen documents were found presenting some development methodology for
IoTSs, out of the several documents obtained from the ScDBs consulted. Table 3 shows
the methodologies found. The analysis carried out on these documents was oriented to
the formality of the methodologies, that is, they present the stages or processes of systems
and software engineering, as well as the tools that they recommend using to obtain the
deliverable product at each stage. In a quick review of the selected documents, it has been
possible to determine that most of them comply below 50% of the stages that
ISO/IEC/IEEE standards establish in the life cycle of systems/software [61,67,72,87–89].
For this reason, we have reviewed the literature to determine which stages should have
an appropriate life cycle and if there is a consensus in the literature on this matter. Com-
mon stages in systems life cycles are (1) planning, (2) analysis (of requirements and soft-
ware/system), (3) solution design, (4) solution coding and testing (construction), (5) inte-
gration and testing (implementation), and (6) operation and maintenance [64,90,178,179].
Therefore, we have considered that these stages are the ones that a methodology should
specify.

Table 3. Methodologies specifying the stages of the life cycle.

Year Name Bases
(Methodology/Approach)

(1) (2) (3) (4) (5) (6) Other

2022 RASPSS a [180] DDD b
2021 Schauer and Falas [181] AS c ~ ~
2020 TDDM4IoTS d [37] Agile
2019 Pico-Valencia et al. [94] Agile (SCRUM) ±
2019 Gogineni et al. [86] V Model XT
2018 INTER-METH [65] Iterative waterfall ~
2018 SERVUS [102] SOA
2018 Sosa-Reyna et al. [123–125] MDD and SOA
2017 SEM e [182] Metamodel
2017 Arrowhead [183] SOA f
2016 IDeA g [184] MBSE h, OOSEM i ± ± ± ±
2015 Patel and Cassou [78] Concerns-Oriented
2015 Fortino et al. [185] Metamodel ~
2013 AMG [38] Model Transformation ~

a Rehabilitation Assistive Smart Product-Service System; b Data-Driven Development; c Atomic Ser-
vices; d Test-Driven Development Methodology for IoTSs; e Smart Environment Metamodel; f Ser-
vice-Oriented Architecture; g IoT DevProcess and AppFramework; h Model-Based Systems Engi-
neering; i Object-Oriented Systems Engineering Method.

The analysis of the documents presenting these methodologies was able to determine
the degree of compliance (expressed with an adequate clarity in the corresponding paper)
of these 6 stages, whose score was as follows:

7 7

2017 Arrowhead [183] SOA f 7

Sensors 2023, 23, x FOR PEER REVIEW 17 of 36

encompasses the stages of low-level design, simulation-based validation, and JADE-ori-
ented implementation. However, it does not present information on how the authors ap-
proach the stages of planning, elicitation, and analysis of requirements, in addition to the
integration, operation, and maintenance stages.

All the development methodologies presented in this section are focused on the de-
sign and construction (automatic code generation) stages, based on a model transfor-
mation approach to obtain the IoTS software code. However, some of them
[168,169,172,174–176] are specifically based on the transformation of models, while others
[170,175] are based on patterns, and another [171] is based on agents.

3.2. Methodologies Designed for IoTS Development in Accordance with ISO/IEC/IEEE
Standards

Fifteen documents were found presenting some development methodology for
IoTSs, out of the several documents obtained from the ScDBs consulted. Table 3 shows
the methodologies found. The analysis carried out on these documents was oriented to
the formality of the methodologies, that is, they present the stages or processes of systems
and software engineering, as well as the tools that they recommend using to obtain the
deliverable product at each stage. In a quick review of the selected documents, it has been
possible to determine that most of them comply below 50% of the stages that
ISO/IEC/IEEE standards establish in the life cycle of systems/software [61,67,72,87–89].
For this reason, we have reviewed the literature to determine which stages should have
an appropriate life cycle and if there is a consensus in the literature on this matter. Com-
mon stages in systems life cycles are (1) planning, (2) analysis (of requirements and soft-
ware/system), (3) solution design, (4) solution coding and testing (construction), (5) inte-
gration and testing (implementation), and (6) operation and maintenance [64,90,178,179].
Therefore, we have considered that these stages are the ones that a methodology should
specify.

Table 3. Methodologies specifying the stages of the life cycle.

Year Name Bases
(Methodology/Approach)

(1) (2) (3) (4) (5) (6) Other

2022 RASPSS a [180] DDD b
2021 Schauer and Falas [181] AS c ~ ~
2020 TDDM4IoTS d [37] Agile
2019 Pico-Valencia et al. [94] Agile (SCRUM) ±
2019 Gogineni et al. [86] V Model XT
2018 INTER-METH [65] Iterative waterfall ~
2018 SERVUS [102] SOA
2018 Sosa-Reyna et al. [123–125] MDD and SOA
2017 SEM e [182] Metamodel
2017 Arrowhead [183] SOA f
2016 IDeA g [184] MBSE h, OOSEM i ± ± ± ±
2015 Patel and Cassou [78] Concerns-Oriented
2015 Fortino et al. [185] Metamodel ~
2013 AMG [38] Model Transformation ~

a Rehabilitation Assistive Smart Product-Service System; b Data-Driven Development; c Atomic Ser-
vices; d Test-Driven Development Methodology for IoTSs; e Smart Environment Metamodel; f Ser-
vice-Oriented Architecture; g IoT DevProcess and AppFramework; h Model-Based Systems Engi-
neering; i Object-Oriented Systems Engineering Method.

The analysis of the documents presenting these methodologies was able to determine
the degree of compliance (expressed with an adequate clarity in the corresponding paper)
of these 6 stages, whose score was as follows:

3 3 3 7 3

2016 IDeA g [184] MBSE h, OOSEM i 7 3 3 ± ± ± ±
2015 Patel and Cassou [78] Concerns-Oriented

Sensors 2023, 23, x FOR PEER REVIEW 17 of 36

encompasses the stages of low-level design, simulation-based validation, and JADE-ori-
ented implementation. However, it does not present information on how the authors ap-
proach the stages of planning, elicitation, and analysis of requirements, in addition to the
integration, operation, and maintenance stages.

All the development methodologies presented in this section are focused on the de-
sign and construction (automatic code generation) stages, based on a model transfor-
mation approach to obtain the IoTS software code. However, some of them
[168,169,172,174–176] are specifically based on the transformation of models, while others
[170,175] are based on patterns, and another [171] is based on agents.

3.2. Methodologies Designed for IoTS Development in Accordance with ISO/IEC/IEEE
Standards

Fifteen documents were found presenting some development methodology for
IoTSs, out of the several documents obtained from the ScDBs consulted. Table 3 shows
the methodologies found. The analysis carried out on these documents was oriented to
the formality of the methodologies, that is, they present the stages or processes of systems
and software engineering, as well as the tools that they recommend using to obtain the
deliverable product at each stage. In a quick review of the selected documents, it has been
possible to determine that most of them comply below 50% of the stages that
ISO/IEC/IEEE standards establish in the life cycle of systems/software [61,67,72,87–89].
For this reason, we have reviewed the literature to determine which stages should have
an appropriate life cycle and if there is a consensus in the literature on this matter. Com-
mon stages in systems life cycles are (1) planning, (2) analysis (of requirements and soft-
ware/system), (3) solution design, (4) solution coding and testing (construction), (5) inte-
gration and testing (implementation), and (6) operation and maintenance [64,90,178,179].
Therefore, we have considered that these stages are the ones that a methodology should
specify.

Table 3. Methodologies specifying the stages of the life cycle.

Year Name Bases
(Methodology/Approach)

(1) (2) (3) (4) (5) (6) Other

2022 RASPSS a [180] DDD b
2021 Schauer and Falas [181] AS c ~ ~
2020 TDDM4IoTS d [37] Agile
2019 Pico-Valencia et al. [94] Agile (SCRUM) ±
2019 Gogineni et al. [86] V Model XT
2018 INTER-METH [65] Iterative waterfall ~
2018 SERVUS [102] SOA
2018 Sosa-Reyna et al. [123–125] MDD and SOA
2017 SEM e [182] Metamodel
2017 Arrowhead [183] SOA f
2016 IDeA g [184] MBSE h, OOSEM i ± ± ± ±
2015 Patel and Cassou [78] Concerns-Oriented
2015 Fortino et al. [185] Metamodel ~
2013 AMG [38] Model Transformation ~

a Rehabilitation Assistive Smart Product-Service System; b Data-Driven Development; c Atomic Ser-
vices; d Test-Driven Development Methodology for IoTSs; e Smart Environment Metamodel; f Ser-
vice-Oriented Architecture; g IoT DevProcess and AppFramework; h Model-Based Systems Engi-
neering; i Object-Oriented Systems Engineering Method.

The analysis of the documents presenting these methodologies was able to determine
the degree of compliance (expressed with an adequate clarity in the corresponding paper)
of these 6 stages, whose score was as follows:

Sensors 2023, 23, x FOR PEER REVIEW 17 of 36

encompasses the stages of low-level design, simulation-based validation, and JADE-ori-
ented implementation. However, it does not present information on how the authors ap-
proach the stages of planning, elicitation, and analysis of requirements, in addition to the
integration, operation, and maintenance stages.

All the development methodologies presented in this section are focused on the de-
sign and construction (automatic code generation) stages, based on a model transfor-
mation approach to obtain the IoTS software code. However, some of them
[168,169,172,174–176] are specifically based on the transformation of models, while others
[170,175] are based on patterns, and another [171] is based on agents.

3.2. Methodologies Designed for IoTS Development in Accordance with ISO/IEC/IEEE
Standards

Fifteen documents were found presenting some development methodology for
IoTSs, out of the several documents obtained from the ScDBs consulted. Table 3 shows
the methodologies found. The analysis carried out on these documents was oriented to
the formality of the methodologies, that is, they present the stages or processes of systems
and software engineering, as well as the tools that they recommend using to obtain the
deliverable product at each stage. In a quick review of the selected documents, it has been
possible to determine that most of them comply below 50% of the stages that
ISO/IEC/IEEE standards establish in the life cycle of systems/software [61,67,72,87–89].
For this reason, we have reviewed the literature to determine which stages should have
an appropriate life cycle and if there is a consensus in the literature on this matter. Com-
mon stages in systems life cycles are (1) planning, (2) analysis (of requirements and soft-
ware/system), (3) solution design, (4) solution coding and testing (construction), (5) inte-
gration and testing (implementation), and (6) operation and maintenance [64,90,178,179].
Therefore, we have considered that these stages are the ones that a methodology should
specify.

Table 3. Methodologies specifying the stages of the life cycle.

Year Name Bases
(Methodology/Approach)

(1) (2) (3) (4) (5) (6) Other

2022 RASPSS a [180] DDD b
2021 Schauer and Falas [181] AS c ~ ~
2020 TDDM4IoTS d [37] Agile
2019 Pico-Valencia et al. [94] Agile (SCRUM) ±
2019 Gogineni et al. [86] V Model XT
2018 INTER-METH [65] Iterative waterfall ~
2018 SERVUS [102] SOA
2018 Sosa-Reyna et al. [123–125] MDD and SOA
2017 SEM e [182] Metamodel
2017 Arrowhead [183] SOA f
2016 IDeA g [184] MBSE h, OOSEM i ± ± ± ±
2015 Patel and Cassou [78] Concerns-Oriented
2015 Fortino et al. [185] Metamodel ~
2013 AMG [38] Model Transformation ~

a Rehabilitation Assistive Smart Product-Service System; b Data-Driven Development; c Atomic Ser-
vices; d Test-Driven Development Methodology for IoTSs; e Smart Environment Metamodel; f Ser-
vice-Oriented Architecture; g IoT DevProcess and AppFramework; h Model-Based Systems Engi-
neering; i Object-Oriented Systems Engineering Method.

The analysis of the documents presenting these methodologies was able to determine
the degree of compliance (expressed with an adequate clarity in the corresponding paper)
of these 6 stages, whose score was as follows:

Sensors 2023, 23, x FOR PEER REVIEW 17 of 36

encompasses the stages of low-level design, simulation-based validation, and JADE-ori-
ented implementation. However, it does not present information on how the authors ap-
proach the stages of planning, elicitation, and analysis of requirements, in addition to the
integration, operation, and maintenance stages.

All the development methodologies presented in this section are focused on the de-
sign and construction (automatic code generation) stages, based on a model transfor-
mation approach to obtain the IoTS software code. However, some of them
[168,169,172,174–176] are specifically based on the transformation of models, while others
[170,175] are based on patterns, and another [171] is based on agents.

3.2. Methodologies Designed for IoTS Development in Accordance with ISO/IEC/IEEE
Standards

Fifteen documents were found presenting some development methodology for
IoTSs, out of the several documents obtained from the ScDBs consulted. Table 3 shows
the methodologies found. The analysis carried out on these documents was oriented to
the formality of the methodologies, that is, they present the stages or processes of systems
and software engineering, as well as the tools that they recommend using to obtain the
deliverable product at each stage. In a quick review of the selected documents, it has been
possible to determine that most of them comply below 50% of the stages that
ISO/IEC/IEEE standards establish in the life cycle of systems/software [61,67,72,87–89].
For this reason, we have reviewed the literature to determine which stages should have
an appropriate life cycle and if there is a consensus in the literature on this matter. Com-
mon stages in systems life cycles are (1) planning, (2) analysis (of requirements and soft-
ware/system), (3) solution design, (4) solution coding and testing (construction), (5) inte-
gration and testing (implementation), and (6) operation and maintenance [64,90,178,179].
Therefore, we have considered that these stages are the ones that a methodology should
specify.

Table 3. Methodologies specifying the stages of the life cycle.

Year Name Bases
(Methodology/Approach)

(1) (2) (3) (4) (5) (6) Other

2022 RASPSS a [180] DDD b
2021 Schauer and Falas [181] AS c ~ ~
2020 TDDM4IoTS d [37] Agile
2019 Pico-Valencia et al. [94] Agile (SCRUM) ±
2019 Gogineni et al. [86] V Model XT
2018 INTER-METH [65] Iterative waterfall ~
2018 SERVUS [102] SOA
2018 Sosa-Reyna et al. [123–125] MDD and SOA
2017 SEM e [182] Metamodel
2017 Arrowhead [183] SOA f
2016 IDeA g [184] MBSE h, OOSEM i ± ± ± ±
2015 Patel and Cassou [78] Concerns-Oriented
2015 Fortino et al. [185] Metamodel ~
2013 AMG [38] Model Transformation ~

a Rehabilitation Assistive Smart Product-Service System; b Data-Driven Development; c Atomic Ser-
vices; d Test-Driven Development Methodology for IoTSs; e Smart Environment Metamodel; f Ser-
vice-Oriented Architecture; g IoT DevProcess and AppFramework; h Model-Based Systems Engi-
neering; i Object-Oriented Systems Engineering Method.

The analysis of the documents presenting these methodologies was able to determine
the degree of compliance (expressed with an adequate clarity in the corresponding paper)
of these 6 stages, whose score was as follows:

3 3 3

Sensors 2023, 23, x FOR PEER REVIEW 17 of 36

encompasses the stages of low-level design, simulation-based validation, and JADE-ori-
ented implementation. However, it does not present information on how the authors ap-
proach the stages of planning, elicitation, and analysis of requirements, in addition to the
integration, operation, and maintenance stages.

All the development methodologies presented in this section are focused on the de-
sign and construction (automatic code generation) stages, based on a model transfor-
mation approach to obtain the IoTS software code. However, some of them
[168,169,172,174–176] are specifically based on the transformation of models, while others
[170,175] are based on patterns, and another [171] is based on agents.

3.2. Methodologies Designed for IoTS Development in Accordance with ISO/IEC/IEEE
Standards

Fifteen documents were found presenting some development methodology for
IoTSs, out of the several documents obtained from the ScDBs consulted. Table 3 shows
the methodologies found. The analysis carried out on these documents was oriented to
the formality of the methodologies, that is, they present the stages or processes of systems
and software engineering, as well as the tools that they recommend using to obtain the
deliverable product at each stage. In a quick review of the selected documents, it has been
possible to determine that most of them comply below 50% of the stages that
ISO/IEC/IEEE standards establish in the life cycle of systems/software [61,67,72,87–89].
For this reason, we have reviewed the literature to determine which stages should have
an appropriate life cycle and if there is a consensus in the literature on this matter. Com-
mon stages in systems life cycles are (1) planning, (2) analysis (of requirements and soft-
ware/system), (3) solution design, (4) solution coding and testing (construction), (5) inte-
gration and testing (implementation), and (6) operation and maintenance [64,90,178,179].
Therefore, we have considered that these stages are the ones that a methodology should
specify.

Table 3. Methodologies specifying the stages of the life cycle.

Year Name Bases
(Methodology/Approach)

(1) (2) (3) (4) (5) (6) Other

2022 RASPSS a [180] DDD b
2021 Schauer and Falas [181] AS c ~ ~
2020 TDDM4IoTS d [37] Agile
2019 Pico-Valencia et al. [94] Agile (SCRUM) ±
2019 Gogineni et al. [86] V Model XT
2018 INTER-METH [65] Iterative waterfall ~
2018 SERVUS [102] SOA
2018 Sosa-Reyna et al. [123–125] MDD and SOA
2017 SEM e [182] Metamodel
2017 Arrowhead [183] SOA f
2016 IDeA g [184] MBSE h, OOSEM i ± ± ± ±
2015 Patel and Cassou [78] Concerns-Oriented
2015 Fortino et al. [185] Metamodel ~
2013 AMG [38] Model Transformation ~

a Rehabilitation Assistive Smart Product-Service System; b Data-Driven Development; c Atomic Ser-
vices; d Test-Driven Development Methodology for IoTSs; e Smart Environment Metamodel; f Ser-
vice-Oriented Architecture; g IoT DevProcess and AppFramework; h Model-Based Systems Engi-
neering; i Object-Oriented Systems Engineering Method.

The analysis of the documents presenting these methodologies was able to determine
the degree of compliance (expressed with an adequate clarity in the corresponding paper)
of these 6 stages, whose score was as follows:

2015 Fortino et al. [185] Metamodel ~ 3 3 3 7 7 7

2013 AMG [38] Model Transformation 7 ~ 3 3 7 7 7

a Rehabilitation Assistive Smart Product-Service System; b Data-Driven Development; c Atomic Services; d Test-
Driven Development Methodology for IoTSs; e Smart Environment Metamodel; f Service-Oriented Architecture; g IoT
DevProcess and AppFramework; h Model-Based Systems Engineering; i Object-Oriented Systems Engineering Method.

The analysis of the documents presenting these methodologies was able to determine
the degree of compliance (expressed with an adequate clarity in the corresponding paper)
of these 6 stages, whose score was as follows:

• Proper compliance. The authors have addressed all stages of the software/system life
cycle, recording evidence of this, such as explaining what it consists of, and the tools
to be used, among other aspects (3).

• Incomplete compliance. The authors, although not specifically naming some stages,
name some activities, tools to be used, or other aspects of those missing stages. For
example, they mention the use of use case diagrams, class diagrams, or software
generation from models, among others (

Sensors 2023, 23, x FOR PEER REVIEW 17 of 36

encompasses the stages of low-level design, simulation-based validation, and JADE-ori-
ented implementation. However, it does not present information on how the authors ap-
proach the stages of planning, elicitation, and analysis of requirements, in addition to the
integration, operation, and maintenance stages.

All the development methodologies presented in this section are focused on the de-
sign and construction (automatic code generation) stages, based on a model transfor-
mation approach to obtain the IoTS software code. However, some of them
[168,169,172,174–176] are specifically based on the transformation of models, while others
[170,175] are based on patterns, and another [171] is based on agents.

3.2. Methodologies Designed for IoTS Development in Accordance with ISO/IEC/IEEE
Standards

Fifteen documents were found presenting some development methodology for
IoTSs, out of the several documents obtained from the ScDBs consulted. Table 3 shows
the methodologies found. The analysis carried out on these documents was oriented to
the formality of the methodologies, that is, they present the stages or processes of systems
and software engineering, as well as the tools that they recommend using to obtain the
deliverable product at each stage. In a quick review of the selected documents, it has been
possible to determine that most of them comply below 50% of the stages that
ISO/IEC/IEEE standards establish in the life cycle of systems/software [61,67,72,87–89].
For this reason, we have reviewed the literature to determine which stages should have
an appropriate life cycle and if there is a consensus in the literature on this matter. Com-
mon stages in systems life cycles are (1) planning, (2) analysis (of requirements and soft-
ware/system), (3) solution design, (4) solution coding and testing (construction), (5) inte-
gration and testing (implementation), and (6) operation and maintenance [64,90,178,179].
Therefore, we have considered that these stages are the ones that a methodology should
specify.

Table 3. Methodologies specifying the stages of the life cycle.

Year Name Bases
(Methodology/Approach)

(1) (2) (3) (4) (5) (6) Other

2022 RASPSS a [180] DDD b
2021 Schauer and Falas [181] AS c ~ ~
2020 TDDM4IoTS d [37] Agile
2019 Pico-Valencia et al. [94] Agile (SCRUM) ±
2019 Gogineni et al. [86] V Model XT
2018 INTER-METH [65] Iterative waterfall ~
2018 SERVUS [102] SOA
2018 Sosa-Reyna et al. [123–125] MDD and SOA
2017 SEM e [182] Metamodel
2017 Arrowhead [183] SOA f
2016 IDeA g [184] MBSE h, OOSEM i ± ± ± ±
2015 Patel and Cassou [78] Concerns-Oriented
2015 Fortino et al. [185] Metamodel ~
2013 AMG [38] Model Transformation ~

a Rehabilitation Assistive Smart Product-Service System; b Data-Driven Development; c Atomic Ser-
vices; d Test-Driven Development Methodology for IoTSs; e Smart Environment Metamodel; f Ser-
vice-Oriented Architecture; g IoT DevProcess and AppFramework; h Model-Based Systems Engi-
neering; i Object-Oriented Systems Engineering Method.

The analysis of the documents presenting these methodologies was able to determine
the degree of compliance (expressed with an adequate clarity in the corresponding paper)
of these 6 stages, whose score was as follows:

).
• Legacy compliance. The authors do not explicitly name some stages because they are

part of or already present in the approaches on which they are based. For example, in
some cases, they mention that they are based on the fundamentals of SCRUM, which
suggests that the planning stage is carried out (±).

• Inadequate compliance. Works in which the importance of some stage is mentioned,
but without giving more detail on how to carry it out (~).

• Non-existent compliance. Works in which their authors do not mention activities of
some stages or even do not mention certain stages (7).

The Other column refers to other additional stages included in the analysed methodol-
ogy, even as a consequence of having divided one or more of the 6 stages considered, as
long as this is in accordance with the life cycle of the software/system presented in the
ISO/IEC/IEEE standards [61,67,72,87–89] The results of this analysis are summarised in
Table 2 and detailed below.

RASPSS [180] is a methodology for the design and implementation (construction) of
intelligent health service processes in the context of industrial interconnection and iterative
design of rehabilitation assistance devices. This methodology, in addition to being directed
to a particular type of system, guides directly to the construction stage of this type of
system. The architecture it presents clearly shows the importance of interaction with the
user. It addresses in detail the creation of IoT devices, including providing them with the
artificial intelligence techniques necessary to achieve their objectives.

Sensors 2023, 23, 790 18 of 35

The work of Schauer and Falas [181] focuses on the development of atomic services.
Services are deployed in a service repository according to the types of computing resources
that are available. That repository has been designed to provide two functionalities: (1) the
list of services with the appropriate descriptions; and (2) pluggable Docker images ready
to use in different architectures based on atomic services. Its architecture is based on a
repository of Docker image forms and controlled by the service orchestration process. The
atomic services are developed following a life cycle with the stages of design, development
(a stage of this methodology), deployment, and execution. In addition, IoTSs are treated as
complex systems and are carried out through service composition. A third issue addressed
refers to the components related to computational resources (processing, storage, and so
on), and communications (protocols, technologies, and so on). This methodology is focused
on the stage of IoTSs construction and is closed to the technologies. These may be the
reasons why the planning, integration, and maintenance stages are not mentioned. Other
activities are assumed to take place in what they call the development stage.

TDDM4IoTS [37] is a methodology based on the 4 values and 12 principles of the
Agile Manifesto. It considers 11 stages and specifies, in an acceptable way, the resources
and tools to be used in each of the stages. It is the most attached to the software/systems
life cycle raised in the ISO/IEC/IEEE standards [61,67,72,87–89]. TDDM4IoTS raises the
stages in a distinctive way, involving those aspects of IoTSs that differentiate them from the
traditional ISs, except that it does not address those activities that involve the provision
of AI techniques to an IoTS, as well as the withdrawal of the IoTS once it cannot fulfil the
functions for which it was designed, or its maintenance is unfeasible.

Another methodology based on the principles and values of agile methodologies
is the one presented by Pico-Valencia et al. [94]. This methodology is focused on the
construction of IoTSs. It presents the requirements elicitation stage by collecting the global
requirements, being the work team who collects these requirements from users, clients,
and other stakeholders. The design stage consists of, once these requirements have been
defined, carrying out a set of tasks linked to very specific agents. More specifically, an
exploration process of the IoT infrastructure is carried out, where the objects connected to
the network are modelled as Linked Open Agents (LOAs). In addition, tasks related to
the infrastructure itself are carried out (interception of messages, adding new messages,
workflow execution, and agent discovery). The construction and integration stages are
presented as a macroscopic level stage in which the microscopic level LOAs are integrated
and coordinated within a single network. Moreover, its authors have designed this stage to
meet the requirements of LOA interaction, collaboration, coordination, data processing, user
interaction and intelligent behaviour. It should be noted that this methodology mentions
the use of tools that the developer can use in the analysis and design stages. However,
there is no evidence of the planning, implementation, operation, and maintenance stages.

Among the contributions of Gogineni et al. [86] is a methodology for the development
of IoTSs that follows the V-model XT. In it, the verification and validation of the require-
ments, functionalities, and principles governing the system is the focus of its considerations.
Other important stages are the requirements elicitation, design (in some respects), integra-
tion, and testing stages. However, they do not present evidence to address the operation
and maintenance stage.

INTER-METH [65] can be considered an iterative methodology that defines the six
sequential stages of development: analysis, design, implementation, deployment, testing,
and maintenance. Each iteration can be geared towards improving individual stages, a set
of successive stages, or the entire process, thus improving adaptability to new requirements.
INTER-METH is a methodology adapted from the traditional waterfall methodology,
differing in that it divides the problem into subproblems to ensure successful development.
INTER-METH, being based on the waterfall methodology, is supposed to meet each of
the characteristics of its base methodology. However, its authors do not present tools,
guidelines, activities, or tasks typical of IoTSs, such as hardware deployment.

Sensors 2023, 23, 790 19 of 35

Usländer and Batz present SERVUS [102] as an IoTS development methodology aimed
at solving interoperability challenges by adopting a service-oriented architecture based on
the Industrial Internet Reference Architecture (IIRA 4.0). SERVUS addresses requirements
elicitation and analysis, as well as the analysis and design stages. To obtain the requirements
and their analysis, they recommend user stories and use cases as the main artifacts for this
stage. However, there is no supporting evidence for the software construction, deployment,
or operation and maintenance stages.

Sosa-Reyna et al. present a methodology with two approaches, i.e., with the MDD [124,125] and
MDE [123] approaches. This methodology establishes the following stages of development:
(1) Analysis of business requirements, (2) definition of the business logic, (3) design of the
integrated services solution, (4) generation of the technological solution, and (5) model
transformation methods. They leverage the MDE guidelines and use languages such as
Unified Modelling Language (UML) to specify business requirements in stage (1), and
Business Process Model and Notation (BPMN) for the definition of the business logic in
stage (2). The result of stages (1) and (2) is a PIM. Subsequently, a more refined model is
obtained following an SOA approach in stage (3). To obtain a platform-specific code in stage
(4), two steps are performed: First, a PSM is derived from the PMI, and second, the PSM is
transformed into a code. This is one of the IoTS development methodologies that presents
and defines all the basic stages for the development of this type of system. However, its
authors do not consider how to develop user interfaces. Moreover, they present a set of
tools for capturing and analysing FRs of IoTSs, but NFRs are not considered.

The SEM methodology [182] is based on metamodels. The modelling is done from
two points of view: from the functions that the system must fulfil and from the data
with which it works. It presents 3 stages: the Requirements Analysis stage, in which
the provided metamodel is used to obtain the model in the Design stage, and finally,
the System Implementation stage. SEM is another of the methodologies focused on the
construction of IoTSs, so it focuses on the necessary aspects to obtain the final product with
the requirements demanded by the users. However, it only mentions important stages, such
as planning, requirements elicitation, implementation, and operation and maintenance of
the IoTS. Moreover, it is a specific methodology for a specific domain.

Arrowhead [183] is presented as a framework. The design, development, and verifica-
tion methodology for each service, system, and system of systems within the Arrowhead
framework supports that these can be implemented, verified, deployed, and executed in an
interoperable manner. Arrowhead helps in the construction of IoTSs from the perspective
that the system can be built by integrating other systems. Although its authors mention
the stages of the software/system life cycle a lot, they do not present evidence to guide
developers to carry out their activities.

Costa et al. present IDeA [184] as a methodology for the development of IoTSs, based
on model-based systems engineering (MBSE). The method provided is based on existing
standards to which activities considered the most relevant for the design of IoT applications
are added. IDeA provides high-level abstractions through metamodeling as a possible
solution to the (hardware and software) heterogeneity problem. In addition, their IoT
application design method is a multidisciplinary method, in which all the stakeholders
involved in the process participate. They apply the ISO/IEC/IEEE 15288:2015 standard,
from which they implement the systems’ life cycle processes, although they do not specify
all their phases. Although IDeA refers to the ISO standard, it does not provide guidelines
for its application. In addition, there is no evidence that deals with the planning stage and,
being a methodology based on metamodels, forces developers to stick to them.

The methodology proposed by Cicirelli et al. [182] is based on both functional (func-
tions and services) and data (data sources, attributes, and relationships) metamodels, and
is focused on the design of IoTSs. Its authors assume the requirements elicitation as a pre-
liminary stage and focus directly on the system modelling. By being based on metamodels,
it raises stereotypes for: (1) the environment in which the system is going to work, (2) the
functionalities that an intelligent environment can offer, which can be atomic or composite.

Sensors 2023, 23, 790 20 of 35

In the metamodels, this methodology specifies the processes that will make the environ-
ment an intelligent environment. To use a metamodel, the problem must be aligned to the
metamodel to be applied in the solution. The methodology is clearly oriented towards
the design stage, but there is no evidence that this methodology addresses requirements
elicitation and analysis. It also does not address the IoTS development planning or final
stages, such as implementation, operation, and maintenance. In addition, the stage of
construction or obtaining the final product is not clear.

Patel and Cassou [78] focused on the roles of team members to try to solve the
problems of heterogeneity of technologies with which IoT applications can be implemented.
Domain experts and software designers oversee the system analysis and design stage
activities. Application programmers and device developers are engaged in the system
construction and testing stage. Finally, network administrators install the application on
the system in question, which fits with the implementation and deployment stages of
other methodologies. This methodology does not address the planning, operation, and
maintenance stages.

Fortino et al. [185] propose a metamodel-based engineering approach for the system-
atic development of smart objects (SO). The analysis stage deals with the modelling of
relevant aspects of SOs using a metamodel. The design stage tries to model the functional
components of the system, their relationships, and interactions using the smart object
model, based on an ELDA framework [177] and an ACOSO platform [186]. To support
the implementation stage, the metamodel of smart objects based on ACOSO has been spe-
cialised with respect to the JADE platform [187], resulting in the JACOSO metamodel [188].
This metamodel highlights the components of the JADE platform (people, their behaviour,
and messages). Other elements of the metamodel represent the tasks to be respectively car-
ried out by the person responsible for configuring the system, the communication manager,
and the device manager, as well as the user-defined tasks that are included in the inference
rules, which control the behaviour of smart objects. To use this metamodel, the developer
must master the frameworks and platforms named above.

AMG [38] is an IoT application development methodology based on SOA consisting
of three steps: (1) definition of abstractions, (2) modelling, and (3) code generation. AMG is
based on a bottom-up approach since it starts from concrete models (concrete services) to
obtain abstract services. The abstraction process starts from the descriptions of the services,
in such a way that first the necessary graphic representations are obtained and then the
source code is obtained.

Some authors, such as Gogineni et al. [86], Wang et al. [180], and Fortino et al. [185],
consider requirements analysis as part of the system analysis stage, which constitutes the
reason why they do not address the requirements elicitation. However, other authors,
such as Guerrero-Ulloa et al. [37], Usländer and Batz [102], and Sosa-Reyna et al. [123–125],
separate these stages very well and give them the importance they require, since the system
requirements must be clear enough from the very beginning so that the development
of the IoTS is not delayed. It could be concluded that the lack of consideration of the
planning stage is widespread since only Guerrero-Ulloa et al. [37] expressly specify it, while
Gogineni et al. [86] only give hints of its consideration, and Fortino et al. [65] only let us
guess its consideration, since its proposal is based on waterfall methodology, which does
contemplate this stage.

Another stage not mentioned by most researchers who have designed development
methodologies is the joined operation and maintenance stage (i.e., a unique stage combining
operation and maintenance activities). Varga et al. [183] and Guerrero-Ulloa et al. [37] present
the maintenance stage as part of their respective methodologies. However, Wang et al. [180]
and Pico-Valencia et al. [94] address this stage briefly. It can be assumed that Costa et al. [184]
address this stage due to the approach its methodology (IDeA) relies on. Although Schauer
and Falas’ [181] proposal is considered to address design, the work is focused on presenting
an adaptive architecture for IoTSs.

Sensors 2023, 23, 790 21 of 35

Among the methodologies that have addressed the obtaining of software code is
AMG [38], Schauer and Falas’ [181] one, and SEM [182], particularly in the modelling
and/or obtaining of software for the IoT device, ignoring the applications that will serve
for the interaction between the user and the IoTS [38,174]. Although Wang et al. [180], Pico-
Valencia et al. [94], Schauer and Falas [181], and Fortino et al. [185] address and mention
user-centred design, they do not present evidence of addressing the construction of end-
user applications. The authors mentioned focus on obtaining the hardware component of
the IoTS and the software for its configuration.

4. Other Proposals for the Development of IoTSs

There are many contributions oriented to facilitate the development of IoTSs. Some
of them were already analysed in previous sections. Table 4 presents the main features of
additional platforms, frameworks, and tools for the development of IoTSs.

Table 4. Main features of platforms, frameworks, and tools for the development of IoTSs.

Year Reference Name Approach Artifacts Final Product

2021 Autolink [189] Components,
Templates, MDD

Code, Device design
diagram IoT device: software and design

2020 TinyLink [190] Components,
Templates, MDD

Code, Device design
diagram IoT device: software and design

2018 PrIoT [154] Components
PrIoT-core, PrIoT-API,
Prior-Test, Prior-DB,

PrIoT-UI
Conceptual framework

2018 Cai et al. [191] MDA, patterns, and
ontologies BPMN, CD, AD Software

2017 COMFIT [192] MDA Components Code in NesC and C languages

2017 EDG [193] Components (APIs), MDD Code, BD a IoT device: software and design
a Block Diagram.

Pawar et al. [154] propose PrIoT, a development framework that proposes to group
third-party solutions to meet certain goals. The framework is composed of three modules
to try to integrate the different components that make up an IoTS. PrIoT-core makes the
work of the developers independent of the devices and the details of the communication
protocols. PrIoT-Lang deploys a device-independent programming interface. PrIoT-API
captures the most practical IoT scenarios in a limited way. PrIoT-Test allows to specify
metrics to test the validity of the results obtained from the prototype. PrIoT-DB allows
us to select the necessary hardware either from a specific or generic supplier and include
libraries in the project, for example, to enable information exchange with other devices.
The components are configured through a file. PrIoT-UI introduces a high-level graphical
interface to support developers.

Cai et al. [191] propose a mobile application deployment framework based on MDA.
Development patterns based on semantic reasoning are provided to target the development
of Cloud of Things applications (CoT) [194] in a configurable and adaptable way. They also
provide a metamodel with multi-view business components and service components for
exchanging models. They follow the MVC (Model-View-Controller) pattern to transform
business models into a service component to configure cloud services.

COMFIT [192] is an Integrated Development Environment (IDE) based on MDD and
Cloud Computing. COMFIT consists of two modules: (1) a development module for
designing IoTSs using adaptive models of high abstraction; and (2) a set of web-based
management and execution applications, capable of generating code aimed at the Contiki
and TinyOS platforms from the models obtained in the design stage. It is worth mentioning
that COMFIT does not address how to develop applications for the end user.

Sensors 2023, 23, 790 22 of 35

EDG [193] is a methodology for the generation of integrated designs. To do this,
the user is required to specify with simple requirements their embedded software. From
that specification (hardware-independent code), a synthesised final circuit diagram is
produced, a list of required materials and the firmware necessary for the device to meet
the requirements. Finally, the hardware configuration diagram allows us to develop the
physical device and write the hardware-dependent code.

TinyLink [190] is a tool that follows the EDG methodology [193]. TinyLink is aimed at
developers with no experience in embedded systems, which may have both hardware and
user constraints. TinyLink seeks to optimise hardware use through a set of APIs to allow
developers to carry out a bottom-up development process, in contrast with traditional
tools, which usually follow a top-down approach. In addition, TinyLink can generate a
hardware-dependent code. Similarly, Autolink [189] is a tool based on TinyLink [190]. In
addition to generating TinyLink’s functional solutions, Autolink addresses NFRs such as
estimating the useful lifetime of the device’s hardware components, execution time, and
optimising battery use.

All these works support developers when it comes to having the software code for the
configuration of the IoT hardware. However, there is no evidence that it has been addressed
how to obtain the software code for applications that will serve as a means of interacting
with the end user. In addition, the presented tools need previously elicited requirements as
inputs for the design stage and subsequent code generation.

5. Architectures for IoTSs

The architecture of any system serves as a guide in its development process. Thus, it
is important to know the architectures that the researchers have proposed to develop IoTSs,
as well as if the methodology they present for the development of IoTSs is based on some
architecture, and which is the most frequent. Among the most frequent architectures are
layered and service-oriented architectures. In addition, some authors [123–125,170] present
a combination of both types, while other authors [78,94,139,169,195,196] present their own
architectures to give solutions to different types of IoTSs.

5.1. Layered Architecture

Some existing IoTSs have been developed following a layered architecture, such as the
one presented by Vashi et al. [197], which consists of five layers (see Figure 6a). Guerrero-
Ulloa et al. [22] present a very similar architecture that also consists of five layers, as shown
in Figure 6b. As can be observed, there are similarities between both architectures. Other
similar architectures only have four layers [65,151,198]. The difference between these last
architectures is the order of their layers. In some of them [65,151], their layers are (1) device,
(2) network, (3) middleware, and (4) application, while in the other [198], its layers are:
(1) perception, (2) middleware, (3) services, and (4) applications. Consequently, the lower
layers (1) and the upper layers (4) have the same objectives, while the second and third
layers are exchanged regarding the ones of the other two architectures.

Unlike the architectures of the works, the RapIoT toolkit [162,163] and the Mobile
Health Platform [160] are based on a three-layer architecture, where two of the layers
fulfill similar functions (device management and applications) in both architectures, only
being different in the third layer (communications). In the former [162,163], this layer
fulfils the functions of a cloud service, which allows data storage and integration with
third-party services, while in the latter [160], it consists of the middleware (application
server) and the web application that interconnects the various objects of the physical layer
with other actors (health professionals, hospitals, and other systems) [162,163]. RapIoT
layers [162,163] are named as an embedded layer, gateway layer, and server layer, and in the
Mobile Health Platform [160] as a physical-objects layer, network layer, and health portal.
The third layer performs very similar functions to the middleware layer of Fortino et al. [65]
and Sharma et al.’s [151] architectures, the services layer of Qiang et al.’s [198] architecture,
and the cloud processing layer of Guerrero-Ulloa et al.’s [22] architecture.

Sensors 2023, 23, 790 23 of 35

Sensors 2023, 23, x FOR PEER REVIEW 23 of 36

on some architecture, and which is the most frequent. Among the most frequent architec-
tures are layered and service-oriented architectures. In addition, some authors [123–
125,170] present a combination of both types, while other authors [78,94,139,169,195,196]
present their own architectures to give solutions to different types of IoTSs.

5.1. Layered Architecture
Some existing IoTSs have been developed following a layered architecture, such as

the one presented by Vashi et al. [197], which consists of five layers (see Figure 6a). Guer-
rero-Ulloa et al. [22] present a very similar architecture that also consists of five layers, as
shown in Figure 6b. As can be observed, there are similarities between both architectures.
Other similar architectures only have four layers [65,151,198]. The difference between
these last architectures is the order of their layers. In some of them [65,151], their layers
are (1) device, (2) network, (3) middleware, and (4) application, while in the other [198],
its layers are: (1) perception, (2) middleware, (3) services, and (4) applications. Conse-
quently, the lower layers (1) and the upper layers (4) have the same objectives, while the
second and third layers are exchanged regarding the ones of the other two architectures.

(a) (b)

Figure 6. Support architectures of MFPTG4IoTDs for IoTS development. (a) Vashi et al.’s architec-
ture [196]. (b) Guerrero-Ulloa et al.’s architecture, adapted with permission from Ref. [22]. 2022,
Gleiston Guerrero-Ulloa, Carlos Rodríguez-Domínguez, Miguel J. Hornos.

Unlike the architectures of the works, the RapIoT toolkit [162,163] and the Mobile
Health Platform [160] are based on a three-layer architecture, where two of the layers ful-
fill similar functions (device management and applications) in both architectures, only
being different in the third layer (communications). In the former [162,163], this layer ful-
fils the functions of a cloud service, which allows data storage and integration with third-
party services, while in the latter [160], it consists of the middleware (application server)
and the web application that interconnects the various objects of the physical layer with
other actors (health professionals, hospitals, and other systems) [162,163]. RapIoT layers
[162,163] are named as an embedded layer, gateway layer, and server layer, and in the Mobile
Health Platform [160] as a physical-objects layer, network layer, and health portal. The
third layer performs very similar functions to the middleware layer of Fortino et al. [65]
and Sharma et al.’s [151] architectures, the services layer of Qiang et al.’s [198] architec-
ture, and the cloud processing layer of Guerrero-Ulloa et al.’s [22] architecture.

Nugra et al. [57] present an IoTS to manage urban traffic, implemented following a
three-layer client/server architecture. The client layer consists of applications for end users,
whose input data are basically provided by Pentaho BI. The business layer is made up of
APIs that provide weather data, in addition to the Pentaho BI server layer and the web ap-
plication. They use two database managers: MySQL, which stores data captured by sen-
sors and weather forecasts, and PostgreSQL, which is where data is copied, from time to
time, to form OLAP cubes to allow data analysis.

Figure 6. Support architectures of MFPTG4IoTDs for IoTS development. (a) Vashi et al.’s architec-
ture [197]. (b) Guerrero-Ulloa et al.’s architecture, adapted with permission from Ref. [22]. 2022,
Gleiston Guerrero-Ulloa, Carlos Rodríguez-Domínguez, Miguel J. Hornos.

Nugra et al. [57] present an IoTS to manage urban traffic, implemented following
a three-layer client/server architecture. The client layer consists of applications for end
users, whose input data are basically provided by Pentaho BI. The business layer is made
up of APIs that provide weather data, in addition to the Pentaho BI server layer and the
web application. They use two database managers: MySQL, which stores data captured by
sensors and weather forecasts, and PostgreSQL, which is where data is copied, from time
to time, to form OLAP cubes to allow data analysis.

ELDAMeth [171] uses ELDASim, which is an ELDA simulation environment, which
is based on a four-layer architecture: (1) A configuration layer allows setting up its com-
ponents through the MAS (Multi-Agent System) simulation module; (2) an agent layer
provides adaptations of ELDA agents on agent servers; (3) the platform (i.e., the agent
servers, the network that interconnects them, the signalling messages between agent servers
and various types of systems, and the coordination infrastructures to fully support the
distinctive multi-coordination feature of the ELDA model), which defines a distributed
infrastructure consisting of a network of agent servers supporting ELDA agents; and (4) an
engine that provides the key mechanisms for the simulation of discrete events of general
purpose systems.

The methodology presented by Usländer and Batz [102] is based on IIRA v1.9 [199].
It defines a three-level scheme: (1) The edge level collects data from edge nodes, using
the proximity network. The architectural features of this level, including the breadth
of distribution, location, the scope of governance, and nature of the proximity network,
vary depending on the specific use cases. (2) The platform level receives, processes, and
forwards control commands from the enterprise level (explained below) to the edge level.
It consolidates processes and analyses edge-level and non-edge data flows, as well as
provides device and asset management capabilities. It also offers non-domain-specific
services, such as querying and analysing data. (3) The enterprise tier implements domain-
specific applications, decision support systems, and provides interfaces to end users,
including operation specialists. This level receives data streams from the edge and platform
levels, and issues control commands directed at both [200].

In the work by Lekidis et al. [168], the system design is specified in a domain-specific
language (DSL), which they use to maintain the match between the automatically gen-
erated BIP (Behaviour, Interaction, Priority) model and the application code. BIP is a
language with formally defined semantics for constructing executable models of mixed
software/hardware systems (SW/HW). The BIP model is based on the standards of the
WPAN architecture. This mixed architecture consists of four layers of abstraction, where
the lower layer (1) is defined by the abstraction of the hardware architecture, the upper

Sensors 2023, 23, 790 24 of 35

layer (4) is the abstraction of the software application, the third layer is defined by the
operating system, and the second layer is defined by the network stack and device drivers.

5.2. Service-Oriented Architectures

SOA is used to build software systems from composite, heterogeneous, and au-
tonomous software units, called services. In addition, service composition is a common ap-
proach to the development of complex software systems. Software systems and applications
in turn are also becoming services. We call this service-based systems or applications [38].

In some of the works considered in this review, Sosa-Reyna et al. [123–125] propose
an architecture based on SOA, consisting of four layers: (1) object layer (hardware objects
available on the network), (2) network layer (wired, wireless or mobile connection infras-
tructure), (3) service (creation and management of required services), and (4) application
layer (responsible for delivering applications to IoTS users). This service-oriented architec-
ture supports development methodologies with two different approaches: MDD [124,125]
and MDE [123].

Another work with this type of mixed architecture is defined by Brambilla et al. [170],
with basically 3 layers: the client or front-end layer, the communications layer or API
Gateway, and the server or back-end layer. This last layer is in turn defined by microservices,
which provide information for user management, group concepts related to both the
organisational structure of the actors and the definition of things and allow clients to access
both data values and graphic resources.

The method for the development of IoTSs proposed by Sulistyo [38] is SOA-based.
In the first instance, this author considers the existence of concrete services to abstract the
abstract services to model the system in question. After obtaining the model, it generates
the code for the new service-based application. This type of architecture (SOA) significantly
reduces the complexity in the design of a heterogeneous system, such as an IoTS [168].
Another SOA-based work is the Arrowhead framework [183], where operations on different
resources can be grouped into different services. In Arrowhead, a resource could be a
temperature sensor or the energy consumption reading of an energy meter.

5.3. Other Types of Architectures

MDE4IoT [172] is based on the MARTE architectural model [201], which includes
3 packages: (1) MarteFoundations, which defines all the basic concepts required for the
analysis and model-based design of real-time and embedded systems (RT/ESs); (2) Mart-
eDesignModel, which covers from requirements capture to requirements specification,
design and implementation (V-cycle development process [202]); and (3) MarteAnalysis-
Model, which defines specific model abstractions and relevant annotations to be used by
external tools. Therefore, package (1) defines general concepts for quantitative analysis tech-
niques, which are extensible to support new RT/ES UML model analysis techniques, while
packages (2) and (3), respectively, focus on programmability and performance analysis.

The ROOD architecture [176] is based on MDA. It includes four levels of abstraction,
ordered from the highest to the lowest level of abstraction as follows: (M3) Meta-Metamodel
layer, which serves to establish the basis for different metamodels; (M2) Metamodel layer, where
DSLs are specified to define models at the M1 level; (M1) Model layer, where system models
are defined; and (M0) Instance layer, which contains instances of data for a given platform.

The COMFIT architecture [192] includes two modules: (1) Application Development
Module (ADM), and (2) Application Management and Execution Manager (AMEM). ADM
includes PIM and PSM models, as well as M2M transformations and code generation
templates to use M2T transformations. On the other hand, AMEM includes: (1) the Interface
Manager component, which is directly connected to ADM and is responsible for providing
the functionality of uploading the generated code to a server hosted on the Cloud; and
(2) the Execution Manager, which is connected to both the Testbed Manager and the Compile
Manager and deploys the services that are released through the Interface Manager.

Sensors 2023, 23, 790 25 of 35

The framework proposed by Cai et al. [191] is based on software architecture for
mobile service development, consisting of three modules: (1) an information module for
device encapsulation, which supports multiple business modelling views; (2) an ejection
environment, used to configure the application environment and the execution rules of a
business application; and (3) a resource repository for information configuration, which is
designed to connect the information modeller and the execution environment.

In the SDG-Pro framework architecture [203], components are classified according
to their Internet connectivity: Edge or Cloud components. Edge components are sensors,
actuators, and communication devices. Communication devices are connected to Cloud
components through software-defined gateways that are part of Cloud components. In
addition, as part of the Cloud components, we find the Information Technology components
for data storage, processing, and intelligent analysis.

Another component-based architecture is the one presented by Schauer and Falas [181].
The first component is the IoT system builder. The second component is that of computa-
tional resources or a server, which is the one that interacts with feeding or receiving data
from the other components. The server executes business logic when requested by Docker
Engine clients and has the monitoring tools to interact with the supervisor component. The
third component consists of the Docker Engine, which contains the technology for message
exchange (RabbitMQ server). The fourth component is the IoT systems supervisor, which
monitors resources and detects system failures. This last component interacts with the first
one to update the monitored system according to what is measured/detected by the sensors.

The SEM methodology [182] is supported by an architecture based on models focused
on software construction. Its authors present a functional metamodel and a data metamodel.
Another methodology that is supported by this type of architecture is IdeA [184], where the
IoT application engineer breaks down the system into functional components that interact
with each other to meet system requirements. IDeA models expose devices as services using
port notation. These services will be used by application engineers to create information
views [184]. In this same line, we can mention Fortino et al.’s proposal [185], which is
based on metamodels for smart objects as a very high-level metamodel that specifically
exposes static and dynamic characteristics of smart objects. An ELDA-based metamodel
specialises in the high-level smart object metamodel, providing the functional components
of the system, their relationships, and interactions. And the ACOSO-based metamodel
is a middleware specifically designed for the complete management of cooperating and
agent-oriented smart objects.

Chauhan et al. [175] propose a publish-subscribe architecture in which sensors act as
publishers. Computer services are subscribers that make actuators execute the correspond-
ing actions (changes in the environment, notifications to end users, and so on) whenever
new data is received.

The architecture presented by Harbouche et al. [169] is a wireless body sensor network archi-
tecture based on a mobile data collector. The architecture presented by Alvear-Puertas et al. [204]
is similar. In fact, both are oriented to explain the operation and deployment of the system.
They also provide feedback to the users about the outcomes of the requirements analysis
stage. On the other hand, Wang et al. [180] present an architecture that can guide the
development of an IoTS and understand how it works. In some works [37,86,174], the
architecture of the IoTSs presented by their authors has not been addressed, only focusing
on explaining its operation.

6. Conclusions

We have presented a comprehensive study on the methodologies as well as frameworks,
tools, and architectures that could be applied to develop IoTSs. The main conclusions of the
analysis carried out following the review of the existing proposals so far are set out below.

This article has discussed important aspects and steps that existing methodologies address
or that a methodology for IoTS development should address, and these outline guidelines for
implementation. An important aspect that differentiates IoTSs from other ISs is that they are

Sensors 2023, 23, 790 26 of 35

made up of objects (things) that interact autonomously with each other, considering people as
other objects or things of the system. To do this, IoTSs need to rely on sensor/actuator networks
and efficient wireless communications [34,35]. Consequently, for the development of an IoTS,
it is important to analyse existing and available technology, and even develop the necessary
devices, if possible, to help meet not only FRs but also NFRs [32,35].

Model-based approaches, i.e., MDE, MDD, and MDA, are among the most widely
used methodologies for IoTS development. However, very few of these methodologies
deal with the elicitation and analysis of requirements, and except for one of them, no other
deals with the maintenance phase, and none the withdrawal phase. Other aspects that
most of the methodologies reviewed do not address or do not mention are those related
to NFRs. The success of applying these approaches may be because they help to solve the
technology heterogeneity problem involved in IoTS development.

We consider that the software development process should cover each of the stages/phases
of the system life cycle, from the elicitation and analysis of requirements to its dismantling.
However, with this type of system, as in others in some cases, the client is not clear about
the requirements at the beginning, so it is considered that developers must present early
prototypes. For this, model-based approaches must be present for the generation of software
quickly, and therefore also RP. In addition, RP and agile methodologies are the most widely
used in IoTS development. Therefore, SE researchers must design a methodology for the
development of IoTSs that collects the best practices of model-based approaches (i.e., MDD,
MDE, and MDA), PR, and the 4 values and the 12 principles of the agile manifesto on
which agile methodologies (such as Scrum and XP, among others) are based.

None of the IoTS development methodologies proposed in the literature and pre-
sented in this document have been used by developers or researchers other than their own
authors. Most documents that present the development of some IoTSs apply Scrum as the
only methodology, and some of them combine it with others, such as XP, RP, and Kanban.

The development frameworks used for IoTS development are mostly concerned
with modelling and code generation for IoT devices, not addressing the generation of
applications that offer an interface with the end user. We think that these development
frameworks should also provide support for the development of such applications. An
important advance in this area would be to create a tool that facilitates the work of IoTS
developers in such a way that it becomes universally used by all of them. To achieve that
goal, said tool should consider the functionalities of some of the tools presented in this
review and add others that none of them currently have.

The most common architectural style in all the works that have been reviewed is
the layer-based one. Usually, data processing occurs from the lower layer, known as the
physical, perception, or sensors/actuators (among other names) layer, to the highest one,
known as an application, user interaction, user, or cloud processing (among other names)
layer, and the interconnection must be present between all its layers. The architecture serves
as a guide to support the work of developers to fulfil the FRs and NFRs of the system, and
therefore to obtain quality software.

Author Contributions: Conceptualization, G.G.-U., C.R.-D. and M.J.H.; methodology, G.G.-U.,
C.R.-D. and M.J.H.; software, G.G.-U.; validation, G.G.-U.; formal analysis, G.G.-U.; investigation,
G.G.-U.; resources, G.G.-U., C.R.-D. and M.J.H.; data curation, G.G.-U.; writing—original draft prepa-
ration, G.G.-U.; writing—review and editing, C.R.-D. and M.J.H.; visualization, G.G.-U.; supervision,
C.R.-D. and M.J.H.; project administration, G.G.-U., C.R.-D. and M.J.H.; funding acquisition, C.R.-D.
and M.J.H. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Spanish Ministry of Science and Innovation (State Re-
search Agency), grant number PID2019-109644RB-I00, and Junta de Andalucía (Andalusian Regional
Government), grant number B-TIC-320-UGR20.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Sensors 2023, 23, 790 27 of 35

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not publicly available due to privacy restrictions.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Royce, W.W. Managing the Development of Large Software Systems: Concepts and Techniques. In Proceedings of the 9th

International Conference on Software Engineering, ICSE ’87, Monterey, CA, USA, 30 March–2 April 1987; IEEE Computer Society
Press: Monterey, CA, USA, 1987; pp. 1–9, ISBN 0897912160.

2. Boehm, B.W. A Spiral Model of Software Development and Enhancement. Computer 1988, 21, 61–72. [CrossRef]
3. Lantz, K.E. The Prototyping Methodology; Prentice-Hall: Saddle River, NJ, USA, 1986; ISBN 978-0-8359-5897-4.
4. Fern, D.A.; Donaldson, S.E. Tri-Cycle: A Prototype Methodology for Advanced Software Development. In Proceedings of the

Twenty-Second Annual Hawaii International Conference on System Sciences; IEEE Computer Society: Kailua-Kona, HI, USA,
1989; Volume 2, pp. 377–386. [CrossRef]

5. Abrahamsson, P.; Salo, O.; Ronkainen, J.; Warsta, J. Agile Software Development Methods: Review and Analysis. arXiv 2002.
[CrossRef]

6. Anwer, F.; Aftab, S.; Waheed, U.; Muhammad, S.S. Agile Software Development Models TDD, FDD, DSDM, and Crystal Methods:
A Survey. Int. J. Multidiscip. Sci. 2017, 8, 1–10. Available online: http://www.ijmse.org/Volume8/Issue2/paper1.pdf (accessed
on 21 October 2022).

7. Srivastava, A.; Bhardwaj, S.; Saraswat, S. SCRUM Model for Agile Methodology. In Proceedings of the IEEE International
Conference on Computing, Communication and Automation, ICCCA 2017, Greater Noida, India, 5–6 May 2017; IEEE: Greater
Noida, India, 2017; Volume 2017, pp. 864–869. [CrossRef]

8. Schwaber, K.; Sutherland, J. The Scrum Guide. Acrum Allience 2011, 21, 1.
9. Salo, O.; Abrahamsson, P. Agile Methods in European Embedded Software Development Organisations: A Survey on the Actual

Use and Usefulness of Extreme Programming and Scrum. IET Software 2008, 2, 58–64. [CrossRef]
10. Holzinger, A.; Errath, M.; Searle, G.; Thurnher, B.; Slany, W. From Extreme Programming and Usability Engineering to Extreme

Usability in Software Engineering Education (XP+UE→XU). In Proceedings of the International Computer Software and
Applications Conference, Edinburgh, UK, 26–28 July 2005; IEEE: Edinburgh, UK, 2005; Volume 2, pp. 169–172. [CrossRef]

11. Stott, W. Extreme Programming: Turning the World Upside Down. IEE Comput. Control. Eng. 2003, 14, 18–23. [CrossRef]
12. Schwabe, D.; Rossi, G. Building Hypermedia Applications as Navigational Views of Information Models. In Proceedings of the

Annual Hawaii International Conference on System Sciences 1995, Maui, HI, USA, 3–6 January 1995; Volume 3, pp. 231–240.
[CrossRef]

13. Schwabe, D.; Rossi, G. The Object-Oriented Hypermedia Design Model. Commun. ACM 1995, 38, 45–46. [CrossRef]
14. Garzotto, F.; Paolini, P.; Schwabe, D. HDM—A Model-Based Approach to Hypertext Application Design. ACM Trans. Inf. Syst.

1993, 11, 1–26. [CrossRef]
15. Garzotto, F.; Mainetti, L.; Paolini, P. Navigation Patterns in Hypermedia Data Bases. In Proceedings of the Annual Hawaii International

Conference on System Sciences, Wailea, HI, USA, 5–8 January 1993; IEEE: Wailea, HI, USA, 1993; Volume 3, pp. 370–379. [CrossRef]
16. Lange, D.B. Object-Oriented Hypermodeling of Hypertext Supported Information Systems. In Proceedings of the Annual Hawaii

International Conference on System Sciences, Wailea, HI, USA, 5–8 January 1993; IEEE Computer Society: Wailea, HI, USA, 1993;
Volume 3, pp. 380–389. [CrossRef]

17. Lange, D.B. Object-Oriented Design Method for Hypermedia Information Systems. In Proceedings of the Hawaii International
Conference on System Sciences, Wailea, HI, USA, 4–7 January 1994; IEEE: Wailea, HI, USA, 1994; Volume 3, pp. 366–375.
[CrossRef]

18. Lange, D.B. An Object-oriented Design Approach for Developing Hypermedia Information Systems. J. Organ. Comput. Electron.
Commer. 2009, 6, 269–293. [CrossRef]

19. Isakowitz, T.; Stohr, E.A.; Balasubramanian, P. RMM: A Methodology for Structured Hypermedia Design. Commun. ACM 1995,
38, 34–44. [CrossRef]

20. Bieber, M.P.; Isakowitz, T. Introduction to the Special Issue: Hypermedia in Information Systems and Organizations. J. Organ.
Comput. Electron. Commer. 2009, 6, 3–7. [CrossRef]

21. Singh, D.; Tripathi, G.; Jara, A.J. A Survey of Internet-of-Things: Future Vision, Architecture, Challenges and Services. In
Proceedings of the 2014 IEEE World Forum on Internet of Things, WF-IoT 2014, Seoul, Republic of Korea, 6–8 March 2014; IEEE
Computer Society: Seoul, Republic of Korea, 2014; pp. 287–292. [CrossRef]

22. Guerrero-Ulloa, G.; Rodríguez-Domínguez, C.; Hornos, M.J. IoT-Based System to Help Care for Dependent Elderly. Commun.
Comput. Inf. Sci. 2019, 895, 41–55. [CrossRef]

23. Dado, M.; Janota, A.; Spalek, J. Challenges and Unwanted Features of the Smarter Cities Development. Lect. Notes Inst. Comput.
Sci. Soc.-Inform. Telecommun. Eng. LNICST 2015, 151, 3–8. [CrossRef]

24. Madakam, S.; Ramaswamy, R.; Tripathi, S. Internet of Things (IoT): A Literature Review. J. Comput. Commun. 2015, 3, 164–173.
[CrossRef]

25. Stankovic, J.A. Research Directions for the Internet of Things. IEEE Internet Things J. 2014, 1, 3–9. [CrossRef]

http://doi.org/10.1109/2.59
http://doi.org/10.1109/hicss.1989.48015
http://doi.org/10.48550/arxiv.1709.08439
http://www.ijmse.org/Volume8/Issue2/paper1.pdf
http://doi.org/10.1109/ccaa.2017.8229928
http://doi.org/10.1049/iet-sen:20070038
http://doi.org/10.1109/compsac.2005.80
http://doi.org/10.1049/cce:20030303
http://doi.org/10.1109/hicss.1995.375557
http://doi.org/10.1145/208344.208354
http://doi.org/10.1145/151480.151483
http://doi.org/10.1109/hicss.1993.284334
http://doi.org/10.1109/hicss.1993.284335
http://doi.org/10.1109/hicss.1994.323335
http://doi.org/10.1080/10919399609540280
http://doi.org/10.1145/208344.208346
http://doi.org/10.1080/10919399609540277
http://doi.org/10.1109/wf-iot.2014.6803174
http://doi.org/10.1007/978-3-030-05532-5_4
http://doi.org/10.1007/978-3-319-19743-2_1/cover
http://doi.org/10.4236/jcc.2015.35021
http://doi.org/10.1109/JIOT.2014.2312291

Sensors 2023, 23, 790 28 of 35

26. Santos, P.M.; Rodrigues, J.G.P.; Cruz, S.B.; Lourenço, T.; D’Orey, P.M.; Luis, Y.; Rocha, C.; Sousa, S.; Crisóstomo, S.; Queirós, C.;
et al. PortoLivingLab: An IoT-Based Sensing Platform for Smart Cities. IEEE Internet Things J. 2018, 5, 523–532. [CrossRef]

27. Pan, J.; Jain, R.; Paul, S.; Vu, T.; Saifullah, A.; Sha, M. An Internet of Things Framework for Smart Energy in Buildings: Designs,
Prototype, and Experiments. IEEE Internet Things J. 2015, 2, 527–537. [CrossRef]

28. Ta-Shma, P.; Akbar, A.; Gerson-Golan, G.; Hadash, G.; Carrez, F.; Moessner, K. An Ingestion and Analytics Architecture for IoT
Applied to Smart City Use Cases. IEEE Internet Things J. 2018, 5, 765–774. [CrossRef]

29. Ng, I.C.L.; Wakenshaw, S.Y.L. The Internet-of-Things: Review and Research Directions. Int. J. Res. Mark. 2017, 34, 3–21. [CrossRef]
30. Alaba, F.A.; Othman, M.; Hashem, I.A.T.; Alotaibi, F. Internet of Things Security: A Survey. J. Netw. Comput. Appl. 2017, 88, 10–28.

[CrossRef]
31. Guerrero-Ulloa, G.; Hornos, M.J.; Rodríguez-Domínguez, C.; Fernández-Coello, M.M. IoT-Based Smart Medicine Dispenser to

Control and Supervise Medication Intake. In Proceedings of the Intelligent Environments 2020: Workshop Proceedings of the
16th International Conference on Intelligent Environments 2020, Madrid, Spain, 20–23 July 2020; pp. 39–48. [CrossRef]

32. Matias, I.; Garcia, N.; Pirbhulal, S.; Felizardo, V.; Pombo, N.; Zacarias, H.; Sousa, M.; Zdravevski, E. Prediction of Atrial Fibrillation
Using Artificial Intelligence on Electrocardiograms: A Systematic Review. Comput. Sci. Rev. 2021, 39, 100334. [CrossRef]

33. Han, T.; Zhang, L.; Pirbhulal, S.; Wu, W.; de Albuquerque, V.H.C. A Novel Cluster Head Selection Technique for Edge-Computing
Based IoMT Systems. Comput. Netw. 2019, 158, 114–122. [CrossRef]

34. Dayo, Z.A.; Aamir, M.; Dayo, S.A.; Khoso, I.A.; Soothar, P.; Sahito, F.; Zheng, T.; Hu, Z.; Guan, Y. A Novel Compact Broadband
and Radiation Efficient Antenna Design for Medical IoT Healthcare System. Math. Biosci. Eng. 2022, 19, 3909–3927. [CrossRef]
[PubMed]

35. Memon, S.K.; Nisar, K.; Hijazi, M.H.A.; Chowdhry, B.S.; Sodhro, A.H.; Pirbhulal, S.; Rodrigues, J.J.P.C. A Survey on 802.11 MAC
Industrial Standards, Architecture, Security & Supporting Emergency Traffic: Future Directions. J. Ind. Inf. Integr. 2021, 24, 100225.
[CrossRef]

36. Guarda, T.; Leon, M.; Augusto, M.F.; Haz, L.; de La Cruz, M.; Orozco, W.; Alvarez, J. Internet of Things Challenges. In Proceedings
of the Iberian Conference on Information Systems and Technologies, CISTI, Lisbon, Portugal, 21–24 June 2017; IEEE: Lisbon,
Portugal, 2017. [CrossRef]

37. Guerrero-Ulloa, G.; Hornos, M.J.; Rodríguez-Domínguez, C. TDDM4IoTS: A Test-Driven Development Methodology for Internet
of Things (IoT)-Based Systems. Commun. Comput. Inf. Sci. 2020, 1193, 41–55. [CrossRef]

38. Sulistyo, S. Software Development Methods in the Internet of Things. In Information and Communication Technology. ICT-EurAsia
2013. Lecture Notes in Computer Science; Mustofa, K., Neuhold, E.J., Tjoa, A.M., Weippl, E.Y.I., Eds.; Springer: Berlin/Heidelberg,
Germany, 2013; Volume 7804, pp. 50–59. [CrossRef]

39. Fortino, G.; Savaglio, C.; Spezzano, G.; Zhou, M. Internet of Things as System of Systems: A Review of Methodologies,
Frameworks, Platforms, and Tools. IEEE Trans. Syst. Man Cybern. Syst. 2021, 51, 223–236. [CrossRef]

40. Bouanaka, C.; Benlahrache, N.; Benhamaid, S.; Bouhamed, E. A Review of IoT Systems Engineering: Application to the Smart
Traffic Lights System. In Proceedings of the 4th International Conference on Advanced Aspects of Software Engineering, ICAASE
2020, Constantine, Algeria, 28–30 November 2020; Institute of Electrical and Electronics Engineers Inc.: New York, NY, USA, 2020.
[CrossRef]

41. Pressman, R.S.; Maxim, B. Software Engineering: A Practitioner’s Approach, 8th ed.; McGraw-Hill Education: New York, NY, USA,
2015; ISBN 9781259253157.

42. Beck, K.; Beedle, M.; van Bennekum, A.; Cockburn, A.; Cunningham, W.; Fowler, M.; Grenning, J.; Highsmith, J.; Hunt, A.; Jeffries,
R.; et al. Manifesto for Agile Software Development. Available online: http://agilemanifesto.org/ (accessed on 1 October 2019).

43. Fowler, M.; Highsmith, J. The Agile Manifesto. Softw. Dev. 2001, 9, 28–35.
44. Hazzan, O.; Dubinsky, Y. The Agile Manifesto. In SpringerBriefs in Computer Science; Springer: Berlin/Heidelberg, Germany, 2014;

pp. 9–14. [CrossRef]
45. Hijazi, H.; Khdour, T.; Alarabeyyat, A. A Review of Risk Management in Different Software Development Methodologies. Int. J.

Comput. Appl. Technol. 2012, 45, 8–12. [CrossRef]
46. Jones, T.S.; Richey, R.C. Rapid Prototyping Methodology in Action: A Developmental Study. Educ. Technol. Res. Dev. 2000, 48, 63–80.

[CrossRef]
47. Pierre de Oliveira, R.; Grande, C.; Tiago Massoni, B.; Narallynne Maciel de Araújo, B.; Freitas Sarmento, C.; Silva dos Santos, F.;

Massoni, T.; Maciel de Araújo, N. Ants Doing Legwork: Investigating Motivators for Software Development Career Abandonment.
In Proceedings of the ACM International Conference Proceeding Series; Association for Computing Machinery: Joinville, Brazil,
2021; pp. 353–362.

48. Matsubara, P.G.F.; Steinmacher, I.; Gadelha, B.; Conte, T.U. Buying Time in Software Development: How Estimates Become
Commitments? In Proceedings of the IEEE/ACM 13th International Workshop on Cooperative and Human Aspects of Software
Engineering, CHASE 2021, Madrid, Spain, 20–21 May 2021; IEEE: New York, NY, USA, 2021; pp. 61–70. [CrossRef]

49. Ravaglia, C.C.; Mexas, M.P.; Dias, A.C.; da Silveira Batista, H.M.; da Silva Nunes, K. Management of Software Development
Projects in Brazil Using Agile Methods. Indep. J. Manag. Prod. 2021, 12, 1357–1374. [CrossRef]

50. Narang, P.; Mittal, P. Performance Assessment of Traditional Software Development Methodologies and DevOps Automation
Culture. Eng. Technol. Appl. Sci. Res. 2022, 12, 9726–9731. [CrossRef]

http://doi.org/10.1109/JIOT.2018.2791522
http://doi.org/10.1109/JIOT.2015.2413397
http://doi.org/10.1109/JIOT.2017.2722378
http://doi.org/10.1016/j.ijresmar.2016.11.003
http://doi.org/10.1016/j.jnca.2017.04.002
http://doi.org/10.3233/aise200021
http://doi.org/10.1016/j.cosrev.2020.100334
http://doi.org/10.1016/j.comnet.2019.04.021
http://doi.org/10.3934/mbe.2022180
http://www.ncbi.nlm.nih.gov/pubmed/35341280
http://doi.org/10.1016/j.jii.2021.100225
http://doi.org/10.23919/cisti.2017.7975936
http://doi.org/10.1007/978-3-030-42517-3_4
http://doi.org/10.1007/978-3-642-36818-9_6
http://doi.org/10.1109/TSMC.2020.3042898
http://doi.org/10.1109/icaase51408.2020.9380114
http://agilemanifesto.org/
http://doi.org/10.1007/978-3-319-10157-6_3
http://doi.org/10.5120/6790-9113
http://doi.org/10.1007/BF02313401
http://doi.org/10.1109/chase52884.2021.00015
http://doi.org/10.14807/ijmp.v12i5.1353
http://doi.org/10.48084/etasr.5315

Sensors 2023, 23, 790 29 of 35

51. Beerbaum, D.O. Applying Agile Methodology to Regulatory Compliance Projects in the Financial Industry: A Case Study
Research. J. Appl. Res. Dig. Econ. 2019, 2, 1–11. [CrossRef]

52. Thesing, T.; Feldmann, C.; Burchardt, M. Agile versus Waterfall Project Management: Decision Model for Selecting the Appropri-
ate Approach to a Project. Procedia Comput. Sci. 2021, 181, 746–756. [CrossRef]

53. Soares, D.; da Silva, F.J.; Ramos, S.C.F.; Kirytopoulos, K.; Sá, J.C.; Ferreira, L.P. Identifying Barriers in the Implementation of Agile
Methodologies in Automotive Industry. Sustainability 2022, 14, 5453. [CrossRef]

54. Younus, A.M.; Younis, H. Conceptual Framework of Agile Project Management, Affecting Project Performance, Key: Requirements
and Challenges. Int. J. Innov. Res. Eng. Manag. 2021, 8, 10–14. [CrossRef]

55. Gea, T.; Paradells, J.; Lamarca, M.; Roldan, D. Smart Cities as an Application of Internet of Things: Experiences and Lessons
Learnt in Barcelona. In Proceedings of the 7th International Conference on Innovative Mobile and Internet Services in Ubiquitous
Computing, IMIS 2013, Taichung, Taiwan, 3–5 July 2013; IEEE: Taichung, Taiwan, 2013; pp. 552–557. [CrossRef]

56. Yelamarthi, K.; Aman, M.S.; Abdelgawad, A. An Application-Driven Modular IoT Architecture. Wirel. Commun. Mob. Comput.
2017, 2017, 1–16. [CrossRef]

57. Nugra, H.; Abad, A.; Fuertes, W.; Galarraga, F.; Aules, H.; Villacis, C.; Toulkeridis, T. A Low-Cost IoT Application for the Urban Traffic
of Vehicles, Based on Wireless Sensors Using GSM Technology. In Proceedings of the IEEE International Symposium on Distributed
Simulation and Real-Time Applications, DS-RT, London, UK, 21–23 September 2016; IEEE: Uxbridge, UK, 2016; pp. 161–169. [CrossRef]

58. Fuertes, W.; Carrera, D.; Villacis, C.; Toulkeridis, T.; Galarraga, F.; Torres, E.; Aules, H. Distributed System as Internet of Things
for a New Low-Cost, Air Pollution Wireless Monitoring on Real Time. In Proceedings of the 2015 IEEE/ACM 19th International
Symposium on Distributed Simulation and Real Time Applications, DS-RT 2015, Chengdu, China, 14–16 October 2015; pp. 58–67.
[CrossRef]

59. Peterson, B.; Vogel, B. Prototyping the Internet of Things with Web Technologies: Is It Easy? In Proceedings of the 2018 IEEE
International Conference on Pervasive Computing and Communications Workshops, PerCom Workshops 2018, Athens, Greece,
19–23 March 2018; IEEE: Athens, Greece, 2018; pp. 518–522. [CrossRef]

60. Guerra Terán, P.; Plua, R.K. Home Automation Application for the Monitoring and Control of an Electric Water Heater Using
AWS Technology. In Proceedings of the IEEE 38th Central America and Panama Convention, CONCAPAN 2018, San Salvador, El
Salvador, 7–9 November 2018; IEEE: San Salvador, El Salvador, 2018; pp. 1–6. [CrossRef]

61. ISO/IEC/IEEE 15289:2019; Systems and Software Engineering-Content of Life-Cycle Information Items (Documentation)-IEEE
Standard. International Organization for Standardization: Geneva, Switzerland, 2019; Volume 2019, pp. 1–94. [CrossRef]

62. Laporte, C.Y.; Vargas, E.P. The Development of International Standards to Facilitate Process Improvements for Very Small Entities.
2014, pp. 1335–1361. Available online: https://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-4666-4301-7.
ch065 (accessed on 29 December 2022).

63. Bourque, P.; Fairley, R.E. Guide to the Software Engineering Body of Knowledge (SWEBOK(R)), 3rd ed.; IEEE Computer Society Press:
Washington, DC, USA, 2014; ISBN 978-0-7695-5166-1.

64. Skordalakis, E. Software Engineering Teaching At NTUA. WIT Trans. Inf. Commun. Technol. 1970, 7, 472. [CrossRef]
65. Fortino, G.; Savaglio, C.; Palau, C.E.; de Puga, J.S.; Ghanza, M.; Paprzycki, M.; Montesinos, M.; Liotta, A.; Llop, M. Towards

Multi-Layer Interoperability of Heterogeneous IoT Platforms: The INTER-IoT Approach. In Integration, Interconnection, and
Interoperability of IoT Systems; Springer: Cham, Switzerland, 2018; pp. 199–232. [CrossRef]

66. Lawal, A.; Chukwu Ogbu, R. A Comparative Analysis of Agile and Waterfall Software Development Methodologies. Bakolori J.
Gen. Stud. 2021, 11, 1–2.

67. ISO/IEC/IEEE 15288; Systems and Software Engineering-System Life Cycle Processes. International Organization for Standardiza-
tion: Geneva, Switzerland, 2015; Volume 17, pp. 1–108. [CrossRef]

68. ISO/IEC/IEEE 24765:2017; ISO/IEC/IEEE International Standard-Systems and Software Engineering–Vocabulary. International
Organization for Standardization: Geneva, Switzerland, 2017; pp. 1–541. [CrossRef]

69. Guide to the Systems Engineering Body of Knowledge (SEBoK). Available online: https://www.sebokwiki.org/wiki/Guide_to_
the_Systems_Engineering_Body_of_Knowledge_(SEBoK) (accessed on 7 November 2022).

70. Project Management Institute. Software Extension to the PMBoK Guide, 5th ed.; Project Management Institute: Newtown Square,
PA, USA, 2013; ISBN 9781628250138.

71. Project Management Institute. A Guide to the Project Management Body of Knowledge (PMBOK®Guide), 7th ed.; Project Management
Institute: Newtown Square, PA, USA, 2021; ISBN 9781628256659.

72. 12207-2017-ISO/IEC/IEEE; International Standard—Systems and Software Engineering—Software Life Cycle Processes. IEEE
Standards Association: Piscataway, NJ, USA, 2017; pp. 1–148. [CrossRef]

73. Barker, T.T. Documentation for Software and IS Development. In Encyclopedia of Information Systems; Academic Press: Cambridge,
MA, USA, 2003; pp. 683–693. [CrossRef]

74. Wikipedia. Software Development Process. Available online: https://en.wikipedia.org/wiki/Software_development_process
(accessed on 4 October 2022).

75. Badawi, H.F.; Laamarti, F.; el Saddik, A. ISO/IEEE 11073 Personal Health Device (X73-PHD) Standards Compliant Systems: A
Systematic Literature Review. IEEE Access 2019, 7, 3062–3073. [CrossRef]

76. Alberternst, S.; Anisimov, A.; Antakli, A.; Duppe, B.; Hoffmann, H.; Meiser, M.; Muaz, M.; Spieldenner, D.; Zinnikus, I. Orchestrating
Heterogeneous Devices and AI Services as Virtual Sensors for Secure Cloud-Based IoT Applications. Sensors 2021, 21, 7509. [CrossRef]

http://doi.org/10.2139/ssrn.3834205
http://doi.org/10.1016/j.procs.2021.01.227
http://doi.org/10.3390/su14095453
http://doi.org/10.21276/ijirem.2021.8.4.3
http://doi.org/10.1109/imis.2013.158
http://doi.org/10.1155/2017/1350929
http://doi.org/10.1109/ds-rt.2016.24
http://doi.org/10.1109/ds-rt.2015.28
http://doi.org/10.1109/percomw.2018.8480268
http://doi.org/10.1109/concapan.2018.8596474
http://doi.org/10.1109/ieeestd.2019.8767110
https://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-4666-4301-7.ch065
https://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-4666-4301-7.ch065
http://doi.org/10.2495/sehe940141
http://doi.org/10.1007/978-3-319-61300-0_10
http://doi.org/10.1109/ieeestd.2015.7106435
http://doi.org/10.1109/ieeestd.2017.8016712
https://www.sebokwiki.org/wiki/Guide_to_the_Systems_Engineering_Body_of_Knowledge_(SEBoK)
https://www.sebokwiki.org/wiki/Guide_to_the_Systems_Engineering_Body_of_Knowledge_(SEBoK)
http://doi.org/10.1109/ieeestd.2017.8100771
http://doi.org/10.1016/b0-12-227240-4/00047-2
https://en.wikipedia.org/wiki/Software_development_process
http://doi.org/10.1109/ACCESS.2018.2886818
http://doi.org/10.3390/s21227509

Sensors 2023, 23, 790 30 of 35

77. Lakhan, A.; Mohammed, M.A.; Abdulkareem, K.H.; Jaber, M.M.; Nedoma, J.; Martinek, R.; Zmij, P. Delay Optimal Schemes for
Internet of Things Applications in Heterogeneous Edge Cloud Computing Networks. Sensors 2022, 22, 5937. [CrossRef] [PubMed]

78. Patel, P.; Cassou, D. Enabling High-Level Application Development for the Internet of Things. J. Syst. Softw. 2015, 103, 62–84.
[CrossRef]

79. Tabor, L.P. The EDVAC, an Electronic Digital Computer. Astron. J. 1948, 53, 205. [CrossRef]
80. Guthrie, R. Program Design, Coding, and Testing. Encycl. Inf. Syst. 2003, 529–543. [CrossRef]
81. Yourdon, E. Modern Structured Analysis, 1st ed.; Yourdon Press: Ann Arbor, MI, USA, 1989; ISBN 9780135986240.
82. Arpita, G.; Netra, P. Magnifying Object-Oriented Analysis and Design; PHI Learning: New Delhi, India, 2014; ISBN 9788120340688.
83. Sharma, S.; Hasteer, N.; Mishra, S.P.; van Belle, J.P. Identifying the Contextual Relationship among the Agile Adoption Factors

through Interpretive Structural Modeling. In Proceedings of the International Conference on Information Technology, InCITe 2016,
Noida, India, 6–7 October 2016; Institute of Electrical and Electronics Engineers Inc.: Noida, India, 2017; pp. 87–92. [CrossRef]

84. Medina Otalvaro, C.M.; Blandon Andrade, J.C.; Zapata Jaramillo, C.M.; RiosPatino, J.I. IoT Best Practices and Their Components:
A Systematic Literature Review. IEEE Latin Am. Trans. 2022, 20, 2217–2228. [CrossRef]

85. Erazo, O.; Guerrero-Ulloa, G.; Guzmán, D.; Cáceres, C. From a Common Chair to a Device That Issues Reminders to Seniors.
Commun. Comput. Inf. Sci. 2020, 1194, 439–448. [CrossRef]

86. Gogineni, S.K.; Riedelsheimer, T.; Stark, R. Systematic Product Development Methodology for Customizable IoT Devices. In
Proceedings of the Procedia CIRP, Póvoa de Varzim, Portgal, 8–10 May 2019; Elsevier B.V.: Amsterdam, The Netherlands, 2019;
Volume 84, pp. 393–399. [CrossRef]

87. 24748-1-2018-ISO/IEC/IEEE; International Standard—Systems and Software Engineering—Life Cycle Management—Part 1:
Guidelines for Life Cycle Management. IEEE Standards Association: Piscataway, NJ, USA, 2018; pp. 1–75. [CrossRef]

88. 24748-3-2020-ISO/IEC/IEEE; International Standard—Systems and Software Engineering—Life Cycle Management—Part 3:
Guidelines for the Application of ISO/IEC/IEEE 12207 (Software Life Cycle Processes). IEEE Standards Association: Piscataway,
NJ, USA, 2020; pp. 1–69. [CrossRef]

89. 24748-4-2016-ISO/IEC/IEEE; International Standard for Systems and Software Engineering—Life Cycle Management—Part 4:
Systems Engineering Planning. IEEE Standards Association: Piscataway, NJ, USA, 2016; pp. 1–75. [CrossRef]

90. Preston, M. 7 Phases of the System Development Life Cycle Guide. Available online: https://www.clouddefense.ai/blog/system-
development-life-cycle (accessed on 4 October 2022).

91. Stetsuyk, E.; Maevsky, D.; Maevskaya, E. Methodology of Green Software Development for the IoT Devices. Int. J. Inf. Technol.
Secur. 2018, 10, 3–12.

92. Zelfia, H.; Simanungkalit, T.; Raharjo, T. Comparison of Scrum Maturity between Internal and External Software Development: A
Case Study at One of the State-Owned Banks in Indonesia. In Proceedings of the 1st International Conference on Information
System and Information Technology, ICISIT 2022, Yogyakarta, Indonesia, 26–27 July 2022; Institute of Electrical and Electronics
Engineers Inc.: New York, NY, USA, 2022; pp. 312–317. [CrossRef]

93. Teslyuk, V.; Batyuk, A.; Voityshyn, V. Method of Software Development Project Duration Estimation for Scrum Teams with
Differentiated Specializations. Systems 2022, 10, 123. [CrossRef]

94. Pico-Valencia, P.; Holgado-Terriza, J.A.; Paderewski, P. A Systematic Method for Building Internet of Agents Applications Based
on the Linked Open Data Approach. Future Gener. Comput. Syst. 2019, 94, 250–271. [CrossRef]

95. Rising, L.; Janoff, N.S. Scrum Software Development Process for Small Teams. IEEE Softw. 2000, 17, 26–32. [CrossRef]
96. Muntés-Mulero, V.; Ripolles, O.; Gupta, S.; Dominiak, J.; Willeke, E.; Matthews, P.; Somosköi, B. Agile Risk Management for

Multi-Cloud Software Development. IET Softw. 2019, 13, 172–181. [CrossRef]
97. Renanti, M.D.; Darmawan, A.C. Application of The Multiple Intelligent Level Determination for Interest and Talent Development.

E3S Web Conf. 2022, 348, 00016. [CrossRef]
98. Pecchia, C.; Trincardi, M.; di Bello, P. Expressing, Managing, and Validating User Stories: Experiences from the Market. Commun.

Comput. Inf. Sci. 2016, 422, 103–111. [CrossRef]
99. 26515-2018-ISO/IEC/IEEE; International Standard—Systems and Software Engineering—Developing Information for Users in an

Agile Environment. IEEE Standards Association: Piscataway, NJ, USA, 2018. [CrossRef]
100. Scrum.org. Scrum Master Trends 2019; Scrum.org.: Burlington, VT, USA; Berlin, Germany, 2019.
101. Dalpiaz, F.; van der Schalk, I.; Brinkkemper, S.; Aydemir, F.B.; Lucassen, G. Detecting Terminological Ambiguity in User Stories:

Tool and Experimentation. Inf. Softw. Technol. 2019, 110, 3–16. [CrossRef]
102. Usländer, T.; Batz, T. Agile Service Engineering in the Industrial Internet of Things. Future Internet 2018, 10, 100. [CrossRef]
103. Zheng, M.; Xu, D.; Jiang, L.; Gu, C.; Tan, R.; Cheng, P. Challenges of Privacy-Preserving Machine Learning in IoT. In Proceedings of

the International Workshop on Challenges in Artificial Intelligence and Machine Learning for Internet of Things, AIChallengeIoT
2019, New York, NY, USA, 10 November 2019; Association for Computing Machinery: New York, NY, USA, 2019; pp. 1–7.
[CrossRef]

104. Weber, M.; Boban, M. Security Challenges of the Internet of Things. In Proceedings of the 39th International Convention on
Information and Communication Technology, Electronics and Microelectronics, MIPRO 2016, Opatija, Croatia, 30 May–3 June
2016; pp. 638–643. [CrossRef]

105. Tseng, K.-H.; Chung, M.-Y.; Chen, L.-H.; Wei, M.-Y. Applying an Integrated System of Cloud Management and Wireless Sensing
Network to Green Smart Environments-Green Energy Monitoring on Campus. Sensors 2022, 22, 6521. [CrossRef]

http://doi.org/10.3390/s22165937
http://www.ncbi.nlm.nih.gov/pubmed/36015699
http://doi.org/10.1016/j.jss.2015.01.027
http://doi.org/10.1086/106125
http://doi.org/10.1016/b0-12-227240-4/00137-4
http://doi.org/10.1109/incite.2016.7857596
http://doi.org/10.1109/TLA.2022.9885169
http://doi.org/10.1007/978-3-030-42520-3_35
http://doi.org/10.1016/j.procir.2019.04.287
http://doi.org/10.1109/ieeestd.2018.8526560
http://doi.org/10.1109/ieeestd.2020.9238526
http://doi.org/10.1109/ieeestd.2016.7470727
https://www.clouddefense.ai/blog/system-development-life-cycle
https://www.clouddefense.ai/blog/system-development-life-cycle
http://doi.org/10.1109/icisit54091.2022.9872843
http://doi.org/10.3390/systems10040123
http://doi.org/10.1016/j.future.2018.11.042
http://doi.org/10.1109/52.854065
http://doi.org/10.1049/iet-sen.2018.5295
http://doi.org/10.1051/e3sconf/202234800016
http://doi.org/10.1007/978-3-319-27896-4_9/figures/5
http://doi.org/10.1109/ieeestd.2018.8584455
http://doi.org/10.1016/j.infsof.2018.12.007
http://doi.org/10.3390/fi10100100
http://doi.org/10.1145/3363347.3363357
http://doi.org/10.1109/mipro.2016.7522219
http://doi.org/10.3390/s22176521

Sensors 2023, 23, 790 31 of 35

106. Maddikunta, P.K.R.; Gadekallu, T.R.; Kaluri, R.; Srivastava, G.; Parizi, R.M.; Khan, M.S. Green Communication in IoT Networks
Using a Hybrid Optimization Algorithm. Comput. Commun. 2020, 159, 97–107. [CrossRef]

107. Ren, H.; Li, H.; Dai, Y.; Yang, K.; Lin, X. Querying in Internet of Things with Privacy Preserving: Challenges, Solutions and
Opportunities. IEEE Netw. 2018, 32, 144–151. [CrossRef]

108. Ammar, M.; Russello, G.; Crispo, B. Internet of Things: A Survey on the Security of IoT Frameworks. J. Inf. Secur. Appl. 2018, 38, 8–27.
[CrossRef]

109. Pirbhulal, S.; Zhang, H.; Mukhopadhyay, S.C.; Li, C.; Wang, Y.; Li, G.; Wu, W.; Zhang, Y.T. An Efficient Biometric-Based Algorithm
Using Heart Rate Variability for Securing Body Sensor Networks. Sensors 2015, 15, 15067–15089. [CrossRef]

110. Pirbhulal, S.; Zhang, H.; Alahi, M.E.E.; Ghayvat, H.; Mukhopadhyay, S.C.; Zhang, Y.T.; Wu, W. A Novel Secure IoT-Based Smart
Home Automation System Using a Wireless Sensor Network. Sensors 2016, 17, 69. [CrossRef] [PubMed]

111. Babaie, M.; Kuo, F.W.; Chen, H.N.R.; Cho, L.C.; Jou, C.P.; Hsueh, F.L.; Shahmohammadi, M.; Staszewski, R.B. A Fully Integrated
Bluetooth Low-Energy Transmitter in 28 Nm CMOS With 36% System Efficiency at 3 DBm. IEEE J. Solid-State Circuits 2016, 51, 1547–1565.
[CrossRef]

112. Pullini, A.; Rossi, D.; Loi, I.; Tagliavini, G.; Benini, L. Mr.Wolf: An Energy-Precision Scalable Parallel Ultra Low Power SoC for IoT
Edge Processing. IEEE J. Solid-State Circuits 2019, 54, 1970–1981. [CrossRef]

113. Koteshwara, S.; Parhi, K.K. Incremental-Precision Based Feature Computation and Multi-Level Classification for Low-Energy
Internet-of-Things. IEEE J. Emerg. Sel. Top. Circuits Syst. 2018, 8, 822–835. [CrossRef]

114. Lang, Y.; Wang, Q.; Yang, Y.; Hou, C.; Liu, H.; He, Y. Joint Motion Classification and Person Identification via Multitask Learning
for Smart Homes. IEEE Internet Things J. 2019, 6, 9596–9605. [CrossRef]

115. Yu, Z.; Du, H.; Xiao, D.; Wang, Z.; Han, Q.; Guo, B. Recognition of Human Computer Operations Based on Keystroke Sensing by
Smartphone Microphone. IEEE Internet Things J. 2018, 5, 1156–1168. [CrossRef]

116. Sachdeva, V.; Chung, L. Handling Non-Functional Requirements for Big Data and IOT Projects in SCRUM. In Proceedings of the
7th International Conference Confluence 2017 on Cloud Computing, Data Science and Engineering, Noida, India, 12–13 January
2017; IEEE: Noida, India, 2017; pp. 216–221. [CrossRef]

117. Keshta, N.; Morgan, Y. Comparison between Traditional Plan-Based and Agile Software Processes According to Team Size &
Project Domain (A Systematic Literature Review). In Proceedings of the 8th IEEE Annual Information Technology, Electronics
and Mobile Communication Conference, IEMCON 2017, Vancouver, BC, Canada, 3–5 October 2017; Institute of Electrical and
Electronics Engineers Inc.: Vancouver, BC, Canada, 2017; pp. 567–575. [CrossRef]

118. Alqudah, M.; Razali, R. A Comparison of Scrum and Kanban for Identifying Their Selection Factors. In Proceedings of the 6th
International Conference on Electrical Engineering and Informatics: Sustainable Society through Digital Innovation, ICEEI 2017,
Langkawi Island, Malaysia, 25–27 November 2017; Institute of Electrical and Electronics Engineers Inc.: Vancouver, BC, Canada,
2018; Volume 2017, pp. 1–6. [CrossRef]

119. Kettunen, P.; Laanti, M. Future Software Organizations–Agile Goals and Roles. Eur. J. Futures Res. 2017, 5, 1–15. [CrossRef]
120. Morais dos Santos, M.V.; Barbosa da Silva, P.D.; Lamas Otero, A.G.; Wisnieski, R.T.; Sousa Goncalves, G.; Esteves Maria, R.; Vieira

Dias, L.A.; Marques da Cunha, A. Applying Scrum in an Interdisciplinary Project for Fraud Detection in Credit Card Transactions.
Adv. Intell. Syst. Comput. 2016, 448, 461–471. [CrossRef]

121. Dai, H.N.; Zheng, Z.; Zhang, Y. Blockchain for Internet of Things: A Survey. IEEE Internet Things J. 2019, 6, 8076–8094. [CrossRef]
122. Hou, J.; Li, Y.; Yu, J.; Shi, W. A Survey on Digital Forensics in Internet of Things. IEEE Internet Things J. 2020, 7, 1–15. [CrossRef]
123. Sosa-Reyna, C.M.; Tello-Leal, E.; Lara-Alabazares, D.; Mata-Torres, J.A.; Lopez-Garza, E. A Methodology Based on Model-Driven

Engineering for IoT Application Development. In ICDS 2018; Berntzen, L., Hartog, M., Eds.; IARIA: Rome, Italy, 2018; pp. 36–41.
ISBN 978-1-61208-615-6.

124. Sosa-Reyna, C.M.; Tello-Leal, E.; Lara-Alabazares, D. An Approach Based on Model-Driven Development for IoT Applications.
In Proceedings of the IEEE International Congress on Internet of Things, ICIOT 2018, San Francisco, CA, USA, 2–7 July 2018;
IEEE: New York, NY, USA, 2018; pp. 134–139. [CrossRef]

125. Sosa-Reyna, C.M.; Tello-Leal, E.; Lara-Alabazares, D. Methodology for the Model-Driven Development of Service Oriented IoT
Applications. J. Syst. Archit. 2018, 90, 15–22. [CrossRef]

126. OpenMBEE. Open Model Based Engineering Environment. Available online: https://www.openmbee.org/index.html (accessed
on 21 October 2022).

127. Cabot, J. Clarifying Concepts: MBE vs MDE vs MDD vs MDA. Available online: https://modeling-languages.com/clarifying-
concepts-mbe-vs-mde-vs-mdd-vs-mda/ (accessed on 20 August 2022).

128. Object Management Group. MDA Specifications. Available online: http://www.omg.org/mda/specs.htm (accessed on 20
August 2022).

129. Ameller, D. Considering Non-Functional Requirements in Model-Driven Engineering. Master’s Thesis, Universitat Politècnica de
Catalunya, Barcelona, Spain, 2009.

130. Object Management Group. Model Driven Architecture (MDA). Available online: https://www.omg.org/mda/ (accessed on 17
August 2022).

131. Belaunde, M.; Burt, C.; Casanave, C.; Cummins, F.; DSouza, D.; Duddy, K.; el Kaim, W.; Kenne-dy, A.; Frank, W.; Frankel, D.; et al.
Model Driven Architecture (MDA) 2003; 62p. Available online: http://www.omg.org/cgi-bin/doc?omg/03-06-01 (accessed on
17 August 2022).

http://doi.org/10.1016/j.comcom.2020.05.020
http://doi.org/10.1109/MNET.2018.1700374
http://doi.org/10.1016/j.jisa.2017.11.002
http://doi.org/10.3390/s150715067
http://doi.org/10.3390/s17010069
http://www.ncbi.nlm.nih.gov/pubmed/28042831
http://doi.org/10.1109/JSSC.2016.2551738
http://doi.org/10.1109/JSSC.2019.2912307
http://doi.org/10.1109/JETCAS.2018.2836319
http://doi.org/10.1109/JIOT.2019.2929833
http://doi.org/10.1109/JIOT.2018.2797896
http://doi.org/10.1109/confluence.2017.7943152
http://doi.org/10.1109/iemcon.2017.8117128
http://doi.org/10.1109/iceei.2017.8312434
http://doi.org/10.1007/s40309-017-0123-7
http://doi.org/10.1007/978-3-319-32467-8_41/cover
http://doi.org/10.1109/JIOT.2019.2920987
http://doi.org/10.1109/JIOT.2019.2940713
http://doi.org/10.1109/iciot.2018.00026
http://doi.org/10.1016/j.sysarc.2018.08.008
https://www.openmbee.org/index.html
https://modeling-languages.com/clarifying-concepts-mbe-vs-mde-vs-mdd-vs-mda/
https://modeling-languages.com/clarifying-concepts-mbe-vs-mde-vs-mdd-vs-mda/
http://www.omg.org/mda/specs.htm
https://www.omg.org/mda/
http://www.omg.org/cgi-bin/doc?omg/03-06-01

Sensors 2023, 23, 790 32 of 35

132. Schmidt, D.C. Model-Driven Engineering. Computer 2006, 39, 25–31. [CrossRef]
133. Ashton, K. That “Internet of Things” Thing. RFID J. 2009, 22, 97–114.
134. Praveen, S.V.; Ittamalla, R.; Deepak, G. Analyzing Indian General Public’s Perspective on Anxiety, Stress and Trauma during

COVID-19—A Machine Learning Study of 840,000 Tweets. Diabetes Metab. Syndr. Clin. Res. Rev. 2021, 15, 667–671. [CrossRef]
[PubMed]

135. Goel, R.; Sharma, R. Studying Leaders & Their Concerns Using Online Social Media during the Times of Crisis—A COVID Case
Study. Soc. Netw. Anal. Min. 2021, 11, 46. [CrossRef]

136. Fong, S.L.; Wui Yung, D.C.; Ahmed, F.Y.H.; Jamal, A. Smart City Bus Application with Quick Response (QR) Code Payment. In
Proceedings of the 2019 8th International Conference on Software and Computer Applications 2019, Penang, Malaysia, 19–21
February 2019; Volume F1479, pp. 248–252. [CrossRef]

137. Paasivaara, M.; Vanhanen, J.; Lassenius, C. Collaborating with Industrial Customers in a Capstone Project Course: The Customers’
Perspective. In Proceedings of the 41st International Conference on Software Engineering: Software Engineering Education and
Training, ICSE-SEET 2019, Montreal, QC, Canada, 25–31 May 2019; IEEE: Montreal, QC, Canada, 2019; pp. 12–22. [CrossRef]

138. Enciso, L.; Sarango, J.; Valladarez, A.; Condolo, J. A Mobile Application for a Smart Car. In Proceedings of the Iberian Conference
on Information Systems and Technologies, CISTI 2019, Coimbra, Portugal, 19–22 June 2019; IEEE: Coimbra, Portugal, 2019;
Volume 2019, pp. 1–7. [CrossRef]

139. Cahill, J.; Portales, R.; McLoughin, S.; Nagan, N.; Henrichs, B.; Wetherall, S. IoT/Sensor-Based Infrastructures Promoting a Sense
of Home, Independent Living, Comfort and Wellness. Sensors 2019, 19, 485. [CrossRef]

140. Rodriguez-Ruiz, J.G.; Galvan-Tejada, C.E.; Vazquez-Reyes, S.; Galvan-Tejada, J.I.; Gutiérrez-Gnecchi, J.A. Cardiopulmonary Simulator
Using an Internet of Things Approach. In Proceedings of the 6th International Conference in Software Engineering Research and
Innovation, CONISOFT 2018, San Luis Potosi, Mexico, 24–26 October 2018; IEEE: San Luis Potosí, Mexico, 2019; pp. 123–131.
[CrossRef]

141. da Silva, D.A.; de Barros Santana, R.M.; Navas, J.; Goncalves, G.S.; Vieira Dias, L.A.; da Cunha, A.M.; Tasinaffo, P.M. Health Care
Transformation: An Academic Application System Case Study. IFAC-PapersOnLine 2018, 51, 413–418. [CrossRef]

142. Ibba, S.; Pinna, A.; Seu, M.; Pani, F.E. CitySense: Blockchain-Oriented Smart Cities. In Proceedings of the XP2017 Scientific
Workshops 2017, Cologne, Germany, 22–26 May 2017; Volume F1299, pp. 1–5. [CrossRef]

143. Fahrianto, F.; Anggraini, N.; Suseno, H.B.; Shabrina, A.; Reza, A. Smart Data Centre Monitoring System Based on Internet of
Things (IoT) (Study Case: Pustipanda UIN Jakarta). In Proceedings of the 5th International Conference on Cyber and IT Service
Management, CITSM 2017, Denpasar, Indonesia, 8–10 August 2017; IEEE: Denpasar, Indonesia, 2017; pp. 1–9.

144. Müller, R.; Vette, M.; Hörauf, L.; Speicher, C.; Burkhard, D. Lean Information and Communication Tool to Connect Shop and Top
Floor in Small and Medium-Sized Enterprises. Procedia Manuf. 2017, 11, 1043–1052. [CrossRef]

145. Rizqyawan, M.I.; Amri, M.F.; Pratama, R.P.; Turnip, A. Design and Development of Android-Based Cloud ECG Monitoring
System. In Proceedings of the 3rd International Conference on Information Technology, Computer, and Electrical Engineering,
ICITACEE 2016, Semarang, Indonesia, 19–20 October 2016; IEEE: Semarang, Indonesia, 2017; pp. 1–5.

146. Lima, G.L.B.; Ferreira, G.A.L.; Saotome, O.; da Cunha, A.M.; Dias, L.A.V. Hardware Development: Agile and Co-Design. In
Proceedings of the 12th International Conference on Information Technology: New Generations, ITNG 2015, Las Vegas, NV, USA,
13–15 April 2015; IEEE: Las Vegas, NV, USA, 2015; pp. 784–787. [CrossRef]

147. Esteves María, R.; Rodrigues Junior, L.A.; Guarino De Vasconcelos, L.E.; Mancilha Pinto, A.F.; Tsoucamoto, P.T.; Angelim Silva,
H.N.; Lastori, A.; Marques Cunha, D.A.; Vieira Dias, L.A. Applying Scrum in an Interdisciplinary Project Using Big Data, Internet
of Things, and Credit Cards. In Proceedings of the 12th International Conference on Information Technology: New Generations,
ITNG 2015, Las Vegas, NV, USA, 13–15 April 2015; IEEE: Las Vegas, NV, USA, 2015; pp. 67–72. [CrossRef]

148. Dafoulas, G.; Samuels-Clarke, J.; Maia, C.C.; Ali, A.A.; Tsiakara, A. Offering Smarter Learning Support through the Use of
Biometrics. In Proceedings of the 26th International Conference on Telecommunications, ICT 2019, Hanoi, Vietnam, 8–10 April
2019; IEEE: Hanoi, Vietnam, 2019; pp. 270–274. [CrossRef]

149. Guan, G.; Dong, W.; Gao, Y.; Bu, J. Towards Rapid and Cost-Effective Prototyping of IoT Platforms. In Proceedings of the International
Conference on Network Protocols, ICNP, Singapore, 8–11 November 2016; IEEE: Singapore, 2016; Volume 2016, pp. 1–5. [CrossRef]

150. Musyoka, F.M.; Thiga, M.M.; Muketha, G.M. A 24-Hour Ambulatory Blood Pressure Monitoring System for Preeclampsia
Management in Antenatal Care. Inform. Med. Unlocked 2019, 16, 100199. [CrossRef]

151. Sharma, S.; Das, S.; Virmani, J.; Sharma, M.; Singh, S.; Das, A. IoT Based Dipstick Type Engine Oil Level and Impurities Monitoring
System: A Portable Online Spectrophotometer. In Proceedings of the 2019 4th International Conference on Internet of Things:
Smart Innovation and Usages, IoT-SIU 2019, Ghaziabad, India, 18–19 April 2019; IEEE: Ghaziabad, India, 2019; pp. 1–4. [CrossRef]

152. Gray, S.; Clark, F.; Burgess, K.; Metcalfe, T.; Kadijevic, A.; Cater, K.; Bennett, P. Gorilla Game Lab: Exploring Modularity,
Tangibility and Playful Engagement in Cognitive Enrichment Design. In Proceedings of the Fifth International Conference on
Animal-Computer Interaction 2018, Atlanta, GA, USA, 4–6 December 2018; ACM Press: Atlanta, GA, USA, 2018; pp. 1–13.
[CrossRef]

153. Martillano, D.A.; Chowdhury, A.F.D.; Dellosa, J.C.M.; Murcia, A.A.; Mangoma, R.J.P. Pindots: An Assistive Six-Dot Braille Cell
Keying Device on Basic Notation Writing for Visually Impaired Students with IoT Technology. In Proceedings of the 2018 2nd
International Conference on Education and E-Learning 2018, Bali, Indonesia, 5–7 November 2018; Association for Computing
Machinery: New York, NY, USA, 2018; pp. 41–47.

http://doi.org/10.1109/MC.2006.58
http://doi.org/10.1016/j.dsx.2021.03.016
http://www.ncbi.nlm.nih.gov/pubmed/33813239
http://doi.org/10.1007/s13278-021-00756-w
http://doi.org/10.1145/3316615.3316718
http://doi.org/10.1109/icse-seet.2019.00010
http://doi.org/10.23919/cisti.2019.8760804
http://doi.org/10.3390/s19030485
http://doi.org/10.1109/conisoft.2018.8645885
http://doi.org/10.1016/j.ifacol.2019.02.005
http://doi.org/10.1145/3120459.3120472
http://doi.org/10.1016/j.promfg.2017.07.215
http://doi.org/10.1109/itng.2015.142
http://doi.org/10.1109/itng.2015.17
http://doi.org/10.1109/ict.2019.8798863
http://doi.org/10.1109/ICNP.2016.7785320
http://doi.org/10.1016/j.imu.2019.100199
http://doi.org/10.1109/iot-siu.2019.8777703
http://doi.org/10.1145/3295598.3295604

Sensors 2023, 23, 790 33 of 35

154. Pawar, N.; Bourgeau, T.; Chaouchi, H. PrIoT: Prototyping the Internet of Things. In Proceedings of the 2018 IEEE 6th International
Conference on Future Internet of Things and Cloud (FiCloud), Barcelona, Spain, 6–8 August 2018; IEEE: Barcelona, Spain, 2018;
pp. 216–223. [CrossRef]

155. Karvinen, K.; Karvinen, T. IoT Rapid Prototyping Laboratory Setup. Int. J. Eng. Educ. 2018, 34, 263–272.
156. Moon, S.; Min, M.; Nam, J.; Park, J.; Lee, D.; Kim, D. Drowsy Driving Warning System Based on GS1 Standards with Machine

Learning. In Proceedings of the 2017 IEEE 6th International Congress on Big Data, BigData Congress 2017, Honolulu, HI, USA,
25–30 June 2017; IEEE: Honolulu, HI, USA, 2017; pp. 289–296. [CrossRef]

157. Scheible, J.; Engeln, A.; Burmester, M.; Zimmermann, G.; Keber, T.; Schulz, U.; Palm, S.; Funk, M.; Schaumann, U. SMARTK-
ITCHEN Media Enhanced Cooking Environment. In Proceedings of the 6th International Conference on the Internet of Things
2016, Granada, Spain, 22–25 October 2019; Association for Computing Machinery: New York, NY, USA, 2016; pp. 169–170.
[CrossRef]

158. Kruger, C.P.; Abu-Mahfouz, A.M.; Hancke, G.P. Rapid Prototyping of a Wireless Sensor Network Gateway for the Internet of
Things Using Off-the-Shelf Components. In Proceedings of the IEEE International Conference on Industrial Technology, Seville,
Spain, 17–19 March 2015; IEEE: Seville, Spain, 2015; Volume 2015, pp. 1926–1931. [CrossRef]

159. Al-Taee, M.A.; Sungoor, A.H.; Abood, S.N.; Philip, N.Y. Web-of-Things Inspired e-Health Platform for Integrated Diabetes Care
Management. In Proceedings of the 2013 IEEE Jordan Conference on Applied Electrical Engineering and Computing Technologies,
AEECT 2013, Amman, Jordan, 3–5 December 2013; IEEE: Amman, Jordan, 2013; pp. 1–6. [CrossRef]

160. Al-Taee, M.A.; Al-Nuaimy, W.; Al-Ataby, A.; Muhsin, Z.J.; Abood, S.N. Mobile Health Platform for Diabetes Management
Based on the Internet-of-Things. In Proceedings of the Jordan Conference on Applied Electrical Engineering and Computing
Technologies, AEECT 2015, Amman, Jordan, 3–5 November 2015; IEEE: Amman, Jordan, 2015; pp. 1–5. [CrossRef]

161. Kim, H.J. Rapid Smart Environment Prototyping for Early Conceptual Design. In Proceedings of the Designing Interactive
Systems Conference, DIS 2018, Hong Kong, China, 9–13 June 2018; Association for Computing Machinery: New York, NY, USA,
2018; pp. 363–366. [CrossRef]

162. Mora, S.; Gianni, F.; Divitini, M. RapIoT Toolkit: Rapid Prototyping of Collaborative Internet of Things Applications. In
Proceedings of the International Conference on Collaboration Technologies and Systems, CTS 2016, Orlando, FL, USA, 31
October–4 November 2016; IEEE: Orlando, FL, USA, 2017; pp. 438–445. [CrossRef]

163. Gianni, F.; Mora, S.; Divitini, M. RapIoT Toolkit: Rapid Prototyping of Collaborative Internet of Things Applications. Future Gener.
Comput. Syst. 2019, 95, 867–879. [CrossRef]

164. Pereira, A.; Patrício, B.; Fonte, F.; Marques, S.; Reis, C.I.; Maximiano, M. Collecting Information About Air Quality Using
Smartphones. Procedia Comput. Sci. 2018, 138, 33–40. [CrossRef]

165. Escobar, L.; Carvajal, N.; Naranjo, J.; Ibarra, A.; Villacis, C.; Zambrano, M.; Galarraga, F. Design and Implementation of Complex
Systems Using Mechatronics and Cyber-Physical Systems Approaches. In Proceedings of the IEEE International Conference on
Mechatronics and Automation, ICMA 2017, Takamatsu, Japan, 6–9 August 2017; IEEE: Takamatsu, Japan, 2017; pp. 147–154.
[CrossRef]

166. Yang, L.Q.; Bi, Y.Y. Internet of Things Technology Implementation by Applying SDLC Model: The Intelligent Storage Management
System. Appl. Mech. Mater. 2014, 556–562, 5385–5390. [CrossRef]

167. ITU. Statistics—Individuals Using the Internet. Available online: www.itu.int/en/ITU-D/Statistics/Pages/stat/default.aspx
(accessed on 6 October 2019).

168. Lekidis, A.; Stachtiari, E.; Katsaros, P.; Bozga, M.; Georgiadis, C.K. Model-Based Design of IoT Systems with the BIP Component
Framework. Softw. Pract. Exp. 2018, 48, 1167–1194. [CrossRef]

169. Harbouche, A.; Djedi, N.; Erradi, M.; Ben-Othman, J.; Kobbane, A. Model Driven Flexible Design of a Wireless Body Sensor
Network for Health Monitoring. Comput. Netw. 2017, 129, 548–571. [CrossRef]

170. Brambilla, M.; Umuhoza, E.; Acerbis, R. Model-Driven Development of User Interfaces for IoT Systems Via Domain-Specific
Components and Patterns. J. Internet Serv. Appl. 2017, 8, 14. [CrossRef]

171. Fortino, G.; Russo, W. ELDAMeth: An Agent-Oriented Methodology for Simulation-Based Prototyping of Distributed Agent
Systems. Inf. Softw. Technol. 2012, 54, 608–624. [CrossRef]

172. Ciccozzi, F.; Spalazzese, R. MDE4IoT: Supporting the Internet of Things with Model-Driven Engineering. Stud. Comput. Intell.
2017, 678, 67–76. [CrossRef]

173. Gomes, L.; Moutinho, F.; Pereira, F. IOPT-Tools—A Web Based Tool Framework for Embedded Systems Controller Development
Using Petri Nets. In Proceedings of the 23rd International Conference on Field Programmable Logic and Applications, FPL 2013,
Porto, Portugal, 2–4 September 2013; IEEE: Porto, Portugal, 2013; p. 1. [CrossRef]

174. Ataíde, A.; Barros, J.P.; Brito, I.S.; Gomes, L. Towards Automatic Code Generation for Distributed Cyber-Physical Systems: A
First Prototype for Arduino Boards. In Proceedings of the IEEE International Conference on Emerging Technologies and Factory
Automation, ETFA, Limassol, Cyprus, 13–15 September 2017; IEEE: Limassol, Cyprus, 2017; pp. 1–4. [CrossRef]

175. Chauhan, S.; Patel, P.; Delicato, F.C.; Chaudhary, S. A Development Framework for Programming Cyber-Physical Systems. In
Proceedings of the 2nd International Workshop on Software Engineering for Smart Cyber-Physical Systems, SEsCPS 2016, Austin,
TX, USA, 16 May 2016; Association for Computing Machinery, Inc.: New York, NY, USA, 2016; pp. 47–53. [CrossRef]

176. Corredor, I.; Bernardos, A.M.; Iglesias, J.; Casar, J.R. Model-Driven Methodology for Rapid Deployment of Smart Spaces Based on
Resource-Oriented Architectures. Sensors 2012, 12, 9286–9335. [CrossRef]

http://doi.org/10.1109/ficloud.2018.00039
http://doi.org/10.1109/bigdatacongress.2017.44
http://doi.org/10.1145/2991561.2998471
http://doi.org/10.1109/icit.2015.7125378
http://doi.org/10.1109/aeect.2013.6716427
http://doi.org/10.1109/aeect.2015.7360551
http://doi.org/10.1145/3197391.3205383
http://doi.org/10.1109/cts.2016.0083
http://doi.org/10.1016/j.future.2018.02.030
http://doi.org/10.1016/j.procs.2018.10.006
http://doi.org/10.1109/icma.2017.8015804
http://doi.org/10.4028/www.scientific.net/AMM.556-562.5385
www.itu.int/en/ITU-D/Statistics/Pages/stat/default.aspx
http://doi.org/10.1002/spe.2568
http://doi.org/10.1016/j.comnet.2017.06.014
http://doi.org/10.1186/s13174-017-0064-1
http://doi.org/10.1016/j.infsof.2011.08.006
http://doi.org/10.1007/978-3-319-48829-5_7
http://doi.org/10.1109/fpl.2013.6645633
http://doi.org/10.1109/etfa.2017.8247737
http://doi.org/10.1145/2897035.2897039
http://doi.org/10.3390/s120709286

Sensors 2023, 23, 790 34 of 35

177. Fortino, G.; Garro, A.; Mascillaro, S.; Russo, W. Using Event-Driven Lightweight DSC-Based Agents for MAS Modelling. Int. J.
Agent-Oriented Softw. Eng. 2010, 4, 113–140. [CrossRef]

178. Reichlmayr, T. Working towards the Student Scrum—Developing Agile Android Applications. In Proceedings of the 2011 ASEE
Annual Conference & Exposition 2011, Vancouver, BC, Canada, 26–29 June 2011; pp. 22.1712.1–22.1712.12. [CrossRef]

179. Maylawati, D.S.; Ramdhani, M.A. Logical Framework of Information Technology: Systematization of Software Development
Research. Telfor J. 2022, 14, 26–32. [CrossRef]

180. Wang, Z.; Cui, L.; Guo, W.; Zhao, L.; Yuan, X.; Gu, X.; Tang, W.; Bu, L.; Huang, W. A Design Method for an Intelligent
Manufacturing and Service System for Rehabilitation Assistive Devices and Special Groups. Adv. Eng. Inform. 2022, 51, 101504.
[CrossRef]

181. Schauer, P.; Falas, Ł. Adaptation-Enabled Architecture for Internet of Things Systems. Lect. Notes Netw. Syst. 2021, 182, 195–204.
[CrossRef]

182. Cicirelli, F.; Fortino, G.; Guerrieri, A.; Spezzano, G.; Vinci, A. Metamodeling of Smart Environments: From Design to Implementa-
tion. Adv. Eng. Inform. 2017, 33, 274–284. [CrossRef]

183. Varga, P.; Blomstedt, F.; Ferreira, L.L.; Eliasson, J.; Johansson, M.; Delsing, J.; Martínez de Soria, I. Making System of Systems
Interoperable – The Core Components of the Arrowhead Framework. J. Netw. Comput. Appl. 2017, 81, 85–95. [CrossRef]

184. Costa, B.; Pires, P.F.; Delicato, F.C. Modeling IoT Applications with SysML4IoT. In Proceedings of the 42nd Euromicro Conference
on Software Engineering and Advanced Applications, SEAA 2016, Limassol, Cyprus, 31 August–2 September 2016; Institute of
Electrical and Electronics Engineers Inc.: New York, NY, USA, 2016; pp. 157–164. [CrossRef]

185. Fortino, G.; Guerrieri, A.; Russo, W.; Savaglio, C. Towards a Development Methodology for Smart Object-Oriented IoT Systems:
A Metamodel Approach. In Proceedings of the 2015 IEEE International Conference on Systems, Man, and Cybernetics, SMC 2015,
Hong Kong, 9–12 October 2015; pp. 1297–1302. [CrossRef]

186. Fortino, G.; Guerrieri, A.; Russo, W.; Savaglio, C. Integration of Agent-Based and Cloud Computing for the Smart Objects-
Oriented IoT. In Proceedings of the 2014 IEEE 18th International Conference on Computer Supported Cooperative Work in
Design (CSCWD), Hsinchu, Taiwan, 21–23 May 2014; pp. 493–498. [CrossRef]

187. Bellifemine, F.; Poggi, A.; Rimassa, G. Developing Multi-Agent Systems with a FIPA-Compliant Agent Framework. Softw. Pract.
Exp. 2001, 31, 103–128. [CrossRef]

188. Fortino, G. Agents Meet the IoT: Toward Ecosystems of Networked Smart Objects. IEEE Syst. Man Cybern. Mag. 2016, 2, 43–47.
[CrossRef]

189. Li, B.; Dong, W. Automatic Generation of Iot Device Platforms with Autolink. IEEE Internet Things J. 2021, 8, 5893–5903. [CrossRef]
190. Dong, W.; Li, B.; Guan, G.; Cheng, Z.; Zhang, J.; Gao, Y. TinyLink: A Holistic System for Rapid Development of IoT Applications.

ACM Trans. Sens. Netw. 2020, 17, 2020. [CrossRef]
191. Cai, H.; Gu, Y.; Vasilakos, A.V.; Xu, B.; Zhou, J. Model-Driven Development Patterns for Mobile Services in Cloud of Things. IEEE

Trans. Cloud Comput. 2018, 6, 771–784. [CrossRef]
192. de Farias, C.M.; Brito, I.C.; Pirmez, L.; Delicato, F.C.; Pires, P.F.; Rodrigues, T.C.; dos Santos, I.L.; Carmo, L.F.R.C.; Batista, T.

COMFIT: A Development Environment for the Internet of Things. Future Gener. Comput. Syst. 2017, 75, 128–144. [CrossRef]
193. Ramesh, R.; Lin, R.; Iannopollo, A.; Sangiovanni-Vincentelli, A.; Hartmann, B.; Dutta, P. Turning Coders into Makers: The

Promise of Embedded Design Generation. In Proceedings of the 1st Annual ACM Symposium on Computational Fabrication
2017, Cambridge, MA, USA, 12–13 June 2017. [CrossRef]

194. Botta, A.; de Donato, W.; Persico, V.; Pescapé, A. Integration of Cloud Computing and Internet of Things: A Survey. Future Gener.
Comput. Syst. 2016, 56, 684–700. [CrossRef]

195. Kefalakis, N.; Soldatos, J.; Anagnostopoulos, A.; Dimitropoulos, P. A Visual Paradigm for IoT Solutions Development. In Lecture Notes
in Computer Science; Podnar Žarko, I., Pripužić, K., Serrano, M., Eds.; Springer: Cham, Switzerland, 2015; Volume 9001, pp. 26–45.
[CrossRef]

196. Fazio, M.; Celesti, A.; Marquez, F.G.; Glikson, A.; Villari, M. Exploiting the FIWARE Cloud Platform to Develop a Remote Patient
Monitoring System. In Proceedings of the 2015 IEEE Symposium on Computers and Communication (ISCC) 2015, Larnaca,
Cyprus, 6–9 July 2015; Volume 2016, pp. 264–270. [CrossRef]

197. Vashi, S.; Ram, J.; Modi, J.; Verma, S.; Prakash, C. Internet of Things (IoT): A Vision, Architectural Elements, and Security Issues.
In Proceedings of the International Conference on IoT in Social, Mobile, Analytics and Cloud, I-SMAC 2017, Nadu, India, 10–11
February 2017; IEEE: Palladam, India, 2017; pp. 492–496. [CrossRef]

198. Qiang, M.; Yu-feng, D.; Ting, X.; Shun-li, W. Research of Visualization Monitoring Technology Based on Internet of Things in
Discrete Manufacturing Process. In Proceedings of the 2nd International Symposium on Dependable Computing and Internet of
Things (DCIT), Wuhan, China, 16–18 November 2015; IEEE: New York, NY, USA, 2015; pp. 128–133. [CrossRef]

199. Industry IoT Consortium. The Industrial Internet Reference Architecture. Available online: https://www.iiconsortium.org/IIRA/
(accessed on 23 October 2022).

200. Lin, S.W.; Durand, B.; Bleakley, G.; Chigani, A.; Martin, R.; Murphy, B.; Crawford, M. The Industrial Internet of Things Volume G1:
Reference Architecture, Version 1.9; IIC Technical White Paper; Lin, S.-W., Simmon, E., Eds.; Industrial Internet Consortium: Boston,
MA, USA, 2019.

http://doi.org/10.1504/IJAOSE.2010.032798
http://doi.org/10.18260/1-2--18928
http://doi.org/10.5937/telfor2201026S
http://doi.org/10.1016/j.aei.2021.101504
http://doi.org/10.1007/978-3-030-65796-3_18
http://doi.org/10.1016/j.aei.2016.11.005
http://doi.org/10.1016/j.jnca.2016.08.028
http://doi.org/10.1109/seaa.2016.19
http://doi.org/10.1109/smc.2015.231
http://doi.org/10.1109/cscwd.2014.6846894
http://doi.org/10.1002/1097-024X(200102)31:2<103::AID-SPE358>3.0.CO;2-O
http://doi.org/10.1109/MSMC.2016.2557483
http://doi.org/10.1109/JIOT.2020.3033130
http://doi.org/10.1145/3412366
http://doi.org/10.1109/TCC.2016.2526007
http://doi.org/10.1016/j.future.2016.06.031
http://doi.org/10.1145/3083157
http://doi.org/10.1016/j.future.2015.09.021
http://doi.org/10.1007/978-3-319-16546-2_4
http://doi.org/10.1109/iscc.2015.7405526
http://doi.org/10.1109/i-smac.2017.8058399.e
http://doi.org/10.1109/dcit.2015.22
https://www.iiconsortium.org/IIRA/

Sensors 2023, 23, 790 35 of 35

201. Faugère, M.; Bourbeau, T.; de Simone, R.; Gérard, S. MARTE: Also an UML Profile for Modeling AADL Applications. In
Proceedings of the IEEE International Conference on Engineering of Complex Computer Systems, ICECCS 2007, Auckland, New
Zealand, 11–14 July 2007; IEEE: Auckland, New Zealand, 2007; pp. 359–364. [CrossRef]

202. Carnevali, L.; Ridi, L.; Vicario, E. Putting Preemptive Time Petri Nets to Work in a V-Model SW Life Cycle. IEEE Trans. Softw. Eng.
2011, 37, 826–844. [CrossRef]

203. Nastic, S.; Truong, H.-L.H.-L.L.; Dustdar, S. SDG-Pro: A Programming Framework for Software-Defined IoT Cloud Gateways.
J. Internet Serv. Appl. 2015, 6, 21. [CrossRef]

204. Alvear-Puertas, V.E.; Burbano-Prado, Y.A.; Rosero-Montalvo, P.D.; Tözün, P.; Marcillo, F.; Hernandez, W. Smart and Portable
Air-Quality Monitoring IoT Low-Cost Devices in Ibarra City, Ecuador. Sensors 2022, 22, 7015. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1109/iceccs.2007.29
http://doi.org/10.1109/TSE.2011.4
http://doi.org/10.1186/s13174-015-0037-1
http://doi.org/10.3390/s22187015

	Introduction
	Background
	Objectives
	State of the Art in Methodologies to Develop IoTSs

	Methodologies Designed for the Development of IoTSs
	Stages or Processes of the Software System Development Life Cycle
	Standards That Define the Stages and Processes of the Software Systems Life Cycle
	IoTS Development Methodologies Based on the Agile Manifesto
	Guidelines for Project Risk Management
	End-User Needs and Requirements Definition Process
	Non-Functional Requirements
	Number of Development Team Members

	Modeling as a Key in IoTS Development Methodologies

	Methodologies for Traditional IS Development Applied to IoTS Development
	Methodologies, Tools, and Frameworks Focused on the Design and Construction of Software for IoTSs
	Methodologies Designed for IoTS Development in Accordance with ISO/IEC/IEEE Standards

	Other Proposals for the Development of IoTSs
	Architectures for IoTSs
	Layered Architecture
	Service-Oriented Architectures
	Other Types of Architectures

	Conclusions
	References

