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Optimization of Flow Allocation in Asynchronous
Deterministic 5G Transport Networks by

Leveraging Data Analytics
Jonathan Prados-Garzon, Tarik Taleb and Miloud Bagaa

Abstract—Time-Sensitive Networking (TSN) and Deterministic
Networking (DetNet) technologies are increasingly recognized as
key levers of the future 5G transport networks (TNs) due to their
capabilities for providing deterministic Quality-of-Service and
enabling the coexistence of critical and best-effort services. Addi-
tionally, they rely on programmable and cost-effective Ethernet-
based forwarding planes. This article addresses the flow alloca-
tion problem in 5G backhaul networks realized as asynchronous
TSN networks, whose building block is the Asynchronous Traffic
Shaper. We propose an offline solution, dubbed “Next Generation
Transport Network Optimizer” (NEPTUNO), that combines ex-
act optimization methods and heuristic techniques and leverages
data analytics to solve the flow allocation problem. NEPTUNO
aims to maximize the flow acceptance ratio while guaranteeing
the deterministic Quality-of-Service requirements of the critical
flows. We carried out a performance evaluation of NEPTUNO
regarding the degree of optimality, execution time, and flow
rejection ratio. Furthermore, we compare NEPTUNO with a
novel online baseline solution for two different optimization goals.
Online methods compute the flow’s allocation configuration right
after the flow arrives at the network, whereas offline solutions
like NEPTUNO compute a long-term configuration allocation for
the whole network. Our results highlight the potential of data
analytics for the self-optimization of the future 5G TNs.

Transport Networks, QoS, Performance guarantees, Flow
Allocation, Time-Sensitive Networking (TSN), 5G, Data An-
alytics, Asynchronous Traffic Shaper (ATS), IEEE 802.1Qcr

I. INTRODUCTION

A. Motivation

Fifth Generation (5G) technology has the ambition to ac-
commodate a wide range of services that demand diverse
performance requirements. Among them are those catego-
rized as Ultra-Reliable and Low Latency Communications
(URLLCs), i.e., services with extremely stringent constraints
in latency and reliability. Beyond the 5G capabilities to support
URLLC traffic, a cost-effective transport network able to
provide deterministic Quality of Service (QoS), i.e., bounded
latency, jitter, and packet loss, is also crucial to deliver on
the promises of 5G goals. Furthermore, to lower the costs,
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the same transport network infrastructure should enable the
heterogeneous 5G services.

Traditional network technologies fail to comply with the
requirements mentioned above. On the one hand, commodity
Ethernet cannot offer either deterministic QoS or latencies
below tens of milliseconds [1], [2]. On the other side, although
special-purpose Fieldbus technologies (e.g., Canbus, Profibus)
and Industrial Ethernet might convey critical services, they can
be prohibitively expensive for transport networks. Moreover,
they are not suitable to simultaneously support the coexis-
tence of critical and non-performance sensitive (best effort)
services. Time-Sensitive Networking (TSN) and Deterministic
Networking (DetNet) standards emerge to overcome the lim-
itations of the predecessor technologies and are particularly
attractive to realize the next generation of transport networks
[3]–[6].

TSN and DetNet are gaining lots of momentum among the
communities of researchers and industrials working on both
wired and wireless networks. TSN is a set of standards spec-
ified by IEEE 802 aiming to define a converged layer 2 (L2)
network technology that ensures the deterministic transport of
the streams via IEEE 802 networks. On the other side, DetNet
can be regarded as an extension of TSN to provide routes
with deterministic QoS over Layer 3 (L3) routing segments.
DetNet might rely on TSN to provide performance guarantees
up to L2, though it can run over other underlying network
technologies different from those based on Ethernet. The main
objective of these technologies is to provide a flexible and
dynamic network with end-to-end deterministic QoS support
in terms of latency, jitter, packet loss and reliability [1], [2].

TSN networks offer flexible and sophisticated flow control
mechanisms in charge of handling the frames at each TSN
bridge egress port to ensure the deterministic transport to the
streams. Nonetheless, determinism and flexibility are at the
expense of a combinatorial configuration complexity [7]–[9].
By way of illustration, in [8], Serna et al. report an experiment
on the scheduling of 50 streams in a TSN network consisting
of 10 synchronous switches with 32 temporal windows per
port that took longer than 40 hours (solver timeout). In
[7], Specht and Samii show the scalability issues of the
Satisfiability Modulo Theories (STM) solvers to find feasible
configurations in asynchronous TSN networks. Although there
are heuristic solutions proposed in the literature for configuring
TSN networks to cope with the configuration problem com-
plexity [7], the uncertainties (e.g., expected capacity demand
per service or links time-to-failure) that might present some
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scenarios, which make the problem more challenging, have not
been considered so far in the literature. In this regard, historical
data might be leveraged to adapt the network configuration to
the changing network conditions.

We can distinguish between synchronous and asynchronous
TSN. Synchronous TSN requires a precise and common time
reference to synchronize the forwarding plane devices (TSN
bridges), which might hinder the network scalability [2].
The TSN bridges use the time reference to schedule the
transmission of the different flows over reserved time slots.
This strategy results in poor capacity link utilization and is not
suitable for sporadic traffic patterns. Considering the above,
we argue asynchronous TSN can fit better the necessities of
many medium and large size 5G Transport Networks (TNs)
(e.g., those conveying the traffic of user-centric services) where
deterministic aperiodic traffic (e.g., real-time media or smart
grid) is predominant over the deterministic periodic one (e.g.,
closed-loop process control).

B. Context, objective, and contribution
In this article, we address the flow allocation problem for

asynchronous TSN 5G TNs by leveraging Data Analytics
(DA). DA refers to the set of methods to extract valuable
information from raw data. Most of the existing works ad-
dressing the flow allocation problem in TSN networks consider
synchronous TSN in industrial scenarios [10]–[12]. Unlike in
industrial scenarios, neither the number of flows nor their
features can be known exactly beforehand in many mobile
transport networks. For this reason, DA plays an essential role
in our context. From Release 15, Third Generation Partnership
Project (3GPP) standards define a DA framework to facilitate
the data-gathering, analysis, and prediction within the 5G
system by adding new functions to both the control and man-
agement planes. Another particularity of 5G TNs is the wide
disparity and heterogeneity of the traffic they convey. Finding
feasible configurations for a TSN network to simultaneously
accommodate all the 5G traffic types is challenging. This issue
can be accentuated by the scale of the network. Last, some
criteria and procedures are required to cluster 5G streams into
IEEE 802.1Q classes.

We focus on the Backhaul Network (BN), which is the
segment of the TN connecting the radio base station sites to the
core of the cellular network. We will consider IEEE 802.1Qcr
Asynchronous Traffic Shaper (ATS) [13], which is based on
the Urgency-Based Scheduler (UBS) [7], [14], to implement
the Forwarding Plane (FP) of the BN. ATS is an asynchronous
queuing algorithm that combines interleaved shaping and
strict priority queues to realize per-flow deterministic QoS
guarantees in a practical way. It is worth mentioning that the
flow allocation problem in ATS-based networks has received
little attention in the literature so far (please refer to Section
II).

To solve the flow allocation problem in the scenario
mentioned above, we propose a novel offline solution,
dubbed “Next Generation Transport Network Optimizer”
(NEPTUNO), which combines exact optimization methods
with heuristic procedures and leverages DA to compute a long-
term configuration of the asynchronous TSN BN. The goal

of NEPTUNO is to minimize the flow rejection ratio while
guaranteeing the QoS requirements (e.g., maximum delay
budget and jitter, and minimum reliability) of the 5G flows.
More precisely, NEPTUNO makes the following decisions: i)
clustering of 5G streams into IEEE 802.1Q classes according
to the 5G QoS Identifier (5QI), ii) flow-to-shaped buffer and
flow-to-priority assignments at each ATS of the network, iii)
paths selection to interconnect every source and destination,
and iv) distribution of the end-to-end delay/jitter budget of the
flows among the hops comprising each path in the network.

We evaluate the performance of NEPTUNO in terms of
the degree of optimality, runtime, and flow rejection ratio.
Moreover, due to the scarce literature dealing with the flow
allocation problem in asynchronous TSN BNs, we propose
a novel online solution that also integrates exact methods,
heuristic procedures, and data analytics to solve the flow
allocation problem. Unlike offline approaches like NEPTUNO,
online solutions compute the flow’s allocation configuration
right after the flow arrives at the network. Our results show that
the flow rejection ratio offered by NEPTUNO is approximately
20% above the optimal one for low workloads and 10%
above for high workloads for a TSN BN with ten links and
four delay-critical guaranteed bit rate 5QIs. Regarding the
NEPTUNO’s computational complexity, our results suggest it
scales linearly with the size of the network, i.e., the number
of links or, equivalently, the number of ATSs. Last, the results
highlight the importance of the DA to optimize the flow
allocation problem in ATS-based BNs.

The remainder of the paper is organized as follows: Section
II includes a brief revision of the related literature. Section III
briefly describes the network architecture considered in this
work and the operation of the ATS. Section IV includes a
high-level formulation of the considered flow scheduling opti-
mization problem for ATS-based networks. Section V covers
the modeling of the key performance metrics considered in
the problem. Section VI details the operation of NEPTUNO.
Section VII describes the proposed online baseline solution.
Section VIII includes the simulation results to assess the
performance of NEPTUNO. Finally, Section IX concludes the
paper.

II. BACKGROUND AND RELATED WORKS

This section provides some background and reviews the
existing works related to data analytics for optimizing mobile
networks and asynchronous TSN networks.

A. Data Analytics in 5G

Data Analytics (DA) is recognized as a key lever to unleash
the full potential of 5G [15]. DA refers to the process of
analyzing raw data to extract valuable information and con-
clusions. One of the primary applications of DA in mobile
networks is to assist the management planes in optimizing
the network operation to adapt it dynamically to the changing
conditions. For instance, predictive analytics for forecasting
traffic demands and services resources consumption can help
configure the network proactively according to a given goal
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TABLE I: Comparison between asynchronous TSN networks, synchronous TSN networks, and traditional asynchronous networks (strict priorities).

Network type Advantages Disadvantages

N1: Asynchronous TSN network

- Suitable for aperiodic (sporadic) deterministic traffic.
- Higher scalability than N2.
- Higher link utilization than N2.
- Lower configuration complexity than N2.

- Higher latency than N2.
- More expensive than N3.
- Lower link utilizations than N3.
- Higher configuration complexity than N3.
- Not suitable for periodic deterministic traffic.

N2: Synchronous TSN network - Lowest latency.
- Suitable for periodic deterministic traffic.

- Not suitable for aperiodic deterministic traffic.
- Most expensive technology.
- Scalability issues due to time synchronization.
- Most difficult to configure.
- Lowest link utilization.

N3: Traditional asynchronous network
- Lowest configuration complexity.
- Cheapest technology.
- Highest link utilization.

- Highest latency.
- Issues to provide deterministic QoS guarantees.
- Highest complexity to estimate the E2E delay bounds.

(e.g., maximizing the operator’s revenue). We refer the inter-
ested reader to [15] for a detailed explanation of a wide range
of use cases in mobile networks that can benefit from DA.

Industry and researchers have widely known for a long
time the importance of using DA and historical data of the
users’ demands and network-related parameters to optimize
the network operation. Previous to the 3GPP DA framework
definition, a vast literature considers available predictive ana-
lytics as input to their optimization algorithms. Nonetheless,
3GPP mobile networks’ built-in capabilities to support DA,
i.e., data collection and processing functionality, have been re-
cently adopted by including Network Data Analytics Function
(NWDAF) and Management Data Analytics Function (MDAF)
at the control and management planes, respectively.

To mention some related works, Pateromichelakis et al. in
[15] provide a technical overview of the DA support in 3GPP
Release 15 and propose a novel integrated DA framework to
overcome the limitations of the 3GPP standards. Furthermore,
they showcase a particular implementation for application and
Radio Access Network (RAN) analytics. In [16], Raza et
al. present a proof-of-concept that consists of a Software-
Defined Networking (SDN)/Network Functions Virtualisation
(NFV)-based orchestrator that leverages Big DA to share
infrastructure resources among multiple tenants to optimize
the profit of an Infrastructure Provider (InP). A slice admission
strategy based on Big DA for an InP is proposed in [17] by
Raza et al.. The reported results show that using predictive
DA for slices admission control yields up to 50.7% increase
in InP’s profit. Afolabi et al. in [18] show the importance of
the predictive DA to forecast the traffic load to carry out the
proactive computing resource provisioning of Network Slicing
Orchestrator Systems implemented as a softwarized network
service [19].

B. Asynchronous TSN networks

One of the key ingredients to provide deterministic QoS is
to implement mathematically analyzable queuing algorithms
for handling the frames at the output ports of the FP bridges
[1]. In other words, we can derive analytical expressions for
the end-to-end (E2E) maximum delay, jitter, and frame loss,
experienced by any critical flow given its characteristics, the
current state of the network, and the resources allocated to it
[20]. Then, the flow allocation algorithms will rely on these

expressions to decide in advance the setup and resources
to be reserved for every flow in order to ensure its QoS
requirements.

Many bridges implementations defined in TSN standards
are synchronous, i.e., they need a precise and common time
reference shared among all the TSN devices of the network.
The TSN devices employ this time synchronization, for in-
stance, to schedule the transmission of the traffic for the
different flows over synchronized time slots (i.e., time-division
multiplexing). IEEE 802.1AS standard specifies the way to
provide synchronization for TSN by using a specific profile
of the generic Precision Time Protocol [2]. Examples of TSN
synchronous traffic scheduling algorithms are IEEE 802.1Qch
Cyclic Queuing and Forwarding (CQF) and IEEE 802.1Qbv
Time-Aware Shaper (TAS).

The principal drawbacks of the synchronous traffic schedul-
ing algorithms are the need for a network-wide coordinated
time, which hinders the scalability of the network, and the use
of reserved time slots for each flow or set of flows, which leads
to a poor utilization of the link capacities [2]. TSN standards
tackle these weaknesses by including the IEEE 802.1Qcr
ATS, which removes the need for a common time reference
among the ATS bridges and offers higher link utilization than
synchronous schedulers by leveraging statistical multiplexing.
It is nothing but fair, however, to note that synchronous
schedulers exhibit lower delay than ATS.

In [21], Nasrallah et al. compare the performance offered
by ATS and TAS for a typical industrial control network
with a ring topology. Their results show that ATS slightly
outperforms TAS for sporadic high-priority and best-effort
(BE) traffic. However, ATS has problems to handle moderate
and high loads of periodic deterministic traffic [21]. Despite
this shortcoming and considering the expected dominance of
mobile broadband traffic [22], the ATS is particularly attractive
for 5G BNs due to its lower cost and easier operation, not
requiring time synchronization that may hinder the network
scalability as argued in [6].

Traditionally, asynchronous networks have relied on the use
of traffic prioritization (strict priorities) at the bridges egress
ports for QoS support (e.g., IEEE 802.1Q-2005 standard). This
approach’s main drawback is that it results in arbitrarily large
worst-case delays as the burstiness of the flows grows at every
hop [23]. This issue can be solved by using per-hop shaping.
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However, the major obstacle for the practicability of per-hop
traffic regulation is that a physical queue per-flow is typically
required, which is expensive. ATS overcomes this problem
by introducing the interleaved shaping concept, which allows
using a single queue for regulating a set of flows, each with
its own shaping constraints, hence achieving a cost-effective
per-hop traffic shaping.

Traditional asynchronous networks are cheap, scalable, and
easy to configure as their functionality is reduced. Nonethe-
less, the estimation of tight delay bounds for the flows in
traditional asynchronous networks is an NP-hard problem [24].
Conversely, the delay in TSN networks is more comfortable
to compute, but their configuration is too complex due to their
flexibility and sophisticated methods to provide deterministic
QoS. Last, it shall be noted that ATS, as any other shaping
mechanism, will reduce the multiplexing gains in the backhaul
networks compared to bare IEEE 802.1Q.

Table I summarizes the benefits and drawbacks of the
synchronous TSN, asynchronous TSN, and traditional asyn-
chronous networks discussed above.

Several works have addressed the performance analysis
of the ATS [14], [23], [25]. Specht and Samii propose the
Urgency-Based Scheduler (UBS) in [14], which is the core of
the ATS as a practical alternative to the existing asynchronous
shapers that avoids per-flow queuing and offers a more scalable
operation. Besides, they derive delay bounds for the UBS with
a constant capacity link and considering both Length Rate
Quotient (LRQ) and leaky bucket regulation constraints. In
[23], Le Boudec formally proves the performance bounds of
the UBS and introduces the concept of Minimal Interleaved
Regulator that extends UBS to a broader set of regulation rules.
Remarkably, they prove that any minimal interleaved regulator,
placed after any arbitrary FIFO queue, does not increase the
delay bound of the combination [23]. Mohammadpour et al.
compute E2E bounds for a deterministic network based on
Credit-Based Shaper (CBS) and ATS. They show that the
derived bounds are tighter than those estimated as the sums
of per-hop worst-case delay.

The performance evaluation of the ATS through simulation
is tackled in [26]–[28]. Zhou et al. revisited the operation and
bounds of the ATS in [26], [27]. Moreover, they assess the per-
formance of the ATS. They conclude that ATS accomplishes
effective traffic shaping and switching without requiring a
global notion of time. Furthermore, they identify the strengths
and weaknesses of the asynchronous algorithms UBS/Token
Bucket Emulation (TBE), UBS/LRQ, and Paternoster sched-
uler. In [28], Grigorjew et al. introduce a novel simulation
framework featuring ATS and IEEE 802.1Qbu frame preemp-
tion. Their simulation results suggest a decrease in the jitter
of the high priority flows thanks to frame preemption, though
it negatively impacts the latency of the low priority flows.

The flow allocation problem in asynchronous TSN networks
is addressed in [7], [29]. In [7], Specht and Samii use two
approaches to tackle the synthesis of shaped queues and
priority assignment in UBS-based networks: a pure STM
solver which always finds a feasible solution, and ii) a heuristic
approach dubbed Topology Rank Solver (TRS) to cope with
the high complexity exhibited by the pure STM solver. In
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addition, the authors explore several variants of slack time
maximization as optimization goals of the TRS. In contrast
to this work, the number of flows to be allocated in the
network and their characteristics are known beforehand in
[7]. In our previous work [29], we propose LEARNET, a
deep reinforcement learning (DRL)-based online solution for
the flow allocation problem in asynchronous TSN networks.
The proposed solution leverages ATS analytical performance
models to check the validity of the actions issued by the agent.
In this way, the DRL-based solution becomes fully reliable.
Please refer to [30], [31] for further benefits brought by the
combined use of analytical and machine learning approaches.
The solution proposed in [29] is a first step in applying DRL
to solve the flow allocation problem in ATS-based networks.
Nonetheless, further work is required to make the solution
agnostic to the scenario (e.g., network topology) and reduce
the required training time of the DRL agent.

III. 5G ATS-BASED BACKHAUL NETWORK

In this section, we briefly describe the assumed BN archi-
tecture upon which to build the envisioned flow scheduling
solution.

A. Backhaul Network Architecture and Operation

The scenario considered in this work is similar to that
described in [6]. It consists of an asynchronous TSN network
to realize the 5G BN, i.e., to provide connectivity between
the Next Generation NodeBs (gNBs) and the 5G Core, as
shown in Fig. 1. The forwarding plane comprises a set of TSN
bridges that support ATS. The TSN bridges include an ATS
instance per egress port. Each ATS is in charge of scheduling
the frames for a physical link that connects an egress port of
one bridge with the other’s ingress port. That is why, from now
on, in formalism, we might use both terms interchangeably.
To facilitate subsequent explanations, we consider two types
of bridges: edge nodes and transit nodes. The edge nodes are
directly connected with a 5G entity instance (e.g., gNBs, user
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plane function -UPF-). Besides, they include the TSN Frame
Replication and Elimination for Reliability capability.

To provide cross coordination between the 5G system
and the transport network domain, we consider the IETF
framework for Abstraction and Control of Traffic Engineered
Networks [6], [32]. In this way, the 5G system can control
the transport network slices through the traffic provisioning
manager (TPM) in the 5G core control plane.

The primary entity at the BN management and control
planes is a logically centralized TSN controller (TSNC). It is
responsible for running algorithms to optimize the BN opera-
tion and configuring the bridges accordingly. These algorithms
might leverage the 5G data analytics framework via the TPM.
The following predictive analytics are particularly engrossing
optimize the BN:

1. Temporal traffic demand per 5QI between every source
and destination pair (traffic matrix).

2. Distribution of the guaranteed bit rate per 5QI.
3. The distribution of the flow lifetime per 5QI.

The algorithm might require further inputs, such as the net-
work state and time-to-failure distribution for every link and
device, directly from the telemetry and data analytics engine
of the BN management plane.

B. ATS Operation

The ATS defines an asynchronous method for handling the
frames at the egress ports of the TSN bridges [2], [33]. The
ATS specified in TSN standards [33] is based on the UBS
originally proposed by Specht and Samii in [14]. In fact, the
ATS can be regarded as the practical implementation of the
UBS in 802.1Q standards [33]. In this work, we adopt the
nomenclature used in [14] for describing the ATS operation.

Figure 2 depicts the ATS queuing model. For the sake of
simplicity, Fig. 2 shows only one egress port, but please note
that there is an ATS instance per bridge egress port. The ATS
consists of two stages of queuing: i) a set of shaped queues for
interleaved shaping, and ii) a set of priority queues. All these
queues follow a First Come, First Served (FCFS) discipline.

The interleaved shaping enables the use of a single queue
(shaped queue) for realizing the traffic regulation of a set of
flows, each with its own constraints. To that end, only the
eligibility of the head-of-line (HOL) frame is checked, i.e., to

examine whether the HOL frame is eligible for transmission
according to the regulation constraints of its flow. If so, the
frame is released for transmission to the following queuing
level. Interestingly, the interleaved shaping does not increase
the worst-case latency of the ATS [14], [23].

ATS supports leaky bucket shaping constraints, i.e., it en-
forces an upper bound on the flows of the form Af (t) ≤
rf ·t+bf [7], [14]. Where Af (t) is the accumulated amount of
transmitted data until the instant t for the flow f , and rf and bf
are respectively Committed Information Rate and Committed
Burst Size in TSN standards [33]. For further details on the
operation of the interleaved shaping, please refer to [6], [7],
[14], [33].

The second stage in the queuing hierarchy includes one
FCFS queue per priority level in the scheduler. Each queue
merges the output of all shaped queues assigned to the same
priority level. The transmission selection algorithm at this
stage is strict priorities.

The allocation of a flow to a given ATS involves two
main decisions: i) flow to shaping queue, and ii) flow to
priority level assignments. These decisions are subject to the
following rules: each shaped queue is associated with only one
ingress port (QAR1 rule), one priority level in the previous
hop (QAR2 rule), and one internal priority level (QAR3 rule).
QAR2 and QAR3 rules are required to provide deterministic
QoS, whereas QAR1 isolates the flows from different nodes,
avoiding the propagation of non-conformant traffic overloads.
These rules determine the required number of shaped queues
Q to implement P priority levels. Let us assume an ATS in
a bridge that aggregates traffic from L different input ports.
Each input port l ∈ [1, L] receives traffic from an ATS with Pl

priority levels embedded in an adjacent node. Then, we will
need Q = P ·

∑L
l=1 Pl shaped buffers to realize P internal

priority levels without any flow priority assignment restriction.

IV. FLOW ALLOCATION PROBLEM STATEMENT

This section covers the high-level and not a detailed de-
scription of the problem addressed together with two different
approaches to solve it. Nevertheless, first, we start describing
the abstract model of the network and the main assumptions
considered in this work.

A. Network Model

Let us consider an asynchronous TSN 5G BN as that
described in Section III-A. The network consists of V asyn-
chronous TSN bridges interconnected through E simplex
links. A dedicated physical link connects each egress port of
one bridge with the corresponding ingress port of a different
bridge. In this way, the communications are full-duplex. This
network can be modeled as a digraph G = (V, E), where V
and E denote the vertices (bridges) and the edges (links) of
the graph, respectively. The weight Ce of each edge e ∈ E
stands for the respective physical link capacity [7], [14], [23].

An ATS, whose operation is described in Section III-B,
schedules the packets at each output port of the TSN bridges.
Observe, there is a one-to-one correspondence between links
and ATSs, as mentioned in Section III-A. Each ATS e is
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equipped with Se shaped buffers to realize the interleaved
shaping and Pe FCFS queues for traffic prioritization.

The flows arrivals to the network obey a Poisson process
[34]. Each flow is upper constrained by the function rf ·t+bf .
Each ATS enforces the corresponding traffic regulation on the
flows passing through it [14]. The ATS might also enforce a
maximum frame size lf of the flow. We also assume that the
flow lifetime is exponentially distributed.

The end-to-end (E2E) delay budgets of the flows are given
by a set of predefined 5QIs [3], denoted as Q, in the 5G
system. A percentage of this E2E delay budget is spent in
the BN. Besides the delay constraint, we consider the flows
have jitter and reliability requirements. All these performance
requisites are shared for all the flows with the same 5QI
q ∈ Q. Specifically, D(max)

q , and J
(max)
q are respectively

the maximum delay and maximum jitter that a flow with
5QI q ∈ Q can experience when it is conveyed from its
source to its destination in the transport network. In the same
way, the BN has to ensure a minimum reliability R

(min)
q

for the flows with 5QI q, i.e., the probability of a seamless
communication meeting all the flow’s performance requisites
during its lifetime.

B. Problem Formulation

Let us assume the network model described in the previous
subsection and consider the following notation:
• λq is the arrival rate of flows with 5QI q to the network;
• PB,q is the blocking probability for flows with 5QI q;
• αq represents the cost associated with rejecting a flow

with 5QI q;
• Df , Jf , and Rf stand for the delay, delay jitter, and

reliability experienced by flow f , respectively;
• D

(max)
q , J (max)

q , and R
(max)
q are the E2E delay, jitter,

and reliability budgets, respectively;
• Fq is the set of accepted flows with 5QI q;
• Q is the set of 5QIs;
• rf and Ce denote the committed data rate of the flow f

and capacity of the link e, respectively;
• E is the set of links or, equivalently, ATSs as there is a

one-to-one correspondence between them;
• and Fe is the set of flows passing through link e;

Then, the flow scheduling problem addressed in this work is
formulated below:
Objective :

minimize

∑
q∈Q

λq · αq · PB,q

 (1a)

Constraints :

QoS assurance :

C1 : Df ≤ D(max)
q , ∀ f ∈ Fq and q ∈ Q (1b)

C2 : Jf ≤ J (max)
q , ∀ f ∈ Fq and q ∈ Q (1c)

C3 : Rf ≥ R(min)
q , ∀ f ∈ Fq and q ∈ Q (1d)

Capacity constraints :

C4 :
∑
f∈Fe

rf ≤ Ce, ∀ e ∈ E (1e)

C5 : QAR1, QAR2, andQAR3 ∀ e ∈ E (1f)

Stated briefly, the problem above aims at minimizing the
flow rejection probability (when αq = 1 ∀ q ∈ Q) while
ensuring the QoS constraints (e.g., delay, delay jitter, and
reliability) for all the accepted flows and subject to technolog-
ical constraints (e.g., link capacities, QAR rules, and shaping
buffers sizes). The variables αq ∀ q ∈ Q serve to make the
problem model more generic by enabling other optimization
goals, such as maximizing the operator’s profit.

Solving the flow allocation problem in ATS-based networks
entails the following decisions:

i) the number of disjoint paths required to transport the flow
in order to ensure its reliability requirement;

ii) choosing the path(s) to convey the stream, i.e., the set of
links to be traversed by the stream from its source to its
destination;

iii) the distribution of the flow’s E2E delay and jitter budgets
among the links of the path(s).

iv) and selecting the primary configuration parameters at
each involved ATS, e.g., flow-to-shaping buffer and the
shaping buffer-to-priority levels assignments.

C. Approaches to Solve the Problem

We can distinguish two approaches for solving the flow
allocation problem in an ATS-based 5G BN, namely, online
and offline methods. On the one hand, online methods compute
the flow’s allocation configuration right after it arrives at
the network. To that end, they might run an optimization
algorithm to find, given a goal, the optimal allocation for
the incoming flow. Conversely, offline methods compute a
long-term configuration for the whole network considering the
different types of traffic. Specifically, the flows are somehow
clustered into classes, e.g., according to their 5QI or 5QI
and slice (Single Network Slice Selection Assistance Infor-
mation -S-NSSAI-), and the optimal allocation configuration
is computed for each class. Observe that, in this case, the
allocation configuration for each flow is predetermined, and
the Access Control Mechanism (ACM) becomes a lightweight
process that checks whether there are enough resources (links
capacities and buffer space) for the incoming flow.

The right choice between the options mentioned above
likely depends on the specific scenario. By way of illustration,
if there are stringent requirements for the control plane (e.g.,
ultra-low response time for a packet data unit (PDU) session
establishment), then the offline approach would be preferred as
it allows for lighter ACMs, as previously stated. On the other
hand, the online approach could be more suitable for large
scale networks as computing a global allocation configuration
without sacrificing the degree of optimality might be too
complex. Furthermore, online methods are more flexible as
they enable flows to have a specific allocation configuration,
whereas, in offline ones, the allocation configuration is shared
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among all the flows of the same class. This advantage of
the online methods is at the expense of storing more state
information. Specifically, they need to have an entry per
ongoing flow with the whole allocation configuration for it.
Instead, only the committed rate and burst size need to be
stored with an offline approach.

V. PERFORMANCE MODEL FOR THE ATS-BASED BN

The objective here is to provide expressions to estimate the
different E2E QoS metrics (e.g., flow rejection probability,
maximum delay, jitter, and reliability) of a given flow passing
through a set of deterministic switches in the BN. We will
consider the ATS-based switch operation as described in
Section III-B.

A. Flow Rejection Probability

We assume that the flow interarrival times are exponentially
distributed, whereas the flow lifetimes follow a general (arbi-
trary) distribution. Then, for each 5QI q ∈ Q we can model
the BN as an M/G/Nq/Nq queue (Kendall’s notation) , where
Nq stands for the number of flows with 5QI q that the BN can
accept simultaneously. Please note that, in our case, the inter-
arrivals and service processes (queuing theory terms) stand for
the flow inter-arrival and flow lifetime processes, respectively.
Therefore,

PB,q ≤
λq

Nq · µq + λq
(2)

is an upper bound of the flow rejection probability experienced
by the flows of the 5QI q in the BN [35], [36]. Where λq and
µq denote the flow arrival rate and the inverse of the mean
flow lifetime, respectively, for 5QI q. Observe that the above
expression is a convex function of Nq .

The key assumption here is that the flow interarrival times
follow an exponential distribution. In our previous work [34],
we show empirically that the exponential distribution fits
well the aggregated service request interarrival times (flow
interarrival times) in a Fourth Generation (4G) mobile network
(see [34, Fig. 9]).

Despite the fact mentioned above, we checked whether dif-
ferent flow arrival processes significantly impact our solution’s
performance, which uses (2). Specifically, we considered the
exponential, Erlang-2 (Erl2), and two-stage hyperexponential
(Hyp2) distributions to simulate the flow arrivals. The Erl2
and Hyp2 can respectively approximate any distribution with
a coefficient of variation lower and greater than one [37]. The
results showed a negligible performance degradation when
the flow interarrivals times follow either the Erl2 or Hyp2
distributions (refer to Section VIII for further details).

B. Reliability

The Frame Replication and Elimination for Reliability
(FRER) capability of TSN enables to forward several replicas
of a flow f through disjoint paths to guarantee the flow’s
minimum reliability R

(min)
f . Here, we will consider reliabil-

ity as the probability of network success to carry out the
communication of a given flow f during its entire lifetime

τf . We suppose that every path consists of NH independent
links whose time-to-failure follows an exponential distribution
with mean χ [38]. Then, the disjoint paths supporting the
transmission of the replicas can be modeled as a reliability
block diagram with a parallel-series configuration [38]. Under
these assumptions, the probability of service disruption R

(q)
f

for the flow f is given by:

R
(q)
f = 1−

(
1− e−NH ·

τf
χ

)NP
(3)

Thus, the required number of replicas for a given flow f and a
minimum level of reliability R(min)

f can be estimated solving
(3) for NP :

NP ≥


log
(

1−R(min)
f

)
log
(

1− e−NH ·
τf
χ

)
 (4)

C. E2E Maximum Delay and Jitter

The derivation of a per-hop delay bound of a given flow,
hereinafter referred to as flow of interest (foi), is provided
in [14], [33]. The maximum E2E delay experienced for any
packet of a given flow when it traverses a given path P is
upper-bounded as:

Df ≤
∑
e∈Ef

d
(max)
f,e =

∑
e∈P

max
f∈F

{
b̂
(e)
H + b̂

(e)
SP

+ l̂
(e)
L

Ce − r̂(e)H

+
l̂f
Ce

}
(5)

where b̂(e)H =
∑

f∈FH bf and r̂(e)H =
∑

f∈FSP rf respectively
denote the aggregated burstiness and data rate generated by
the set of flows FH with a higher priority level than the foi
at link e ∈ P , b̂(e)SP =

∑
f∈FSP bf is the burstiness of the set

of flows FSP with the same priority level as the foi at link
e ∈ P , l̂(e)L represents the maximum packet size for the set of
flows with lower priority levels than foi, l̂f is the packet size
of foi, and Ce is the transmission capacity at a given hop e.

The maximum packet jitter delay of the foi f at the path
P can be computed assuming a best-case delay per node of
l̂f/Ce. Then,

Jf ≤
∑
e∈P

max
f∈F

{
b̂
(e)
H + b̂

(e)
SP + l̂

(e)
L

Ce − r̂(e)H

}
(6)

VI. OFFLINE SOLUTION

In this section, we detail the proposed offline solution
(refer to Section IV-C), dubbed “Next Generation Transport
Network Optimizer” (NEPTUNO), to compute a long-term
configuration for allocating the flows in an Asynchronous
Traffic Shaper (ATS)-based 5G Backhaul Network (BN).

A. Operation

NEPTUNO is an offline solution for flow allocation in ATS-
based 5G BNs. It aims to find a long-term configuration of the
ATS-based BN to maximize either the flow acceptance ratio
or the operator’s profit. The key idea behind offline methods is
to exploit the fact that workload fluctuations typically occur at
high time scales [39] to minimize the network configurations
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*ATS 3 and 4 have the same configuration as
ATS 1 and ATS 2, respectively.

Fig. 3: Main stages of NEPTUNO for computing the optimal configuration
of the network and example illustrating the primary configuration parameters
for two 5QIs.

and allow for a lightweight ACM. Nonetheless, it does not
preclude that the frequency to trigger the optimization process
can be adapted according to the specific dynamics of the
workload.

Figure 3 shows the main steps of NEPTUNO to make the
decisions listed in Section IV-B. First, NEPTUNO collects
the data analytics of interest and network state information.
Specifically, NEPTUNO uses the following analytics as inputs:
A1) the mean flow lifetime duration τq for each 5QI q,
A2) the foreseen flow arrival rate per 5QI between every

source-destination pair in the BN,
A3) the link mean time-to-failure χ, and
A4) the mean committed rate rq for each 5QI q.
Besides these analytics, NEPTUNO relies on the knowledge
about the BN topology (V, E), the ATS bridges characteristics
(e.g., number of shaped queues and their sizes, and transmis-
sion rate at each link), and the characteristics of each 5QI
(e.g., QoS requirements, maximum packet length, and flow
burstiness) to compute the network configuration.

Next, NEPTUNO executes the optimization algorithm for
finding the optimal configuration of the network. The first
step of the optimization process is to compute the number
of packet replicas required for each 5QI in order to assure its
minimum reliability. The source node will send the different
replicas of a packet through disjoint paths by using TSN FRER
functionality [40]. The number of necessary packet replicas is
estimated using (4). The subsequent stages of NEPTUNO use
this information.

Secondly, NEPTUNO runs a path selection algorithm whose
objective is to balance the workload through the different
transit links of the BN. To that end, it uses the number of
required flow replicas computed in the previous step and data
analytics A1 and A2 as input. The algorithm chooses the
path(s) between every source-destination pair.

Thirdly, NEPTUNO distributes the delay/jitter budget
among the hops of each path chosen in the previous step. We
explored the following three different approaches to distribute
the E2E delay/jitter budget ΨE2E

q for each 5QI q ∈ Q among

the hops of each predefined path P ⊆ E :
• Based on the link capacities, i.e., the delay budget Ψ

(e)
q at

a given hop e is given by Ψ
(e)
q = 1/

(
Ce ·

∑
h∈P 1/Ch

)
·

ΨE2E
q ∀ e ∈ P .

• Based on the expected maximum link utilization, i.e.,
Ψ

(e)
q = 1/

(∑
e∈P E[r̂(e)]/Ce)/

∑
h∈P E[r̂(h)]/Ch

)
·

ΨE2E
q ∀ e ∈ P , where r̂(e) is the foreseen aggregated

traffic rate to be served by the hop e.
• Equal budget for each hop, i.e., Ψ

(e)
q = 1/NH ·

ΨE2E
q ∀ e ∈ P , where NH = |P| is the number of hops

of the path P .
NEPTUNO implements the first approach, i.e., that based on
the link capacities, because we observed it yields the best
results in terms of flow acceptance ratio.

Fourthly, NEPTUNO computes the optimal configuration
for each last hop by solving the Mixed Integer Linear Program
(MILP) formulated in the next subsection. Specifically, it finds
the 5QI-to-shaped buffers and 5QI-to-priority assignments, and
the per-5QI maximum aggregated capacity to be allocated at
the corresponding ATS (see Fig. 3).

Last, the optimization of the transit hops is performed by
solving another MILP whose objective is given by (20). Fur-
thermore, this MILP includes additional constraints compared
to that for the last hops in order to ensure the QAR2 rule in
the subsequent hops.

Once the algorithm is done, NEPTUNO disseminates the
computed configuration to the ACM and the BN in order to
apply it.

Figure 3 includes a TSN BN configuration example com-
puted by NEPTUNO at the bottom. It considers two 5QIs:
3 and 84. The traffic of the 5QI 84 is forwarded through
two disjoint paths to ensure its minimum reliability. The
configuration of the involved ATSs is at the bottom right
of Fig. 3. For instance, the maximum aggregated capacities
reserved for 5QIs 84 and 3 are 309.3 Mbps and 121.5 Mbps
in ATS 2, respectively.

B. Per-ATS Optimization

This subsection details the problem formulation to find the
optimal flow allocation within a single ATS in the network.
Linearization techniques are applied to the original program
to convert it into an MILP in order to solve it efficiently. For
simplicity, we omit here the index or any other reference to
the specific ATS in the notation as we address the optimization
of a single ATS.

To find the per-ATS (or per-link) optimal scheduling, NEP-
TUNO distinguishes two types of ATS: i) the last hop, i.e.,
the last ATS traversed by the flow before it leaves the TSN
domain; and ii) the rest of ATSs, referred to as transit hops.
First, the optimization goals for each of these types of ATS
are different. Second, there are additional constraints for the
transit hops to enforce the QAR2 rules (see Section III-B) in
the next hops, given the NEPTUNO’s operation.

1) Flow allocation optimization in the last hop: Let us start
with the problem formulation of the last hop. Let λq and µq

denote the arrival rate and the inverse of the mean lifetime of
the flows with 5QI q ∈ Q, respectively. Each flow with 5QI
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q is characterized by its committed rate rq and burst size bq ,
and its maximum frame size lq . Let Ψq denote the delay/jitter
budget of the ATS for the 5QI q (computed in NEPTUNO’s
step 3). The ATS is characterized by its number of shaping
buffers S, its maximum number of priority levels P , and the
link capacity C. There is a cost αq related to the rejection of
a flow with 5QI q. We initially define the following decision
variables for the problem:
• Nq denotes the average number of flows with 5QI q that

the ATS can simultaneously serve.
• Nq,p denotes the average number of flows with 5QI q

that the ATS can simultaneously serve at priority level p.
• Uq,p is a binary variable indicating whether the flows with

5QI q are assigned to the priority level p (=1) or not (=0).
Formally, the flow allocation problem for the last hop can

be formulated as follows:

minimize

∑
q∈Q

λq · αq ·
(

λq
Nq · µq + λq

) (7a)

s.t : ∑
q∈Q

Nq · rq ≤ C (7b)

0 ≤ Nq ≤
P∑

p=1

Nq,p ∀ q ∈ Q (7c)

0 ≤ Nq,p ≤ NU
q ∀ q ∈ Q, p ∈ [1, P ] (7d)

Nq,p ·Nq,k ≤ 0 ∀ q ∈ Q; k 6= p ∈ [1, P ] (7e)

∀ p ∈ [1, P ], q ∈ Q
∑
q∈Q

p∑
k=1

Nq,k · bq + lmax ≤

(
Uq,p ·Ψq + (1− Uq,p) ·ΨU

)
·

C −∑
q∈Q

p−1∑
k=1

Nq,k · rq


(7f)

P∑
p=1

∨
q∈Q

Uq,p · Iq ≤ S (7g)

P∑
p=1

Uq,p = 1 ∀ q ∈ Q (7h)

Objective (7a) aims at minimizing the flow rejection prob-
ability when αq = 1. As stated in Section IV-B, αq variables
serve to make the problem more generic by enabling the
definition, for instance, of business goals like the maximization
of the network operator’s profit. The objective equation results
from the combination of (1a) and (2). The latter is an upper
bound of the flow rejection probability for M/G/Nq/Nq

queuing systems.
Constraint (7b) ensures that the capacity C of the respective

link will not be exceeded. Constraints (7c) and (7d) fix the
bounds of Nq and Nq,p, respectively. The upper bound NU

q

for Nq,p could be computed as NU
q = C/rq . Alternatively,

we could solve the problem (7a) s.t. (7b) for Nq , and set

NU
q to its solution N∗q , i.e., NU

q = N∗q . These bounds are
lower than C/rq , thus reducing the complexity of the problem.
Constraints (7e) enforce each 5QI is assigned to only one
priority level. Constraints (7f) guarantee the delay and jitter
budgets allocated to the ATS by NEPTUNO in step 3 (see Fig.
3) for every 5QI. Constraint (7g) assures QAR1 and QAR3
rules are met (refer to Section III-B). The QAR2 rule in the
last hop will be enforced by including constraints in the transit
hops, as we will see later. Last, constraints (7h) are equivalent
to (7e). We will link these two sets of constraints later.

The problem (7a) s.t. (7b)-(7h) is a non-convex mixed-
integer nonlinear program as constraints (7e) and (7f) involves
the product of several decision variables. Nonetheless, we
can easily remove these products to convert it into a convex
mixed-integer nonlinear program, which can be solved more
efficiently.

Trivially, (7d) and (7e) can be rewritten as a set of linear
constraints using Uq,p decision variables as follows:

0 ≤ Nq,p ≤ Uq,p ·NU
q ∀ q ∈ Q, p ∈ [1, P ] (8a)

0 ≤ Nq,k ≤ (1− Uq,p) ·NU
q ∀ q ∈ Q, k, p ∈ [1, P ] : k 6= p

(8b)
For the linearization of (7f), first, we include new decision

variables xp ∀ p ∈ [1, P ] that stand for the effective link
capacity perceived by the priority level p:

xp = C −
∑
q∈Q

p−1∑
k=1

Nq,k · rq ∀ p ∈ [1, P ] (9)

Then, we define new decision variables yq,p = xp · Uq,p.
By substitution of xp and yp in (7f) and after some simple
algebraic manipulations, (7f) becomes:∑
q∈Q

p∑
k=1

Nq,k · bq + lmax ≤ yp ·
(
Ψq −ΨU

)
+ xp ·ΨU

∀ p ∈ [1, P ], q ∈ Q
(10)

Also, the following set of linear constraints must be added:

xp − (1− Uq,p) ·M ≤ yq,p ≤ xp + (1− Uq,p) ·M
∀ q ∈ Q, p ∈ [1, P ]

(11)

0 ≤ yq,p ≤ Uq,p ·M ∀ q ∈ Q, p ∈ [1, P ] (12)

Now, the problem (7a) s.t. (7b), (7c), (7g), (7h), (8a), (8b),
(9), (10), (11), and (12) is a convex mixed-integer nonlinear
program (CMINLP) and equivalent to the problem (7a) s.t.
(7b)-(7h), i.e., they have the same solution, but it can be solved
more efficiently.

The above problem can still be converted into a mixed-
integer linear program (MILP), which can be typically solved
much faster than a CMINLP. The previous statement is sup-
ported by our results. To that end, we have to linearize the
cost function (7a) and the constraint (7g).

To linearize the objective, we define the variables zq =
λq/ (Nq · µq + λq) ∀ q ∈ Q and substitute them in (7a).
Additionally, we include the following constraints:

wq · µq + λq ≥ λq ∀ q ∈ Q : wq = Nq · zq (13)
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Nq =

nq∑
i=0

βq,i · 2i; wq =

nq∑
i=0

ρq,i · 2i

∀ q ∈ Q : nq = min
{
n : 2n ≥ NU

q

} (14)

zq − (1− βq,i) ·NU
q ≤ ρq,i ≤ zq + (1− βq,i) ·NU

q

0 ≤ ρq,i ≤ βq,i ·NU
q ∀ q ∈ Q; ∀ i ∈ [1, nq]

(15)

Where βq,i ∀ q ∈ Q, i ∈ [1, nq] are auxiliary binary decision
variables to store the binary representation of Nq . On the other
side, ρq,i = βq, i · zq ∀ q ∈ Q, i ∈ [1, nq] are also decision
variables.

Last, to remove the maximum operation, we substitute (7g)
by the following set of constraints:

P∑
p=1

κ|Q|,p ≤ S (16)

Uq,p · Iq ≤ κq,p ≤ Uq,p · Iq + φq,p · IU

∀q ∈ [2, |Q|], ∀ p ∈ [1, P ]
(17)

κq−1,p ≤ κq,p ≤ κq−1,p + (1− φq,p) · IU

∀q ∈ [3, |Q|], ∀ p ∈ [1, P ]
(18)

U1,p · I1 ≤ κ2,p ≤ U1,p · I1 + φ2,p · IU ∀ p ∈ [1, P ] (19)

The resulting optimization problem with objective
minimize

{∑
q∈Q λq · αq · zq

}
and constraints (7b), (7c),

(7h), (8a), (8b), (9), (10), (11), (12), (13), (14), (15), (16),
(17), (18), and (19) is a MILP.

2) Flow allocation optimization in the transit hops: For the
transit nodes, NEPTUNO considers the following optimization
goal:

minimize

∑
q∈Q

(
Nq −NT

q

)2 (20)

Where NT
q is the target mean number of flows with 5QI q to be

allocated to the ATS. Let Eagg ⊂ E be the set of links that the
ATS aggregates. Then, NT

q =
∑

e∈Eagg N
(e)
q
∗, where N (e)

q
∗

is the optimal mean number of flows with 5QI q previously
computed for the ATS or link e ∈ Eagg .

Objective (20) is equivalent to:

minimize

∑
q∈Q

∣∣Nq −NT
q

∣∣ (21)

which can be linearized as follows:

minimize

∑
q∈Q

Ωq

 (22)

subject to:

Ωq ≥ Nq −NT
q , Ωq ≥ NT

q −Nq ∀ q ∈ Q (23)

As previously mentioned, we have also to include additional
constraints to enforce QAR2 rules in the next hops. Let
U

(e)
q,p
∗ denote a binary variable indicating whether flows with

5QI q are assigned to the priority level p (=1) or not (=0),
which was previously computed for the ATS e ∈ Eagg . And
let S(e)

idle the number of shaping buffers that have not been

assigned to any 5QI at the ATS e ∈ Eagg , i.e., S(e)
idle =

S(e)−
∑P

p=1 maxq∈Q

{
U

(e)
q,p
∗ · I(e)q

}
. Then, the following set

of constraints need to be added:
P (e)∑
m=1

|Q|−1∑
q=1

|Q|∑
k=q+1

U (e)∗
q,m · U

(e)∗
k,m ·

P∑
p=1

Uq,p · (1− Uk,p) ≤ S(e)
idle

∀ e ∈ Eagg
(24)

Again, constraints (24) include the products of two decision
variables. Then, we include the decision binary variables
δq,k,p = Uq,p · (1 − Uk,p), substitute them in (24) and add
additional constraints to “linearize” the products as follows:

P (e)∑
m=1

|Q|−1∑
q=1

|Q|∑
k=q+1

U (e)∗
q,m · U

(e)∗
k,m ·

P∑
p=1

Uq,p − δq,k,p ≤ S(e)
idle

∀ e ∈ Eagg
(25a)

Uq,p − (1− Uk,p) ≤ δq,k,p ≤ Uq,p + (1− Uk,p) (25b)

δq,k,p ≤ Uk,p ∀ p ∈ [1, P ], q, k ∈ Q : q 6= k (25c)

In short, the flow allocation optimization problem in transit
nodes is formulated as the CMINLP (20) s.t. (7b), (7c), (7g),
(7h), (8a), (8b), (9), (10), (11), (12), (25a), (25b), and (25c);
or as the MILP (21) s.t. (7b), (7c), (7h), (8a), (8b), (9), (10),
(11), (12), (13), (14), (15), (16), (17), (18), (19), (22), (23),
(25a), (25b), and (25c).

VII. ONLINE SOLUTION

In this section, we propose an online solution (refer to
Section IV-C) for the flow allocation problem in ATS-based
TSN networks. For the online approach, the flow allocation
involves the selection of the path(s) and the configuration of
each involved ATS all along the chosen path(s) for every
incoming flow, referred to as flow of interest (foi). These
decisions are subject to the QoS constraints fulfillment of the
foi and all the ongoing flows in the network.

First, the number of required disjoint paths Ifoi for the
foi is computed using (4) to ensure foi’s minimum reliability
constraint. Then, our solution searches for the most offloaded
path in the set of precomputed paths Ps

d between foi’s source
s ∈ V and foi’s destination d ∈ V . In this way, similarly
to NEPTUNO, the solution contributes to reduce the load
imbalances through the network. If applicable, for the path
selection of all the remaining replicas, we follow the same
criterion. However, in order to ensure we are selecting disjoint
paths, the chosen paths for the previous replicas and those
paths sharing any link with the selected ones are excluded
from the search space.

For every selected path P ⊆ E , a MILP is solved to find
the flow allocation configuration at every ATS along the path.

The decision variables of the MILP are ue,p ∀ e ∈ P, p ∈
[1, Pe] and Ψfoi,e ∀ e ∈ P . The variables ue,p are binary and
indicate whether the foi is assigned to priority level p at ATS
e ∈ P . The variables Ψfoi,e set the maximum delay/jitter the
foi can experience at each traversed ATS e of the path P . The
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use of Ψfoi,e reduces the required number of constraints to
guarantee the ongoing flows’ QoS requisites are always met.

Let PHD and PLD be the probabilities that the next incom-
ing flow has a higher and lower end-to-end delay/jitter budget
than the foi. PHD and PLD are input variables of the MILP
provided by predictive analytics. The foi is characterized by its
committed data rate rfoi and burst size bfoi, and its maximum
frame size lfoi. Its end-to-end delay and jitter constraints are
denoted as Dmax

foi and Jmax
foi , respectively. The rest of the

notation is similar to that defined in Section V-C.
The MILP to find the optimal allocation for the foi is

formulated as follows:
Online solution candidate objective 1:

minimize

∑
e∈P

Pmaxe∑
p=1

ue,p · (PHD · p+ PLD · (Pmax
e − p))

+
∑
e∈P

∣∣∣∣∣Ψfoi,e − γe ·

(
Jmax
foi

∧
Dmax

foi −
∑
e∈P

lfoi
Ce

)∣∣∣∣∣
(26a)

Online solution candidate objective 2:

minimize

∑
e∈P

Pmaxe∑
p=1

ue,p ·
b̂
(e)
H + b̂

(e)
S + l̂L

Ce − r̂(e)H

+
lf
Ce

 (26b)

s.t. :
Pe∑
p=1

(
r̂(S)
e,p + ue,p · rfoi

)
≤ Ce ∀ e ∈ P (26c)

p∑
k=1

(
b̂
(s)
e,k + ue,k · bfoi

)
+ l̂L ≤

Ψmin
e,p ·

(
Ce − r̂(H)

e,p −
p−1∑
k=1

ue,k · rfoi

)
∀ p ∈ [1, Pe] , e ∈ P

(26d)

Pe∑
p=1

b̂
(H)
e,p + b̂

(S)
e,p + l̂

(L)
e,p

Ce − r̂(H)
e,p

· ue,p ≤ Ψfoi,e ∀e ∈ P (26e)

∑
e∈P

Ψfoi,e = Jmax
foi

∧
Dmax

foi −
∑
e∈P

lfoi
Ce

(26f)

ueh,p + ueh−1,k − 1 ≤ u(e)k,p; ue,p ≤ uue,p
k ∈ [1, · · · , Peh−1 & p ∈ [1, · · · , Peh] & e ∈ P

(26g)

Pe∑
p=1

ue,p = 1 ∀ e ∈ P (26h)

We consider two different candidate objectives for the
baseline online flow allocation solution. Objective (26a) aims
to perform the foi priority assignment at each ATS e according
to its delay/jitter constraints. Specifically, it helps to allocate
the flows with the most stringent delay/jitter constraints at the
highest priority levels. Observe that we are considering that
lower indexes correspond to higher priority levels. Objective
(26a) also aids in setting the delay/jitter budget Ψfoi,e at
each hop of the path according to a criterion given by the

constants γe. Specifically, similarly to NEPTUNO, we set
γe = 1/

(
Ce ·

∑
h∈P 1/Ch

)
. On the other hand, objective

(26b) aims to find the flow allocation configuration that
minimizes the E2E delay of the foi at a given path P . This
choice is because the SMT-assisted heuristic solution proposed
in [7] for the flow allocation problem considers maximizing
the flow slack time as an optimization goal.

Constraint (26c) ensures that the capacity of any ATS/link
e ∈ P will not be exceeded after allocating the foi. Con-
straints (26d) and (26e) guarantee that the E2E delay/jitter
requirements of the ongoing flows and the foi will be met
after allocating the foi, respectively. In (26d), Ψmin

e,p denotes
the most stringent delay/jitter constraint at ATS e and priority
level p, i.e., the minimum delay/jitter budget of the ongoing
flows allocated at priority level p of the ATS e. Note that
thanks to set Ψfoi,e, we only need one constraint per active
priority level (with ongoing flows) and ATS in the path P
instead of one constraint per ongoing flow affected by the foi
allocation. Constraint (26f) ensures that the E2E delay or jitter
budget (the most restrictive one) is distributed along the path.
This constraint contributes to improving the acceptance ratio.

Constraints (26g) serve to enforce QAR1, QAR2, and
QAR3 rules given the number of shaping buffers Se at each
ATS e ∈ P . These constraints rely on an auxiliary algorithm
that set the binary variables uue,p, which equals 0 if the priority
level at node e is unfeasible to allocate the foi, and u

(e)
k,p,

which equals 0 if the foi cannot be simultaneously assigned
to priority levels k and p of the adjacent nodes e and e − 1
in the path P . Basically, the algorithm checks for each ATS
eh if there is an active shaping buffer with enough space and
assigned to the internal priority level p, the input port of the
foi, and the priority level k in the previous ATS eh−1 in P .
If so, it sets u(e)k,p = 1 and records the id of the shaping buffer
meeting the conditions to which allocate the foi in the case
program (26a)-(26h) chooses the respective priority level p. If
not, the algorithm checks whether there is any idle shaping
buffer. If yes, it sets u(e)k,p = 1 and saves the id of any idle
buffer. Otherwise, it sets u(e)k,p = 0. Similarly, when there is no
idle shaping buffers or active shaping buffers assigned to the
internal priority level p and the foi’s input port at the ATS e,
the algorithm sets uue,p = 0.

Last, constraint (26h) imposes that only one priority level
is assigned to the foi at each hop e ∈ P .

VIII. RESULTS

A. Experimental Setup

We carried out the performance evaluation of NEPTUNO
by using an event-driven simulator of a BN. We considered
the network topologies shown in Figs. 4 and 5. Specifically,
the topology depicted in Fig. 5 was used to evaluate the
degree of optimality offered by NEPTUNO, and the three
states Clos topology depicted in Fig. 4 to compare NEPTUNO
with the proposed online solutions described in Section VII.
Table II includes the 5QIs and characteristics used in our setup.
The actual committed data rate of each flow was generated
using a Gaussian distribution, whose mean is included in
the third column of Table II and its standard deviation was
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Fig. 4: Backhaul Network (BN) topology considered for comparing NEP-
TUNO (offline) with the online solutions presented in Section VII.

Source Edge
Node 

Destination
Edge Nodes 

1 Gbps 1 Gbps

1 Gbps 1 Gbps1 Gbps1 Gbps

10 Gbps10 Gbps

Fig. 5: Backhaul Network (BN) topology considered to evaluate the degree
of optimality of NEPTUNO.

set to 15% of the respective mean. Three types of time
distributions were taken into account for the flow lifetime and
the flows inter-arrival times: i) exponential (Exp), ii) Erlang-2
(Erl2), and iii) two-stage hyperexponential (Hyp2). The Erl2
and Hyp2 distributions can approximate any distribution with
a coefficient of variation lower and greater than one [37],
respectively. In this way, we could assess the performance
of NEPTUNO when the arrivals and flow holding processes
are not Poissonian. Regarding the reliability, we set the mean
time-to-failure for any link to 20 days. Then, only the packets
belonging to the delay critical Guaranteed Bit Rate (GBR)
flows (e.g., 5QIs 82, 83, 84, and 85) have to be triplicated
according to (4) and the flow lifetimes included in Table II.
Last, it shall be noted that we use CVX modeling system [41],
[42] and Mosek to code and solve the CMINLPs, and Gurobi
to solve the MILPs.

B. NEPTUNO Performance Evaluation

We carried out an extensive evaluation of the performance
of NEPTUNO using simulation. In every simulation, we
simulated the arrival and departure of 800000 different flows.
We considered the same flow arrival rate for every 5QI as a
simple criterion to generate the 5QI of each simulated flow.
Moreover, discrete uniform distributions were used to choose
the ingress (source) and egress (destination) nodes for each
simulated flow.

1) NEPTUNO’s degree of optimality: Figure 6 compares
the flow rejection ratios offered by NEPTUNO (labeled as

0 1 2 3 4 5 6 7 8

 (flows/sec)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

F
lo

w
 r

e
je

c
ti
o

n
 r

a
ti
o

Optimal

Neptuno

Fig. 6: Degree of optimality of NEPTUNO.
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Fig. 7: Computational complexity versus the number of links.

“Neptuno”) and by the optimal solution (labeled as “Opti-
mal”) versus the flow arrival rate. We considered the critical
guaranteed bit rate 5QIs (82, 83, 84, and 85) and the network
topology shown in Fig 5. The number of shaped buffers and
priority levels at each ATS were set to 4. As observed, the flow
rejection ratio exhibited by NEPTUNO is roughly 20% above
the optimal one for low workloads and 10% above for high
workloads. That is because of NEPTUNO’s operation. More
precisely, NEPTUNO configures the last hops to minimize the
flow rejection probability, whereas the configuration of the
transit ATSs is set in such a way that the per-5QI reserved
capacity in the last hops can be accommodated. Thus, it
seems reasonable that NEPTUNO performs better for high
workloads where the configuration of the bottleneck link (last
hop) becomes increasingly important.

2) NEPTUNO’s complexity: We measured the computa-
tional complexity of NEPTUNO for both when the per-ATS
optimization problem is modeled as a CMINLP (labeled as
“NEPTUNO CMINLP” in the figure) and as a MILP (labeled
as “NEPTUNO MILP”) as a function of the network scale
(i.e., number of ATSs or links), and compared them with
the computational complexity of finding the optimal solution
(labeled as “optimal”). We used an adaptation of the for-
mulation in [44] of the flow allocation problem to compute
the optimal configuration of the whole TSN network as a
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TABLE II: Flow types characteristics
5QI Prio Rate (Mbps) Burstiness (bits) Dmax (ms) Rmin (%) Avg. Dur. (s) Lmax (bits) Ex. service

1 20 0.064 6400 100 95 130 6400 Conv. voice
2 40 1.5 2250000 150 95 130 10832 Conv. video
3 30 0.1 5000 50 95 1200 5000 Real Time gaming
4 50 0.083 2500 300 95 231 2500 Non-conv. video
5 10 0.01 2040 100 95 130 2040 IMS signaling
7 70 2 10832 100 95 231 10832 Live video

65 7 0.064 6400 75 95 600 6400 MCPTT
67 15 0.5 10832 100 95 300 10832 MCV
69 5 0.01 2040 60 95 600 2040 MCPTT signalling
70 55 0.01 2040 200 95 600 2040 Mission Critical Data
79 65 0.0003 2040 50 95 300 2040 V2X messages
80 68 5 32496 10 95 600 10832 Augmented Reality
82 19 0.1 2040 10 99.999 1200 2040 Discrete Automation
83 22 0.2 10832 10 99.999 1200 10832 Discrete Automation
84 24 0.3 10832 30 99.999 1200 10832 Intelligent transport systems
85 21 0.3 2040 5 99.999 1200 2040 Electricity distribution HV

Internet Multimedia Subsystem (IMS); Mission Critical user plane Push To Talk voice (MCPTT); Mission Critical Video user plane (MCV); Vehicle-to-
Everything (V2X); High Voltage (HV). Most of the data included in this table were extracted from [3] and the compound traffic models in [34], [43].
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Fig. 8: Empirical cumulative distribution function of the flow rejection ratio
exhibited by NEPTUNO considering 4 5QIs and different workload values.

CMINLP. Figure 7 shows the execution times of NEPTUNO
and the optimal flow allocation versus the number of links
or ATSs in the TSN network for four 5QIs. As observed,
the time complexity of the optimal solution shoots up for 22
ATSs, whereas the NEPTUNO one increases linearly with the
number of ATSs in the network. Last, the reduction in the
execution time is remarkable when the per-ATS configuration
process is converted to a linear integer model.

3) 5QI Impact On Flow Rejection: Figure 8 depicts the em-
pirical cumulative distribution functions of the flow rejection
ratio offered by NETPUNO in the BN shown in Fig. 4 when
there are 4 5QIs and for different workloads. Specifically,
to generate them, we performed the randomized selection
of 100 groups, each comprising 4 5QIs, and measured the
NEPTUNO’s rejection ratio for each of them. As observed,
the specific set of 5QIs considered has a great impact on
the flow rejection ratio. In other words, the characteristics
and performance requisites of the flows matter. For instance,
for the same characteristics of the flows (e.g., committed rate
and burst size), the rejection ratio increases when the flows’
constraints are more stringent, as can be deduced from (5).

4) NEPTUNO (offline) Vs Online Baseline Approach: We
compared NEPTUNO with the online solution proposed in
Section VII for both objectives (26a) (labeled in the figures as
“Online PD”) and (26b) (labeled in the figures as “Online
DM”) in terms of flow rejection ratio. For this purpose,
the TSN network topology shown in Fig. 4 was considered.
Figures 9a, 9b, and 9c show the flow rejection ratio offered for
each solution as a function of the flow arrival rate for 8, 12, and
16 5QIs, respectively. As observed, NEPTUNO outperforms
the online DM solution on almost all the simulated flow arrival
rates. This fact is due to the online DM solution does not
use DA. Besides, we have observed objective (26b) results
in a flatter maximum delay distribution per 5QI. The latter
suggests that DM might allocate flows with disparate latency
constraints at the same priority level.

As shown, the online PD solution significantly reduces the
flow rejection ratio compared to the DM one. These results
highlight the importance of DA to maximize the utilization of
the ATS-based BNs. Overall, the online PD solution performs
better for low workloads, whereas NEPTUNO performs better
for high ones for the same reason as previously discussed. The
specific 5QI prioritization that minimizes the flow rejection
ratio depends on the per 5QI traffic demand characteristics
(e.g., flow arrival rate, flow lifetime, average sustainable rate,
and burstiness) and QoS requisites. For our setup, which con-
siders a realistic characterization of the 5QIs included in Table
II, the objective (26a), which prioritizes the traffic according
to its delay/jitter constraint, leads to fair flow rejection ratios
as observed in Figs. 9a, 9b, and 9c. Nonetheless, due to
the higher flexibility of the online solutions for the flows
prioritization, there is, therefore, a reasonable prospect that
the online solution presented in Section VII can be enhanced
through the inclusion of 5QI prioritization strategies that might
outperform NEPTUNO in terms of flow rejection ratio even
for high workloads.

In order to assess the robustness of NEPTUNO, we mea-
sured its flow rejection ratio considering different distributions
for the flow inter-arrival and holding times. Specifically, we
repeated the set of simulations for the scenario with 16 5QIs
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Fig. 9: Comparison between the different solutions in terms of the flow rejection probability for a) eight 5QIs (69, 70, 79, 80, 82, 83, 84, and 85), b) twelve
5QIs (5, 7, 65, 67, 69, 70, 79, 80, 82, 83, 84, and 85), and c) sixteen 5QIs (1, 2, 3, 4, 5, 7, 65, 67, 69, 70, 79, 80, 82, 83, 84, and 85) in the network.

TABLE III: Online solution’s execution times.
MILP Auxiliary Computations

P 3 Hops 5 Hops 7 Hops 3 Hops 5 Hops 7 Hops
8 5.97 ms 5.88 ms 5.69 ms 0.86 ms 1.23 ms 0.91 ms

16 6.16 ms 6.27 ms 5.93 ms 0.88 ms 1.14 ms 0.94 ms
32 7.14 ms 7.02 ms 6.75 ms 1.13 ms 2.19 ms 1.30 ms
64 12.60 ms 11.5 ms 9.96 ms 2.02 ms 3.32 ms 5.59 ms
128 45.38 ms 44.78 ms 30.46 ms 3.12 ms 3.87 ms 4.51 ms
256 288.53 ms 294.25 ms 165.63 ms 18.5 ms 19.02 ms 18.44 ms

but considering the Erl2 and the Hyp2 distributions for those
times. The Erl2 distributions were configured to exhibit a co-
efficient of variation of

√
0.5, whereas the Hyp2 distributions

were configured to exhibit a coefficient of variation of 1.5.
The percentage of the maximum rejection ratio offered by
NEPTUNO in both cases was practically overlapped with the
results depicted in Fig. 9c. More precisely, the maximum incre-
ment in the NEPTUNO attained flow rejection probability was
2% and 2.6% for the Erl2 and Hyp2 cases, respectively. These
results suggest that the nature of the flow arrival and lifetime
processes negligibly impacts on NEPTUNO performance.

Finally, we evaluated the practical aspects of the online
solution and compared them with those of NEPTUNO. The
key benefits of using offline approaches like NEPTUNO are
that they allow for lightweight and fast flow access control
mechanisms and require less state information.

The first benefit mentioned above is because offline so-
lutions compute a long-term configuration (planning) of the
network and the acceptance of an incoming flow requires only
to check whether there are enough resources (available link
capacities and buffer space) to allocate it. On the contrary,
online approaches run an optimization algorithm to decide the
configuration of every incoming flow. Table III includes the
execution times of the baseline online solution proposed in
Section VII. The algorithm’s execution time consists of two
parts: i) the auxiliary computations (e.g., compute feasible
priorities at every hop and composition of the MILP matrices),
and ii) the solving of the MILP (26a)-(26h) using Gurobi.
We generated three synthetic Clos topologies with 3, 5, and
7 stages, each with three ATS-based bridges. We also swept
the number of shaping buffers and priority levels per ATS,
both set to the same value, from 8 to 256. Each runtime
measurement included in Table III is the average of 1500 runs.
The experimental results show that the algorithm exhibits an
exponential time complexity with the number of priority levels
per egress port. Nonetheless, as observed, the algorithm scales

well for up to 64 priority levels per ATS and path lengths of
7 hops. For its part, the measured maximum run time of the
flow access control mechanism of NEPTUNO was 125 µs.

Concerning the memory consumption, we observed that for
the network topology depicted in Fig. 4, NEPTUNO needs to
store roughly 28% of the online solution state information.

IX. CONCLUSION

This article has addressed the flow scheduling problem in
asynchronous Time-Sensitive Networking (TSN) 5G backhaul
networks. In this context, we have proposed a novel solu-
tion, dubbed “Next Generation Transport Network Optimizer”
(NEPTUNO), which leverages data analytics to maximize the
flow acceptance ratio. The solution integrates exact methods
and heuristic procedures. We have evaluated the performance
of NEPTUNO in terms of the degree of optimality, runtime,
and flow rejection ratio. Additionally, we compare it with an
online solution also proposed in this work. Like NEPTUNO,
the online solution integrates analytical methods, heuristic
procedures, and data analytics for optimizing flow allocation.
The obtained results show that the flow rejection ratio offered
by NEPTUNO is approximately 20% above the optimal one
for low workloads and 10% above for high workloads for
a TSN BN with ten links and four delay-critical guaranteed
bit rate 5QIs. Regarding the runtime, NEPTUNO exhibits a
linear computational complexity with the number of links and
Asynchronous Traffic Shapers (ATSs) in the network. Finally,
the results for the flow rejection ratio evaluation suggest
the importance of data analytics to drive the flow allocation
optimization process.
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