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The massive deployment of base stations is one of the key pillars of the fifth generation (5G) of mobile
communications. However, this network densification entails high energy consumption that must be addressed
to enhance the sustainability of this industry. This work faces this problem from a multi-objective optimization
perspective, in which both energy efficiency and quality of service criteria are taken into account. To do
so, several newly problem-specific operators have been designed so as to engineer hybrid multi-objective
evolutionary metaheuristics (MOEAs) that bring expert knowledge of the domain to the search of the
algorithms. These hybrid approaches have been able to improve upon canonical versions of the algorithms,
clearly showing the contributions of our approach. Furthermore, this paper tests the hypothesis that the
hybridization using several of those problem-specific operators simultaneously can enhance the search of

MOEAs that are endowed only with a single one.

1. Introduction

Global mobile data traffic has increased massively, specially in the
last decade, growing by 40% between Q1 2021 and Q1 2022. The
high data transmission rates, along with other services that require
ultra-low latency and reliable connections (e.g., autonomous driving,
factory automation, etc.) or a massive number of narrowband Internet
access (e.g., sensing and monitoring, Internet of Things, etc.), has pro-
moted the development of a new generation of mobile communication
systems, the fifth or 5G, to cope with such demanding scenarios and
is currently under deployment. Indeed, 5G mobile subscriptions will
surpass 1 billion in 2022, and are predicted to be 4.4 billion by the
end of 2027, accounting for 48 percent of all mobile subscriptions [1].
5G networks are expected to provide data rates 13 times higher than
the average mobile connection by 2023, reaching 575 Mbps [2], as
well as latencies below 1 ms and the support of more than one million
devices per km?. But this high performance must be achieved by saving
90% of power consumption, to make these new communication systems
sustainable [3].

Three main paradigms have been identified to approach the chal-
lenging design requirements and expected performance indicators of 5G

networks [4,5]: (i) using the millimeter wave (mmWave) spectrum to
enable larger bandwidths, (ii) increasing spectral efficiency by multi-
antenna transmission (massive, collaborative MIMO), and (iii) also
increasing spatial reuse through network densification [6] both in hor-
izontal (streets, hotspots, etc.) and vertical dimensions of the network
(apartments, offices, etc.) [7]. The bandwidth requirements of 5G net-
works force switching to mmWave spectrum, with carrier frequencies
of 30-300 GHz [8]. In these bands, many antennas are needed to
overcome the path losses [9]. The combination of both massive MIMO
and mmWave in a single technology mixes the prospects of having a
large mmWave bandwidth available and the gains provided by massive
MIMO antenna arrays. Thus, enabling access to the 30-300 GHz bands
will substantially improve the spectral efficiency [10,11]. Furthermore,
this reinforces the necessity of having an Ultra-Dense Network (UDN),
since transmitting at higher frequencies requires a reduction of the user-
antenna distance, which translates into a smaller cell size, in order
to overcome channel difficulties like blocking and path-loss [12]. This
work aims at reducing the impact of these last two paradigms on the
energy consumption of 5G networks.
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Fig. 1. An example of a UDN.

Several studies, such as [13], predict the density of 5G base sta-
tions (Small Base Stations, SBSs) to come up to 40-50 sites/km?2,
but theoretical works exist in which SBS deployments with one-meter
separation are characterized [6]. The main idea behind the network
ultra-densification is to get the access nodes as close as possible to the
end users. However, UDNs also lead to increased power consumption
because of the large number of deployed SBSs (see Fig. 1). In fact,
since the SBSs are responsible for 50 to 80 percent of the whole
energy demand [14], densification will lead to unaffordable operational
expenditures. In this context, an standardized approach by the 3rd
Generation Partnership Project association [15] to save energy is the
selective turning off of SBSs in periods in which the network is serving
a low number of users. This problem, called the Cell Switch Off (CSO)
problem [16], is NP-complete [17] and cannot only account for a
reduction in energy consumption (a trivial solution might be to shut
down the entire infrastructure), but also for any performance criterion
that measures the Quality of Service (QoS) provided by the network.
To this end, the network capacity has been considered in terms of
the total bandwidth that can be served to users. Given the level of
densification anticipated for real-world 5G networks, that is, the size of
problem instances (the number of SBSs that could be switched on/off),
a metaheuristic approach is used. Specifically, we elaborate on multi-
objective metaheuristics that seek trade-off solutions between power
consumption and network capacity [18,19].

This work is in the line of developing problem-specific search
operators to improve the exploration of multi-objective metaheuristics,
and significantly extends previous works [20,21]. Firstly, the problem
modeling has been enhanced to incorporate additional real-world fea-
tures of 5G networks, including a mmWave massive multiuser MIMO
scenario in which several User Equipments (UEs) are communicating at
the same time using connections towards high-frequency SBSs. Each of
these SBSs now has several sectors, and each sector now installs multi-
ple antennas grouped into radio frequency chains that define the cells
(i.e., the area covered by the sector). Under this new modeling, two
new search operators are proposed that take advantage of the network
densification and sectorization of SBSs to reduce power consumption.
The adaptation and extension of previously defined operators to the
CSO problem in [20,21] have also been achieved. The effectiveness of
all these operators has been evaluated by providing solid experimental
evidence in nine different scenarios with different densification levels
in the deployment of both SBS and UE. For each of these scenarios,
50 different instances have been randomly generated, thus considering
450 problem instances. We have engineered hybrid versions of multi-
objective metaheuristics that encompass Pareto-based, indicator-based,
and decomposition-based approaches to show that the problem-specific
information introduced by the newly devised operators improves the
search of the three main algorithmic groups within the domain. In par-
ticular, the solvers used are as follows: NSGA-II [22] and MOCell [23]

(Pareto-based), as they have been used in our previous works [19-21],
SMS-EMOA [24] (indicator-based), and MOEA/D [25]. Furthermore,
since the solutions are represented by binary strings, where each bit
corresponds to the state (on/off) of a cell, and we seek to reduce
the power consumption over periods of low traffic demands (i.e., a
small number of UEs), solutions may contain many bits set to zero.
For this reason, we have also included in the comparison a recent
and specialized algorithm called SparseEA [26], which targets precisely
this kind of sparse optimization problems [27]. Using the Hypervolume
(HV) [28], a Pareto-compliant quality indicator, the results have shown
that newly devised operators have always improved the search of all the
multi-objective metaheuristics considered, thus clearly enhancing their
search capabilities for addressing the CSO problem.

The rest of the document is organized as follows: the next section
elaborates on the work related to the CSO problem and how it has been
addressed in the literature. Section 3 details the UDN system model
and formulates the CSO problem objectives. The MOEAs used and the
problem-specific operators designed for hybridization are described in
Section 4. Section 5 develops the methodology used in the experimen-
tation and analyzes the results obtained. The final section is devoted to
summarizing the main conclusions of the work as well as the lines of
future work.

2. Related work

The energy consumption of Information and Communication Tech-
nologies infrastructures (ICT) in general [29], and cellular networks in
particular [30,31], has been an active research topic, specially in the
last 20 years, in order to address the ever-increasing carbon footprint
on the environment of this industry. The enabling technologies of 5G
networks make the energy issue even worse, as has been clearly stated
in recent surveys that have revised the different approaches proposed in
the literature to reduce power consumption from different perspectives,
ranging from advanced energy management strategies [32-37] to data-
driven schemes based on Artificial Intelligence/Machine Learning [38,
39]. Sustainability in UDNs has also attracted a lot of attention, as the
massive deployment of SBSs is a key factor in power consumption, with
surveys specifically aimed at this 5G paradigm [40-42].

Cell activation/deactivation is a common and useful technique for
reducing energy consumption in all previously comprehensive reviews
of the literature. Determining which SBSs are switched on or off re-
quires the network first to serve a traffic demand, and the decision can
be made either in an online (dynamic) [43] or offline (static) man-
ner [44]. This work focuses on the latter approach, as radio network
engineers are usually reluctant to undertake frequent SBS switching
(e.g., at locations with large traffic fluctuations) and require their
approval. The underlying problem, named the Cell Switch-Off (CSO)
problem [16], is known to be NP-complete [17], and it has been tackled
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Fig. 2. Configuration of the SBSs, sectors and cells used in this work, as well as its mapping into a binary encoded representation.

Table 1
Model parameters for users and base stations.
Cell Parameter Eq. LL LM ML MM  MH HL HM HH
G, 2 12
f (5) 5 GHz (BW = 500 MHz)
a ® 15
p (8) 10000
Micro 6§ | 1
p W] ® 1
ny 8
n,. 2
agiere [Cells/km?] 300 300 600 600 600 900 900 900
G, 2) 20
S (5) 20 GHz (BW = 2000 MHz)
a @® 9
B (8) 6800
Pico é ®) 0.5
p [W] ® 1
ny 64
ny 4
e [Cells/km’] 1500 1500 1500 1800 1800 1800 2100 2100 2100
G, (2 28
S (5) 68 GHz (BW = 6800 MHz)
a (8 55
s (8) 4800
Femto 6 @) 0.2
p [W] ® 1
' 256
n,. 8
/1{,”'"” [Cells/km?] 3000 3000 3000 6000 6000 6000 9000 9000 9000
UEs AYE [UE/km?] 1000 2000 3000 1000 2000 3000 1000 2000 3000

with different approaches in the domain, such as clustering [45-47]
or game theory [48]. This decision problem has also been defined as
an optimization problem [17] and, within this research field, it has
been addressed with exact [49,50], heuristic [51-53] and metaheuristic
techniques [18,54]. Our work relies on this last set of methods, which
embrace both single [55,56] and multi-objective approaches [19,57].
However, in the context of the CSO problem, apart from previous works
from the authors [20,21], only canonical versions of metaheuristics
have been used. It is well known that hybridization is a powerful tool
for improving the search of these algorithms [58] but, to the best of our
knowledge, this topic is still unexplored in the CSO literature. Under the
new and more accurate modeling of the CSO problem, this work im-
proves upon our previously published material by devising additional
local search operators aimed at reducing the power consumption and

also showing their suitability over MOEAs covering the most important
trends in the domain, e.g., Pareto-based, decomposition-based, and
indicator-based algorithms that, to the best of our knowledge, have
never been hybridized (SMS-EMOA and MOEA/D, particularly) or even
used before in the context of this problem (SparseEA). We have also
evaluated the synergy between different operators, which also opens
new promising lines of research.

3. The CSO problem

This section first introduces the modeling of the UDN and its pa-
rameters, and then describes the mathematical formulation of the CSO
problem addressed.
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3.1. UDN modeling

This work considers a service area of 500 x 500 meters, where
ten different regions have been defined with different propagation
conditions. To compute the received power at a given location of this
area, P, [dBm], the following model has been used:

P, [dBm] = P, [dBm] + PLoss [dB] €}

where, P, is the received power in dBm, P,, is the transmitted power
in dBm, and PLoss are the global signal losses, which depend on the
given propagation region, and are computed as:

PLoss [dB] = GA+ PA (2)

where GA is the total gain of both antennas, and PA are the transmis-
sion losses in space, computed as:
2 K

4.7-d ) ®
where d is the Euclidean distance to the corresponding sector at the
SBS, K is the exponent loss, which randomly ranges in [2.0,4.0] for each
of the 10 different regions. The Signal-to-Interference plus Noise Ratio
(SINR) for UE k, is computed as:

P, jx [mW]

PA [dB] = (

SINR, = G

M Pk MW= P, [mW]+ P, [mW]

i=1
where P,, ;  is the received power by UE k from the cell j, the summa-
tion is the total received power by UE k from all the cells operating at
the same frequency that j, and P, is the noise power, computed as:

P, [dBm] = 174 + 10 - log,y BW 5)

being BW the bandwidth of cell j, defined as 10% of the SBS operating
frequency, which is the same for all cells it deploys (see Table 1).

Finally, the UEs capacity has been calculated according to the MIMO
depicted in [59]. Thus, we assume that the transmission power from
each antenna is P, /n,x, where n,x indicates the number of transmitting
antennas. Then, if we consider the subchannels to be uncoupled, their
capacities can add up, and the overall channel capacity of the UE k can
be estimated using the Shannon capacity formula:

; ; c SINRy - A
C][bps] = BW; [Hz] - Z log, (1 + —"> (6)

i=1 Mix

where \//1_, is the singular value of the channel matrix H, of dimensions
n.. X n, (i.e., # receiving antennas X # transmitting antennas). Note
that both n,, and n,, depend on the cell type (see Table 1). Bij is the
bandwidth assigned to UE k when connected to the cell j, assuming
round-robin scheduling, that is:

Y 7
N, @)

pwi =2

k
where N; is the number of UEs connected to a cell j, and the UEs are
connected to the cell that provides the highest SINR, regardless of its
type.

In order to build a heterogeneous network, three different types of
cells of increasing size and decreasing frequency are considered: fem-
tocells, picocells and microcells. Recall that these cells are generated
by the antennas installed in a given sector of an SBS. Fig. 2 illustrates
the three configurations used in our modeling. In the first row, the
three SBSs have the three sectors and all their cells switched on (in
operation), thus the mapping to the binary string that represents a ten-
tative solution, included below each subfigure, does have all the genes
set to 1. In the second row, we have included several solutions with a
subset of cells switched off, with the corresponding genes set to 0. It
should also be noted that the number of transmitting antennas of each
cell type increases with frequency, being 8, 64 and 256 transmitting
antennas, respectively, for micro, pico, and femtocells. In the same way,
we assume that high-capacity UEs, which will preferably connect to

Swarm and Evolutionary Computation 78 (2023) 101290

small cells (pico and femtocells), will implement a higher number of
receiving antennas (4 and 8 for pico and femtocells, respectively).

With the system configuration described above, the actual deploy-
ment of the cells is carried out via the placement of SBSs in the working
area, using a random rotation angle for the sectors, which determines
the orientation of the different cell beams. Then, both SBSs and UEs
are deployed using independent Poisson Point Processes (PPP) with
different densities, defined by AS¢"* and AYF, respectively. We have
implemented in our software framework a discretization approach that
uses a grid of 100 x 100 points (also called “pixels” or area elements),
each covering a 25 m? area, where the signal power is assumed to
be constant. In addition to that, vertical densification has been taken
into account by considering 3 vertical area elements, i.e., 25 meters of
height. The purpose of this mechanism is to reduce the computational
cost of calculating the SINR values.

The power consumption of a transmitter is computed based on the
model presented in [3], which considers that the device is transmitting
over the fiber backhauling. Therefore, the regular power consumption
of cell j, P, is expressed as:

Pi=a-P+p+6-S+p (8)

where P denotes the transmitted or radiated power of the transmitter,
the coefficient « represents the efficiency of the transmission power
produced by a radio frequency amplifier and feeder losses, the power
dissipated due to signal processing and site cooling is denoted by g
and the dynamic power consumption per unit of data is given by 6,
being S the actual traffic demand provided by the serving cell. Finally,
the power consumption of the transmitting device is represented by
the coefficient p. However, in order to consider an accurate power
consumption model, the power consumed by the air conditioning and
power supply of the SBS should be also taken into account [60]. This
has been called maintenance power and is set to 2W/SBS for any SBS
containing at least one active cell.

The detailed parametrization of the scenarios addressed is included
in Table 1, in which column Eq. links the parameter to the correspond-
ing equation in the formulation detailed above. The names in the last
nine columns, XY, represent the deployment densities of SBSs and UEs,
respectively, so that X = {L, M, H}, meaning either low, medium, or
high-density deployments (/lge” parameter of the PPP), and Y = {L, M,
H}, indicates a low, medium or high density of deployed UEs (A} pa-
rameter of the PPP), in the last row of the table. The parameters G,, and
f of each type of cell refer to the transmission gain and the operating
frequency (and its available bandwidth) of the antenna, respectively,
being n,, and n,, the number of transmit and receive antennas. Finally,
the parameters of the previously described power consumption model
are also included. Nine instances have been therefore used in this work
in order to assess the performance of the different metaheuristics and
their hybridization with the problem-specific operators.

3.2. Problem formulation and objectives

Let B3 be the set of randomly deployed SBSs and C, the set of cells
installed in SBS b, with b € B. A solution to the CSO problem is a
binary string s, where s‘c’ indicates whether the cell ¢ of a given SBS
b is activated or not. The first objective to be minimized is, therefore,
computed as:

B C

MN fpoyuer(5) = 3 Py . b ©)
b c

where P, is the power consumption of SBS » (Eq. (8)). Note that P,
includes both the transmission power of every cell ¢ € P, and its
maintenance power.

Let U be the set of UEs also deployed as described in the previous
section, and U the entire set of cells contained in /3. Subsequently,
in order to compute the total capacity of the system, UEs are first
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assigned to the active Cell that provides it with the highest SINR. Let
A(s) € {0, 1}1VXIl be the matrix where a;; = 1 if s; = 1 and the Cell
Jj serves UE i with the highest SINR, and q;; = 0 otherwise. Then, the
second objective to be maximized, which is the total capacity provided
to all UEs, is calculated as:

v cl

max feg,(s)= Y Y s, a;-C! (10)

i=1 j=1

where C,.j is the capacity of Cell j provided to UE i (Eq. (7)). We would
like to remark that these two problem objectives are clearly conflicting
one each other, since switching off base stations leads to a reduction
of the power consumption of the network, but it also damages the
capacity received by the user, as the UE-Cell distance increases (rising
the propagation losses) at the same time as the available bandwidth to
serve users is reduced.

4. Hybridization: MOEAs used and newly developed operators for
the CSO problem

This section first describes briefly the MOEAs used in this work.
Then, the problem-specific operators devised for the CSO problem are
detailed. The last part is devoted to showing how these operators are
integrated within the evolutionary loop of the chosen multi-objective
metaheuristics.

4.1. Multi-objective evolutionary algorithms

In the last decades, Evolutionary Algorithms (EAs) have shown their
effectiveness in solving different optimization and search problems. In
addition, one of the most interesting capabilities of these algorithms is
the ability to deal with multi-objective optimization problems. Since
its proposal in the 1990s, Multi-Objective Evolutionary Algorithms
(MOEAs) have been widely used for the resolution of several complex
problems with two or three conflicting objectives in various branches
of engineering, science, and commerce. If the problems have more
conflicting objectives, the research community has proposed differ-
ent alternatives, since MOEAs lose performance when the number of
conflicting objectives increases [61,62].

In order to address the optimization problem stated in this pa-
per, the following five MOEAs have been chosen from the specialized
literature: NSGA-II (Non-dominated Sorting Genetic Algorithm II) [22],
MOCell (Multi-Objective Cellular Genetic Algorithm) [23], SMS-EMOA (S
Metric Selection Evolutionary Multi-Objective Algorithm) [24], MOEA/D
(Multi-Objective Evolutionary Algorithm based on Decomposition) [25] and
SparseEA [26].

The first four algorithms are well known in the literature and
have been selected to cover the three main paradigms for solving
multi-objective optimization problems (MOPs), namely, Pareto-based,
indicator-based, and decomposition-based. NSGA-II and MOCell are
representative of Pareto-based approaches that have already been used
in previous works by the authors in the context of the CSO problem.
They use ranking to identify non-dominated solutions, and crowding
as a density estimator to promote these non-dominated solutions of
the less populated areas of the approximated Pareto fronts. This latter
operator is rather computationally expensive, but improved implemen-
tations exist [63]. As an indicator-based algorithm, we have chosen
SMS-EMOA, whose search engine is guided by Hypervolume. And
finally, MOEA/D covers the decomposition-based paradigm. SparseEA
deserves special attention, as it is a recent algorithmic proposal specif-
ically aimed at solving sparse MOPs, i.e., large-scale binary-encoded
MOPs in which most of the decision variables are zero [64]. This is
potentially the context of the CSO problem, as it tries to switch off
as many cells as possible in periods of low traffic demands to reduce
power consumption. To do so, SparseEA uses a similar scheme as
NSGA-II in terms of crossover, selection, ranking and crowding, but
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it applies tailored strategies to generate the initial population and the
offspring that aim at ensuring the sparsity of the solutions generated.
This algorithm uses a hybrid representation of the solutions (real and
binary vectors), where the real vector stores the best values of the
decision variables found so far, and the binary vector stores the decision
variables that should be set to zero to control the sparsity of solutions.

4.2. Hybridization with problem-specific operators

The integration of problem-specific operators in the evolutionary
cycle is done after the application of the genetic operators, as shown
in Algorithm 1. Each specific operator is applied with a probability
rate e, defined in [0, 1]. For multi-operator hybrids, the following
order is used: EC', SC!, PF', PSC' and HF'. Hence, all, some, or
none could be potentially applied.

4.3. Problem-specific operators

We have defined five different local search operators that are aimed
at exploiting problem-specific information that can guide the search
of MOEAs towards regions of higher quality solutions. These operators
mainly target switching cells either on or off, so their acronyms have
used a superscript with a 1 or |, respectively, to better show this
fact and enhance the reading. They all have linear computational
complexity, thus not substantially increasing the runtime.

4.3.1. EC': Empty cell operator

As a consequence of SBS densification and sectorization, many cells
may result to be empty, i.e., not providing service to any user, so that
it can be switched off. In order to incorporate this useful information
about the network into the algorithm search, the Empty Cell operator, or
EC! for short, has been designed. It explores all cells of the candidate
solution, switching off those that are not serving any UE, as it is
illustrated in Algorithm 2. Despite its apparent simplicity, this operator
promotes a considerable intensification capacity. It is remarkable that,
when applied without any restriction, the EC' operator can disrupt the
evolution of the algorithm, since it prevents the generation of solutions
that reassign users to such empty cells, since they would all be switched
off after the action of the operator. In order to address this issue, the
operator is applied with a certain rate.

4.3.2. SC': Single cell operator

Having multiple sectors/cells within a single SBS introduces new
optimization possibilities to improve the search capabilities of the
algorithms. In particular, the Single Cell operator (SC') aims to ex-
plore low power consumption solutions by switching off base stations
that have only one single active cell, saving in this way the power
consumed by the air conditioning and power supply of the entire SBS.
Again, when applied without restrictions, this operator might lead to
solutions in which some important base stations might be switched off,
regardless of the number of users that were assigned to them. This fact
could significantly disrupt the search of the MOEAs. For that reason,
this operator is applied with a given rate. Algorithm 3 sketches the
pseudocode of the operator.

4.3.3. PF' And PSC': Prioritize femto and prioritize small cells operators

In contrast to the previous specific operators, which aim to intensify
the search in areas of low energy consumption, the Prioritize Femto Cells
and Prioritize Small Cells operators aim to intensify it in the area of
the highest capacity. These operators seek active cells that offer an
SINR level higher than a threshold over the SINR of users with the
cells to which they are assigned. After experiments with values from
1 dB to 9 dB, the threshold value was set at 1 dB, as it was the one
with the best results. In addition, this value allows us to maintain
consistency with previous works [21]. The difference between the two
operators lies in the set of candidate UEs to participate in the search:
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Algorithm 1: Pseudocode of the hybridization with problem-specific operators.

l:t<0 // Generation counter

2! A®t) < @

3: S(t) « Generatelnitial Population()
4: Evaluate(S(1))

5: A(t) < Update(A(t), S(t))

6: while not StoppingCondition() do
7 tet+1

8 S(t) « Selection(S(t — 1), A(t — 1))
9 S(t) « Variation(S(1), A(t — 1))

// Archive for non-dominated solutions

// Current population

// Evaluate the problem objectives

// Obtain the non-dominated solutions from S(0)

// Select solutions for mating
// Apply variation operators (crossover, mutation)

10: // using the mating population and the archive

11:  for all s € S(r) do

12: r| < Random(0, 1)

13: if ry <rategperarory then
14: s « Operatorl(s)

15: end if

16: ry < Random(0, 1)

17: if ry < rategperqory then
18: s « Operator2(s)

19: end if

20:

21: ry < Random(0, 1)

22: if r, <rategperaorn then
23: s « OperatorN (s)

24: end if

25:  end for

26: Evaluate(S(t))
27:  A@t) < Update(A(t - 1), S(t))

// Draw a random number in [0,1]

// Apply Operatorl to solution s

// Apply Operator2 to solution s

// Apply OperatorN to solution s

// Obtain the non-dominated solutions from the

28: // current population S(t) and the archive A(t-1)

29: S(t) « Replacement(S(t), A(t))
30: end while
31: Output: A(r)

// Replace solutions in the current population

Algorithm 2: Pseudocode of the EC! operator.

Algorithm 4: Pseudocode of the PF' and PSC' operators.

1: C < cellstUDN)
: for c € C do
if ConnectedU Es(c) == 0 then
SwitchOf f(c)
end if
end for

AN AN

Algorithm 3: Pseudocode of the SC' operator.

1: B« SBSs(UDN)
2: for b € B do

3:  if ActiveCells(b) == 1 then
4 ¢ « ActiveCell(b)

5 SwitchOf f(c)

6: end if

7: end for

Prioritize Femto Cells only concerns the UDN UEs that are not assigned
to femtocells; Prioritize Small Cells is less restrictive, using the UEs that
are not assigned to small cells, that is, microcells and macrocells. After
switching on the cell that meets the SINR threshold, if any, the operator
switches off all cells that have no UEs assigned to them. Therefore,
the EC' is likely to be applied as a final step. Algorithm 4 shows the
pseudocode of the two operators, which differs only in the initial set of
cells.

4.3.4. HF': Higher frequency operator

Similar to PF' and PSC' operators, the purpose of the Higher
Frequency operator is to intensify the search towards the capacity
objective. This operator seeks to take advantage of the capacity im-
provements that can be offered by smaller cells with a higher operating
frequency than those serving UEs. Thus, this operator turns on cells of
the same SBSs to which the UEs are assigned and that offer a higher
SINR than the one they already have. Furthermore, if the cell to which
the UEs are assigned only serves one, the cell is turned off to encourage
the UEs to be assigned to the activated cell, thus promoting the increase

1: if PF' then

2: U <« UsersNotServed ByFemtoCells(UDN)
3: else if PSC' then

4: U « UsersNotServed BySmallCells(UDN)
5: end if

6:

7: for u € U do

8:  current <« GetServingCell(u)

9:  C « GetFemtoCellsWithHigherSIN R(u)
10: force C do
11: if SINR(u,c) > 1 dB then
12: SwitchOn(c)
13: if GetAssignedU sers(current) == 1 then
14: SwitchO f f(current)
15: end if
16: break
17: end if
18: end for
19: end for

20: SwitchOf f EmptyCells()

of capacity as well as the reduction of the power consumption, as
illustrated in Algorithm 5.

5. Experimentation

This section describes the methodology used to conduct the exper-
iments, showing the effectiveness of the new hybrid proposals, as well
as the analysis of the results obtained.

5.1. Methodology

Based on the nine scenarios described in Section 3 and the stochastic
nature of the metaheuristics, 50 seeds have been addressed in the ex-
perimentation for each type of scenario. This ensures that all algorithms
face the same set of problem instances.
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Algorithm 5: Pseudocode of the HF' operator.

1: U < GetUsers(UDN)
2: forue U do
3: b« GetServing BT S(u)
1 best « GetServingCell(u)

4
5 current « best

6: for c € GetCellsWithHigherOperating Frequency(b) do
7: if SINR(u,c) > SINR(u,best) then

8 best « ¢

9 end if

10: end for

11: end for

12: SwitchOn(best)

13: if GetAssignedUsers(current) == 1 then

14:  SwitchOf f(current)

15: end if

In order to obtain fair comparative results between algorithms,
they all use the same population size of 100 solutions and the same
genetic operators: binary tournament selection, two-point crossover
with a crossover rate of 0.9, and bit-flip mutation with a mutation rate
of 1/L, being L the number of cells in the scenario. SparseEA is the
exception because its own framework is designed to maintain sparsity
in solutions, and changing its genetic operators to general-purpose ones
would cause the algorithm to lose its distinguishing features from the
others. Moreover, MOEA/D has also used a binary tournament to select
two parents for crossover.

The stopping condition is defined as a maximum number of function
evaluations, which increases with the density of deployed SBSs, that
is, with the size of the instance. The following values have been set
up: 100,000 evaluations for L{X}; 150,000 evaluations for M{X}; and
250,000 evaluations for H{X}, (being {X} the three densities of the
UEs). These values are obtained after a preliminary study that has
shown that they are enough to guarantee the convergence of the
algorithms.

With respect to the specific operators, the first step has been to
conduct experiments with them separately to clearly isolate their im-
pact on the search of the different MOEAs. For this purpose, we have
initially defined the following application rates: 0.1, 0.05, 0.01, 0.005
and 0.001. However, after briefly analyzing the results, the two smaller
ones, 0.05 and 0.005, have not been considered anymore in this work,
as they have provided negligible contributions to the quality of the
solutions reached. We have also removed these two settings to increase
the readability of the results. Bearing all this in mind, this part of
the experiments accounted for a total of 67,500 runs. A final set of
experiments carried out to analyze potential synergies between the
problem-specific operators in the hybrid MOEAs has involved 5 MOEAs,
5 operators, 5 application rates, 14 combinations between operators,
9 scenarios, and 50 seeds, which amounts to 31,500 additional runs.
All of them have required roughly about 18.4 years of CPU time. In
order to afford such computational demands, the experiments have
been deployed in the facilities of the Supercomputing and Bioinfor-
matics Center of the Universidad de Malaga, named Picasso. It is a
heterogeneous computing platform composed of several clusters with
up to 30.616 computing cores. The full hardware description can be
found in http://www.scbi.uma.es/site/scbi/hardware.

Two indicators have been used to measure the quality of the approx-
imations to the Pareto front achieved by the different algorithms: the
attainment surfaces [65] and Hypervolume (HV) [28]. The empirical at-
tainment function (EAF) [65] allows undertaking a graphical analysis of
the approximated fronts. Indeed, EAF graphically displays the expected
performance and its variability of the approximated Pareto fronts ob-
tained by the multi-objective algorithm over multiple runs. Informally,
the 50%-attainment surface in the multi-objective domain, which is
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Table 2
Median and IQR of HV for the canonical MOEAs.
NSGA-II MOCell SMS-EMOA | MOEA/D SparseEA

LL 0.52179 0.296, g5 0.642 159 0.000; 99 0.212 45,
LM 0.520, g5 0.266,, 193 0.594 1,5 0.000; 99 0.208;) 569
LH 0449[] 161 0.25 8l]. 198 0‘5560,]33 0‘0000,('[]1) 0.21 60,('55
ML 0.2714 479 0.4344,5, 0.519 137 0.000; 99 0.165 045
MM 0. 193[],231 0303[] 183 0‘4370,141 0‘000(),(101) 0. 1730,041
MH 0.2109 55 0.0369 194 0.435¢,191 0.0000,000 0.1815,040
HL 0.365¢,249 0.005¢,199 0.579.161 0.0000,000 0.1530,036
HM 0.179¢ 265 0.0000 35 0.438) 160 0.0004 600 0.145) ou»
HH | 0177556 | 0.0, 0.407 504 0.000p000 | 0.155) 040

chosen here, is analogous to the median value in the single-objective
one. The HV, in turn, is a Pareto-compliant, single-value-based quality
indicator considered in the multi-objective community as one of the
most reliable measures to compare approximations to the Pareto front
of different algorithms. Its values depend, however, on the arbitrary
scale of the objective function values, so a normalization procedure is
required to avoid misleading results. To do so, and since the problem
addressed in this paper is a realistic NP-complete combinatorial opti-
mization problem for which we do not have the true Pareto front, a
reference Pareto front (RPF) has been built for each instance of the
problem. This RPF is composed of all the non-dominated solutions
found by all the algorithms involved in these experiments, and is used
to normalize the approximated fronts reached by the algorithms prior
to calculating the HV value. Non-dominated solutions outside of the
limits of the corresponding RFP are discarded (i.e., their contribution
to the HV is zero).

In order to provide these HV results with statistical significance [66],
a Kolmogorov-Smirnov test is first performed to check whether the 50
samples are distributed according to a normal distribution or not. If
so, an ANOVA 1 test is performed; otherwise, a Kruskal-Wallis test
is performed. Since more than two algorithms are involved in the
study, a post hoc testing phase that allows for multiple comparisons
of samples (multicompare) has been conducted. All statistical tests are
performed with a confidence level of 95%. The stats output is shown
in a tabular form, as a head-to-head comparison between pairs of
algorithms; a black upward triangle says that the setting of the row
has statistically higher values than the configuration of the column,
and a white downward triangle states that the configuration in the
row has statistically lower values than the configuration in the column.
When no statistically significant differences are found, the spot is left
empty. We have also computed the Friedman rank sum test with Holm
correction to support several rankings among the algorithms that are
undertaken in the result analyses below.

Both the generated data and the statistical tests can be found
as supplementary material at https://doi.org/10.6084/m9.figshare.
21378000. All the software and the scenarios used can be also down-
loaded from https://github.com/galeanobra/CSO_Hybrid in order to
guarantee the reproducibility of the experimentation. In the following
sections, we have structured all this information in a readable form to
ease the analysis of the results and to better support our conclusions.

5.2. Results

This section has been structured into two separated parts: the first
one aims at showing how the problem-specific operators devised in
this work (and described in Section 4.3) improve the search of the five
MOEAs in which they have been incorporated; as these operators have
different intensification capabilities towards a given objective (either
the energy consumption or the network capacity), the second part is
devoted to analyzing potential synergies between them, when applying
several of such operators simultaneously.
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Table 3
Median and IQR of the HV indicator for NSGA-II in the nine scenarios.
Canonical EC! sct PF! PSC! HF'
0.1 0.01 0.001 0.1 0.01 0.001 0.1 0.01 0.001 0.1 0.01 0.001 0.1 0.01 0.001
LL 0.521 17 074810, 0.6680010 | 0.53%.,57 0608510 054155 | 07440070 075800  0.58%.11 | 0.73200s 0.735,,00  0.571g,5 | 0.5280,6 0.536,00  0.505,,16
LM 0.5200,155 07200051 0621957 | 051050 0555013 05195 | 07005057  0.6935002 05330155 | 0687912  0.6715,45 053005 | 0486y, 046756 0.5140 13,
LH 0.449 161 0.671¢ 65 0.5460228 0.4415154 0.504¢ 147 0.4380 16 0.648) 12 0.639.126 0.479 527 0.6480 097 0.644¢ 05 0.500.175 0.4130 164 04490 154 0.452¢ 165
ML | 0.271g,5 0713y,0  0.658,,5 | 0261g,01 04125505 032702 | 07175005 0717505 0.6240565 | 0.710 100 0.710p106 0572946 | 02805109  0.2629 4 0.282 503
MM | 0.193,; 0.68%005 06170053 | 0.1505555 0286050, 02285,y 0.668,105  0.6675,00 03620403 | 0.665000  0.6405 126 03670305 | 0183050  0.17904 0.207959
MH 0.2109 55 0.657¢,129 0.5130313 0.2109,579 0.31255 0.2660 563 0.622¢ 163 0.6060 147 0.4160 501 0.589 155 0.6070 147 0.2950356 0.1650 355 0.191.208 0.1840 246
HL 0.3650.249 0.7140,05 07145005 0.6835145 | 03060, 04805,  03660,5 | 0.712)06 0.6970.157 | 0.695104 0709000  0-6710,5 | 0.3200201 0.33965 03349504
HM 0-179 565 0-6369.119 0-583 160 01899556 0.32193, 0-253 155 0.619.129 0.6130133 0.5950237 0.6160.100 0.628 10 0.584,17 0.1760,150 01869550 0.192¢ 197
HH | 0.177). 060005 0539, | 0191525 0276020  0.16554 | 0603535 059255 0400545 | 0600505 059825 0517006 | 0.160p55  0.126005  0.158,50,
Table 4
Median and IQR of the HV indicator for MOCell in the nine scenarios.
Canonical EC! SC! PF' PSC! HF'
0.1 0.01 0.001 0.1 0.01 0.001 0.1 0.01 0.001 0.1 0.01 0.001 0.1 0.01 0.001
IL | 029 0450036 | 027652 0387155 0318559 | 06269095 0612015, 039000 | 061559 0620515 042853 | 0279, 029152 0313,
LM 047226 | 02979155 0366016  0.30202 0.557013 051949 03855 | 062495 06079,  0.621500 | 0474y,53 052294 0.523,137
LH 0.349323 0.2560.529 0.3529 53 0.3009 566 0.4974 137 0.448 575 0.292)559 0.563¢,155 0.585¢,141 0.5680 109 0.3970.147 0.464 149 0.4760 143
ML 05100 | 00021 0530gse 053501 | 0657037 063257 0650016 | 0610y5 0610y 053247 | 000544 017654, 04235
MM 0.6440050 | 0.305,5, 041866 0407, 6 058935 057155 05705, | 055255  0.54743 0.568)156 | 02440200  0.292),4 0.305).53
MH 0.305¢ 438 0.003,169 0.1250 545 0.0579 503 0.4670 184 0.453 197 0.278 405 0.505¢.163 0.485053 0.486¢ 501 0.195¢,57 0.273¢, 165 0.2915 559
HL 0593176 | 0.000p109  0.160p553  0.046¢54 0.608y,109 06100115 0.567026 0.6200115 0617157 05520176 | 03179295 0362955 04229545
HM 04530505 | 00005065  0.0775,75  0.0005065 | 0.488s56 05023 0417955, | 052505 0495, 0377553 | 0150005  0.197,,5 0.2175 55
HH 0.4100.249 0.0000,073 0.0450.186 0.0009,131 0.4314,15) 0.4370206 0.1970 40 0.453y 137 0.437) 151 0.3815 558 0.061¢547 0.1460 564 0.0849313
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Table 5
Median and IQR of the HV indicator for SMS-EMOA in the nine scenarios.
Canonical EC? SC? PFT PSCT HF'
0.1 0.01 0.001 0.1 0.01 0.001 0.1 0.01 0.001 0.1 0.01 0.001 0.1 0.01 0.001
LL 0.642 15, 0.720¢ 105 071970 | 0.641,55 0.691000;  0.6830g6 0716055 0706007,  0.714g0s 071419 0.692905,  0.703;,06 | 0620515  0.621 5 0.658 13
LM 0.59%; 155 0714000 | 060655 ~ 06725504  0.658,,0; 0.697, 75 070105 0.699,17 0.700p0ss  0.6829,09  0.6815,5 | 05625,  0.597 3, 0.633 154
LH 0.5560,133 0.5479,100 0.6405.12 0.633),117 0.638y 101 0.6460 095 0.6449 103 0.646¢,110 0.6475100 0.629116 0.5320,126 0.542 146 0.5660.111
ML 0.519 57 0500150  0.6245075  0.614g5 0.691500s  0.6860,01  0.688; 4 0.692)003  0.6829005  0.683,,, | 0.4565,05 050975 0500,
MM | 0437, 0.446, 7 0.582) 141  0.565) 0, 0.650; 03 0.668,09  0.650; 14 0.668)05s  0.661p050  0.6460005 | 036620 0431y, 0.440; 155
MH 0.435.101 0.651,154 | 0375050 0553y, 0.533y5 0.63211, 0629160 0.642¢ 130 0.628) 140 06229116 06250141 | 03600035 04375519 0407993
HL 0.579 161 0.565,3  0.643 105 0.652 110 0.681y0;5  0.678)479  0.679 006 0.683)000  0.6749,0s  0.679%5s | 054965 05845,  0.574) 5
HM 0.438,, 160 | 0429, 5, 0.553,134  0.552),,, 0.6275057  0.621( 56 0.594 005 06135157  0.60946s  0.6115,00 | 0.345),65  0.414( 05 0.415), 166
HH 0.407 504 0.604p110 0612019 | 0402199 ~ 0.540p100  0.523y,3 0.5%013 05850104  0.5919,105 0.5750.12 0.5%0006  0.569%.104 | 03540209  0.385¢,55 0.3940.173
Table 6
Median and IQR of the HV indicator for MOEA/D in the nine scenarios.
Canonical ECY KYeli PF' PSC! HF'
0.1 0.01 0.001 0.1 0.01 0.001 0.1 0.01 0.001 0.1 0.01 0.001 0.1 0.01 0.001
LL 0.0004 000 0.002)05  0.0005060  0.0005004 | 00005000 0000503  0.00050, | 0.0005055  0.0000s  0.0000 04 0.00000>  0.0005063 | 0.0005000  0.0005000  0.0005000
LM 0.000; 00 0.000p;,  0.000505 0000000 | 0.000500  0.00050, 0000000 | 0000500 0000500 0000000 | 0000500  0.0005000 0000500 | 0.0005000  0.00050  0.000400
LH 0.0004 000 0.000,,0;, 0.000p00,  0.0005007 | 0.0005000  0.0005000  0.0005000 | 0.0005000  0.0005000  0.0005000 | 0.0000000 00005000  0.0005000 | 0.0005000  0.0005000  0.0004000
ML | 0.000,000 00435 0022y, 00275007 | 0.0000000  0.000500  0.0005000 | 0.004507  0.000,0, 0.0000,_ 0.0085,05  0.0005,0 | 00005000 00005000  0.0000000
MM | 0.000,00 0.000y03  0.000p0;; | 0.0005000  0.0005009  0.0005000 | 0.000545  0.000505  0.00050s6 | 0000505 0000505  0.00050 | 0.000500  0.0005000  0.0005000
MH 0.0000.000 0.00000p 00000059 0.0000009 | 0.0005000  0.00050;5  0.0000000 | 0.000g015  0.000000  0.0000000 | 0.0000043 0.0000000  0.0009027 | 00000000  0.0000000  0.0000000
HL 0.000; 00 0.035 ;55 0.043y,7; 000055 | 000054  0.000505  0.0004 00 0.020 56  0.0035,,,  0.00600s5 | 0.030y,7 0.024) 15> | 0.00050  0.00050,  0.000400
HM 0.000; 00 0.020) 105 0.0005,05 | 0.0005000  0.000504  0.0005005 | 0.000p475  0.000506  0.00050s 0.025,,07  0.006505;  0.009055 | 0000500  0.000000  0.000q 00
HH 0.0000.000 0.000p034  0-0009010 | 00000000 00000000  0.0005000 | 0.000g016  0.0005001  0.0004000 0.00000ss  0.0009026 | 00000000  0.0000000  0.0004000
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5.2.1. Impact of the problem-specific operators

Let us start by defining our baseline for the comparison. Table 2
includes the median and the Interquartile Range (IQR) of the HV
values reached by the canonical MOEAs, that is, those with the default
settings described above regarding population size, crossover/mutation
operators and rates, etc., and without applying any of the problem-
specific operators. A gray background is used in the table cell with the
best (highest) HV value.

The starting point is that SMS-EMOA has reached the approximated
Pareto fronts with the highest (best) HV indicator values. This is
consistent across the nine scenarios and with statistical significance
in most cases, as shown in Figure S.9 in the online supplementary
material. This is the first relevant finding of this work, as SMS-EMOA
has been scarcely used in the context of the CSO problem. To the best of
our knowledge, this algorithm has been used in a preliminary study on
multi-connectivity in the CSO problem, and no differences have been
reported with respect to NSGA-II and MOCell [67].

A second conclusion of the results presented in Table 2 and Fig. 3 is
the extremely bad performance of MOEA/D, for which the HV values
in each scenario are always zero. This is the effect of the normalization
procedure that discards non-dominated solutions out of the limits of the
RFP. Fig. 3 graphically shows this fact with the attainment surfaces of
the five canonical MOEAs and the RPF for the MM scenario (the same
happens in all the other cases, as shown in the figures included in the
supplementary material). Note that only those non-dominated solutions
having a power consumption below roughly 2 kW (the highest extreme
point of the RPF in this objective for this scenario) contribute to the
HV value, that is, only NSGA-II, MOCell, SMS-EMOA and SparseEA
have a median greater than zero in the row MM of Table 2. The
reason for this is that the solutions reached by the hybrid MOEAs
with the devised problem-specific operators clearly dominate those of
the canonical versions, thus displacing the actual RPF far from the
average approximations computed by the canonical versions. After a
deep inspection of the MOEA/D implementation used, and available
in the jMetal framework (https://github.com/jMetal/jMetal), we can
explain this issue in that the evolutionary loop of this algorithm, for
which the decomposition-based approach works well for real-coded
problems and the Differential Evolution crossover operator, but fails
when using binary strings with two-point crossover and bit-flip mu-
tation. Recall that we have kept these common settings across the
evolutionary-based MOEAs for comparison purposes. As it can be seen
below in Table 6, this happens in most of the results reported by HV
involving MOEA/D. As a consequence, from this point onward, we have
decided to stop analyzing any results of this algorithm for this quality
indicator (removing their contributions to the RPF of each scenario),
in order to both reduce the length of the paper and ease its reading. In
any case, we would like to point out that problem-specific operators
have also improved the search of MOEA/D, as can be seen in the
attainment functions reached by the approximated Pareto fronts for
the HL scenario, taken as a representative one, in Fig. 4, where the
hybrid versions with EC!, PF', and PSC' clearly dominate that of
the canonical version. The point is that these improvements are not
enough to move the approximated Pareto fronts into the limits of the
corresponding RPF.

Now, we turn to analyze the actual impact of the five problem-
specific operators. Tables 3 to 7 include the median and IQR of the
HV values over the 50 runs of NSGA-II, MOCell, SMS-EMOA, MOEA/D
and SparseEA for both the canonical and the 15 hybrid versions (five
operators applied at three different rates). We will be using the previous
names to refer to the canonical MOEAs, and ZOm>mﬁ to mention a
particular hybridization using a given application rate. The tables also
use two different gray backgrounds in each row to highlight the best
configuration over all settings ({darker gray ) and the best within a

given operator ( lighter gray ) for each UDN scenario.
The first clear conclusion that can be drawn from all the tables is
that hybrid MOEAs have outperformed canonical ones, thus showing
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Fig. 3. Attainment functions of the five canonical MOEAs for the MM scenario, and the RPF used in the normalization procedure required to compute the HV indicator.
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Fig. 4. Attainment functions of both the canonical and hybrid versions of MOEA/D for the HL scenario.

that there is at least one problem-specific operator that has been able
to enhance the search capabilities of the algorithms. The dark gray
background indicates that the EC' operator at 0.1 has been able to
obtain the best (highest) HV value in most scenarios for NSGA-II (8
out of 9), MOCell (8 out of 9) and SMS-EMOA (6 out of 9), and with
statistical significance, as shown in Figures S.10 to S.13.

It is important to remark that most hybrid configurations have
enhanced the search of NSGA-II, MOCell and SMS-EMOA, and to a
lesser extent that of SparseEA. To better illustrate this fact, we have
computed the gap between the HV value of the best application rate for
a given operator and the HV value of the canonical MOEA, and have
aggregated it over the nine UDN scenarios (LL to HH). The results are
shown in Fig. 5, where it can be seen that the HV values have increased
substantially, specially in NSGA-II and MOCell, with 0.23 and 0.31, on
average, for the five problem-specific operators. Diving a bit deeper
into the data reported in this figure, the columns corresponding to
the EC' operator show the maximum gap, that is, the largest increase
in the HV value with respect to the canonical version, thus achieving
the best-approximated fronts with respect to this indicator. Out of the

11

five devised problem-specific operators, H F' has provided little-to-
no contributions to the search capability of the MOEAs (except for
MOCell), even obtaining a negative gap (i.e., the canonical MOEA has
outperformed this hybrid version). In fact, averaging the nine scenarios
and the three application rates, NSGA-II; 1 has a gap of —0.0013.
Despite these results, we will show below, in the next section, that
this operator is still useful when combined with others by generating a
synergy that enhances the search of MOEAs.

We want to complete our analysis with an operator-wise dimension,
that is, how the different combinations of operators and application
rates perform. To do so, we computed the average ranking of the HV
value for each operator/rate over all the nine UDN scenarios within
two different comparison baselines: Table 8 ranks hybrids among the
three application rates (that is, the rank is between 1 and 3, which
corresponds, respectively, to the best and worst HV value), and Table 9
ranks them among the fifteen hybrids (that is, the rank here ranges
between 1 and 15). The first table aims at showing which application
rates reached the best (highest) HV value for each operator, whereas
the second one compares all the proposed hybrids. The two tables also
include a final row that averages the rank over all the four considered
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Table 8
Average rank at different application rates of the different hybrid MOEAs for the nine scenarios.
ECY sct PF! psct HF'
0.1 0.01 0.001 0.1 0.01 0.001 0.1 0.01 0.001 0.1 0.01 0.001 0.1 0.01 0.001
NSGA-II 1.11 1.89 3.00 2.78 1.00 2.22 1.22 1.78 3.00 1.56 1.44 3.00 2.33 2.11 1.56
MOCell 1.11 1.89 3.00 2.78 1.11 1.89 1.33 1.78 2.89 1.56 2.00 2.4 3.00 1.89 111
SMS-EMOA 1.44 2.44 2.11 3.00 1.11 1.89 1.67 2.22 2.11 1.22 2.33 2.44 3.00 1.67 1.33
SparseEA 1.56 2.78 1.67 2.11 1.89 2.00 2.56 2.11 1.33 2.44 2.33 1.22 2.22 1.78 2.00
Average 1.31 2.25 2.44 2.67 1.28 2.00 1.69 1.97 2.33 1.69 2.03 2.28 2.64 1.86 1.50
Table 9
Average rank of all the different hybrid MOEAs in all nine scenarios.
EC! sct PF! psct HF!
0.1 0.01 0.001 0.1 0.01 0.001 0.1 0.01 0.001 0.1 0.01 0.001 0.1 0.01 0.001
NSGA-II 1.22 2.56 7.33 13.22 9.22 11.44 3.22 4.11 8.33 5.11 4.89 9.00 14.00 13.56 12.78
MOCell 1.11 2.44 8.11 14.56 11.78 12.56 5.11 6.11 8.89 4.33 4.78 6.67 12.33 11.00 10.00
SMS-EMOA 1.67 2.89 2.44 12.89 9.89 10.78 5.22 5.56 6.56 5.33 7.33 8.33 15.00 13.33 12.78
SparseEA 1.56 3.11 1.67 11.00 10.67 11.00 9.44 8.22 6.33 7.00 7.33 5.44 13.33 11.11 12.78
Average 1.39 2.75 4.89 12.92 10.39 11.44 5.75 6.00 7.53 5.44 6.08 7.36 13.67 12.25 12.08
which may cause: (i) that the cell will not to be deactivated on a later
iteration, if it was already empty, or (ii) the network capacity is re-
0.4 duced, as the cell bandwidth is shared in a round-robin fashion among
all the UEs connected to that cell. Nevertheless, the targeted cells on
03 which the SC' operator may act are scarce, as it could be difficult
g to find an SBS in the UDN network with one single cell activated. In
= any case, the SC!-based hybrid MOEAs can improve on the canonical
0.2 versions consistently in the nine UDN scenarios. This can be seen in the
HV values of the column SC! in Tables 3 to 7. What the shape of the
01 approximated fronts shows with the attainment functions displayed in
Fig. 6 is that in most of the cases for NSGA-II .1, MOCell .1 and SMS-
I I I ) EMOA g, the canonical versions reach solutions with higher (better)
00 _ — capacity (the two attainments cross towards the right-hand side of the
NSGA-II MOCell SMS-EMOA SparseEA plots). Therefore, the operator is able to enhance the search towards
= 50 mm SC¢ mm prl mmm pSct mmm fgF regions with solutions having a lower power consumption in these

Fig. 5. HV gap between the canonical and the five hybrid MOEAs aggregated over the
nine CSO scenarios.

hybrid MOEAs. In order to better support our claims, we have also
included in Fig. 6 the attainment functions of both the canonical and
the best hybrid versions of the four MOEAs for the scenarios LL, MM
and HH, as representative cases with increasing levels of density for UEs
and cells (for readability and room constraints, the remaining ones can
be found in the supplementary material).

From Table 8, it can be seen that the application rate of 0.1 for EC'
has reported the best ranking (lowest) within the four algorithms sep-
arately. The switching off of the empty cells (i.e., not serving any UE)
that promotes this problem-specific operator contributes to the search
of all the evolutionary loops by introducing many 0’s in the tentative
solutions (deactivating useless cells) that are managed properly by the
genetic operators. The gains in the HV values for NSGA-II, MOCell,
and SMS-EMOA are therefore clearly achieved by approximated fronts
with non-dominated solutions in the regions of the search space with
low power consumption, as can be seen with the blue x in the left-
hand side of the subplots in Fig. 6, because a smaller number of cells
are operating in the UDN network. Although this is the main effect
of the EC' operator, turning the cells off also allows the removal
of interference signals, which also increases SINR and, subsequently,
network capacity.

The SC' operator, which also aims to switch cells off, performs
better when applied at a lower rate, 0.01, because it has a stronger
effect on the network when applied. In fact, it may deactivate cells
even with UEs connected to save energy by sleeping the entire SBS.
As a consequence, these UEs have to be reallocated to a different cell,
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three classical MOEAs. It has a little-to-no contribution to the search
capability of SparseEA.

PF" and PSF' report similar results in Table 8: the best rate for
NSGA-II, MOCell and SMS-EMOA is 0.1, but the worst for SparseEA.
The design goal of these two operators is to switch cells on so that they
may serve UEs with higher bandwidth to enhance the second problem
objective (capacity), but also with a final call to EC' (Algorithm 4)
to increase energy savings. Therefore, they have reached approximated
Pareto fronts with better (higher) values in the network capacity than
the EC'-based hybrids, but also with higher power consumption. A
clear example is SMS-EMOA and the HH scenario in Fig. 6.i, where
the attainment functions with green triangles (PF') and red squares
(PSC") cross with blue x (EC') around 1.4 kW. The best application
rate of the HF' operator is 0.001, the smallest possible one, thus
showing that, only by itself, the new genetic material introduced in the
evolutionary loop is not enough to improve the search of the hybrid
MOEAs.

SparseEA deserves special attention, as it is an algorithm specially
designed to deal with sparse MOPs. This means that it has concentrated
the exploration of the search space in the region with solutions having a
very small number of SBSs switched on, thus saving much energy, but,
on the contrary, it has not been able to find solutions with comparable
values for the capacity objective. As a consequence, SparseEA has also
suffered the issue of the HV computation because its approximated
fronts are mostly outside the limits of the RPF (this justifies its low
HV values in comparison with the other three MOEAs). The last row
of Fig. 6 graphically displays this effect. Even though the differences
are very tight in the smaller scenario (Fig. 6.j), there is a substantial
improvement in the attained fronts when the instances become more
complex (higher density). Indeed, the canonical SparseEA is not capable
of reaching solutions over about 4000 and 5000 Gbps for the capacity
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Fig. 6. Attainment functions of both the canonical and hybrid versions

objective in the MM and HH scenarios, respectively (Fig. 6.k and
Fig. 6.1), but the SparseEA ;| does, thus showing the advantages of the
EC' problem-specific operator. The point is that the HV computation
has not properly captured this information because the extreme value
of the power consumption objective in the RPF is fairly low, thus
discarding most of the non-dominated solutions above this value.

If we focus on the global ranking among the hybrid versions with
ECY, PF', and PSC' in Table 9, they have scored the best (lowest)
with 3.01, 6.43 and 6.30 average ranks over the three application rates,
respectively. The SC!-based hybrid MOEAs can be considered as the
fourth out of the five operators with an average rank of 11.58 over the
12.57 of HF'. All these results are supported by the Friedman rank
sum test included in the Supplementary material.

We do not want to finish this section without highlighting the actual
impact of the improvements in the approximated Pareto fronts within
the domain of the CSO problem. As stated above, this work has used

of the four MOEAs for three selected UDN scenarios: LL, MM and HH.

a static version of the problem [44], so the objective values can be
considered as instantaneous power consumption and network capacity,
so even small improvements have a profound impact, specially on the
electricity bill over a month/year period for a network operator in their

5G deployments.

5.2.2. Exploring synergies between operators
The five problem-specific operators devised in this work try to

exploit different features of the CSO problem so that they can be
integrated into the search performed by the different MOEAs. Indeed,
while two of them promote turning cells off (EC' and SC'), the other
three aim at turning on (PF', PSC'" and H F'). In the previous section,
we have characterized the impact of all of them in an isolated manner,
but our hypothesis is that a multi-operator approach in the hybrid
MOEAs may generate synergies among them, and improve upon the

single-operator ones.
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Table 10
Combinations of operators and application rates.
EC! sct PSC! HF'
SYN}! 0.100 0.100 0.100 0.010
SYN,' 0.100 0.100 0.010 0.010
SYN}! 0.100 0.100 0.010 0.001
SYN}! 0.100 0.010 0.010 0.010
SYN}! 0.100 0.010 0.001 0.001
SYN}! 0.100 0.001 0.100 0.010
SYNH 0.100 0.001 0.100 0.001
SYN,! 0.100 0.001 0.010 0.100
SYN,! 0.100 0.001 0.010 0.010
SYN}! 0.010 0.001 0.100 0.010
SYN}! 0.001 0.100 0.100 0.010
SYN/! 0.001 0.100 0.010 0.001
SYN|! 0.001 0.010 0.100 0.010
SYN|! 0.001 0.010 0.100 0.001
Table 11

Median and IQR of HV for the canonical and both the best single- and
multi-operator configurations for NSGA-II in the nine scenarios.

Canonical Best single Best synergy

LL 0.5214,170 0.7660,076 EC), 0766005 || SYNJ'
LM 0.520, 155 0.7470.071 EC,, 0.7460 055 SYN,T
LH 0.449; 1, 071906 || EC;, 0.7124,053 SYN.T
ML 0.271 170 0.73%06 || EC), 0.736,077 SYN/T
MM 0.19355, 0.7074,070 EC,, 0.713 5o SYN,!
MH | 0.210)5 0.668,00 EC,, 0677050 || SYN,'
HL 0.365 40 0.7204 005 PF} 0.722500 || SYN.T
HM 0.179 565 0.633 03 EC,, 0667455 || SYN,'
HH 0.177 565 0.633 035 EC;, 0.643005s || SYN,

The first issue we have to deal with here is the combinatorial
explosion of experiments. As a starting point, we have 9 scenarios x
50 seeds x 4 algorithms x 5 operators x 3% = 27 possible combina-
tions of the three application rates, which equals 243,000 independent
executions. This is obviously not affordable in a reasonable amount of
time. To reduce the number of experiments, we have first considered
only the LL scenario (the smaller one), and the PF' operator has been
discarded because its results are fairly similar to those of PSC' (it
is more restrictive since it only considers femtocells). From all these
combinations, we have ranked them based on the HV value reached
for the 50 seeds of the LL scenario, and we have selected those that
surpass the median HV value of all the single-operator hybrid MOEAs
separately. In total, 14 multi-operator hybrid MOEAs have resulted
from this preliminary selection, whose application rates are included in
Table 10, and have been used further in the experiments for the eight
remaining scenarios (from LM to HH).

Under these experimental conditions, Tables 11 to 14 include the
HV value of the approximated Pareto fronts of the canonical and both
the best single-operator and best multi-operator hybrid versions of
NSGA-II, MOCell, SMS-EMOA, and SparseEA, respectively. The columns
aside the HV data link to the configuration that reached that value of
Table 10. A gray background has also been used to highlight the best
(highest) HV value.

For 20 out of the 36 settings (4 algorithms x 9 scenarios), the
multi-operator hybrid MOEAs have been able to improve upon the
single-operator setting, thus showing that an effective synergy between
operators has been reached. That is, problem-specific operators promot-
ing both switching on and off strategies are useful for improving upon
schemes based on a single approach. This synergy has been especially
impacted in NSGA-II and MOCell, where SYN!! has obtained a higher
(better) HV value in 14 out of the 18 comparisons (with statistical
significance for most cases in MOCell, as shown in Section 2 of the
supplementary material). In order to better illustrate these benefits,
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Table 12
Median and IQR of HV for the canonical and both the best single- and
multi-operator configurations for MOCell in the nine scenarios.

Canonical Best single Best synergy
LL 0.296, 155 0.7204,073 EC], 07720092 || SYN]T
LM 0.266, 10 0.677 04 EC,, 072909 || SYNJT
LH 0.258 165 0.623 05 EC,, 06825 || SYN,
ML 0.434,5;5 0.7250.100 EC,, 07400 || SYN[
MM | 03035 0718000 || EC,, 0.696¢ 000 SYN,T
MH | 0.036),0 0.5914,13, EC,, 0655005 || SYN,'
HL 0.005 19 0.679 10 EC,, 07160500 || SYN.T
HM 0.000¢ (35 0.583,004 EC;, 0.643 9, SYN,'
HH 0.000, 075 0.559 10 EC;, 061700 || SYN]T
Table 13

Median and IQR of HV for the canonical and both the best single- and
multi-operator configurations for SMS-EMOA in the nine scenarios.

Canonical Best single Best synergy
LL 0.642, 15, 0.734¢ 105 EC;, 07470001 || SYN/
LM 0.594 155 02150 || EC), 0.718 050 SYN/!
LH 0.556 133 0.685007 || EC,, 0.677 3 SYN!!
ML 0.519 57 0725, || EC;, 0.680; |55 SYN]T
MM | 0437, 0.694 56 EC,, 0.673 0s5 SYN/T
MH 0.435 14, 06660005 || ECyp | 0652011 SYN!T
HL 0.579 161 07070056 || EC;, 0.618 145 SYN[T
HM 0.438, 160 0.629,101 EC, 0 | 0-588y00s SYN/!
HH 0.407 0 0615000 || EC;, 0.582 7 SYN!I
Table 14

Median and IQR of HV for the canonical and both the best single- and
multi-operator configurations for SparseEA in the nine scenarios.

Canonical Best single Best synergy
LL 0.212; s, 0.213 5 ECl 02370057 || SYNJ
LM 0.208 60 0.237, 067 ECy o, 023900 || SYN,'
LH 0.216 955 0.228, 6 EC,, 0.226 054 SYN]T
ML 0.165 05 0.200, 79 EC), 0209057 || SYN/T
MM | 0.173),, 0.203 045 ECy o, 0206003 || SYN,T
MH 0.1814,040 2Ny EC, 0 | 0211505 SYN/T
HL 0.153 36 0.194 056 EC,, 020805 || SYN
HM 0.145) 04 0.0%%,07 || EClo | 0191505 SYN/T
HH 0.155) 40 0.198, 055 EC,, 0.1975 70 SYN!T

Fig. 7 displays the attainment functions of the best configurations for
three scenarios with increasing density levels (i.e., complexity), namely
LL, MM and HH. It can be seen that, for these two MOEAs, as long as
the density gets larger, the multi-operator hybrids explore better the
regions with non-dominated solutions with lower power consumption
than that of the single-operator ones, but sacrificing slightly the ca-
pacity objective. It is important to note that the best single-operator
hybrid is based on EC!, which promotes cell deactivation, but even
in this case, the synergy between all can improve upon the power
consumption. A problem-side explanation is that an UDN may have
more cells switched on, but each consuming less energy (recall that
the modeling used for the power consumption is not only based on
whether a cell is activated or not, but also on its operating frequency,
the traffic load, if it is installed in an SBS with other active cells,
etc.). However, SMS-EMOA and SparseEA require further elaboration,
as their HV results are again impacted by the normalization process.
Indeed, the single-operator hybrid SMS-EMOA has reached the best
(highest) value for this indicator in 8 of the 9 UDN scenarios (with very
tight differences, actually), but if one analyzes the attainment functions
in Figs. 7(g), (h) and (i), it can be seen that the same justification holds
as for NSGA-II and MOCell. The only difference is that, on average, the
approximated fronts of the SMS-EMOA multi-operator (the marks)
cover solutions with slightly lower network capacity, thus contributing
very little to the HV indicator, while the SMS-EMOA single operator
(the x marks). In fact, its attainment function seems to be the closest
to the RPF in this region of the search space. Finally, by inspecting
its attainment surfaces, SparseEA has been clearly the hybrid MOEA
that has profited the most with the synergy between the different
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Fig. 7. Attainment functions of the canonical, the best single-operator, and the best multi-operator hybrid MOEAs for three selected UDN scenarios: LL, MM and HH.

problem-specific operators, an important finding not captured by the
HV indicator as most of the non-dominated solutions of this MOEA
are out of the limit of the RPF. Figs. 7 (j), (k) and (1) clearly show
that the median approximated Pareto front of SY N'! clearly dominates
that of EC'. Being SparseEA an algorithm that seeks solutions with
a very small number of 1’s (sparse MOP), combining problem-specific
operators that not only promote the deactivation, but also the activa-
tion of cells has allowed the algorithm to better explore non-dominated
solutions with a higher network capacity objective.

6. Conclusions and future work

Ultra-Dense Networks are a key enabler technology for 5G networks,
bringing numerous advantages to new small base station deployments.
Even so, the massive deployment of small base stations poses a power
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consumption problem that is being addressed by the research com-
munity. This problem has been formulated here as a multi-objective
optimization problem, which selectively switches off a subset of small
base stations in order to reduce power consumption while maximizing
the capacity of network users. In this context, this work proposes
the use of hybrid MOEAs to address this issue, incorporating expert
knowledge of the problem into the search engine of several algo-
rithms. The results obtained allow us to conclude that hybridization
with specific operators, which aim at switching cells on and off,
significantly improves the approximated Pareto fronts reached, spe-
cially in the power consumption objective. We have also evaluated
a multi-operator hybridization, demonstrating that synergies between
the different operators can improve upon single-operator-based ap-
proaches. Further characterizing these synergies is a limitation of this
work. Both all data and the developed software are publicly available
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at https://doi.org/10.6084,/m9.figshare.21378000 and https://github.
com/galeanobra/CSO_Hybrid, respectively.

This work opens up various lines of future work. First, we have
worked with five MOEAs that have shown search patterns with different
capabilities to explore different regions of the solution space. To exploit
these capabilities, we will develop heterogeneous distributed models
with several islands. Secondly, we will further seek synergies, not only
at a problem-specific operator level, but also with helper objectives that
may guide the search towards higher quality solutions. Also, we used
for the first time a MOEA designed for sparse problems in the context
of the CSO problem. This kind of algorithm is receiving much attention
currently in the specialized literature, and deserves a thorough analysis
of its performance in the context of our problem. Finally, the modeling
of the problem can be evolved to incorporate Cell-Free Massive MIMO
technology. This is based on the fact that there are more antennas than
users in the scenario, abstracting from the concept “cell”, to serve each
with multiple antennas. This implies new levels of complexity for the
search space, incorporating many more antennas, and changing the
allocation strategies between users and base stations.
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