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We study the geometry of complete immersed surfaces in R3

with constant anisotropic mean curvature (CAMC). Assuming 
that the anisotropic functional is uniformly elliptic, we prove 
that: (1) planes and CAMC cylinders are the only complete 
surfaces with CAMC whose Gauss map image is contained in 
a closed hemisphere of S2; (2) Any complete surface with 
non-zero CAMC and whose Gaussian curvature does not 
change sign is either a CAMC cylinder or the Wulff shape, 
up to a homothety of R3; and (3) if the Wulff shape W of 
the anisotropic functional is invariant with respect to three 
linearly independent reflections in R3, then any properly 
embedded surface of non-zero CAMC, finite topology and at 
most one end is homothetic to W.
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1. Introduction

Let F : S2 → R be a smooth positive function on the unit 2-sphere. Then, F defines 
the following functional on the space of immersed oriented surfaces in R3:

F(Σ) =
∫
Σ

F (N) dΣ, (1.1)

where N : Σ −→ S2 is the unit normal of Σ and dΣ denotes its area element. When 
F = 1, (1.1) is the area functional. The Euler-Lagrange equation associated to (1.1) is 
uniformly elliptic when F satisfies the convexity condition

∇2F + F 〈, 〉S2 > 0, (1.2)

where ∇2F is the intrinsic Hessian of F in S2, 〈, 〉S2 is the Riemannian metric of S2, and 
> 0 means that the symmetric bilinear form given in (1.2) is positive definite.

The ellipticity condition (1.2) will be assumed from now on. It is equivalent to the 
fact that the map η : S2 −→ R3 given by

η(p) = ∇F (p) + F (p)p (1.3)

is a diffeomorphism onto a smooth, compact, strictly convex sphere W ⊂ R3; here ∇F

denotes the gradient of F in S2. The ovaloid W is called the Wulff shape associated to 
F . The exterior unit normal of W is given by η−1 : W → S2. If F = 1, then W is the 
unit sphere of R3.

The critical points of (1.1), with or without a volume constraint, have been deeply 
studied; they admit a geometric characterization that we explain next.

For any immersed oriented surface Σ in R3 with Gauss map N , we can define the 
anisotropic Gauss map of Σ as the map

ν : Σ −→ W, ν = η ◦N, (1.4)

that sends each p ∈ Σ to the unique point ν(p) ∈ W with its same oriented tangent 
plane. Then, given p ∈ Σ, the anisotropic mean curvature H of Σ at p is the trace of the 
endomorphism Ap := −dνp. When F = 1, the anisotropic mean curvature of Σ is twice 
its usual mean curvature (since we are using the trace, and not one half of it).

The Wulff shape W has constant anisotropic mean curvature equal to −2 with respect 
to its exterior unit normal. The anisotropic mean curvature of W with respect to its 
interior unit normal is not, in general, constant. Planes have vanishing anisotropic mean 
curvature, for any orientation.

With these definitions in mind, the following geometric equivalence holds: the 
anisotropic minimal surfaces (i.e. the immersed surfaces in R3 with vanishing anisotropic 
mean curvature) are exactly the critical points of the functional (1.1). Analogously, the 
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surfaces with constant anisotropic mean curvature (CAMC) H0 	= 0 are the critical 
points of (1.1) under a fixed volume constraint; equivalently, they are the critical points 
of

F0(Σ) =
∫
Σ

(
F (N) + 1

3 H0〈ψ,N〉
)

dΣ, (1.5)

where ψ denotes a parametrization of Σ with Gauss map N .
The class of CAMC surfaces has been widely studied, specially from the viewpoint 

of measure theory and convex analysis. The case of anisotropic minimal surfaces has 
also received some classical contributions from a more geometric viewpoint, see e.g. 
[11,22–24]. The geometry of surfaces with non-zero CAMC has been recently studied in 
more detail in many works; see, e.g., [5,6,13,15–18,26–31,34] and references therein.

Some of these previous works have provided a good understanding of the basic geome-
try of compact (without boundary) CAMC surfaces. For instance, there exist anisotropic 
extensions of the classical theorems of CMC surface theory by Barbosa-do Carmo [3], 
Alexandrov [1] and Hopf [20,21], that classify, respectively, the compact surfaces with 
CAMC that are stable (Palmer, [34]), embedded (He-Li-Ma-Ge, [15]) or have genus zero 
(Koiso-Palmer, [29]; see also Gálvez-Mira [12]).

In contrast, the global geometry of complete immersed CAMC surfaces is quite less 
understood, and many classical theorems of CMC surface theory still do not have an 
anisotropic analogue. Our objective in this paper is to give an extension to the anisotropic 
setting of three of these classical theorems, namely (see [19,25,33]):

Theorem A (Hoffman-Osserman-Schoen). Planes and cylinders are the only complete 
surfaces with constant mean curvature in R3 whose Gauss map image lies in a closed 
hemisphere of S2.

Theorem B (Klotz-Osserman). Spheres and cylinders are the only complete surfaces with 
non-zero constant mean curvature in R3 whose Gaussian curvature does not change sign.

Theorem C (Meeks). Spheres are the only properly embedded surfaces in R3 with non-zero 
constant mean curvature, finite topology and at most one end.

In this paper we will prove Theorems A and B for any F (subject to (1.2)), and 
Theorem C for choices of F that are symmetric with respect to three linearly independent 
directions. We next explain our results in more detail, and give an outline of the paper. 
Recall that, in all that follows, F is a positive smooth function on S2 that satisfies the 
ellipticity condition (1.2).

In Section 2 we study complete surfaces with CAMC and bounded second fundamental 
form. First, we will prove a compactness theorem for this type of surfaces (Theorem 2.1), 
based on elliptic theory. Then, we will give a general curvature estimate, by proving that 
there exists a uniform a priori estimate on the norm of the second fundamental form of 
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any complete surface with non-zero CAMC whose Gauss map image omits an open set 
of S2; see Theorem 2.3. For that, we will use Theorem 2.1 and a rescaling argument. The 
proofs are inspired in previous work by the first two authors with A. Bueno on complete 
surfaces in R3 of prescribed mean curvature (not necessarily constant); see [4].

In Section 3, which contains the core result of the paper, we will study complete 
multigraphs of CAMC. Here, following the standard terminology, we will say that an 
immersed surface Σ in R3 is a multigraph if there exists a plane P ⊂ R3 such that Σ is 
locally a graph over P around each point of Σ. Equivalently, the Gauss map image of 
Σ lies in an open hemisphere of S2. Obviously, every graph is a multigraph. Our main 
result in Section 3 is Theorem 3.1, namely:

Any complete multigraph with constant anisotropic mean curvature is a plane.

This result can be seen as a kind of general Bernstein-type theorem for CAMC sur-
faces. For anisotropic minimal surfaces, this is a theorem by Jenkins [22]. It was proved 
by Koiso-Palmer in [26] in the particular case when (1.1) is close to the area functional 
in a suitable sense, for complete stable CAMC surfaces (not necessarily multigraphs).

The proof of Theorem 3.1 differs completely from the approaches by Jenkins, 
Koiso-Palmer and Hoffman-Osserman-Schoen. Instead, it relies on ideas developed by 
Hauswirth, Rosenberg and Spruck [14], and by Espinar and Rosenberg [9] (see also [32]), 
in the study of complete surfaces of constant mean curvature in homogeneous three-
manifolds (see [7,10] for more information on this theory).

For the proof of Theorem 3.1, we will use the following construction (see also [13]). 
Given a unit vector v0 ∈ S2, let W0 denote the set of points of the Wulff shape W whose 
unit normal is orthogonal to v0. Then, the flat cylinder

Cv0 = {p + λv0 ∈ R3 : p ∈ W0, λ ∈ R}

is smooth and has CAMC equal to −1, with respect to its exterior unit normal; it will 
be called a CAMC cylinder.

As a consequence of Theorem 3.1 we will extend Theorems A and B above to the 
general anisotropic case, and prove:

(1) Any complete immersed CAMC surface whose Gauss map image is contained in a 
closed hemisphere of S2 is a plane or a CAMC cylinder (Corollary 3.5).

(2) Any complete immersed surface with non-zero CAMC, and whose Gaussian curvature 
does not change sign, is a CAMC cylinder or the Wulff shape, up to homotheties
(Theorem 3.6).

In Section 4 we will study properly embedded surfaces of non-zero CAMC. We 
will start by proving some height estimates for graphs of non-zero CAMC and planar 
boundary (Lemma 4.1, Lemma 4.2 and Theorem 4.3). Then, we will derive geometric 
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consequences of these estimates and of Meeks’ separation lemma, in the case that the 
Wulff shape W is invariant with respect to some Euclidean reflection. Our final result, 
Theorem 4.8, will characterize the Wulff shape (up to homothety) as the only properly 
embedded surface in R3 with non-zero CAMC, finite topology and at most one end, 
assuming that W is symmetric with respect to three linearly independent planes of R3. 
This gives a wide extension of Meeks’ result (Theorem C in the introduction) to the 
anisotropic case. For a similar result in the case of properly embedded surfaces in R3

with prescribed (non-constant) mean curvature, see [4].

2. CAMC surfaces with bounded second fundamental form

In all that follows, we let F be a smooth positive function on S2 that satisfies the 
uniform ellipticity condition (1.2), and we let W ⊂ R3 denote its associated Wulff shape, 
which is an ovaloid in R3. Whenever we write CAMC, it is understood that we mean 
CAMC with respect to the function F . Unless otherwise stated, by a surface in R3 we 
mean an immersed one, i.e., not necessarily embedded.

Let Σ be an oriented surface in R3, and let ν : Σ → W denote its anisotropic Gauss 
map, defined in (1.4). For each p ∈ Σ, the endomorphism Ap := −dνp can be described 
in terms of the (Euclidean) Weingarten endomorphism S = −dN of Σ, and of the 
differential S := dη−1 of the outer unit normal η−1 : W → S2 of W, as

Ap = (Sν(p))−1 ◦ Sp. (2.1)

Note that A agrees with the Weingarten endomorphism of Σ when F ≡ 1, since in that 
case W = S2 ⊂ R3 and S = Id. Also, note that if for Σ = W we choose the orientation 
given by its outward pointing unit normal N = η−1, then ν(p) = p and Ap = −Id for 
every p ∈ W.

Although A is not self-adjoint, it is diagonalizable, and its eigenvalues λ1, λ2 are 
called the anisotropic principal curvatures of Σ. We have H = λ1 + λ2, where H is the 
anisotropic mean curvature of Σ.

The anisotropic mean curvature behaves with respect to ambient homotheties as fol-
lows: if ψ : Σ → R3 is an immersed surface with anisotropic mean curvature H with 
respect to its unit normal N , and we consider the homothety Φc of R3 of ratio c ∈ R −{0}, 
then the immersion ψ̃ := Φc ◦ψ has anisotropic mean curvature H̃ = 1

cH with respect to 
the unit normal Ñ of ψ̃ given by Ñ(p) = N(p) for all p ∈ Σ. In particular, we will always 
be able to assume that, up to ambient homothety, a surface with non-zero CAMC has 
H = −2, i.e. the value of the constant anisotropic mean curvature of the Wulff shape 
for its exterior unit normal. Observe that, by the previous comments, the image of the 
Wulff shape with respect to the antipodal map of R3 has CAMC equal to 2 with respect 
to its interior unit normal.

Let u(x, y) be a smooth function whose graph z = u(x, y) has anisotropic mean 
curvature H(x, y) with respect to its upwards-pointing unit normal, given by
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N = 1√
1 + p2 + q2

(−p,−q, 1), p = ux, q = uy.

Then, we can write

S(∂x) = −Nx = a11∂x + a21∂y, S(∂y) = −Ny = a12∂x + a22∂y,

where (
a11 a12
a21 a22

)
= 1

(1 + p2 + q2)3/2

(
1 + q2 −pq
−pq 1 + p2

)(
uxx uxy

uxy uyy

)
.

Besides, since N only depends on (p, q), we have that the inverse of the endomorphism 
S defined before (2.1), at a point N(x, y), can be written as

S−1
N(x,y)(∂x) = b11∂x + b21∂y, S−1

N(x,y)(∂x) = b12∂x + b22∂y,

where, by (1.3), the functions bij only depend on p, q and the derivatives up to second 
order of the function F : S2 → R. In this way, we have from (2.1) that the graph 
z = u(x, y) has CAMC H(x, y) = H0 if and only if u satisfies a certain quasilinear 
elliptic PDE of the form

a(ux, uy)uxx + b(ux, uy)uxy + c(ux, uy)uyy = H0, (2.2)

where the coefficients a, b, c ∈ C∞(R2) are completely determined by F ; here, the el-
lipticity of (2.2) comes from (1.2), as explained in the introduction. This allows to use 
elliptic theory in order to prove the following compactness result:

Theorem 2.1. Let Σn be a sequence of complete CAMC surfaces (possibly with boundary, 
∂Σn) in R3 with respect to F , choose points pn ∈ Σn for each n, and assume that the 
following conditions hold:

(i) There exists a sequence of positive numbers {rn} with rn → ∞ such that the geodesic 
disks D(pn, rn) ⊂ Σn centered at pn and of radius rn are contained in the interior 
of Σn, i.e., d(pn, ∂Σn) ≥ rn.

(ii) {pn} → p0 for some p0 ∈ R3.
(iii) There exists C > 0 such that |σn(x)| ≤ C for all n ∈ N and all x ∈ Σn, where |σn|

denotes the norm of the second fundamental form of Σn.
(iv) Hn → H0 ∈ R, where Hn is the (constant) anisotropic mean curvature of Σn.

Then, for any k ≥ 2, there exists a subsequence of {Σn} that converges uniformly on 
compact sets in the Ck topology to a complete immersed surface without boundary in R3, 
possibly non-connected, passing through p0, with bounded second fundamental form, and 
with constant anisotropic mean curvature equal to H0.
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Proof. By a well-known result about immersed surfaces with bounded second fundamen-
tal form in Riemannian 3-manifolds (see e.g. Proposition 2.3 in [35]), it follows from (i) 
and (iii) that there exist positive constants δ, μ > 0 that only depend on C (and not on 
Hn or Σn) such that for any n sufficiently large, the following properties hold:

(1) An open neighborhood of pn ∈ Σn is the graph of a function vn defined on the 
Euclidean disk D2δ ⊂ Tpn

Σn centered at the origin, and of radius 2δ.
(2) The C2 norm of the function vn in D2δ is at most μ/2.

By passing to a subsequence if necessary, we may assume that the Gauss map images 
in S2 of the points pn converge to a unit vector N0 ∈ S2. Thus, after a change of 
Euclidean coordinates (x, y, z) so that p0 corresponds to the origin and N0 = (0, 0, 1), 
we have that, for n sufficiently large:

(1) An open neighborhood Dn of pn ∈ Σn can be seen as the graph of a function un

defined on the disk Bδ = {(x, y) ∈ R2 : x2 + y2 < δ2}.
(2) The C2 norm of the function un in Bδ is at most μ.

Moreover, by (2.2), we see that the functions un are solutions to the linear PDE 
Lnun = Hn, where

Lnu = an(x, y) uxx + bn(x, y) uxy + cn(x, y) uyy

and we are denoting an(x, y) := a((un)x(x, y), (un)y(x, y)), etc.
By the second condition above, each function un lies in C1,α(Bδ). So, in particular, 

all the functions an, bn, cn are bounded in the C0,α(Bδ) norm. It follows then by the 
classical Schauder theory that for any positive number δ′ < δ there exists a constant C ′

independent of n so that ‖un‖C2,α(Bδ′ ) ≤ C ′.
Therefore, the coefficients an, bn, cn of the linear equation Lnun = Hn are uniformly 

bounded in the C1,α(Bδ′) norm. By iterating this process, we obtain for each δ′ ∈ (0, δ)
the existence of a positive constant C ′′ = C ′′(δ′) such that

‖un‖Ck,α(Bδ′ ) ≤ C ′′,

for n sufficiently large.
Once here, a standard application of the Arzelà-Ascoli theorem shows that there exists 

a subsequence of {un} that converges on the disk Bδ′ with respect to the Ck topology to 
a solution u to (2.2). That is, the graph Σu of the function u(x, y) has CAMC equal to 
H0. By construction, it also passes through p0 and, since k ≥ 2, the norm of the second 
fundamental form of Σu is bounded by C.

Consider now some point (x0, y0) ∈ Bδ′ and let q ∈ Σu be its image via u(x, y). Since 
u is a limit of the functions un, the points qn = (x0, y0, un(x0, y0)) ∈ Σn converge to 



8 J.A. Gálvez et al. / Advances in Mathematics 428 (2023) 109137
q. Therefore, after passing to a subsequence if necessary, we can assume that the first 
statement of Theorem 2.1 holds. Thus, by repeating the above argument, but this time 
with respect to the points qn and q we obtain an immersed surface Σ with CAMC H0

that extends Σu and is well defined as a graph over the disk of radius δ′ centered at the 
origin of the tangent plane TqΣ.

Once here, we may use again the first condition of Theorem 2.1 and a standard 
diagonal process to show that Σ can be extended to be a complete surface with CAMC 
H0, that contains p and whose norm of the second fundamental form is bounded by C. 
Moreover, by construction, such surface is a limit in the Ck topology on compact sets of 
the sequence {Σn}, as we wished to show. �
Remark 2.2. Let κ1, κ2 denote the principal curvatures of an immersed surface Σ in R3, 
and let λ1, λ2 denote its anisotropic principal curvatures. Then, it is easy to see that the 
function κ2

1 + κ2
2 is bounded on Σ if and only if λ2

1 + λ2
2 is bounded. Indeed, this is an 

immediate consequence of (2.1), since the endomorphism S := dη−1 appearing there is 
(up to sign) the Weingarten endomorphism of an ovaloid of R3 (specifically, of the Wulff 
shape W).

As a result, the condition (iii) in Theorem 2.1 can be replaced by the existence of a 
constant d > 0 such that the norms of the anisotropic Weingarten endomorphism An of 
Σn satisfy |(An)x| ≤ d for every n ∈ N and every x ∈ Σn.

In 1961, H.B. Jenkins proved in [22] that any complete anisotropic minimal surface 
whose Gauss map image omits a spherical disk of S2 must be a plane. We will next 
use Jenkins’ theorem to prove that if the Gauss map image of a complete surface Σ
with CAMC omits a spherical disk, then Σ has bounded second fundamental form. As 
a matter of fact, we will prove the following more general estimate:

Theorem 2.3. Let h, ρ, d be positive constants. Then, there exists a constant C =
C(h, ρ, d) such that the following assertion holds:

Let Σ be a complete surface in R3, possibly with boundary, and with CAMC equal to 
H ∈ R. Assume:

(i) |H| ≤ h.
(ii) The Gauss map image N(Σ) ⊂ S2 of Σ omits a spherical disk of radius ρ.

Then, for any p ∈ Σ with dΣ(p, ∂Σ) ≥ d it holds

|σΣ(p)| ≤ C.

Here, dΣ and |σΣ| denote, respectively, the intrinsic distance in Σ and the norm of the 
second fundamental form of Σ.
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Proof. We proceed arguing by contradiction. If the statement of Theorem 2.3 was not 
true, there would exist a sequence of complete immersed surfaces fn : Σn −→ R3, 
possibly with boundary, with CAMC of values Hn, which satisfy properties (i), (ii) 
above, and points pn ∈ Σn such that dΣn

(pn, ∂Σn) ≥ d and |σΣn
(pn)| > n.

Take cn ∈ S2 such that the Gauss map image of fn omits the geodesic disk of S2

centered at cn and of radius ρ. By compactness of S2, the sequence {cn} has some 
accumulation point c0 ∈ S2. So, passing to a subsequence if necessary, we may assume 
that the Gauss map image of all the immersions fn omit the same geodesic disk of S2

centered at c0 and of radius ρ/2.
Let Dn = DΣn

(pn, d/2) denote the intrinsic compact metric disk in Σn centered at 
pn and of radius d/2; note that Dn is at a positive distance from ∂Σn. Let qn denote the 
maximum in Dn of the function

hn(q) = |σΣn
(q)|dΣn

(q, ∂Dn), q ∈ Dn.

Since hn vanishes on ∂Dn, it is clear that qn lies in the interior of Dn. Consider now 
λn = |σΣn

(qn)| and rn = dΣn
(qn, ∂Dn). Then,

λnrn = |σΣn
(qn)|dΣn

(qn, ∂Dn) = hn(qn) ≥ hn(pn) > n
d

2 . (2.3)

In particular, {λn} → ∞ as n → ∞. Let us also observe that, if we denote D̂n =
DΣn

(qn, rn/2) ⊂ Dn, then for any zn ∈ D̂n it holds

dΣn
(qn, ∂Dn) ≤ 2dΣn

(zn, ∂Dn). (2.4)

Consider next the immersions gn : D̂n −→ R3 given by restricting to the disks D̂n ⊂ Σn

the immersions λnfn. Then, we obtain from (2.4) the following estimate for the norm of 
the second fundamental form σ̂n of gn, at any point zn ∈ D̂n:

|σ̂n(zn)| = |σΣn
(zn)|

λn
= hn(zn)

λndΣn
(zn, ∂Dn) ≤ hn(qn)

λndΣn
(zn, ∂Dn) = dΣn

(qn, ∂Dn)
dΣn

(zn, ∂Dn) ≤ 2.

(2.5)
This shows that the norms of the second fundamental forms of the immersions gn are 
uniformly bounded, and moreover, that |σ̂n(qn)| = 1. Also, note that by (2.3), the radii 
of the disks D̂n with respect to the metric induced by gn diverge to infinity.

Up to a translation, we can assume that gn(qn) is the origin of R3. Also, up to taking 
a subsequence, we may assume that the Gauss map images of gn at qn converge to some 
unit vector N0 ∈ S2. Let us choose canonical Euclidean coordinates (x, y, z) so that 
N0 = (0, 0, 1).

Once here, we will use a similar argument to the one of Theorem 2.1 in order to prove 
that a subsequence of the immersions gn : D̂n −→ R3 converges uniformly on compact 
sets to a complete immersion with vanishing anisotropic mean curvature.
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First, from [35, Proposition 2.3] and arguing as in Theorem 2.1, we obtain the existence 
of positive constants δ0, μ (that do not depend on n) with the property that for any n
large enough, a neighborhood in gn(D̂n) of the origin is given by the graph z = un(x, y)
of a function un defined on the disk Bδ0 ⊂ R2 centered at the origin and of radius δ0, 
with ‖un‖C2(Bδ0 ) ≤ μ.

Since the immersions gn have CAMC of value Hn/λn and |Hn| ≤ h, it follows that 
their anisotropic mean curvatures converge to zero. In this way, we can repeat the argu-
ment of Theorem 2.1 to deduce that the functions un converge in the C2(Bδ′0)-topology 
(with 0 < δ′0 < δ0) to a smooth function u0 whose graph Σ0 has zero anisotropic mean 
curvature. Moreover, Σ0 can be globally extended to a complete minimal anisotropic 
surface Σ that, by construction, is a limit in the C2-topology on compact sets of the 
sequence {gn(D̂n)}.

Since the norm of the second fundamental form of gn(D̂n) is equal to 1 at the origin 
for all n, the same happens to Σ. On the other hand, the Gauss map image of Σ omits 
the geodesic disk centered at c0 and of radius ρ/2, since this happens for all immersions 
gn. This implies by Jenkins’ theorem [22] that Σ must be a plane. But this contradicts 
that the norm of the second fundamental form of Σ at the origin is equal to 1. This 
contradiction proves Theorem 2.3. �
3. Characterization of planes, cylinders and Wulff shapes

The present section will be mostly devoted to prove the following key result:

Theorem 3.1. Any complete multigraph with constant anisotropic mean curvature is a 
plane.

Proof. By Jenkins’ theorem [22], a complete multigraph with zero anisotropic mean 
curvature is a plane. So, to prove Theorem 3.1 it suffices to check that there are no 
complete multigraphs with non-zero CAMC.

We will argue by contradiction. So, from now on, Σ will denote a complete multigraph 
with CAMC of value H0 	= 0. Up to a homothety of R3, we will assume H0 = −1. 
Moreover, we will fix Euclidean coordinates (x, y, z) in R3 so that Σ is a multigraph with 
respect to the z = 0 plane, and so that the third coordinate N3 of the unit normal N to 
Σ is negative at every point. We will let π : R3 −→ R2 denote the vertical projection in 
R3.

For any given point p ∈ Σ, since Σ is a multigraph, there exists a neighborhood U ⊂ Σ
of p that is the graph z = u(x, y) of a function u defined on the disk B(π(p), r) of R2

centered at π(p) and of some radius r > 0. This radius r cannot be larger than 2dW , 
where dW is the diameter of the Wulff shape. Indeed, if r > 2dW , let um ∈ R be the 
maximum value of u on the closed disk B(π(p), 2dW). Note that the dilation of ratio 2
of the Wulff shape transforms W into a surface with CAMC −1, that we will denote 
by 2W. In this way, we can translate 2W in R3 so that it is placed over B(π(p), 2dW), 
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at a height greater than um, and then translate 2W downwards until reaching a first 
(interior) contact point with U ; this contradicts the maximum principle.

In the next paragraphs, we fix some notation that will be used in the rest of the proof.
Given any p ∈ Σ, we will denote by r0 = r0(p) ∈ (0, 2dW ] the largest value of the 

radius r for which the function u above can be extended to the open disk B(π(p), r0). 
We will also let q0 ∈ ∂B(π(p), r0) be a point for which the function u cannot be extended 
to a neighborhood of q0.

By Theorem 2.3, we have that the norm of the second fundamental form of Σ is 
uniformly bounded. Therefore, there exists some δ > 0, that will be considered fixed 
from now on, with the following property: any p ∈ Σ has a neighborhood Up ⊂ Σ that 
is a graph over the disk Bp(δ) ⊂ TpΣ centered at the origin and of radius δ of its 
tangent plane at p (see [35, Proposition 2.3]). Let Uv

p be the vertical translation of the 
neighborhood Up that takes p to (π(p), 0), i.e. Uv

p = Up− (0, 0, p3), where p = (p1, p2, p3).
Finally, given a point q ∈ R2 and a cylinder C with CAMC −1 that passes through 

(q, 0), we will let Cq be the neighborhood of (q, 0) in C that is a graph over the disk 
centered at the origin and of radius δ of T(q,0)C.

With these notations and comments in mind, we will start by proving the following 
claim:

Assertion 3.2. Let p ∈ Σ so that Σ can be seen locally around p as a graph z = u(x, y)
over a disk B(π(p), r0) ⊂ R2, and so that there exists q0 ∈ ∂B(π(p), r0) for which u
cannot be extended to a neighborhood of q0.

Then, for any sequence {qn} ⊂ B(π(p), r0) converging to q0, it holds that the translated 
graphs Uv

(qn,u(qn)) converge in the C2-topology to the neighborhood Cq0 of (q0, 0) of a 
cylinder C with CAMC equal to −1 with respect to its exterior unit normal NC , that 
passes through (q0, 0), and such that NC(q0, 0) is collinear with the horizontal vector 
(π(p) − q0, 0).

Proof. Let N3 denote the third coordinate of the unit normal N of Σ. First of all, let 
us see that {N3(pn)} → 0, where pn := (qn, u(qn)). Indeed, if this was not the case, 
there would exist a subsequence {qn} → q0 with {N3(pn)} → N0 ∈ [−1, 0). Since Upn

is 
a graph over a disk in Tpn

Σ of fixed radius δ > 0, and N0 	= 0, then for n sufficiently 
large there exists a fixed ε > 0 and a neighborhood Vpn

⊂ Σ of pn that can be seen as a 
vertical graph over B(qn, ε) ⊂ R2. This contradicts the fact that u cannot be extended 
to a neighborhood of q0, choosing qn sufficiently close to q0. Thus, {N3(pn)} → 0.

Take now a subsequence of {qn} so that {N(pn)} converges to some unit vector 
v0 ∈ S2; this subsequence exists by compactness of S2. Since {N3(pn)} → 0, v0 is a 
horizontal vector. In these conditions, using the ideas in the proof of Theorem 2.1, it is 
clear that, up to a subsequence, Uv

pn
converges in the C2-topology to a (non-complete) 

surface S with CMAC equal to −1, that is a graph over its tangent plane at (q0, 0), 
and whose unit normal at that point is v0. But once here we can note that the third 
coordinate of the unit normal of S is non-positive (since it is a limit of vertical graphs), 



12 J.A. Gálvez et al. / Advances in Mathematics 428 (2023) 109137
and vanishes at (q0, 0). By a standard application of the maximum principle, we deduce 
then that this third coordinate vanishes identically on S (see e.g. [26]). In this way, S
is contained in a cylinder C = Γ × R with CAMC equal to −1, and whose exterior unit 
normal at (q0, 0) is v0. Thus, S ⊂ C; as a matter of fact, S = Cq0 , where here Cq0 denotes 
the δ-neighborhood of (q0, 0) in C, as explained prior to the statement of Assertion 3.2.

Let us next show that v0 is collinear with (π(p) −q0, 0). Consider the planes Q := {v0}⊥
and P := {(π(p) −q0, 0)}⊥, and assume that P 	= Q. Then, since the cylinder C = Γ ×R is 
tangent to Q at (q0, 0), any open arc of the base curve Γ ⊂ R2 that contains q0 intersects 
B(π(p), r0).

Let a0 ∈ B(π(p), r0) so that (a0, 0) ∈ Cq0 . Then, by the convergence of Uv
pn

to Cq0 , 
there exist bn ∈ Uv

pn
with {bn} → (a0, 0) and so that (π(bn), u(π(bn))) lies in the graph of 

u. Note that the tangent planes to bn ∈ Uv
pn

become vertical. Hence, |gradu(π(bn))| → ∞, 
which is impossible since {π(bn)} → a0 and u is well defined around a0. This contradic-
tion proves P = Q. Note that by uniqueness of the limit, the convergence of the {Uv

pn
}

to Cq0 we have just proved is global, i.e. the whole sequence converges and not just a 
subsequence of it. This finishes the proof of Assertion 3.2. �

It should be noted that there are two cylinders C = Γ ×R that satisfy the conditions 
stated in Assertion 3.2; they have opposite unit normals at (q0, 0), and differ by a trans-
lation in R3. The next assertion is helpful in determining which of these two cylinders 
appears in the limit process described in Assertion 3.2.

Assertion 3.3. In the conditions of Assertion 3.2, let γ0(t) = (1 − t)q0 + tπ(p), t ∈ (0, 1], 
join q0 and π(p). Then, the function u0(t) = u(γ0(t)) satisfies that limt→0 u0(t) = ∞
(resp. −∞) if γ0(t) lies locally in the convex (resp. concave) side of Γ at q0.

Proof. The function u0(t) is strictly monotonic for t close to 0, since by Assertion 3.2, 
the unit tangent vector to the curve (γ0(t), u(γ0(t))) has limit (0, 0, ±1) as t → 0.

Let h0 := limt→0 u0(t) ∈ R ∪ {−∞, ∞}. In case h0 ∈ R, the length of the curve 
(γ0(t), u(γ0(t))) is finite, by the previous monotonicity property of u0(t). Thus, by com-
pleteness of Σ, we have (q0, h0) ∈ Σ, and moreover, the tangent plane to Σ at this 
point (q0, h0) is a vertical plane, again by Assertion 3.2. This is impossible, since Σ is a 
multigraph.

Thus, h0 = ±∞. Finally, since the unit normal to Σ points downwards (i.e. N3 < 0), 
we deduce that if limt→0 u0(t) = ∞ (resp. −∞) then the (horizontal) limit unit normal 
of Σ along (γ0(t), u(γ0(t))) points in the direction of the vector (q0 − π(p), 0) (resp. 
(π(p) − q0, 0)). This proves Assertion 3.3, taking into account that the limit cylinder 
Γ ×R is oriented with respect to its outer unit normal. �

For the next assertion, let Γ(s) be an arc-length parametrization of Γ, with Γ(0) = q0. 
Then, the neighborhood Cq0 ⊂ Γ ×R of the point (q0, 0), projects to an open arc π(Cq0)
of Γ that contains Γ([−δ, δ]). We then define the subset of R2
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Oε = {Γ(s) + t nΓ(s) : s ∈ [−δ, δ], t ∈ (0, ε)}, (3.1)

where nΓ(s) is the unit normal of Γ(s) that, for s = 0, points in the direction π(p) − q0.
Recall that u(x, y) is defined on B(π(p), r0) and cannot be extended across q0 ∈

∂B(π(p), r0). With the previous definitions in mind, we will next prove an extension 
property of u outside B(π(p), r0).

Assertion 3.4. In the above conditions, the graph u(x, y) extends smoothly to B(π(p), r0) ∪
Oε for some ε > 0. Moreover this extension satisfies that u(q) diverges to ±∞ when 
q ∈ Oε approaches Γ.

Proof. Given t0 ∈ (0, 1], let us define the open set Σt0 ⊂ Σ given by

Σt0 =
⋃

0<t<t0

U(γ0(t),u(γ0(t))), (3.2)

which is a connected neighborhood of the curve {(γ0(t), u(γ0(t))) : 0 < t < t0} ⊂ Σ.
For each s ∈ [−δ, δ], let P (s) be the vertical plane normal to Γ that passes through 

Γ(s). Recall that we proved in Assertion 3.2 that

Uv
(γ0(t),u(γ0(t))) −→ Cq0 ⊂ Γ ×R, when t → 0,

in the C2 topology. In particular, this shows that the projection π(Σt0) ⊂ R2 of Σt0 in 
(3.2) contains some open set Oε as in (3.1). Also, it shows that there is some t0 > 0
such that P (s) intersects Σt0 transversely for all s ∈ [−δ, δ]. Observe that all points in 
Σt0 ∩ P (0) lie in the curve (γ0(t), u(γ0(t))), and in particular Σt0 ∩ P (0) is a connected 
graphical curve. In the same way, by transversality and the definition of Σt0, it follows 
that there is some t0 > 0 and some ε > 0 such that for each s ∈ [−δ, δ], Σt0 ∩ P (s) is a 
unique curve, given as a graph over a segment in R2 of the form Γ(s) + tn(s), where t
varies in an interval Is that contains (0, ε).

These properties show that Σt0 is a graph when restricted to {q ∈ Σt0 : π(q) ∈ Oε}. 
In particular, this proves that u can be extended as a graph to B(π(p), r0) ∪ Oε.

Let us next prove that there exists some t0 > 0 such that Σt0 does not intersect 
Γ × R. To this respect, note that by Assertions 3.2 and 3.3, and the definition of Σt0 , 
the curve Σt0 ∩ P (s) is asymptotic to the cylinder Γ × R at infinity, but in principle it 
could intersect it.

In order to prove that Σt0 does not intersect Γ × R we suppose next, arguing by 
contradiction, that there is some s0 ∈ (0, δ] for which the curve Σt0 ∩ P (s0) crosses the 
cylinder Γ ×R (the argument for s0 ∈ [−δ, 0) is analogous). Then, since Σ is a multigraph, 
the curve Σt0 ∩ P (s1) also crosses Γ ×R for any s1 < s0 sufficiently close to s0.

This shows that there are two possible situations. Either Σt0 ∩ P (s) never intersects 
Γ ×R, or else at the smallest value of s ∈ (0, δ] for which Σt0 ∩ P (s) intersects Γ ×R, it 
happens that Σt0 ∩ P (s) does not cross Γ × R. But this second situation is impossible, 
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since in that case, for p0 ∈ Σt0 ∩ P (s) ∩ (Γ ×R), the tangent plane of Σ at p0 would be 
vertical, what contradicts that Σ is a multigraph.

Consequently, Σt0 does not intersect Γ ×R, for some t0 > 0. This fact together with 
the asymptotic convergence of each curve Σt0 ∩ P (s) to the cylinder Γ × R proves the 
asymptotic behavior in the statement, and completes the proof of Assertion 3.4. �

We next make a continuation argument. Recall that the point p was arbitrarily chosen 
on Σ. Thus, by choosing p ∈ Σ so that its projection π(p) lies sufficiently close to Γ(δ/2)
and inside the half-line {Γ(δ/2) + tnΓ(δ/2) : t > 0}, we clearly see that the graph u could 
also be extended along Γ to the set

{Γ(s) + t nΓ(s) : s ∈ [−δ/2, 3δ/2], t ∈ (0, ε′)}, (3.3)

for some ε′ > 0. This process can be continued. Specifically, assume that Γ(s) is an 
injective parametrization of Γ on an interval (a, b], with a < 0 < b and lims→a+ Γ(s) =
Γ(b) (recall that Γ(0) = q0). Then, by the process above, there exists ε > 0 such that 
the function u(x, y) can be smoothly extended to the open simply connected set

{Γ(s) + t nΓ(s) : s ∈ (a, b), t ∈ (0, ε)}. (3.4)

It is important to observe here that, since Σ is a multigraph (not necessarily a graph), 
this extension cannot be carried out in a continuous way to the open annulus given by 
(3.4), but this time with s ∈ (a, b]. Specifically, the extensions of u along Γ for positive 
values of s and for negative values of s might not glue together continuously as s reaches 
the limit values a and b.

Up to this moment, the proof has been following closely the related theorem in [14]. 
From now on, the argument is different.

Recall that, in the arguments above, there are two possible orientations for the limit 
cylinder Γ ×R, as explained in Assertion 3.2. So, to end up the proof we will distinguish 
two different cases, depending on the orientation of nΓ with respect to Γ in the above 
construction, i.e. depending on whether Σ lies locally on the convex or the concave part 
of the cylinder Γ ×R in the previous argument.

Case 1: There exists p ∈ Σ such that, for its corresponding point q0 ∈ ∂B(π(p), r0), 
the vector nΓ(0) in (3.1) is the interior unit normal to Γ at q0.

In that situation, we know by the previous discussion that Σ is the graph of a function 
u over an open set of the form (3.4) in the interior of Γ. Let us show that Σ must actually 
be a graph over the whole region bounded by Γ.

For that, let q̃0 be the other point in Γ with tangent line parallel to the tangent line 
of Γ at q0, and let

Γλ := λ(q̃0 − q0) + Γ, 0 < λ ≤ 1,
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denote the Euclidean translation of Γ with translation vector λ(q̃0 − q0). Let Ωλ denote 
the planar (open) domain bounded by Γ and Γλ that contains the open segment from q0
to q0 + λ(q̃0 − q0). Observe that Ω1 coincides with the interior region bounded by Γ.

Since u can be extended to an open subset of Ω1 of the form (3.4), we see that there 
exists λ > 0 such that u is well defined in Ωλ. Let λ0 be the supremum of the values 
λ > 0 for which u is well defined in Ωλ.

Assume that λ0 < 1. Then, there would exist some q1 ∈ Γλ0 lying in the interior of Γ, 
and such that the restriction of u to Ωλ0 cannot be extended across q1. Consider next 
a new point p1 of the graph of u such that B(π(p1), r1) ⊂ Ωλ0 and q1 ∈ ∂B(π(p1), r1), 
for some r1 > 0. Then, by Assertion 3.2 there exists a translation of the cylinder Γ ×R

such that the graph of u converges asymptotically to it as we approach q1. Since the 
base curve of this translated cylinder cannot cross Ωλ0 (by Assertion 3.4), we conclude 
that this cylinder must be equal to Γλ0 × R. So, by Assertions 3.3 and 3.4, and the 
extension process described in (3.3), the function u converges to −∞ when we approach 
Γλ0 by points q ∈ Ωλ0 . But this contradicts the fact that u is well defined in (3.4), and 
in particular at the points of Γλ0 that are sufficiently close to Γλ0 ∩Γ. This contradiction 
proves that λ0 = 1, and so u is well defined as a graph in Ω1, i.e., in the interior region 
bounded by Γ. In particular, as Σ is connected, we see that Σ is the graph of a function 
u over Ω1, as claimed. Moreover, u → +∞ as we approach ∂Ω1 = Γ, by the previous 
discussion.

Let us next prove that this is not possible, by the maximum principle. Let 2W be 
the homothety of ratio 2 of the Wulff shape; it has CAMC equal to −1 and, after an 
adequate translation, its vertical projection is equal to 2Ω1. Let 2W− denote the set of 
points of 2W whose exterior unit normal does not point upwards; the projection of 2W−

is again 2Ω1.
Since π(Σ) = Ω1 and u → +∞ as we approach ∂Ω1, it is clear that 2W− lies strictly 

below Σ after an adequate vertical translation. Thus, moving then 2W− vertically up-
wards we will eventually reach an interior first contact point of Σ with 2W−. This 
contradicts the maximum principle. Thus, Case 1 above cannot happen.

Case 2: For every p ∈ Σ and every q0 ∈ ∂B(π(p), r0) corresponding to it, the vector 
nΓ(0) in (3.1) is the exterior unit normal to Γ at q0.

Let us start by recalling our setting. Take p ∈ Σ, let u(x, y) be the local function that 
parametrizes a neighborhood of p as a graph, and let r0 > 0 be such that u is well defined 
in B(π(p), r0) but there is some q0 ∈ ∂B(π(p), r0) for which u cannot be extended to a 
neighborhood of q0. By previous arguments, there exists a closed convex planar curve Γ0
that contains q0 such that Γ0 × R is a cylinder of CAMC −1 with respect to its outer 
normal, and so that u can be extended to an exterior neighborhood of q0 of the form 
(3.1); here we use the word exterior to mean that, since in the present case nΓ(0) in 
(3.1) is the exterior unit normal to Γ0 at q0, the domain of definition of u around q0 is 
contained in the exterior of the curve Γ0. Also, by the extension process described before 
(3.4), we know that we can extend u to an exterior neighborhood of Γ0\{q̃0} like the 
one in (3.4), where here q̃0 denotes again the unique point in Γ0\{q0} with tangent line 
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Fig. 3.1. Definition of the convex curve Ht(S1) and the compact domain Ωt.

parallel to the one at q0. We also know, by Assertions 3.3 and 3.4, that u → −∞ when 
we approach any point in Γ0\{q̃0}.

Let 2Γ0 ⊂ R2 denote the homothety of ratio 2 of Γ0, translated so that it is tangent 
to Γ0 at q̃0 and contains Γ0 − {q̃0} in its interior.

Let H : [0, 1] × S1 −→ R2 be a smooth, one-to-one (homothopy) mapping given by 
the following properties (see Fig. 3.1).

(1) For each t ∈ [0, 1], Ht := H(·, t) : S1 → R2 is a regular parametrization of a curve 
Ct ⊂ R2 that is homothetic to Γ0, in the sense that Ct differs from Γ0 by some 
homothety of R2 of ratio λt > 0, followed by some translation of R2.

(2) H1(S1) = 2Γ0.
(3) H0(S1) is contained in B(π(p0), r0) ∪ {q0}, and it is tangent to ∂B(π(p0), r0) at q0.

For each t ∈ [0, 1], let Ωt ⊂ R2 be the compact convex domain bounded by Ht(S1), 
and let St ⊂ Σ be the connected component of Σ ∩ (Ωt ×R) that contains p. Note that 
St2 ⊂ St1 if t2 < t1. Our next objective will be to prove that S1 is a graph over some 
subset of Ω1, i.e. that u can be extended to π(S1) ⊂ Ω1.

To start, let D0 denote the compact region of R2 bounded by Γ0. Note that Ω0∩D0 =
{q0}, and that Ωt ∩D0 	= ∅, for all t ∈ [0, 1]. By previous discussions, the function u is 
well defined on Ω̃0 := Ω0 − {q0} = Ω0 −D0, and it holds that u(q) → −∞ when q ∈ Ω̃0
approaches q0.

We next analyze how this picture unfolds when we enlarge Ω0 to Ωt, for t > 0. In 
order to do so, let I denote the set of values t ∈ [0, 1] for which:

i) St is the graph of (an extension of) u over a subset Ω̃t ⊂ Ωt given as

Ω̃t = Ωt\(D0 ∪ . . . ∪Dm(t)), (3.5)

for some m(t) ∈ N∪{0}, where each Di ⊂ R2 is the compact convex region bounded 
by some translation of the curve Γ0, and all the Di ∩Ωt are pairwise disjoint (recall 
that D0 is bounded by Γ0).
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ii) u(q) → −∞ when q ∈ Ω̃t approaches ∂D0 ∪ . . . ∪ ∂Dm.

Note that in this definition, the disks Di are not contained in Ωt; they are only subject 
to the condition that Di ∩ Ωt is non-empty (the intersection could be a single point, as 
it happens with the case t = 0 explained above).

It is obvious by the previous discussion that 0 ∈ I, and in that case Ω̃0 = Ω0 −D0. 
Note that, since St2 ⊂ St1 whenever t2 < t1, it is also clear that if t1 ∈ I and t2 ∈ [0, t1], 
then t2 ∈ I. Therefore, I is an interval of the form [0, a) or [0, a] for some a ∈ (0, 1]. 
Moreover, the same domains Di appearing in the decomposition (3.5) of Ω̃t2 will appear 
in the decomposition of Ω̃t1 , if t2 < t1. In particular, the numbers m(t) are non-decreasing 
with respect to t.

Assume next that I = [0, a], with a 	= 1. Hence, there exists m(a) ∈ N ∪ {0} so that 
Sa is the graph of u over

Ω̃a = Ωa\(D0 ∪ . . . ∪Dm(a)). (3.6)

We want to prove that, for small values ε > 0, Sa+ε is a graph over Ωa+ε minus the same 
domains D0, . . . , Dm(a). Note that for any such Di we have that ∂Di∩∂Ωa either consists 
of two points, or ∂Di and ∂Ωa are tangent at one point, and in that second situation 
they have opposite interior unit normals. Indeed, if their interior unit normals agreed at 
the intersection point, we would have Di ⊂ Ωa (it is impossible that Ωa is contained in 
Di, as we are in Case 2). But this condition implies that Di ⊂ Ω1, and so Di ∩D0 	= ∅, 
since two translations of Γ0 do not fit inside 2Γ0 without having an intersection point. 
And since Di ⊂ Ωa, we have then that Di ∩D0 ∩ Ωa 	= ∅, which is a contradiction.

So, once we have clarified the structure of each ∂Di ∩ ∂Ωa, the arguments of the first 
part of this proof show that u can be extended to a small exterior tubular neighborhood 
of each curve ∂Di, around their intersection points with ∂Ωa (at most two points, for 
each such Di). Note that we can choose such exterior tubular neighborhoods so small 
that they do not overlap each other (see Fig. 3.2). It is also clear that we can continue u
smoothly across the points in ∂Ωa that do not lie in ∂Di for any i, since at those points 
u is well defined. Therefore, for small values ε > 0, the domains Di are mutually disjoint 
inside Ωa+ε, and Sa+ε is a graph over Ωa+ε \ (D0∪· · ·∪Dm(a)). In particular, this shows 
that there is some ε > 0 such that [0, a + ε) ⊂ I.

Assume next that I = [0, a), with 0 < a ≤ 1. It is then clear that Sa is a graph, since 
if two distinct points p1, p2 ∈ Sa satisfied π(p1) = π(p2), and, since Σ is a multigraph, 
there would exist p̃1, ̃p2 ∈ Sb with 0 < b < a such that π(p̃1) = π(p̃2), and this would 
contradict that b ∈ I.

We will next show that the domain of Sa is of the form explained in i), ii) above, what 
will prove that a ∈ I. More specifically, we will prove that the domains Di appearing 
in the definition of Ω̃a in (3.5) are the union of the domains Di which appear in the 
decomposition of Ω̃b, for all b < a (we will show that there is only a finite number of 
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Fig. 3.2. Decomposition of the domain Ω̃a+ε.

such domains), and of a finite number of new domains bounded by translations of Γ0
that are tangent to ∂Ωa on its concave side.

Given b < a, let us write

Ω̃b = Ωb\(D1 ∪ . . . ∪Dm(b)), (3.7)

with m(b) ∈ N ∪ {0}. It was explained previously that, for any t ∈ (b, a), the domains 
Di appearing in (3.7) also appear in the decomposition (3.5) of Ω̃t for that value t. In 
particular, all these Di ∩Ωt are disjoint, for all t ∈ (b, a). Let us show that the domains 
Di ∩ Ωa are also disjoint.

Assume first of all that all disks Di 	= D0 have points outside Ωa (note that D0 has 
points outside Ωa except if a = 1, in which case D0 is tangent to Ω1 at q̃0). In that case, 
again by the extension process in (3.3), the graph u can be extended locally around any 
point in ∂Ωa that belongs to some of the curves ∂Di to an exterior neighborhood of the 
point, so that u → −∞ as it approaches ∂Di. In particular, all the Di ∩ Ωa (including 
D0) are disjoint.

Assume next that the previous condition does not hold, i.e. there is some Dj 	= D0
that is contained in Ωa. Note that Dj ∩D0 	= ∅ since, again, two translated copies of Γ0
that lie inside the compact region Ω1 bounded by 2Γ0 cannot be disjoint. Thus, Dj ∩D0
is either one point at which ∂Dj and ∂D0 are externally tangent, or ∂Dj ∩ ∂D0 is a pair 
of points. In both cases, ∂Dj ∩∂D0 lies in ∂Ωa, since Dj ∩D0∩Ωt is empty, for all t < a.

The case that Dj ∩ D0 is a single point in ∂Ωa is impossible, due to the fact that, 
because D0 and Dj would be externally tangent at that point in this situation, this would 
force D0 to lie in the exterior region of Ωa, and this is a contradiction with D0 ∩Ωt 	= ∅
for t < a.

On the other hand, if ∂Dj ∩ ∂D0 consists of two points in ∂Ωa, we would have that 
∂Dj ⊂ Ωa intersects ∂Ωa tangentially at two different points, and this is impossible 
unless Dj = Ωa, which cannot happen since Dj ∩D0 ∩ Ωt is empty for t < a.

This contradiction shows that the domains Di ∩ Ωa are disjoint.
Consider next the map t �→ m(t), which we know is non-decreasing. Let us show next 

that m(t) is bounded as t → a−, i.e. that the total number of disks Di appearing in (3.7)
for all values b ∈ (0, a) is finite.
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Fig. 3.3. The segment γ∗(s).

Arguing by contradiction, assume that there exists a strictly increasing sequence {tn}n
converging to a, and domains Dm(tn) (which arise in the decomposition of Ω̃tn), each 
of them bounded by a translation Γtn of Γ0, and all of them pairwise disjoint inside 
Ωa (by the argument above). We also can suppose that the Γtn are tangent to ∂Ωtn

on its concave side, and that Dm(tn) ∩ ∂Ωa is a compact arc Jn ⊂ ∂Ωa, with endpoints 
{qn1 , qn2 }. These arcs are disjoint, and of arbitrary small length, taking n sufficiently large. 
In particular there exists an accumulation point q∗ ∈ ∂Ωa − ∪n∈NJn of the sequence of 
pairs {qn1 , qn2 }n.

Let v∗ ∈ R2 denote the inner unit normal of ∂Ωa at q∗, and consider the curve 
γ∗ : (0, 1] → R2 given by γ∗(s) = q∗ + sv∗, (see Fig. 3.3). Note that u is well defined 
along γ∗, for small values s > 0.

In this situation, we can repeat the arguments of Assertions 3.2, 3.3 and 3.4, and prove 
that there exists a cylinder Γ∗ × R, where Γ∗ is a translation of Γ0, such that Γ∗ × R

is tangent to ∂Ωa at q∗ on its concave side, and for which u can be extended at q∗ to 
an exterior tubular neighborhood of Γ∗ around q∗, so that u → −∞ as q approaches Γ∗

from its concave side. This shows, in particular, that u(q) is well defined for any q ∈ Ωa

sufficiently close to q∗, what contradicts that q∗ is an accumulation point of {qn1 , qn2 }n.
This contradiction proves that the total number of disks Di appearing in (3.7) for 

all b < a is a finite number m. Recall that we already showed that all the Di ∩ Ωa are 
disjoint, and that every Di, with the possible exception of D0, intersects the exterior 
of Ωa.

Then, again by the extension process in (3.3), the graph u can be extended locally 
around any point in ∂Ωa that belongs to some of the curves ∂Di to an exterior neigh-
borhood of the point, so that u → −∞ as it approaches ∂Di.

Consider next a point q1 ∈ ∂Ωa that does not lie in any of the compact disks Di for 
any b < a. Then, either u extends smoothly across q1 or, by Assertion 3.2 there is some 
translation Γ′ of Γ0 such that Γ′ is tangent to ∂Ωa at q1 on its concave side. Moreover, 
u → −∞ as we approach q1, by Assertion 3.3. Call D′ to the compact domain bounded 
by this curve Γ′.

We claim that two domains D′
1 and D′

2 constructed in this form cannot intersect inside 
Ωa. This follows again directly by the fact that we can extend the function u along the 
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exterior neighborhoods of ∂D′
i, i = 1, 2, with u → −∞ along each ∂D′

i. Since ∂Ωa is 
compact, there is then a finite number k ≥ 0 of domains D′ obtained in this form.

Finally, all of this proves that u can be extended to

Ω̃a := Ωa \ (D1 ∪ · · · ∪Dm ∪D′
1 ∪ · · · ∪D′

k)

and properties i) and ii) above hold for this extension. In other words, a ∈ I. Therefore, 
finally, I = [0, 1].

All of this shows that S1 is the graph of some function u(x, y) defined on the domain

Ω̃1 = Ω1\(D1 ∪ . . . ∪Dm), m ∈ N.

Moreover, S1 is bounded from above, since u(q) converges to −∞ as q approaches ∂Di, 
i = 1, . . . , m.

In this way, we argue as in Case 1; we consider a translation of 2W whose projection 
agrees with the compact region bounded by 2Γ0 and lies above S1. Then, translating 2W
vertically downwards, we find a first contact point p0 ∈ S1 ∩ 2W. The point p0 cannot 
lie in ∂S1, since in that case π(p0) would be a point of 2Γ0, and the points of 2W whose 
projections lie in 2Γ0 have horizontal unit normal. Thus, p0 is an interior point, and this 
contradicts the maximum principle.

This final contradiction shows that the complete multigraph Σ with CAMC −1 cannot 
exist. This finally completes the proof of Theorem 3.1. �

As a direct consequence of Theorem 3.1, we obtain the desired extension to the 
anisotropic setting of the Hoffman-Osserman-Schoen theorem (Theorem A in the in-
troduction):

Corollary 3.5. Let Σ be a complete CAMC surface whose Gauss map image is contained 
in a closed hemisphere of S2. Then Σ is a plane or a CAMC cylinder.

Proof. By choosing suitable Euclidean coordinates (x, y, z), we can assume that the third 
coordinate N3 of the Gauss map N of Σ satisfies N3 ≤ 0. In these conditions, it is well 
known that either N3 < 0 everywhere, or else N3 vanishes identically on Σ; see [26]. In 
the first case, we deduce from Theorem 3.1 that Σ is a plane. In the second case, Σ is 
trivially a CAMC cylinder. �

As an interesting consequence of Theorem 3.1, we can deduce the anisotropic extension 
of the Klotz-Osserman theorem (Theorem B in the introduction).

Theorem 3.6. Let Σ be a complete surface with non-zero CAMC, and whose Gaussian 
curvature does not change sign. Then Σ is a CAMC cylinder or the Wulff shape, up to 
homotheties.
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Proof. Assume that the Gaussian curvature K of the immersed surface Σ is non-negative. 
Then, by Sacksteder classical theorem [36], there are three options:

(1) K vanishes identically on Σ.
(2) Σ is an embedded surface diffeomorphic to S2.
(3) Σ is complete, non-compact, embedded, and the boundary of some convex set of R3.

In the first case, Σ is a CAMC cylinder. In the second case, Σ is the Wulff shape, 
by [29] (see also [15]). In the third case, the Gauss map image of Σ lies in a closed 
hemisphere of S2 (by convexity). So, by Corollary 3.5, Σ is again a CAMC cylinder.

Assume now that K ≤ 0 at every point. Up to ambient homothety, we can assume 
that the anisotropic mean curvature H of Σ is H = −1. Let p ∈ Σ, and {e1, e2} be an 
orthonormal basis of TpΣ given by principal directions, i.e. the (Euclidean) Weingarten 
endomorphism of Σ at p is written as

Sp(ei) = ki ei, i = 1, 2,

where k1, k2 are the (Euclidean) principal curvatures of Σ at p. The anisotropic mean 
curvature of Σ is given by the trace of (2.1), and so we have

−1 = H(p) = a11k1 + a22k2,

where aii = 〈(Sν(p))−1(ei), ei〉 > 0, i = 1, 2. Since k1k2 ≤ 0, we may assume that 
k1 ≤ 0 ≤ k2. Then, if we let m denote the minimum value of the two (positive) principal 
curvatures of the Wulff shape W, we have

−1 = H(p) ≥ a11 k1 ≥ 1
m

k1.

In this way, at every p ∈ Σ, the principal curvatures k1, k2 satisfy k1 ≤ −m < 0 ≤ k2. 
Once here, since Σ is complete and the supremum of k1 is negative, we conclude from 
[37, The principal curvature theorem] that Σ is a cylinder. This completes the proof. �
4. Height estimates and properly embedded CAMC surfaces

In this section we will derive some further consequences of Theorem 3.1, applied to the 
study of CAMC surfaces properly embedded in R3. We start with the following height 
estimate for compact graphs of CAMC and planar boundary.

Lemma 4.1. Given H0 	= 0, there exists a constant C(H0) > 0 such that the following 
assertion holds:

Let P ⊂ R3 be any plane, and Σ be any immersed compact surface in R3 with ∂Σ ⊂ P , 
so that Σ has CAMC H0, and is a multigraph over P (i.e. no tangent plane of Σ is 
orthogonal to P ). Then, the distance of any point of Σ to P is at most C(H0).
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Proof. Arguing by contradiction, assume that there exists a sequence of oriented multi-
graphs Σn with CAMC H0 over planes Pn ⊂ R3, with ∂Σn ⊂ Pn, and points qn ∈ Σn

whose distance to Pn is greater than n.
Let vn ∈ S2 be the normal vector to Pn such that 〈Nn, vn〉 > 0, where Nn is the 

unit normal of Σn. In particular, the unit normal of Σn at any pn ∈ Σn that lies at a 
maximum distance from Pn is equal to vn. Up to suitable translations, we can assume 
that pn is the origin of R3, for every n. Also, up to a subsequence, we will assume that 
{vn} converges to some v0 ∈ S2.

By Theorem 2.3 for the choice d = 1, we obtain the existence of a constant C > 0
such that the norm of the second fundamental form of Σn is bounded by C for any n
and any point of Σn whose distance to ∂Σn is greater than 1. In this way, since the 
distance of pn to ∂Σn diverges to ∞, it follows from Theorem 2.1 that a subsequence of 
the {Σn} converges in the C2 topology to a complete, possibly not connected, surface Σ0
with CAMC H0, that passes through the origin, with unit normal equal to v0 at that 
point.

Since 〈Nn, vn〉 > 0, we deduce that 〈N0, v0〉 ≥ 0, where N0 is the unit normal of Σ0. It 
follows then from Corollary 3.5 that Σ0 is a cylinder, and so 〈N0, v0〉 vanishes identically. 
This contradicts that N0 = v0 at the origin. �

To obtain a general height estimate for non-compact graphs with planar boundary, 
we will next adapt to the CAMC case a result by Meeks (cf. [33, Lemma 2.4]) for the 
isotropic (CMC) case. We will only sketch the proof, following a slightly simplified version 
of Meeks’ proof appearing in [2, Theorem 4] or [8, Theorem 6.2].

Lemma 4.2. Let P ⊂ R3 be a plane and Ω ⊂ P a closed (not necessarily bounded) domain. 
Let Σ ⊂ R3 be a normal graph over Ω of some function u, so that Σ has CAMC H0 	= 0, 
and u = 0 on ∂Ω ⊂ P . Let dW be the extrinsic diameter of the Wulff shape W, denote 
d0 = 2

√
3dW , and let Pt denote the two parallel planes to P at a distance t > 0.

Then, for any t > d0/|H0|, the extrinsic diameter of each connected component of 
Σ ∩Pt is at most d0/|H0|. In particular, all connected components of Σ ∩Pt are compact 
for t > d0/|H0|.

Proof. Up to ambient homothety, we will assume that the CAMC of Σ is H0 = −2. Let 
us also remember that the Wulff shape W has CAMC equal to −2 for the choice of its 
exterior unit normal. Also, since W is a compact set of diameter dW , it is contained in 
some closed ball of R3 of diameter 

√
3 dW .

Take now Euclidean coordinates (x, y, z) in R3 so that the plane P is the z = 0 plane. 
Thus, Σ is given as a graph z = u(x, y) over Ω ⊂ R2, with u = 0 on ∂Ω.

Assume that there exists p1 ∈ Ω so that u(p1) > 0. Then, we can translate W
horizontally so that its lowest point projects vertically to p1, and then move W vertically 
upwards until it is placed above the graph of u over the compact set Ω ∩ BR, where 
BR ⊂ R2 is a disk centered at p1 and of radius R > dW . Once here, we can translate 
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W vertically downwards until it reaches a first contact point with Σ. Then, the unit 
normal N : Σ → S2 of Σ must point upwards, since otherwise we would have W = Σ, 
a contradiction. A similar argument proves that if u(p2) < 0 for some p2 ∈ Σ, then 
N points downwards. Thus, u cannot change sign, and we can assume without loss of 
generality that u ≥ 0 and that N points upwards.

Choose now any t ∈ R with t > d0/|H0|, which by our initial normalization H0 = −2
means t >

√
3 dW . We will suppose that the plane z = t intersects Σ transversally (this 

happens for almost every t, by Sard’s theorem), and assume by contradiction that there 
exists a connected component of Σ ∩ {z = t} with diameter greater than 

√
3 dW . Take 

a simple arc Γ ⊂ Ω so that the maximum Euclidean distance between its endpoints 
p1, p2 ∈ R2 is greater than 

√
3 dW , with u(p) ≥ t for all p ∈ Γ. We may choose Γ so that 

the Euclidean distance between p1 and p2 is not smaller than the distance between any 
other two points of Γ. Up to an isometric change of coordinates in R3 given by a rotation 
around the z-axis and a horizontal translation, we may take p1 = (−x0, 0), p2 = (x0, 0), 
with x0 >

√
3 dW/2.

In this way, the rectangular surface (with boundary) S := Γ × [0, t] is contained in

U = {(x, y, z) ∈ R3 : (x, y) ∈ Ω, 0 < z < u(x, y)}.

In fact, S divides the solid region

R = {(x, y, z) ∈ R3 : |x| ≤ x0, 0 ≤ z ≤ t}

into two connected components R1, R2.
Once here, we can place W inside the interior of R1, and then move it continuously 

towards R2 without leaving the interior of R. Let us only consider the piece of W that 
passes through S into the inside of R2 by means of this continuous translation process. 
It is clear that this piece of surface cannot touch Σ, by the maximum principle, since 
otherwise Σ = W, which is impossible. Hence, W completely passes through S by this 
translation process, until it ends up being contained in R2∩U . But once there, we could 
move W vertically upwards until reaching a first contact point with Σ, what gives again 
a contradiction with the maximum principle. �

As a direct consequence of the previous two lemmas, we have:

Theorem 4.3. For any H0 	= 0 there exist a constant D(H0) > 0 so that the following 
assertion holds:

Let P ⊂ R3 be any plane, and Ω ⊂ P any closed (not necessarily bounded) domain. 
Let Σ ⊂ R3 be a normal graph over Ω of some function u, so that Σ has CAMC H0 	= 0, 
and u = 0 on ∂Ω ⊂ P . Then, the distance of any point of Σ to P is at most D(H0).



24 J.A. Gálvez et al. / Advances in Mathematics 428 (2023) 109137
Let s : R3 −→ R3 denote a symmetry with respect to some plane P0. If the Wulff 
shape W is symmetric with respect to P0, then any surface Σ with anisotropic Gauss 
map ν : Σ −→ W satisfies that

s(ν(p)) = ν̂(s(p)), ∀p ∈ Σ,

where ν̂ : s(Σ) −→ W denotes the anisotropic Gauss map of the symmetric surface s(Σ). 
In particular, if Σ has CAMC, then s(Σ) has the same CAMC, and we can apply the 
Alexandrov reflection technique with respect to planes parallel to P0. In this way we 
have:

Corollary 4.4. Assume that the Wulff shape W is symmetric with respect to some plane 
P0. Then there exists some constant E(H0) > 0 such that the following assertion holds:

For any compact embedded surface Σ with CAMC H0 and boundary contained in a 
plane P parallel to P0, it holds that the distance of any point of Σ to P is at most E(H0).

Proof. This is a direct consequence of the Alexandrov reflection principle. Indeed, by 
using such argument it follows that if h denotes the maximum distance of a point of Σ
to P , then the set of points of Σ that are at a distance at least h/2 from P has to be 
a graph with respect to the direction of R3 orthogonal to P . So, the result follows from 
Lemma 4.1, taking E(H0) = 2C(H0). �

The next result was proved by Meeks [33] for CMC surfaces, i.e., for the case where 
the Wulff shape W is the round sphere. The proof of Theorem 4.5 is the same as Meeks’, 
bearing in mind that W is contained in a closed ball of diameter 

√
3dW , and taking 

into account the behavior of the anisotropic mean curvature with respect to ambient 
homotheties explained in Section 2.

Theorem 4.5 (Meeks’ separation lemma). Let Σ be a properly embedded surface in R3

with CAMC H0 	= 0, and diffeomorphic to a closed disk minus an interior point (in 
particular, ∂Σ is non-empty and compact).

Let P1, P2 be two parallel planes separated by a distance greater than

d0 := 2
√

3dW
|H0|

, (4.1)

where dW denotes the diameter of the Wulff shape. Let P+
1 , P+

2 denote the two connected 
components of the complement in R3 of the open slab between P1 and P2. Then, all 
connected components of either Σ ∩ P+

1 or Σ ∩ P+
2 are compact.

A geometric consequence of Corollary 4.4 and Theorem 4.5 is:
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Proposition 4.6. Assume that the Wulff shape W is symmetric with respect to some plane 
P0, and let Σ be a properly embedded surface in R3 with CAMC H0 	= 0 that is diffeo-
morphic to a closed disk minus an interior point. Then, Σ lies entirely in a half-space of 
R3 whose boundary is a plane P parallel to P0.

Proof. Let P1, P2 be two planes parallel to P0, separated by a distance greater than the 
constant d0 in (4.1), and so that ∂Σ lies in the open slab determined by them. Then, 
Theorem 4.5 shows that, up to a relabeling of the planes Pi, all connected components 
of Σ ∩ P+

2 are compact (there might be an infinite number of such components). Once 
there, Corollary 4.4 shows that any such connected component lies at a distance at most 
E = E(H0) from P2. This proves Lemma 4.6, taking P parallel to P2 and contained in 
P+

2 , at a distance E(H0) from P2. �
Proposition 4.6 has a stronger form in the case that ∂Σ = ∅. Recall that a surface Σ is 

said to have finite topology if it is diffeomorphic to a compact surface (without boundary) 
Σ with a finite number of points removed, e1, . . . , em ∈ Σ. The points ei will be called 
the ends of the surface Σ. In this way, we have:

Theorem 4.7. Assume that the Wulff shape W is symmetric with respect to some plane 
P0. Then, there exists a constant G(H0) > 0 such that if Σ is a properly embedded surface 
in R3 with CAMC H0 	= 0, finite topology and only one end, then Σ lies in an open slab 
of R3 of width at most G(H0), and whose boundary is the union of two planes parallel 
to P0.

Proof. Let P be a plane parallel to P0 that intersects Σ, and (x, y, z) be Euclidean 
coordinates in R3 so that P corresponds to the plane z = 0.

Take R > E(H0), where E(H0) is the constant given by Corollary 4.4. Then, if we 
choose P1 = {z = R} and P2 = {z = R + d0} (with d0 given by (4.1)), and observe that 
there exist points of Σ at a distance R > E(H0) from P1, we deduce from Theorem 4.5
and Corollary 4.4 that all connected components of Σ ∩{z ≥ R+d0} are compact. Thus, 
Σ ⊂ {z < 2R + d0}.

Analogously, we can prove Σ ⊂ {z > −(2R + d0)}, what completes the proof. �
Theorem 4.7 also shows that if the Wulff shape W has two linearly independent planes 

of symmetry, then any properly embedded surface Σ in the conditions of the theorem 
must be contained in a solid cylinder of R3. In the case where W has three linearly 
independent planes of symmetry we obtain a specially interesting consequence, which 
generalizes Meeks’ Theorem C in the introduction:

Theorem 4.8. Assume that the Wulff shape W is symmetric with respect to three planes 
P1, P2, P3 ⊂ R3 with linearly independent normal vectors. Then W is, up to homothety, 
the only properly embedded surface in R3 with non-zero CAMC, finite topology and at 
most one end.
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Proof. Let Σ be a surface in the conditions of the theorem. Then, using Theorem 4.7 for 
each plane Pi, i = 1, 2, 3, we see that Σ lies in a bounded set of R3. Since Σ is proper, 
it must then be compact. Now, the Alexandrov-type theorem for CAMC surfaces (see 
[15]) proves that Σ is, up to homothety, the Wulff shape W. �
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