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A B S T R A C T

The reconstruction of 3D point clouds from image datasets is a time-consuming task that has been frequently
solved by performing photogrammetric techniques on every data source. This work presents an approach to
efficiently build large and dense point clouds from co-acquired images. In our case study, the sensors co-
acquire visible as well as thermal and multispectral imagery. Hence, RGB point clouds are reconstructed
with traditional methods, whereas the rest of the data sources with lower resolution and less identifiable
features are projected into the first one, i.e., the most complete and dense. To this end, the mapping process
is accelerated using the Graphics Processing Unit (GPU) and multi-threading in the CPU (Central Processing
Unit). The accurate colour aggregation in 3D points is guaranteed by taking into account the occlusion of
foreground surfaces. Accordingly, our solution is shown to reconstruct much more dense point clouds than
notable commercial software (286% on average), e.g., Pix4Dmapper and Agisoft Metashape, in much less time
(−70% on average with respect to the best alternative).
1. Introduction

Remote Sensing (RS) research concerns multiple acquisition devices
and multispectral data obtained in different wavelength ranges. These
are frequently visible, thermographic and multispectral imagery, either
collapsed into a few or hundreds of bands (hyperspectral). Thus, the
main challenge of multiple sensing systems is to fuse all this informa-
tion into a sole data model with multiple layers. Fusion methodologies
have been long investigated to build multi-layer models that allow
subsequent analyses to focus only on the data. From these models,
Machine Learning (Pádua et al., 2022) and Deep Learning (Jia et al.,
2021; Hu et al., 2022) represent a widespread field to extract further
information.

Besides image fusion, which has been greatly investigated, 3D repre-
sentations of surveyed environments have been gaining interest (Jurado
et al., 2022a). Firstly, interaction with 3D environments speeds up
tasks for human operators, such as detecting building failures (Lin
et al., 2019). Also, 3D reconstructions are much more valuable and
informative for the client counterpart. Finally, it reduces the analysis
of multiple datasets into a single one where comparisons are effec-
tively performed. Among 3D representations, point clouds have been
significantly preferred over mesh models as they do not involve the
reconstruction of surveyed surfaces (Park and Lee, 2019) into polygons.
Instead, a discretized version is provided, though its rendering has been

∗ Corresponding author.
E-mail addresses: allopezr@ujaen.es (A. López), cogayar@ujaen.es (C.J. Ogayar), jjurado@ujaen.es (J.M. Jurado), ffeito@ujaen.es (F.R. Feito).

proved to achieve nearly mesh-like results with modern hardware and
large point clouds (Schütz et al., 2021).

Among other factors, the raising interest in 3D models is possible
due to the use of Unmanned Aerial Vehicles (UAV) in RS. In con-
trast to satellite imagery, UAVs provide a cost-efficient solution with
higher spatial and temporal resolution (Singh et al., 2022). Higher
spatial resolution can be either achieved with lower flight altitude
or devices with higher resolution. On the other hand, temporal res-
olution refers to the monitoring frequency of an area of interest, in
the order of days and weeks for publicly available satellites (Alvarez-
Vanhard et al., 2021). Nevertheless, cost-efficient vehicles and devices
also lead to images with more defects and errors, either motivated
by UAV instability (Akhoundi Khezrabad et al., 2022) or the optical
mechanism (Mohamad et al., 2021; López et al., 2021a). Besides this,
the reduced flight altitude requires wider-angle lenses, thus generating
more geometric distortions. Though they can be reverted, the number
of steps for data fusion increases and so does the overall complexity.

Finally, highly detailed 3D point clouds with hundreds of millions
of points are complex to operate on commodity hardware. Despite
this, they are necessary to provide in-depth analyses and valuable
renderings (Schütz et al., 2021). As a result, the reconstruction and
processing of large point clouds are computationally demanding tasks
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that require massively parallel algorithms and modern Graphics Pro-
cessing Units (GPU) with increased capacity to operate many parallel
threads. Therefore, solutions for fusing RS data are not solely aimed at
providing accurate results, but also at efficiently generating them. The
baseline for the reconstruction of 3D point clouds can be established
using commercial software, with most of them taking advantage of
GPUs to speed up the reconstruction (Jiang et al., 2020). Hence, their
processing time is related both to the degree of parallelism as well as
the size of input data. Accordingly, large point clouds are expected to
worsen the performance, though they provide valuable data for mesh-
like renderings and neighbourhood-derived processing (e.g., normal
estimation).

In this work, an efficient solution is proposed for the fusion of (1)
visible, (2) thermographic and (3) multispectral information, acquired
by UAVs. Accordingly, we make effective the methodology proposed for
image fusion in a previous work (López et al., 2021a), while also being
extended to 3D. Furthermore, the proposed work is developed using
massively parallel algorithms, supported by GPUs and multi-core CPUs.
Commercial software is used as a baseline for evaluating the efficiency
of our framework. Besides parallel processing, our approach is also
focused on maximizing the size of point clouds. To this end, images
with lower resolution are not directly processed to reconstruct 3D point
clouds. Instead, the fusion methodology allows projecting additional
sources of information over models derived from RGB estimations,
which are known to generate results of higher dimensionality.

Hence, the main contributions of this work are as follows: (1) fusion
of multiple imagery datasets from UAVs and (2) generation of larger
point clouds than current commercial software with (3) lower response
time.

2. Related work

In this section, previous work related to the fusion of UAV imagery
as well as the generation and processing of large point clouds is
reviewed. Then, an overview of existing commercial software is pre-
sented. Despite LiDAR being a frequently investigated 3D data source,
it is omitted from this work as we solely include images. Studies that
are following cited work with thermal or multispectral information,
although there may be slight processing differences among them. For
example, thermal imagery is known to be much noisier.

Fusion of information. The registration of multiple data sources is
typically reviewed for pairs of datasets, with visible imagery being the
reference. This choice is due to its higher resolution and better visibility
of key points, e.g., ground control points (GCPs) distributed uniformly
to map the result into a standard coordinate system. Fusion techniques
are mainly classified into five categories (Jurado et al., 2022a): (1) Pho-
togrammetric techniques plus additional alignment steps, (2) Fusion of
orthomosaics and point clouds, (3) Registration of 2D and 3D features,
(4) Fusion of imagery and (5) Calibration of acquisition devices.

Methods based on photogrammetric techniques are those based on
the generation of 3D point clouds using Structure from Motion (SfM).
To this end, GCPs can be used to ensure that point clouds are located in
the same coordinate system (Zheng et al., 2020; González et al., 2019;
Dahaghin et al., 2021). These can be followed by additional alignment
steps, such as Iterative Closest Point (ICP) whether the resulting 3D
point clouds do not correlate well (Hoegner et al., 2018; Webster et al.,
2018). More advanced methods use ICP as a refinement registration,
preceded by noise filtering and coarse registering of 3D point clouds.
Noisy datasets can also be approached using Fast Global Registration
(FGR) (Lin et al., 2019), which is proven to perform better. Instead of
aligning multiple point clouds, these can be mapped into orthomosaics.
However, the expected result is a 2.5D point cloud (Juszczyk et al.,
2021; Adán et al., 2020), i.e., voxel-based representations.

Regarding 3D point clouds, it is also feasible to find 3D features to
be recognized on imagery from another data source, thus registering
2

both datasets. Most studies using this workaround rely on Harris 2D–
3D as well as SIFT3D (Speeded-Up Robust Feature) (Zhu et al., 2021),
though the first one is preferred as it is known to provide a higher
number of keypoints. Due to challenges concerning the repeatability of
features (for instance, building corners), the search space is limited (Lin
et al., 2019) or pairing mismatches are discarded by human opera-
tors (Zhu et al., 2021). Hence, other techniques seem more robust for
forestry and agriculture datasets. The alignment in the image space is
performed using a wide range of techniques, with SIFT (Scale-Invariant
Feature Transform), Canny and Sobel (Hoegner et al., 2016b,a) being
the most popular. However, the main concern for multi-source fusion is
the correlation of images from different wavelength intervals and thus
depicted with different intensities. Furthermore, these differences may
not be explained using linear models. Hence, methods working in the
frequency domain or based on correlation are also frequent in the litera-
ture (Javadnejad et al., 2020), such as Enhanced Correlation Coefficient
(ECC) (López et al., 2021a,b) and Radiance Invariant Feature Transform
(RIFT) (Lin et al., 2019). With the rising impact of Deep Learning,
Convolutional Neural Networks (CNN) have also been used to perform
the fusion of visible and other data sources (Piao et al., 2019). Another
workaround is to use the acquisition variables to project additional
imagery into the reference, thus relying on the precision of parameters
measured per image (Dlesk et al., 2022). Once correlated, additional
sources of information can be projected into a reference point cloud
(e.g., RGB) (Javadnejad et al., 2020; López et al., 2021b). However, this
approach requires considering the scene occlusion to avoid assigning
information from background to foreground surfaces, otherwise leading
to inaccurate colour aggregations (López et al., 2021; Jurado et al.,
2022b; Kong et al., 2018).

Finally, previous work has also assessed the calibration of sys-
tems composed of several sensors, thus extracting the boresight and
lever-arm transformation matrices (Javadnejad et al., 2020; Hoegner
et al., 2018). Hence, differences among pairs of images in datasets
are explained through these matrices. However, the computation of
these matrices can be preceded by manual or semi-automatic feature
recognition to calibrate multi-sensor architectures. Also, the calibration
of sensor acquisition has been proved to perform worse than fusing
information in the image space (Javadnejad et al., 2020).

Optimized processing of 3D point clouds. The processing of large
point clouds is time-consuming, and therefore, multi-core CPU and
GPU hardware enable speeding up these tasks. Hence, the procedure
from reading point clouds to obtaining a processed result is opti-
mized to enhance performance and reduce memory usage, which is
frequently bounded by a few gigabytes in GPU. Compression of point
clouds has been previously achieved by taking advantage of stack-
based and quad-tree data structures and limited colour space resolution,
instead of using HDR imaging. Then, point clouds are processed us-
ing either popular multi-core CPU frameworks, such as OpenMP, or
GPU hardware together with frameworks such as OpenGL, CUDA or
OpenCL. Frequent processing of 3D point clouds consists of normal
estimation (Sanchez et al., 2020), projection of additional sources of in-
formation (López et al., 2021, 2022; Javadnejad et al., 2020), semantic
segmentation (Poux et al., 2022) and polygonal mesh estimations (Pan
et al., 2021; Wiemann et al., 2018), where most of them can benefit
from collaborative work among threads.

Particularly, occlusion detection is treated in this work to avoid
projecting data into background surfaces. Jurado et al. (2022b) in-
vestigated the use of depth buffers to detect occluded surfaces for
projecting multispectral imagery. In this regard, López et al. (2021)
compared the performance of CUDA and OpenGL, with the second one
offering a better performance despite requiring less configuration. Once
processed, the rendering is also known to be time-consuming for large
point clouds. To this end, alternative pipelines and spatial orderings
of point clouds have been proposed to enhance the number of frames
per second displayed to users. Schütz et al. (2021), Kerbl et al. (2017)

described the use of modern OpenGL extensions and sorting based on
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Fig. 1. Samples of thermal and multispectral imagery acquired in two different areas.
Morton codes to accelerate the visualization. Lately, point clouds have
been split into batches, thus enabling batch-level optimizations (Schütz
et al., 2022).

Photogrammetric commercial software. Available solutions in-
cluding SfM are composed of both open-source packages and commer-
cial solutions. The first group includes ColMap, AliceVision, Zephyr and
VisualSfM, whereas notable commercial software includes Pix4DMapper
(Zheng et al., 2020), Agisoft Metashape (Grechi et al., 2021), Re-
alityCapture and Autodesk Recap 360 (Lafi et al., 2017). The first
two commercial solutions are sped-up using multi-core CPU and GPU
acceleration for image matching, whereas Bundle Adjustment (BA) is
performed in the CPU. Jiang et al. (2020) revised the efficiency of SfM
implementations by applying it over four datasets. According to their
evaluation, performed using commodity hardware, Metashape showed
the worst performance both for BA and feature matching, whereas
RealityCapture showed similar performance during feature matching
and significantly better during BA. However, Agisoft Metashape gen-
erated the densest point clouds for every dataset. On the other hand,
recent work (López et al., 2021b) reports a significant improvement of
Agisoft Metashape over Pix4DMapper with better hardware by taking
advantage of CUDA-enabled GPUs.

3. Materials and methods

This section describes the methodology followed to fuse information
as described in previous work and delves into the mapping of imagery
into 3D point clouds. More specifically, details concerning GPU accel-
eration and occlusion detection are the focus of this work. The overall
procedure is depicted in Fig. 2.

3.1. Multispectral imagery

Four multispectral images were acquired for each viewpoint using
a Parrot Sequoia device: Green (GRE), Near Infrared (NIR), Red Edge
(REG) and Red (RED). It co-acquires RGB images along with multi-
spectral imagery. Hence, the differences between these lenses can be
described through homography transformations covering variations in
the distortion coefficients and orientation. Multispectral lenses from
Parrot Sequoia have a focal length of 4mm, whereas the RGB lens
has 15.9mm, thus following fisheye and perspective models. Regarding
the dimensionality of outputs, the resolution is 1280 × 960px and
4608 × 3456px for multispectral and visible imagery, respectively.
Fig. 1 shows the four multispectral bands on the right side, as captured
by the drone. In this work, 1720 (1st dataset) and 1536 (2nd dataset)
multispectral images are used in the following sections.

3.2. Thermographic imagery

Similarly to multispectral data, thermal images are co-acquired with
RGB information by a DJI Zenmuse XT2 device. In contrast to multi-
spectral, the thermal lens is described through a perspective projection
(19mm) and its outcome has a low resolution (640 × 512px). RGB
3

lens has a focal length of 8mm, whereas its images present a higher
resolution (4000 × 3000px). Regarding file formats, thermal data is
stored as grayscale RJPEG (Radiometric JPEG) images, a proprietary
format that allows reconstructing the scene temperature. However,
the temperature is of no interest in this work as fusion will rely
on the grayscale representation. Some samples of thermal images are
depicted in Fig. 1. In this work, 575 (1st dataset) and 410 (2nd dataset)
thermographic images are used in the following sections.

3.3. Drone

Previous sensors were mounted in a quadcopter drone (DJI Ma-
trice 210). Although their respective sensors synchronously acquire
visible and multispectral/thermal imagery, these are not synchronized
between them. Missions were planned so that the view direction is
nadir, and frontal and side overlap are 90% and 85%, respectively.
Flight altitude was set to 45m for the first area and 50m for the second
one.

3.4. Rectification of image distortion

Images acquired either by thermographic or multispectral devices
follow distinct distortion models. RGB and multispectral imagery pre-
sent fisheye distortion due to their lower focal length, though it is espe-
cially visible in multispectral images. Thermographic lenses present a
much larger focal length, thus following a pincushion distortion. How-
ever, distortion correction can be parameterized by five coefficients
(radial and tangential distortion coefficients, (𝑘1, 𝑘2, 𝑝1, 𝑝2, 𝑘3)) in both
cases, along with the camera matrix, 𝐾. Hence, the correction of every
dataset is performed regardless of the camera source. An exception to
this is given by multispectral imagery, which defines its own distortion
model with four coefficients arranged in a 4th-degree equation (Ruiz
et al., 2019).

Note that distortion coefficients are not frequently read from image
metadata. Instead, the bundle adjustment phase of SfM is used to
estimate these coefficients. Hence, the main discussion of this work is
established in the 3D reconstruction rather than in the calibration. In
this study, the output of Pix4Dmapper’s BA is used as the result of the
calibration stage.

3.5. Mapping and fusion of multi-source imagery

According to the surveying devices, two different pipelines are here
established. The first pairs visible images with thermographic data by
determining the image’s id and the corresponding co-acquired thermal
image. Similarly to the described pipeline, multispectral images are
linked to the source RGB image. However, there exists a hierarchy
among multispectral images where the Green (GRE) layer is the root.
Hence, properties of other layers are calculated according to this,
including the matrices for fusing images.

Based on previous work, the ECC registration method has been
shown effective enough for the fusion of images in different wavelength
intervals, such as visible and infrared. Control parameters of ECC are
the number of maximum iterations upon convergence (𝑛) as well as the
aimed precision (𝜖). Another intrinsic parameter is the dimensionality



Computers and Electronics in Agriculture 207 (2023) 107712A. López et al.
Fig. 2. Overall procedure of the proposed method. First, the visible point cloud is reconstructed. Then, alternative data sources are projected into the previous point cloud. Finally,
point clouds are aligned through the estimation of rigid transformations. The reconstruction of alternative point clouds is compared against popular commercial solutions.
Fig. 3. Hierarchical registration of multispectral imagery.
of input images, as it considerably reduces latency. Given two images
of the same dimensionality, ECC seeks the matrix that maximizes
the intensity correlation of both images. For a context with images
from any source, differences among them are considered unknown
and thus explained using homography matrices. Otherwise, affine and
euclidean matrices of lower size could be applied to reduce latency. A
brief discussion is established in Experimental results and discussion to
determine optimal parameters regarding the fusion of visible, thermal
and multispectral information.
4

According to the peculiarities of multispectral images, these are
fused hierarchically rather than sequentially. With this approach, im-
ages with more similar intensity are first registered. More specifically,
the next pipeline is followed: GRE → RGB, RED → GRE → RGB,
REG → GRE → RGB and NIR → REG → GRE → RGB (see Fig. 3). Still,
each image is only registered once, as the whole chain concatenation is
computed using matrix composition. Note that previously cited chains
project multispectral imagery to the visible plane, whereas the aimed
projection goes from the visible plane to an alternative data source.
Hence, the inverse matrix is calculated, including the scale matrix that
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allows comparing images of larger dimensionality with low-resolution
images. Besides scaling, visible lenses may acquire a much larger area
according to their focal length. Thus, RGB images are also cropped
according to this difference, plus an extra size required by rotations.
However, convergence is not always achieved and this scenario is
identified by calculating the angles of the resulting quadrilateral shape,
which are discarded according to a threshold 𝛼 for highly distorted
forms.

The result of this section is a composite matrix for every RGB image,
either relating it to a thermal or multispectral image. These are not
related to more than one data source as they cannot be considered to
be triggered synchronously. At this point, point clouds can be fed with
additional information since their projection matrix to the RGB image
plane is known.

3.6. Projection in 3D point clouds

The following step is to project 3D points into their original data
source. As occurs with photogrammetric pipelines, the RGB point cloud
may be first generated since it represents the most accurate and dense
3D result. From that representation, it can be enhanced by including
additional spectral information at every point. Otherwise, a low-density
version of the RGB point cloud would be generated from another data
source. Hence, this work reuses the starting RGB point cloud, whose
viewpoints are calibrated during SfM. For each one, the projection P𝑐 ⋅
X is computed as K ⋅

[

R|-R ⋅ tlocal
]

⋅ X, with K being the RGB camera
matrix, calculated with the focal length and principal point coordinates,
R is the rotation matrix derived from yaw, roll and pitch angles, tlocal
is the camera position in the local coordinate system of the point cloud
and X is a 4D point (

[

𝑥 𝑦 𝑧 1
]𝑇 ).

The aforementioned P𝑐 matrix allows projecting 3D points into
individual RGB image planes. From these, the previously computed
inverse homography matrices allow translating RGB coordinates into
a different Cartesian coordinate system. Hence, resulting projections
corresponding to 3D points may fall out of image boundaries. As a
result, augmented point clouds do not present the same dimensions as
the first one, mainly in the boundaries. This is due to the smaller focal
length of devices coupled to RGB, though the resolution is preserved
(points per m2).

3.7. Occlusion

The main drawback of the previously described projection is that
spectral data from images could be projected into 3D points that were
not visible from a flight viewpoint. Hence, this could lead to point
clouds with incorrect colouring for additional layers. In this work, oc-
clusion is handled using images that depict the scene depth as grayscale
values, also known as z-buffers. Due to the aim of this work, z-buffers
also store the index of the nearest point projected at each pixel. The
points whose projection depth is higher than the one stored at the pixel
are discarded. Otherwise, points could be modelled as geometric shapes
to be intersected by ray-casting, thus allowing us to determine the
nearest point. However, this approach requires large data structures to
organize dense point clouds. Besides memory consumption, the choice
of the geometric shape is not trivial either.

From a ∞-filled image, points close to the viewpoint are projected
to determine the minimum depth at each pixel, generating a z-buffer
similar to the output of depth sensors. However, z-buffers with low
resolution also lead to point clouds of lower density, similar to those
generated by commercial software. To avoid this, the dimensionality
of z-buffers is upscaled by a factor 𝑠 that helps on balancing memory
consumption and point density.

Memory usage is especially relevant for hardware such as the GPU.
In this work, accelerated algorithms are implemented in OpenGL’s
shading language (GLSL) and general-purpose compute shaders. Hence,
this framework bounds the maximum size of a buffer according to
5

GPU capabilities, though it is frequently much lower. z-buffers are
typically part of the rendering pipeline, but they are not integrated into
compute shaders. They must be implemented as a low-level mechanism
supported by buffers known as Shader Storage Buffer Objects (SSBO).
Despite the lack of integrated z-buffers, compute shaders provide a
more efficient and flexible solution to read, write and perform triv-
ial operations in buffers. Furthermore, it avoids some unnecessary
stages from the rendering pipeline, including polygon rasterization or
interpolations.

Regarding memory allocation, z-buffers are here modelled as in-
tegers of 64 bits (uint64_t) using OpenGL’s modern extensions, to
be equally split between distance and index. Distance is not a numeric
integer, 𝑑 ∈ R, though its low-level representation can be interpreted
as an integer using floatBitsToUint. For a viewpoint, xyz𝑐 , and
a 3D point (xyz𝑝) with index 𝑖𝑝, the Euclidean distance is computed,
transformed into an integer and concatenated to 𝑖𝑝 (Eq. (1)). With this
representation, fewer and greater comparisons work as usual. Thus,
these operators can be applied to build a z-buffer by selecting the
minimum distance while also carrying a point index. To this end, the
atomic min. operator (atomicMin) is used.

𝑧𝑘,𝑙 ← 𝑑(xyz𝑝, xyz𝑐 )⌢𝑖𝑝 (1)

The procedure to project the point cloud into 𝑧-buffers is following
described in Algorithm 1 if it fits in the GPU’s VRAM and the maximum
size of OpenGL’s buffers. Otherwise, Algorithm 2 is followed. Note that
the second scenario omits the smaller procedures shown in Algorithm 1.
Because data transfers of 𝑧-buffers in CPU ↔ GPU are notably smaller,
point batches are iterated in the outer for and only transferred once.
Instead, each viewpoint’s 𝑧-buffer is transferred once per point batch.
Once all the points have been projected into every 𝑧-buffer, the indices
indicating visible points are obtained, as proposed in Algorithm 1.
Algorithm 1 Simplest case for projecting points in z-buffers, where all
the points fit in GPU’s VRAM.
1: Points are notated as PGPU and VCPU are camera viewpoints placed

at 𝑣𝑝𝑖 whose images have dimensionality 𝑥 ⋅ 𝑦. The term id refers to
threadid in the GPU.

2: Build 𝑧-bufferGPU ← uint64(𝑥 ⋅ 𝑦) and indicesGPU ← uint(𝑥 ⋅ 𝑦)
3: if Sort PGPU then
4: PGPU ← sortPoints(PGPU) ⊳ (Algorithm 3)
5: end if
6: procedure Build z-buffers
7: for 𝑣 in VCPU do
8: 𝑀 ← 𝑣projection
9: procedure Reset z-buffer in GPU
0: 𝑧-bufferGPU𝑖 ← UINT64MAX ∀𝑖 ∈ [0, 𝑥 ⋅ 𝑦[
1: end procedure
2: procedure Fill z-buffer in GPU(𝑀 , 𝑣𝑝)
3: p3D ← PGPU

[

id
]

4: p3D ←

[

𝑀 ⋅
[

p3D𝑥,p3D𝑦,p3D𝑧, 1
]𝑇

]𝑇

𝑥𝑦𝑧

5: p2D ←
[

p3D𝑥∕p3D𝑧,p3D𝑦∕p3D𝑧

]𝑇

6: if p2D inside image then
7: dist ← floatBitsToUint(length(p3D − 𝑣𝑝))
8: tag ← pindex| (dist << 32)
9: atomicMin(𝑧-bufferGPU

[

id
]

, tag)
0: end if
1: end procedure
2: procedure Obtain indices from z-buffer
3: index

[

id
]

← 𝑧-bufferGPU
[

id
]

& UINTMAX
4: end procedure
5: visible ← indicesGPU
6: Process visible to assign point cloud colours
7: end for
8: end procedure
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Fig. 4. Colouring of two randomized point clouds in [0, 1] according to the Morton encoding with 30 bits.
Algorithm 2 Split of the point vector if it does not fit in GPU’s VRAM
during their projection in z-buffers.
1: PGPU refers to points, VCPU are camera viewpoints placed at 𝑣𝑝𝑖

whose images have dimensionality 𝑥 ⋅ 𝑦 and nmax is the maximum
number of points that can be allocated in the GPU.

2: Build 𝑧-bufferCPU ← uint64(𝑥 ⋅ 𝑦 ⋅ |VCPU|)
3: 𝑧-bufferCPU𝑖 ← UINT64MAX ∀𝑖 ∈

[

0, 𝑥 ⋅ 𝑦 ⋅ |VCPU|
[

4: Build 𝑧-bufferGPU ← uint64(𝑥 ⋅ 𝑦) and indicesGPU ← uint(𝑥 ⋅ 𝑦)
5: nleft ← |PGPU|
6: if Sort PGPU then
7: PGPU ← sortPoints(PGPU) ⊳ (Algorithm 3)
8: end if
9: while nleft > 0 do

10: ncurrent ← min(nleft ,nmax )
11: Transfer point batch to GPU
12: for 𝑣 in VCPU do
13: Transfer to GPU part of 𝑧-bufferCPU from 𝑣
14: Complete 𝑧-bufferGPU with current point batch
15: Read 𝑧-bufferGPU into the pointer of 𝑧-bufferCPU
16: end for
17: Update nleft
18: end while
19: for 𝑣 in VCPU do
20: Transfer to GPU part of 𝑧-bufferCPU from 𝑣
21: Split indices from z-bufferGPUinto indicesGPU
22: visible ← indicesGPU
23: Process visible to assign point cloud colours
24: end for

3.8. Point cloud sorting

Point clouds generated by software present an unknown order re-
gardless of their coordinates, xyz. However, the outcome of the projec-
tion depends on the sampled 3D volume. As a result, points within an
area could be visible from a camera viewpoint, whereas other parts of
the point cloud may be discarded. Consequently, PCs of unknown order
also require unordered updates in memory buffers. However, organized
updates are known to be more efficient due to faster memory writing.
Although there is no such ordering in 3D space, there exist methods for
the hierarchical clustering of geometry, such as the Z-order curve (also
known as Morton curve, depicted in Fig. 4). The outcome is a 1D buffer
where close indices in memory are linked to spatially close 3D points.

For large PCs, changing their order presents a significant delay even
for the most efficient sorting algorithms. Therefore, GPGPU program-
ming allows sorting the PC in parallel to reduce the response time
during the projection procedure. In this work, Radix sort is used and
adapted to GPU programming by splitting it into two different steps:
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(1) up-sweep (reduce) and (2) down-sweep (Nguyen, 2007). Following
this approach, the buffer is sorted with a complexity of (𝑚 log 𝑛),
with 𝑚 being the number of bits and 𝑛 being the number of points.
Prior to sorting, xyz coordinates are converted to values of 30 bits (𝑚)
that encode individual coordinates (10 bits for each one). These are
frequently known as Morton codes, though they can have a variable
bit length.

Despite the enhancement of PC sorting, GPU-based algorithms are
handled on the GPU through work groups. These are small groups of
threads that are allowed to share data. Thus, the main drawback of
sorting the PC buffer as a whole is that workload is not uniformly
shared among work groups. Instead, the ordered PC can be shuffled
according to the size of the workgroups. Further insight into these
optimizations is provided in Experimental results and discussion.

The algorithmic flow for the described sort configuration is shown
in Algorithm 3. First, points are sorted with Radix Sort according to
Morton encoding. Otherwise, a random order is used. Then, the point
buffer can be reordered according to groups of size nshuffle. The second
stage is implemented as multi-core CPU rather than GPU to avoid
duplicating large point buffers in a limited VRAM.

3.9. Alignment of heterogeneous data sources

Image matching was performed in visible and alternative imagery
from the same sensor. This way, images are known to be acquired
with a similar timestamp, and thus ECC converges in a reasonable
time. However, RGB point clouds can be reused for different data
sources whether they are represented in the same local coordinate
system. Despite georeferencing providing accurate positioning, point
clouds from distinct data sources may not exactly overlap. Hence, point
clouds are further processed by finding the rigid transformation matrix
that is able to align both of them with a precision below a threshold
(Fig. 5). In this work it is performed with the Iterative Closest Point
(ICP) algorithm.

4. Experimental results and discussion

In this section, we aim to compare the proposed methodology with
other notable software solutions for building thermal point clouds,
such as Pix4Dmapper or Agisoft Metashape, using their highest-quality
reconstruction. We focus our tests on the response time and the point
cloud size, although some reconstructions from these solutions also
present geometrical errors. The evaluation was performed on a PC with
AMD Ryzen Threadripper 3970X 3.6 GHz, 256 GB RAM, two Nvidia
RTX A6000 GPU and Windows 10 OS. The proposed methodology is
implemented in C++ using the Open Graphics Library (OpenGL) both
for rendering and computing. CPU-based methods are accelerated using
the OpenMP multithreading framework.
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Algorithm 3 Point cloud sorting.
1: PGPU refers to the point cloud and nmax is the maximum number of

points that can be allocated in the GPU.
2: nleft ← |PGPU|

3: indices ← uint
[

|PGPU|
]

4: while nleft > 0 do
5: ncurrent ← min(nleft ,nmax )
6: Transfer the following ncurrent batch to GPU
7: procedure Sort in GPU
8: codesGPU ← mortonGPU(PGPU)
9: indices ← RadixSort(PGPU, codesGPU)

10: procedure RadixSort(PGPU, codesGPU)
11: for bit ← 0 → 30 do
12: Apply bit mask 1 << bit toPGPU
13: Up-sweep phase of prefix scan
14: Reset last position to zero
15: Down-sweep phase of prefix scan
16: Reorder PGPUwith new positions
17: end for
18: end procedure
19: end procedure
20: procedure Sort in multi-core CPU
21: if Shuffle then
22: ngroups ← ⌈ncurrent∕nshuffle⌉

23: rdngroup ← RandomVector(ngroups , 0, 1)
24: iotagroup ←

[

0, 1, ...,ngroups − 1
]

25: idold, idnew ← Sort(rdngroup, iotagroup)
26: for group in

(

idold, idnew
)

do
27: Move point batch from idold to idnew
28: end for
29: else
30: Reorder points with indices
31: end if
32: end procedure
33: Update PGPU and nleft with ncurrent
34: end while

Fig. 5. ICP registration process: (a) RGB point cloud from the first dual device, (b)
RGB point cloud from the second dual device, and (c) both point clouds aligned by
minimizing their distance, with 𝐺 referring to a Global system.

The devices and datasets used in this section have been previously
presented in Section Materials and methods, whereas the study area
is following described. The baseline RGB point clouds consist of 115M
(multispectral) and 97M (thermal) points for the first dataset, whereas
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the second dataset has point clouds with a dimensionality of 126M
and 96M points. To further stress this evaluation and achieve higher
point density, we have used a single depth buffer resolution, 𝑑 ← 10.
Regarding point cloud order, points are initially shuffled to show the
benefits of spatial sorting. Apart from this, two different setups are here
shown: (1) sorted with Morton codes and (2) sorted and shuffled in
small groups. The experimental results are obtained by repeating every
test four times and averaging them.

Regarding the configuration of commercial solutions, the steps of
image alignment and reconstruction of a dense point cloud (i.e., densi-
fication) were performed with the highest quality. Since both of them
are known to be able to use CUDA-enabled GPUs, they were enabled to
accelerate their pipeline on the GPU. Furthermore, the latter is known
to be accelerated with the multi-GPU framework CUDA and therefore,
was expected to perform better due to the availability of two GPUs.

4.1. Study area

The proposed method has been evaluated over two different envi-
ronments located in the region of Jaén, Spain. To show its effectiveness
in multiple fields, data regarding a (1) forestry area and (2) olive grove
was processed. Hence, the fusion of information is proven to work well
in scenarios with more significant features (2) and not recognizable
features (1). Fig. 6 shows the location of both areas, surveyed with
the equipment described in Materials and methods. The flight altitude
was 454m and 595m above sea level, respectively. The forestry scene
is composed of repetitive patterns from vegetation and human-made
structures. The first area covers nearly 1.97ha, whereas the second
comprises 2.44ha.

4.2. Image processing

The image alignment stage is configured according to the ECC
parameters: (1) the number of iterations to converge and (2) the aimed
precision. The first is set to 400 iterations to cover the number of
iterations to converge with a wide margin. Besides these parameters,
the dimensionality of the compared images is also relevant since a
lower number of details also implies a faster convergence. However,
images were not downscaled in this study to guarantee the quality
of the alignment. Finally, the hierarchical alignment of multispectral
images is also studied by means of confusion matrices that show the
correlation of pairs of bands. Accordingly, Fig. 7 justifies the hierarchy
shown in Fig. 3. Note that NIR and REG layers are reciprocally the most
similar. However, REG images are more similar to the root, GRE, and
thus NIR layers were aligned to REG images.

Regarding the sought precision, images were aligned using 𝜖 ←
10−5 for all the data sources, according to the similarity observed in
Fig. 8. The similarity was here normalized to improve the readability
of the chart, though the average intensity differences through the
experimental results were observed to be in the order of 1−3. Lower
values (higher exponent) harden the convergence of the ECC alignment
and increase the latency in the order of ms. Hence, an intermediate
value that balances both intensity and response time was used. On the
other hand, the number of iterations is set to guarantee the procedure
converges before reaching such a number. Therefore, a large value such
as it ← 400 was enough for our case studies.

4.3. Response time

First, we compared the response time of commercial solutions
against three configurations of our method. The response time is
decomposed into three stages: (1) reading the visible point cloud, only
for our method, (2) preprocessing stage, including image registration,
and (3) reconstruction of the dense point cloud. The second step is also
related to the procedure of image alignment in commercial software.
The results are shown in Fig. 11, and further insight is provided
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Fig. 6. Overview of surveyed region and areas. (a) Region of Jaén, (b) forest and (c) olive grove.
Fig. 7. Confusion matrix to depict the similarity of multispectral images in the first
(a) and second dataset (b).

in Tables 2 and 3. Despite our method reconstructing larger point
clouds, the latency is significantly lower than commercial solutions.
This difference is further exploited for GPU-based solutions and larger
datasets since part of the measured latency comes from the allocation
of GPU buffers that can be reused for multispectral layers. Thus, the
baseline latency from allocation does not increase with a larger number
of images. Accordingly, our sorted GPU solution improves Agisoft
Metashape by 76.64% on average to build thermographic point clouds.
The improvement of multispectral reconstruction is 62.5% with respect
to Pix4Dmapper.

The evaluations are performed with a 𝑧-buffer with 𝑑 ← 10,
which was shown to balance latency and point cloud dimensionality.
Larger values of 𝑑 involve higher data transfers, while also risking
8

Fig. 8. Image similarity measured after performing ECC alignment with a precision
equal to 1𝑥. Lower values seek the most accurate alignment. The similarity is normalized
in [0, 1] for improving the visualization.

Fig. 9. Average response time and point cloud size obtained by commercial software
and three versions of the proposed method.

to include background points with foreground data. Otherwise, lower
values of 𝑑 reduce the dimensionality of point clouds at expense of
minimizing the latency from data transfers. Based on this, 𝑑 ← 1 would
provide the baseline improvement of ECC method to build a sparse
point cloud. Regarding image preprocessing, both procedures iterate
over the whole dataset. However, our method only evaluates pairs of
images instead of surrounding images. This advantage is considerably
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Fig. 10. Comparison of performance of the dense reconstruction stage using sorted & shuffled data and globally sorted data. The first image compares the overall latency of the
dense reconstruction, whereas the second image only compares the projection procedure.
diminished for multispectral images since ECC is launched five times
for each viewpoint.

4.4. Point cloud size and normalized response time

The proposed method is included as part of a pipeline where dense
point clouds of RGB and alternative data sources are jointly recon-
structed. In this scenario, the first point cloud is considerably larger
than those obtained with imagery of lower resolution and less recog-
nizable features. From this baseline, the number of points of the RGB
point cloud is reduced according to their visibility from the whole set
of camera viewpoints and the depth buffer’s resolution. Still, most of
them are preserved and linked to data interpolated from thermal and
multispectral imagery.

Point clouds reconstructed from multispectral images are dense
due to the provided variety of reflectance and the higher number of
recognized features. However, the higher sparsity of thermal point
clouds is observed in Fig. 12. For the thermographic datasets, our
method increases the point cloud size by 366.3% (forest) and 475.52%
(olive orchard) with respect to Agisoft Metashape. In this regard,
this commercial solution reconstructs the densest point clouds from
the compared software, both for multispectral and thermal imagery.
Despite this, it is significantly slower for larger datasets such as the
multispectral. For the latter data source, the size increases by 149.89%
(forest) and 141.93% (olive orchard) also in comparison with Agisoft
Metashape.

Previous results based on global latency present a wider gap whether
they are normalized according to the point cloud’s dimensionality. The
normalized latency of our best method improves the results of the best
9

commercial solution by 95.51% and 96.9% on average for thermal and
multispectral images, respectively.

4.5. Overall comparison

The results of the five compared methods over four datasets are
summarized in Fig. 9. The global latency and point cloud size are
normalized in [0, 1]. The first metric must be minimized, whereas the
second one ought to be maximized to provide better visualization
and details of the target dataset. According to this figure, the three
proposed methods present an outstanding performance in terms of
response time and point cloud dimensionality. These are followed by
Agisoft Metashape, which is considerably slower, albeit generating
larger results than the last alternative, Pix4Dmapper.

4.6. Data shuffling in GPU

As stated by previous work (Schütz et al., 2021; Kerbl et al., 2017),
specific GPU patterns are used by manufacturers to distribute the
workload among thread groups. This knowledge can help to further
reduce the latency of GPU-based solutions, in comparison with globally
sorted point clouds. Thus, the objective is to shuffle points in batches
to balance the workload of every workgroup. As the outcome of a
batch is expected to depend on the camera viewpoint, the data shuffling
ought to help to reduce latency by distributing visible and non-visible
points. To this end, we conducted a comparison of data shuffled or
not after being sorted, with groups of size 𝑔 ← 32. The results are
depicted in Fig. 10 by splitting the latency into the Sort & Shuffle and
Reconstruction stages. Numeric results are also annotated in Table 5.
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Fig. 11. Accumulated response time for every data source (a. thermographic and b. multispectral), study area (1. forestry and 2. olive orchard) and solution, including commercial
software and different configurations of our method.
Fig. 12. Continuation of Fig. 11 on the dimensionality of the reconstructed point clouds.
To provide a better insight into the data shuffling, the second
image shows only the response time from the dense reconstruction. The
shuffled ordering also involves global sorting prior to organizing the
point cloud into batches. Thus, the Sort & Shuffle procedure is more
time-consuming than solely sorting. Accordingly, the summed response
time of the Shuffled version is higher for every configuration whether
we include both stages. Otherwise, the results offer slight changes
whether only the reconstruction stage is considered. It is observed
that data shuffling effectively helps to reduce latency in smaller point
clouds (thermographic), whereas larger point clouds worsen the latency
obtained by the global sort. Unlike previous studies, the proposed case
study is very unbalanced for individual viewpoints. From hundreds
of millions of points, only a few million are visible from a camera
viewpoint. Thus, the workload balancing was not effective. Even if
so, the Shuffle stage increases the latency for a one-time process, thus
making it not worth it. Instead, real-time processes such as rendering
are more likely to take advantage of this technique.
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4.7. Visual results

Table 1 shows the rendering of multispectral and thermographic
point clouds obtained by the three compared solutions. In this re-
gard, both commercial solutions are observed to reconstruct incom-
plete and erroneous geometry for thermographic data. Instead, our
method projects these data over an RGB point cloud that is accurately
reconstructed. Multispectral imagery presents higher dimensionality
and more recognized features, thus leading to better reconstructions
even for commercial software, regardless of the reduced point density.
Hence, the reconstructed multispectral point clouds are similar among
all the compared methods. The main drawback of photogrammetric
multispectral point clouds is the existence of gaps, which are much
less frequent in RGB point clouds despite vegetation being hard to
reconstruct.
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Fig. 13. Comparison of latency for the first two stages of our method in the first and subsequent application launches (after storing calculated data in binary files).
4.8. Binary data

Previous results are measured by (1) loading a PLY point cloud,
(2) reading TIFF and JPEG images and (3) reconstructing the dense
point cloud from previous data. However, these are known to be time-
consuming stages that can be treated differently after the first launch.
First, point clouds are stored in binary file format. Similarly, the image
alignment results can be stored in binary files. Once aligned, RGB
imagery is not loaded again. Finally, the reconstructed point cloud
is stored as an additional colour to be attached to previously stored
binary point clouds. Therefore, Fig. 13 compares the latency of binary
and non-binary reading of the first two stages. The latency of reading
the dense reconstruction is equal to the first stage since they load
point clouds of the same dimensionality. The numeric data is shown
in Table 4. Thus, the proposed procedure can be sped up for later
executions in an end-user application.

5. Conclusions and future work

The reconstruction of multiple 3D point clouds is a common task
in surveying work. It may solely include visible imagery, though it
is frequent to include other sensors that shed light on some of the
features of the studied field. For instance, archaeological work in
Remote Sensing can be supported by thermographic imaging. Hence,
the reconstruction of 3D point clouds of further data sources, such as
thermal and multispectral, can be performed by taking advantage of
previous RGB reconstructions. Although all of them can be performed
with commercial software, we identified several drawbacks, including
(1) high response time, (2) low point density and (3) incorrect esti-
mations without further knowledge, e.g., GCPs. The latter drawback
occurs due to the lower dimensionality and higher number of defects
of thermal and multispectral imagery, thus hardening the recognition
of image features.

We proposed to integrate the reconstruction of thermal and multi-
spectral 3D point clouds in an accelerated projection-based methodol-
ogy. To this end, the reconstruction of RGB point clouds was performed
with traditional software. Then, the subsequent reconstructions were
done with much less latency (−69.58% on average in comparison with
the best alternative) and yielded point clouds whose size increased over
140%. Accordingly, improvements on the latency are above >95% if
the response time is normalized according to the point cloud’s size. De-
spite both commercial software and our method using GPU-accelerated
procedures, ours was shown to outperform two widespread solutions in
terms of response time and size.

Still, GPU parallelism was implemented with GLSL, which provides
little flexibility and control of the execution pipeline (e.g., overlapping
11
data transfers and thread logic). Furthermore, it runs over a single
GPU as it is part of a rendering framework. As a future work, the
GPGPU solution could transit to a flexible and multi-GPU framework
such as CUDA. Regarding the explored data, further data sources could
be integrated into the multi-layer point cloud, such as hyperspectral
reflectance. Finally, instead of performing the projection over RGB
point clouds, LiDAR outcome could be used as a dense point cloud
where other data sources are projected.
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Appendix. Numeric and graphic results

See Tables 1–5.
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Table 1
Graphic results of the dense reconstruction of (1) Agisoft Metashape, (2) Pix4Dmapper and (3) our proposed method. Multispectral point clouds are rendered with the GRE band

Configuration Data source Dataset 1 Dataset 2

A. Metashape Thermal

Multispectral

Pix4Dmapper Thermal

Multispectral

Our method Thermal

Multispectral
Table 2
Numeric results of both commercial solutions and proposed configurations of our method in two different thermal datasets. The global response time is split into reading point
cloud (Stage 1), pre-processing (Stage 2) and densification (Stage 3), i.e., generation of a dense point cloud.

Configuration Stage 1 Stage 2 Stage 3 Global latency Normalized latency Point cloud size Aligned images

Thermal Dataset 1 (Forestry)

Pix4Dmapper – 23.76 min 1.13 min 24.89 min 449.08 μs/point 3,325,454 points 98%
Agisoft Metashape – 9.10 min 3.47 min 12.57 min 35.05 μs/point 21,514,286 points 62.95%

Ours - OpenMP, No Sort 1.48 min 0.64 min 9.77 min 11.89 min 6.90 μs/point 100,322,449 points 99.287%
Ours - GPU, No Sort 0.71 min 2.83 min 1.69 μs/point
Ours - GPU, Global Sort 0.546 min 2.666 min 1.594 μs/point

(continued on next page)
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Table 2 (continued).
Configuration Stage 1 Stage 2 Stage 3 Global latency Normalized latency Point cloud size Aligned images

Thermal Dataset 2 (Olive Orchard)

Pix4Dmapper – 13.55 min 0.51 min 14.06 min 388.92 μs/point 2,169,058 points 90%
Agisoft Metashape – 2.80 min 4.37 min 7.17 min 32.79 μs/point 13,117,583 points 99.39%

Ours - OpenMP, No Sort 1.28 min 0.34 min 1.95 min 3.57 min 2.83 μs/point 75,494,967 points 89.75%
Ours - GPU, No Sort 0.217 min 1.837 min 1.459 μs/point
Ours - GPU, Global Sort 0.208 min 1.828 min 1.452 μs/point
Table 3
Continuation of Table 2 for multispectral imagery.

Configuration Stage 1 Stage 2 Stage 3 Global latency Normalized latency Point cloud size Aligned images

Multispectral Dataset 1 (Forestry)

Pix4Dmapper – 58.11 min 8.76 min 66.87 min 398.35 μs/point 10,071,939 points 97%
Agisoft Metashape – 31.22 min 86.64 min 117.86 min 165.49 μs/point 42,731,004 points 67.74%

Ours - OpenMP, No Sort 1.71 min 4.45 min 7.50 min 13.66 min 7.67 μs/point 106,780,612 points 100%
Ours - GPU, No Sort 2.99 min 9.15 min 5.14 μs/point
Ours - GPU, Global Sort 2.42 min 8.58 min 4.82 μs/point

Multispectral Dataset 2 (Olive Orchard)

Pix4Dmapper – 13.3 min 3.5 min 16.8 min 92.56 μs/point 10,889,523 points 100%
Agisoft Metashape – 18.15 min 112.36 min 130.51 min 150.52 μs/point 52,021,396 points 100%

Ours - OpenMP, No Sort 1.67 min 6.69 min 11.19 min 19.55 min 9.32 μs/point 125,857,793 points 99.934%
Ours - GPU, No Sort 2.31 min 10.67 min 5.08 μs/point
Ours - GPU, Global Sort 2.08 min 10.44 min 4.97 μs/point
Table 4
Response time of the first two stages if (1) it is the first load or (2) binary data has already been stored as a result
of a previous load. Stage 1 refers to point cloud reading, whereas Stage 2 involves the image processing prior to the
dense reconstruction.

Dataset Binary First load

Stage 1 Stage 2 Stage 1 Stage 2

(a) Thermal, (i) Forest 0.61 min 0.01 min 1.48 min 0.64 min
(a) Thermal, (ii) Olive orchard 0.52 min 0.01 min 1.28 min 0.34 min
(b) Multispectral, (i) Forest 0.85 min 0.12 min 1.71 min 4.45 min
(b) Multispectral, (ii) Olive orchard 0.73 min 0.06 min 1.67 min 6.69 min
Table 5
Latency of point cloud sorting and reconstruction if the ordering is performed globally or globally plus shuffled into small groups.

Dataset Global sort Shuffled sort (𝑔 ← 32)

Point cloud sort Dense reconstruction Point cloud sort Dense reconstruction

(a) Thermal, (i) Forest 0.071 min 0.500 min 0.076 min 0.473 min
(a) Thermal, (ii) Olive orchard 0.052 min 0.150 min 0.052 min 0.149 min
(b) Multispectral, (i) Forest 0.065 min 2.381 min 0.074 min 2.395 min
(b) Multispectral, (ii) Olive orchard 0.071 min 2.003 min 0.082 min 2.007 min
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