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Several Remarks on Norm Attainment in
Tensor Product Spaces

Abraham Rueda Zoca

Abstract. The aim of this note is to obtain results about when the norm
of a projective tensor product is strongly subdifferentiable. We prove
that if X ̂⊗πY is strongly subdifferentiable and either X or Y has the
metric approximation property then every bounded operator from X to
Y ∗ is compact. We also prove that (�p(I)̂⊗π�q(J))∗ has the w∗-Kadec-
Klee property for every non-empty sets I, J and every 2 < p, q < ∞, ob-
taining in particular that the norm of the space �p(I)̂⊗π�q(J) is strongly
subdifferentiable. This extends several results of Dantas, Kim, Lee and
Mazzitelli. We also find examples of spaces X and Y for which the set
of norm-attaining tensors in X ̂⊗πY is dense but whose complement is
dense too.
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1. Introduction

The study of norm-attaining functionals has been a long-standing topic in
functional analysis because it has been shown to have strong connections with
the structure of the underlying space. Probably the best example of this is
the classical result of James which says that a Banach space X is reflexive if,
and only if, every linear continuous functional attains its norm [16, Corollary
3.56]. Another example is the celebrated result due to Bishop and Phelps,
which says that the set of norm attaining functionals is always dense [16,
Theorem 3.54]. The relevance of norm-attaining elements opened the door,
from the seminal paper of J. Lindenstrauss [24], to study the problem of when
the set of norm-attaining elements is dense for other kind of mappings such
as bounded linear operators [6,24,25], bounded multilinear mappings [1,9],
polynomials [3,5] or Lipschitz mappings [8,18,22].

In the context of bilinear mappings, S. Dantas, S. K. Kim, H. J. Lee and
M. Mazzitelli recently considered a new property related to norm-attainment:
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according to [14, Definition 2.1], given two Banach spaces X,Y , we say that
the pair (X,Y ) has the Lp,p for bilinear mappings if, given ε > 0 and (x, y) ∈
SX × SY , there exists η > 0 (which depends on ε and on the pair (x, y))
satisfying that if a bilinear mapping B : X × Y −→ R with ‖B‖ = 1 satisfies
B(x, y) > 1 − η then there exists another bilinear mapping G : X × Y −→ R

with ‖G‖ = 1, G(x, y) = 1 and ‖B − G‖ < ε.

The interest on this property is double. On the one hand, this defini-
tion is a natural generalisation of the Bishop-Phelps-Bollobás property for
bilinear mapping studied, for instance, in [2]. On the other hand, it is a nat-
ural version for bilinear mapping of the classical characterisation of strongly
subdifferentiable norms (see the formal definition in Sect. 2) given in [17]: a
Banach space X is strongly subdifferentiable if, and only if, for every ε > 0
and x ∈ SX there exists η > 0 satisfying that if y∗ ∈ SX∗ verifies y∗(x) > 1−η
then there exists x∗ ∈ SX∗ with x∗(x) = 1 and ‖x∗ − y∗‖ < ε.

Taking into account the isometric isomorphism B(X × Y ) = (X ̂⊗πY )∗

coming from classical tensor product theory (see below), it is natural to think
that the property Lp,p for a pair (X,Y ) may be related to the strong subd-
ifferentiability of the norm of X ̂⊗πY . It turns out that if X ̂⊗πY is strongly
subdifferentiable then the pair (X,Y ) has the Lp,p for bilinear mappings (see
e.g. [11, Proposition 4.2]) but the converse is not true [14, Theorem 2.7] as
�2̂⊗π�2 is a counterexample.

The aim of Sect. 2 is to go further in showing that strong subdifferen-
tiability is very restrictive in a projective tensor product. Indeed, we prove
in Theorem 2.1 that given two Banach spaces X and Y such that X or Y
has the metric approximation property, if X ̂⊗πY is strongly subdifferentiable
then every bounded operator from X to Y ∗ must be compact. This explain
why �2̂⊗π�2 is not strongly subdifferentiable and shows that this property
must be seeked in a restrictive class of projective tensor product spaces. In
the search of positive examples, we look at the known result that �p ̂⊗π�q is
strongly subdifferentiable if 2 < p, q < ∞ [14, Corollary 2.8]. Indeed, this
result relies on a nice one of S. J. Dilworth and D. Kutzarova [15, Theorem
4], which asserts that, for 2 < p, q < ∞, the space (�p ̂⊗π�q)∗ enjoys the w∗-
Kadec-Klee property (see the definition before Theorem 2.3). Our next aim
in Theorem 2.3 is to extend the above-mentioned result to arbitrary density
characters by proving that for 2 < p, q < ∞ the space (�p(I)̂⊗π�q(J))∗ has
the w∗-Kadec-Klee property obtaining, as a consequence, that �p(I)̂⊗π�q(J)
is strongly subdifferentiable. As a consequence of this result, we are able to
prove that the pair (�p(I), �q(J)) has the Lp,p for bilinear mappings, which
improves [14, Theorem 2.7 (a)].

In Sect. 3 we consider a quite recent concept of norm attainment related
to nuclear operators (see [12, Sect. 2.3]). According to [12, Definition 2.1],
an element z ∈ X ̂⊗πY is said attain its projective norm if there exists a
sequence (xn) in X and (yn) in Y such that ‖u‖ =

∑∞
n=1 ‖xn‖‖yn‖ and

u =
∑∞

n=1 xn ⊗ yn. We denote NAπ(X ̂⊗πY ) the set of those z which attains
its nuclear norm.
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In the successive papers [10,12] a lot of examples of Banach spaces
X and Y are exhibited so that NAπ(X ̂⊗πY ) is dense in X ̂⊗πY . It is also
known that there are examples where NAπ(X ̂⊗πY ) �= X ̂⊗πY , and even it
is known that NAπ(X ̂⊗πY ) may fail to be dense (see [12, Theorem 5.1]).
A natural question in this line is whether (X ̂⊗πY )\ NAπ(X ̂⊗πY ) may be
dense. This can be compared with the study of when the non-norm attaining
linear functionals may be dense in a Banach space, a problem which has been
considered in the literature (as a matter of example, let us point out that in
[4] it is proved that every non-reflexive Banach space admits an equivalent
renorming such that the set of non norm-attaining linear functionals is dense).

In Theorem 3.1 we prove that if X is an infinite dimensional Banach
space whose norm depends upon finitely many coordinates and Y is an infinite
dimensional Hilbert space then NAπ(X ̂⊗πY ) is contained in X ⊗ Y . As a
consequence, we get in Theorem 3.3 many examples of X and Y for which
NAπ(X ̂⊗πY ) and its complement are dense.

Terminology: We will consider for simplicity real Banach spaces. We
denote by BX and SX the closed unit ball and the unit sphere, respectively,
of the Banach space X. We denote by L(X,Y ) the set of all bounded linear
operators from X into Y . If Y = R, then L(X,R) is denoted by X∗, the
topological dual space of X. We denote by B(X × Y ) the Banach space of
bounded bilinear mappings from X×Y into R. It is well-known that the space
B(X × Y ) and L(X,Y ∗) are isometrically isomorphic as Banach spaces. We
denote by K(X,Y ) the set of all compact operators and by F (X,Y ) the space
of all operators of finite-rank from X into Y .

The projective tensor product of X and Y , denoted by X ̂⊗πY , is the
completion of the algebraic tensor product X ⊗ Y endowed with the norm

‖z‖π := inf

{

n
∑

i=1

‖xi‖‖yi‖ : z =
n

∑

i=1

xi ⊗ yi

}

,

where the infimum is taken over all such representations of z. The reason
for taking completion is that X ⊗ Y endowed with the projective norm is
complete if, and only if, either X or Y is finite dimensional (see [27, P.43,
Exercises 2.4 and 2.5]).

It is well-known that ‖x ⊗ y‖π = ‖x‖‖y‖ for every x ∈ X, y ∈ Y , and
the closed unit ball of X ̂⊗πY is the closed convex hull of the set BX ⊗BY =
{x ⊗ y : x ∈ BX , y ∈ BY }. Throughout the paper, we will make use of both
formulas indistinctly, without any explicit reference.

Observe the action of an operator G : X −→ Y ∗ as a linear functional
on X ̂⊗πY is given by

G

(

k
∑

n=1

xn ⊗ yn

)

=
k

∑

n=1

G(xn)(yn),

for every
∑k

n=1 xn⊗yn ∈ X⊗Y . This action establishes a linear isometry from
L(X,Y ∗) onto (X ̂⊗πY )∗ (see e.g. [27, Theorem 2.9]). All along this paper,
we will use the isometric identification (X ̂⊗πY )∗ = L(X,Y ∗) = B(X × Y )
without any explicit mention.
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From the equality BX ̂⊗πY = co(BX ⊗ BY ) and by the weak-star com-
pactness of BL(X,Y ∗) it is not difficult to prove that a bounded net Ts ∈
L(X,Y ∗) converges in the w∗ topology of L(X,Y ∗) = (X ̂⊗πY )∗ to some
T ∈ L(X,Y ∗) if, and only if, Ts(x)(y) = Ts(x ⊗ y) → T (x ⊗ y) = T (x)(y) for
every x ∈ BX and y ∈ BY .

Observe that, given two Banach spaces X and Y , the Banach space X
can be seen as an isometric subspace of X ̂⊗πY . Indeed, given y0 ∈ SY , the
bounded operator

X −→ X ̂⊗πY
x �−→ x ⊗ y0

is an isometry.
Observe also that given two bounded operators T : X −→ Z and S :

Y −→ W , we can define an operator T ⊗ S : X ̂⊗πY −→ Z ̂⊗πW by the
action (T ⊗ S)(x ⊗ y) := T (x) ⊗ S(y) for x ∈ X and y ∈ Y . It follows that
‖T ⊗ S‖ = ‖T‖‖S‖.

As an easy consequence, if Z ⊆ X is a 1-complemented subspace, then
Z ̂⊗πY is a 1-complemented subspace of X ̂⊗πY in the natural way (see [27,
Proposition 2.4] for details).

Recall that a Banach space X has the metric approximation property
(MAP) if there exists a net (Sα) in F (X,X) with ‖Sα‖ ≤ 1 for every α and
such that Sα(x) → x for all x ∈ X.

2. On the Strong Subdifferentiability

Recall that the norm of a Banach space X is said to be strongly subdifferen-
tiable (SSD) if, for every x ∈ SX , the one-sided limit

lim
t→0+

‖x + th‖ − ‖x‖
t

exists uniformly for h ∈ SX . Observe that the norm of a Banach space X is
SSD if, and only if, for every ε > 0 and x ∈ SX there exists η > 0 satisfying
that if y∗ ∈ SX∗ verifies y∗(x) > 1 − η then there exists x∗ ∈ SX∗ with
x∗(x) = 1 and ‖x∗ − y∗‖ < ε. See [17,20] and references therein for examples
and background on the topic.

Let X,Y be two Banach spaces. Observe that to X ̂⊗πY being SSD then
X and Y must be SSD because the property of being SSD is inherited by
subspaces (it is clear and explicitly mentioned in [17, Section 2]) and because
X and Y are isometrically isomorphic to a subspace of X ̂⊗πY . However,
this necessary condition is far from being enough. Indeed, in [14, Corollary
2.8] it is observed that �p ̂⊗π�q can not be SSD if 1

p + 1
q ≥ 1 as �p ̂⊗π�q

contains an isometric copies of �1 and, in particular, �p ̂⊗π�q is not Asplund
and consequently it can not be SSD [20, Theorem 2 (i)].

The following result widely generalises the above-mentioned result and
exhibits a structural necessary condition for a projective tensor product to
be SSD.
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Theorem 2.1. Let X and Y be two Banach spaces. Assume that either X or
Y has the MAP. If X ̂⊗πY is SSD then every operator T : X −→ Y ∗ is
compact.

In particular, if X and Y are reflexive, if X ̂⊗πY is SDD then X ̂⊗πY
is reflexive.

Proof. Since X ̂⊗πY is SSD, then L(X,Y ∗) = (X ̂⊗πY )∗ has no proper 1-
norming closed subspace [20, Lemma 3]. Since X or Y has the MAP we get
that K(X,Y ∗) is 1-norming for X ̂⊗πY (see e.g. [23, Proposition 2.3]) and it
is closed. By the above, we derive that L(X,Y ∗) = K(X,Y ∗), as desired.

The particular case of X and Y being reflexive follows from a well-
known characterisation of reflexivity of projective tensor product (see e.g.
[27, Theorem 4.21]). �

This result recovers the fact that �p ̂⊗π�q fails to be SSD when �p ̂⊗π�q

is not reflexive. Indeed, in this case we have the formal identity i : �p −→ �q∗

where the above theorem applies. However, we have more examples.

Corollary 2.2. Let X be an infinite dimensional Banach space with the MAP.
For every infinite-dimensional subspace Y of X we have that Y ̂⊗πX∗ is not
SSD. In particular, X ̂⊗πX∗ is not SSD.

Proof. Taking the inclusion operator i : Y −→ X, which is not compact since
i is an isometry and Y is infinite dimensional, Theorem 2.1 applies. �

Notice that Theorem 2.1 reveals that SSD on a projective tensor prod-
uct X ̂⊗πY impose severe restrictions on the space L(X,Y ∗) under the MAP
assumption, which explains the big absense of examples of SSD projective ten-
sor product spaces. Let us notice, however, that in the case when L(X,Y ∗) =
K(X,Y ∗), still few examples are known to be SSD. The reason is that the
characterisation of the SSD implies the necessity of dealing with the pertur-
bation of operators, which is difficult even for finite-rank operators. Because
of that, in practice, the existing examples of SSD projective tensor product
spaces have been obtained by indirect arguments.

To the best of the author’s knowledge, the only known results about
SSD in projective tensor products are the following ones.
(1) �N

1
̂⊗πX is SSD if, and only if, X is SSD [11, Theorem C]. This result

follows because in this case �N
1

̂⊗πX = �N
1 (X) isometrically and by the

characterisation of SSD norms in �1-sums of spaces given in [17, Propo-
sition 2.2].

(2) �p ̂⊗π�q is SSD if 2 < p, q < ∞ [14, Corollary 2.8 (a)]. This result
follows since (�p ̂⊗π�q)∗ has the w∗-Kadec-Klee property in this case
[14, Theorem 4] and because, if X is a reflexive Banach space such that
X∗ has the w∗-Kadec-Klee property then the norm of X is SSD (see
the proof of [14, Theorem 2.7]).
Our aim is to extend the above result to arbitrary �p(I)̂⊗π�q(J) for

2 < p, q < ∞. This will be done by proving that the dual has the w∗-Kadec-
Klee property, which will improve [15, Theorem 4] to the non-separable case.
To do so, let us introduce a bit of notation. Following [15, Section 1], we
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say that the dual of a Banach space X has the w∗-Kadec-Klee property if
whenever (x∗

n) is a sequence in SX∗ satisfying that x∗
n → x∗ ∈ SX∗ then

‖x∗
n − x∗‖ → 0. See [15] for background and examples of spaces with the

w∗-Kadec-Klee property.
Our interest in the w∗-Kadec-Klee property comes from (the proof of)

[14, Theorem 2.7], where it is proved that if X is a Banach space such that
X∗ has the w∗-Kadec-Klee property then the norm of X is SSD.

Theorem 2.3. Let 2 < p, q < ∞. For every pair of non-empty sets I and
J the space (�p(I)̂⊗π�q(J))∗ has the w∗-Kadec-Klee property. In particular,
�p(I)̂⊗π�q(J) is SSD.

For the proof, we need the following lemma.

Lemma 2.4. Let X be a Banach space and Y ⊆ X be a 1-complemented
subspace. If X∗ has the w∗-Kadec-Klee property, so does Y ∗.

Proof. Let {y∗
n} be a sequence in SY ∗ such that {y∗

n} → y∗ ∈ SY ∗ in the
w∗-topology. Let us prove that ‖y∗

n −y∗‖ → 0. To this end, take P : X −→ Y
be a norm-one operator with P (y) = y for every y ∈ Y ⊆ X. Since P ∗ is
w∗ − w∗ continuous we derive that P ∗(y∗

n) → P ∗(y∗) in the w∗-topology of
X∗. Moreover, we claim that P ∗(y∗

n), P ∗(y∗) ∈ SX∗ for every n ∈ N. Let us
prove for instance that ‖P ∗(y∗)‖ = 1. To this end take ε > 0 and take y ∈ SY

satisfying that y∗(y) > 1 − ε. Now we have

1 − ε < y∗(y) = y∗(P (y)) = P ∗(y∗)(y) ≤ ‖P ∗(y∗)‖.

Since ε > 0 was arbitrary we conclude that P ∗(y∗) ∈ SY ∗ .
Since X∗ has the w∗-Kadec-Klee property we get that ‖P ∗(y∗

n)−P ∗(y∗)
‖ → 0. But, given n ∈ N, we have

‖P ∗(y∗
n) − P ∗(y∗)‖ = sup

x∈BX

‖(y∗
n − y∗)(P (x))‖

= sup
y∈BY

‖(y∗
n − y∗)(y)‖ = ‖y∗

n − y∗‖,

from where ‖y∗
n − y∗‖ → 0 and the result follows. �

Now we are ready to provide the pending proof.

Proof of Theorem 2.3. Let us start with the case that both I and J are in-
finite. Take a sequence Tn ∈ (�p(I)̂⊗π�q(J))∗ = L(�p(I), �q∗(J)) such that
‖Tn‖ = 1 for every n and Tn → T ∈ SL(�p(I),�q∗ (J)) in the w∗-topology of
(X ̂⊗πY )∗. Let us prove that ‖Tn − T‖ → 0.

To this end, we can assume with no loss of generality that Tn is finite-
rank for every n ∈ N because L(�p(I), �q∗(J)) = K(�p(I), �q∗(J)) [26, The-
orem A2] and then finite-rank operators are norm dense since �p(I) has the
MAP and [27, Proposition 4.12] applies.

Hence we can write Tn :=
∑pn

k=1 x∗
k,n ⊗ y∗

k,n for certain pn ∈ N, x∗
k,n ∈

�p∗(I) and y∗
k,n ∈ �q∗(J). Since every x∗

k,n and y∗
k,n have countable support

we can find countable subsets N ⊆ I and M ⊆ J such that supp(x∗
k,n) ⊆

N and supp(y∗
k,n) ⊆ M holds for every n ∈ N and k ∈ {1, . . . , pn}. Set
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i : �p(N) ↪→ �p(I) and j : �q(M) ↪→ �q(J) the natural inclusion opera-
tors, and set P : �p(I) −→ �p(N) and Q : �q(J) −→ �q(M) the canonical
(norm-one) projections. Given n ∈ N observe that, since supp(x∗

k,n) ⊆ N

and supp(yk,n) ⊆ M , we have that Tn(x ⊗ y) = Tn(i(P (x)) ⊗ j(Q(y))). Since
Tn → T in the w∗ topology we conclude that T (x⊗y) = T (i(P (x))⊗i(Q(y)))
for every x ∈ �p(I) and y ∈ �q(J). Now define Gn := Tn ◦ (i ⊗ j) and
T := T ◦ (i ⊗ j), which are elements of (�p(N)̂⊗π�q(M))∗.

We claim that Gn → G in the w∗ topology and that ‖Gn‖ = ‖G‖ = 1
for every n. Let us prove first that G is norm-one (the case of Gn is similar).
On the one hand, given x ∈ S�p(N), y ∈ S�q(M) we have

G(x ⊗ y) = T (i(x) ⊗ j(y)) ≤ ‖T‖‖i(x) ⊗ j(y)‖ = 1

since ‖T‖ = 1 and ‖i ⊗ j‖ = ‖i‖‖j‖ = 1. For the reverse inequality take
ε > 0 and, since ‖T‖ = 1, we can find x ∈ S�p(I) and y ∈ S�q(J) such that
T (x ⊗ y) > 1 − ε. Since T (x ⊗ y) = T (i(P (x)) ⊗ j(Q(y))) we have that

1 − ε < T (x ⊗ y) = T (i(P (x)) ⊗ j(Q(y))) = G(P (x) ⊗ Q(y))

≤ ‖G‖‖P ⊗ Q‖‖x ⊗ y‖
= ‖G‖.

Since ε > 0 was arbitrary we conclude that ‖G‖ = 1. The same argument
proves that ‖Gn‖ = 1 holds for every n ∈ N.

Now let us prove that Gn → G in the w∗-topology of (�p(N)̂⊗π�q(M))∗.
Since the sequence is bounded, we have that Gn → G weakly-star if, and
only if, Gn(x⊗ y) → G(x⊗ y) for x ∈ B�p(N) and y ∈ B�q(M). Take arbitrary
x ∈ B�p(N) and y ∈ B�q(M). Observe that

Gn(x ⊗ y) = Tn(i(x) ⊗ j(y)) → T (i(x) ⊗ j(y)) = G(x ⊗ y)

where the above convergence follows since Tn → T in the w∗-topology of
(�p(I)̂⊗π�q(J))∗. This proves that Gn → G in the w∗-topology of
(�p(N)̂⊗π�q(M))∗, as desired.

Now we have that �p(N)̂⊗π�q(M) is isometrically isomorphic to �p ̂⊗π�q

since N and M are countable. Consequently, (�p(N)̂⊗π�q(M))∗ has the w∗-
Kadec-Klee property by [15, Theorem 4], so ‖Gn −G‖ → 0. This implies that
‖Tn − T‖ → 0. Indeed, given n ∈ N and x ∈ B�p(I), y ∈ B�q(J) we have that

(Tn − T )(x ⊗ y) = (Tn − T )(i(P (x)) ⊗ j(Q(y)))

= (Tn − T )(i ⊗ j)(P (x) ⊗ Q(y))

= (Gn − G)(P (x) ⊗ Q(y))

≤ ‖Gn − G‖‖P (x) ⊗ Q(y)‖
≤ ‖Gn − G‖.

Since x, y were arbitrary we conclude that ‖Tn −T‖ ≤ ‖Gn −G‖, from where
we conclude that Tn → T in the norm topology, which finishes the proof of
the cases where both I and J is infinite.

To finish the proof we assume that either I or J is finite (observe that the
case that I and J are finite is trivial since �p(I)̂⊗π�q(J) is finite dimensional in
this case). Consequently, assume with no loss of generality that I is finite and
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J is infinite. We can assume with no loss of generality that I = {1, . . . , n} ⊆ N

where n = dim(�p(I)).
Observe that �p(I) is a norm-one complemented subspace of �p. In par-

ticular, �p(I)̂⊗π�q(J) is a norm-one complemented subspace of �p ̂⊗π�q(J) =
�p(N)̂⊗π�q(J). Since the latter space has the w∗-Kadec-Klee property since
J is assumed to be infinite, the result follows by Lemma 2.4.

Observe that the consequence on the SSD follows since �p(I)̂⊗π�q(J)
is reflexive since every bounded operator �p(I) −→ �q(J)∗ is compact [26,
Theorem A2] and by [27, Theorem 4.21]. �

Following the notation of [14, Definition 2.1], given two Banach spaces
X,Y , we say that the pair (X,Y ) has the Lp,p for bilinear mappings if, given
ε > 0 and (x, y) ∈ SX × SY , there exists η > 0 (which depends on ε and on
the pair (x, y)) satisfying that if a bilinear mapping B : X × Y −→ R with
‖B‖ = 1 satisfies B(x, y) > 1 − η then there exists another bilinear mapping
G : X × Y −→ R with ‖G‖ = 1, G(x, y) = 1 and ‖B − G‖ < ε.

It is clear, and explicitly proved in [11, Proposition 4.2], that if X ̂⊗πY
is SSD then the pair (X,Y ) has the Lp,p for bilinear mappings.

As an immediate application of Theorem 2.3 we obtain the following
corollary, which improves [14, Theorem 2.7 (a)].

Corollary 2.5. Let 2 < p, q < ∞ and I, J be two non-empty sets. Then the
pair (�p(I), �q(J)) has the Lp,p for bilinear mappings.

3. Tensors Which Do Not Attain its Norm

One consequence of the isometric identification �1(I)̂⊗πX = �1(I,X) is [27,
Proposition 2.8], which establishes that, given two Banach spaces X and Y ,
then for every z ∈ X ̂⊗πY and every ε > 0, there exist sequences (xn) in X
and (yn) in Y with u =

∑∞
n=1 xn ⊗yn (where the above convergence is in the

norm topology of X ̂⊗πY ) and such that ‖z‖ ≤ ∑∞
n=1 ‖xn‖‖yn‖ ≤ ‖z‖ + ε.

Consequently, it follows that

‖z‖ = inf

{ ∞
∑

n=1

‖xn‖‖yn‖ :
∞
∑

n=1

‖xn‖‖yn‖ < ∞, u =
∞
∑

n=1

xn ⊗ yn

}

where the infimum is taken over all the possible representations of u as limit
of a series in the above form.

According to [12, Definition 2.1], an element z ∈ X ̂⊗πY is said attain its
projective norm if the above infimum is actually a minimum, that is, if there
exists a sequence (xn) in X and (yn) in Y such that ‖u‖ =

∑∞
n=1 ‖xn‖‖yn‖

and u =
∑∞

n=1 xn ⊗ yn. We denote NAπ(X ̂⊗πY ) the set of those z which
attains its nuclear norm.

In the papers [10,12] an intensive study of the structure of NAπ(X ̂⊗πY )
is done in connection of how big can this set be. For instance, it is known
that NAπ(X ̂⊗πY ) is (norm) dense in X ̂⊗πY if X and Y are dual spaces
with the Radon-Nikodym property and one of them has the approximation
property [10, Theorem 4.6] or in the classical Banach spaces [12, Example
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4.12], but there are examples of Banach spaces X and Y where NAπ(X ̂⊗πY )
is not dense [12, Theorem 5.1]. It is also known that there are examples of X
and Y where NAπ(X ̂⊗πY ) = X ̂⊗πY like X,Y finite dimensional, X = �1(I)
and Y any Banach space, X a finite dimensional polyhedral and Y any dual
Banach space or X = Y being a complex Hilbert space (see [12, Propositions
3.5, 3.6 and 3.8] and [10, Theorem 4.1]).

In general, little is known about when a particular element z ∈ X ̂⊗πY
does (or does not) attain its nuclear norm, and a manifestation of this is that,
in all the examples X ̂⊗πY where there exists an element z not attaining its
projective norm, no explicit description of such z is given and the conclusion
is obtained by an indirect argument like an argument of non-density of norm-
attaining bilinear mapping [12, Example 3.12 (b), (c) and (d)] or the existence
of a bilinear form which attains its norm as a functional on X ̂⊗πY but which
does not attains its norm as a bilinear mapping [12, Example 3.12 (a)].

In the following, we will exhibit examples of tensor product spaces
for which the norm attaining are finite linear combination of basic ten-
sors. For the establishment of the theorem we need a bit of notation. Recall
that the norm of a Banach space X is said to locally depend upon finitely
many coordinates if for every x ∈ X \ {0}, there exists ε > 0, a subset
{f1, . . . , fN} ⊆ X∗ and a continuous function ϕ : RN −→ R satisfying that
‖y‖ = ϕ(f1(y), . . . , fN (y)) for y ∈ X with ‖y − x‖ < ε.

Clearly, this property is inherited by closed subspaces. We refer to [19,
21] and references therein for background. For instance, closed subspaces
of c0 have this property [17, Proposition III.3]. Conversely, every infinite
dimensional Banach space whose norm locally depends upon finitely many
coordinates contains an isomorphic copy of c0 [19, Corollary IV.5].

Now we are ready to present the following theorem.

Theorem 3.1. Let X be an infinite dimensional Banach space whose norm
depends upon finitely many coordinates and let Y be an infinite dimensional
Hilbert space. Then

NAπ(X ̂⊗πY ) ⊆ X ⊗ Y.

In particular, there are tensors in X ̂⊗πY which do not attain its projective
norm.

Proof. Take z ∈ NAπ(X ̂⊗πY ) with ‖z‖ = 1, and let us prove that we can
write z as a finite sum of basic tensors. To this end, since z ∈ NAπ(X ̂⊗πY ) we
can write z =

∑∞
n=1 λnxn ⊗ yn for suitable xn ∈ SX , yn ∈ SY and λn ∈]0, 1]

for every n ∈ N with
∑∞

n=1 λn = 1. Take T ∈ SL(X,Y ∗) with T (z) = 1. A
convexity argument implies that T (xn)(yn) = 1 for every n ∈ N. Observe
that, since Y is a Hilbert space we have, under the natural identification
Y = Y ∗, that T (xn)(yn) = 1 implies yn = T (xn) ∈ T (X). On the other
hand, since Y ∗ is strictly convex, T attains its norm and the norm of X
depends upon finitely many coordinates we conclude that T has a finite rank
[25, Lemma 2.8]. This implies that yn lives in the finite-dimensional subspace
T (X) of Y . Let us conclude form here the desired result.
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Take an orthonormal basis {v1, . . . , vq} of the Hilbert space T (X). Since
yn ∈ T (X) we can write yn :=

∑q
i=1 αn

i vi with ‖yn‖2 = 1 =
∑n

i=1(α
n
i )2. By

Hölder inequality we conclude that

q
∑

i=1

|αn
i | ≤ √

q

(

q
∑

i=1

(αn
i )2

) 1
2

=
√

q

holds for every n ∈ N. Now, given k ∈ N, we have
k

∑

n=1

λnxn ⊗ yn =
k

∑

n=1

λnxn ⊗
(

q
∑

i=1

αn
i vi

)

=
q

∑

i=1

(

k
∑

n=1

αn
i λnxn

)

⊗ vi.

Observe that the above sequence in k ∈ N converges to z when k → ∞. On
the other hand, given 1 ≤ i ≤ q we have that the sequence

∑k
n=1 αn

i λnxn in
k converges in norm to some element of X. To show this it is enough, by the
completeness of X, to prove that the series is absolutely convergent. But this
is immediate since, given k ∈ N, we have

k
∑

n=1

‖αn
i λnxn‖ =

k
∑

n=1

|αn
i |λn‖xn‖

=
k

∑

n=1

|αn
i |λn ≤ √

q

k
∑

n=1

λn ≤ √
q

∞
∑

n=1

λn =
√

q.

To shorten, let us write ak
i :=

∑k
n=1 αn

i λnxn. We know that ak
i → ai in norm

for some ai ∈ X. It is immediate that ak
i ⊗ vi → ai ⊗ vi in the norm topology

of X ̂⊗πY . By linearity of the limit we have that
∑q

i=1 ak
i ⊗vi → ∑q

i=1 ai ⊗vi.
However, the above sequence converges to z. By the uniqueness of limit we
conclude

z =
q

∑

i=1

ai ⊗ vi,

which proves that z ∈ X ⊗ Y , as desired.
To conclude the last part, observe that the projective norm is not com-

plete on X ⊗ Y since X and Y are infinite dimensional. Consequently, there
exists z ∈ X ̂⊗πY \X ⊗Y . By the above, z can not attain its projective norm.

�

Remark 3.2. (1) In the hypothesis of Theorem 3.1 it is easy to construct
elements which do not attain its projective norm. For instance, take
{en} ⊆ Y an infinite orthonormal set and take {xn} ⊆ SX being linearly
independent. Then z :=

∑∞
n=1

1
2n xn ⊗ en does not attain its projective

norm because it can not be written as a finite sum of basic tensors.
Indeed, observe that since Y is a Hilbert space, we have that X ̂⊗πY
is precisely the space of nuclear operators N(Y,X) (see [27, Corollary
4.8] for details). If we see z an operator Tz : Y −→ X by T (y) :=
∑∞

n=1〈en, y〉xn, we have that T is not a finite rank operator since T (X)
contains T (en) = 1

2n xn, so {xn : n ∈ N} ⊆ T (X), which implies that
T (X) is infinite dimensional.
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(2) In [10, Theorem 4.2] it is proven that if X is a finite dimensional polyhe-
dral space and Y is a dual space, then NAπ(X ̂⊗πY ) = X ̂⊗πY . Observe
that this result is false if X is infinite dimensional, as c0̂⊗π�2 shows by
Theorem 3.1 and by the fact that there are elements in c0̂⊗π�2 \ c0 ⊗ �2.

(3) Observe that given an infinite dimensional Banach space X whose norm
depends upon finitely many coordinates and given an infinite dimen-
sional Hilbert space Y , Theorem 3.1 reveals that X ̂⊗πY \ NAπ(X ̂⊗πY )
is non-empty. However, it follows that the set of non-norm attaining ele-
ments is even dense in X ̂⊗πY . In order to prove it, take z ∈ X ̂⊗πY , and
let us approximate it by non-norm attaining elements. If z ∈ X ̂⊗πY \
X ⊗ Y (i.e. if z can not be written as finite sums of basic tensors) then
z /∈ NAπ(X ̂⊗πY ) and there is nothing to prove. Otherwise, if z ∈ X⊗Y ,
we can select v ∈ X ̂⊗πY \X ⊗Y since X and Y are infinite dimensional
Banach space. Then z + 1

nv → z. Moreover, z + 1
nv does not attain its

norm for every n because z + 1
nv /∈ X ⊗ Y . Since z was arbitrary we

conclude that (X ̂⊗πY )\ NAπ(X ̂⊗πY ) is dense.

The above point (3) in Remark 3.2 together with [12, Theorem 4.8]
allows us to obtain a number of spaces X ̂⊗πY where both NAπ(X ̂⊗πY ) and
X ̂⊗πY \ NAπ(X ̂⊗πY ) are dense. Before that, let us introduce the following
notation from [7]: A Banach space X is said to have the metric π-property if
given ε > 0 and {x1, . . . , xn} ⊆ SX a finite collection in the sphere, then we
can find a finite dimensional 1-complemented subspace M ⊆ X such that for
each i ∈ {1, . . . , n} there exists x′

i ∈ M with ‖xi − x′
i‖ < ε. See [12, Example

4.12] for examples of Banach spaces with the metric π-property. Observe that
if X and Y have the metric π-property, then NAπ(X ̂⊗πY ) is dense in X ̂⊗πY
by [12, Theorem 4.8].

Theorem 3.3. Let X be a Banach space with the metric π-property and whose
norm locally depends upon finitely many coordinates (in particular X = c0(I))
and Y be a Hilbert space. Then both NAπ(X ̂⊗πY ) and X ̂⊗πY \ NAπ(X ̂⊗πY )
are dense in X ̂⊗πY .
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for sharing an unpublished version of the preprint [11]. He also thanks L.
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