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Abstract 

In infectious diseases, cross-species interactions are important determinants of physiology 

and evolution. In applied infection biology, they help us understand disease mechanisms and 

find targets for therapy. Quantification of gene co-expression of the two organisms can identify 

system-wide host-pathogen interactions, for example, in malaria. Investigating mRNA 

abundance provides insights into cell and tissue-specific gene expression changes. RNA-

sequencing (RNA-seq) has emerged as a standard high-throughput method to quantify mRNA 

abundance. The purposeful sequencing of host and pathogen has been termed “dual RNA-

sequencing”. 

Malaria is one of the most thoroughly studied parasitic diseases caused by a eukaryote, 

making an abundance of RNA-seq data sets publicly available. Authors either perform dual 

RNA-seq to study the host and the parasite simultaneously or acquire contaminant sequencing 

reads from the non-target organism. In this study, I performed a meta-analysis using these 

two kinds of public malaria RNA-seq data sets to infer host-parasite interactions using 

correlated gene expression. Rodent and non-human primate models have been established 

to study malaria. Here I included RNA-seq studies of Homo sapiens, Mus musculus and 

Macaca mulatta as hosts and their corresponding Plasmodium parasites. I used single-copy 

orthologous genes to generate a repertoire of interactions in human malaria as well as in the 

model systems. 

I found 63 malaria RNA-seq studies for this meta-analysis. The overlap of host-parasite 

interactions was independent of the proportion of organism-specific reads. I concatenated 

sequencing runs from Plasmodium stage-specific studies to infer interactions for the blood 

and the liver stages. This approach reduced the number of interactions from a possible total 

of ~56 million to a more relevant and smaller search space. 

Gene-level centrality in the blood stage networks was able to explain Plasmodium gene 

essentiality. The network established from the concatenated data set predicted gene 

essentiality better than the individual studies, indicating a benefit of the meta-analysis. In this 

network, immune marker genes for neutrophils and monocytes were over-represented, 

suggesting an abundance of phagocytic and respiratory burst-related immune responses. The 
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liver stage analysis revealed parasite genes with core functions that are also important in the 

blood stage. I obtained linked host and parasite processes from starting at early stages until 

the late developmental stages during liver infection. I found linked host and parasite processes 

that are common to the two stages, for example, parasite cell gliding, invasion and calcium 

homeostasis and host cell adhesion, responses to hypoxia and immune responses. Along with 

such known linked processes, I highlighted possibly relevant and previously unknown 

interactions. 

In this project, I demonstrated that a meta-analysis of public data sets can recover previously 

unexplored information. This approach was agnostic to original experimental conditions, which 

are difficult to fully account for in a meta-analysis. In spite of that, I inferred host-parasite 

interactions and broader biological processes relevant to the disease. This principle can be 

applied to other disease systems to understand disease mechanisms to expand repertoires of 

drug and vaccine targets.  

 

Keywords:  Plasmodium, Transcriptomics, Host-parasite interactions, Meta-analysis, Dual 

RNA-sequencing  
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Zusammenfassung       

In Infektionskrankheiten sind zwischenartliche Interaktionen wichtige Determinanten von 

Physiologie und Evolution. In der angewandten Infektionsbiologie helfen sie uns, 

Krankheitsmechanismen zu verstehen und Ziele für die Therapie zu finden. Die 

Quantifizierung der Koexpression von Genen beider Organismen kann systemweite Wirt-

Pathogen-Wechselwirkungen aufzeigen, z. B. bei Malaria. Die Untersuchung der mRNA-

Abundanz gibt Aufschluss über zell- und gewebespezifische Veränderungen der 

Genexpression. Die RNA-Sequenzierung (RNA-seq) hat sich als Standard-

Hochdurchsatzmethode zur Quantifizierung der mRNA-Abundanz etabliert. Die gezielte 

Sequenzierung von Wirt und Erreger wird als "duale RNA-Sequenzierung" bezeichnet. 

Malaria ist eine der am gründlichsten untersuchten parasitären Krankheiten, die von einem 

Eukaryoten verursacht wird, so dass eine Fülle von RNA-seq-Datensätzen öffentlich 

zugänglich ist. Die Autoren führen entweder duale RNA-seq durch, um den Wirt und den 

Parasiten gleichzeitig zu untersuchen, oder sie gewinnen kontaminierende Sequenzierungs-

Reads aus dem Nicht-Zielorganismus. In dieser Studie habe ich eine Meta-Analyse 

durchgeführt, bei der diese beiden Arten von öffentlichen Malaria-RNA-seq-Datensätzen 

verwendet wurden, um anhand der korrelierten Genexpression auf Wirt-Parasit-Interaktionen 

zu schließen. Zur Untersuchung von Malaria wurden Modelle für Nagetiere und 

nichtmenschliche Primaten entwickelt. Hier habe ich RNA-seq-Studien von Homo sapiens, 

Mus musculus und Macaca mulatta als Wirte und ihre entsprechenden Plasmodium-Parasiten 

einbezogen. Ich verwendete orthologe Gene in Einzelkopie, um ein Repertoire an 

Interaktionen in der menschlichen Malaria und in den Modellsystemen zu erstellen. 

Für diese Meta-Analyse habe ich 63 Malaria-RNA-seq-Studien gefunden. Die Überlappung 

der Wirt-Parasit-Interaktionen war unabhängig vom Anteil der organismusspezifischen Reads. 

Ich habe Sequenzierungsläufe aus Plasmodium-Stadien-spezifischen Studien miteinander 

verknüpft, um Interaktionen für die Blut- und Leberstadien abzuleiten. Dieser Ansatz 

reduzierte die Anzahl der Interaktionen von einer möglichen Gesamtzahl von ~56 Millionen 

auf einen relevanten und kleineren Suchraum. 

Die Zentralität auf Genebene in den Netzwerken für das Blutstadium konnte die Essentialität 

der Plasmodium-Gene erklären. Das aus dem konkatenierten Datensatz erstellte Netzwerk 

sagte die Genessenzialität besser voraus als die einzelnen Studien, was auf einen Vorteil der 

Meta-Analyse hinweist. In diesem Netzwerk waren Immunmarkergene für neutrophile 

Granulozyten und Monozyten überrepräsentiert, was auf eine Fülle von mit Phagozytose und 

Atmungsstößen verbundenen Immunreaktionen schließen lässt. Die Analyse des 
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Leberstadiums ergab Parasitengene mit Kernfunktionen, die auch im Blutstadium wichtig sind. 

Ich fand verknüpfte Wirts- und Parasitenprozesse von den frühen Stadien bis zu den späten 

Entwicklungsstadien während der Leberinfektion. Ich fand miteinander verbundene Wirts- und 

Parasitenprozesse, die beiden Stadien gemeinsam sind, z. B. das Gleiten der Parasitenzellen, 

die Invasion und die Kalziumhomöostase sowie die Adhäsion der Wirtszellen, Reaktionen auf 

Hypoxie und Immunreaktionen. Neben diesen bekannten Prozessen, die miteinander 

verbunden sind, habe ich möglicherweise relevante und bisher unbekannte 

Wechselwirkungen aufgezeigt. 

In diesem Projekt habe ich gezeigt, dass eine Meta-Analyse von öffentlichen Datensätzen 

bisher unerforschte Informationen liefern kann. Dieser Ansatz war unabhängig von den 

ursprünglichen Versuchsbedingungen, die in einer Meta-Analyse nur schwer vollständig zu 

berücksichtigen sind. Trotzdem konnte ich Rückschlüsse auf Wirt-Parasit-Interaktionen und 

breitere biologische Prozesse ziehen, die für die Krankheit relevant sind. Dieses Prinzip lässt 

sich auch auf andere Krankheitssysteme anwenden, um die Krankheitsmechanismen zu 

verstehen und das Repertoire an Zielstrukturen für Medikamente und Impfstoffe zu erweitern. 

 

Schlagwörter: Plasmodium, Transkriptomik, Wirt-Pathogen-Interaktionen, Meta-Analyse, 

Duale RNA-Sequenzierung  
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1 Introduction 

1.1 Malaria epidemiology  

Malaria is a vector-borne infectious disease caused by Plasmodium parasites. Malaria caused 

more than half a million human deaths in 2020, mainly in sub-Saharan African countries (World 

Health Organization 2021). Uncomplicated malaria is characterised with symptoms such as 

recurring fever accompanied with chills, aches and sweats. Severe malaria, however, causes 

anaemia, retinopathy, abnormal blood coagulation, which might lead to complications such as 

organ failure and cerebral malaria. Malaria during pregnancy may also have manifestations in 

the mother and the birth of the child (Church et al. 1997).  

Five species of Plasmodium are currently thought to infect humans and are therefore of clinical 

importance: P. falciparum, P. vivax, P. knowlesi, P. ovale, P. malariae. Out of these, P. 

falciparum and P. vivax are the most commonly occurring types of malaria in humans, with P. 

falciparum being the most deadly and P. vivax being the most widespread (Sato 2021). 

Plasmodium has existed for ~150 million years (Escalante, Barrio, and Ayala 1995; Evans and 

Wellems 2002). Plasmodium infects not only humans but also other organisms, like birds, 

reptiles, ungulates (Templeton et al. 2016), mice and monkeys (Galen et al. 2018). It is 

suggested that around 42,000 years ago the selection of Duffy-negative antigen in human 

blood began providing resistance to P. vivax in Central and West Africa. P. vivax is now rare 

in these areas whereas P. falciparum is prevalent. P. falciparum is believed to have acquired 

humans as host about 10,000 years ago (Hamblin and Rienzo 2000; W. Liu et al. 2014; Loy 

et al. 2017; Tanabe et al. 2010).  

Haldane hypothesised that infectious diseases act as a driving force for natural selection in 

humans by reporting thalassaemia mutations prevalence in malaria endemic areas. He 

observed that heterozygotes for thalassemia were resistant to malignant malaria making this 

mutation advantageous over normal populations (Haldane 1949). There is evidence of more 

mutations that cause mild haematological symptoms such as sickle-cell disease, Glucose-6-

phosphate dehydrogenase (G6PD) mutations, HbC and HbE, and provide protective effects 

against malaria. The main reasons attributed to this resistance are impaired parasite growth, 

invasion in the red blood cell and improved parasite clearance by the host immune system 

(Kwiatkowski 2005). 

Thousands of years of Plasmodium infection has resulted in selective pressure leading to co-

evolution of the parasite with its host. As different species of Plasmodium infect multiple 
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closely related hosts, like humans, mice and monkeys, these host-parasite pairings or host-

parasite systems are likely to share conserved interactions. This showcases the importance 

of the knowledge of interactions between a host and its parasite to improve our understanding 

of the disease.  

1.2 Life cycle of Plasmodium  

 
Figure 1. Life cycle of Plasmodium parasites. 

Plasmodium life cycle in the mammalian host starts when an Anopheles mosquito injects sporozoites into the skin. 

The sporozoites travel to the liver and find a hepatocyte where they establish a parasitophorous vacuole (PV) and 

grow. Once they undergo liver schizogony, the parasite merozoites rupture the host cell and leave the liver, 

enveloped as merosomes. These merosomes enter the bloodstream. Here, as merozoites, they invade 

erythrocytes, where they again grow and undergo asexual reproduction. They egress from the erythrocyte by 

rupturing the erythrocyte membrane. Some merozoites repeatedly invade erythrocytes to multiply while a few 

mature into gametocytes. These gametocytes are picked up by a mosquito during another bite. 

Plasmodium spp. are apicomplexan parasites. Apicomplexans resulted from secondary 

endosymbiosis and have vestigial algal plastids called apicoplast, with the exception of 

gregarines and cryptosporidium which are apicomplexans without an apicoplast (Lim and 

McFadden 2010). The definitive host for Plasmodium spp. is mosquito, where the parasite 

undergoes sexual reproduction. In the mammalian host, Plasmodium species carry out 

asexual multiplication and gametocytogenesis parts of its life cycle. In the mammalian host, 
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they first grow in the liver without any clinical manifestations and then undergo rounds of 

multiplication in the blood, causing disease symptoms.  

1.2.1 The liver stage 

Plasmodium infection in mammals starts when a female Anopheles mosquito deposits 

sporozoites in the highly vascular host dermis (Matsuoka et al. 2002). A sporozoite is an 

elongated unicellular organism. Using the TRAP-like protein (TLP), the sporozoite exits the 

dermis and penetrates a dermal capillary. It enters the bloodstream and uses gliding motility 

to reach the hepatic capillary sinusoids. Sporozoites recognise proteoglycans on the liver-

resident macrophages, the Kuffper cells, using two parasite surface proteins, 

circumsporozoite protein (CSP) and thrombospondin-related adhesive protein (TRAP) to 

safely traverse through the Kuffper cells without getting phagocytosed (Pradel and Frevert 

2001; Pradel, Garapaty, and Frevert 2002). The recognition of hepatocyte surface receptors 

CD81 (cluster of differentiation 81) and SR-B1 (scavenger receptor B1) by parasite CDPK6 

(calcium-dependent protein kinase 6) switches the migratory mode of the sporozoite to an 

invasive mode. These receptors are required for the parasite to invade the hepatocyte (Yalaoui 

et al. 2008). During the invasion process, sporozoites release the inner membrane complex 

(IMC) organelle and invasive organelles, the microneme and rhoptries, which conduct 

molecular interactions with the host cell (Eickel et al. 2013; Jayabalasingham et al. 2014). This 

also causes a change in the shape of the sporozoite from elongated to spherical. Interactions 

between parasite p36 and p52 and host EphA2 (Ephrin A2 receptor) are required for the intra-

hepatocytic development by the establishment of parasitophorous vacuole (PV) (Arredondo 

et al. 2018). At this stage, the parasite lies close to the host nucleus and develops a connection 

with the host ER via open channels. These channels are modulated by host-derived 

cholesterol that accumulates in the PVM (parasitophorous vacuolar membrane). These 

channels ensure nutrient acquisition by the parasite. In the metabolically active hepatocyte, 

the parasite undergoes increase in biomass (Bano et al. 2007). This stage remains 

undifferentiated until shortly before the final maturation and egress. During the final 

maturation, the parasite plasma membrane (PPM) undergoes extensive invaginations that 

lead to the formation of exoerythrocytic merozoites (Stanway et al. 2011). 

 

The host cell microenvironment determines whether the sporozoite will undergo schizogony 

or transform into dormant forms, called hypnozoites. P. vivax in humans and P. cynomolgi in 

macaques are reported to harbour hypnozoite forms in the liver (Voorberg-van der Wel, 

Kocken, and Zeeman 2021). In case a sporozoite is met with hypoxia, other stress factors and 

nutrient deprivation within the host cell, it might switch to a hypnozoite form. There is evidence 

that hypnozoite activation for schizont maturation is controlled by an internal clock that differs 
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between tropical and temperate species, although these processes are not well characterised 

yet. P. vivax hypnozoite activation also relies on extrinsic cues such as bites from uninfected 

and infected Anopheles mosquitoes and febrile illness caused by P. falciparum malaria, the 

goal being to ensure reaching the sexual stages and being taken up by a vector (Zanghi and 

Vaughan 2021; Hulden and Hulden 2011).  

 

The infection of Plasmodium requires a multitude of interactions with host factors. Plasmodium 

selects a particular hepatocyte to establish its PV. During their development, the hepatocyte 

undergoes changes such as increase in cell size (Balasubramanian et al. 2020), cytoskeleton 

and organelle reorganisation (Vijayan et al. 2021) and signalling cascades (Kaushansky et al. 

2013; Glennon et al. 2019). Prior to egress, the rupture of the PVM causes the destabilisation 

of host cell membrane (HCM) inducing the separation of host cytoskeleton from the HCM and 

the loss of localisation of transmembrane proteins in the HCM (Burda, Caldelari, and Heussler 

2017). Plasmodium infection also causes a plethora of metabolic changes in the liver as it 

uses host components for its own growth (Lissner et al. 2020; Albuquerque et al. 2009). Kluck 

and colleagues showed that infected P. chabaudi liver is in a lipogenic state and marked with 

hyperproteinemia, hypertriglyceridemia, hypoglycemia, and hypocholesterolemia. In addition, 

there was accumulation of triacylglycerol, free fatty acids and free cholesterol in Plasmodium-

infected liver (Kluck et al. 2019). 

 

Even though several such changes in the liver are now known, their likely links to Plasmodium 

processes are not all clearly elucidated. The knowledge of such links might help improve the 

understanding of these host mechanisms. 

1.2.2 The blood stage 

Plasmodium exo-erythrocytic merozoites are released as clusters in membrane-bound 

vesicles into the bloodstream through the liver capillary sinusoids. In the bloodstream, a single 

merozoite invades a mature erythrocyte and multiplies via repeated rounds of asexual 

schizogony. For sexually committed merozoites, gametocytogenesis takes place in the bone 

marrow parenchyma. Mature gametocytes are released into the bloodstream from where they 

could be taken up during a mosquito bite (Venugopal et al. 2020). 

 

Asexual blood stage merozoites contain invasion-related structures - micronemes, rhoptries 

and dense granules, an inner membrane complex that helps with motility, an adhesive surface 

and a minimal cytoskeleton. Merozoite surface proteins contain glycosylphosphatidylinositol 

(GPI) anchored membrane proteins which are all likely erythrocyte ligands. They are unevenly 

spread over the surface, with some being more apically located for the purpose of invasion. 
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The most abundant surface protein is MSP1. It is important for invasion and parasite survival 

(Cowman and Crabb 2006). Micronemes secrete surface proteins that reach the surface after 

exiting from an infected red blood cell (RBC). Rhoptries are responsible for PV formation 

during invasion. Dense granules discharge their contents after invasion. During invasion, the 

RBC membrane partially wraps around the merozoite temporarily. After repeated attempts, 

eventually, the merozoite apex forms a junction with the RBC surface and modifies the RBC 

membrane cytoskeleton, initiating the invasion process. Next, invaginations appear on the 

RBC surface, one of which allows the merozoite to glide in and seal it inside the RBC. 

Shedding of parasite surface protein results from established invasion initiation. Actin-capping 

proteins have been suggested to initiate the invasion motor. An important component of the 

invasion mechanism is the parasite protein complex that includes a connecting protein MTIP 

(myosin A tail domain-interacting protein) to membrane anchors like gliding-associated protein 

GAP-45 and GAP-50 (Celia R. S. Garcia et al. 2008). Towards the end of the invasion process, 

secreted proteins like RESA (Ring-infected erythrocyte surface antigen) cross the PVM into 

the RBC cytosol and bind to RBC surface protein spectrin (Foley et al. 1991), blocking invasion 

of the RBC by other merozoites (Pei et al. 2007). This interaction between parasite RESA and 

host spectrin possibly stabilises the RBC cytoskeleton against the febrile shock caused by 

rupture and reinvasion of RBCs (Pei et al. 2007). Normally the deposition of parasite proteins 

on the RBC membrane would result in splenic clearance of the RBC. But the parasite ensures 

the escape of these RBCs from splenic clearance by altering the RBC membrane, like adding 

knob-like structures, for cytoadherence (Maier et al. 2009; Moxon, Grau, and Craig 2011). 

 

P. vivax infects reticulocytes while P. falciparum normally doesn’t. P. vivax is only able to infect 

Duffy-antigen positive erythrocytes, while P. falciparum is non-specific and can also infect 

Duffy-negative antigen erythrocytes (Iyer et al. 2007). P. vivax parasitemia is limited because 

the fraction of reticulocytes in blood accounts for only 1% of the erythrocytic population After 

invasion, the parasite forms a cup-shaped discoidal ring form. The major organelles gather at 

the thick cytoplasmic rim while the centre houses few structures. On acquiring nutrients, the 

ring forms grow into a more irregular shaped trophozoite (Bannister et al. 2000). 

 

During the development of the parasite within the erythrocyte, the parasite hijacks nutrients 

from the host cytosol. In the metabolically inactive RBC, the ring stage of the parasite obtains 

its nutrients by digesting the host haemoglobin (Hb). However, some essential amino acids 

that are absent in the Hb like isoleucine or are present in low quantities, like methionine, need 

to be imported from the host. Similarly, pantothenate cannot be synthesised de novo and is 

essential for parasite growth. Thiamine can be synthesised but in insufficient quantities and 

some lipids. The parasite is unable to synthesise purines. The RBC plasma membrane 

contains several channels and pumps that help transport some of these nutrients. But others 
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like isoleucine and methionine are not transported sufficiently through these transporters. They 

are instead transported by the new permeation pathway (NPP) that results from the 

modification of RBC membrane (Desai, Krogstad, and McCleskey 1993; Ginsburg et al. 1985). 

 

Multiplication of the parasite into schizonts occurs via schizogony instead of the typical mitotic 

cell division seen in eukaryotic cells. Schizogony involves multiple asynchronous DNA 

replication events forming a multinucleate cell that has up to 30 mononucleated daughter 

merozoites. In schizogony, cytokinesis occurs at the end of the cycle, just before parasite 

egress. RBC cytosol ingestion by the parasite lasts until the late schizont stage (Perrin et al. 

2021).  

 

Egress from the host erythrocyte involves the rupture of the parasitophorous vacuole and the 

host cell membrane. A sudden increase in intracellular pressure and biochemical changes in 

the parasite that are meant to destabilise the host cytoskeleton together cause the rupture of 

the vacuolar membrane and then of the host cytoskeleton and disperse merozoites into the 

bloodstream. Proteases such as the SERA (serine repeat antigens) protease family that are 

known to be necessary for sporozoite egress in mosquito stages are also localised to the PV 

during blood stage and might have a similar role in blood stage egress. After this, the 

merozoites find and attach to the next erythrocyte within a short span of time (~60s) to avoid 

recognition of the merozoite surface antigens by the host immune system (Cowman and Crabb 

2006). 

Schizonts and late trophozoites (of some species) are not usually seen in peripheral circulation 

as they sequester in the microvasculature (Nishanth and Schlüter 2019). The asexual blood 

stage cycle of malaria parasites results in most of the disease pathology as the invasion cycles 

are associated with fever episodes and destruction of red blood cells with anaemia and the 

metabolic consequences of the massive consumption of serum glucose by the parasite. 

Parasite sequestration in tissues and organs is a hallmark of the most severe forms of the 

disease especially when sequestration occurs in the brain (cerebral malaria) or placenta 

(pregnancy-associated malaria) (Miller et al. 2002; Storm and Craig 2014; Nishanth and 

Schlüter 2019). During each asexual blood stage, a few ring-stage parasites commit to a 

sexual developmental cycle that produce transmissible forms of the parasite, male and female 

gametocytes. Commitment is environmentally sensitive and occurs preferentially in young 

reticulocytes through, currently, are poorly understood mechanisms (Ngotho et al. 2019; 

Venugopal et al. 2020).  

Components of infected RBCs are recognised by host innate immune cells such as dendritic 

cells, monocytes and neutrophils, eliciting immune responses (Bucşan and Williamson 2020). 
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Antibodies are able to bind to infected erythrocytes and mark them for phagocytosis by 

circulating macrophages (Dups, Pepper, and Cockburn 2014). They can also bind to 

extracellular merozoites and mark them for clearance or lysis (Gomes et al. 2016). T cells can 

produce pro-inflammatory cytokines that can prime macrophages and other components of 

the immune response (Nasr et al. 2014). They can also activate B cell clones that produce 

antibodies (Kafuye-Mlwilo, Mukherjee, and Chauhan 2012). 

Such interactions between the host and parasite across the different life cycle stages of 

Plasmodium could be direct physical interactions between a host and a parasite protein or 

could also be by the modulation of pathways upstream of such protein-protein interactions. 

The knowledge and comparison of such host-parasite interactions between life cycle stages 

and between host-parasite systems would be a valuable resource for suggesting therapeutic 

targets. 

1.3 Current treatments and resistance to drugs 

Resistance to drugs is the ability of the parasite to grow and multiply despite the absorption of 

a drug in recommended doses within the tolerance of the subject (World Health Organization 

2021). Drug resistance has emerged towards all known antimalarials (Siddiqui, Liang, and Cui 

2021).  

 

Malaria was first treated with quinine derived from the bark of Cinchona trees. Out of its 

derivatives in use, chloroquine was the first drug that Plasmodium was reported to show 

resistance to in the 1950s (Eyles et al. 1963). Quinine derivatives are thought to act by 

interfering with the elimination of toxic by-products of haemoglobin ingestion (Hobbs and Duffy 

2011). The resistance is determined by mutations in CRT (Chloroquine resistance transporter) 

in P. falciparum. Other classes of drugs like endoperoxides, antifolates, amino alcohols and 

antibiotics, and their markers for resistance have been reviewed in (Haldar, Bhattacharjee, 

and Safeukui 2018). Endoperoxides like artemisinin and artemisinin-based combined 

therapies (ACTs) have been attributed with a significant decrease in the number of malaria 

cases. However, resistance was first recorded in South East Asia in 2008 and very recently in 

the eastern part of Africa (Balikagala et al. 2021). In P. falciparum, artemisinin resistance 

occurs due to mutations in the Kelch13 protein. Resistance to drugs emerges by the 

amplification of gene encoding the target enzyme or a transporter that is capable of exporting 

the drug out of the parasite. Resistance could also occur due to catalytic processes and 

processes that mitigate toxicity of the drug (Haldar, Bhattacharjee, and Safeukui 2018). 
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Prevention of resistance is a major focus in malaria research. Combination therapies have 

helped overcome Plasmodium resistance to single drugs. For example, a combination of 

chloroquine and antimicrobial azithromycin has demonstrated a synergic effect. ACTs were 

formulated to contain an artemisinin derivative and a partner drug such as mefloquine, 

amodiaquine and others (Siddiqui, Liang, and Cui 2021). In addition, chemicals that reverse 

resistance like calcium channel blockers have shown to reverse resistance. HIV protease 

inhibitors have shown to have anti-parasite effects by directly disrupting Plasmodium growth 

and might also have resistance reversing effects on chloroquine (Hobbs and Duffy 2011). 

1.3.1 Host-directed therapies 

Intracellular parasites like Plasmodium are dependent on host components for their 

sustenance. Thus, targeting host components could have an antimalarial effect. On the 

parasite side, resistance towards such targets is unlikely as mutations that render it 

independent of these host factors are unlikely to occur. However, the caveat is that these 

targets, upon inhibition of host factors, might induce toxicity (Prudencio and M. Mota 2013; 

Glennon et al. 2018). 

 

Such host-directed therapies can target the liver stage or the blood stage of both. Wei and 

colleagues list ligands and inhibitors of host targets with antimalarial properties (Wei et al. 

2021). Aquaporin-3 (AQP3) is a membrane channel for water and small molecules that was 

shown to be important for parasite development across multiple stages. P. vivax liver stages 

were recently shown to be impaired by targeting AQP3 (Posfai et al. 2018; 2020). Some of 

these targets are also implicated in the blood stages. 

 

The other advantage of investigating antimalarial host-directed therapies is the possibility of 

repurposing drugs that have already been studied in other contexts, like non-communicable 

diseases, and are found to be important players in Plasmodium survival and proliferation. For 

example, host p53 is a tumour suppressor protein and has been widely studied in the context 

of cancer. It is also important in regulating liver stage malaria. By altering lipid peroxidation in 

the hepatocyte, it negates parasite development. Thus, enhancing the levels of p53 might 

reduce liver stage parasite numbers (Kain et al. 2020; Tran et al. 2019).  

 

Host basigin is an example of a host-directed therapy. A recombinant chimeric antibody, Ab-

1, was developed against basigin, an erythrocyte receptor necessary for parasite invasion. In 

P. falciparum, Ab-1 blocked the interaction between parasite Reticulocyte Binding Protein 

Homologue 5 (RH5) and basigin and prevented parasite entry into erythrocytes. It cleared 

blood stage infection without significant toxicity (Zenonos et al. 2015). 
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Resistance to existing antimalarials is a problem because it spreads and results in increased 

morbidity and mortality. This necessitates the continued discovery of therapeutic targets 

against malaria. Genome-wide host-parasite interactions might hint towards targetable 

pathways for host-derived therapies. The host interactors might also highlight drug 

mechanisms of further targetable parasite pathways.  

1.4 Functional studies of Plasmodium and host genes 

Parasite genes can be functionally characterised by genetically modifying the parasite and 

prioritised for testing as targets for therapy. During most life cycle stages, the Plasmodium 

genome is haploid. This renders it difficult to disrupt the functions of essential genes without 

killing the parasite or causing severe growth defects. In addition, a large proportion of 

Plasmodium genes lack homology with model organisms outside of its phylum (Kudyba et al. 

2021). This has resulted in around 40% of the genome having unknown functions. These 

genes thus often get ignored in the search for targets.  

 

In target discovery, reverse genetics methods include the knocking in or knocking out of genes 

that encode for essential proteins. Here, first the genotype is altered and then the phenotype 

is analysed (K. A. Meissner et al. 2017). Reverse genetics approaches, like single and double 

crossover, customised zinc finger nucleases (ZFNs) (Urnov et al. 2010) and CRISPR-Cas (M. 

C. S. Lee et al. 2019), work on the principle that the effect of drug administration can be 

replicated by switching its target gene on or off. Out of these, CRISPR-Cas is the most recently 

developed method and it is faster, versatile and accurate (Ishizaki et al. 2022). 

 

By implementing a recombinase-mediated engineering of AT-rich DNA, Pfander and 

colleagues developed a method to convert genomic DNA inserts into gene deletion and 

tagging vectors in E. coli to be able to study Plasmodium genes (Pfander et al. 2011). Bushell 

and colleagues used this reverse genetic screen for P. berghei genes (PlasmoGEM) to 

measure the essentiality of genes (Bushell et al. 2017). They covered two-thirds of the P. 

berghei genome, which is of yet the largest screen for P. berghei. 

 

Where the complete disruption of an essential gene is not feasible, genes knock down via 

conditional and inducible gene expression is implemented. Proteins can be conditionally 

knocked down by introducing destabilising domains (DD) in the protein of interest (de Koning-

Ward, Gilson, and Crabb 2015). Conditional deletion of gene loci could be achieved by 

expression of recombinase enzymes such as Cre recombinase (McLeod, Craft, and Broach 

1986). Inducible and conditional knockdown of gene expression using anhydrotetracycline 
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(ATc), the tet-OFF system, can control transcriptional knockdown at a specific stage and time 

(M. Meissner et al. 2005). These three methods are applicable to essential proteins or genes. 

For example, DD was able to validate the essentiality of PfMOP (P. falciparum Merozoite 

Organising Protein) (Absalon, Robbins, and Dvorin 2016). 

 

Forward genetic screening is the evaluation of the genetic cause of an altered phenotype by 

chemical mutagenesis or mutation by irradiation. Here, first the phenotype is altered and then 

the causative genotype is investigated. Transposon mutagenesis and deletion mutagenesis 

have been used to study the phenotypes of essential genes. A notable example is the study 

performed by Zhang and colleagues where they measured essentiality for 87% of the P. 

falciparum genome in the blood stage using transposon mutagenesis (M. Zhang et al. 2018). 

 

Although these methods have made significant contributions to the field of malaria, they 

demand a large amount of time and significant labour. Efforts have also been dedicated to in 

silico discovery of antimalarials. Based on the hypothesis that essential enzymes should 

function as good targets, essential metabolic reactions were identified by reconstructing a 

genome-scale metabolic network of P. falciparum (Oyelade et al. 2018). Oyelade and 

colleagues performed in silico knockout experiments and reported 24 essential enzymes that 

could potentially be investigated as targets. They employed constraint-based models for flux 

balance analysis (FBA). In this method, the metabolic network is represented as a matrix 

where each row is a metabolite and each column is a reaction in the organism. The metabolic 

reaction data was obtained from BioCyc, a database where repositories of metabolic reactions 

and enzymes can be accessed (Oyelade et al. 2018). Others have suggested integrating 

metabolomics with multiple omics data in the search of a suitable candidate (Le Roch, Chung, 

and Ponts 2012). These would include the study of epigenetic modifications (epigenomics), 

transcriptomics - the study of gene expression, proteomics - entailing the measurement of 

protein abundances and genomics which entails the study of the structural, functional and 

evolutionary aspects of parasite genes. The use of such system level approaches as opposed 

to reductionist approaches that focus on a single group of genes or a well-defined pathway 

might lead to the discovery of additional potential antimalarial targets (Smith and Styczynski 

2018). 

 

Host genetics plays a role in disease susceptibility. Host genetic loci influencing susceptibility 

to malaria have been mapped using genome-wide association studies (GWAS) (Damena et 

al. 2019; Band et al. 2019; Chapman and Hill 2012). However, only detecting the loci leaves 

unanswered questions. When the loci belong to non-coding regions, it is unclear which genes 

these loci regulate and in what physiological context they regulate their target genes. This is 

why functional GWAS studies are gaining momentum. Milet and colleagues presented the first 
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functional analysis of GWAS data for uncomplicated malaria. The study highlights the role of 

PTPRT, a tyrosine phosphatase receptor involved in STAT3 pathway against malaria 

infections (Milet et al. 2019). Damena and colleagues performed a meta-analysis to find 

candidate genes and pathways for severe malaria from the functional analysis of a GWAS 

study across 11 populations in malaria-endemic regions (Damena et al. 2021). The identified 

genes were enriched in erythrocyte-related functions, blood coagulations, ion channels, 

adhesion molecules, membrane signalling elements, and neuronal systems. While both 

studies used positional mapping, expression quantitative trait locus (eQTL), chromatin 

interaction mapping, the latter also used gene-based association analyses to functionally link 

genetic loci from GWAS studies to malaria pathways. The overarching goal of such studies is 

to explain host pathways in malaria in order to discover more drug targets. 

 

Separate functional studies in the parasite and the host add valuable insight into the underlying 

mechanisms of the disease. However, the processes identified separately for the host and the 

parasite are, in reality, largely linked. In addition to the knowledge obtained from these studies, 

analyses of linked host-parasite processes could improve our understanding of the disease 

and targetable pathways. 

1.5 System-wide association of host and parasite processes  

To race against the ability of Plasmodium to develop drug resistance, the knowledge of how 

the entire parasite and host genomes influence each other is important. This would add to the 

collection of potential drug targets. As discussed above, laboratory screening methods for 

system-wide analyses can be cumbersome. In addition, like other areas of research, malaria 

research is affected by the Harlow-Knapp effect, where biomedical and pharmaceutical 

research tends to progress along already known proteins and pathways, restricting the extent 

of knowledge discovery (Lunev et al. 2016). In silico methods are now gaining momentum 

towards more system-wide studies thanks to advances made in high-throughput technologies. 

 

Omics methods have allowed us to profile not only known mRNA sequences but also detect 

unknown isoforms, non-coding regions and splice junctions using transcriptomics. Since both 

the host and the parasite are eukaryotic, their mRNA can get selected simultaneously for RNA-

sequencing. This allows for system-wide dual transcriptomic analysis. Proteomics and 

metabolomics methods are able to quantify proteins and small molecules, respectively, 

globally (Cowell and Winzeler 2019). A large number of malaria omics screens, especially 

transcriptomics, are conducted worldwide (Swann et al. 2015). In silico approaches allow the 

integration and re-analysis of such public data sets. Biological networks can help gain valuable 

insights into the relationships between and within the host and the parasite using network 
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properties. Multiple networks can also be used to infer conserved pathways by testing for 

conserved interactions. 

 

Plasmodium has a complex life cycle. Each stage has its own gene expression profile from 

the host and from the parasite. For system-wide studies, these stages often need to be 

considered separately. Asynchronies in parasite samples could result in inaccurate gene 

expression measurements (Hall et al. 2005). Owing to stage-specific expression profiles, 

parasites need to be cultured in separate in vitro culture systems to study the different stages. 

Since a significant portion of the parasite genome is uncharacterised, the physiological context 

of host-parasite interactions containing these genes can be difficult to infer. 

 

It has been suggested that the knowledge of host-parasite interactions is important to 

understand an infectious disease (H. J. Lee et al. 2018; Westermann, Barquist, and Vogel 

2017; Westermann and Vogel 2021). In theory, there are about 100 million possible 

interactions between the human/mouse/macaque host and the Plasmodium parasite (i.e., 

~20,000 host genes times ~5,000 parasite genes). An enormous number of in vivo or in vitro 

experiments would be required to resolve this to a more narrow set of disease-relevant 

interactions. To this end, an in silico analysis could help narrow down the search space into a 

more comprehensive set of interactions using less time and effort. 

 

Orthologs are genes in different species that have been derived from a single gene in the last 

common ancestor of those species by vertical descent. This means that orthologous genes 

from different species, in general, are likely to perform the same function  (Koonin 2001) . 

Macaca mulatta and Mus musculus are widely used as malaria models. They can be infected 

with species from the Plasmodium (e.g., P. cynomolgi and P. coatneyi) and Vinckeia (e.g., P. 

berghei, P. chabaudi and P. yoelii) subgenus respectively (Galen et al. 2018). A system-wide 

search for novel therapeutic targets would benefit from the inclusion of the animal model 

systems. 

 

Even though genome-wide methods have been implemented in determining the host response 

to Plasmodium and vice versa, there is no comprehensive collection of host-parasite 

interactions that encompass not only the host and parasite genomes but also take into account 

genomes involved in human malaria and model malaria. An in silico method that reduces the 

search space and finds relevant interactions across humans and animal models would give 

us a comprehensive overview of the genome-wide cross-species picture.  

 

In my project, I have investigated host-parasite interactions across host and parasite 

transcriptomes with the aim of expanding the known repertoire of targettable pathways. I have 
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included 3 hosts - Homo sapiens, Macaca mulatta and Mus musculus and 7 infecting 

Plasmodium species - P. falciparum, P. vivax, P. berghei, P. chabaudi, P. yoelii, P. coatneyi 

and P. cynomolgi. 

1.6 In silico system-wide associations of host and parasite gene 

expression profiles 

1.6.1 Dual transcriptomics analysis 

Transcriptomes are often analysed in a first attempt to understand molecular, cellular and 

organismic events. Today transcriptomes are easy to obtain at a reasonable cost (Z. Wang, 

Gerstein, and Snyder 2009)  , the necessary equipment is widely available, and the 

technology is under constant development.  

RNA sequencing (RNA-Seq) provides deep and accurate expression estimates for all RNA 

species in a sample. In spite of its fewer disadvantages, like with regards to cDNA synthesis, 

such as, spurious cDNA second strand generation and template switching, current RNA-Seq 

approaches have emerged as the predominant tool for transcriptomics (Ozsolak and Milos 

2011). A comprehensive profile of RNA expression could be obtained using high-throughput 

sequencing of cDNA from reverse transcripted expressed RNA. Such RNA-sequencing (RNA-

Seq) provides high technical accuracy at a reasonable cost, making it the current method of 

choice for transcriptomics (Stark, Grzelak, and Hadfield 2019). 

In an infection experiment, RNA-seq can assess host and pathogen transcriptomes 

simultaneously if RNA from both organisms is retained in a sample. It has been proposed to 

analyse transcriptomes of both organisms involved in an infection for a more complete 

understanding of the disease (H. J. Lee et al. 2018; Westermann, Gorski, and Vogel 2012; 

Westermann, Barquist, and Vogel 2017), such as virulence of a pathogen resulting from 

interlinked processes of both host and pathogen. This approach is called dual RNA-seq. Some 

recent studies on malaria pathogenesis utilise dual RNA-seq technique to study the host and 

the parasite transcriptome simultaneously. Conversely, researchers intending to study one of 

the two organisms, the target, might consider transcripts from the non-target organism, 

“contamination”.  

Malaria research is indeed traditionally designed to investigate one organism, either the host 

or the parasite. Nevertheless, expression of “contaminant” transcripts potentially corresponds 

to the reciprocal response to stimuli. The first RNA-seq in malaria was, to my knowledge, (Otto 

et al. 2010), where the authors sequenced P. falciparum to improve its genomic annotation. 
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In 2014, the first dual RNA-seq of human-Plasmodium was published. The authors termed the 

technique “RNA-seq analysis of human-parasite mixed transcriptomes”. They studied gene 

co-expression patterns in the host and the parasite and drug resistance-related genes 

(Yamagishi et al. 2014). 

1.6.2 Types of coregulated genes - PPIs and association of pathways  

A cross-species transcriptome profile association study could use co-regulated gene 

expression to infer host-parasite interactions. Correlation of mRNA expression could be 

indicative of different kinds of biological “interactions”: PPI (protein-protein interactions) and 

those upstream of PPIs. Protein products could be directly involved in the formation of 

complexes and might therefore be produced in quantities varying similarly under altered 

conditions. Conversely, involvement in the same biological pathways could result in co-

regulated gene expression without physical interaction. The closer they are to PPIs, the easier 

it is to determine the exact pathways that are interacting in the organism. This broad concept 

of interaction has long been exploited in single organisms (Bono and Okazaki 2002; H. K. Lee 

et al. 2004; Stuart et al. 2003). I (Mukherjee, Burgio, and Heitlinger 2021) and others previously 

(Musungu et al. 2016; Reid and Berriman 2012) propose to extrapolate this to interactions 

between a host and its pathogen. It can be expected that a stimulus presented by the parasite 

to its host elicits a host immune response and that the parasite, in turn, tries to evade this 

response, creating a cascade of genes co-regulated at different time points or under different 

conditions.   

1.6.3 Correlation analysis of gene expression to infer co-regulation  

 

To ascertain the relationship of two gene expression profiles as an interaction, it needs to be 

quantified. Association-based quantification methods are simple and easy to interpret. 

Pearson’s correlation coefficient is used to measure the linear relationship while Spearman’s 

correlation is used to measure monotonic relationships between two gene variables. Partial 

correlation takes into account the effect of a third gene on the relationship of two genes. Mutual 

information (MI) is used to define the non-linear relationship between two genes (Butte and 

Kohane 1999). Regression-based models such as polynomial and spline models are also able 

to detect non-linear relationships. On comparing different association-based methods, no 

evidence was found indicating that MI methods perform better than Pearson’s correlation, 

justifying the applicability of Pearson’s method in inferring gene co-expression (Butte and 

Kohane 1999; Song, Langfelder, and Horvath 2012). Pairwise gene correlations could be used 

to reconstruct biological networks for further analysis in a system-wide manner. 
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1.6.4 Biological network analysis 

Co-expressed or co-regulated genes represented as adjacency matrices or pairwise 

correlation matrices could be visualised as a graph or network. Typically, an association or 

correlation between samples or genes is represented by an edge and the sample or gene is 

represented with a node. In an analysis with two different organisms, such as host-

Plasmodium, there can be a total of three different types of associations or interactions - intra-

species interactions in the host and in the parasite and interspecies interactions between the 

host and the parasite. The interspecies interactions are a set of bipartite edges because these 

interactions can divide a set of nodes into two disjoint and independent sets of nodes. Of prime 

interest to me are the bipartite edges because they show the possible associations between 

the host and the parasite (Pavlopoulos et al. 2018; J. Li et al. 2020).  

Networks can be partitioned into node clusters or communities, also called modules. To 

quantify the strength of this division, the modularity of a network can be measured. High 

modularity in a network means that the nodes within a module have high connectivity but 

sparse connections between modules. Modules in a biological network often represent 

functional compartments because genes involved in a pathway can be expected to have 

dense connections compared to those with genes of a different pathway (Albert 2005; Dong 

and Horvath 2007; B. Zhang and Horvath 2005). 

In graphical terms, a node is important to the network if there is a lot of information flowing 

through the node. In biological networks, ideally, the connections of nodes follow the power 

law, which means that a few nodes have a high number of connections and most of the nodes 

have few connections.This means that a few genes control the system that the network is 

representing. 

The power law is defined as 

f(x) = a*x-k, 

where a is a constant. A change in x causes a reduction in f(x).  

The number of connections a node has, incoming and outgoing included, are termed 

connectivity or degree. A node degree therefore tells us how many neighbours a node has 

and is therefore influencing. In my project, I are trying to use the influence of nodes in the host-

parasite gene co-expression network as network properties to model gene essentiality data 

derived from previously performed external experiments (Ashtiani et al. 2018; Hahn and Kern 

2004). The two datasets that predict gene essentiality are described in the section below.  
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Another measurement of centrality and hence the influence of a gene in a co-expression 

network is betweenness. Betweenness of a node is defined as the number of shortest paths 

that use this node as a fraction of the total number of shortest paths in the network. This means 

that higher the betweenness, more is the flow of information through that node, assuming that 

the flow of information chooses the shortest paths. Biologically, this means that a gene with 

high betweenness could have only a few direct connections but might be crucial in connecting 

larger network modules and thus be an important influencer in the network (Freeman 1977). 

The removal of a high-betweenness gene would disrupt the network into smaller subparts 

without any means of communication, implying a possible lack of communication between 

biological pathways in the co-expression network.  

Yet another measure for the influence of a node is the eigenvector centrality. Eigenvector 

centrality of a node measures the influence its immediate neighbours have in the network, 

implying its own influence. It follows the concept that being connected to a node with high 

degree would be more influential than being connected to a node with lower degree. The 

higher the eigenvector centrality of a node, the higher is the reach of this node via its 

interactors (Bonacich 1987)   . Disruption of such genes would likely dismantle larger 

modules in the network.  

The analysis of biological networks connecting host and parasite processes would illuminate 

genes and pathways that are important for cross-species interactions. The use of closely-

related species ensures that the detected interactions transfer between human malaria and 

model systems. In doing so, this project would add to the repertoire of drug targets and to the 

understanding of malaria biology. 

1.7 Aims 

With this project, I aim to achieve the following: 

 

a. Show that left-over (contaminant) transcripts of non-target organism in infection 

studies can be useful in meta analysis 

b. Validate methods for the construction of cross-species gene-expression networks 

using existing knowledge of gene essentiality and function 

c. Link known disease-relevant processes individually known either in the host or parasite 

to better understand host-parasite interactions.  

d. Discover new disease-relevant processes linking parasite mechanisms with host 

functions previously not implicated in malaria.  



 

30 

2. Materials and Methods 

2.1 Data review and curation of potentially suitable studies 

Sequence data generated in biological experiments are submitted to one of the three mirroring 

databases of the International Nucleotide Sequence Database Collaboration (INSDC): NCBI 

Sequence Read Archive (SRA) (Leinonen, Sugawara, et al. 2010), EBI European Nucleotide 

Archive (ENA) (Leinonen, Akhtar, et al. 2010), and DDBJ Sequence Read Archive (DRA) 

(Ogasawara et al. 2020). I used SRAdb v1.36.0 (Y. Zhu et al. 2013) , a Bioconductor/R 

package (Huber et al., 2015), to query SRA (Leinonen, Sugawara, et al. 2010) for malaria 

RNA-Seq studies with the potential to provide host and Plasmodium reads for this meta-

analysis. Firstly, I selected studies with library_strategy “RNA-Seq” and with “Plasmodium” in 

the study title, abstract or sample attributes fields using the function dbGetQuery(). Then I 

utilised the getSRA() function with the query “(malaria OR Plasmodium) AND RNA-Seq”. This 

function searches all fields. I manually curated the combined results and added studies based 

on a literature review using the terms described for the getSRA() function in PubMed and 

Google Scholar. 

On SRA, all experiments submitted under a single accession are given a single “study 

accession number” and are collectively referred to as a “study” onwards. Each study contains 

a collection of “runs”, which are the data files that should be linked to a sequencing library. 

Sequencing reads from different RNA samples are grouped into separate runs. In this thesis, 

“sample” and “run” have sometimes been used interchangeably to refer to a sequencing run. 

Studies originally archived in SRA, DRA and ENA are given accession names starting with 

SRP, DRP and ERP respectively. I have used these study accession IDs to describe these in 

this thesis. 

The runs were downloaded from the ENA mirror using the FTP (File Transfer Protocol) 

available for each run. To improve download speed, I used Aspera Connect (ascp) with ENA 

as follows:  

ascp -QT -l 300m -P33001 -i 

$HOME/.aspera/connect/etc/asperaweb_id_dsa.openssh $fastq tmp/ 

Where $fastq contains the ENA FTP for a run and tmp is the target folder where the runs are 

downloaded. 

The curation and the download of the studies was performed on 21 January, 2019 and 

updated on 24 July, 2020. 
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2.2 Mapping and quantification of gene expression 

I mapped sequencing reads onto concatenated host and parasite reference genomes. Host 

Homo sapiens, Macaca mulatta and Mus musculus and Plasmodium sp. - P. falciparum 3D7, 

P. vivax, P. berghei ANKA, P. chabaudi chabaudi, P. yoelii 17X, P. coatneyi Hackeri and P. 

cynomolgi B - genome assemblies and gene annotation files were downloaded from Ensembl 

version 43. Simultaneous mapping against both genomes should avoid non-specific mapping 

of reads in regions conserved between host and parasites. First, I created the index for each 

host and parasite concatenated genome using the concatenated gene annotation files of the 

host and parasite GTF files. Indexing and mapping were performed using STAR v2.6.0c 

(Dobin and Gingeras 2015; Dobin et al. 2012). STAR commands used for indexing was 

STAR --runThreadN 8 \ 

     --runMode genomeGenerate \ 

     --genomeDir host_parasite_index/ \ 

     --genomeFastaFiles host_parasite_fasta.fa \ 

     --sjdbGTFfile host_parasite_GTF.gtf \ 

     --limitGenomeGenerateRAM 210000000000 

Where host_parasite_index is the folder where the index files will be stored. The STAR 

command for mapping was 

STAR --runThreadN 6 \ 

 --genomeDir host_parasite_index/ \ 

 --readFilesIn runID_1.fastq.gz runID_2.fastq.gz \ 

 --outSAMtype BAM SortedByCoordinate \ 

 --outFileNamePrefix $runID \ 

 --readFilesCommand zcat 

for paired-end reads and 

STAR --runThreadN 6 \ 

 --genomeDir host_parasite_index/ \ 

 --readFilesIn $runID.fastq \ 

 --outFileNamePrefix $runID \ 

 --outSAMtype BAM SortedByCoordinate \ 
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 --readFilesCommand zcat 

for single-end reads. 

I quantified the sequencing reads mapped to exons using the countOverlaps function of the 

GenomicRanges package v3.7 (Lawrence et al. 2013)  . 

2.3 Identification of co-expressed genes via correlation 

techniques 

Reid and Berriman (Reid and Berriman 2012) recommended using empirical p-values for gene 

co-expression analysis. This allows not only to scrutinise housekeeping genes, likely to display 

almost uniform expression under different experimental conditions, but also requires few 

assumptions about the quality of the input data. I calculated correlation indices for each gene-

pair and obtained empirical p-values by comparison against null distributions using 

permutations analysis of the given data, instead of assuming a theoretical null distribution. 

This is a robust way to estimate whether gene pairs are correlated because of specific events 

(treatment condition, time point) and not by chance (e.g., housekeeping genes) (Lawrence et 

al. 2013; Knijnenburg et al. 2009; Phipson and Smyth 2010). To obtain p-values corrected for 

multiple testing, since host and parasite genomes together have a total of nearly 30,000 

genes, the number of permutations would have to be around 1012 for a resolution of 0.1% false 

discovery rate (FDR). As computational costs for these permutations would be too high, I 

therefore opted for uncorrected p-values to rank transcripts as initially proposed by Reid and 

Berriman (Reid and Berriman 2012). Here I only considered uncorrected p-values of 10-5 (in 

100,000 permutations) to infer co-regulation gene expression.  

2.4 Selection of runs for analysis 

The construction of host-parasite gene co-expression networks requires RNA-Seq runs to 

have both host and parasite transcript expressions. To address this criteria, I implemented 

thresholds based on host and parasite transcript expression, for the selection of runs. If a 

study had at least five runs with 50% detectable transcriptome expression from the host and 

from the parasite, I defined two thresholds for runs: 1) “intermediate” (int) with at least 50% 

detectable host and parasite transcriptome expression and 2) “stringent” (str) with 70% 

detectable host and parasite transcriptome expression. If a single study had less than five runs 

in the intermediate threshold, these runs were pooled with runs from other studies. 
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To compare sub-datasets with runs selected at different thresholds and including all runs 

without thresholds, I calculated the Jaccard index for every pairwise combination of these data 

sets. 

The Jaccard Index is defined as 
|𝐴∩𝐵|

|𝐴∪𝐵|
     (Jaccard 1912)  , where A and B are the set of 

host-parasite interactions in studies A and B. To include the maximum amount of host and 

parasite data and to use the best data set from each study, I calculated the sum of all Jaccard 

Indices for each data set. I chose the sub-dataset with the highest Jaccard index for a given 

study for further analysis. I concatenated these representative studies into an “overall” data 

set to compute possible conserved interactions from all host-parasite systems. 

2.5 Identification of orthologs  

Whole genome based predictions of the host species proteomes were downloaded from 

Ensembl release 43 and for Plasmodium from PlasmoDB release 37 for the same Plasmodium 

species and strains as used for read mapping. Orthologs were identified using OrthoFinder 

v2.2.7 (Emms and Kelly 2019) wherein blastp (Altschul et al. 1990) results for all-versus-all 

protein comparisons are clustered using the Markov Cluster Algorithm (MCL) (van Dongen 

and Abreu-Goodger 2012) (tools bear default parameters for OrthoFinder). One-to-one 

ortholog clusters, or orthogroups, were recovered for hosts and for parasites. The command 

used for OrthoFinder was  

./orthofinder -f [path to folder with protein sequence files for all 

parasite organisms] -t 6 

to get orthologous genes for parasites and  

./orthofinder -f [path to folder with protein sequence files for all 

host organisms] -t 6 

for retrieving host orthologous genes. OrthoFinder assigns each group of orthologous genes 

an orthogroup ID. It also produces a file with single copy orthogroups, using which the 

respective genes from each organism can be extracted.  

In this thesis, I have used either human - P. falciparum or mouse - P. berghei gene names/IDs 

to render the description of the results easier. The results are always obtained using gene 

orthogroups and therefore hold true for all host species and all parasite species that were 

included. 
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2.6 Network and functional analyses 

Bipartite networks/graphs are graphs in which the nodes of the graph can be divided into two 

independent sets, and the nodes from one set connect only with nodes in the other set (J. Li 

et al. 2020; Tang et al. 2018). To visualise host-parasite interactions, bipartite networks were 

constructed with R package igraph v1.2.5 (Csardi and Nepusz 2006) and Cytoscape v3.8.0 

(Shannon et al. 2003). In these networks, nodes represent genes and their interactions are 

represented with an edge connecting them. In this thesis, “interaction” and “association” 

between genes have often been used interchangeably. “Edge” has been used to mean the 

same relationship as observed in a network. 

 

To cluster nodes into network modules, I utilised the edge-betweenness algorithm (function 

edge_betweenness()) from igraph. The UpSetR package (v1.4.0) (Lex et al. 2014) in R was 

used to visualise intersection sizes of overlapping edges between networks. The R package 

pheatmap v1.0.12 was used to produce heatmaps to show the extent of overlapping 

interactions and the Jaccard index between studies. To compare network properties, network-

level and organism-level properties were calculated using the R bipartite v2.16 package. 

 

For functional analysis of the genes found in host-parasite interactions from co-expression 

analysis, enriched Gene Ontology (Gaudet et al. 2017) terms were found using the package 

topGO v2.36.0 (Alexa and Rahnenführer 2007). TopGO performs a semi-automatic 

enrichment analysis of GO terms. Enrichment was performed using the Kolmogorov-Smirnov 

test. Other than published literature, PlasmoDB (Bahl et al. 2003; Aurrecoechea et al. 2009) 

and Malaria.tools (Tan and Mutwil 2019) databases were utilised for looking up gene functions 

and stage-associated transcript expression. 

2.7 Statistical modelling 

Gene essentiality was measured for P. berghei in (Bushell et al. 2017) and for P. falciparum 

in (M. Zhang et al. 2018). Using the R package fitdistrplus v1.1-1, I determined how Relative 

Growth Rate (RGR) (Bushell et al. 2017) and Mutagenesis Index Score (MIS) (M. Zhang et al. 

2018) are distributed. I utilised the betareg package in R to model RGR and MIS using 

topology metrics of the networks. 

  

The network properties measured for the networks were node degree (DG), eigenvector 

centrality (EC) and betweenness (BW) using their dedicated functions in igraph package in R: 

“degree()”, “betweenness()” and “eigen_centrality()”. These metrics have the following 

meanings: 
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Degree of node = The total number of edges connected to a node, 

Betweenness of node v = (Total number of shortest paths between nodes i and j passing 

through v)/(Total number of shortest paths between i and j), 

Eigenvector centrality of node = the influence its immediate neighbours have in the network, 

implying its own influence. 

 

RGR and MIS, as response variables, were modelled first with a single centrality measure as 

a predictor and then with combinations of two centrality measures: DG with EC and DG with 

BW. “Nested” models were compared based on likelihood-ratio tests and the more complex 

model was accepted when delta likelihood exceeded 2. In addition to this, the Akaike 

Information Criterion (AIC) was computed for each model to compare models and again 

models were considered differing in explanatory power at a delta-AIC of 2. Models on different 

datasets (and different response variables) were compared without explicit statistical testing 

discussing differences in p-values for variables in question. 

2.8 Other software 

Besides the software and R packages already mentioned, for this project, scripts were written 

in Bash for downloading runs from ENA and for the mapping of sequencing reads. In general, 

R (v3.4.3 - 4.2.0) (R Core Team 2013)     was used for analysis. Cytoscape v3.8.0 (Shannon 

et al. 2003) was used to produce the larger network figures. Inkscape was employed for 

preparing and editing figures. All code is available at DOI 

https://doi.org/10.5281/zenodo.6678323 (as used in this thesis) and github repository 

https://github.com/parnika91/CompBio-Dual-RNAseq-Malaria (under further development). 
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3. Potential for dual species transcriptomics analysis in RNA-seq 

studies with contaminant reads 

3.1 Background 

In a biological two-species system, one interaction partner can be expected to provoke a 

response in the other. To improve our understanding of malaria pathogenesis, we can 

therefore benefit from knowledge of genome-wide host-Plasmodium interactions. Changes in 

gene expression of the host and the parasite can be recorded by profiling the transcriptome 

using RNA-sequencing, either with dual RNA-seq or with the sequencing of the non-target 

organism as “contaminant”. In the case of malaria, unlike in bacterial or viral infections, both 

the parasite, Plasmodium spp. and the host are eukaryotic organisms with similar 

transcriptomes. Their mRNAs have a long poly(A) tail at the 3′ end; therefore, host mRNA and 

parasite mRNA are selected simultaneously when poly(dT) priming is used to amplify 

polyadenylated mRNA transcripts (Westermann, Gorski, and Vogel 2012; Westermann, 

Barquist, and Vogel 2017; Westermann and Vogel 2021). In addition, when samples are 

enriched for the target organism, it is possible that the enrichment is imperfect and both host 

and parasite mRNA get selected. It renders most malaria transcriptome data sets potentially 

suitable for dual RNA-seq analysis. It can be expected that existing dual RNA-seq studies will 

be able to uncover genome-wide host-Plasmodium interactions. But it is unclear if studies with 

contaminant reads from the non-target organism also have the potential for dual transcriptome 

analysis. Malaria is the most thoroughly investigated disease caused by a eukaryotic 

organism. The accumulation of these two types of studies - RNA-seq with “contaminants” and 

intentional dual RNA-seq - may provide a large number of samples that can be reanalysed to 

answer new questions - in this case, to infer genome-wide host-parasite interactions. 

 

It can be expected that studies that prepared their sample libraries to intentionally sequence 

both of the organisms contain host and parasite reads suitable for dual RNA-seq analysis. But 

it is unclear if data sets with contaminants or imperfect enrichment also have the same or a 

diminished potential for use in a dual RNA-seq analysis. Unmapped or contaminant reads 

have been successfully utilised before to explore their potential in inferring cross-species 

interactions. For example, Laine and colleagues (Laine et al. 2019) found Plasmodium and 

Trypanosoma reads in Parus major unmapped sequencing reads. Sangiovanni and 

colleagues found bacterial communities in human sequencing data from different organs 

(Sangiovanni et al. 2019). Similarly Park and colleagues applied this approach to study 

microbial communities in host tissue (Park et al. 2019). The analysis of contaminant 

sequencing data has been implemented in associations with viruses as well (Z. Zhu et al. 
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2019). These authors utilised unmapped reads to find new microbes associated with diseases. 

and associations between viruses and these diseases. Finally, Cimino and colleagues utilised 

unmapped reads to find viral sequences in cancers (Cimino et al. 2014). Similarly, harnessing 

the contaminant reads in the multitude of malaria RNA-seq studies might provide us with a 

vast resource suitable for dual RNA-seq analysis. 

 

Malaria research is predominantly performed on three evolutionarily close hosts - Homo 

sapiens, Macaca mulatta and Mus musculus. There are known differences in the manifestation 

of Plasmodium infection among these 3 hosts. The factors that might affect the extent of 

overlapping interactions - such as the extent of transcriptome expression, the host-parasite 

system involved - among host-parasite networks from different studies are unclear. Since 

rodent and simian malaria are commonly used as laboratory models for human malaria, I 

hypothesise that it is crucial to have an understanding of conserved pathways across these 

host and parasite species to identify potential commonalities, which could be further 

investigated as potential targets for therapies. Therefore, a genome-wide analysis of cross-

species interactions across host-parasite systems would be beneficial to identify such 

commonalities. 

 

Efforts have been made to integrate information obtained in multiple related networks to make 

robust conclusions. To combine multiple data sets, Auer and colleagues observed that 

analysing all samples together mitigated some problems with batch effects and called this 

method “joint-calling” (Auer et al. 2016). Others have combined different levels of omics results 

to infer regulatory mechanisms, including host-parasite interactions (Angione, Conway, and 

Lió 2016; Halu et al. 2019; Kinsley et al. 2020; Buphamalai et al. 2021). But, to my knowledge, 

these methods have not yet been applied to cross-species interactions across different host-

parasite systems. In malaria research, it is crucial to have an understanding of conserved 

pathways across humans and the model systems to successfully investigate targets for 

therapies. To this end, a genome-wide analysis of cross-species interactions across host-

parasite systems would further the understanding of the disease and expand the repertoire of 

therapeutic targets. 

 

I therefore hypothesise that sequencing reads from malaria RNA-seq data sets with the 

potential for dual RNA-seq analysis can be used for deciphering host-parasite interactions 

informed by involved studies. I delineated my approach in: 

 

Aim 1: To determine the suitability of publicly available RNA-seq datasets for host-parasite 

dual RNA-seq analysis 
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Aim 2: To determine the potential for uncovering new biology in a dual RNA-seq analysis from 

blood stage of the infection as an example 

Aim 3: To determine how to integrate selected RNA-seq data sets and reduce the search 

space of possible interactions from ~56 million to a set of relevant genome-wide host-parasite 

interactions. 

 

Together, I will describe a strategy to gauge the usability of sequencing reads based on the 

proportion of host and parasite transcriptomic reads. Using blood stage studies as an example, 

I will delineate two approaches for obtaining a consensus of robust host-parasite interactions. 

In brief, this will illustrate the potential of existing data sets to be investigated for new 

questions. 
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3.2 Results 

3.2.1 Potentially suitable studies for human, mouse and simian malaria 

 
 
Figure 2. Proportion and number of sequencing reads and expressed genes from parasite and host in 

selected malaria RNA-Seq studies.  

I mapped sequencing reads from studies selected for their potential to provide both host and parasite gene 

expression data (total number of studies = 63; total number of runs = 3,351) against appropriate host and parasite 
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genomes. (A) The percentage of parasite reads (x axis) is plotted for runs in each study (host and parasite add to 

100%). The studies are categorised according to the host organisms studied and “enriched/depleted (E)” to indicate 

enrichment. Studies labelled “dual” were originally intended to simultaneously assess host and parasite 

transcriptomes. We also plot the number of reads mapped against the number of expressed genes for host (B) and 

parasite (C). The proportion of transcriptomes detected as expressed increases with sequencing depth toward the 

maximum of all genes expressed in the transcriptome. 

In search for dual RNA-seq data for Plasmodium and hosts, I found 63 potentially suitable 

studies (listed in Supplementary Table S1) from querying sequencing databases and 

undertaking a literature review survey (Figure 2). The host organisms were: for 27 studies 

Homo sapiens, for 26, Mus musculus and for 10, Macaca mulatta. The corresponding infecting 

parasites were P. falciparum, P. vivax and P. berghei in human studies (including four artificial 

infections of human liver cell culture with P. berghei), P. yoelii, P. chabaudi and P. berghei in 

mouse studies and P. cynomolgi and P. coatneyi in macaque studies (Table 1). For 16 out of 

the 63 studies, the authors stated that they intended to simultaneously study host and parasite 

transcriptomes (“dual RNA-Seq”). This included 8 studies from MaHPIC (Malaria Host-

Pathogen Interaction Center), based at Emory University, which performed extensive omics 

measurements in simian malaria. The original focus of the remaining 47 studies was on the 

parasite in 23 and on the host in 24 cases, but they sequenced their samples without the 

purposeful removal of one or the other organism. Plasmodium parasites sequester in bone 

marrow, adipose tissue, lung, spleen and brain (the latter causing cerebral malaria). To study 

a comprehensive spectrum of host-parasite interactions it would be optimal to have data from 

these different tissues. This collection of studies comprised data derived from blood and liver 

for all three host organisms human, mouse and macaque. Additionally, I found seven spleen 

studies and two studies of cerebral malaria from mice. MaHPIC offered a collection of blood 

and bone marrow studies in macaques. Experiments performed on mouse blood focus on the 

parasite instead of the host (12 vs. 0). Studies on human blood infection focused more often 

on the host immune response than on the parasite (10 vs. 6). Liver and spleen studies focused 

on host and parasite almost equally as often, with sources for host tissue in this case being 

either mice (in vivo) or hepatoma cell cultures (in vitro). 

 

 

 

 

 

Host-Plasmodium 
No. of studies/No. of runs in tissue 
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system Blood Spleen Liver Brain Bone Marrow Lungs 

Human-P. 
falciparum 

14/855 0/0 0/0 0/0 0/0 0/0 

Human-P. vivax 6/141 0/0 1/4 0/0 0/0 0/0 

Human-P. berghei 0/0 0/0 6/145 0/0 0/0 0/0 

Mouse-P. yoelii 3/19 2/10 3/20 0/0 1/4 1/6 

Mouse-P. chabaudi 4/204 5/795 2/46 0/0 0/0 0/0 

Mouse-P. berghei 3/44 0/0 0/0 3/83 0/0 0/0 

Monkey-P. 
cynomolgi 

5/811 0/0 2/59 0/0 0/0 0/0 

Monkey-P. coatneyi 1/35 0/0 0/0 0/0 2/66 0/0 

 

Table 1. Potentially available host-parasite systems, number of studies and number of runs in different tissues after 

database querying. 

Twenty one of the 63 studies depleted (or enriched, respectively) specific cell types in their 

samples. Seventeen blood-stage studies depleted or enriched host WBCs to focus the 

expression analysis on Plasmodium or the host immune system, respectively. Assuming this 

depletion was imperfect, I tested whether such samples enriched mRNA from both organisms 

by simultaneously mapping all sequencing reads against the concatenated genomes of the 

respective host and the parasite. 

I obtained 14 studies for the physiologically asymptomatic liver stage.   Low parasite numbers 

renders difficult to study Plasmodium transcriptomes for this stage. To reduce overwhelming 

host RNA levels, 9 out of the 14 liver studies enriched infected hepatoma cells from uninfected 

cells by cell-sorting. Three out of the remaining studies were among the ones focused on the 

host expression during the infection and one enriched for host cells. 

3.2.2 Blood and liver samples from different studies and host parasite 

systems are potentially suitable for dual RNA-Seq analysis 

The ability to infer co-regulation of transcripts from host and parasite depends on the detection 

of the expressed transcriptome from both organisms. A sample must provide sufficient mRNA 

quantities from both host and parasite to be suitable for dual RNA-Seq co-expression analysis. 

The number of sequencing reads mapped onto the host or parasite transcriptome is a major 

determinant of the proportion of the organisms transcriptome detected as expressed 

(transcripts with at least one read mapped; Figure 2B and C). As expected, only runs that were 

sequenced deeply were able to capture the expression of a high proportion of the 
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transcriptome. For both host and parasite, this proportion plateaued at the total number of 

genes expressed in the transcriptome of the respective tissue in these organisms. I tested 

different thresholds of host and parasite detected transcriptome against an inclusive analysis 

using all runs from suitable studies. Table 2 provides an overview of the number of studies 

and runs available for each of these analyses. 

 



 

43 

 

Table 2. Number of studies for each host-parasite pair and suitability analysis of their experimental replicates 

(runs). The intermediate threshold (yellow) and stringent threshold (green) are indicated by colour. 
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Knowledge of one-to-one orthologs between different hosts and different parasite species was 

included in the next steps to integrate across different host-parasite systems. Humans share 

18,179 1:1 orthologous genes with macaques and 17,089 with mice. 13,986 genes are 1:1:1 

orthologs among the three host species. Similarly, 4010 one-to-one groups of orthologous 

genes were found among the Plasmodium species. Together, the total number of possible 

host-parasite interactions is ~56 million (5.6x107). 
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3.2.3 Evaluation of thresholds on transcriptome representation improve 

the analysis of co-regulated gene-expression 

 
 

Figure 3. Overlapping bipartite edges between blood stage data sets across host-parasite systems.  

Based on the proportion of transcriptomes expressed in each study, three thresholds were implemented on the 

selection of runs for co-expression analysis. Without thresholds, “all” includes all runs. The intermediate (“int”) and 

stringent (“str”) thresholds, include runs in which 50% (“int”) and 70% (“str”) of the transcriptome of both host and 
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the parasite are detected as expressed (covered), respectively. (A) Schematic to show how samples were selected 

for co-expression analysis. (B) For each data set, the median host and parasite transcriptome coverage is indicated. 

The heatmap shows the log10-transformed number of bipartite edges for each study on the diagonal. The set sizes 

of the overlapping bipartite edges between corresponding data sets are displayed in the remaining fields. The data 

sets are clustered based on euclidean distances between these set sizes. The size of the overlapping set of 

bipartite edges is not determined by the median parasite or host transcriptome coverage, even studies with low 

coverage of the parasite transcriptome provide data sets leading to a high number of bipartite edges found in 

common with other data sets. The optimal overlap set size does not suggest a single threshold for the selection of 

sequencing runs—all three thresholds are found to have a high number of overlapping edges with other data sets. 

(C) Jaccard indices (size of intersection as a ratio of the size of union) for each data set pair are displayed as 

−log10-transformed indices. The versions of the data sets used for further analysis are marked with an asterisk. (D) 

The size of the intersection was tested for significance using Fisher’s exact test. 

 

Deciding on the stringency of the thresholds applied to a dual RNA-Seq meta-analysis requires 

additional analysis. I utilised the collection of blood stage studies as an example to 

demonstrate how samples with “sufficient” host and parasite transcriptome expression could 

be selected for dual RNA-seq analysis. I tested different thresholds that maximise the signal 

common between blood studies - the number of edges shared between correlation networks 

for different studies (Figure 3). 

36 studies investigated the blood stages of Plasmodium. 13 of these studies provided more 

than five runs (the criterion for separate analysis) at all thresholds (schematic in Figure 4) and 

were analysed as independent datasets. Previous studies have reported proportion estimates 

of the transcriptionally active parts of the P. falciparum genome in the intraerythrocytic stages, 

ranging from 60-90% (Bozdech et al., 2003; Chappell et al., 2020; Otto et al., 2010). Following 

this, 11 studies could be analysed separately with selection of runs at a “stringent” threshold 

of 70% transcriptome coverage. To utilise runs not meeting thresholds from studies that 

couldn't be analysed separately, further, six runs from two studies were pooled into a 

combined “humanPvivax” dataset and ten runs from five studies into a combined mouse 

dataset at intermediate thresholds. The combined mouse dataset comprised four runs from 

two P. berghei studies, five runs from two P. chabaudi studies and one run from a P. yoelii 

study. 16 studies did not meet the inclusion criteria and were therefore excluded from the 

analysis. Based on the sum of Jaccard indices (see Methods) of the datasets, I selected a 

total of 15 sub-datasets maximising overlap between individual study networks. I concatenated 

them to construct the “overall” dataset: four studies without thresholds (“all”), seven at 

intermediate (50%; “int”) and four at stringent (70% “str”) thresholds (marked with an asterix 

in Figure 3B,C,D). A total of 915 runs were included in the “overall” dataset. 

I concluded from this analysis that the edges shared between different studies within and 

among host-parasite systems (see below for an exception regarding human P. falciparum 

studies) outnumbered random expectations highly significantly (p<0.001, Fisher’s exact test; 

between all selected studies), indicating biological signals are shared between datasets 

(Figure 3D). I suggested using the required computational resources for optimising the 
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overlapping edge-sets sizes instead of setting a fixed (e.g. intermediate) threshold and 

continued analysis with the optimal version (selection of runs) of each study. Figure 3 indicates 

which different thresholds I deemed most suitable for different studies and my selection for 

downstream analyses. 

3.2.4 Across different studies, across different host-parasite systems 

 
 
Figure 4. Alternative and interlinked strategies to reconstruct host-parasite interaction networks.  

I designed two interlinked approaches to obtain a consensus network involving multiple host-parasite systems. (A) 

An implementation of permutation tests derives “empirical P values” to test correlation coefficients for significance 

and infers interactions. h, host; p, parasite. (B) The methodology used to compare transcriptome coverage 

thresholds (50%, intermediate [“int”]; 70%, stringent [“str”]) is using different subsets of runs from each individual 

study (“sub-data sets” S1, S2, and S3 in this illustration). As in Figure 3, without thresholds, “all” includes all runs. 

Each subset is analysed separately to infer interactions, allowing the subset (and threshold) leading to highest 

information overlap with other studies to be selected. (C) Inference of common interactions across host-parasite 

systems using the knowledge of single-copy orthologs across the hosts and the parasites. I undertook two 

approaches: the first one uses intersections in a multilayer network to generate a consensus of common 

interactions. In the second approach, I concatenated runs and correlated gene expression on those as a single 

“overall” data set. In the analysis for my final results, I combined these approaches mapping networks from each 

study onto the common network from an “overall” data set. 

I have identified two different but interlinked workflows to reconstruct a consensus network of 

expression correlation. A first approach integrated data from different studies of one host-

parasite system by simply appending expression profiles of their runs. Expression data across 

host-parasite systems was combined in orthogroups and correlations of gene expression were 

https://journals.asm.org/doi/10.1128/msystems.00182-21?permanently=true#fig2
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computed for all samples simultaneously. I referred to the results of this approach as the 

“overall” network (Figure 4C). It has the benefits that it uses and weighs all the information 

sources in one concise process. 

Alternatively, I searched for consensus networks by comparison of individual networks from 

different studies (Figure 4C). Similar to the approach taken to optimise expression thresholds 

for the inclusion of runs (Figure 3, 4B), I compared overlapping edges (co-expression between 

two genes) in a multilayer network analysis. Sets of overlapping edges from multiple studies 

and host-parasite systems offered more control when querying for similar correlation in 

different layers representing different host-parasite systems. 

3.3 Discussion 

In this Chapter, I illustrated the availability and useability of public RNA-seq data sets in 

detecting malaria host-parasite interactions. I calculated the proportions of host and parasite 

reads in data sets with contaminant reads from the organism that was not under direct 

investigation. I proposed an approach to combine results from studies on human, rodent and 

simian malaria. 

 

Analysing the proportions of sequencing reads mapping to the host and parasite 

transcriptomes, respectively, I discovered that generation of the data sometimes differed from 

the original focus of the study (Figure 2A). In many native samples (not enriched or depleted), 

the number of host reads was found to be overwhelming. In a few cases, however (probably 

when parasitemia was very high), parasite transcriptomes were still recovered. Some 

examples are replicate runs in the studies SRP032775, SRP029990 and ERP106769. 

Similarly, many studies using depletion or enrichment of a certain cell type prior to RNA 

sequencing (enriched/depleted in Figure 2A) suggested considerable expression of the non-

target organism (‘E’ in Figure 2A). Examples are the studies ERP023892, ERP002273, 

ERP004598, ERP005730, ERP110375, and SRP112213. Studies depleting whole blood from 

leukocytes to focus on parasite transcriptomes showed considerable host gene expression 

and provide potentially suitable runs for the analysis of blood stage infection at lower 

intensities. Although, this might come with the caveat that host expression might be biassed 

by unequal depletion of particular cell types. 

 

I outlined two approaches to summarise a consensus of host-parasite interactions from this 

collection of studies - one by finding an intersection set of significant interactions among all 

chosen studies and the second, by analysing a combined data set of all chosen samples 

together and as a result, obtaining a set of significant interactions. The use of multiple data 
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sets can strengthen results compared to using one study and reduce per-study idiosyncrasies, 

given the genome-wide nature of my research question. Even though single studies can be 

designed to infer genome-wide host-parasite interactions, the benefit of using multiple studies 

is that every interaction is supported and informed by multiple experiments (Steele and Tucker 

2008). Both Lagani et al. and Taminau et al. have investigated the two approaches I described 

on single species for reconstructing gene-gene interactions and for differential gene 

expression analysis, respectively, and found that both approaches outperformed results when 

obtained from analysing a single study (Lagani et al. 2016; Taminau et al. 2014).  

 

Surprisingly, there were no common interactions between two human studies ((Yamagishi et 

al. 2014) on Indonesian patients and (H. J. Lee et al. 2018) on Gambian patients, both infected 

with P. falciparum), after the respective samples underwent the same number of permutations 

for correlation analysis (Figure 3B). This might indicate differences that have arisen in 

sampling from human patients. Alternatively, this might hint toward idiosyncrasies in human 

blood studies using native samples with high parasitemia. The potential difficulty to apply RNA-

Seq meta-analysis to these human samples highlights the need to transfer such data across 

model systems while controlling for concordance with the human system. Even though 

because of characteristics of individual studies, there may not be common interactions with 

the first approach, the use of all samples together for analysis in the second approach will 

resolve this issue and detect a consensus set of robust host-parasite associations. 

 

This first analysis of mapped reads on hosts and Plasmodium illustrates the potential of 

reusing public data sets with new investigative questions on malaria. This approach can be 

applied to not only malaria, but also to other infectious diseases, especially eukaryotic 

diseases. A number of topics can be explored using similar meta-analysis approaches, such 

as disease mechanisms, host-pathogen co-evolution and host-microbiome interactions. Such 

an in silico approach could reduce the effort required to detail the search space of possible 

interactions to a set of more likely ones. 

4. Co-regulated genes and co-occurring biological processes in 

Plasmodium blood stage infection 

4.1 Background 

In the blood, Plasmodium parasites develop into merozoites which, in repeated rounds, 

asexually multiply inside infected red blood cells (RBCs). In humans, the blood stage is 

symptomatic and of clinical concern. Since there is evidence of drug resistance to an 
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increasing number of drugs that currently target the blood stage (Haldar, Bhattacharjee, and 

Safeukui 2018), further knowledge of host and Plasmodium responses to reciprocal stimuli 

during this stage would be beneficial to inform and uncover additional targets for antimalarial 

therapy and vaccines. 

 

Malaria blood stages are studied in culture systems as well as in animal models. In vitro culture 

systems have been developed for all Plasmodium species that infect humans (Schuster 2002). 

But in vitro systems lack the replicability of certain aspects of a natural infection, such as, 

parasite development under blood flow, splenic clearance and sequestration of infected RBCs 

(LeRoux, Lakshmanan, and Daily 2009). Thus, animal models have been indispensable. 

Rodent malaria is extensively used to study the disease in vivo. While the basic biology 

between human malaria and rodent malaria is similar, there are several differences such as 

the duration of merozoite egress cycle in the blood, morphologies and host cell choices. 

Humanised mice have been developed by generating mice expressing human genes or by 

grafting human tissues in mice. However, being immunocompromised, they limit the study of 

some disease aspects, like host immune response (Vaughan et al. 2012). Non-human 

primates (NHP) are also extensively employed to model human malaria. P. cynomolgi, a 

simian malaria parasite which has reportedly made zoonotic jumps (Bykersma 2021). P. 

cynomolgi malaria model is applied to mimic infection of its closely related human-infecting 

species, P. vivax for malaria vaccine research and therapeutics. P. coatneyi infection is highly 

similar to that of P. falciparum but it lacks close intrinsic genetic similarity. P. knowlesi is also 

employed as an NHP malaria model and provides advantages as there have been P. knowlesi 

zoonotic infections. But differences in the life cycle and disease presentation limits its use as 

a P. falciparum infection model (Simwela and Waters 2022). Drug targets testing from lab 

experiments require assessment in human clinical infections (Andrews et al. 2018), but such 

extrapolations across host-parasite systems has not been commonplace for finer mechanistic 

findings. It is unclear, therefore, how far experimental mechanistic studies obtained from 

model systems can be extrapolated to human malaria and can inform drug targets on their 

effects on multiple organs or the immune system. 

 

Transcriptomics has been extensively employed with clinical samples, animal models and in 

vitro cultures to explore functional changes in the parasite during life cycle progression and 

cellular responses of the host to the resulting blood stage malaria. Many aspects of host-

parasite interactions after the initiation of parasite life cycle in the blood can be studied from 

circulating blood. Since the parasite infects enucleated erythrocytes in blood, there is no 

regulation of host cell gene expression as a result of the infection. Thus, the sources of 

regulated gene expression during blood stage infection are the parasite and the white blood 

cells. These transcriptomics studies, thus, allow studying of parasite biology, responses to 
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vaccines, responses from immune cells, biomarker discovery for diagnosis and outcome 

prediction, parasite pathogenesis and host-parasite interactions (Sousa and Doolan 2016; 

Tran et al. 2012; Zuck et al. 2017). 

 

In the previous chapter, I proposed a strategy for selecting suitable samples from multiple 

studies to retrieve host-parasite interactions. I also proposed two approaches with which these 

samples can be used to construct host-parasite networks. Previously, relevant processes from 

dual transcriptomics analysis have been found in malaria using a single host-parasite system 

and a single study, for example, (H. J. Lee et al. 2018; Reid and Berriman 2012; Yamagishi et 

al. 2014; Bradwell et al. 2020b). It is unclear, however, whether a network constructed with 

samples from multiple studies containing samples with purposefully sequenced dual 

transcriptomes or contaminant RNA-seq reads and expressing varying proportions of host and 

parasite transcriptomes could be combined to detect biologically meaningful host and parasite 

processes. Since malaria is studied using experimental models, and there are known 

differences between these models and human malaria, it is unclear whether the inclusion of 

gene co-expression from different host-parasite systems would infer more relevant host and 

parasite processes. If so, such approaches to involve multiple studies from multiple host-

parasite systems would uncover physiologically conserved interactions. 

 

Gene expression data from transcriptomics experiments is often used to reconstruct gene co-

expression networks. The topology of such networks, such as the number of co-expression 

partners of each gene, has been used previously to assess the influence of each gene in the 

network using centrality measures as a proxy (Franco et al. 2020). Subudhi and colleagues 

performed a WGCNA (Weighted gene co-expression network analysis) and considered the 

hub genes, i.e, genes with a large number of co-expression partners, as candidates for 

intervention strategies (Subudhi et al. 2015). However, as Yu and colleagues described, the 

bottleneck genes, i.e, genes that connect larger gene clusters, are also as important as high 

degree hub genes (Yu et al. 2007). It could be expected that gene co-regulation within or 

between two transcriptomes where they were purposefully sequenced would produce 

networks that are able to highlight important genes for host-malaria parasite interaction. But it 

is however unclear whether a network constructed from multiple studies including studies with 

contaminants and across closely related species would be able to identify interactions 

conserved across these species. This would help us enumerate orthologous genes that are 

both essential and central and allow the use of centrality to prioritise genes across multiple 

species for characterisation or validation as a drug target. 

 

Previous studies have identified enriched parasite and host immune pathways during blood 

stage infection (such as (Chappell et al. 2020; Gupta et al. 2021; Karikari, Wruck, and Adjaye 
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2021; Boldt et al. 2019; Rothen et al. 2018)). However, an integration of genome-wide analysis 

of experimental models and human malaria is missing and has not been performed before. 

This would be beneficial to determine which Plasmodium genes influence specific host 

immune responses for a better understanding of underlying immune mechanisms against the 

infection. It would further help prioritise interacting parasite and host genes and pathways for 

screening as therapeutic targets.  

 

I therefore hypothesise that on combining multiple publicly available RNA-seq data sets based 

on transcriptome expression, key and conserved host-parasite interactions can be mined 

pertaining to the blood stage. I further hypothesise centrality in co-expression networks will 

indicate the importance of the gene in the functioning of the gene expression programm and 

ultimately of the organisms.  

 

In this chapter, I developed an analysis for host-parasite interactions during the blood stage 

using the approaches described in Chapter 3. I detected known linked host and parasite 

processes and finer host-parasite interactions and identified host genes that have not been 

deeply investigated for their function in malaria pathogenesis and host and parasite genes, for 

which their interaction during malaria pathogenesis was unknown. I demonstrated that the 

topology of the parasite co-expression networks obtained from individual data sets as well as 

those obtained from the combination of multiple data sets are able to mirror the importance of 

genes in parasite sustenance. Finally, I highlighted parasite genes that influence specific host 

immune responses across a variety of transcriptomics studies and across phylogenetically 

close host and parasite species.  
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4.2 Results 

4.2.1 A consensus “overall” network from multiple studies 

 
 

Figure 5. Multilayer networks of host-parasite interactions across host-parasite systems increase 

resolution over networks from single studies.  

I performed pairwise gene correlation tests on individual studies for gene expression in malaria and on an “overall” 

data set constructed by concatenating data from 15 data sets. (A) A small part of the “overall” network shows those 

overlaps. I selected this part of the network starting from a set of “core edges” found in most networks (the “overall” 

network and networks from six individual studies). Edges in the neighbourhood to this were randomly selected in 

equal numbers, where available, based on how many networks, out of 15, they were found in. The number of 

networks an edge is found in is represented by the edge colour. Several edges were found common to multiple 

data sets across host-parasite systems, a result later used to derive a “core” network. (B) The (log10-transformed) 

number of edges in networks from individual studies (horizontal bars) and shared (vertical bars) among networks 

shows the large overlaps between individual studies but also the large differences in the sizes for those overlaps. 

(C) Effect of performing an increasing number of permutations on the P value of an edge within a single network 

(data sets ERP004598_all, SRP118827_int, DRP000987_str, and “overall” as examples). (D) Distribution of P 

values across the range of correlation coefficients. The same studies as in panel C are used. 
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To retrieve host-parasite interactions from multiple public RNA-seq studies, I identified two 

workflows to reconstruct a consensus network of correlated genes. One approach integrates 

data from different studies of one host-parasite system by simply appending expression 

profiles of their runs. Expression data across host-parasite systems are combined in 

orthogroups, and correlations of gene expression are computed for all samples 

simultaneously. I referred to this data set obtained from combining the sequencing runs from 

different studies, the “overall” data set and the network that results from this approach as the 

“overall” network (Figure 4C). Correlating expression on the overall dataset resulted in a larger 

network (3.64 million edges, 12652 host genes, 3996 parasite genes) than on 13 out of 15 

individual study datasets. The two macaque datasets were exceptions (Figure 5B). I found 

528,883 bipartite edges only in the overall dataset and not in any individual dataset. 13-43% 

of edges from the overall dataset were recovered in each individual dataset (median 18.5%), 

indicating a substantial contribution from each individual dataset to the overall network. The 

most dominant study (presenting 43% of the edges in the overall network in its own sub-

network) was a mouse study (study ID ERP004598 (Guttery et al. 2014)) in which parasite 

gene expression was the primary focus. 91% of this study’s bipartite edges are shared with at 

least one other individual study in addition to the overall network. The second most influential 

study was a dual RNA-Seq study (on macaques, study ID SRP118827 (Tang et al. 2018)) that 

shared 89% of its bipartite edges with at least one other study.  

4.2.2 A "core" network of evolutionarily conserved interactions 

The overall network is a highly connected graph with a total of ~3.64 million edges 

(Supplementary Table S2). Even though this network provides some resolution relative to the 

~56 million edges possible (in a network of 13986 host genes and 4005 parasite genes), the 

resolution of this network might still be improved. I therefore defined a "core" network as 

follows: using the overall network as a scaffold, I extracted edges that were recovered in at 

least one human study and at least one animal model (monkey and mouse) study. Using this 

definition, the resultant core network exhibited 1876 host genes and 2050 parasite genes 

connected by 15,324 edges (Supplementary Table S3). A list of GO terms enriched or 

depleted in the genes of the core network is provided in Supplementary Table S4. As 

expected, many GO terms were conserved in the overall network. Most GO terms in the 

"overall" network were enriched more strongly because of the higher number of genes in that 

network. However, many GO terms in the "overall" network were broader than in the “core” 

network. The recovery of more specific functions in the "core" network indicates higher 

resolution in this network (Supplementary Table S4). 
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4.2.3 Gene co-expression explains gene essentiality 

 
Figure 6. Explanation of gene essentiality with blood stage gene co-expression networks. 

Eigenvector centrality in a P. berghei network of correlated parasite-parasite gene expression is plotted against 

relative growth rate (RGR) (A) and mutagenesis index score (MIS) (B). Lines depict predictions of the essentiality 

scores from the centrality measure in a beta-regression: the higher the centrality, the lower is the essentiality score 

(RGR and MIS), meaning that genes central in the network are more essential to the parasite’s growth and survival. 

Colour for both figures indicates phenotypes as categorised in reference (Bushell et al. 2017) 

 

A node is important in a network if it is central, i.e., if it has a high influence on the flow of 

information in the network. The metrics node degree (DG), betweenness (BW) and 

eigenvector centrality (EC) quantify network centrality. Similarly, an essential gene is 

classically described as a gene performing a function necessary for the viability of a cell or 

organism. I hypothesised that central nodes in the parasite networks would tend to be more 

Plasmodium essential genes. 

In quantitative terms, essential genes are more important for cell growth and thus disruption 

of those genes leads to larger growth defects. Briefly, for P. berghei in mice, Bushell and 

colleagues reported “relative growth rates” (RGR) of mutant parasites reflecting the 

essentiality of 2,578 genes (Bushell et al. 2017). A second study (M. Zhang et al. 2018) 

reported P. falciparum growth rates impacted by genome wide mutagenesis covering 5,399 

protein-coding genes. Here, the Mutagenesis Index Score (MIS) quantifies essentiality of a 

gene. 

In general, higher the centrality measure, the more is the influence of the node. Extending this 

relationship to RGR and MIS, higher the network centrality measures, higher is the essentiality 
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of the gene and lower is its RGR and MIS measurement. That is, network centrality should be 

inversely proportional to RGR and MIS. 

Firstly, I assessed the different network metrics for predicting gene essentiality (RGR and MIS) 

as response variables in beta-regression models. EC generally resulted in the best models 

and combination of the centrality measures did not improve the models in most cases 

(Supplementary Table S5). This might be explained by DG and EC being tightly correlated. I 

therefore constructed and reported models with EC as a single predictor. 

 

I then compared how well EC from different networks explained gene essentiality (Table 3, 

Figure 6): EC in the network derived from human - P. falciparum studies did significantly 

predict P. falciparum MIS and P. berghei RGR. EC from P. berghei networks, was also a 

significant predictor for both P. falciparum MIS and P. berghei RGR. Surprisingly, P. berghei 

network centrality was a better predictor of MIS in P. falciparum than the centrality in P. 

falciparum expression networks itself. EC from both the overall network and the core network 

was a significant predictor for gene essentiality. Considering effect sizes, p-values and Akaike 

information criterion (AIC), I concluded that centrality in the P. berghei network best explained 

both RGR and MIS, followed by the metric from the core network. Given the much smaller size 

of the core network the predictive power of centrality within this network was striking. 

 

I therefore concluded from this analysis, that (i) the co-expression networks captured biological 

characteristics independently measured for the parasite and (ii) that parasite genes with a 

central position in the “core” network were important for the parasite’s growth and survival. 

Highly connected genes in the intra-parasite “core” network, however, might control the 

reaction to host signals without necessarily directly interacting with host genes. 
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Effect sizes of the following dependent variable in the indicated networkb 

 RGR MIS 

1 2 3 4 5 1 2 3 4 5 

P. berghei 

EC 

−1.445*** 

(0.089) 

        −0.754*** 

(0.087) 

        

Overall EC   −1.279*** 

(0.128) 

        −0.418*** 

(0.128) 
      

Core EC     −0.984*** 

(0.073) 

        −0.511*** 

(0.071) 
    

P. 

falciparuma 

(I) EC 

      −0.833*** 

(0.267) 

        −0.952*** 

(0.272) 

  

P. 

falciparuma 

(G) EC 

        −0.746*** 

(0.070) 

        −0.454*** 

(0.069) 

  

Constant 1.092*** 

(0.048) 

1.505*** 

(0.107) 

0.880*** 

(0.042) 

0.486*** 

(0.030) 

0.767*** 

(0.041) 

1.146*** 

(0.049) 

1.159*** 

(0.108) 

1.032*** 

(0.043) 

0.836*** 

(0.032) 

1.001*** 

(0.042) 

No. of 

observations 

2169 2169 2169 2169 2169 2169 2169 2169 2169 2169 

R2 0.083 0.038 0.053 0.003 0.033 0.03 0.004 0.018 0.004 0.016 

Log 

likelihood 

2847.969 2766.102 2789.41 2718.35 2718.52 6065.9 6032.86 6050.41 6033.3 6019.49 

a(I), Indonesia; (G), Gambia. 
bThe five networks are as follows: 1, a single study on P. berghei infection in mice; 2, overall; 3, core; 4, a single study on human P. 

falciparum infection in Indonesia; 5, another single study on human P. falciparum infection in Gambia.  

Values are effect sizes with errors in parentheses.  

*, P < 0.1; **, P < 0.05; ***, P < 0.01. 

 

Table 3. Overview of beta regression models to explain relative growth rate (RGR) and mutagenesis index score 

(MIS) using eigenvector centrality measures of five blood stage networks. 
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4.2.4 Interacting parasite processes and host immune response  

 
Figure 7. Biological processes (BP) Gene Ontology (GO) terms shared between blood stage 

data sets across host-parasite systems. 

I performed GO term enrichment analysis for the “overall” data set and its 15 constituent data sets for host (A) and 

parasite (B) genes. Here I show GO terms for the six largest studies for each host species. Enriched GO terms (P 

value <= 0.05) are presented in sets colored in red, green, and blue for human, mouse, and macaque studies, 

respectively. The GO terms of the “overall” data set are displayed in the central yellow set. GO terms for the six 

individual data sets with the highest contribution to the “overall” data set are shown in the perimeter of this. 
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Overlapping between the respective areas shows shared GO terms found in either data set. Set overlaps are not 

illustrated between the six individual data sets, but respective terms are underlined (shared between four or five 

studies) or shown in bold type (shared between all six studies). 

Based on functional annotation of the networks, I found that the correlation between host and 

parasite transcript expression highlighted known processes important in host-parasite 

interactions (Figure 7). Biological processes for hosts consistent among almost all networks 

included “Cell adhesion by cadherin” and “Calcium-dependent cell adhesion”. Cadherins are 

cell-adhesion proteins that depend on calcium. Plasmodium infection causes systemic 

endothelial activation of host blood vessels when the infected RBCs sequester on the lining of 

blood vessels. This is accompanied with an increased interaction of endothelial cells with 

WBCs, as cell adhesion molecules on the vessel lining direct WBC trafficking to infected RBC 

sequestration sites (Turner et al. 1998). In addition, immune cells like B cells and monocytes 

express adhesion-related genes in this GO term, like Fer (a Tyrosine-protein kinase) and 

ICAM-1 (Intercellular adhesion molecule 1), respectively (Möst et al. 1992; Uhlén et al. 2015; 

Aguilar et al. 2020). To connect co-occurring host and parasite biological processes, I found 

the associations between enriched (p-value <= 0.05) host and parasite GO terms based on 

the interactors of the genes in the enriched host GO terms. From the core network, I identified 

a GO network of 617 host GO terms and 464 parasite GO terms. This analysis suggests that 

besides the detailed co-expression of gene products, broader enriched host and parasite 

processes or pathways are likely interacting in malaria infection. For example genes involved 

host cell-adhesion related processes interacted with specific parasite processes (Figure 8; 

Supplementary Table S6 for the entire resulting GO network from the core and overall 

networks, respectively). 

Another host biological process commonly found in the interaction networks was the response 

to oxidative stress combined with response to hydrogen peroxide and nitric oxide mediated 

signalling. It has been found that infected RBCs produce twice as many free OH- radicals and 

H2O2 than uninfected RBCs (Guttery et al. 2014; Atamna and Ginsburg 1993). This 

mechanism is believed to be a defence mechanism to abate the infection, although the exact 

mechanism of parasite killing is still unclear. Nitric oxide (NO) production by the host is also 

believed to promote parasite death in malaria (Percário et al. 2012). An interesting GO term 

observed in the results was “Killing by host of symbiont cells”. This term included genes that 

were all involved in defence response towards microbes by invoking immune cells (eg, 

Neutrophil cytosol factor 1 and Cathepsin G), respiratory burst (Ncf1) and blood coagulation 

(eg, prothrombin). 

Host-parasite interaction networks from all infection systems were consistently enriched for 

the parasite processes, “Calcium ion homeostasis” and “Late endosome to vacuole transport”. 

Calcium ion homeostasis regulated by calmodulins and Ca2+-dependent kinases (CDPKs) 
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play roles in complex signalling pathways and are important for apicomplexan parasite 

virulence (C R S Garcia 1999; Lourido and Moreno 2015). Vacuolar protein sorting-associated 

proteins-1, -2 and -46 (VPS1, 2 and 46) along with serine/threonine protein kinase (VPS15) 

are the underlying signal for the enrichment of “Late endosome to vacuole transport” process 

and are interlinked with host immune reaction genes in the interaction networks. The 

endomembrane system is important for the parasite in order to invade the host cell, to establish 

the parasitophorous vacuole and to obtain nutrients. The Endosomal Sorting Complex 

Required for Transport (ESCRT) is involved in late endosome formation as endosomes exists 

at different stages of formation - early endosome, multivesicular bodies, late endosome, before 

finally fusing with the lysosome or vacuole (reviewed in (Jimenez-Ruiz et al. 2016)). The 

interrelation of the immune system and endosomal formation and sorting events should be a 

future focus of research including the deeper studies of correlated gene expression networks 

(see Supplementary Table S4 for a list of enriched GO terms). 

 

Figure 8. An interaction network of host-parasite GO terms in the blood stage. 
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Host and parasite genes in the “overall” and “core” gene expression correlation networks were analysed for GO 

term enrichment. For each individual enriched host GO term, interacting genes from the other species were then 

analysed for enrichment more specifically. This gives an understanding of what GO biological processes in one 

organism, say, the host, are associated with specific processes in the parasite. In this figure, we show all parasite 

GO terms associated with host GO terms related to “adhesion” in the “core” network. 

 

To assess whether the networks or network modules were indicative of correlated gene 

expression originating from specific immune cells, I employed immune cell gene markers 

established in (Vallejo et al. 2018). These immune cell marker genes are specific for six 

immune cell types in the event of a Plasmodium infection in the blood: neutrophils and 

monocytes, T cells and B cells, and myeloid dendritic cells and NK cells. I found that specific 

markers from neutrophils were significantly overrepresented (Fisher's exact test, p-value = 

0.0089) in the overall network. Specific markers from monocytes were not significantly 

overrepresented (Fisher's exact test, p-value = 0.19). This likely indicates phagocytosis and 

killing of Plasmodium via respiratory burst in which neutrophils and monocytes might have a 

central role (Aitken, Alemu, and Rogerson 2018; Ortega-Pajares and Rogerson 2018). 

Specific markers for myeloid dendritic cells showed significant underrepresentation (Fisher's 

exact test, p-value = 0.0027). Marker genes for all other cell types were underrepresented 

(Fisher's exact test, p-value > 0.05) (see Supplementary Table S7).  

 

 

Figure 9. A “core” network highlights parasite interactions with specific immune cells. 

I derived a “core” network containing interacting genes supported by correlated gene expression in at least one 

human and one model organism study. (A) This complete “core” network is displayed with grey nodes for host 

genes and red nodes for parasite genes. The size of a node is based on its connectivity—the higher its degree, the 

larger the node. (B) identification of node clusters in the “core” network using an edge betweenness algorithm from 

igraph. Clusters with immune-cell-specific marker genes are colored (see legend, including a count for the number 

of marker genes in parentheses). The remaining clusters are left grey. 
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In the core network, marker genes were not significantly over- or under-represented, but those 

specific for monocytes, neutrophils and NK cells were tentatively over-represented. I then 

utilised the presence of these specific cell type markers to annotate network clusters (groups 

of highly connected genes) with the cell-type indicated (Figure 9). This resulted in 68 clusters 

in the overall network and 14 clusters in the core network annotated with a single cell type and 

additional 49 and five clusters annotated with multiple cell types, respectively. Among the most 

densely interconnected genes in the core network with strong evidence of specific cell types 

was a set of 203 host genes (three of which are specific for T cells, two for neutrophils) 

correlating in their expression with only two parasite genes. One of them, a ubiquitin regulatory 

protein (PBANKA_1222400 / PF3D7_0808300), was connected to 269 host genes in total in 

the core network. It appears to be uniformly expressed in all stages of the Plasmodium life 

cycle (Tan and Mutwil 2019). WLL-vs (Leu-Leu-Trp vinyl sulfone) and WLW-vs (Trp-Leu-Trp 

vinyl sulfone) are proteasome inhibitors and likely drug candidates (H. Li et al. 2016). In an 

experiment to study genetic changes mediating parasite recrudescence in WLL-vs and WLW-

vs resistant mutants, the ubiquitin regulatory protein expression level was amplified in 

recrudescent lines (Stokes et al. 2019). Thus it was suggested to confer low-grade resistance 

to such proteasome inhibitors. The second Plasmodium gene is a putative dynamin-like 

protein (DrpC, PBANKA_1434100 / PF3D7_1218500), connected to 11 host genes. Dynamins 

are mechanochemical enzymes with a GTPase domain and one of the functions of dynamin-

related proteins (Drp) is to transport vesicles (Breinich et al. 2009). DrpC is conserved in 

apicomplexans and was shown to be localised at the base and periphery of the mitochondrion 

in Toxoplasma gondii, implying a probable role in mitochondrial fission (Melatti et al. 2019). 

 

Another module of three host genes included a NK cell marker and was correlated with two 

parasite genes - a 26S proteasome subunit (PBANKA_1206600 / PF3D7_1008400) and 

ubiquitin fusion degradation protein UFD1 (PBANKA_1024700 / PF3D7_1418000). The 

parasite 26S protease subunit (L. Wang et al. 2015; Aminake, Arndt, and Pradel 2012; Wu et 

al. 2019) was reported as an essential protein in P. berghei but not in P. falciparum. In general, 

the ubiquitin-proteasome system (UPS) is essential for quality control of proteins in 

eukaryotes. In Plasmodium, the UPS is expressed across all life cycle stages and is 

speculated to be a promising drug target. It helps adapt the parasite to stress from the host, 

such as changes in oxidative environment and temperature differences, ensuring the survival 

and virulence of the parasite. The P. falciparum ortholog of UFD1 was reported to be a 

pathogenesis-related protein in an in silico module-based subnetwork alignment approach 

using protein-protein interactions of E. coli as references (Cai et al. 2015). 
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One module had genes specific to three different immune cells - monocytes, myeloid DC and 

NK cells - the highest number of marker genes for specific immune cell types in our core 

network. Among the 46 co-expressed parasite genes in this module, there were several genes 

related to apicoplast biogenesis, mitochondrial fission, transcription, vacuolar transport from 

Golgi apparatus to the endoplasmic reticulum and Fe-S cluster assembly proteins. 

 

Overall, these results provided an indication that certain gene expression clusters in the 

networks might be associated with specific cells of the innate immune response from 

neutrophils and monocytes. Additionally, I showed that parasite processes likely invoking this 

immune response include the expression of genes that are involved in drug resistance and in 

vesicular transport. 

I next determined the overlaps between networks in the multilayer network analysis. Twenty 

interactions of specific gene pairs were conserved across six individual networks and the 

“overall” network (Figure 5A): this includes i) a negative correlation (Pearson’s rho = -0.26) of 

Kelch-13 in Plasmodium with Laminin subunit beta-2 (LAMB2) in the host and ii) negative 

correlation (Pearson’s rho = -0.33) of parasite 26S protease subunit and host LAMB2, both 

recovered only in mouse and monkey studies. LAMB2 is an extracellular high affinity receptor 

and is associated with GO term “substrate adhesion-dependent cell spreading” to which 

infected erythrocytes have been reported to bind, along with to other adhesion molecules such 

as ICAM-1 and vascular cell adhesion molecule (VECAM). Burgmann et al. and Wenisch et 

al. found that laminin levels in serum were increased in severe/complicated malaria 

(Burgmann et al. 1996; Wenisch et al. 1994). Mahamar and colleagues later contradicted this, 

finding that the binding of infected erythrocytes to endothelial receptors including laminin was 

the same in severe and non-severe malaria (Mahamar et al. 2017). Kelch13 is a well-studied 

protein in which mutations in P. falciparum confer resistance to artemisinin. It was found to be 

essential in both P. falciparum and P. berghei intraerythrocytic stages. Associated proteins 

and Kelch13 form an endocytic compartment and are essential for feeding on host 

haemoglobin. Kelch13 is also suggested to be a ubiquitin ligase with a role in the ubiquitin-

proteasome system by labelling proteins for degradation (Gnädig et al. 2020). Artemisinin and 

its derivatives (ART) are known to be activated by the products of haemoglobin degradation 

and promote cell death by increasing ER stress facilitated by the accumulation of 

polyubiquitinated proteins. Mutations conferring resistance on Kelch13 reduce host cell and 

haemoglobin endocytosis and along with 26S proteasome system (which includes the 26S 

protease subunit, the other parasite gene in discussion here), maintain the normal 

proteasomal degradation pathway preventing cell death, and thus, resulting in resistance 

(Birnbaum et al. 2020; Bridgford et al. 2018; Tilley et al. 2016; Ng, Fidock, and Bogyo 2017; 



 

64 

Dogovski et al. 2015). This work here is, to my knowledge, the first suggestion that the 

prominent Kelch13 and LAMB2 might be involved in interacting host-parasite processes. 

The gene pairs discussed above were recovered in seven datasets altogether (six individual 

studies + overall), but were not recovered by any of the human - Plasmodium studies and are 

therefore not present in the core network. Of the 20 interactions that were found in seven data 

sets, five were also found in the core network and are indicated as such in the Supplementary 

Table S3. Of these five, one was an interaction between host protein Odorant-receptor ODR4 

homolog (ENSG00000157181) and parasite Thioredoxin-like associated protein 2 (TLAP2; 

PBANKA_0518100 / PF3D7_1034300). TLAP2 is a microtubule-associated complex. It was 

found to be dispensable in both P. berghei and P. falciparum (Bushell et al. 2017; M. Zhang 

et al. 2018). TLAP2 is conserved in Toxoplasma gondii and Plasmodium spp. Along with other 

TLAP proteins, It is associated with protein TrxL1 (Thioredoxin-Like protein 1) and as a 

complex, coat cortical microtubules (J. Liu et al. 2013). These coating proteins, as an 

ensemble, stabilise the cortical microtubules (J. Liu et al. 2016). Host ODR4 is involved in 

trafficking of GPCR proteins and in protein localisation (Chen et al. 2014; Dwyer et al. 1998). 

A second interaction was between host biotinidase (ENSG00000169814) and parasite with 

protein kinase (PBANKA_1016200 / PF3D7_1428500). In the host, biotinidase makes biotin 

available from dietary sources. But host biotin was found to be essential for Plasmodium 

survival in the liver stages but not in the blood stages (Dellibovi-Ragheb et al. 2018). In 

general, several mutations in biotinidase reduce biotin availability without causing severe 

diseases. There have been suggestions that biotinidase mutations could be used as 

antimalarial therapies, following evidence that there are biotinidase mutations in Somali 

populations (Sarafoglou et al. 2009). Putative parasite protein kinase PBANKA_1016200 is a 

membrane protein involved in protein phosphorylation and ATP binding. Even though it is 

dispensable in both P. berghei and P. falciparum, in general, protein kinases have been an 

attractive subset of proteins to be used as antimalarial targets, as reviewed in (Mustière, 

Vanelle, and Primas 2020). 

I therefore propose that interactions between these proteins (direct, physical protein-protein 

interaction) or interlinkage of associated pathways may be worth further scrutiny for 

mechanistic investigations. 

4.3 Discussion 

In this Chapter, I investigated genome-wide host-parasite interactions during the intra-

erythrocytic stages of Plasmodium development across phylogenetically close hosts - Homo 

sapiens, Macaca mulatta and Mus musculus. I evaluated the two approaches for obtaining a 
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consensus set of host-parasite interactions that were described in the previous chapter. I 

evaluated the resulting networks using Gene Ontology (GO) enrichment and provided a list of 

genes that are both essential and central to the networks. I further annotated parts of the 

networks that were enriched for certain types of immune responses. 

 

Each individual study data set that was selected for further analysis underwent 100,000 

permutations to compute an empirical p-value for the correlation coefficient. Reid and 

Berriman performed the same number of permutation tests for correlation analysis. They found 

that an increasing number of interactions coincided with gold-standard interactions for every 

1000 permutations (Reid and Berriman 2012). I showed that as the number of permutations 

increases, the increase in resolution, i.e, the decrease in the number of significantly correlated 

gene pairs recovered, slows (Figure 5C). This decrease suggests that, with increase in the 

number of permutations, I retained relevant interactions. After this reduction in the resulting 

number of interactions, Individual data sets might have an even further smaller number of 

interactions in common because of their idiosyncrasies (Figure 5D). To circumvent this, I 

showed the benefit of analysing an “overall” data set where samples from multiple studies are 

analysed together. The “overall” analysis identified both positive and negative correlations (for 

a histogram, see Supplementary Figure S1). The interactions detected here depict gene 

coregulation across studies and conditions. In the results of the “overall” data set, I reached a 

consensus of all the included data sets. 

 

The data sets I procured from SRA/NCBI had vastly varying conditions that introduced 

variations between the data sets. The original aims of the authors were different which dictated 

their experimental setup. In addition, technical variations arise from library preparation 

methods, sequencing depth, etc (Fang and Cui 2011; McIntyre et al. 2011). Despite these 

sources of variations, on combining samples from multiple studies and from multiple host-

parasite systems, I found more overlap of interactions between studies than expected by 

chance. I also obtained enriched functional annotations, as GO terms, relevant to malaria for 

the host and for the parasite. These GO terms have been found to be enriched before in 

independent studies (H. J. Lee et al. 2018; Yamagishi et al. 2014; Reid and Berriman 2012) 

and thus this provides a quality check for the proposed method for computing cross-species 

interactions.  

 

Previously, authors have shown that gene co-expression network topology should reflect gene 

essentiality, reviewed in (Panditrao et al. 2022). Further validation of the networks was 

provided by their explanation of parasite gene essentiality - RGR and MIS. While RGR was 

measured using P. berghei, MIS was measured using P. falciparum. The P. berghei network 

explained RGR and MIS better than the P. falciparum networks. This was likely because the 

https://journals.asm.org/doi/10.1128/msystems.00182-21?permanently=true#figS1
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two P. falciparum networks that were used for modelling were from human patient samples 

and might have had idiosyncratic gene expression profiles for the parasite based on their 

interactions with the host and geographical region. On the other hand, the P. berghei network 

was generated from a study performed in controlled laboratory settings, as was the MIS 

measurements. This point not only highlights a benefit of analysing expression profiles from 

multiple data sets together, as in the “overall” data set, but also shows the importance of 

including multiple species in such an analysis. 

 

Multiple network modules in the overall and core networks were overrepresented for neutrophil 

and monocyte marker genes using PBMC marker genes from (Vallejo et al. 2018). Vallejo and 

colleagues performed a deconvolution of immune cells found in single cell transcriptomics 

data during P. vivax infection in malaria-naïve and malaria-exposed controlled human malaria 

infection (CHMI) (Vallejo et al. 2018). They observed a reduction in neutrophil proportions after 

exposure to P. vivax in malaria-naïve infections but not a significant reduction in malaria-

exposed infections. Monocyte proportions were not significantly different on P. vivax exposure. 

Myeloid dendritic cells had significantly increased proportions on P. vivax exposure for both 

malaria-naïve and malaria-exposed CHMI. However, Griffiths and colleagues found that acute 

malaria could be distinguished from convalescent subjects based on neutrophil-related gene-

expression profile (Griffiths et al. 2005). In a WBC subset deconvolution from P. falciparum-

infected Malian children, Bradwell and colleagues found varying proportions of neutrophils, 

monocytes and mDCs across patients and across successive infections (Bradwell et al. 

2020a). This result showcases the differences in human patient samples that can create 

inconsistencies and the importance of being independent of biases in single studies. 

 

In this chapter, I showed that a meta-analysis with public data sets is feasible and how such 

an analysis can be performed. I provided evidence for the relevance of host-parasite and 

parasite-parasite interactions detected using this method. This work reduced the search space 

of millions of potentially realised pairwise host-parasite interactions to a more manageable 

number. I gave pointers to order the interactions according to their importance for host and 

parasite, prioritising them further for targeted investigation.  
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5 Transcriptomic view of liver stage Plasmodium - host 

interactions and similarities with interactions in the blood stage 

5.1 Background 

The liver stage of Plasmodium is initiated when sporozoites injected into the host dermis by 

female Anopheles mosquitoes migrate to the liver parenchyma and invade hepatocytes. After 

traversing through multiple hepatocytes, each sporozoite invades an hepatocyte to establish 

a parasitophorous vacuolar membrane (PVM) to acquire host nutrients and grow. Although it 

is an immunologically reactive stage, it doesn’t cause any symptoms. The number of parasites 

are low and form a bottleneck in parasite multiplication. Once they do undergo schizogony, 

they are released into the bloodstream as merosomes. There they infect red blood cells 

(RBCs) and initiate the asexual blood stage of their life cycle. There are several similar events 

that occur in the liver and blood stages alike. These include host cell invasion, internalisation 

in the host cell, acquiring nutrients from the host, schizogony and egress from the host cell 

(Vaughan and Kappe 2017). 

 

Liver stages of human malaria are modelled in the laboratory using cell lines that mimic the 

host cell, primary hepatocyte cultures or in animal models like non-human primate and rodent 

model systems. Among cell lines, rodent Plasmodium species can be grown in HepG2, Huh7 

and Hepa1-6 cell lines; P. vivax in HepG2 and HC01 and P. falciparum in HC01 (Prudêncio, 

Mota, and Mendes 2011). Although mammalian cell lines are easy to maintain and have 

defined genomic and transcriptomic features, a drawback of regular cell lines is that these are 

immortalised and might have lost most of the features of the original cells (primary cells). 

Primary cell cultures have a benefit in that they retain most features of hepatocytes in their 

natural environment. Among animal models, rodents and non-human primates can be infected 

with P. berghei, P. chabaudi and P. yoelii, and P. cynomolgi and P. coatneyi respectively. 

Animal models can mimic human malaria pathogenesis and allow the study of the host-

parasite interactions in the organism as a whole. Due to the restrictions involved in the use of 

non-human primate models, rodent models, such as the laboratory mouse from Mus musculus 

domesticus species are primarily used. In the search for a set of robust and relevant host-

parasite interactions, it would be beneficial to include these model systems as they are 

employed in investigating the biology of the host-pathogen interaction and serve as preclinical 

models for human malaria drugs and vaccines developments. 

 

Liver stage gene expression analysis using genome-wide microarray and RNA-seq 

transcriptomics studies has helped unearth disease-related host and parasite responses. In 
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2009, Albuquerque and colleagues revealed a global-scale host cell transcriptome during P. 

berghei and P. yoelii liver stages using genome-wide microarrays. They found receptor binding 

activity and stimulus and stress related responses during the early liver stages and the 

engagement of metabolic and immune response related processes in the later stages 

(Albuquerque et al. 2009). Using P. berghei models, transcriptomic expression over different 

time points has been employed to unravel the differences in gene expression from sporozoites 

to shizonts during the liver stage (Caldelari et al. 2019) and between sporozoites and 

merozoites in the liver along with parasite gene clusters that interact with the host (Toro-

Moreno et al. 2020). Considering that the liver regulates the circadian cycle and glucose 

metabolism after food intake, Hirako and colleagues found that during P. chabaudi liver stage 

development, carbohydrate metabolism related genes and inflammation related genes are 

upregulated in the host (Hirako et al. 2018). More recently, single-cell RNA-seq (scRNA-seq) 

technology was utilised in the Malaria Cell Atlas project to reveal expression patterns in each 

cell type during P. berghei infections in all life cycle stages including the liver stage (Howick et 

al. 2019; Real et al. 2021). In one of their observations, they reported the activation and 

upregulation of invasion-related genes in sporozoites upon being released into the host. Such 

data could be supplemented by simultaneous responses of the host to build a clear picture of 

the events that unfold during sporozoite injection. These studies investigated either the host 

or the parasite processes during infection. Modulation in gene expression can potentially be 

captured for both host and parasite once the sporozoite has invaded a hepatocyte because of 

its nucleated nature. Thus the gene expression data contained in these infection studies, 

however, might be able to reveal coregulated host and parasite processes. 

 

Some studies have investigated both host and parasite responses. Using dual RNA-seq, 

LaMonte and colleagues found that Muc13 is a quantifiable host marker of parasite infection 

and that the host mucosal immunity is modulated during Plasmodium infection (LaMonte et al. 

2019). Mancio-Silva and colleagues constructed a P. vivax cell atlas exploring its gene 

expression across dormant and replicative liver forms and the corresponding host immune 

responses (Mancio-Silva et al. 2022). In another study by Ruberto and colleagues, scRNA-

seq was conducted to study transcriptome-wide signatures of host and parasite in P. vivax 

schizont and hypnozoite stages (Ruberto et al. 2022). In the parasite transcriptome, they 

evidenced key differences in transcripts encoding for RNA-binding and cell fate. In the infected 

hepatocytes, energy metabolism and antioxidant stress responses were upregulated while 

host immune responses were downregulated. Here, the drawback is that they don’t reveal the 

similarities or differences in responses with P. falciparum, which causes the deadliest form of 

malaria. An analysis of conserved host-parasite interactions would reveal the extent of 

conserved interactions between the laboratory models and the species responsible for 

infections in humans. 
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Several parasite processes occur in the liver stage as well as the blood stage, such as invasion 

of host cell, PVM formation, multiplication and egress. For example, EXP2 is a part of PTEX 

(Plasmodium translocon of exported proteins) pore-forming protein located on the PVM and 

is in both the liver and blood stage parasites (Matz et al. 2015; Matthews et al. 2013). In 

another example, using scRNA-seq, Noé and colleagues found similarities between CD8+ 

TRM (tissue-resident memory) cells in peripheral blood and in hepatic aspirates in a challenge 

study for prime-target vaccination against P. falciparum (Noé et al. 2022). There are also 

several processes and genes whose functions are essential in these two stages (Stanway et 

al. 2019). However, a genome-wide discovery of such common processes between the two 

stages is missing. This would not only improve our understanding of complementary 

mechanisms but also provide additional options to target the blood and liver stages. 

 

Altogether, I first hypothesise that liver stage gene expression data from intentional dual 

transcriptomics experiments and those with enrichment and contaminants should infer 

genome-wide host-parasite interactions. In the blood stage, host-parasite interactions 

reflected associated processes between the parasite and immune responses from the white 

blood cells. The infected RBC is enucleated and thus does not express genes on being 

infected. In the liver, however, the infected hepatocyte is nucleated. Thus, host-parasite 

interactions at this stage will reflect not only the responses from immune cells with the parasite 

but also the responses of the hepatocyte itself. 

 

Secondly, the comparison of human malaria with model systems becomes important in the 

research for drug targets. I hypothesise that the inclusion of host and parasite gene expression 

data from these model systems by extracting single copy orthologs among the hosts and 

among the parasites will reveal conserved interactions between model malaria systems and 

human malaria. 

 

Finally, there are core regulatory processes that occur across the liver and blood stages. I 

hypothesise that public data sets pertaining to the blood and liver stages across human and 

model host-parasite systems should be able to uncover genome-wide host-parasite 

interactions across the two life cycle stages of Plasmodium across multiple host-parasite 

systems. 

 

In this chapter, I have used malaria liver stage public data sets from humans, rodent and non-

human primate model systems to infer host-parasite interactions that encompass these 

organisms across multiple exo-erythrocytic parasite forms. With a correlated gene expression 

analysis, I demonstrated evidence of known host and parasite processes and host and 
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parasite associated processes that have not been studied in relation to each other. I have also 

performed a combined analysis of the blood and liver stage networks to infer interactions that 

occur in common to both stages. A repertoire of such interactions might help in the 

establishment of antimalarials or vaccines that affect both developmental stages of 

Plasmodium. 

5.2 Results 

5.2.1 Dual RNA-seq analysis reveals gene expression from host and 

parasite in studies from pre-erythrocytic stages 

I queried sequencing databases for malaria liver stage public RNA-seq data sets that 

potentially have host and parasite reads to infer host-parasite interactions. Nine studies 

(Figure 2A, SRP250329, SRP126641, SRP110282, SRP071199, SRP034011, ERP105548, 

SRP096160, SRP131855 and ERP109432) out of the 14 liver studies identified in Chapter 3 

(Figure 2A) FACS-sorted infected hepatoma cells to enrich exclusively infected cells. Except 

for SRP034011 where the organism of interest was the host, in every case where cells were 

sorted, the studies were focused on the parasite biology. 

 

In ERP020067, liver samples could not be distinguished from the blood stage samples 

provided by the same study. In ERP109432, there were no counts for parasite genes and 

could not be included for correlation analysis. These two studies were excluded from my 

dataset. Thus, a total of 12 studies and 252 sequencing runs were available for further 

analysis. The runs from each study were grouped into sub-data sets “all”, “int” and “str” as 

proposed in Chapter 3 (Figure 3A). Briefly, all samples of a study with the expression of at 

least 50% host and parasite transcriptomes were grouped into an “int” data set, those with at 

least 70% transcriptome expression from both organisms were grouped into an “str” data set 

and all samples from a study were grouped into “all”. Out of the 12 liver studies, 4 had samples 

with more than 50% (“int”) and 70% (“str”) transcriptome expression. They were SRP110282, 

SRP096160, ERP105548 and SRP250329. The remaining studies provided only “all” data 

sets (Figure 10A, B, C). 

 

In Figures 10A and 10B, the data sets with high amounts of host and parasite transcript 

proportions did not all cluster together. This means that the overlap between studies is not 

dependent on the host and parasite transcript proportions. It suggests that the correlation 

method detects co-expressed genes despite the varying proportions of host and parasite 

transcriptome expression. 
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The Jaccard index was calculated for each pair of data sets to gauge the extent of overlap of 

interactions between the two data sets (Figure 10A). I first calculated the sum of all Jaccard 

indices obtained for each thresholded data set. Next, I compared this sum for “all”, “int” and 

“str” data sets for each study. Only one dataset from a study - “all”, “int”, or “str” - which has 

the largest sum for Jaccard indices was selected for gene co-expression analysis. Following 

the strategy presented in Figure 3A to select runs with at least 50% proportion of read counts, 

I was able to include gene expression data from only four liver stage studies that had “int” data 

sets. Since it is likely that parasite read proportion remains low at this stage because of the 

low rate of infection, I attempted to maximise the number of studies I could include. using 

Jaccard index sum. I found that the sum of Jaccard indices for the four studies that were 

already included, increased when “all” data sets from the remaining eight studies were 

retained. The selected data sets, therefore, are eight “all” data sets, two “str” data sets and 

two “int” data sets and are shown with the asterisk in Figure 10A and 10B. In total, there are 

175 runs from 12 studies for the combined analysis of gene co-expression for the liver stage. 

The remaining 75 runs out of the 252 total runs were removed from further analysis. 
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Figure 10. Overlapping host-parasite interactions (bipartite edges) in liver stages. 

Each liver stage study was broken down into smaller datasets based on the same flowchart for thresholds 

implemented in the blood stage studies in Figure 3. Each dataset, "all", "int" or "str" were analysed for gene co-

expression. (A) The Jaccard index for a pair of studies. The colours are represented as -log10 of the raw Jaccard 

index value. This means that the closer to 0 (red) a value is, the higher is the overlap or intersection between the 

two corresponding studies. (B) Number of interactions common (or in the intersection) of two studies. The raw 

numbers were log10 transformed - the red the colour is, the higher is the higher is the number of interactions in the 

intersection. (C) Significance of the intersection of interactions between studies. Significance was measured using 

Fisher's exact test to check if the size of the intersection was greater than what would be randomly expected. To 

correct for multiple testing, the Bonferroni-Hochberg method was used. A colour closer to red denotes higher 

significance. In (B) and (C), the studies are arranged in the same order as was clustered in (A) by hierarchical 

clustering. The studies marked with an asterix were included in the "overall" dataset and were based on the highest 

Jaccard index of a dataset within a study. 
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5.2.2 Host-parasite gene co-expression in the liver stage is more specific 

compared to the blood stage 

 
 

Figure 11. Correlation coefficient and degree distribution of host and parasite genes in liver “overall” 

network. 

(A) Distribution of uncorrected p-values for co-expression between host and parasite genes in the liver network 

across the range of correlation coefficients. This network was made using samples from multiple liver stage studies 

and is termed the “overall” network. A randomised sample of 800,000 edges with p-value <10-5 and from >10-5 

were used for this plot. The edges with uncorrected p-value <10-5 are selected for further analysis as the overall 

network. Out of the total 454,048 edges with p-value <10-5, 104 had a correlation coefficient less than 0. (B) and 

(C) Degree distribution of host genes and parasite genes, respectively, in the blood and liver networks. (D) and (E) 

Eigenvector centrality (EC) distribution of host genes and parasite genes, respectively, in the blood and liver 

networks. (F) Correlation coefficient distribution of the liver core network edges showing the number of studies 

contributing to edges in each bin. 

 

To obtain robust host-parasite coregulated genes from public data sets involving multiple host-

parasite systems, I combined RNA-seq samples from 12 studies, a total of 175 runs, for co-
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expression analysis. I called this data set the “overall” data set. A permutation test was used 

to confirm the robustness of the observed correlation coefficient, as described in Chapter 2. 

Only the host-parasite edges with a permutation score of 0, i.e., the lowest measurable “p-

value” of 10-5, were extracted to construct the “overall” network of interactions. I found a total 

of 454,048 bipartite interactions comprising 13,977 host genes and 4,005 parasite genes with 

correlation coefficients ranging from -0.4 to 0.97 (Figure 11A and Supplementary Table S8). 

 

Next I postulated that Plasmodium mRNA to be most robustly correlated with the mRNA 

species from the hepatocyte it invaded. Therefore, interactions in the liver network would be 

fewer than in the blood, but more specific. Here onwards, by “liver network” and “blood 

network”, I referred to the bipartite networks from the “overall” data sets for the two tissues. 

 

I compared the blood and liver network structures by computing the metrics detailed in Figure 

11B, C, D and E and Table 4). Figure 11B and C indicate the normalised degree distributions 

of the host and parasite genes in the blood and liver networks, i.e., the normalised number of 

edges coming from each gene. Eigenvector centrality (Figure 11D and E) explains how well 

connected the neighbours of a given gene are, in other words, how much influence the gene 

has on the network. For these gene-level network properties - normalised degree and 

eigenvector centrality - the host and the parasite distributions in the liver network are 

significantly different to those in the blood network (Wilcoxon’s rank sum test, p-value < 2.26e-

16). 

 

At the organism level, the mean number of edges of the parasite genes in the blood network 

was 5,441.6 compared to 576.58 in the liver network (Table 4), suggesting that on an average, 

each parasite gene is co-expressed with far more host genes in the blood than genes from 

the hepatocyte and surrounding cells in the liver.  

 

At the network level, the edge density, i.e, the realised proportion of possible edges, was 

higher for the blood network (0.026) than for the liver (0.008), indicating that in the liver 

network, the genes had robust correlations with far fewer genes than in the blood. Clustering 

coefficient, i.e, the degree to which the genes tend to cluster was higher in the liver (0.0015) 

than in the blood (0.0008) indicating that the genes co-expressed in the liver network tended 

to be associated with processes happening closer to each other than in the blood. 
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Network property Blood Liver 

Organism level 

Mean number of links (parasite) 5441.6 576.58 

Mean number of links (host) 751.08 514.04 

   

Network level   

Edge density 0.026 0.008 

Clustering coefficient 0.00086 0.00155 

 

Table 4. Organism and network level properties of blood and liver overall networks. 

 

Even though the blood network was more dense, its lower clustering coefficient indicated that 

there are broader associations being represented. From the metrics described here, it could 

be presumed that other than the obvious difference in the sizes of the two networks, there 

were topological differences between the networks of the blood and liver stages.This might 

have reflected the proximity of the associated mRNA species and the corresponding 

pathways. To further examine how genes involved in the same pathways across blood and 

liver influence the topology of the networks, I next evaluated the congruence between studies 

with different hosts and the “overall” network in the liver.  

5.2.3 A “core” network represents conserved interactions across human 

malaria and model systems 

 
Figure 12. Liver core network. 

(A) A randomised selection of edges from the overall network to show in how many studies they occur. The colour 

legend denotes the number of studies they appear in. 200 edges were randomly chosen for all groups except 

overall+3 networks, which was applicable for 1 edge only. (B) The liver core network. Out of the edges present in 
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common to the overall network and individual studies, the core network was constructed based on their presence 

in at least one human study and at least one other model organism study. 

 

In inferring relevant host-parasite interactions from public data sets, I reduced the number of 

interactions from ~56 million possibilities to 454,048 in the network obtained from the 

combined “overall” data set of the 12 individual studies. Figure 12A shows a small portion of 

the “overall” network with a randomised set of interactions where the edge colour indicated 

the number of studies the edge appeared in. The highest number of studies in agreement on 

identifying a particular interaction (edge) was four, for one interaction (Figure 12A). This 

interaction was between the host orthologous gene Emc9 (ER membrane protein complex 

subunit 9) and the parasite gene PBANKA_1363600, a conserved protein with unknown 

functions. Emc9 inserts membrane proteins into the ER membrane while PBANKA_1363600 

was found to interact with Plasmodium PHISTb (Plasmodium Helical Interspersed 

Subtelomeric) (LaCount et al. 2005), which is involved in host cell remodelling. This interaction 

might involve the establishment of liver stage forms (Warncke, Vakonakis, and Beck 2016).  

 

To ensure conservation across closely related hosts, I extracted interactions from the “overall” 

network that overlapped with at least one human and one model organism (mouse or monkey) 

in a “core” network. The liver core network has 12,442 interactions with 2,717 host genes and 

1,229 parasite genes (Figure 12B and Supplementary Table S9). Twenty six interactions were 

common to four studies, 998 to three and 11,417 to two different studies. Only one interaction 

was common to five different studies and the overall network - between host Serine/threonine-

protein phosphatase 2A regulatory subunit B'' subunit beta, PPP2R3B and parasite MAK16 

Maintenance of killer 16. PPP2R3B might be involved in calcium ion binding and in the 

localisation of enzymes (Uniprot accession Q9Y5P8), while Muller and colleagues suggested 

that MAK16 in Plasmodium vivax is involved in signalling pathways that stop the progression 

from hypnozoite to schizont stage (Muller et al. 2019). The association of host PPP2R3B 

mediated calcium homeostasis and signalling with lifecycle progression mediated by parasite 

MAK16 might be worth further investigation to assess its association.  

5.2.4 Liver stage parasite gene co-expression explains gene essentiality 

of low centrality genes in the blood stage  

Genes required for basic cellular processes to sustain the parasite function across multiple life 

cycle stages in Plasmodium. In the previous chapter, I demonstrated that centrality defined by 

blood stage gene co-expression network topology was able to explain gene essentiality 

measured during the erythrocytic stage of the infection. I therefore hypothesised that cellular 

processes being important in both stages will mean that centrality in the liver network will add 

to the explanatory power of the blood network in explaining gene essentiality. 

https://www.uniprot.org/uniprot/Q9Y5P8
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For this analysis, only the parasite co-expression networks were considered for network 

centrality measurements. The liver parasite core network displayed 2,942,593 interactions 

from 3,996 parasite genes. In the liver parasite overall network which was constructed using 

multiple studies, there were 6,547,113 edges from 4,005 parasite genes. I observed that the 

eigenvector centralities (EC) of the genes in liver and blood parasite overall networks 

(Supplementary Figure S2A) were weakly but significantly correlated (Spearman’s rank 

correlation coefficient = 0.19, p-value < 0.001 from 2,167 genes). Between the blood and liver 

core networks (Figure 13A), the correlation was 0.29 (2,159 genes). These figures indicated 

that there are genes with high centrality across the two life cycle stages and also genes with 

large differences in their centrality between the two networks. 

 

I modelled the eigenvector centrality (EC) of liver parasite network genes as the predictor 

variable to explain relative growth rate (RGR) and mutagenesis index score (MIS) measured 

at the blood stage of the infection by Bushell and colleagues and Zhang and colleagues 

(Bushell et al., 2017; M. Zhang et al., 2018). Increased liver overall and core EC predicted 

reduced RGR and MIS, indicating higher essentiality (Figure 13B and Supplementary Figure 

S2). EC from the liver core network had a stronger effect and resulted in a better fit of the beta 

regression modelling of RGR and MIS (AIC: -513.5 for RGR and -9556.8 for MIS) than the EC 

from the overall liver network (AIC: -481.1 for RGR and -9491.5 for MIS). This suggests that 

the liver parasite core network is better at identifying essential functions than the overall 

network.  
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Figure 13. Beta regression models with liver network centrality measurements to explain relative growth 

rate (RGR) of P. berghei mutants in blood stage development. 

Spearman's rank correlation coefficient was computed between the eigenvector centrality (EC) of genes in (A) 

blood core versus liver core network. EC in (A) was measured for the parasite-parasite networks. Each dot, or 

gene, is coloured based on the relative growth rate (RGR) measurements made in the blood stage of P. berghei 

provided by Bushell et al., 2017. (B) EC from the liver core parasite-parasite network as a predictor variable to 

explain RGR in a beta regression model. Higher the centrality, lower is the predicted RGR, represented by the 

black line. Genes with higher centrality tend to have lower RGR, i.e. higher essentiality. (C) Beta regression models 

of the interaction of liver and blood core network EC as the predictor for RGR. 
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Effect sizes of the following dependent variable in the indicated network 

 Dependent variable 

RGR MIS RGR MIS 

Blood core -1.206*** 
(0.085) 

0.648*** 
(0.082) 

-1.984*** 
(0.187) 

-1.110*** 
(0.183) 

Liver core   -1.424*** 
(0.137) 

-1.275*** 
(0.137) 

Blood core:Liver core   1.947*** 
(0.323) 

1.388*** 
(0.320) 

 

Constant 0.893*** 
(0.042) 

1.045*** 
(0.043) 

1.456*** 
(0.069) 

1.539** 
(0.069) 

Observations 2,169 2,169 2,169 2,169 

R2 0.058 0.022 0.097 0.064 

Log Likelihood 2,813.170 6,057.677 2,867.150 6,104.371 

Values are effect sizes with errors in parentheses. 

Note: *p<0.1; **p<0.05; ***p<0.01 

 

Table 5. Gene essentiality models to compare blood and liver gene essentiality. 

 

Expectedly, the essentiality of genes in the blood stage is better explained by centrality in the 

blood expression networks than by centrality in the liver networks (AIC in blood core network 

= -5620.34; AIC of liver core network = -5568.32). To determine if essential parasite genes in 

the blood stage with high centrality in the blood network are also highly central in the liver, I 

assessed whether the centrality in the liver and blood are additive for essentiality. I employed 

a linear regression model with liver EC and blood EC and an interaction term between those 

as the predictive variables for RGR (Figure 13C). High EC in blood explains essentiality of 

genes in the blood (Chapter 4) and the liver network EC doesn’t provide additional additive 

values (0.71 in Figure 13C). However, genes with low EC in the blood network were more 

essential when liver network EC was high. This means that the variance in essentiality 
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explained by liver core EC is negligible when the gene is highly central in the blood core 

network, whereas the variance in essentiality explained by the liver core EC is significant when 

the gene was not essential in the blood core network. This implies that core regulatory 

processes in the parasite liver transcriptome are functionally relevant for the host-parasite 

interaction in the blood. 

 

Stanway and colleagues explored essential genes in liver metabolic pathways (Stanway et al. 

2019). They identified seven metabolic pathways that are essential to the liver stage compared 

to the asexual blood stage. I postulated that genes of these pathways would display a low 

blood stage essentiality (RGR or MIS) but high centrality in the liver networks. To ascertain 

this postulate, I combined the essentiality prediction in the Stanway data set with the EC 

metrics of my networks to investigate the centrality of the predicted essential liver genes. 

Supplementary Table S10 shows the centrality measures obtained from the liver and blood 

stage core networks, EC of “overall” parasite network genes along with the predictions made 

by (Stanway et al. 2019) for essentiality in liver and (Bushell et al. 2017) for RGR. Out of the 

20 genes for which Bushell determined RGR and Stanway predicted to be essential in the liver 

stages only, four genes were essential in both Bushell (blood) and Stanway (liver) data sets. 

Of these, three had centrality > 0.5 in the liver core network and all four had centrality > 0.7 in 

the liver overall network. This result indicated that there were genes related to parasite 

metabolism reported to be essential in both the blood and liver stages that also had high 

centrality across multiple host-parasite systems. 

 

Genes at the interface of cross-species interactions are less likely to have essential functions 

(Bushell et al., 2017). In spite of this trend, I found six parasite genes in the liver core host-

parasite network (Table 6) that were found to be uniquely essential in the Stanway data set 

(Supplementary data S3 from Stanway et al., 2019). In addition, 24 parasite genes from the 

overall host-parasite network were reported as uniquely essential in the liver stage by 

(Stanway et al., 2019). 

 

 

Parasite gene Host interactors 

PBANKA_030820 from FASII pathway regulatory factor X-associated protein Rfxap 

(ENSMUSG00000036615) 

beta filamin Flnb (ENSMUSG00000025278) 

Paf1/RNA polymerase II complex component Leo1 

(ENSMUSG00000042487) 

tripartite motif-containing 44 Trim44 (ENSMUSG00000027189) 
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terminal nucleotidyltransferase 4B Tent4b 

(ENSMUSG00000036779) 

PBANKA_051220 from heme biosynthesis hyaluronoglucosaminidase 1 Hyal1 (ENSMUSG00000010051) 

RPA interacting protein Rpain (ENSMUSG00000018449) 

PBANKA_114070 from heme biosynthesis UV radiation resistance associated gene Uvrag 

(ENSMUSG00000035354) 

aldehyde dehydrogenase family 1, subfamily A2 Aldh1a2 

(ENSMUSG00000013584) 

PBANKA_091270 from the FAE or fatty 

acid metabolism pathway 

 

solute carrier family 25, member 35 Slc25a35 

(ENSMUSG00000018740) 

PBANKA_134650 from the FAE or fatty 

acid metabolism pathway 

Rho guanine nucleotide exchange factor (GEF) 39 Arhgef39 

(ENSMUSG00000051517) 

solute carrier family 26 member 6 Slc26a6 

(ENSMUSG00000023259) 

mitogen-activated protein kinase 8 Mapk8 

(ENSMUSG00000021936) 

PBANKA_135520 from the TCA cycle TRM5 tRNA methyltransferase 5 Trmt5 

(ENSMUSG00000034442) 

 

Table 6. Parasite genes reportedly uniquely essential in the liver stage and their host interactors in the liver core 

host-parasite network. 
 

Taken together, these results suggest that there are regulatory processes important for the 

sustenance of the parasite across the blood and liver stages and that the topology of gene co-

expression networks reflect this transferability of processes across stages. The host 

interactors of the essential metabolism-related parasite genes might hint towards possible 

therapeutic targets against parasite metabolic processes. 
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5.2.5 Interactions of Plasmodium and host genes reveal processes 

specific to sporozoite and liver stage development  

 

 

Figure 14. Association of host and Plasmodium biological process GO terms based on host-parasite 

interactions in the liver stage. 

To obtain parasite GO terms associated with the host GO terms, the set of enriched host GO terms and 

corresponding host genes in each GO term were selected. The parasite genes co-expressed in the network with 

all the host genes in a host GO term were filtered. A GO analysis was performed on these parasite genes to find 
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enriched parasite GO terms. The analysis revealed enriched parasite GO terms associated with each host GO 

term and vice versa. Host-parasite GO term associations that were common in the two analyses, i.e., from the host 

side and from the parasite side of the network are extracted to visualise here. (A) Host GO - parasite GO association 

network with associations common to the host and parasite GO enrichment analysis. The size of each node (GO 

term) represents the degree of the node in this network. The thickness of an edge represents the number of 

interactions between the two GO terms in the overall network. The colour of the edge represents edge 

betweenness, .e, how important the edge is for information flow in the network. (B) - (E) The upper half of each 

chord diagram plots the host GO terms and the lower half plots the parasite GO terms. Grey colour indicates source 

organism, i.e., the organism that provided the initial set of GO terms and gene lists. The coloured terms indicate 

the target organism, i.e., the organism that provided the gene interactors in the network on which the GO analysis 

was performed to infer GO-GO associations. The ribbons depict the number of host-parasite gene-gene 

associations in the network, also mentioned in brackets next to each term. The black arrow shows the direction of 

the association, i.e., the arrow head points to the target organism. Number of interactions in brackets next to source 

GO terms refer to total outgoing interactions and the number of interactions in brackets next to target GO terms 

refer to total incoming interactions. (B) and (C) show associated GO terms from the host side and parasite side 

where the total number of host genes in the participating interactions in the network were above 100, respectively. 

(D) and (E) show associated GO terms from the host side and parasite side where the total number of host genes 

in the participating interactions in the network were less than 100 and above 15, respectively. 

 

In this chapter, I hypothesised that the use of public RNA-seq data sets from multiple host-

parasite systems could reveal their relevant interactions. I obtained a network of 454,048 

interactions and as a result, reduced the search space from the total possibilities. A functional 

annotation of such a network would give a broader overview of the finer interactions that are 

detected. Therefore I determined the associated bioprocesses between the host and the 

parasite that encompass co-regulated genes. 

 

The genes in the “overall” network were analysed for enriched host and parasite GO terms 

(KS p-value < 0.05). Even without the knowledge of the type of treatment and the experimental 

set up for the samples, I was able to retrieve relevant GO terms (Supplementary Table S11). 

Associated host and parasite biological processes GO terms provide an insight into the 

interacting pathways formed by the co-expressed host and parasite genes in the networks. To 

obtain parasite GO terms associated with the host GO terms, the set of enriched host GO 

terms and corresponding host genes in each GO term were selected. The parasite genes co-

expressed in the network with all the host genes in a host GO term were filtered. A GO analysis 

was performed on this set of parasite genes to find enriched parasite GO terms that are 

associated with the host GO term. The analysis revealed enriched parasite GO terms 

associated with each host GO term and vice versa. 

 

Of the total number of genes included in this project, all host genes were annotated with GO 

terms and there were a total of 3704 parasite orthologs with GO annotations. In analysing host 

GO - parasite GO associations, the 20 enriched (KS p-value < 0.05) parasite GO terms from 

the network revealed 565 associated host GO terms and 3077 total host-parasite GO 

associations. On the host side, the 344 enriched host GO terms from the network revealed 
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associations with 130 parasite GO terms and a total number of 2810 host-parasite GO 

associations in total. 

 

Out of these, there were 190 host-parasite GO associations found in common to the 

association enrichment analyses from the host perspective and from the parasite perspective, 

involving nine parasite GO terms and 121 host terms (Figure 14A). In this GO-association 

network, the edges were weighted based on the number of host-parasite gene-gene 

associations between the two GO terms in the overall network (range: 208 - 132190) and 

coloured based on their edge betweenness in the GO association network, i.e., how important 

the edge is for information flow within this network. The size of the nodes, i.e, GO terms are 

based on their degree in the GO-GO association network (range: 1-4 for host GO terms and 

1-70 for parasite GO terms) (Supplementary Table S12). 

 

The liver GO association network consists of parasite terms from early phases of the liver 

infection such as “cell gliding” and “entry into host”. These processes are primarily associated 

with host immune responses. The remaining parasite terms likely pertain to growth and 

multiplication-related processes. The host processes linked to them consist of metabolite 

transport, host remodelling and immune responses. 

 

From this correlation analysis of the liver stages, I obtained GO terms indicating the processes 

related to sporozoite-specific processes like cell gliding and liver stage development but no 

processes related to merosome egress. This analysis suggests that public RNA-seq data sets 

from liver stage malaria for different hosts and parasites could be combined to reveal known 

biological processes as well as associated processes and gene pairs that have not been 

investigated in relation to each other in malaria.  
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5.2.6 Transcriptionally co-regulated host and parasite genes across liver 

and blood stages of Plasmodium development reveal bioprocesses 

common to both stages 

 
 
Figure 15. Host-parasite interactions common to blood and liver stage studies. 

(A) Jaccard index obtained for host-parasite interactions in blood and liver stage studies included in the blood-liver 

overall network. (-)log10 (Jaccard index) = 8 implies that there were no common interactions between the 

corresponding studies. (B) Blood-liver overall network. Edges are coloured based on which tissue - blood or liver - 

the interaction was detected in. Top 10 enriched GO terms for the host and parasite genes in interactions that were 

found in at least 2 blood and at least 2 liver studies are tabulated. 

 

During the life cycle of Plasmodium in the mammalian host, the parasite invades the host, 

forms the PVM, transports nutrients and egresses while the host responds to the parasite by 

stimulating its immune defence mechanisms. It has been suggested that parasite and host 

pathways alike could be targeted by drugs to fight malaria (Zenonos et al. 2015). Cross-

species genome-wide studies could reveal host pathways that influence parasite 

pathogenesis and vice versa across multiple stages. In addition, such an analysis would 

enable uncovering processes in malaria pathogenesis that have been studied in one of the 

two stages and are yet to be investigated in the other. I stated previously that there were genes 

essential to both the blood and the liver stages that were also central in my networks. Here I 

harnessed my collection of blood and liver stage studies and used correlated gene expression 

to detect genome-wide host-parasite interactions important to both stages of Plasmodium 
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development. I hypothesised that similarly co-expressed gene pairs retrieved from a 

combination liver stage studies were able to detect relevant liver host-parasite interactions, a 

combination of blood and liver stage studies would be able to detect relevant processes that 

occur in both malaria life cycle stages. 

 

As a first step, I determined the number of common interactions that are detected between 

blood and liver stages. In Figure 15A I calculated the Jaccard index between every pair of data 

sets that have been used to concatenate samples from multiple studies, “overall” networks, 

for blood and liver stages. This similarity index did not cluster the studies based on tissue. 

There were blood and liver study pairs with similarity indices at both ends of the spectrum. For 

instance, the liver SRP096160_str and blood SRP118996_all, both monkey studies, had high 

similarity and liver SRP261098_all and blood ERP004598_int, both mouse studies, have no 

interactions in common. Therefore, it suggested the presence of common interactions across 

the liver and blood stages in humans, mice and monkeys. 

 

I concatenated samples from multiple studies included for analysis of the blood and liver 

“overall” networks for performing gene-gene correlation analysis. Since the liver overall 

dataset had 175 samples in comparison to 915 in the blood, for each permutation I created a 

dataset with the 175 samples from the liver and samples 175 random blood samples to 

generate the blood-liver dataset. There were 556,928 bipartite interactions from 3,736 host 

genes and 3,547 parasite genes (Supplementary Table S13). Out of them, 363,440 

interactions were found in at least one blood stage study and in no individual liver stage study. 

Similarly, 12,336 interactions were detected in at least one liver study. In at least one blood 

and at least one liver study, 65,730 interactions were detected, i.e, if there were four liver 

studies and one blood study recovering an interaction, the interaction was grouped within this 

group of 65,730. If an interaction was detected by at least two liver and blood studies, they 

were grouped in the next category which has 3,909 interactions. These 3,909 interactions 

formed between 724 host genes and 725 parasite genes were weighted by both tissues and 

might have indicated common cross-species processes. A GO enrichment analysis on these 

genes revealed host responses like reactive oxygen species-related and cell adhesion-related 

processes that are known to occur across the two life cycle stages. Among parasite processes 

were entry into host and calcium ion homeostasis which are known to be ubiquitous across 

the life cycles stages of Plasmodium (Supplementary Table S14). 

 

To decipher the information in the network of 556,928 interactions inferred by the blood and 

liver samples, I resorted to finding associated GO terms. Associations between GO terms 

were detected in the same way as for the network obtained from liver stage analysis. Briefly, 

the parasite gene interactors of all genes from an enriched host GO term of the network were 
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selected and a GO term enrichment analysis was performed on these parasite genes to see 

which parasite GO terms were enriched. These enriched parasite GO terms were in 

association with the corresponding host GO term. The same analysis was performed starting 

from the enriched parasite GO terms obtained from the network. The host GO - parasite GO 

associations found in common to the analyses from the host perspective and the parasite 

perspective are shown in Figure 16, which included 379 total associations from 133 host GO 

terms and 20 parasite GO terms. In the network obtained for combined blood and liver stage 

studies, there were a total of 265 enriched host GO terms in association with 180 unique 

parasite GO terms forming 5672 associations and 29 enriched parasite GO terms associated 

with 617 unique host GO terms forming 7724 associations in total (Supplementary Table S15). 
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Figure 16. Association of host and Plasmodium biological process GO terms based on host-parasite 

interactions in the combined analysis for blood and liver samples. 

Host GO - parasite GO association network with associations common to the host and parasite GO enrichment 

analyses in the blood-liver overall network. The size of each node (GO term) represents the degree of the node in 

this network. The thickness of an edge represents the number of interactions between the two GO terms in the 

overall network. The colour of the edge represents edge betweenness, i.e, how important the edge is for information 

flow in the network. 

 

Among the associations (Figure 16) I detected processes that have been described in both 

the blood and the liver stages. For example, electron transport systems in the parasite result 

in the breakdown of haemoglobin to provide the parasite with nutrients. This process increases 

the amount of reactive oxygen species in the RBC, increasing oxidative stress. Adhesion 

molecules such as ICAM-1 and VCAM-1 expression increase as a result while the expression 

of other adhesion molecules decrease. During the production of reactive oxygen species 

(ROS), detoxification pathways are activated to decrease host cell death by excessive 

oxidative stress, such as the detoxification of hemolysis product free heme 

(ferri/ferroprotoporphyrin IX) in the food vacuole (Becker et al. 2004). The same mechanism 

has been studied in the liver where Heme oxygenase-1 induction is responsible for free heme 

accumulation, which causes an increase in oxidative stress in the hepatocyte. It results in a 

NFkb activation upregulating in ICAM-1 and VCAM-1, and causing neutrophil extravasation 

and adhesion (Dey et al. 2012). Some GO associations in the GO network in relation to these 

processes were parasite “GO:0022900 electron transport chain” with host “GO:0007155 cell 

adhesion”, parasite “GO:0098869 cellular oxidant detoxification” with host “GO:1990266 

neutrophil migration” and parasite “GO:0022900 electron transport chain” with host 

“GO:0001666 response to hypoxia”. Further, it was shown that cell adhesion is dependent on 

oxidative stress and oxidation of lipids like LDL (Galindo et al. 2001; Sibmooh et al. 2004). In 

my GO network, the parasite “GO:0098609 cell-cell adhesion” had an association with 

“GO:0034440 lipid oxidation”. The parasite gene in this association was Rhoptry-associated 

membrane antigen (RAMA), which is important for the localisation of RON proteins for the 

invasion into host cells (Sherling et al. 2019). The host gene in this association was 

Mechanistic target of rapamycin kinase (mTOR), known to be involved in lipid metabolism. 

Rashidi and colleagues discussed that mTOR activity is targeted by pathogens upon entry, 

including the possibility that pathogens could target mTORC pathways by indirectly interacting 

with downstream signals (Rashidi et al. 2021). 

 

The core network, extracted from the overall blood-liver network utilised the same 

methodology previously described for the liver network. I detected 16 host-parasite 

interactions (Table 7). There were three interactions that were found in seven different studies, 

which was the maximum number of studies corroborating an interaction. However, these three 

interactions didn’t meet the criteria for inclusion in the core network. 
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The three interactions were the following: First, A host G-protein coupled receptor, GPR171, 

co-expressed with parasite RPA2 (PBANKA_091380), a putative DNA-directed RNA 

polymerase I subunit. GPR171 is membrane-bound and has purinergic nucleotide receptor 

activity. It suppresses myeloid differentiation (Rossi, Lemoli, and Goodell 2013). RPA2 is 

essential in P. berghei (PlasmoDB).  

 

Second, host protein LEMD3 (Lem-domain containing protein 3), an Inner nuclear membrane 

protein co-expressed with the parasite gene Sec7-containing protein of guanine nucleotide 

exchange factors, “ARF-GEF” (PBANKA_130680). Host LEMD3 negatively regulates TGFb 

and antagonises TGFb-induced cell proliferation arrest. It interacts with SMAD proteins, which 

were mentioned in this chapter before in the pathway of RAC3 to provide protection against 

malaria by preventing exacerbation of inflammation in parasitic infections (Adalid-Peralta et 

al. 2011; Luckheeram et al. 2012). LEMD3, however, in my knowledge, has not been studied 

in connection to malaria before. In Plasmodium, unlike in other eukaryotes, there is only one 

Sec7 domain. It is essential in P. berghei and causes parasite resistance to brefeldin A drug 

(Baumgartner et al. 2001). 

 

Third, host MIA3 (MIA SH3 domain ER export factor 3) co-expressed with parasite surface 

protein P113. MIA3 is involved in ER-Golgi transport of vesicles containing secretory proteins 

that bud from the ER. In addition, it is involved in the negative regulation of leukocyte cell-cell 

adhesion. P113 binds to host erythrocyte and is important for efficient sporozoite maturation 

into liver stages (Offeddu et al. 2014; Sanders et al. 2005). P113 interacts with RH5, a subunit 

vaccine candidate (Galaway et al. 2017). 

 
Host Parasite 

1. Neurobeachin Like 2 (NBEAL2) Dynein light chain 1 

- Involved in thrombopoiesis, secretion of granules that contain 

important factors for platelet biogenesis, neutrophil degranulation 

- Located in ER, cytosol 

- Microtubule-based process 

- Dispensable in P. falciparum, no data in P. berghei 

- Located in cytoskeleton, cytoplasm 

 

2. Zyg11 family member B, cell cycle regulator (ZYG11B) PBANKA_1462600 

- Regulates proteasomal ubiquitin-dependent protein catabolic 

process 

- Subunit in the E3 ubiquitin ligase complex 

- Located in the Cul2-RING ubiquitin ligase complex 

- Conserved, unknown function 

- ATP-binding, ion binding, transferase activity 

- Likely dispensable in P. falciparum (PF3D7_1249700) 

- Located on membranes 

 

3. Ubiquitin-specific peptidase 15 (USP15) Exported protein 1 (EXP1) 

- Removes Ubiquitin conjugated from target proteins 

- Regulates pathways of TGFb, NfkB 

- Located in cytosol, mitochondria, nucleus 

- Studies show functions in both the liver and the blood 

stages 

- Dispensable in P. falciparum 

- Biological processes: Exit from host cell, Response to 

drug 

- Located in merozoite dense granules, extracellular 

vesicle, symbiont-containing vacuole membrane 
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4. Serine palmitoyltransferase long chain base subunit 2 

(SPTLC2) 

Dipeptidyl aminopeptidase 1 (DPAP1) 

- Important role in de novo sphingolipid synthesis and crucial for 

adipogenesis 

- Located in the membrane and ER 

- Vacuolar haemoglobin degeneration 

- Essential in P. berghei, dispensable in P. falciparum 

- Located in food vacuole, symbiont-containing vacuole 

membrane 

 

5. Pleckstrin homology domain interacting protein (PHIP) Exported protein 2 (EXP2) 

- Insulin receptor signalling pathway 

- Cytoskeleton organisation, cellular morphogenesis, anti-

apoptotic activity 

- Increases transcription by RNA polymerase II 

- Located in nucleus 

- Studies show importance in both stages 

- Pore-formation in host membrane, symbiont-containing 

vacuole membrane 

- Essential in both P. berghei and P. falciparum 

- Located in PTEX, host cell cytoplasmic vesicle 

 

6. Glutaminyl peptide cyclotransferase (QPCT) Succinate dehydrogenase subunit 4 (SDH4) 

- Involved in proteolysis, cellular protein modification processes, 

neutrophil degranulation 

- Zinc ion-binding 

- Located extracellularly 

- Involved in transport 

- KO causes slow growth in P. berghei, essential in P. 

falciparum 

- Integral component of membrane 

 

7. Glutaminyl peptide cyclotransferase (QPCT) Autophagy-related protein 18 (ATG18) 

- Involved in proteolysis, cellular protein modification processes, 

neutrophil degranulation 

- Zinc ion-binding 

- Located extracellularly 

- Lipid-binding, ion-binding, apicoplast biogenesis 

- Essential in P. berghei and P. falciparum 

- Located in food vacuole, cytoplasmic vesicle, lysosome 

 

8. Proline rich and Gla domain 4 (PRRG4) Nucleosome assembly protein (NAPL) 

- Calcium-ion binding 

- Located in the Golgi body, extracellularly and is integral to 

membrane 

- Important for nucleosome assembly, chromosome 

organisation,protein-containing complex assembly 

- Essential in P. berghei and P. falciparum 

- Located in the nucleus 

 

9. Protein tyrosine kinase 2 beta (PTK2B) 6-cysteine protein, P230p 

- Vascular endothelial growth factor (VEGF) receptor signalling 

pathway, cell adhesion, maintenance of cell shape, response to 

Ca+2 ion, response to ROS, macrophage chemotaxis, actin 

reorganisation, reduced cell proliferation, K+ ion transport, TNF-

mediated signalling pathway, release of Ca+2 ion into cytosol, 

protein ubiquitination, B cell chemotaxis, integrin-mediated 

pathway, activation of GTPases like RAC1, etc. 

- Located in nucleus, cytoplasm, membrane on the cytoplasm side 

- Gamete fertility 

- Dispensable in P. berghei and P. falciparum 

- Located in cytoplasm, cell surface 

 

10. Myosin heavy chain 7B (MYH7B) 
2C-methyl-D-erythritol 2,4-cyclodiphosphate 
synthase (IspF) 

- Muscle contraction, actin filament binding 

- Located in the membrane 

- Drug target for broad antimicrobials 

- Involved in terpenoid biosynthesis, metal ion binding, 

lipid metabolic process 

- Essential in P. falciparum, no data in P. berghei 

- It is an integral component of membrane 

 

11. Myosin heavy chain 7B (MYH7B) 
Mitochondrial respiratory chain complex II subunit 

- Muscle contraction, actin filament binding 

- Located in the membrane 

- Essential in P. falciparum, no data in P. berghei 

- Located in respiratory chain complex II, membrane 

protein 

 

12. NEDD4-binding protein 2-like 2 (N4BP2L2) Inhibitor of cysteine proteases (ICP/falstatin) 

- Negative regulation of hematopoietic stem cell differentiation, of 

transcription by RNA polymerase II, positive regulation of 

hematopoietic stem cell proliferation 

- Located in extracellular exosome, nucleus 

- Sporozoite invasion, mobility, blocks hepatocyte death, 

entry into host 

- Essential in P. berghei, dispensable in P. falciparum 

- Located in the microneme, symbiont-containing 

vacuole, host cell cytoplasm 

 

13. CEP295 N-terminal like (CEP295NL) Surface protein P113 

- Microtubule binding - Studies show presence in both the liver and the blood 
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- Located in the centriole, centrosome, cytosol, cilium - In raft-like membrane of P. falciparum, binds to 

erythrocyte membrane 

- Important for efficient conversion of sporozoite into 

mature liver stage forms in vivo 

- Dispensable in P. falciparum 

- Located in symbiont-containing vacuole membrane 

 

14. NEDD4-binding protein 2-like 2 (N4BP2L2) 

PBANKA_1037300 

- Negative regulation of hematopoietic stem cell differentiation, of 

transcription by RNA polymerase II, positive regulation of 

hematopoietic stem cell proliferation 

- Located in extracellular exosome, nucleus 

- Conserved with unknown function 

- Likely dispensable in P. falciparum, no data in P. 

berghei 

- Located in the cell periphery, cytoplasm 

 

15. Glutaminyl peptide cyclotransferase (QPCT) CUGBP Elav-like family member 1 (CELF1) 

- Involved in proteolysis, cellular protein modification processes, 

neutrophil degranulation 

- Zinc ion-binding 

- Located extracellularly 

- RNA-binding 

- Located in the cytoplasm 

 

16. Proline rich and Gla domain 4 (PRRG4) 

PBANKA_1141100 

- Calcium-ion binding 

- Located in the Golgi body, extracellularly and is integral to 

membrane 

- Conserved with unknown function 

- Essential in P. falciparum, no data in P. berghei 

- Located in the cytoplasm 

 
Table 7. Sixteen interactions in a combined blood-liver core network. 

 

I looked at likely common processes and interaction in both the blood and the liver stages 

since the parasite undergoes several similar processes in both stages like invasion, 

intracellular growth, nutrient transport and egress. Some transcriptionally regulated host-

parasite interactions occurred across stages during Plasmodium development in the 

mammalian host and could be detected using gene co-expression methods. I found host-

parasite gene pairs that have likely not been studied before in the context of malaria 

pathogenesis, such as possible interactions upstream of PPIs like LEMD3 with Sec7 and 

perhaps closer to PPIs like parasite EXP2 with host PHIP (Table 7). Such an analysis could 

narrow some gaps in the understanding of mechanisms in one or both of the life-cycle stages. 

As enumerated in (Stanway et al. 2019), a given parasite gene can be essential in one stage 

and not in the other. To this end, these interactions could be a reservoir for multistage 

therapeutic target research. 

5.3 Discussion 

 

In this Chapter, I harnessed publicly available RNA-seq data sets from the liver stage 

development of Plasmodium across host-parasite systems to uncover a genome-wide 

consensus of host-parasite interactions. Additionally, I recovered associated host and parasite 

processes that occur in both the blood and liver stages pointing to interactions shared across 

tissues and parasite life cycle stages. These results have the potential to uncover new malaria 
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biology and possible drug targets pertaining to the liver stage and the shared mechanisms of 

the liver and blood stages. 

 

Liver and blood stages are biologically different. The modulation of mRNA during Plasmodium 

infection in the blood and liver are inherently different because the source of mRNA in the 

blood is only the immune cells outside of the infected RBC, whereas in the liver, the sources 

are the infected hepatocyte as well as immune cells, although to a lesser degree as the liver 

stage is relatively immunologically silent compared to blood or others organs (Goswami, 

Minkah, and Kappe 2022; Bertolino and Bowen 2015). This led me to hypothesise that blood 

and liver co-expression network topologies might be different. The higher clustering coefficient 

and lower number of host genes per parasite gene in the liver network suggested that the 

interactions in the liver network were more specific to a smaller gene group compared to a 

rather generalised co-expression in the blood network per parasite gene, where the network 

is less likely to have stronger clusters. This could indicate that because of the nature of the 

infected cell, there are fewer but more direct (e.g. physical protien-protein) interactions in the 

liver. However, this difference between the networks of the two stages needs more 

exploration, such as associations between host and parasite interacting protein domains, for 

a conclusive interpretation. 

 

The biological difference observed between liver and blood stages in Plasmodium also 

resulted from distinct model systems. There are differences in the host-parasite systems used. 

In the blood, studying natural infections is far more common in blood than in the liver (Simwela 

and Waters 2022; Craig et al. 2012). For blood stage malaria, infected human blood samples 

are available, whereas acquiring infected liver samples is not possible for studying liver stages 

as evident from my collection of studies. Finally, the number of parasites in the liver stage is 

far fewer than in the blood. Therefore, the common study design for liver stage includes the 

enrichment of infected cells, whereas whole blood is often used for blood stage investigation 

(Vaughan and Kappe 2017). This might have complicated finding commonalities between 

liver and blood stages. Nevertheless, my analysis developed for blood stages was 

transferable to liver studies. When commonalities between the stages and tissues are found, 

they are robust to the differences mentioned here. It is therefore of interest that many 

nodes and edges are shared between the liver and blood. Antigens of liver stages are 

thought to be interesting vaccine candidates (Longley, Hill, and Spencer 2015; Mwakingwe-

Omari et al. 2021) and liver processes would be preferable drug targets (Derbyshire et al. 

2014) because the number of parasites are still low at this point of the lifecycle and symptoms 

are absent but requires high targeting efficiencies to avoid parasite escape in the liver 
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(Dorjsuren et al. 2021). Therefore, commonalities between liver and blood might be interesting 

for drugs or vaccines targeting multiple stages of Plasmodium throughout the lifecycle.  

 

The host-parasite interaction network of linked processes in the liver could be divided into two 

large network clusters. The first cluster represents mechanisms early in the chronology of 

infection, from the gliding of sporozoites to the invasion of hepatocytes (Figure 14A). The 

second cluster contains parasite processes associated with the later development of liver 

stages, especially their growth (transcription, translation and protein synthesis) and asexual 

reproduction (DNA replication). There appears to be a lack of processes related to egress. A 

possible reason is hepatic merozoites escape host immune systems and induce hepatocyte 

death upon egress before entering the liver sinusoid (Sturm et al. 2006; Burda, Caldelari, and 

Heussler 2017). Secondly, since egress occurs within a very short time duration, it is difficult 

to capture the involved mechanisms in an experiment. This result showed that my method, 

despite working on bulk RNAseq and even combining different experiments and systems, 

differentiated biological processes in time. How the parasite process stratified in this way 

interacts with host processes is worth further scrutiny.  

 

Broad scale functional annotation was employed to compare my results in the early liver 

cluster of the network to previous work. In one study, Toro-Moreno and colleagues included 

in my meta-analysis, the authors compared early (2 dpi to late 48 dpi) liver stages (Toro-

Moreno et al. 2020). I found that similar processes appearing in my early stage cluster were 

enriched at the cell traversal and invasion phases of the liver stage. It therefore demonstrates 

the power of my analysis by stratifying the chronology of infection without analysing differential 

expression. An independent single cell RNA study (Mancio-Silva et al. 2021; not included in 

my analysis as we used only bulk RNA-seq), evidenced that at early time points, sporozoite-

specific genes underlay multispecies interactions such as “pathogenesis”, “entry into host” and 

“cell gliding”. These processes corresponded to the same functional annotations I found in the 

early liver stage expression cluster. Albuquerque and colleagues, finally, profiled host cell 

transcription at different time points during the liver stage infection using microarray 

technology. At early time points (6 hpi), they found GO terms chemotaxis, inflammatory 

response, cytokine activity-related molecular functions (MF). Again, very similar host 

processes in my network were interacting with parasite terms pertaining to entry into host cells 

(Figure 14A). It therefore supported the robustness of my analysis, enabling further 

characterisation of undescribed host-pathogen interactions and the discovery of novel biology.  

 

For example, PBANKA_141990 - cGMP-specific 3',5'-cyclic phosphodiesterase gamma 

(PDEγ) is annotated as having a function in entry into host cells (GO:0044409) and cell gliding 

(GO:0071976). In Plasmodium, phosphodiesterases are membrane proteins and along with 
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adenylyl cyclases, control the concentration of cellular cyclic AMP (adenosine 

monophosphate) and cGMP (Perrin et al., 2020). Cyclic AMP and cyclic GMP are important 

for activating cell signalling pathways. PDEs are important at every life cycle stage of 

Plasmodium. PDEγ was found to be predominantly expressed in sporozoites (Baker et al. 

2017) and their deletion rendered the sporozoites incapable of transmission by mosquito bite. 

Transcripts from PDEγ deleted parasites also showed a downregulation of transcription 

expression of genes related to sporozoite motility and hepatocyte invasion (Lakshmanan et 

al. 2015). PDEγ is co-expressed with a large number (491) showing that node degree can 

identify important genes in an organism. The interaction partners of PDEγ are not resolved 

into exclusive one gene-one gene association in this network. Therefore this gene is likely to 

play a central role in mediating interactions with the host. This might suggest a novel aspect 

of Plasmodium biology worth further investigation.  

 

At later time points (Albuquerque et al. 2009) found “oxidoreductase activity” and 

“transmembrane transport” as enriched terms. Related host terms were abundantly found in 

my network with parasite terms related to nucleic acid metabolism and with “entry into host”. 

This resolution into the different phases of infection could be useful to address mechanisms 

at different phases, such as to stop invasion or to slow parasite growth. Below is an example 

of associations likely important in liver stage growth. 

 

The transport of ions, amino acids and other metabolites are important to promote successful 

parasite development in the liver (Nyboer et al. 2018). The association of parasite 

“GO:0006874 cellular calcium ion homeostasis” (gene PI-PLC) with host GO term 

“GO:0015807 L-amino acid transport” (gene Slc7a1). This solute carrier protein is a part of the 

y+ cationic amino acid transport system, might occur from a similar mechanism to that of 

digestive vacuoles of Plasmodium in RBCs that function in maintaining calcium homeostasis 

as well as in amino acid transport (Wunderlich, Rohrbach, and Dalton 2012). Further 

investigations into the associations of PI-PLC with y+ cationic amino acid transport system 

might reveal new host pathways associated with different roles of calcium homeostasis in 

parasite growth during the liver stage. 

 

Essential genes are important in parasite life cycle processes at the liver stage of the infection 

and have physiologically conserved functions in blood. I hypothesised that starting with the 

control of the transcriptional programming of Plasmodium in the liver, these essential genes 

also control the transcriptional regulation in the blood. In terms of network reconstruction, a 

portion of the network gets transferred from the liver to blood stages. The analysis of gene 

centrality paired with essentiality showed the degree of involvement of the genes in 

transcriptional programmes across Plasmodium life cycle stages.  
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Since Plasmodium remodels the host cell in similar manners in the blood and liver stages. 

While comparing network centrality with gene essentiality, four genes that were essential in 

the two life cycle stages of Plasmodium (Stanway et al. 2019) and were central in my liver 

network. Here I cite an example. Putative aconitate hydratase PBANKA_1355200 is 

responsible for binding to iron-responsive elements (IREs) in Plasmodium and for maintaining 

cellular iron homeostasis in the host cell (Clark, Goheen, and Cerami 2014). To my knowledge, 

the functions of this gene have been studied to an extent in the blood stage but far less so in 

the liver stage. The expression of this gene seems to be affected by iron supplementation to 

the host (Loyevsky et al. 2001; 2003; Hodges et al. 2005). Such genes that have important 

roles in the two stages might be a potential target for therapy against malaria. 

 

On extrapolating this idea of physiological conservation of functions across lifecycle stages 

within the parasite to cross-species relationships, I explicitly recovered host-parasite 

interactions that could occur in both blood and liver stages. Here I described such an 

interaction out of the 16 interactions retrieved across the three model hosts. In the interaction 

between host PHIP (Pleckstrin Homology Domain Interacting Protein) and parasite EXP2 

(exported protein 2), PHIP is responsible for host cytoskeleton reorganisation while EXP2 is a 

component of PTEX (Plasmodium translocon of exported proteins) an essential pore-forming 

protein in both stages (Mello-Vieira et al. 2020; Garten et al. 2018). Since EXP2 pore-forming 

functions were found to induce hepatocyte membrane repair (Mello-Vieira et al. 2020) and 

forms a haemolytic pore (Sanders et al. 2019). PHIP has been studied in cancer and recently 

was found to aid in tumour invasion (de Semir et al. 2020) and was upregulated when 

monocytes were treated with P. falciparum-infected RBC compared to uninfected RBC 

(Sampaio et al. 2018). This interaction might provide further insight into parasite invasion and 

host cell remodelling.  

 

In this chapter, I have demonstrated that there are host-parasite interactions conserved across 

model systems and multiple host-parasite systems in the liver stage using correlated gene 

expression of single-copy orthologous genes. I have also evidenced that some interactions 

are common in the pre-erythrocytic and intra-erythrocytic stages of the infection. These host-

parasite interactions might provide us with a repertoire of host or parasite gene potential 

targets suitable for antimalarial drugs or single/multi-stage vaccines. 
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6 General Discussion 

In this project, I performed a dual RNA-sequencing analysis to infer host-parasite interactions 

in malaria using the co-expression of host and parasite genes in publicly available 

transcriptomics datasets. Using multiple studies for blood and liver stages of Plasmodium life 

cycle, I constructed bipartite gene co-expression networks where edges in the network 

represent cross-species associations. In these networks I found linked cellular processes in 

the host and in the parasite in addition to gene-gene associations relevant to malaria across 

closely-related hosts. 

6.1 Availability and applicability of public RNA-seq data sets 

Malaria transcriptomics studies usually focus on one organism. They either retain the other 

organism during sample collection and RNA extraction which becomes the source of 

contaminant reads or they enrich one of the two organisms. To improve the understanding of 

an infectious disease, dual transcriptomics studies are ideal as they provide simultaneous 

insights into both the host and the parasite biology. Some recent studies have focused 

simultaneously on both organisms. This approach is called dual RNA-sequencing 

(Westermann and Vogel 2021; Westermann, Barquist, and Vogel 2017). In case of malaria, 

since both the mammalian host - Homo sapiens, Macaca mulatta or Mus musculus - and 

Plasmodium are eukaryotic, they get simultaneously selected during poly(dT) priming unless 

one organism is enriched.  

 

To this end, I expected that existing malaria dual RNA-seq studies and those with 

contaminants to contain both host and parasite reads. It was unknown if studies with enriched 

samples could be included. From my collection of public RNA-seq data sets, I found that 

indeed dual RNA-seq studies and those with contamination contained both host and parasite 

reads. Studies with enrichment sometimes defied the original expectation and in some cases 

had read proportions as expected by the study design. On comparing all studies together, I 

found that the studies did not cluster together based on the proportion of the transcriptome 

detected as expressed in a study. This led me to conclude that I could include such enriched 

studies in the further selection of runs for gene co-expression analysis. This increased the 

number of studies available for use. In spite of the differences in the host-parasite system in 

focus, the nature of the experiment - in vivo or in vitro, and dual transcriptomics or otherwise, 

the same method to retrieve host-parasite interactions can be implemented for all studies. 
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6.2 Detection of transcriptional repression alongside gene 

expression 

To obtain cross-species interactions during the liver stage, I combined samples of multiple 

liver studies. Reid and Berriman detected host-parasite interactions from malaria public 

microarray data sets of different tissues in murine host and mosquito stages. They employed 

a similar methodology where they found robust correlations using permutation tests. Their 

correlation analysis revealed fewer negative correlations than positive (Reid and Berriman 

2012). Yamagishi et al. performed a permutation correlation test on a dual RNA-seq 

experiment in the malaria blood stage. They also reported fewer negatively correlated pairs 

(Yamagishi et al. 2014). The blood and liver networks I reconstructed also have fewer negative 

gene coregulations, the difference was quite stark in the liver. 

 

These negative correlations are an important aspect of behaviour in conjunction with positive 

correlations. They both show the modulation of gene expression to the same stimuli. Among 

different RNA species, microRNAs (miRNA) are known to degrade mRNA (O’Brien et al. 

2018). In addition, gene-specific transcriptional repression is less common in eukaryotes 

(Struhl 1999), as opposed to an induction of gene expression by transcription factors. 

However, Dhillon and colleagues demonstrated that negatively correlated genes often belong 

in the same pathway and they act by repressing the excess production of a particular protein 

(Dhillon, Marcotte, and Roshan 2003). In my analysis, I did not include miRNAs, but only 

mRNAs. It is possible that, because of these reasons, even though negative correlations are 

detected in my networks, they are fewer in number than positive correlations.  

6.3 Resolution into relevant host-parasite interactions 

To understand the molecular mechanisms within one organism, it would be advantageous to 

detect co-regulated gene expression profiles of gene pairs. Similarly, to understand how a 

host organism responds to a parasite and vice versa, it would be necessary to understand 

how host gene functions are associated with those of the parasite. The total number of 

possible associations, i.e, the product of the number of host genes by parasite genes, is 

around 5.6x107. It would generate significant efforts and time in performing gene disruption 

experiments in the lab to cover these possibilities. An in silico approach would be able to 

prioritise host-parasite gene pairs that are relevant to the disease relatively quickly.  

 

Using the co-expression of genes, I reconstructed a network of associated host and parasite 

genes in the blood and in the liver. The blood network had 3.64x106 host-parasite interactions 

while the liver network had 4.54x105 interactions. I attributed this difference in the order of 
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magnitude and the differences in their structures to the proximity of coregulated mRNA in the 

two tissues. During the blood stage, the source of host mRNA is only the WBCs from outside 

of the infected RBC. However, in the liver, host mRNA originated from the infected hepatocyte 

as well. It is possible, therefore, that the interactions in the blood network are more generalised 

than in the liver. I further increased the resolution into the networks by strictly extracting 

interactions that were inferred from a human study and at least one model organism study. 

These smaller networks were of the order 1x104. In the process, I provided guidance into 

which host-parasite system each interaction was inferred in. These different types of 

resolutions into the association of host and Plasmodium in the two stages of its life cycle 

provided relevant host-parasite interactions.  

 

About 40% of the Plasmodium genome is uncharacterised (Otto et al. 2014). Either their 

disruption either causes death or severely impairs parasite growth, or they are not homologous 

to closely related organisms. Efforts have been dedicated to characterise these genes in silico 

(Oyelade et al. 2018; Rout et al. 2015). I utilised gene centrality based on the hypothesis that 

co-expression highlights genes and pathways that are important. I demonstrated that my 

parasite networks are meaningful for a single organism. The information on centrality and co-

expressed genes might hint towards possible functions of uncharacterised genes.  

 

In these networks, a gene with multiple associations, i.e, highly central, would reflect on the 

ubiquity and the general importance of the gene in the organism. By contrast, an exclusive 

association of two genes would provide high resolution into their functions. Both of these 

notions could aid in the characterisation of putative and uncharacterised Plasmodium genes. 

Central genes are likely to be essential as their disruption would affect the rest of the functions 

severely. Genes sharing exclusive associations would provide more direct indication to 

possible gene functions. 

 

Essentiality of a gene is defined by how its disruption affects the growth of the organism. Two 

studies quantified the essentiality of Plasmodium genes in the blood stage for P. berghei 

(Bushell et al. 2017) and P. falciparum (M. Zhang et al. 2018) using barcoded mutants and 

saturation mutagenesis, respectively. While Bushell et al. covered >50% of the genome, 

Zhang et al. quantified for about 87%.  

 

Gene essentiality analysis of Plasmodium networks showed that the genes involved in 

processes in the liver have their functions transferred to the blood. In the blood, I demonstrated 

that the centrality obtained in my networks was able to explain the quantified essentiality. This 

illustrates the applicability of my method. The validation extends to bipartite networks 

reconstructed using the same methodology. The genes that are central in cross-species gene 
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expression networks are likely to be more important in the response of the two organisms to 

each other.  

6.3.1 Annotation of linked host-parasite processes 

Previous studies analysed either host or parasite processes at different time points to provide 

an overview of the molecular mechanisms in terms of functional annotation (e.g, Gene 

Ontology terms) (e.g, (Toro-Moreno et al. 2020; Mancio-Silva et al. 2022; Albuquerque et al. 

2009)). My project allowed me to obtain similar data but with the added value of linking larger 

scale functional processes between host and parasite. Here I argue that the processes that 

have been recovered separately on host and parasite sides corroborates with such 

interactions.  

 

To decipher underlying cellular processes from co-expressed genes within one organism, it is 

beneficial to annotate biological attributes of genes. It reduces large gene-gene networks into 

a more manageable size and makes it simpler to understand relationships between genes, 

between annotation terms and between a gene and an annotation term (Yon Rhee et al. 2008; 

Huang et al. 2007). The same concept could be extrapolated to the functional annotation of 

cross-species gene co-expression networks, as I have alluded to in my research chapters.  

 

By combining network characteristics with functional annotation of larger scale processes, it 

is possible to stratify biological processes. One example in my project is the stratification 

based on time as I demonstrated in the liver network. Another instance of this is the annotation 

of the blood network with immune cell marker genes to ascertain dominant immune responses 

and infer likely associated parasite responses. This annotation further indicated the reach of 

these immune marker genes in terms of the number of parasite gene interactors. This also 

illustrates how non-exclusive associations between multiple host and multiple parasite genes 

are beneficial. In addition, to investigate possible drug targets from annotated networks, one 

could filter broader terms and then select one or multiple genes that can be targeted within 

that biological process. From such a host-parasite network, it would be possible to use this 

approach for target discovery from the host as well as the parasite. 

 

6.4 Conclusion and future perspectives 

 

In this project, I was able to retrieve malaria host-parasite interactions from public gene 

expression data sets. I included closely related species that are used in malaria research so 
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that the interactions can be extrapolated from one host-parasite system to another. I 

demonstrated that co-regulated gene expression profiles in the host and the parasite could 

infer genes that are involved in host-parasite interactions. I showed that gene centrality 

obtained from these interaction networks reflect the importance of the genes in normal 

functioning and growth. I provided linked host and parasite interactions at different levels of 

resolutions and annotations so that the relationships between them can be utilised for future 

speculation into malaria biology and drug research. 

 

In this project, I assessed gene correlations in a pairwise manner. The postulate was that the 

correlation of a single pair of genes is independent of all other genes or other pairs of genes. 

This is, of course, not realistic. A pair of genes might be influenced by another gene or another 

pair (or a triplet, and so on) of genes. It would be a logical follow-up to investigate this kind of 

higher-order interactions between the host and the parasite. A caveat of such an approach 

would lie in the multiplication of computational power required to perform an exponentially 

large number of non-linear computations. 

 

With the advances made in single-cell technologies, one could use the method described here 

of utilising the correlation of gene expression profiles on other experimental setup than bulk 

RNA-seq. Particularly in the Plasmodium-infected nucleated hepatocyte, single-cell RNA-seq 

could provide greater resolution into the interactions between the parasite and the hepatocyte. 

Paired with single-cell proteomics as support, the detection of protein-protein interactions 

might be possible using interacting domains. The method described in this project, in addition, 

can directly be used to detect cross-species transcriptomic responses in diseases where 

public data sets have a potential to provide reads for both pathogen and host. 

 

This project provided new insights into molecular mechanisms in malaria. Inclusion of closely-

related species guaranteed the comparability of potential drug targets across host-parasite 

systems used in malaria research.  
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Supplementary Figures 

 

 

 
Figure S1. Correlation coefficient distribution in blood stage networks. 
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Figure S2.         
 

Beta regression models with liver network centrality measurements to explain relative growth rate (RGR) 

of P. berghei mutants in blood stage of development 

Spearman's rank correlation coefficient was computed between the eigenvector centrality (EC) of genes in (A) the 

blood overall network versus the liver overall network and (B) blood core versus liver core network. EC in (A) and 

(B) was measured for the parasite-parasite networks. Each dot, or gene, is coloured based on the relative growth 
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rate (RGR) measurements made in the blood stage of P. berghei provided by Bushell et al., 2017. (C) EC computed 

from the parasite network from the overall dataset was used as the predictor variable to explain RGR in a beta 

regression model. Higher the centrality, lower is the predicted RGR, represented by the black line. (D) EC from the 

liver core parasite-parasite network as a predictor variable to explain RGR in a beta regression model. Again, genes 

with higher centrality tend to have lower RGR, i.e. higher essentiality. (E) Beta regression models of the interaction 

of liver and blood overall network EC as the predictor for RGR. (F) Beta regression models of the interaction of 

liver and blood core network EC as the predictor for RGR. For (E) and (F), only the effect of liver EC at constant 

blood EC are shown. 
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