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Abstract
Shortlisting of candidates—selecting a group of  “best” candidates—is a special case of 
multiwinner elections. We provide the first in-depth study of the computational complex-
ity of strategic voting for shortlisting based on the perhaps most basic voting rule in this 
scenario, �-Bloc (every voter approves � candidates). In particular, we investigate the influ-
ence of several different group evaluation functions (e.g., egalitarian versus utilitarian) and 
tie-breaking mechanisms modeling pessimistic and optimistic manipulators. Among other 
things, we conclude that in an egalitarian setting strategic voting may indeed be computa-
tionally intractable regardless of the tie-breaking rule. Altogether, we provide a fairly com-
prehensive picture of the computational complexity landscape of this scenario.

Keywords  Computational social choice · Utility aggregation · Strategic voting · 
Parameterized computational complexity · Tie-breaking · SNTV · Bloc

1  Introduction

Assume that a university wants to select the two favorite pieces in classical style to be 
played during the next graduation ceremony. The students were asked to submit their 
favorite pieces. Then a jury consisting of seven members (three juniors and four seniors) 

A preliminary version of this article appeared in the Proceedings of the Twenty-Sixth International 
Joint Conference on Artificial Intelligence (IJCAI ’17) [12]. In this full version we included all proofs 
and algorithms (together with our ILP formulations). Furthermore, we formalized the concept of 
simulation among tie-breaking rules.

 *	 Robert Bredereck 
	 robert.bredereck@hu-berlin.de

	 Andrzej Kaczmarczyk 
	 a.kaczmarczyk@tu-berlin.de

	 Rolf Niedermeier 
	 rolf.niedermeier@tu-berlin.de

1	 Faculty IV, Algorithmics and Computational Complexity, Technische Universität Berlin, 
Ernst‑Reuter‑Platz 7, 10587 Berlin, Germany

2	 Institut für Informatik, Algorithm Engineering, Humboldt-Universität zu Berlin, Rudower Chausse 
25, 12489 Berlin, Germany

http://orcid.org/0000-0002-6303-6276
http://orcid.org/0000-0003-1401-0157
http://orcid.org/0000-0003-1703-1236
http://crossmark.crossref.org/dialog/?doi=10.1007/s10458-021-09507-9&domain=pdf


	 Autonomous Agents and Multi-Agent Systems (2021) 35:38

1 3

38  Page 2 of 41

from the university staff selects from the six most frequently submitted pieces as follows: 
Each jury member approves two pieces and the two winners are those obtaining most 
of the approvals. The six options provided by the students are “Beethoven: Piano Con-
certo No. 5 (b1)”, “Beethoven: Symphony No. 6 (b2)”, “Mozart: Clarinet Concerto (m1)”, 
“Mozart: Jeunehomme Piano Concerto (m2)”, “Uematsu: Final Fantasy (o1)”, and “Badelt: 
Pirates of the Caribbean  (o2).” The three junior jury members are excited about recent 
audio-visual presentation arts (both interactive and passive) and approve o1 and o2 . Two of 
the senior jury members are Mozart enthusiasts, and the other two senior jury members are 
Beethoven enthusiasts. Hence, when voting truthfully, two of them would approve the two 
Mozart pieces and the other two would approve the two Beethoven pieces. The winners 
of the selection process would be o1 and o2 , both receiving three approvals whereas every 
other piece receives only two approvals.

The senior jury members meet every Friday evening and discuss important academic 
issues which include the graduation ceremony music selection processes, why “movie 
background noise” recently counts as classical music,1 and the influence of video games on 
the ability of making important decisions. During such a meeting they agreed that a gradu-
ation ceremony should always be accompanied by pieces of traditional, first-class compos-
ers. Thus, finally all four senior jury members decide to approve b1 and m1 so these two 
pieces are played during the graduation ceremony.

Already this toy example above (which will be the basis of our running example 
throughout the paper) illustrates important aspects of strategic voting in multiwinner elec-
tions. In case of coalitional manipulation for single-winner elections (where a coalition of 
voters casts untruthful votes in order to influence the outcome of an election; a topic which 
has been intensively studied in the literature [9, 16]) one can always assume that a coali-
tion of manipulators agrees on trying to make a distinguished alternative win the election. 
In case of multiwinner elections, however, already determining concrete possible goals of 
a coalition seems to be a non-trivial task: There may be exponentially many different out-
comes which can be reached through strategic votes of the coalition members and each 
member could have its individual evaluation of these outcomes.

Multiwinner voting rules come up very naturally whenever one has to select from a 
large set of candidates a smaller set of “the best” candidates. Surprisingly, although at least 
as practically relevant as single-winner voting rules, the multiwinner literature is much less 
developed than the single-winner literature. In recent years (see a survey of Faliszewski 
et al. [26]), however, research into multiwinner voting rules, their properties, and algorith-
mic complexity grew significantly [1–5, 7, 10, 23, 25, 27, 33, 38, 42, 44, 45]. When select-
ing a group of winning candidates, various criteria can be interesting; namely, proportional 
representation, diversity, or excellence (see Elkind et al. [23]). We focus on the last sce-
nario, where the goal is to select the best (say highest-scoring) group of candidates.

Aiming at excellence comes very naturally in the context of shortlisting, where the 
objective is a short list of candidates selected from an initial, much larger list of candidates. 
For instance, a human resource department wanting to fill a vacancy would select, from 
all job candidates, a short list of prospective applicants who should be further assessed 
to find the best fitting applicant. This example neatly illustrates the universal purpose of 
shortlisting, that is, saving effort at the same time increasing the quality of evaluating suit-
able candidates. Indeed, human resource departments will either waste a lot of time and 

1  http://​www.​class​icfm.​com/​radio/​hall-​of-​fame/.

http://www.classicfm.com/radio/hall-of-fame/
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effort interviewing every applicant in detail or they will significantly decrease the quality 
of interviewing to speed up the process unless they apply shortlisting beforehand.

A standard way of candidate selection in the context of shortlisting is to use scoring-
based voting rules. We focus on the two most natural ones: SNTV (single non-transferable 
vote—each voter gives one point to one candidate) and �-Bloc (each voter gives one point 
to each of � different candidates, so SNTV is the same as 1-Bloc).2 Obviously, for such vot-
ing rules it is trivial to determine the score of each individual candidate.

The main goal of our work is to model and understand coalitional manipulation in a 
computational sense—that is, to introduce a formal description of how a group of manipu-
lators can influence the election outcome by casting strategic votes and whether it is possi-
ble to find an effective strategy for the manipulators to change the outcome in some desired 
way. We find studying coalitional manipulability from the computational complexity point 
of view relevant for two main reasons. First, in natural way we complement well-known 
work on manipulation for single-winner rules initiated by Bartholdi III et al. [8], coalitional 
manipulation for single-winner rules initiated by Conitzer et al. [17], and (non-coalitional) 
manipulation for multiwinner rules initiated by Meir et al. [38]. Second, we provide effi-
cient algorithms that allow for experimental study of coalitional manipulation that might 
be interesting both for verifying how likely is or what is an impact of coalitional manipula-
tion in practice (analogously to studies for the single-winner case [15, 19, 24, 36, 47]) and 
for interdisciplinary study on human’s behavior when manipulating (like the one recently 
conducted for multiwinner elections by Scheuerman et al. [43]).

In coalitional manipulation scenarios, given full knowledge about other voters’ prefer-
ences, one has a set of manipulative voters who want to influence the election outcome in 
a favorable way by casting their votes strategically. To come up with a useful framework 
for coalitional manipulation for multiwinner elections, we first have to identify the exact 
mathematical model and questions to be asked. A couple of straightforward extensions of 
coalitional manipulation for single-winner elections or (non-coalitional) manipulation for 
multiwinner elections do not fit. Extending the single-winner variant directly, one would 
probably assume that the coalition agrees on making a distinguished candidate part of the 
winners or that the coalition agrees on making a distinguished candidate group part of 
the winners. The former is unrealistic because in multiwinner settings one typically cares 
about more than just one candidate—especially in shortlisting it is natural that one wants 
rather some group of “similarly good” candidates to be winning instead of only one repre-
sentative of such a group. The latter, that is, agreeing on a distinguished candidate group to 
be part of the winners is also problematic since there may be exponentially many “equally 
good” candidate groups for the coalition.3 Notably, this was not a problem in the single-
winner case; there, one can test for a successful manipulation towards each possible candi-
date avoiding an exponential increase of the running time (compared to the running time of 
such a test for a single candidate).

We address the aforementioned issue of modeling coalitional manipulation for mul-
tiwinner election by extending a single-manipulator model for multiwinner rules of Meir 

2  Although, in general, �-Bloc does not satisfy committee monotonicity which is considered as a neces-
sary condition for shortlisting [26], this rule seems quite frequent in practice—for example The Board of 
Research Excellence in Poland was elected using a variant of �-Bloc [39].
3  Indeed, assume a coalition has x = 20 favorite candidates that the coalition members equally prefer to be 
winning but the voting rule will select at most k = 10 of them. This means, when manipulating the election 

the coalition may support only one out of 
(

x

k

)

= 184756 possible candidate groups.
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et al. [38]. In their work, the manipulator specifies the utility of each candidate and the util-
ity for a candidate group is obtained by adding up the utilities of each group member. We 
build on their idea and let each manipulator report the utility of each candidate. However, 
aggregating utilities for a coalition of manipulators (in other words, computing a collec-
tive utility of manipulators) becomes conceptually nontrivial—especially for a coalition of 
manipulators who have diverse utilities for single candidates but still have strong incentives 
to work together (e.g., as we have seen in our introductory example).

In fact, in our paper we only consider coalitions that are fixed, that is, irrespectively of 
how different the opinions of manipulators are, none of them leaves the coalition. For some 
situations and applications, this assumption might look too restrictive and unrealistic. In 
many situations, however, we believe there are good reasons for making this assumption. 
First, changing already existing coalitions in the real world usually requires a significant 
overhead (e.g., formal agreements and negotiations that cost both money and time) which 
makes such a change rather a last, not a first, resort. This holds true especially if a coali-
tion is aimed at long-term benefits as, for example, strategic cooperations among firms or 
governments. Second, there are real-world cases where coalitions are forced, for example, 
in hierarchical administrative divisions (and their local governments) in countries. Third, 
computing a best possible manipulation for a given coalition is an important step in decid-
ing whether it might be useful to actually form such a coalition in possible future. To wrap 
up, instead of focusing on coalitions dynamics (which is important work but not part of this 
paper), we rather concentrate on an analysis of a strength of, intuitively speaking, potential, 
fixed, or forced coalitions.

Our Contributions. We devise a formal description of coalitional manipulation in mul-
tiwinner elections arriving at a new, nontrivial model capturing two types of manipulators’ 
attitudes and a few natural ways of utility aggregation. To this end, in our model, we dis-
tinguish between optimistic and pessimistic manipulators and we formalize aggregation of 
utilities in a utilitarian and an egalitarian way.

Using our model, we analyze the computational complexity of finding a successful 
manipulation for a coalition of voters, assuming elections under rules from the family of �
-Bloc voting rules. We show that, even for these fairly simple rules, the computational 
complexity of coalitional manipulation is diverse. In particular, we observe that finding a 
manipulation maximizing the utility of a worst-off manipulator (egalitarian aggregation) 
is NP-hard (regardless of the manipulators’ attitude). This result stands in sharp contrast 
to the polynomial-time algorithms that we give for finding a manipulation maximizing the 
sum of manipulators’ utilities (utilitarian aggregation). Additionally, we show how to cir-
cumvent the cumbersome NP-hardness for the egalitarian aggregation providing an (FPT) 
algorithm that is efficient for scenarios with few manipulators and few different values of 
utility that manipulators assign to agents. We survey all our computational complexity 
results in  Table 1 (Sect. 6).

Related Work. To the best of our knowledge, there is no previous work on coalitional 
manipulation in the context of multiwinner elections. We refer to recent textbooks for an 
overview of the huge literature on single-winner (coalitional) manipulation [9, 16]. Most 
relevant to our work, Lin [35] showed that coalitional manipulation in single-winner elec-
tions under �-Approval is solvable in linear time by a greedy algorithm. Meir et al. [38] 
introduced (non-coalitional) manipulation for multiwinner elections. While pinpointing 
manipulation for several voting rules as NP-hard, they showed that manipulation remains 
polynomial-time solvable for Bloc (which can be interpreted as a multiwinner equivalent 
of 1-Approval). Obraztsova et al. [42] extended the latter result for different tie-breaking 
strategies and identified further tractable special cases of multiwinner scoring rules but 
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conjectured manipulation to be hard in general for (other) scoring rules. Summarizing, 
Bloc is simple but comparably well-studied, and hence we selected it as a showcase for our 
study of the presumably computationally harder coalitional manipulation.

As mentioned above, our model assumes an existing fixed coalition of manipulators. 
There is a significant amount of research on coalition dynamics and coalition forming in 
context of cooperative games. We refer to recent text books for an overview on this rich 
research area [22, 32]. Notably, our model is relevant for situations after some dynamic 
coalition forming process lead to a fixed coalition as well as during a coalition forming 
process when a group of agents wants to compute their potential utility from working 
together. Our aggregation models may be used for transferable utilities (utilitarian aggrega-
tion) as well as non-transferable utilities (egalitarian aggregation).

Another closely related model is the NP-hard multiwinner voting rule Minimax 
Approval Voting [13] which selects a group of candidates that maximizes the minimum 
satisfaction over all voters. This rule almost resembles the tie-breaking issue of our model 
for the egalitarian case and 0/1 utility values only. Each voter in a Minimax Approval Vot-
ing election can, however, approve an arbitrary number of candidates as opposed to the �
-Bloc rule that we consider, where each voter approves exactly � candidates.

Organization. Section  2 introduces basic notation and formal concepts. In Sect.  3, 
we develop our model for coalitional manipulation in multiwinner elections. Its variants 
respect different ways of evaluating candidate groups (utilitarian vs. egalitarian) and two 
kinds of manipulators behavior (optimistic vs. pessimistic). In Sect.  4, we present algo-
rithms and complexity results for computing the output of several tie-breaking rules that 
allow to model optimistic and pessimistic manipulators. In Sect. 5, we formally define the 
coalitional manipulation problem and explore its computational complexity using �-Bloc 
as a showcase. We refer to our conclusion and Table 1 (Sect. 6) for a detailed overview of 
our findings.

2 � Preliminaries

For a positive integer n, let [n] ∶= {1, 2,… , n} . We use the toolbox of parameterized 
complexity  [18, 21, 29, 40] to analyze the computational complexity of our problems in 
a fine-grained way. To this end, we always identify a parameter � that is typically a posi-
tive integer. We call a problem parameterized by � fixed-parameter tractable (in FPT ) if 
it is solvable in f (�) ⋅ |I|O(1) time, where |I| is the size of a given instance encoding, � is 
the value of the parameter, and f is an arbitrary computable (typically super-polynomial) 
function. To preclude fixed-parameter tractability, we use an established complexity hier-
archy of classes of parameterized problems, FPT ⊆ W[1] ⊆ W[2] ⊆ ⋯ ⊆ XP . It is widely 
believed that all inclusions are proper. The notions of hardness for parameterized classes 
are defined through parameterized reductions similar to classical polynomial-time many-
one reductions—in this work, it suffices to ensure that the value of the parameter in the 
problem we reduce to depends only on the value of the parameter of the problem we reduce 
from. Occasionally, we use a combined parameter �� + ��� which is a more explicit way of 
expressing a parameter � = �� + ���.

An election  (C,  V) consists of a set  C of m  candidates and a multiset  V of n  votes. 
Votes are linear orders over C—for example, for C = {c1, c2, c3} we write c1 ≻v c2 ≻v c3 
to express that candidate c1 is the most preferred and candidate c3 is the least preferred 
according to vote v. We write ≻ if the corresponding vote is clear from the context.
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A multiwinner voting rule4 is a function that, given an election  (C, V) and an integer 
k ∈ [|C|] , outputs a family of co-winning size-k subsets of C representing the co-win-
ning k-excellence-groups. We decided to use the term  k-excellence-group, abbreviated 
to  k-egroup, following  Debord [20].5 Thus we emphasize our focus on shortlisting and 
bring our terminology closer to shortlisting (real-life) applications where the word “com-
mittee” traditionally rather refers to voters and not to candidates. For the sake of brevity, 
we use egroup if the size of an excellence-group is either not relevant or clear from the 
context.

We consider scoring rules—multiwinner voting rules that assign points to candidates 
based on their positions in the votes. By score (c) , we denote the total number of points that 
candidate c obtains, and we use score V � (c) when restricting the election to a subset V ′ ⊂ V  
of voters. A (multiwinner) scoring rule selects a family X  of co-winning k-egroups with 
the maximum total sum of scores. It holds that X ∈ X  if and only if for every candidate c 
in X and every candidate c′ outside of X′ it is true that score (c) ≥ score (c�) . We focus on 
the family of �-Bloc multiwinner voting rules, that is a family of scoring rules that assign, 
for each vote, one point to each of the top � < |C| candidates.6

Example 1  Referring back to our introductory example, we have a set 
C = {b1, b2,m1,m2, o1, o2} of candidates and a set V = {v1

y
, v2

y
, v3

y
, v1

b
, v2

b
, v1

m
, v2

m
} of voters. 

The voters v1
y
 , v2

y
 , and v3

y
 represent the three junior jury members, whereas v1

b
 , v2

b
 and v1

m
 

, v2
m

 represent, respectively, the Beethoven and Mozart enthusiasts among the senior jury 
members. In the example, we described a way of manipulating the election by the senior 
jury members which leads to selecting two traditional classical music pieces. There are 
several ways to illustrate this manipulation using our model. Below we present one of the 
possible sets of casted votes that represents the manipulated election:

Following the introductory example, we are choosing an egroup of size k = 2 . Using the 
Bloc multiwinner voting rules (which coincides with our introductory example), the win-
ning 2-egroup consist of candidates b1 and m1 . However, under the SNTV voting rule the 
situation would change, and the winners would be o1 and b1 . SNTV and Bloc alike output a 
single winning egroup in this example, and thus tie-breaking is ineffective.

To select a single k-egroup from the set of co-winning k-egroups one has to consider 
tie-breaking rules. A multiwinner tie-breaking rule is a mapping that, given an election and 
a family of co-winning k-egroups, outputs a single k-egroup. Among them, there is a set 
of natural rules that is of particular interest in order to model the behavior of manipulative 

v1
y
, v2

y
, v3

y
∶ o1 ≻ o2 ≻ b1 ≻ b2 ≻m1 ≻m2,

v1
b
, v2

b
, v1

m
, v2

m
∶ b1 ≻m1 ≻ b2 ≻m2 ≻ o1 ≻ o2.

6  The case where � coincides with the size  k of the egroup is typically referred to as Bloc; 1-Bloc cor-
responds to SNTV [38]. The case where 1 < � < k is also referred to as Limited Vote (or Limited Voting).

4  One may argue that we should rather use the name multiwinner voting correspondence (instead of mul-
tiwinner voting rule) because the function returns a set of tied committees instead of a single committee 
(see, for example, the discussion on ties by Obraztsova et al. [42]; a textbook chapter on elections [9]; or a 
work by Barberà et al. [6], where voters instead of ordering the candidates are assumed to order all subsets 
of candidates of a given size). However, the phrasing we used is now well-established [11, 26] and without 
doubt most frequently used in the literature.
5  We modified his term “elite” as we feel that it might carry negative connotations.
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voters. Indeed, in addition to lexicographic and randomized tie-breaking, both pessimistic 
and optimistic tie-breaking rules have already been used to model the manipulator’s behav-
ior in case of a single manipulator [38, 42]. To model optimistic and pessimistic manipu-
lators in a meaningful manner,7 we use the model introduced by Obraztsova et al. [42] in 
which a manipulative voter v is described not only by the preference order ≻v of the can-
didates but also by a utility function u∶ C → ℕ . To cover this in the tie-breaking process, 
coalition-specific tie-breaking rules get—in addition to the original election, the manipula-
tors’ votes, and the co-winning excellence-groups—the manipulators’ utility functions in 
the input. The formal implementations of these rules and their properties are discussed in 
Sect. 3.2.

3 � Model for coalitional manipulation

In this section, we formally define and explain our model and the respective variants, which 
we also motivate with short real-world examples. To this end, we discuss how we evaluate 
a k-egroup in terms of utility for a coalition of manipulators and introduce tie-breaking 
rules that model optimistic or pessimistic viewpoints of the manipulators.

3.1 � Evaluating k‑egroups

As already discussed in the introduction, one should not extend the model of coalitional 
manipulation for single-winner elections to multiwinner elections in the simplest way (e.g., 
by assuming that the manipulators agree on some distinguished candidate or on some dis-
tinguished egroup). Instead, we follow Meir et al. [38] and assume that we are given a util-
ity function over the candidates for each manipulator and a utility level which, if achieved, 
indicates a successful manipulation.

Considering a collection of such utility functions there are several ways, each coming 
with distinct features, of computing the utility of an egroup. In the paper, we study the fol-
lowing three variants: utilitarian, egalitarian, and candidate-wise egalitarian.

In the utilitarian variant (considered by Meir et al. [38]) the utility of an egroup is the 
sum of utility values assigned by each manipulator to every candidate in the egroup. This is 
perhaps the most intuitive way of evaluating the utility of an egroup. Although it does not 
provide any guarantee on a single manipulator’s utility after a manipulation (it might even 
happen that a single manipulator is significantly worse off compared to voting sincerely; 
see  Example 2) the utilitarian variant is justified if the manipulators are able to “inter-
nally” compensate such loses, for example, by paying money to each other. For a real-
world example, imagine an international company with branches (voters) scattered around 
the world considering actions to be taken (candidates) in order to reduce its carbon foot-
print. Seeking the most efficient solution, the company surveys the branches for pointing 

7  We cannot simply use ordinal preferences: Obraztsova et al. [42] observed that already in case of a single 
manipulator one cannot simply set the fixed lexicographic order of the manipulators’ preferences (resp. the 
reverse of it) over candidates to model optimistic (resp. pessimistic) tie-breaking. For example, it is a strong 
restriction to assume that a manipulator would always prefer its first choice together with its fourth choice 
towards its second choice together with its third choice. It might be that only its first choice is really accept-
able (in which case the assumption is reasonable) or that the first three choices are comparably good but the 
fourth choice is absolutely unacceptable (in which case the assumption is wrong).



	 Autonomous Agents and Multi-Agent Systems (2021) 35:38

1 3

38  Page 8 of 41

the actions that reduce the footprint the most (utilities). A coalition of strategic voters can 
now be formed by all branches within a country that subsidizes companies that reduce the 
thier emission. Moreover, it is understandable that the office branches, whose footprint is 
rather small and thus so is the possible reduction, will rather support the actions that help 
the factory branches to reduce the footprint. To compensate, the coalition might decide to 
distribute more money from the country’s benefit to the office branches.

Example 2  Consider the election E = (C,V) where C = {b1, b2,m1,m2, o1, o2} is a set 
of candidates and V = {v1, v2, v3} is the following multiset of three votes:

Additionally, consider two manipulators, u1 and u2 , that report utilities to the candidates as 
depicted in the table below. 

u(⋅) b1 b2 m1 m2 o1 o2

u1 10 5 4 0 0 0
u2 1 2 5 7 0 0

Let us analyze the winning 2-egroup under the SNTV voting rule. Observe that if the 
manipulators vote sincerely, then together they give one point to b1 and one to m2 (one 
point from each manipulator). Combining the manipulators’ votes with the non-manipula-
tive ones, the winning 2-egroup consists of candidates o1 and m2 that both have score two; 
no other candidate has greater or equal score, so tie-breaking is unnecessary. The value of 
such a group is equal to seven according to the utilitarian evaluation variant. Manipulator 
u2 ’s utility is seven. However, both manipulators can do better by giving their points to can-
didate b1 . Then, the winners are candidates o1 and b1 , giving the total utility of 11 (accord-
ing to the utilitarian variant). Observe that in spite of growth of the total utility, the utility 
value gained by u2 , which is one, is lower than in the case of sincere voting.

The egalitarian variant comes in handy, for the scenarios where it is essential to guar-
antee a certain level of utility for every manipulator. Specifically, the utility of an egroup 
is the utility of a manipulator whose sum of utilities of candidates from the egroup is the 
smallest; thus, the egalitarian variant aims at maximizing this number. For a real-world 
example, imagine a parliament (voters) deciding about possible steps to reduce particulate 
matter (candidates). Seeking a way to reduce particulate matter below a certain threshold, 
a coalition of representatives from districts currently not meeting the threshold decides to 
vote strategically. Naturally, particulate matter reduction (utilities) are differently affected 
by different steps in the respective districts. The goal of the coalition is that even the worst 
district is below the threshold, which corresponds to egalitarian aggregation.

The candidate-wise egalitarian variant models again scenarios where, as in the util-
itarian variant, the overall utilities from members of an egroup are summed up. The 
utility of the respective candidates, however, is aggregated in a pessimistic way, that 
is, assuming the lowest utility assigned by any member of the coalition is taken into 
the sum. For a real-world example, imagine a parliament (voters) deciding on different 
actions (candidates) to support the economy after a crisis. Representatives of the same 

v1, v2 ∶ o1 ≻ o2 ≻ m1 ≻ m2 ≻ b1 ≻ b2,

v3 ∶ m2 ≻ m1 ≻ b2 ≻ b1 ≻ o1 ≻ o2.
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party naturally work together as a coalition of strategic voters. Each representative has 
a different prediction from their own group of experts on the effectiveness of the actions 
(utilities), which at the end will sum up. To be on the safe side, the coalition decides 
to take the most pessimistic evaluation any expert group makes for a respective candi-
date into account for their decision, which corresponds to our candidate-wise egalitarian 
aggregation variant.

We formalize the described variants of k-egroup evaluation (for r  manipulators) 
with Definition 1.

Definition 1  Given a set of candidates C, a k-egroup S ⊆ C , and a family of manipula-
tor utility functions U = {u1, u2,… , ur} where ui ∶ C → ℕ , we consider the following 
functions:

–	 utilU(S) ∶=
∑

u∈U

∑

c∈S u(c),
–	 egalU(S) ∶= minu∈U

∑

c∈S u(c),
–	 candegalU(S) ∶=

∑

c∈S minu∈U u(c).

Intuitively, these functions determine the utility of a k-egroup S according to, respec-
tively, the utilitarian, the candidate-wise egalitarian, and the egalitarian variant of evaluat-
ing S by a group of r manipulators (identifying manipulators with their utility functions). 
We omit subscript U when U is clear from the context. To illustrate Definition 1 we apply 
it in Example 3.

Example 3  Consider our example set of candidates C = {b1, b2,m1,m2, o1, o2} and two 
manipulators u1 , u2 whose utility functions over the candidates are depicted in the table 
below. 

u(⋅) b1 b2 m1 m2 o1 o2

u1 10 5 4 0 0 0
u2 1 2 5 7 0 0

Then, evaluating the utility of 2-egroup S = {b1,m1} applying the three different evalu-
ation variants gives:

–	 util (S) = (10 + 4) + (1 + 5) = 20,
–	 egal (S) = min{(10 + 4);(1 + 5)} = 6,
–	 candegal (S) = min{10, 1} +min{4, 5} = 5.

Analyzing Example 3, we observe that we can compute the utilitarian value of egroup S 
by summing up the overall utilities that each candidate in S contributes to all manipulators; 
for instance candidate b1 always contributes the utility of 11 = 10 + 1 to the manipulators, 
independently of other candidates in the  egroup. Following this observation, instead of 
coping with a collection of utility function, we can “contract” all manipulator’s functions 
to a single function. The new function assigns each candidate a utility value equal to the 
sum of utilities that the contracted functions assign to this candidate. Analogously, we can 
deal with the candidate-wise egalitarian variant by taking the minimum utility associated 
to each candidate as the utility of this candidate in a new function. Thus, in both variants, 
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we can consider a single utility function instead of a family of functions. The conclusion 
from the above discussion is summarized in the following observation.

Observation 1  Without loss of generality, one can assume that there is a single utility 
function over the candidates under the utilitarian or candidate-wise egalitarian evaluation.

Proof  Consider a multiset of manipulator utility functions U = {u1, u2,… , ur} and a k
-egroup  S. For the utilitarian variant, create a new utility function  u′ that assigns to 
each candidate the sum of utilities given to this candidate by all manipulators; that 
is, u�(c) ∶=

∑

i∈[r] ui(c) for all c ∈ C . Since for each candidate function  u′ returns 
the sum of utilities given to a candidate by all functions from family U, it holds that 
utilU(S) =

∑

i∈[r]

∑

c∈S ui(c) =
∑

c∈S

∑

i∈[r] ui(c) =
∑

c∈S u
�
i
(c).

We follow a similar strategy proving Observation 1 for the candidate-wise egalitarian 
evaluation. We introduce a function  u′ defined as  u�(c) ∶= minu∈U u(c) for each candi-
date c ∈ C . Naturally, candegal U(S) =

∑

c∈S minu∈U u(c) =
∑

c∈S u
�(c) . 	�  ◻

3.2 � Breaking ties

In this work, we consider three different ways of breaking ties which are all established 
already in the literature: lexicographic tie-breaking, optimistic tie-breaking and pessimistic 
tie-breaking. Lexicographic tie-breaking is standard in the great majority of works about 
single-winner or multiwinner voting. Even though the usual motivation for it is to obtain 
simpler models, still there are situations in which lexicographic tie-breaking is what one 
can encounter in reality (e.g.,  if ties are broken by age). Nevertheless, our main motiva-
tion to consider lexicographic tie-breaking is to have a simple baseline, also allowing us 
easily compare our findings with other works. The two other tie-breaking mechanisms we 
consider are optimistic and pessimistic tie-breaking. They are used to model the two most 
natural types of manipulators: Optimistic manipulators would try to manipulate whenever 
there is a chance that ties are broken so that they are better off compared to truthful voting. 
Pessimistic manipulators will only manipulate when they are better off compared to truth-
ful voting no matter how ties will be broken.

Before formally defining our tie-breaking rules, we briefly discuss some necessary nota-
tion and central concepts. Consider an election (C, V), a size k for the egroup to be chosen, 
and a scoring-based multiwinner voting rule R . We can partition the set of candidates C 
into three sets C+ , P , and C− as follows: The set C+ contains the confirmed candidates, that 
is, candidates that are in all co-winning k-egroups. The set P contains the pending candi-
dates, that is, candidates that are only in some co-winning k-egroups. The set C− contains 
the rejected candidates, that is, candidates that are in no co-winning k-egroup. Observe 
that |C+

| ≤ k , |C+ ∪ P| ≥ k , and that every candidate from P ∪ C− receives fewer points 
than every candidate from C+ . Additionally, all candidates in P receive the same number 
of points.

We define the following families of tie-breaking rules which are considered in this work. 
In order to define optimistic and pessimistic rules, we assume that in addition to C+ , P , and 
k, we are given a family of utility functions which are used to evaluate the k-egroups as dis-
cussed in Sect. 3.1. We call such a quadruple a tie-breaking perspective.

Lexicographic. F lex . A tie-breaking rule F  belongs to F lex if and only if ties are 
broken lexicographically with respect to some predefined order >F  of the candidates 
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from C. That is, F  selects all candidates from C+ and the top k − |C+
| candidates from P 

with respect to >F .
Optimistic. F eval

opt
 , eval ∈ { util , egal , candegal } . A tie-breaking rule belongs to F eval

opt
 

if and only if it always selects some k-egroup S such that C+ ⊆ S ⊆ (C+ ∪ P) and there is 
no other k-egroup S′ with C+ ⊆ S� ⊆ (C+ ∪ P) and eval (S�) > eval (S).

Pessimistic. F
eval
pess

 , eval ∈ { util , egal , candegal } . A tie-breaking rule belongs 
to F eval

pess
 if and only if it always selects some k-egroup  S such that C+ ⊆ S ⊆ (C+ ∪ P) 

and there is no other k-egroup S′ with C+ ⊆ S� ⊆ (C+ ∪ P) and eval (S�) < eval (S).
We remark that the definitions above come in two, substantially different variants. 

For each lexicographic tie-breaking rule, there is always exactly one egroup that will be 
selected by the rule for a particular set of pending set candidates. However, it is not the 
case for the families of pessimistic and optimistic families of rules. In fact, there might 
be many possible egroups whose value, computed in terms of a respective evaluation 
variant, is exactly the same. Such a feature seems to contradict the idea of a tie-breaking 
rule that should not, by itself, introduce ties again. However, we argue that choosing 
arbitrary equally-valued (“tied”) egroup is a proper way to circumvent this problem. 
Indeed, according to a particular evaluation all egroups with the same value are indistin-
guishable from each other.

3.3 � Limits of lexicographic tie‑breaking

From the above discussion, we conclude that lexicographic tie-breaking is straightfor-
ward in  the  case  of  scoring-based multiwinner voting rules. Basically any  subset of 
the desired cardinality from the set of pending candidates can be chosen; in particular, 
the best pending candidates with respect to the given order can be chosen. Although this 
sounds naturally at a glance, for many other prominent multiwinner voting rules, such as 
Chamberlin-Courant [14] or STV [46], not every subset of the desired cardinality from 
the set of pending candidates can be chosen.

It remains to be clarified whether one can find a reasonable order of the pending 
candidates in order to model optimistic or pessimistic tie-breaking rules in a sim-
ple way. We show that this is possible for every F eval

bhav
 , with every combination of 

eval ∈ { util , candegal } and bhav ∈ {opt, pess} , using the fact that in these cases we can 
safely assume that there is a single utility function (see Observation 1). On the contrary, 
there is a counterexample for eval = egal and bhav ∈ {opt, pess} . On the way to prove 
these claims we need to formally define what it means that one family of tie-breaking 
rules can be used to simulate another family of tie-breaking rules. To this end, we intro-
duce the concept of equivalence between tie-breaking perspectives.

Definition 2  Let { ℂ , ℙ , 𝕂 , 𝕌 }  be a set of attribute tags (treated exactly as usual 
characters), C be a fixed set of candidates, X = (C+,P, k,U) and  X̂ = (Ĉ+, P̂, k̂, Û) be tie-
breaking perspectives over C, where C+ ⊂ C and P ⊆ C . Then, X and X′ are:

–	 ℂ -equivalent if and only if C+ = Ĉ+,
–	 ℙ -equivalent if and only if P = P̂,
–	 � -equivalent if and only if k = k̂ , and
–	 � -equivalent if and only if U = Û.
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Additionally, for a subset P of symbols { ℂ , ℙ , 𝕂 , 𝕌 } , we say that X and X′ are P
-equivalent if and only if, for each symbol � ∈ P , they are �-equivalent.

One can easily verify that the equivalence notions from Definition 2 indeed meet the 
requirements of equivalence relations; thus, we can speak of equivalence classes of tie-
breaking perspectives (with respect to a given equivalence notion).

Definition 3  For a nonempty set { ℂ , ℙ , 𝕂 , 𝕌 }  of attribute tags, and for two tie-
breaking families F  and F′ , we say that F  can P-simulate F′ if, for every nonempty set 
of candidates C and for every tie-breaking perspective X over C, there exists a rule F ∈ F  
such that for each tie-breaking perspective in the equivalence class of X according to P
-equivalence there exists a rule F� ∈ F

� such that F and F′ yield the same output for this 
perspective. We call rule F an P-simulator.

At first glance, Definition 3 might seem overcomplicated. However, it is tailored to 
grasp different degrees of simulation possibilities. On the one hand, one can always find 
a lexicographic order and use it for breaking ties if all of the following are known: con-
firmed candidates, pending candidates, utility functions, and the size of an egroup; for-
mally, the family of lexicographic tie-breaking rules { ℂ , ℙ , 𝕂 , 𝕌 }-simulates every 
other family. Thus, one needs some flexibility in the definition of simulation for it to be 
non-trivial. On the other hand, it is somewhat clear that without fixing the utility func-
tions, one cannot simulate optimistic or pessimistic tie-breaking rules. In other words, 
we have the following observation.

Observation 2  The family of lexicographic tie-breaking rules does not  
{ ℂ , ℙ , 𝕂 }-simulate F eval

bhav
.

Proof  Suppose k = 1 , C+ = � , and P = {b1, b2} ; that is, we are going to select either b1 or 
b2 who are tied. Let us fix a family U = {u1} of utility functions such that u1(b1) = 1 and 
u1(b2) = 0 . For the family U of utility functions clearly F eval

opt
 selects candidate b1 . Now, 

consider a family U� = {u�
1
} of utility functions where u′

1
 assigns utility one to candidate b2 

and zero otherwise. For this family, F eval
opt

 selects candidate b2 . This means that we cannot 
find a { ℂ , ℙ , 𝕂 }-simulator F from family F lex of tie-breaking rules because in the first 
case F would have to choose b1 and in the second case b2 would have to be chosen. This 
is impossible using a single preference order over {b1, b2} . Similar families of functions 
(obtained by exchanging each one with zero and vice versa) yield a proof for F eval

pess
 as well. 	

� ◻

Next, we show that for some cases it is sufficient to fix just the utility functions in 
order to simulate optimistic or pessimistic tie-breaking rules (see  Proposition 1). For 
other cases, however, one has to fix all of the following: confirmed candidates, pending 
candidates, utility functions, and the size of an egroup (see Proposition 2).

Proposition 1  For every eval ∈ { util , candegal } and bhav ∈ {opt, pess} , the family F lex 
can { � }-simulate F eval

bhav
 ; additionally, for m candidates and  r utility functions, a { � }

-simulator F ∈ F lex can be found in O(m ⋅ (r + logm)) time.

Proof  Recall from Observation 1 that if eval ∈ { util , candegal } , then there exists a single 
utility function u′ that is equivalent to the given family of utility functions (with respect to 
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the evaluation of egroup utilities). Hence, we compute such a function u′ in O(m ⋅ r) time 
precisely following its definition as in the proof of  Observation 1. We say an order >F 
of the candidates is consistent with some utility function u if c>F c′ implies u(c) ≥ u(c�) 
for optimistic tie-breaking and c>F c′ implies u(c) ≤ u(c�) for pessimistic tie-breaking. 
Any lexicographic tie-breaking rule defined by an order >F that is consistent with the util-
ity function u′ simulates F eval

bhav
 . We compute a consistent order by sorting the candidates 

according to u′ in O(m ⋅ logm) time. 	�  ◻

Proposition 1 describes a strong feature of optimistic utilitarian and candidate-wise 
egalitarian tie-breaking and their pessimistic variants. Intuitively, the proposition says that 
for these tie-breaking mechanisms one can compute a respective linear order of candidates. 
Then one can forget all the details of the initial tie-breaking mechanism and use the order 
to determine winners. The order can be computed even without knowing the details of an 
election. Unfortunately, the simulation of pessimistic and optimistic egalitarian tie-break-
ing turns out to be more complicated.

Proposition 2  For each nonempty set  P ⊆ { ℂ , ℙ , 𝕂 , 𝕌 } of size at most  three, 
the lexicographic tie-breaking family of rules does not P-simulate  F egal

bhav
 assuming 

bhav ∈ {opt, pess}.

Proof  From Observation 2 we already know that the family of lexicographic tie-breaking 
rules cannot { ℂ , ℙ , 𝕂 }-simulate the family of egalitarian pessimistic tie-breaking 
rules or the family of egalitarian optimistic tie-breaking rules.

Next, we build one counterexample for each of the remaining size-three sub-
sets of { ℂ , ℙ , 𝕂 , 𝕌 } to show our theorem. To this end, let us fix a set of candi-
dates  C = {b1, b2,m1,m2, o1, o2} (compatible with our running example) and a fam-
ily U = {u1, u2} of utility functions as depicted in the table below. 

u(⋅) b1 b2 m1 m2 o1 o2

u1 10 5 4 0 0 0
u2 1 2 5 7 0 0

First, we prove that the family F lex cannot { ℂ , ℙ , 𝕌 }-simulate  F egal

bhav
 for any 

bhav ∈ {opt, pess} . Let us fix C+ = � , P = C⧵{o1, o2} . We consider the optimistic vari-
ant of egalitarian tie-breaking for k = 1 , so we are searching for a 1-egroup. Looking at the 
values of U, we see that candidate m1 gives the best possible egalitarian evaluation value 
which is four. This means that a { ℂ , ℙ , 𝕌 }-simulator F ∈ F lex has to use an order 
where m1 precedes both b1 and m2 . However, it turns out that if we set k = 2 , then the best 
2-egroup consists exactly of candidates b1 and m2 . This leads to a contradiction because 
now candidates b1 and m2 should precede m1 in F’s lexicographic order. Consequently, fam-
ily F lex does not { ℂ , ℙ , 𝕌 }-simulate F egal

opt  . Using the same values of utility functions 
and the same sequence of the values of k we get a proof for the pessimistic variant of egali-
tarian evaluation.

Second, we prove that the family F lex cannot { ℙ , 𝕂 , 𝕌 }-simulate  F egal

bhav
 for 

bhav ∈ {opt, pess} . This time, we fix P = C⧵{o1, o2} , k = 2 . We construct the first case 
by setting C+ = {o1} . Using the fact that in both functions candidate o1 has utility zero, we 
choose exactly the same candidate as in the proof of { ℂ , ℙ , 𝕌 }-simulation for the case 
k = 1 ; that is, for the optimistic variant, the winning 2-egroup is m1 and o1 . Consequently, 
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m1 precedes b1 and m2 in the potential {P, k,U}-simulator’s lexicographic order. Towards 
a contradiction, we set C+ = � . The situation is exactly the same as in the proof of the 
{ ℂ , ℙ , 𝕌 }-simulation case. Now, the winning 2-egroup consists of b1 and m2 which 
ends the proof for the optimistic case. By almost the same argument, the result holds for 
the pessimistic variant.

Finally, we prove that the family F lex cannot { ℂ , 𝕂 , 𝕌 }-simulate  F egal

bhav
 for 

bhav ∈ {opt, pess} . We fix C+ = � , k = 2 . For the first case we pick P = {b2,m1,m2} . The 
best egalitarian evaluation happens for the 2-egroup consisting of b2 and m1 . This imposes 
that, in the potential { ℂ , 𝕂 , 𝕌 }-simulator’s order, b2 and m1 precede the remaining 
candidates (in particular, m1 precedes m2 ). However, for P = C the best 2-egroup changes 
to that consisting of b1 and m2 which gives a contradiction ( m2 precedes m1 ). As in the pre-
vious cases, the same argument provides a proof for the pessimistic variant. 	�  ◻

Proposition 2 implies that pessimistic and optimistic egalitarian tie-breaking cannot 
be simulated without having full knowledge about an election. In terms of computational 
complexity, however, finding winners for pessimistic egalitarian tie-breaking remains trac-
table whereas the same task for optimistic egalitarian tie-breaking is intractable. We devote 
the next section to show this dichotomy as well as to establish computational hardness of 
computing winners for the other introduced tie-breaking rules.

4 � Complexity of tie‑breaking

It is natural to ask whether the tie-breaking rules proposed in  Sect.  3.2 are practical in 
terms of their computational complexity. If not, then there is little hope for effective and 
efficient coalitional manipulation because tie-breaking might be an inevitable subtask to 
be solved by the manipulators. Indeed, manipulators might not be “powerful” enough to 
secure victory of their desired egroup completely avoiding tie-breaking.

Clearly, we can perform every lexicographic tie-breaking rule that is defined through 
some predefined order of the candidates in linear time. Hence, we focus on the rules that 
model optimistic or pessimistic manipulators. To this end, we analyze the following com-
putational problem.

F
eval
bhav

 -Tie-Breaking  ( F eval
bhav

 -TB)
                        eval ∈ { util , egal , candegal } , bhav ∈ { opt , pess }

Input: A set of candidates C partitioned into a set P of pending candidates and a set C+ of 
confirmed candidates, the size k of the excellence-group such that |C+

| < k < |C| , a 
family of manipulator utility functions U = {u1, u2,… , ur} where ui ∶ C → ℕ , and a 
non-negative, integral evaluation threshold q.

Question: Is there a size-k set S ⊆ C such that S is selected according to F eval
bhav

 , C+ ⊆ S , and 
eval (S) ≥ q?

Naturally, we may assume that the number of candidates and the number of utility func-
tions are polynomially upper-bounded in the size of the input. However, both the evalua-
tion threshold and the utility function values are encoded in binary.

Note that an analogous problem has not been considered for single-winner elections. 
The reason behind this is that, for single-winner elections, optimistic and pessimistic tie-
breaking rules can be easily simulated by lexicographic tie-breaking rules. To obtain them, 
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it is sufficient to order the candidates with respect to their value to manipulators, com-
puted separately for every candidate. However, one cannot simply apply this approach for 
egroups, because there might be exponentially many different egroups to consider. Even if 
this exponential blow-up were acceptable, it would still be unclear how to derive an order 
of candidates from the computed values of egroups. Yet, using a different technique, we 
can simulate tie-breaking in multiwinner elections with a lexicographic tie-breaking rule 
for several variants of evaluation.

4.1 � Utilitarian and candidate‑wise egalitarian: tie‑breaking is easy

As a warm-up, we observe that tie-breaking can be applied and performed efficiently if the 
k-egroups are evaluated according to the utilitarian or candidate-wise egalitarian variant. 
The corresponding result follows almost directly from Proposition 1.

Corollary 1  Let m denote the number of candidates and r denote the number of 
manipulators. Then one can solve F eval

bhav
 -Tie-Breaking in O(m ⋅ (r + logm)) time for 

eval ∈ { util , candegal } , bhav ∈ {opt, pess}.

Proof  The algorithm works in two steps. First, compute a  lexicographic tie-breaking 
rule F lex that simulates F eval

bhav
 in O(m ⋅ (r + logm)) time as described in Proposition 1. 

Second, apply tie-breaking rule F lex , and evaluate the resulting k-egroup in O(k ⋅ r) time. 
The running time of applying a lexicographic tie-breaking rule is linear with respect to the 
input length (see Sect. 3.3). 	� ◻

4.2 � Egalitarian: being optimistic is hard

In this subsection, we consider the optimistic and pessimistic tie-breaking rules when 
applied for searching a k-egroup evaluated according to the egalitarian variant. First, we 
show that applying and evaluating egalitarian tie-breaking is computationally easy for pes-
simistic manipulators but computationally intractable for optimistic manipulators even if 
the size of the egroup is small. Being pessimistic, the main idea is to “guess” the manipu-
lator that is least satisfied and select the candidates appropriately. We show the computa-
tional worst-case hardness of the optimistic case via a reduction from the W[2]-complete 
Set Cover problem parameterized by solution size [21].

Theorem 1  Let m denote the number of candidates, r denote the number of manipulators, 
q denote the evaluation threshold, and k denote the size of an egroup. Then one can solve 
F

egal
pess

 -Tie-Breaking in O(r ⋅ m logm) time, but F egal

opt  -Tie-Breaking is NP-hard and W[2]

-hard when parameterized by k even if q = 1 and every manipulator only gives either utility 
one or zero to each candidate.

Proof  For the pessimistic case, it is sufficient to “guess” the least satisfied manipulator x by 
iterating through r possibilities. Then, select k − |C+

| pending candidates with the smallest 
total utility for this manipulator in O(m logm) time. Finally, comparing the k-egroup with 
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the worst minimum satisfaction over all manipulators to the given lower bound q on satis-
faction level solves the problem.

We prove the hardness for the optimistic case reducing from the W[2]-hard Set 
Cover problem which, given a collection S = {S1, S2,… , Sm} of subsets of uni-
verse X = {x1, x2,… , xn} and an integer h,8 asks whether there exists a family S ⊆ S  
of size at most  h such that 

⋃

S∈S S = X . Let us fix an instance I = (X,S, h) of Set 
Cover. To construct an F egal

opt  -Tie-Breaking instance, we introduce pending candidates 
P = {c1, c2,… , cm} representing subsets in S  and manipulators u1, u2,… , un representing 
elements of the universe. Note that there are no confirmed and rejected candidates. Each 
manipulator ui gives utility one to candidate cj if set Sj contains element xi and zero other-
wise. We set the excellence-group size k ∶= h and the threshold q to be 1.

Observe that if there is a size-k subset P′ ⊆ P such that mini∈[n]
∑

c�∈P� ui(c
�) ≥ 1 , then 

there exists a family S� = {Sj ∶ cj ∈ P�}—consisting of the sets represented by candidates 
in P′—such that each element of the universe belongs to the set 

⋃

S∈S S . For the reverse 
direction, assume there is a family S′ such that each element of the universe belongs to the 
set 

⋃

S∈S S . Then, consider the size-k subset P� = {cj ∶ Sj ∈ S
�} . Assume towards a con-

tradiction that there is an i ∈ [n] with 
∑

c�∈P� ui(c
�) < 1 . Then, by construction of the utility 

functions, it must hold that xi ∉
⋃

S∈S S —a contradiction. Thus, mini∈[n]
∑

c�∈P� ui(c
�) ≥ 1.

Since Set Cover is NP-hard and W[2]-hard with respect to parameter h, we obtain that 
our problem is also NP-hard and W[2]-hard when parameterized by the size k of an excel-
lence-group. 	�  ◻

Inspecting the W[2]-hardness proof of Theorem  1, we learn that a small egroup size 
(alone) does not make F egal

opt  -Tie-Breaking computationally tractable even for very sim-
ple utility functions. Next, using a parameterized reduction from the W[1]-complete Mul-
ticolored Clique problem  [28], we show that there is still no hope for fixed-parameter 
tractability (under standard assumptions) even for the combined parameter “number of 
manipulators and egroup size”; intuitively, this parameter covers situations where few 
manipulators are going to influence an election for a small egroup.

Theorem 2  Let k denote the size of an egroup and r denote the number of manipulators. 
Then, parameterized by r + k , F egal

opt  -Tie-Breaking is W[1]-hard.

Proof  We describe a parameterized reduction from the W[1]-hard Multicolored Clique 
problem [28]. In this problem, given an undirected graph G = (V ,E) , a non-negative inte-
ger h, and a vertex coloring �∶ V → {1, 2,… , h} , we ask whether graph G admits a color-
ful h-clique, that is, a size-h vertex subset Q ⊆ V  such that the vertices in Q are pairwise 
adjacent and have pairwise distinct colors. Without loss of generality, we assume that the 
number of vertices of each color is the same; to be referred to as y in the following. Let 
(G,�) , G = (V ,E) , be a Multicolored Clique instance. Let V(i) = {vi

1
, vi

2
,… , vi

y
} denote 

the set of vertices of color i ∈ [h] , and let E(i, j) = {e
i,j

1
, e

i,j

2
,… , e

i,j

|E(i,j)|
} , defined for i, j ∈ [h] , 

i < j , denote the set of edges that connect a vertex of color  i to a vertex of color  j. We 

8  Note that we indeed reuse the variable names  m and  n as there will be a one-to-one correspondence 
between subsets and candidates as well as between elements and voters so that the usual meaning of  m 
and n is preserved.
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disregard possible edges between vertices of the same color as they cannot be part of any 
multicolored clique anyway.

Candidates. We create one confirmed candidate c∗ and |V| + |E| pending candidates. 
More precisely: for each � ∈ [y] , we create one vertex candidate  ai

�
 for each ver-

tex vi
�
∈ V(i) , i ∈ [h] and for each i, j ∈ [h] such that i < j we create one edge candidate bi,jt  

for each edge  ei,jt ∈ E(i, j) , t ∈ [|E(i, j)|] . We set the size k of the egroup to h +
(

h

2

)

+ 1 

and set the evaluation threshold q ∶= y + 1 . Next, we describe the manipulators and explain 
the high-level idea of the construction.

Manipulators and main idea. Our construction will ensure that there is a k-egroup X 

with c∗ ∈ X and egal (X) ≥ q if and only if X contains h vertex candidates and 
(

h

2

)

 edge 

candidates that encode a colorful h-clique. To this end, we introduce the following 
manipulators. 

1.	 For each color i ∈ [h] , there is a color manipulator �i ensuring that the k-egroup contains 
a vertex candidate ai

zi
 corresponding to a vertex of color i. Herein, variable zi denotes 

the id of the vertex candidate (resp. vertex) that is selected for color i.
2.	 For each i, j ∈ [h] such that i < j , there is one color pair manipulator �i,j ensuring that the 

k-egroup contains an edge candidate bi,jzi,j corresponding to an edge connecting vertices 
of colors i and j. Herein, variable zi,j denotes the id of the edge candidate (resp. edge) 
that is selected for color pair {i, j} , i < j.

3.	 For each i, j ∈ [h] such that i ≠ j , there are two verification manipulators �i,j , �′i,j ensuring 
that vertex vi

zi
 is incident to edge ei,jzi,j if i < j or incident to edge ej,izj,i otherwise.

It is easy to verify that if there exists a k-egroup in agreement with the description in the 
previous three points, then this k-egroup must encode a colorful h-clique.

Utility functions. Let us now describe how we can guarantee the intended roles of the 
manipulators introduced in points 1 to 3 above using utility functions. 

1.	 Color manipulator �i , i ∈ [h] , has utility y for the confirmed candidate c∗ , utility one for 
each candidate corresponding to a vertex of color i, and utility zero for the remaining 
candidates.

2.	 Color pair manipulator �i,j , i, j ∈ [h] , i < j , has utility y for the confirmed candidate c∗ , 
utility one for each candidate corresponding to an edge connecting a vertices of colors 
i and j, and utility zero for the remaining candidates.

3.	 Verification manipulator �i,j , i, j ∈ [h] , i ≠ j , has utility � for candidate ai
�
 , � ∈ [y] , util-

ity q − � for each candidate corresponding to an edge that connects vertex vi
�
 to a vertex 

of color j, and utility zero for the remaining candidates.
4.	 Verification manipulator �′

i,j
 , i, j ∈ [h] , i ≠ j , has utility q − � for candidate ai

�
 , � ∈ [y] , 

utility � for each candidate corresponding to an edge that connects vertex vi
�
 , to a vertex 

of color j, and utility zero for the remaining candidates.

Correctness. We argue that the graph G admits a colorful clique of size h if and only if 
there is a k-egroup X with c∗ ∈ X and egal (X) ≥ q.

Suppose that there exists a colorful clique H of size h. Create the k-egroup X as follows. 
Start with {c∗} and add every vertex candidate that corresponds to some vertex of H and 
every edge candidate that corresponds to some edge connecting vertices of H. Each color 
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manipulator and color pair manipulator receives total utility y + 1 , because H contains, by 
definition, one vertex of each color and one edge connecting two vertices for each color 
pair. It is easy to verify that the verification manipulator �i,j must receive utility � from a 
vertex candidate and utility q − � from an edge candidate and that the verification manipu-
lator �′

i,j
 must receive utility q − � from a vertex candidate and utility � from an edge candi-

date. Thus, egal (X) = q = y + 1.
Suppose that there exists a k-egroup  X ⊆ C such that egal (X) ≥ q . Since each color 

manipulator cannot achieve utility y + 1 unless c∗ belongs to the winning k-egroup, it fol-
lows that c∗ ∈ X . Because each color manipulator �i receives total utility at least y + 1 , X 
must contain some vertex candidate  ai

zi
 corresponding to a vertex of color  i for 

some  zi ∈ [y] . We say that X  selects vertex  vi
zi
 . Since each color pair manipulator  �i,j 

receives total utility at least y + 1 , X must contain some edge candidate bi,jzi,j corresponding 
to an edge connecting a vertex of color i and a vertex of color j for some zi,j . We say that 
X  selects edge  ei,jzi,j . We implicitly assumed that each color manipulator and color pair 
manipulator contributes exactly one selected candidate to X. This assumption is true 
because there are exactly k − 1 such manipulators and each needs to select at least one can-
didate; hence, X is exactly of the desired size. In order to show that the corresponding ver-
tices and edges encode a colorful h-clique, it remains to show that no selected edge is inci-
dent to a vertex that is not selected. Assume towards a contradiction that X selects an edge 
e
i,j
zi,j

 and some vertex vi
zi
∉ e

i,j
zi,j

 . However, either verification manipulator �i,j or verification 
manipulator �′

i,j
 receives the total utility at most q − 1 ; a contradiction. 	�  ◻

Finally, devising an ILP formulation, we show that F egal

opt  -Tie-Breaking becomes 
fixed-parameter tractable when parameterized by the combined parameter “number of 
manipulators and number of different utility values.” This parameter covers situations 
with few manipulators that have simple utility functions; in particular, when few vot-
ers have 0/1 utility functions. The subsequent Theorem 3 shows that neither few utility 
functions (Theorem 1) nor few manipulators (Theorem 2) make F egal

opt  -TB fixed-param-
eter tractable, but only combining these two parameters allows us to deal with the prob-
lem in FPT time.

Theorem 3  Let u diff denote the number of different utility values and r denote the number 
of manipulators. Then, parameterized by r + u diff , F egal

opt  -Tie-Breaking is fixed-parameter 
tractable.

Proof  We define the type of any candidate ci to be the size-r vector 
t = (u1(ci), u2(ci),… , ur(ci)) . Let T = {t1, t2,… , t

|T |

} be the set of all possible types. 
Naturally, the size of T  is upper-bounded by ur

diff
 . We denote the set of candidates of 

type ti ∈ T  by Ti . Now, the ILP formulation of the problem using exactly |T | + 1 variables 
reads as follows. For each type ti ∈ T  , we introduce an integer variable xi indicating the 
number of candidates of type ti in an optimal k-egroup. We use variable s to represent the 
minimal value of the total utility achieved by manipulators. We define the following ILP 
with the goal to maximize s (indicating the utility gained by the least satisfied manipulator) 
subject to:

(1)∀ti ∈ T∶ 0 ≤ xi ≤ |Ti|,
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Constraint set (1) ensures that the solution is achievable with given candidates. Constraint 
(2) guarantees a choice of an egroup of size k. The last set of constraints imposes that s 
holds at most the minimal value of the total utility gained by manipulators. By a famous 
result of Lenstra [34], this ILP formulation with the number of variables bounded by 
ur
diff

+ 1 yields that F egal

opt  -Tie-Breaking is fixed-parameter tractable when parameterized by 
the combined parameter r + udiff . 	�  ◻

5 � Complexity of coalitional manipulation

In the previous section, we have seen that breaking ties optimistically or pessimistically—
an essential subtask to be solved by the manipulators in general—can become computa-
tionally challenging; in most cases, however, this problem turned out to be computationally 
easy. In this section, we move on to our full framework and analyze the computational 
difficulty of voting strategically for a coalition of manipulators. To this end, we formal-
ize our central computational problem. Let R be a multiwinner voting rule and let F  be a 
multiwinner tie-breaking rule.

R-F-eval-Coalitional Manipulation  ( R-F-eval-CM)
                        eval ∈ { util , egal , candegal }

Input:t An election (C, V), an egroup size k < |C| , r manipulators represented by their utility 
functions U = {u1, u2,… , ur} such that, for all i ∈ [r] , ui ∶ C → ℕ , and a non-negative, 
integral evaluation threshold q.

Question: Is there a size-r multiset W of manipulative votes over C such that an k-egroup S ⊂ C that 
wins the election (C,V ∪W) under R and F  yields eval (S) ≥ q?

The R-F-eval-CM problem is defined very generally; namely, one can consider any 
multiwinner voting rule R (in particular, any single-winner voting rule is a multiwinner 
voting rule with k = 1 ). In our paper, however, we focus on �-Bloc; hence, from now on, 
we narrow down our analysis of R-F-eval-CM to the �-Bloc-F-eval-CM problem.

In line with our intention to model optimistic and pessimistic attitudes of manipulators, 
we require that the evaluation of an optimistic/pessimistic tie-breaking rule F  is the same 
as that of the manipulator’s. Indeed, only when this is the case the tie-breaking rule reflects 
that the manipulator’s expect a certain (pessimistic or optimistic) outcome of an election in 
case of a tie. More formally, for every eval ∈ { util , egal , candegal } , we focus on variants 
of �-Bloc-F-eval-CM where F ∈ {F lex , F

eval
opt

 , F eval
pess

}.9 We always allow lexicographic 

(2)
∑

ti∈T

xi = k,

(3)∀𝓁 ∈ [r]∶
∑

ti∈T

xi ⋅ ti[𝓁] ≥ s.

9  The excluded problem variants might become relevant for situations where a tie-breaking is performed by 
a third party external to the manipulators. However, in such a case, the third party should have its own util-
ity function over the candidates, which is beyond our model.
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tie-breaking because it models cases where a tie-breaking rule is fixed, known to all voters 
and, more importantly, irrelevant of manipulator utility functions.

On the way to show our results, we also use a restricted version of �-Bloc-F-eval-Coa-
litional Manipulation that we call �-Bloc-F-eval-Coalitional Manipulation . In this var-
iant, the input stays the same, but all manipulators cast exactly the same vote to achieve the 
objective.

To increase readability, we decided to represent manipulators by their utility functions. 
As a consequence, we frequently use, for example, u1 referring to the manipulator itself, 
even if we do not care about the values of utility function u1 at the moment of usage. In the 
paper, we also stick to the term “voters” meaning the set V of voters of an input election. 
We never call manipulators “voters”; however, we speak about the manipulative votes they 
cast.

As for the encoding of the input of R-F-eval-CM, we use a standard assumption; 
namely, that the number of candidates, the number of voters, and the number of manipula-
tors are polynomially upper-bounded in the size of the input. Analogously to F eval

bhav
 -Tie-

Breaking, both the evaluation threshold and the utility function values are encoded in 
binary.

In the subsequent sections, we first focus on the (computationally simpler) utilitarian 
and candidate-wise egalitarian evaluation variants (Sect. 5.1) and then consider the egali-
tarian evaluation (Sect. 5.2).

5.1 � Utilitarian and candidate‑wise egalitarian: manipulation is tractable

We show that �-Bloc-F-eval-Coalitional Manipulation can be solved in polyno-
mial time for any � ∈ ℕ , any eval ∈ { util , candegal } , and any tie-breaking rule 
F ∈ {F lex ,F

eval
opt

,F eval
pess

} . Whereas in general, for  |I| being the input size, our algorithm 
requires O(|I|5) steps, for Bloc (i.e., � = k ), we present a better, quadratic-time algorithm 
(with respect to n).

In several proofs in Sect. 5.1 we use the value of a candidate for manipulators (coalition) 
and say that a candidate is more valuable or less valuable than another candidate. Although 
we cannot directly measure the value of a candidate for the whole manipulators’ coalition 
in general, thanks to Observation 1 we can assume a single utility function when discuss-
ing the utilitarian and candidate-wise egalitarian variants. Thus, assigning a single value to 
each candidate is justified.

We start with an algorithm solving the general case of �-Bloc-F -eval-Coalitional 
Manipulation, eval ∈ { util , candegal } , F ∈ {F lex ,F

eval
opt

,F eval
pess

} . The basic idea is to 
“guess” the lowest final score of a member of a  k-egroup and (assuming some lexi-
cographic order over the candidates) the least preferred candidate of the k-egroup that 
obtains the lowest final score; there are at most polynomially many (with respect to the 
input size) pairs to be guessed. Then, the algorithm, in polynomial time (with respect to 
the input size), finds an optimal manipulation leading to a k-egroup represented by the 
guessed pair. At first glance it might seem that it is enough to use a greedy algorithm for 
finding an optimal manipulation for a guessed pair. However, observe that a fundamen-
tal task here is, given a number of points to distribute (by manipulators), to find a selec-
tion of most-preferred members of a k-egroup where each selected member requires a 
certain number of points to be selected. This task however is just another interpretation 
of (a variant of) the weakly NP-hard Knapsack problem [31]. Fortunately, the weights of 
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the items can be upper-bounded by the number of manipulators times size of the egroup, 
so that this Knapsack variant can indeed by solved in polynomial time.

Theorem 4  Let m denote the number of candidates, n the number of voters, k the size of 
a desired egroup, and r the number of manipulators. One can solve �-Bloc-F-eval-Coa-
litional Manipulation in O(k2m2r(n + r)) time for any eval ∈ { util , candegal } and 
F ∈ {F lex ,F

eval
opt

,F eval
pess

}.

Proof  We prove the theorem for the lexicographic tie-breaking rule F lex . This is sufficient 
since, using  Proposition 1, one can generalize the result for the cases of utilitarian and 
candidate-wise egalitarian variants. The basic idea of our algorithm is to fix certain param-
eters of a solution and then to reduce the resulting subproblem to a variant of the Knapsack 
problem with polynomial-sized weights. The algorithm iterates through all possible value 
combinations of the following two parameters:

–	 the lowest final score z < |V ∪W| of any member of the k-egroup and
–	 the candidate ĉ with final score z such that c is the least preferred member of the k

-egroup with respect to tie-breaking rule F lex.

For each combination of the parameters, the algorithm computes an optimal solution 
if it exists. In this case, an optimal solution is a manipulation leading to an egroup that 
maximizes the utility for the manipulation among all egroups described by the param-
eters z and ĉ . The algorithm outputs “yes” if, among the solutions computed for all com-
binations of the parameters, there exists a manipulation resulting in an egroup that has at 
least the utility requested by the instance’s input. Otherwise, the algorithm outputs “no.”

To show how to compute an optimal manipulation for some combination of the param-
eters, let us fix some z and ĉ . We denote by C+ the set of candidates who get at least z + 1 
approvals from the non-manipulative votes or who are preferred to ĉ according to F lex and 
get exactly z approvals from the non-manipulative votes. Assuming that the combination of 
parameter values is correct, all candidates from C+ ∪ {ĉ} must belong to the k-egroup. Let 
k+ ∶= |C+

| . For sanity, we check whether k+ < k , that is, whether candidate ĉ can belong 
to the k-egroup if the candidate obtains final score z. We discard the corresponding com-
bination of solution parameter values if the check fails. Next, we ensure that ĉ obtains the 
final score exactly z. If ĉ receives less than z − r or more than z approvals from non-manip-
ulative votes, then we discard this combination of solution parameter values. Otherwise, 
let  ŝ ∶= z − score V (ĉ) denote the number of additional approvals candidate  ĉ needs in 
order to get final score z. Let k∗ ∶= k − k+ − 1 be the number of remaining (not yet fixed) 
members of the k-egroup. Let s∗ ∶= r ⋅ 𝓁 − ŝ be the number of approvals to be distributed 
to candidates in C⧵{ĉ}.

Now, the manipulators have to influence further k∗ candidates to join the k-egroup (so 
far only consisting of C+ ∪ {ĉ} ) and distribute exactly s∗ approvals in total to candidates in 
C⧵{ĉ} but at most r approvals per candidate. To this end, let C∗ denote the set of candidates 
which can possibly join the k-egroup. For each candidate c ∈ C⧵(C+ ∪ {ĉ}) it holds that 
c ∈ C∗ if and only if 

1.	 z − r ≤ score V (c) ≤ z − 1 if c is preferred to ĉ with respect to F lex , or
2.	 z − r + 1 ≤ score V (c) ≤ z if ĉ is preferred to c with respect to F lex.
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A straightforward idea is to select the k∗ elements from C∗ which have the highest values 
(that is, utility) for the coalition. However, there are two issues: First, s∗ might be too 
small; that is, there are too few approvals to ensure that each of the k∗ best-valued can-
didates gets the final score at least z (resp. at least z + 1 ). Second, s∗ might be too large; 
that is, there are too many approvals to be distributed so that there is no way to do this 
without causing unwanted candidates to get final score at least z (resp. at least z + 1).

Fortunately, we can easily detect these cases and deal with them efficiently. In the for-
mer scenario we reduce the remaining problem to an instance of Exact k -item Knapsack—
the problem in which, for a given set of items, their values and weights, and a knapsack 
capacity, we search for k items that maximize the overall value and do not exceed the knap-
sack capacity. In the latter case, we show that we can discard the corresponding combina-
tion of solution parameters.

First, if s∗ ≤ r ⋅ k∗ , then one can certainly distribute all s∗ approvals (e.g., to the k∗ can-
didates that will finally join the k-egroup). Of course, it could still be the case that there are 
too few approvals available to push the desired candidates into the k-egroup in a greedy 
manner. To solve this problem, we build an Exact k∗ -item Knapsack instance where each 
candidate c∗ ∈ C∗ is mapped to an item. We set the weight of c∗ to z − score V (c

∗) if c∗ is 
preferred to ĉ with respect to F lex and otherwise to (z + 1) − score V (c

∗) . We set the value 
of each c∗ ∈ C∗ to be equal to the utility that candidate c∗ contributes to the manipulators. 
Now, an optimal solution (given the combinations of parameter values is correct) must 
select exactly k∗ elements from C∗ such that the total weight is at most s∗ . This corresponds 
to Exact k -item Knapsack if we set our knapsack capacity to  s∗ . Furthermore, finding 
any such set with maximum total value leads to an optimal solution. Even if the final total 
weight s′ of the chosen elements is smaller than s∗ , we can transfer the Exact k -item Knap-
sack solution to the correct solution of our problem. The total weight corresponds to the 
number of approvals used. Thus, with the Exact k -item Knapsack solution we spend s′ 
approvals and, because of the monotonicity of �-Bloc together with the assumption that 
s∗ ≤ r ⋅ k∗ , we use s∗ − s� approvals to approve the chosen candidates even more.

Second, if s∗ > r ⋅ k∗ , then one can certainly ensure that each of the k∗ most valued can-
didates from C∗ achieves the final score at least z (resp. at least z + 1 ). In many cases, it will 
not be a problem to distribute the remaining approvals; for example, one can safely spend 
up to r approvals for each candidate from C⧵C∗ , that is, to candidates that have no chance 
to get enough points to join the k-egroup or to candidates which are already fixed to be in 
the k-egroup. Furthermore, each candidate from C∗ that is not among the k∗ most valued 
candidates can be safely approved z − score V (c

∗) − 1  times (resp. z − score V (c
∗)  times) 

without reaching final score z (resp. z + 1 ); we denote by s+ the total number of approvals 
distributed in this way. So, if s∗ ≤ s+ + r ⋅ k∗ (note that we also assume s∗ > r ⋅ k∗ ), then 
we can greedily push the k∗ most valued candidates from C∗ into the k-egroup (spending 
r ⋅ k∗ approvals) and then safely distribute the remaining at most s+ approvals to other can-
didates as discussed. If s∗ > s+ + r ⋅ k∗ , then there is no possibility of distributing approv-
als in a way that ĉ is part of the k-egroup. Towards a contradiction assume that ĉ is part of 
the k-egroup obtained after distributing s+ + r ⋅ k∗ + 1 approvals. This means that we spend 
all possible s+ approvals so that ĉ is not beaten and r ⋅ k∗ approvals to push k∗ candidates to 
the winning k-egroup. Giving one more approval to some candidate c′ from C∗ that is not 
yet in the k-egroup, by definition of C∗ and s+ , means that the score of c′ is enough to push 
ĉ out of the final k-egroup; a contradiction. Consequently, for the case of s∗ > s+ + r ⋅ k∗ , 
we discard the corresponding combination of solution parameters.

As for the running time, the first step is sorting the candidates according to their values 
in O(m(r + log(m))) time. Then let us consider the running time of two cases s∗ ≤ r ⋅ k∗ 
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and s∗ > r ⋅ k∗ separately. In the former case, we solve Exact k -item Knapsack in O(k2mr) 
time by using dynamic programming based on analyzing all possible total weights of the 
selected items until the final value is reached  [31, Chapter  9.7.3]10 (note that the maxi-
mum possible total weight is upper-bounded by kr ). If s∗ > r ⋅ k∗ , then each manipula-
tor approves at most m candidates which gives running time O(m ⋅ r) . Thus, we can con-
clude that the running time of the discussed cases is O(k2mr) . Additionally, there are 
at most n + r values of  z and at most m  choices of  ĉ . Summarizing, we get the running 
time O(k2m2r(n + r)) . 	�  ◻

Next, we show that Bloc-F-eval-CM (i.e., the special case of �-Bloc-F-eval-CM where 
� = k ) can be solved in quadratic time, that is, much faster than the general variant of the 
problem. On our way to present this results, we first give an algorithm for �-Bloc-F-eval
-CM with consistent manipulators. Then, we argue that it also solves Bloc-F-eval-CM. 
The algorithm “guesses” the minimum score among all members of the winning egroup 
and then (according to the tie-breaking method) selects the best candidates that can reach 
this score.

Proposition 3  Let m denote the number of candidates, n denote the number of vot-
ers, and r denote the number of manipulators. Then one can solve �-Bloc-F-eval-Coa-
litional Manipulation with consistent manipulators in O(m(m + r + n)) time for any 
eval ∈ { util , candegal } and F ∈ {F lex ,F

eval
opt

,F eval
pess

}.

Proof  Consider an instance of �-Bloc-F lex-eval-CM with consistent manipulators with an 
election E = (C,V) where C is a candidate set and V is a multiset of non-manipulative 
votes, r manipulators, an egroup size k, and a lexicographic order >F used by F lex to break 
ties. In essence, we introduce a constrained solution form called a canonical solution and 
argue that it is sufficient to aim for only this type of solutions. Then we provide an algo-
rithm that efficiently seeks for an optimal canonical solution.

At the beginning, we observe that when manipulators vote consistently, then we can 
arrange the top � candidates of a manipulative vote in any order. Hence, the solution to our 
problem is a size-� subset (instead of an order) of candidates which we call a set of sup-
ported candidates; we call each member of this set a supported candidate. We now intro-
duce a vital concept of the proof, the “strength” of the candidates.

Strength order of the candidates. Additionally, we introduce a new order >
S

 of the can-
didates. It sorts them descendingly with respect to the score they receive from voters and, 
as a second criterion, according to the position in >F . Intuitively, the easier it is for some 
candidate to be a part of a winning k-egroup, the higher is the candidate’s position in >

S
 . 

As a consequence, we state Claim 1.

Claim 1  Let us fix an instance of �-Bloc-F lex-eval-CM with consistent manipulators and a 
solution X which leads to a winning k-egroup S. For every supported (resp. unsupported) 
candidate c, the following holds: 

10  Kellerer et al. [31] present dynamic programming based on all possible total values of items. However 
(what they also remark), these can be exchanged with all possible total weights of items leading to an algo-
rithm with running time polynomial in the maximum weight of items.
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1.	 If c is part of the winning k-egroup, then every supported (resp. unsupported) predeces-
sor of c, according to >

S
 , belongs to S.

2.	 If c is not part of the winning k-egroup, then every supported (resp. unsupported) suc-
cessor of c, according to >

S
 , does not belong to S.

Proof  Fix an instance of �-Bloc-F lex-eval-CM with consistent manipulators and a solu-
tion X resulting in winning k-egroup S. Let us consider the respective order >

S
 over the 

candidates in the instance.
We first show that Statement 1 regarding supported candidates holds. According to the 

statement, fix some supported candidate c ∈ S and let p be a predecessor of c (according 
to >

S
 ). Towards a contradiction, let us assume that p ∉ S . This implies that either (i) the 

score of p is smaller than the score of c or (ii) their scores are the same but c>F p . Let us 
focus on case (i). Both considered candidates are supported by all manipulators (note that 
manipulators vote consistently). Thus, as a consequence of  p>

S
c , we have that the score 

of p is at least as high as the score of c; a contradiction. Next, consider case (ii), where p 
and c have the same scores. Consequently, the mutual order of c and p in >

S
 is the same as 

their order in >F (in other words, the order of c and p in >
S

 does not depend on scores of c 
and p because those must be the same prior to any manipulation). Since c>F p , it follows 
that, by definition of >

S
 , it must hold that c>

S
p ; a contradiction again. Eventually, we 

obtain that p has to be part of S which completes the argument.
An analogous approach leads to proofs for the remaining three cases stated in the theo-

rem. 	�  ◻

Claim 1 justifies thinking about >
S

 as a “strength order”; hence, in the proof we use the 
terms stronger and weaker candidate. Using Claim 1, we can fix some candidate c as the 
weakest in the winning k-egroup and then infer candidates that have to be and that cannot 
be part of this k-egroup. To formalize this idea, we introduce the concept of a canonical 
solution.

Canonical solutions. Assuming the case where k ≤ � , we call a solution X leading to a 
winning k-egroup S canonical if all candidates of the winning egroup are supported; that 
is, S ⊆ X . In the opposite case, k > � , solution X is canonical if X ⊂ S and X is a set of the 
� weakest candidates in S. For the latter case, the formulation describes the solution which 
favors supporting weaker candidates first and ensures that no approval is given to a candi-
date outside the winning k-egroup.

Canonical solutions are achievable from every solution without changing the winning k
-egroup. One cannot prevent a candidate from winning by supporting the candidate more 
because this only increases the candidate’s score. Consequently, we can always transfer 
approvals to all candidates from the winning k-egroup. For the case k > � , we then have to 
rearrange the approvals in such a way that only the weakest members of the k-egroup are 
supported. However, such a rearrangement cannot change the outcome because, according 
to Claim 1, we can transfer an approval from some stronger candidate c to a weaker candi-
date c′ keeping both of them in the winning k-egroup.

Dropped and kept candidates. By the assumption that k < m , for every solution (includ-
ing canonical solutions) we can always find the strongest candidate who is not part of 
the winning egroup. We call this candidate the dropped candidate. Note that we use the 
strength order in the definition of the dropped candidate; this order does not take manipula-
tive votes into account. Further applying the assumption that � < m , without loss of gen-
erality, we can assume that the dropped candidate is not a supported candidate. This holds 



Autonomous Agents and Multi-Agent Systems (2021) 35:38	

1 3

Page 25 of 41  38

true because if the dropped candidate is not in the winning k-egroup even if supported, then 
we can support any other candidate c (which must exist because � < m ) without changing 
the winning k-egroup. Due to Claim 1, if c is not in the winning k-egroup, then, even after 
supporting, c (is by definition weaker than the dropped candidate) cannot become a mem-
ber of k-egroup. Otherwise, supporting c clearly cannot prevent it from being a member 
of the winning k-egroup. Naturally, by definition of the dropped candidate, all candidates 
stronger than the dropped candidate are members of the winning k-egroup. We call these 
candidates kept candidates.

High-level description of the algorithm. The algorithm solving �-Bloc-F lex-eval-CM 
with consistent manipulators iteratively looks for an optimal canonical solution for every 
possible (non-negative) number t of kept candidates (alternatively the algorithm checks all 
feasible possibilities of choosing the dropped candidate). Then, the algorithm compares all 
solutions and picks one that is resulting in an egroup liked the most by the manipulators. 
Observe that k − � ≤ t ≤ k . The upper bound k is the consequence of the fact that each 
kept candidate is (by definition) in the winning k-egroup. Since all candidates except for 
kept candidates have to be supported to be part of the winning egroup, we need at least 
k − � kept candidates in order to be able to complete the k-egroup.

What remains to be done. Procedure 1 describes how to look for an optimal canonical 
solution for a fixed number t of kept candidates. First, partition the candidate set in the fol-
lowing way. By C∗ we denote the kept candidates (which are the top t candidates according 
to >

S
 ). Consequently, the (t + 1)-st strongest candidate is the dropped candidate; say c∗ . 

For every value of t, the corresponding dropped candidate, by definition, is not allowed to 
be part of the winning egroup. Let

be the set of distinguished candidates. Each distinguished candidate, if supported, is pre-
ferred over c∗ to be selected into the winning k-egroup. Consequently, the distinguished 
candidates are all candidates who can potentially be part of the winning k-egroup. We 
remark that to fulfill our assumption that the dropped candidate is not belonging to a win-
ning egroup, it is obligatory to support at least k − t distinguished candidates. Note that 
C∗ ∪ {c∗} ∪ D ≠ C is possible. The remaining candidates cannot be part of the winning 
k-egroup under any circumstances assuming t kept candidates. Also, set D might consist 
of less than k − t required candidates (which is the case when there are too few candidates 
that, after supported, would outperform c∗ ). If such a situation emerges, then we skip the 
respective value of t. Making use of the described division into c∗ , D, and C∗ , Procedure 1 
incrementally builds the set X of supported candidates associated with an optimal solution 
until all possible approvals are used. Observe that since k < |C| and � < |C| , it is guaran-
teed that for t = k Procedure 1 will return a feasible solution for t; in fact, this solution will 
always result in a winning egroup consisting of all t kept candidates (irrespective of D). 

D = {c ∈ C⧵(C∗ ∪ {c∗}) ∣( score V (c) + r > score V (c
∗))∨

( score V (c) + r = score V (c
∗) ∧ c>F c∗)}
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Detailed description of the algorithm. Before studying Procedure 1 in detail, consider 
Fig. 1 illustrating the procedure on example data. In line 1, the procedure builds set X of 
supported candidates using the k − t best valued distinguished candidates. Since only the 
distinguished candidates might be a part of the winning k-egroup besides the kept candi-
dates, there is no better outcome achievable. Then, in line 2, the remaining approvals, if 
they exist, are used to support kept candidates. This operation does not change the result-
ing k-egroup. Then Procedure 1 checks whether all � approvals were used; that is, whether 
� = |X| . If not, then there are exactly � − |X| remaining approvals to use. Note that at this 
stage set X contains k supported candidates which correspond to the best possible k-egroup; 
however, without spending all approvals. Let us call this k-egroup  S. It is possible that 
there is no way to spend the remaining � − |X| approvals without changing the winning k
-egroup S. Then substitutions of candidates occur. The new candidates in the k-egroup can 
be only those that are distinguished and so far unsupported whereas the exchanged ones 
can be only so far supported distinguished candidates. This means that each substitution 
lowers the overall value of the winning k-egroup. So, the best what can be achieved is to 
find the minimal number of substitutions and then pick the most valuable remaining candi-
dates from D to be substituted. The minimal number of substitutions can be found by ana-
lyzing how many candidates would be exchanged in the winning k-egroup if the weakest 
� − |X| previously unsupported candidates were supported. The procedure makes such a 
simulation and computes the number p of necessary substitutions, in lines 4-6. Supporting 
the � − |X| − p weakest unsupported candidates and then the p most valuable so far unsup-
ported distinguished candidates gives the optimal k-egroup for t kept candidates (when all 
approvals are spent). Note that the number � of approvals is strictly lower than the number 
of candidates, so one always avoids supporting c∗.

Running time. To analyze the running time of the algorithm, several steps need to be 
considered. At the beginning we have to compute values of candidates and then sort the 
candidates with respect to their value. This step runs in O(rm + m logm) time. Similarly, 
computing >

S
 takes O(�n + m logm) time. Moreover, Procedure  1 needs O(m)  steps to 

find an optimal canonical solution for some fixed number t of kept candidates. Finally, we 
have at most � + 1 possible values of t. Summing the times up, together with the fact that 
� < m , we obtain the running time O(m(m + r + n)).
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Pessimistic and Optimistic Evaluation. Due to Proposition 1, the algorithm we presented 
can be applied also for pessimistic and optimistic evaluation because of the possibility of 
simulating these evaluations by a lexicographic order in time O(m(r + log(m))) . 	�  ◻

For Bloc, we will show that manipulators can always vote identically to achieve an opti-
mal k-egroup. In a nutshell, for every egroup the manipulators can only increase the scores 
of the  k-egroup’s members by voting exactly for them. This fact leads to the following 
theorem.

Theorem 5  Let m denote the number of candidates, n denote the number of voters, and r 
denote the number of manipulators. One can solve Bloc-F-eval-Coalitional Manipulation 
in O(m(m + r + n)) time for any eval ∈ { util , candegal } and F ∈ {F lex ,F

eval
opt

,F eval
pess

}.

Proof  We show that for Bloc-F-eval-Coalitional Manipulation the manipulators have no 
incentive to deviate from one optimal profile (i.e., they vote in the same manner). Let us 
fix an optimal k-egroup S. If there exists a candidate c ∈ S which is not approved by some 
manipulator u∗ , then there exists also some candidate c� ∉ S which is approved by u∗ ( u∗ 
approves at most k − 1 candidates from S). Observe that in the Bloc voting rule by shift-
ing a candidate up in a preference order we only increase the candidate’s score; as a result, 

(a)

(d)(c)

(b)

Fig. 1   An illustrative example of a run of Procedure 1 for t = 2 , nine candidates, 7-Bloc, and 4-egroup. The 
horizontal position indicates the strength of a candidate—with the strength decresing from left to right—
and the vertical position indicates the value of a candidate. Since the number r of manipulators determines 
only the set of distinguished candidates, we do not specify r explicitly. We indicate the set of distinguished 
candidates instead. Figure 1a–d step by step present the execution of Procedure 1 on the way to find an opti-
mal 4-egroup.
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we cannot prevent the candidate from winning by doing such a shift. Using this observa-
tion, we can exchange some candidate c ∈ S with some candidate c� ∉ S in the preference 
order of u∗ without preventing c from winning. We repeat exchanging candidates until all 
manipulators approve only candidates from S. Then we obtain an optimal vote by fixing a 
preference order over those candidates arbitrarily (there might be more than one optimal 
vote but all of them place only candidates from set S at the first k places). Concluding, we 
can use the algorithm from Proposition 3 which works in the given time. 	�  ◻

5.2 � Egalitarian: manipulation is hard even for simple tie‑breaking

In Sect.  4.2, we showed that already breaking ties might be computationally intracta-
ble. These intractability results only hold with respect to the egalitarian evaluation and 
optimistic manipulators. We now show that this intractability of F egal

opt  -Tie-Breaking 
extends to coalitional manipulation for any tie-breaking rule and egalitarian evaluation. 
This includes the pessimistic egalitarian case which we consider to be highly relevant as 
it naturally models searching for a “safe” voting strategy.

Proposition 4  For any tie-breaking rule F  , there is a polynomial-time many-one reduc-
tion from F egal

opt  -Tie-Breaking to �-Bloc-F-egal-Coalitional Manipulation.

Proof  We reduce an instance of F egal

opt  -Tie-Breaking to �-Bloc-F-egal-Coalitional Manip-
ulation; however, before we describe the actual reduction, we present a useful observation 
concerning F egal

opt  -Tie-Breaking in the next paragraph.
Let us fix an instance I of F egal

opt  -Tie-Breaking with a confirmed set C+ , a pending set P,  
a size k of an egroup, a threshold q, and a set of manipulators represented by a family U  
of utility functions. We construct a new equivalent instance I′ of F egal

opt  -Tie-Breaking with 
a larger set of manipulator utility functions U′ ⊇ U . The construction is a polynomial-time 
many-one reduction which proves that we can “pump” the number of manipulators arbitrar-
ily for instance I. To add a manipulator, it is enough to set to q the utility that the manipu-
lator gives to every candidate. Naturally, such a manipulator cannot have the total utility 
smaller than q, so the correct solution for I is also correct for I′ . Contrarily, when there is 
no solution for I, it means that for every possible k-egroup S′ there is some manipulator ū 
such that egal ū(S�) < q . Consequently, one cannot find a solution for I′ as well, because the 
set of possible k-egroups and their values of egalitarian utility do not change.

Now we can phrase our reduction from F egal

opt  -Tie-Breaking to �-Bloc-F-egal- 
Coalitional Manipulation. Let us fix an instance I of F egal

opt  -Tie-Breaking with a con-
firmed set C+ , a pending set P, a size k of an egroup, a threshold q, and a set U of r utility 
functions. Because of the observation about “pumping” instances of F egal

opt  -Tie-Breaking, 
we can assume, without loss of generality, that 𝓁 ⋅ r ≥ k − |C+

| holds. In the constructed 
instance of �-Bloc-F-egal-CM equivalent to I, we build an election that yields sets P 
and C+ and aim at an egroup of size k. However, it is likely that we need to add a set of 
dummy candidates that we denote by D. It is important to ensure that the dummy candi-
dates cannot be the winners of the constructed election. To do so, we keep the score of 
each dummy candidate to be at most 1, the score of each pending candidate to be r + 2 , 
and the score of each confirmed candidate to be at least 2r + 3 . The construction starts 
from ensuring the scores of the confirmed candidates. Observe that in this step we add at 
most (2r + 3) ⋅ |C+

| voters (in case � = 1 ). If � > |C+
| , then we have to add some dummy 

candidates in this step. We can upper-bound the number of the added dummy candidates 
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by (2r + 3) ⋅ |C+
|(𝓁 − 1) (this bound is not tight). Analogously, we add new voters such 

that each pending candidate has score exactly r + 2 . At this step we have the election where 
we are able to spend 𝓁 ⋅ r ≥ k − |C+

| approvals. We can select every possible subset of 
pending candidates to form the winning k-egroup by approving candidates in this subset 
exactly once. However, to be sure that we are able to distribute all approvals such that 
there is no tie, we ensure that the remaining 𝓁 ⋅ r − (k − |C+

|) approvals can be distributed 
to some candidates without changing the outcome. To achieve this goal, we add exactly 
𝓁 ⋅ r − (k − |C+

|) dummy candidates with score 0. We set the evaluation threshold of the 
newly constructed instance to q.

By our construction, we are always able to approve enough pending candidates to form 
a k-egroup without considering ties, and we cannot make a dummy candidate a winner 
under any circumstances. Thus, if F egal

opt  -Tie-Breaking has a solution S, then we approve 
every candidate c ∈ S such that c was in the pending set P before, and we obtain a solution 
to the reduced instance. In the opposite case, if there is no such a k-egroup whose egali-
tarian utility value is at least q, then the corresponding instance of �-Bloc-F-egal-Coa-
litional Manipulation also has no solution since the possible k-egroups are exactly the 
same. The reduction runs in polynomial time. 	�  ◻

Observe that the reduction proving  Proposition 4 does not change the egroup size  k. 
Additionally, the increase of the number of manipulators in the resulting instances is poly-
nomially upper-bounded in the egroup size k of input instances. This is due to the fact that 
even if we need to “pump” an initial instance to achieve 𝓁 ⋅ r ≥ k − |C+

| , then we add at 
most 

⌈

k−|C+
|

�

⌉

≤ k manipulators. Thus, together with Theorem 1 and Theorem 2, Proposi-
tion 4 leads to the following theorem.

Theorem  6  Let F  be an arbitrary tie-breaking rule. Then, �-Bloc-F-egal-Coalitional 
Manipulation is NP-hard. Let r denote the number of manipulators, q denote the evaluation 
threshold and k denote the size of an egroup. Then, parameterized by r + k , �-Bloc-F-egal
-CM is W[1]-hard. Parameterized by k, �-Bloc-F-egal-CM is W[2]-hard even if q = 1 and 
every manipulator only gives either utility one or zero to each candidate.

Combining exhaustive enumeration of values describing essential properties of solu-
tions and an extension of the ILP from Theorem 3, we show that, for the combined param-
eter “number of manipulators and number of different utility values,” fixed-parameter trac-
tability of F egal

opt  -Tie-Breaking  extends to coalitional manipulation for both optimistic and 
pessimistic egalitarian tie-breaking.

Theorem 7  Let r denote the number of manipulators and u diff denote the number of differ-
ent utility values. Parameterized by r + u diff , �-Bloc-F-egal-Coalitional Manipulation with 
F ∈ {F egal

pess
,F

egal

opt
} is fixed-parameter tractable.

Proof  In a nutshell, we divide �-Bloc-F egal
pess

-egal-CM and �-Bloc-F egal

opt -egal-CM into sub-
problems solvable in FPT time with respect to the combined parameter “number of manip-
ulators and number of different utility values.” We show that solving polynomially many 
subproblems is enough.

The main idea. We split the proof into two parts. In the first part, we define subproblems 
and show how to find a solution assuming that the subproblems are solvable in FPT time 
with respect to the parameter. In the second part, we show that, indeed, the subproblems 
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are fixed-parameter tractable using their ILP formulations. The inputs for �-Bloc-F egal
pess

-egal-CM and �-Bloc-F egal

opt -egal-CM are the same, so let us consider an arbitrary input 
with an election E = (C,V) where |V| = n , |C| = m , a size k of an excellence-group, and r 
manipulators represented by a set U = {u1, u2,… , ur} of their utility functions. Let u diff be 
the number of different utility values.

An election resulting from a manipulation and a corresponding k-egroup emerging from 
the manipulation can be described by three non-negative integer parameters: 

1.	 the lowest final score z of any member of the k-egroup;
2.	 the number p of promoted candidates from the k-egroup with a score higher than z 

which, at the same time, have score at most z without taking manipulative votes into 
consideration;

3.	 the number b of border candidates with score z.

Observe that if as a result of a manipulation the lowest final score of members in a 
final k-egroup is z , then the promoted candidates are part of the k-egroup regardless of 
the tie-breaking method used. For border candidates, however, it might be necessary to 
run the tie-breaking rule to determine the k-egroup. In other words, border candidates 
become pending candidates unless all of them are part of the k-egroup. By definition, 
no candidate scoring lower than the border candidates is a member of the k-egroup, 
which gives border candidates their name. From now on, we refer to the election situ-
ation characterized by parameters z, p, b as a state (resp. input state). Additionally, we 
call a set of manipulator votes a manipulation.

Part 1: High-level description of the algorithm. For now, we assume that there is a 
procedure P which runs in FPT time with respect to the combined parameter “number 
of manipulators and number of different utility values.” Procedure P takes values z , p , b 
and an instance of the problem as an input, and it finds a manipulation which leads to a k
-egroup maximizing the egalitarian utility under either egalitarian optimistic or egalitar-
ian pessimistic tie-breaking with respect to the input state. If such a manipulation does not 
exist, then procedure P returns “no.” The algorithm solving �-Bloc-F egal

pess
-egal-CM and 

�-Bloc-F egal

opt -egal-CM runs P for all possible combinations of values z , p , and b . Eventu-
ally, it chooses the best manipulation returned by P or returns “no” if P always returned 
so. Since the value of z is at most |V| + |W| and b together with p are both upper-bounded 
by the number of candidates, we run P at most (n + r)m2 times. Because the input size 
grows polynomially with respect to the growth of the values r , m, and n, the overall algo-
rithm runs in FPT time with respect to the combined parameter “number of manipulators 
and number of different utility values.”

Part 2: Basics and preprocessing for the ILP To complete the proof, we describe pro-
cedure P used by the above algorithm. In short, the procedure builds and solves an ILP 
program that finds a manipulation leading to the state described by the input values. Before 
we describe the procedure in detail we start with some notation. Fix some values of z , b , 
p and some election E = (C,V) that altogether form the input of P . For each candidate 
c ∈ C , let a size-r vector t = (u1(c), u2(c),… , ur(c)) , referred to as a type vector, define the 
type of c. We denote the set of all possible type vectors by T = {t1, t2,… , t

|T |

} . Observe 
that |T | ≤ ur

diff
 . With each type vector ti , i ∈ [|T |] , we associate a set Ti consisting of all 

candidates of type ti . We also distinguish the candidates with respect to their initial score 
compared to z . A candidate of type ti ∈ T  , i ∈ |T | , with score z − j , j ∈ [r] ∪ {0} , belongs 
to group Gj

i
 . We denote all candidates with a score (excluding manipulative votes) higher 
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than z by C+ , whereas by C− we denote the candidates with a score (excluding manipula-
tive votes) strictly lower than z − r . For each type ti ∈ T  of a candidate, we define function 
obl(ti) ∶= |C+ ∩ Ti| , which gives the number of candidates of type ti that are obligatory 
part of the winning k-egroup.

At the beginning, procedure P tests whether the input values z , b , and p represent a 
correct state. From the fact that there has to be at least one candidate with score z , we get 
the upper bound k − |C+

| − 1 for value p . To have enough candidates to complete the k
-egroup, we need at least k − |C+

| − p candidates with score z after the manipulation which 
gives b ≥ k − |C+

| − p . Finally, the state is incorrect if the corresponding set C+ contains 
k or more candidates. If the input values are incorrect, then P returns “no.” Otherwise, 
P continues with building a corresponding ILP program. We give two separate ILP pro-
grams—one for the optimistic egalitarian tie-breaking and the other one for the pessimistic 
egalitarian tie-breaking. Both programs consist of two parts. The first part models all pos-
sible manipulations leading to the state described by values z , p , and b . The second one is 
responsible for selecting the best k-egroup assuming the particular tie-breaking and consid-
ering all possible manipulations according to the first part. Although the whole programs 
are different from each other, the first parts stay the same. Thus, we postpone distinguish-
ing between the programs until we describe the second parts. For the sake of readability, 
we present the ILP programs step by step.

ILP: Common part. For each group Gj

i
 , i ∈ [|T |] , j ∈ [r] ∪ {0} , we introduce variables 

x
j

i
 and xj+

i
 indicating the numbers of, respectively, border and promoted candidates from 

group Gj

i
 . Additionally, we introduce variables o and ō . The former represents the number 

of approvals used to get the obligatory numbers of border and promoted candidates. The 
latter indicates the number of approvals which are to be spent without changing the final k
-egroup (thus, in some sense a complement of the obligatory approvals) resulting from the 
manipulation (e.g., approving candidates in C+ , who are part of the winning k-egroup any-
way, cannot change the outcome). We begin our ILP program with ensuring that the values 
of xj

i
 and xj+

i
 are feasible:

The constraints ensure that exactly p candidates are selected to be promoted (5), exactly b 
candidates are selected to be border ones (6), and that, for every group, the sum of border 
and promoted candidates is not greater than the cardinality of the group (4). The last two 
constaint sets ensure that candidates who have score z are either promoted or border can-
didates (7) and that candidates with initial score z − r cannot be promoted (i.e., get a score 
higher than z ) (8). Next, we add the constraints concerning the number of approvals we 

(4)∀ti ∈ T, j ∈ [r] ∪ {0}∶ x
j+

i
+ x

j

i
≤ |G

j

i
|,

(5)
∑

ti∈T,j∈[r]∪{0}

x
j+

i
= p,

(6)
∑

ti∈T,j∈[r]∪{0}

x
j

i
= b,

(7)∀ti ∈ T∶ x0+
i

+ x0
i
= |G0

i
|,

(8)∀ti ∈ T∶ xr+
i

= 0.
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need to use to perform the manipulation described by all variables xj
i
 and xj+

i
 . We start with 

ensuring that the manipulation does not exceed the number of possible approvals. As men-
tioned earlier, we store the number of required approvals using variable o.

Then, we model spending the ō remaining votes (if any) to use all approvals.

The upper bound on the number of votes one can spend without changing the outcome pre-
sented in constraint (11) consists of three summands. The first one indicates the number of 
approvals which can be spent for candidates whose initial score was either too high or too 
low to make a difference in the outcome of the election resulting from the manipulation. 
The second summand counts the approvals we can spend for potential promoted and bor-
der candidates that eventually are not part of the winning k-egroup; we can give them less 
approvals than are needed to make them border candidates. The last summand represents 
the number of additional approvals that we can spend on the promoted candidates to reach 
the maximum of r approvals per candidate. This completes the first part of the ILP program 
in which we modeled the possible variants of promoted and border candidates for the fixed 
state (z, b, p).

ILP extension for optimistic egalitarian tie-breaking. In the second part, we find the 
final k-egroup by completing it with the border candidates according to the particular tie-
breaking mechanism. Let us first focus on the case of the optimistic egalitarian tie-break-
ing. We introduce constraints allowing us to maximize the total egalitarian utility value of 
the final egroup; namely, for each group Gj

i
 , i ∈ [|T |] , j ∈ [r] ∪ {0} , we add a non-neg-

ative, integral variable xj∙
i
 indicating the number of border candidates of the given group 

chosen to be in the final k-egroup. The following constraints ensure that we select exactly 
k − |C+

| − p border candidates to complete the winning egroup and that, for each group Gj

i
 , 

we do not select more candidates than available.

To complete the description of the ILP, we add the following final set of constraints defin-
ing the egalitarian utility s of the final k-excellence-group:

(9)o =
∑

ti∈T, j∈[r]∪{0}

(

x
j

i
⋅ j + x

j+

i
⋅ (j + 1)

)

,

(10)o ≤ �r.

(11)

ō ≤ r|C− ∪ C+
| +

∑

ti∈T

∑

j∈[r]

(

|G
j

i
| − x

j

i
− x

j+

i

)

(j − 1)

+
∑

ti∈T,j∈[r]

(

x
j+

i
⋅ (r − j − 1)

)

,

(12)ō + o = �r.

(13)
∑

ti∈T, j∈[r]∪{0}

x
j∙

i
= k − |C+

| − p,

(14)∀ti ∈ T, j ∈ [r] ∪ {0}∶ x
j∙

i
≤ x

j

i
.
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We set the goal of the program to maximize s and thus our program simulates the egalitar-
ian optimistic tie-breaking.

ILP extension for pessimistic egalitarian tie-breaking. To solve our subproblem for the 
case of pessimistic egalitarian tie-breaking, we need a different approach. We start with 
an additional notation. For each type of candidate ti ∈ T  , let bi =

∑

j∈[r]∪{0} x
j

i
 denote 

the number of border candidates of this type. For each type ti ∈ T  and manipulator uq , 
q ∈ [r] , we introduce a new integer variable dq

i
 . Its value corresponds to the number of 

border candidates of type ti who are part of the worst possible winning k-egroup according 
to manipulator uq ’s preferences; we call these candidates the designated candidates of type 
ti of manipulator uq . For each variable dq

i
 , we define a binary variable used [dq

i
] which has 

value one if at least one candidate of type ti is a designated candidate of manipulator uq . 
Similarly, we define fullyused [dq

i
] to indicate that all candidates of type ti are designated 

by manipulator uq . To give a program which solves the case of pessimistic egalitarian tie-
breaking, we copy the first part of the previous ILP program (constraints from (4) to (12)) 
and add new constraints. First of all, we ensure that each manipulator designates not more 
than the number of available border candidates from each type and that every manipulator 
designates exactly k − p − |C+

| candidates.

The following forces the semantics of the variables used ; that is, a variable used [dq
i
] , 

i ∈ [|T |] , q ∈ [r] , has value one if and only if variable dq
i
 is at least one.

Similarly, for the variables fullyused , we ensure that fullyused [dq
i
] , i ∈ [|T |] , q ∈ [r] , is 

one if and only if manipulator uq designates all available candidates of type ti.

Since our task is to perform pessimistic tie-breaking, we have to ensure that the designated 
candidates for each manipulator are the candidates whom the manipulator gives the least 
utility. We impose this by forcing that the more valuable candidates (for a particular manip-
ulator) are used only when all candidates of all less valuable types (for the manipulator) are 
used (i.e., they are fully used). To achieve this we make use of the used and fullyused vari-
ables in the following constraints.

(15)∀q ∈ [r]∶
∑

ti∈T, j∈[r]∪{0}

ti[q] ⋅ (x
j+

i
+ x

j∙

i
) +

∑

ti∈T

ti[q] ⋅ obl(ti) ≥ s.

(16)∀ti ∈ T, q ∈ [r]∶ 0 ≤ d
q

i
≤ bi,

(17)∀q ∈ [r]∶
∑

ti∈T

d
q

i
= k − p − |C+

|.

(18)∀ti ∈ T, q ∈ [r]∶ used [d
q

i
] ≤ d

q

i
,

(19)∀ti ∈ T, q ∈ [r]∶ used [d
q

i
]n ≥ d

q

i
.

(20)∀ti ∈ T, q ∈ [r]∶ fullyused [d
q

i
] ≥ 1 − (bi − d

q

i
),

(21)∀ti ∈ T, q ∈ [r]∶ bi − d
q

i
≤ n(1 − fullyused [d

q

i
]).

(22)∀q ∈ [r] ∪ {0}∀ti, ti� ∈ T with ti[q] > ti� [q]∶ used [d
q

i
] ≤ fullyused [d

q

i�
].
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Finally, we give the last set of constraints where s represents the pessimistic egalitarian k
-egroup’s utility which our ILP program wants to maximize:

The ILP programs, for both tie-breaking variants, use O(rur
diff

) variables. So, according to 
Lentra’s result [34], we obtain fixed-parameter tractability with respect to the combined 
parameter r + u diff . Consequently, procedure P is in FPT with respect to the same param-
eter. 	�  ◻

Finally, by using ideas from Theorem 4, we proceed with Theorem 8—a counterpart 
of Theorem 7 but for lexicographic tie-breaking; namely, we obtain fixed-parameter tracta-
bility for egalitarian coalitional manipulation with lexicographic tie-breaking. As byprod-
uct (following from Proposition 1), the fixed-parameter tractability from Theorem 8 also 
holds for the remaining tie-breaking variants: optimistic and pessimistic tie-breaking for 
both utilitarian and candidate-wise egalitarian variants.

Theorem 8  Let r denote the number of manipulators and u diff denote the number of dif-
ferent utility values. For every  eval ∈ { util , candegal } , �-Bloc-F-egal-Coalitional 
Manipulation with F ∈ {F lex ,F

eval
opt

,F eval
pess

} parameterized by r + u diff is fixed-parameter 
tractable.

Proof  The general proof idea is to show an algorithm which solves problem �-Bloc-F lex

-egal-Coalitional Manipulation in the requested time. Proposition 1 implies that the result 
holds for all F ∈ {F lex ,F

eval
opt

,F eval
pess

} for every eval ∈ { util , candegal }.
To solve �-Bloc-F lex-egal-Coalitional Manipulation we create an ILP for all possible 

value combinations of the following parameters:

–	 the lowest final score z < |V ∪W| of any member of the k-egroup and
–	 the candidate ĉ which is the least preferred member of the k-egroup with final score z 

with respect to the tie-breaking rule F lex.

Having z fixed, let C+ denote the set of candidates which get at least z + 1 approvals from 
the non-manipulative votes or which are preferred to ĉ with respect to F  and get exactly 
z  approvals from the non-manipulative votes. Assuming that the combination of param-
eter values is correct, all candidates from C+ ∪ {ĉ} must belong to the k-egroup. We check 
whether |C+

| < k , that is, whether there is space for candidate  ĉ in the k-egroup. If the 
check fails, then we skip the corresponding combination of solution parameter values. 
Next, we ensure that ĉ obtains final score exactly z. If ĉ  receives less than z − r or more 
than z approvals from non-manipulative votes, then we discard this combination of solu-
tion parameter values. Otherwise, let ŝ ∶= z − score V (ĉ) denote the number of additional 
approvals candidate ĉ needs in order to get final score z.

We define the type of some candidate ci to be the size-r vector 
tj = (u1(ci), u2(ci),… , ur(ci)) . We denote by T = {t1, t2,… , t

|T |

} the set of all possible 
types. Observe that |T | ≤ ur

diff
 . With each type vector ti , i ∈ [|T |] , we associate a set Ti 

consisting of all candidates of type ti . Having ĉ (and z) fixed, we distinguish candidates 
according to types further. For j ∈ [r] ∪ {0} , all candidates with score z − j (obtained from 
the non-manipulative votes) that are preferred (resp. not preferred) to candidate ĉ according 

(23)∀q ∈ [r]∶
∑

ti∈T

(d
q

i
+ obl(ti)) ⋅ ti[q] ≥ s.
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to F  , fall into group Gj+

i
 (resp. Gj−

i
 ). We denote by Cr candidates that do not fall into any 

of such groups. For each type ti ∈ T  of a candidate, we define function obl(ti) = |C+ ∩ Ti| 
which gives the number of candidates of type ti who are obligatory part of the winning  
k-egroup. For each manipulator q ∈ [r] , by g(q) ∶=

∑

ti∈T
obl(ti) ⋅ ti[q] we denote the guar-

anteed utility of q, that is, the utility achieved from the candidates in C+.
We give the following ILP formulation of the problem using 2r|T | + 2 variables. For 

all groups Gj+

i
 and Gj−

i
 , i ∈ [|T |] , j ∈ [r] ∪ {0} , we introduce variables xj+

i
 and xj−

i
 respec-

tively. The variables indicate, respectively, the number of candidates from groups Gj+

i
 and 

G
j−

i
 whom we push to the winning k-egroup. Also, we introduce two additional variables s 

and u. The former one represents the minimal value of the total utility achieved by manipu-
lators. The latter one indicates the number of approvals which were spent without changing 
the outcome. To shorten the ILP we define

Intuitively, Mful ĉ
z
 is the number of approvals used to add potential egroup members to the 

winning k-egroup. Also, we define

Fbid ĉ
z
 represents the number of approvals which cannot be used if one wants to avoid 

pushing candidates outside of the solution (given by values of the variables  x) to the 
winning k-egroup; for example, if some candidate c needs j approvals to be part of the 
winning k-egroup, then we subtract r − j + 1 approvals from the whole pool of r approv-
als for this candidate because we can use only j − 1 approvals not to push  c into the  
k-egroup. We define the following constraints to construct our program the goal of which 
is to maximize s:

Mful ĉ
z
∶=

∑

ti∈T,j∈[r]

x
j+

i
⋅ j +

∑

ti∈T,j∈[r−1]∪{0}

x
j−

i
⋅ (j + 1).

Fbid ĉ
z
∶=

∑

ti∈T,j∈[r]∪{0}

[

(r − j + 1)(|G
j+

i
| − x

j+

i
) + (r − j)(|G

j−

i
| − x

j−

i
)
]

.

(24)∀ti ∈ T, j ∈ [r] ∪ {0},⋆ ∈ {+,−}∶ x
j⋆

i
≤ |G

j⋆

i
|,

(25)∀ti ∈ T∶ xz−
i

= 0,

(26)∀ti ∈ T∶ x0+
i

= |G0+
i
|,

(27)Mful ĉ
z

≤ r ⋅ 𝓁 − ŝ,

(28)(|C| − 1)r − Mful ĉ
z
− Fbid ĉ

z
≥ u,

(29)u + Mful ĉ
z

= r ⋅ 𝓁 − ŝ,

(30)

∑

ti ∈ T, j ∈ [r] ∪ {0},

⋆ ∈ {+,−}

x
j⋆

i
= k − |C+

| − 1,
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Constraint  (24) ensures that the candidates picked into a solution are available and can 
be part of the solution. Observe that candidates in G0+

i
 have to be part of the solution and 

candidates in Gz−
i

 cannot be part of the solution. These two facts are ensured by Con-
straints  (25) and (26). Constraint  (27) forbids spending more approvals than possible to 
push some candidates to the k-egroup. The same role for “wasted” approvals plays Con-
straint (28). The upper bound of wasted approvals is counted in the following way: From 
the maximal number of possible approvals (we subtract one from the number of candi-
dates because we give exactly ŝ approvals to candidate ĉ ), we first subtract the approvals 
already given to candidates in the k-egroup (i.e., Mful ĉ

z
 ); next, we subtract all approvals 

that would push candidates outside of the solution given by the variables x to the k-egroup 
(i.e., Fbid ĉ

z
 ). Constraint (29) ensures that, altogether, we spend exactly as many approvals 

as required, and Constraint (30) holds only when a proper number of candidates are pushed 
to be part of k-egroup. The last constraint forces maximization of the egalitarian utility of 
the winning k-egroup when s is maximized.

Using our technique we can obtain a solution by making O(nm) ILPs with at most 
2rur

diff
+ 2 variables. We return “yes” if there exists an ILP that achieves a  k-egroup 

with the utility at least the given threshold and “no” otherwise. According to Lenstra’s 
result [34], the constructed ILPs yield fixed-parameter tractability with respect to the com-
bined parameter r + u diff . 	�  ◻

6 � Conclusion

We developed a new model for and started the first systematic study of coalitional manipu-
lation for multiwinner elections. Our analysis revealed that multiwinner coalitional manip-
ulation requires models which are significantly more complex than those for single-winner 
coalitional manipulation or multiwinner non-coalitional manipulation. As described in the 
introduction, depending on the aggregation function our model may assume a given, fixed 
coalition of manipulators can compensate their (potential) utility loss after a manipulation 
in some way. Thus, in particular, our model does not analyze the dynamics of a coalition 
but rather it tries to assess its potential and possible influence. Finding the quality of possi-
ble manipulations for a given coalition is essential to answer more general questions about 
coalitions such as “what is the most profitable coalition for a given agent?”. Being able to 
answer such questions, one can investigate the dynamics of coalitions formation. We dis-
cuss this future direction in more detail in the last paragraph of this section.

In our work, on the one hand, we generalized several tractability results for coalitional 
manipulation of �-Approval by Conitzer et al. [17] and Lin [35] and for (non-coalitional) 
manipulation of Bloc by Meir et al. [38] and Obraztsova et al. [42] to tractability of coali-
tional manipulation of �-Bloc in case of utilitarian or candidate-wise egalitarian evaluation 
of egroups. On the other hand, we showed that coalitional manipulation becomes intracta-
ble in case of egalitarian evaluation of egroups.

(31)
∀q ∈ [r]∶ g(q) +

∑

ti ∈ T, ⋆ ∈ {+,−},

j ∈ [r] ∪ {0}

x
j⋆

i
⋅ ti[q] ≥ s.
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Let us discuss a few findings in more detail (Table 1 surveys all our results). We studied 
lexicographic, optimistic, and pessimistic tie-breaking and showed that, with the excep-
tion of egalitarian group evaluation, winning excellence-groups can be determined very 
efficiently. The intractability (NP-hardness, parameterized hardness in form of W[1] - and 
W[2]-hardness) for the egalitarian case, however, turns out to hold even for quite restricted 
scenarios. We also demonstrated that numerous tie-breaking rules can be “simulated” by 
(carefully chosen) lexicographic tie-breaking, again except for the egalitarian case. Inter-
estingly, the hardness of egalitarian tie-breaking holds only for the optimistic case while 
for the pessimistic case it is efficiently solvable. Hardness for the egalitarian optimistic sce-
nario, however, translates into hardness results for coalitional manipulation regardless of 

Table 1   Computational complexity of tie-breaking and coalitional manipulation

Our results for �-Bloc hold for any � ≥ 1 , and thus cover SNTV. The parameters are the size  k of the 
egroup, the number r of manipulators, and the number u diff of different utility values. Furthermore, m  is 
the number of candidates and n is the number of voters. The result marked with † holds for all possible 
combinations of the respective evaluation and behavior variants. The results marked with ⋄ hold also for 
F = F lex

F
eval
bhav

 -Tie-Breaking, easy cases:

Settings (evaluation, behavior) Complexity Reference

Utilitarian or cand.wise egalitarian, optimistic 
or pessimistic

O(m ⋅ (r + logm)) Cor. 1 †

Egalitarian, pessimistic O(r ⋅ m logm) Thm. 1

F
egal

opt  -Tie-Breaking (egalitarian, optimistic):

Parameters, restrictions Complexity Reference

General NP-hard Thm. 1
k, 0/1 utilities and q = 1 W[2]-hard Thm. 1
r + k W[1]-hard Thm. 2
r + u diff FPT Thm. 3

�-Bloc-F-eval-Coalitional Manipulation

Utilitarian/cand.wise egalitarian, optimistic/pessimistic:

Restrictions Complexity Reference

General O(k2m2r(n + r)) Thm. 4 ⋄
Consistent manipulators O(m(m + r + n)) Prop. 3 ⋄
� = k O(m(m + r + n)) Thm. 5 ⋄

�-Bloc-F-eval-Coalitional Manipulation

Egalitarian, optimistic/pessimistic:

Parameters, restrictions Complexity Reference

General NP-hard Thm. 6 ⋄
k, 0/1 utilities and q = 1 W[2]-hard Thm. 6 ⋄
r + k W[1]-hard Thm. 6 ⋄
r + u diff FPT Thm. 7 and Thm. 8 ⋄
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the specific tie-breaking rule. On the contrary, coalitional manipulation becomes tractable 
for the other two evaluation strategies—“candidate-wise” egalitarian and utilitarian. Addi-
tionally, for few manipulators and few different utility values the manipulators assign to 
the candidates, manipulation becomes tractable also for the egalitarian optimistic scenario.

Our study provides a handful of practically efficient algorithms allowing for experi-
mental studies of coalitional manipulability, as shown by Kalkbrenner [30], who imple-
mented and tested our algorithms. Among many issues that such studies can address, 
there are a few remarkable ones like “is finding a successful manipulation hard in prac-
tice?”, “how likely is a successful manipulation?”, and “how much, in practice, can an 
election outcome be affected by a coalition?” (all questions were previously studied in 
the single-winner case). For example, Kalkbrenner [30] asked this kind of questions 
for the San Francisco Election Data from Preflib  [37]. In her preliminary results, she 
showed that under certain election parameters already a group of significantly fewer 
than 0.1% of voters could have manipulated the elections successfully replacing at least 
one candidate. Even though this result sounds alarming, it is unsure how robust it is 
with respect to different election parameters. Thus, we find it interesting to apply our 
algorithms to empirically advance our understanding of manipulability of real-life elec-
tions, in particular San Francisco Election Data.

One may also want to consider further evaluation functions to model different vari-
ants of manipulators’ behavior. One also technically natural variant is to consider 
minc∈S minu∈U u(c) , introducing a very pessimistic viewpoint of a coalition: “The worst 
candidate from the shortlist is finally chosen and the most-pessimistic expert from the 
coalition is right with its evaluation.” This evaluation function would have in common 
with util and candegal that one can also assume without loss of generality that there is just 
one utility function (Observation 1). However, results do not directly translate because, for 
the evaluation, only the worst candidate in the k-excellence-group would matter. This prop-
erty has a Chamberlin-Courant flavor, but with essentially only one voter, which suggests 
that one might expect computational tractability for our coalitional manipulation problems 
assuming the pessimistic evaluation in question.

In our study, we entirely focused on shortlisting as one of the simplest tasks for mul-
tiwinner elections to analyze our evaluation functions. It is interesting and non-trivial to 
develop models for multiwinner rules that aim for proportional representation or diversity. 
For shortlisting, extending our studies to non-approval-like scoring-based voting corre-
spondences would be a natural next step. In this context, already seeing what happens if 
one extends the set of individual scores from being only 0 or 1 to more (but few) numbers 
is of interest. Moreover, we focused on deterministic tie-breaking mechanisms, ignoring 
randomized tie-breaking—another issue for future research.

An analysis of the manipulators’ behavior, briefly mentioned at the beginning of this 
section, directing towards game theory seems promising as well. (Even more so since we 
identified polynomial-time algorithms for a few variants of coalitional manipulation.) One 
very interesting question about coalitions is, for example, whether a particular coalition 
is stable. Intuitively, the utility for  every voter that is a part of  the manipulating coali-
tion should not be below the  utility the voter receives when voting sincerely. This is of 
course only a necessary condition to ensure the stability of a coalition. A more sophisti-
cated analysis of stability needs to consider game-theoretic aspects such as Nash or core 
stability [41].
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