
Vol.:(0123456789)

Autonomous Agents and Multi-Agent Systems (2021) 35:38
https://doi.org/10.1007/s10458-021-09507-9

1 3

On coalitional manipulation for multiwinner elections:
shortlisting

Robert Bredereck2  · Andrzej Kaczmarczyk1  · Rolf Niedermeier1 

Accepted: 12 May 2021 / Published online: 8 July 2021
© The Author(s) 2021

Abstract
Shortlisting of candidates—selecting a group of “best” candidates—is a special case of
multiwinner elections. We provide the first in-depth study of the computational complex-
ity of strategic voting for shortlisting based on the perhaps most basic voting rule in this
scenario, �-Bloc (every voter approves � candidates). In particular, we investigate the influ-
ence of several different group evaluation functions (e.g., egalitarian versus utilitarian) and
tie-breaking mechanisms modeling pessimistic and optimistic manipulators. Among other
things, we conclude that in an egalitarian setting strategic voting may indeed be computa-
tionally intractable regardless of the tie-breaking rule. Altogether, we provide a fairly com-
prehensive picture of the computational complexity landscape of this scenario.

Keywords  Computational social choice · Utility aggregation · Strategic voting ·
Parameterized computational complexity · Tie-breaking · SNTV · Bloc

1  Introduction

Assume that a university wants to select the two favorite pieces in classical style to be
played during the next graduation ceremony. The students were asked to submit their
favorite pieces. Then a jury consisting of seven members (three juniors and four seniors)

A preliminary version of this article appeared in the Proceedings of the Twenty-Sixth International
Joint Conference on Artificial Intelligence (IJCAI ’17) [12]. In this full version we included all proofs
and algorithms (together with our ILP formulations). Furthermore, we formalized the concept of
simulation among tie-breaking rules.

 *	 Robert Bredereck
	 robert.bredereck@hu-berlin.de

	 Andrzej Kaczmarczyk
	 a.kaczmarczyk@tu-berlin.de

	 Rolf Niedermeier
	 rolf.niedermeier@tu-berlin.de

1	 Faculty IV, Algorithmics and Computational Complexity, Technische Universität Berlin,
Ernst‑Reuter‑Platz 7, 10587 Berlin, Germany

2	 Institut für Informatik, Algorithm Engineering, Humboldt-Universität zu Berlin, Rudower Chausse
25, 12489 Berlin, Germany

http://orcid.org/0000-0002-6303-6276
http://orcid.org/0000-0003-1401-0157
http://orcid.org/0000-0003-1703-1236
http://crossmark.crossref.org/dialog/?doi=10.1007/s10458-021-09507-9&domain=pdf

	 Autonomous Agents and Multi-Agent Systems (2021) 35:38

1 3

38  Page 2 of 41

from the university staff selects from the six most frequently submitted pieces as follows:
Each jury member approves two pieces and the two winners are those obtaining most
of the approvals. The six options provided by the students are “Beethoven: Piano Con-
certo No. 5 (b1)”, “Beethoven: Symphony No. 6 (b2)”, “Mozart: Clarinet Concerto (m1)”,
“Mozart: Jeunehomme Piano Concerto (m2)”, “Uematsu: Final Fantasy (o1)”, and “Badelt:
Pirates of the Caribbean (o2).” The three junior jury members are excited about recent
audio-visual presentation arts (both interactive and passive) and approve o1 and o2 . Two of
the senior jury members are Mozart enthusiasts, and the other two senior jury members are
Beethoven enthusiasts. Hence, when voting truthfully, two of them would approve the two
Mozart pieces and the other two would approve the two Beethoven pieces. The winners
of the selection process would be o1 and o2 , both receiving three approvals whereas every
other piece receives only two approvals.

The senior jury members meet every Friday evening and discuss important academic
issues which include the graduation ceremony music selection processes, why “movie
background noise” recently counts as classical music,1 and the influence of video games on
the ability of making important decisions. During such a meeting they agreed that a gradu-
ation ceremony should always be accompanied by pieces of traditional, first-class compos-
ers. Thus, finally all four senior jury members decide to approve b1 and m1 so these two
pieces are played during the graduation ceremony.

Already this toy example above (which will be the basis of our running example
throughout the paper) illustrates important aspects of strategic voting in multiwinner elec-
tions. In case of coalitional manipulation for single-winner elections (where a coalition of
voters casts untruthful votes in order to influence the outcome of an election; a topic which
has been intensively studied in the literature [9, 16]) one can always assume that a coali-
tion of manipulators agrees on trying to make a distinguished alternative win the election.
In case of multiwinner elections, however, already determining concrete possible goals of
a coalition seems to be a non-trivial task: There may be exponentially many different out-
comes which can be reached through strategic votes of the coalition members and each
member could have its individual evaluation of these outcomes.

Multiwinner voting rules come up very naturally whenever one has to select from a
large set of candidates a smaller set of “the best” candidates. Surprisingly, although at least
as practically relevant as single-winner voting rules, the multiwinner literature is much less
developed than the single-winner literature. In recent years (see a survey of Faliszewski
et al. [26]), however, research into multiwinner voting rules, their properties, and algorith-
mic complexity grew significantly [1–5, 7, 10, 23, 25, 27, 33, 38, 42, 44, 45]. When select-
ing a group of winning candidates, various criteria can be interesting; namely, proportional
representation, diversity, or excellence (see Elkind et al. [23]). We focus on the last sce-
nario, where the goal is to select the best (say highest-scoring) group of candidates.

Aiming at excellence comes very naturally in the context of shortlisting, where the
objective is a short list of candidates selected from an initial, much larger list of candidates.
For instance, a human resource department wanting to fill a vacancy would select, from
all job candidates, a short list of prospective applicants who should be further assessed
to find the best fitting applicant. This example neatly illustrates the universal purpose of
shortlisting, that is, saving effort at the same time increasing the quality of evaluating suit-
able candidates. Indeed, human resource departments will either waste a lot of time and

1  http://​www.​class​icfm.​com/​radio/​hall-​of-​fame/.

http://www.classicfm.com/radio/hall-of-fame/

Autonomous Agents and Multi-Agent Systems (2021) 35:38	

1 3

Page 3 of 41  38

effort interviewing every applicant in detail or they will significantly decrease the quality
of interviewing to speed up the process unless they apply shortlisting beforehand.

A standard way of candidate selection in the context of shortlisting is to use scoring-
based voting rules. We focus on the two most natural ones: SNTV (single non-transferable
vote—each voter gives one point to one candidate) and �-Bloc (each voter gives one point
to each of � different candidates, so SNTV is the same as 1-Bloc).2 Obviously, for such vot-
ing rules it is trivial to determine the score of each individual candidate.

The main goal of our work is to model and understand coalitional manipulation in a
computational sense—that is, to introduce a formal description of how a group of manipu-
lators can influence the election outcome by casting strategic votes and whether it is possi-
ble to find an effective strategy for the manipulators to change the outcome in some desired
way. We find studying coalitional manipulability from the computational complexity point
of view relevant for two main reasons. First, in natural way we complement well-known
work on manipulation for single-winner rules initiated by Bartholdi III et al. [8], coalitional
manipulation for single-winner rules initiated by Conitzer et al. [17], and (non-coalitional)
manipulation for multiwinner rules initiated by Meir et al. [38]. Second, we provide effi-
cient algorithms that allow for experimental study of coalitional manipulation that might
be interesting both for verifying how likely is or what is an impact of coalitional manipula-
tion in practice (analogously to studies for the single-winner case [15, 19, 24, 36, 47]) and
for interdisciplinary study on human’s behavior when manipulating (like the one recently
conducted for multiwinner elections by Scheuerman et al. [43]).

In coalitional manipulation scenarios, given full knowledge about other voters’ prefer-
ences, one has a set of manipulative voters who want to influence the election outcome in
a favorable way by casting their votes strategically. To come up with a useful framework
for coalitional manipulation for multiwinner elections, we first have to identify the exact
mathematical model and questions to be asked. A couple of straightforward extensions of
coalitional manipulation for single-winner elections or (non-coalitional) manipulation for
multiwinner elections do not fit. Extending the single-winner variant directly, one would
probably assume that the coalition agrees on making a distinguished candidate part of the
winners or that the coalition agrees on making a distinguished candidate group part of
the winners. The former is unrealistic because in multiwinner settings one typically cares
about more than just one candidate—especially in shortlisting it is natural that one wants
rather some group of “similarly good” candidates to be winning instead of only one repre-
sentative of such a group. The latter, that is, agreeing on a distinguished candidate group to
be part of the winners is also problematic since there may be exponentially many “equally
good” candidate groups for the coalition.3 Notably, this was not a problem in the single-
winner case; there, one can test for a successful manipulation towards each possible candi-
date avoiding an exponential increase of the running time (compared to the running time of
such a test for a single candidate).

We address the aforementioned issue of modeling coalitional manipulation for mul-
tiwinner election by extending a single-manipulator model for multiwinner rules of Meir

2  Although, in general, �-Bloc does not satisfy committee monotonicity which is considered as a neces-
sary condition for shortlisting [26], this rule seems quite frequent in practice—for example The Board of
Research Excellence in Poland was elected using a variant of �-Bloc [39].
3  Indeed, assume a coalition has x = 20 favorite candidates that the coalition members equally prefer to be
winning but the voting rule will select at most k = 10 of them. This means, when manipulating the election

the coalition may support only one out of
(

x

k

)

= 184756 possible candidate groups.

	 Autonomous Agents and Multi-Agent Systems (2021) 35:38

1 3

38  Page 4 of 41

et al. [38]. In their work, the manipulator specifies the utility of each candidate and the util-
ity for a candidate group is obtained by adding up the utilities of each group member. We
build on their idea and let each manipulator report the utility of each candidate. However,
aggregating utilities for a coalition of manipulators (in other words, computing a collec-
tive utility of manipulators) becomes conceptually nontrivial—especially for a coalition of
manipulators who have diverse utilities for single candidates but still have strong incentives
to work together (e.g., as we have seen in our introductory example).

In fact, in our paper we only consider coalitions that are fixed, that is, irrespectively of
how different the opinions of manipulators are, none of them leaves the coalition. For some
situations and applications, this assumption might look too restrictive and unrealistic. In
many situations, however, we believe there are good reasons for making this assumption.
First, changing already existing coalitions in the real world usually requires a significant
overhead (e.g., formal agreements and negotiations that cost both money and time) which
makes such a change rather a last, not a first, resort. This holds true especially if a coali-
tion is aimed at long-term benefits as, for example, strategic cooperations among firms or
governments. Second, there are real-world cases where coalitions are forced, for example,
in hierarchical administrative divisions (and their local governments) in countries. Third,
computing a best possible manipulation for a given coalition is an important step in decid-
ing whether it might be useful to actually form such a coalition in possible future. To wrap
up, instead of focusing on coalitions dynamics (which is important work but not part of this
paper), we rather concentrate on an analysis of a strength of, intuitively speaking, potential,
fixed, or forced coalitions.

Our Contributions. We devise a formal description of coalitional manipulation in mul-
tiwinner elections arriving at a new, nontrivial model capturing two types of manipulators’
attitudes and a few natural ways of utility aggregation. To this end, in our model, we dis-
tinguish between optimistic and pessimistic manipulators and we formalize aggregation of
utilities in a utilitarian and an egalitarian way.

Using our model, we analyze the computational complexity of finding a successful
manipulation for a coalition of voters, assuming elections under rules from the family of �
-Bloc voting rules. We show that, even for these fairly simple rules, the computational
complexity of coalitional manipulation is diverse. In particular, we observe that finding a
manipulation maximizing the utility of a worst-off manipulator (egalitarian aggregation)
is NP-hard (regardless of the manipulators’ attitude). This result stands in sharp contrast
to the polynomial-time algorithms that we give for finding a manipulation maximizing the
sum of manipulators’ utilities (utilitarian aggregation). Additionally, we show how to cir-
cumvent the cumbersome NP-hardness for the egalitarian aggregation providing an (FPT)
algorithm that is efficient for scenarios with few manipulators and few different values of
utility that manipulators assign to agents. We survey all our computational complexity
results in Table 1 (Sect. 6).

Related Work. To the best of our knowledge, there is no previous work on coalitional
manipulation in the context of multiwinner elections. We refer to recent textbooks for an
overview of the huge literature on single-winner (coalitional) manipulation [9, 16]. Most
relevant to our work, Lin [35] showed that coalitional manipulation in single-winner elec-
tions under �-Approval is solvable in linear time by a greedy algorithm. Meir et al. [38]
introduced (non-coalitional) manipulation for multiwinner elections. While pinpointing
manipulation for several voting rules as NP-hard, they showed that manipulation remains
polynomial-time solvable for Bloc (which can be interpreted as a multiwinner equivalent
of 1-Approval). Obraztsova et al. [42] extended the latter result for different tie-breaking
strategies and identified further tractable special cases of multiwinner scoring rules but

Autonomous Agents and Multi-Agent Systems (2021) 35:38	

1 3

Page 5 of 41  38

conjectured manipulation to be hard in general for (other) scoring rules. Summarizing,
Bloc is simple but comparably well-studied, and hence we selected it as a showcase for our
study of the presumably computationally harder coalitional manipulation.

As mentioned above, our model assumes an existing fixed coalition of manipulators.
There is a significant amount of research on coalition dynamics and coalition forming in
context of cooperative games. We refer to recent text books for an overview on this rich
research area [22, 32]. Notably, our model is relevant for situations after some dynamic
coalition forming process lead to a fixed coalition as well as during a coalition forming
process when a group of agents wants to compute their potential utility from working
together. Our aggregation models may be used for transferable utilities (utilitarian aggrega-
tion) as well as non-transferable utilities (egalitarian aggregation).

Another closely related model is the NP-hard multiwinner voting rule Minimax
Approval Voting [13] which selects a group of candidates that maximizes the minimum
satisfaction over all voters. This rule almost resembles the tie-breaking issue of our model
for the egalitarian case and 0/1 utility values only. Each voter in a Minimax Approval Vot-
ing election can, however, approve an arbitrary number of candidates as opposed to the �
-Bloc rule that we consider, where each voter approves exactly � candidates.

Organization. Section 2 introduces basic notation and formal concepts. In Sect. 3,
we develop our model for coalitional manipulation in multiwinner elections. Its variants
respect different ways of evaluating candidate groups (utilitarian vs. egalitarian) and two
kinds of manipulators behavior (optimistic vs. pessimistic). In Sect. 4, we present algo-
rithms and complexity results for computing the output of several tie-breaking rules that
allow to model optimistic and pessimistic manipulators. In Sect. 5, we formally define the
coalitional manipulation problem and explore its computational complexity using �-Bloc
as a showcase. We refer to our conclusion and Table 1 (Sect. 6) for a detailed overview of
our findings.

2 � Preliminaries

For a positive integer n, let [n] ∶= {1, 2,… , n} . We use the toolbox of parameterized
complexity [18, 21, 29, 40] to analyze the computational complexity of our problems in
a fine-grained way. To this end, we always identify a parameter � that is typically a posi-
tive integer. We call a problem parameterized by � fixed-parameter tractable (in FPT ) if
it is solvable in f (�) ⋅ |I|O(1) time, where |I| is the size of a given instance encoding, � is
the value of the parameter, and f is an arbitrary computable (typically super-polynomial)
function. To preclude fixed-parameter tractability, we use an established complexity hier-
archy of classes of parameterized problems, FPT ⊆ W[1] ⊆ W[2] ⊆ ⋯ ⊆ XP . It is widely
believed that all inclusions are proper. The notions of hardness for parameterized classes
are defined through parameterized reductions similar to classical polynomial-time many-
one reductions—in this work, it suffices to ensure that the value of the parameter in the
problem we reduce to depends only on the value of the parameter of the problem we reduce
from. Occasionally, we use a combined parameter �� + ��� which is a more explicit way of
expressing a parameter � = �� + ���.

An election (C, V) consists of a set C of m candidates and a multiset V of n votes.
Votes are linear orders over C—for example, for C = {c1, c2, c3} we write c1 ≻v c2 ≻v c3
to express that candidate c1 is the most preferred and candidate c3 is the least preferred
according to vote v. We write ≻ if the corresponding vote is clear from the context.

	 Autonomous Agents and Multi-Agent Systems (2021) 35:38

1 3

38  Page 6 of 41

A multiwinner voting rule4 is a function that, given an election (C, V) and an integer
k ∈ [|C|] , outputs a family of co-winning size-k subsets of C representing the co-win-
ning k-excellence-groups. We decided to use the term k-excellence-group, abbreviated
to k-egroup, following Debord [20].5 Thus we emphasize our focus on shortlisting and
bring our terminology closer to shortlisting (real-life) applications where the word “com-
mittee” traditionally rather refers to voters and not to candidates. For the sake of brevity,
we use egroup if the size of an excellence-group is either not relevant or clear from the
context.

We consider scoring rules—multiwinner voting rules that assign points to candidates
based on their positions in the votes. By score (c) , we denote the total number of points that
candidate c obtains, and we use score V � (c) when restricting the election to a subset V ′ ⊂ V
of voters. A (multiwinner) scoring rule selects a family X of co-winning k-egroups with
the maximum total sum of scores. It holds that X ∈ X if and only if for every candidate c
in X and every candidate c′ outside of X′ it is true that score (c) ≥ score (c�) . We focus on
the family of �-Bloc multiwinner voting rules, that is a family of scoring rules that assign,
for each vote, one point to each of the top � < |C| candidates.6

Example 1  Referring back to our introductory example, we have a set
C = {b1, b2,m1,m2, o1, o2} of candidates and a set V = {v1

y
, v2

y
, v3

y
, v1

b
, v2

b
, v1

m
, v2

m
} of voters.

The voters v1
y
 , v2

y
 , and v3

y
 represent the three junior jury members, whereas v1

b
 , v2

b
 and v1

m

, v2
m

 represent, respectively, the Beethoven and Mozart enthusiasts among the senior jury
members. In the example, we described a way of manipulating the election by the senior
jury members which leads to selecting two traditional classical music pieces. There are
several ways to illustrate this manipulation using our model. Below we present one of the
possible sets of casted votes that represents the manipulated election:

Following the introductory example, we are choosing an egroup of size k = 2 . Using the
Bloc multiwinner voting rules (which coincides with our introductory example), the win-
ning 2-egroup consist of candidates b1 and m1 . However, under the SNTV voting rule the
situation would change, and the winners would be o1 and b1 . SNTV and Bloc alike output a
single winning egroup in this example, and thus tie-breaking is ineffective.

To select a single k-egroup from the set of co-winning k-egroups one has to consider
tie-breaking rules. A multiwinner tie-breaking rule is a mapping that, given an election and
a family of co-winning k-egroups, outputs a single k-egroup. Among them, there is a set
of natural rules that is of particular interest in order to model the behavior of manipulative

v1
y
, v2

y
, v3

y
∶ o1 ≻ o2 ≻ b1 ≻ b2 ≻m1 ≻m2,

v1
b
, v2

b
, v1

m
, v2

m
∶ b1 ≻m1 ≻ b2 ≻m2 ≻ o1 ≻ o2.

6  The case where � coincides with the size k of the egroup is typically referred to as Bloc; 1-Bloc cor-
responds to SNTV [38]. The case where 1 < � < k is also referred to as Limited Vote (or Limited Voting).

4  One may argue that we should rather use the name multiwinner voting correspondence (instead of mul-
tiwinner voting rule) because the function returns a set of tied committees instead of a single committee
(see, for example, the discussion on ties by Obraztsova et al. [42]; a textbook chapter on elections [9]; or a
work by Barberà et al. [6], where voters instead of ordering the candidates are assumed to order all subsets
of candidates of a given size). However, the phrasing we used is now well-established [11, 26] and without
doubt most frequently used in the literature.
5  We modified his term “elite” as we feel that it might carry negative connotations.

Autonomous Agents and Multi-Agent Systems (2021) 35:38	

1 3

Page 7 of 41  38

voters. Indeed, in addition to lexicographic and randomized tie-breaking, both pessimistic
and optimistic tie-breaking rules have already been used to model the manipulator’s behav-
ior in case of a single manipulator [38, 42]. To model optimistic and pessimistic manipu-
lators in a meaningful manner,7 we use the model introduced by Obraztsova et al. [42] in
which a manipulative voter v is described not only by the preference order ≻v of the can-
didates but also by a utility function u∶ C → ℕ . To cover this in the tie-breaking process,
coalition-specific tie-breaking rules get—in addition to the original election, the manipula-
tors’ votes, and the co-winning excellence-groups—the manipulators’ utility functions in
the input. The formal implementations of these rules and their properties are discussed in
Sect. 3.2.

3 � Model for coalitional manipulation

In this section, we formally define and explain our model and the respective variants, which
we also motivate with short real-world examples. To this end, we discuss how we evaluate
a k-egroup in terms of utility for a coalition of manipulators and introduce tie-breaking
rules that model optimistic or pessimistic viewpoints of the manipulators.

3.1 � Evaluating k‑egroups

As already discussed in the introduction, one should not extend the model of coalitional
manipulation for single-winner elections to multiwinner elections in the simplest way (e.g.,
by assuming that the manipulators agree on some distinguished candidate or on some dis-
tinguished egroup). Instead, we follow Meir et al. [38] and assume that we are given a util-
ity function over the candidates for each manipulator and a utility level which, if achieved,
indicates a successful manipulation.

Considering a collection of such utility functions there are several ways, each coming
with distinct features, of computing the utility of an egroup. In the paper, we study the fol-
lowing three variants: utilitarian, egalitarian, and candidate-wise egalitarian.

In the utilitarian variant (considered by Meir et al. [38]) the utility of an egroup is the
sum of utility values assigned by each manipulator to every candidate in the egroup. This is
perhaps the most intuitive way of evaluating the utility of an egroup. Although it does not
provide any guarantee on a single manipulator’s utility after a manipulation (it might even
happen that a single manipulator is significantly worse off compared to voting sincerely;
see Example 2) the utilitarian variant is justified if the manipulators are able to “inter-
nally” compensate such loses, for example, by paying money to each other. For a real-
world example, imagine an international company with branches (voters) scattered around
the world considering actions to be taken (candidates) in order to reduce its carbon foot-
print. Seeking the most efficient solution, the company surveys the branches for pointing

7  We cannot simply use ordinal preferences: Obraztsova et al. [42] observed that already in case of a single
manipulator one cannot simply set the fixed lexicographic order of the manipulators’ preferences (resp. the
reverse of it) over candidates to model optimistic (resp. pessimistic) tie-breaking. For example, it is a strong
restriction to assume that a manipulator would always prefer its first choice together with its fourth choice
towards its second choice together with its third choice. It might be that only its first choice is really accept-
able (in which case the assumption is reasonable) or that the first three choices are comparably good but the
fourth choice is absolutely unacceptable (in which case the assumption is wrong).

	 Autonomous Agents and Multi-Agent Systems (2021) 35:38

1 3

38  Page 8 of 41

the actions that reduce the footprint the most (utilities). A coalition of strategic voters can
now be formed by all branches within a country that subsidizes companies that reduce the
thier emission. Moreover, it is understandable that the office branches, whose footprint is
rather small and thus so is the possible reduction, will rather support the actions that help
the factory branches to reduce the footprint. To compensate, the coalition might decide to
distribute more money from the country’s benefit to the office branches.

Example 2  Consider the election E = (C,V) where C = {b1, b2,m1,m2, o1, o2} is a set
of candidates and V = {v1, v2, v3} is the following multiset of three votes:

Additionally, consider two manipulators, u1 and u2 , that report utilities to the candidates as
depicted in the table below.

u(⋅) b1 b2 m1 m2 o1 o2

u1 10 5 4 0 0 0
u2 1 2 5 7 0 0

Let us analyze the winning 2-egroup under the SNTV voting rule. Observe that if the
manipulators vote sincerely, then together they give one point to b1 and one to m2 (one
point from each manipulator). Combining the manipulators’ votes with the non-manipula-
tive ones, the winning 2-egroup consists of candidates o1 and m2 that both have score two;
no other candidate has greater or equal score, so tie-breaking is unnecessary. The value of
such a group is equal to seven according to the utilitarian evaluation variant. Manipulator
u2 ’s utility is seven. However, both manipulators can do better by giving their points to can-
didate b1 . Then, the winners are candidates o1 and b1 , giving the total utility of 11 (accord-
ing to the utilitarian variant). Observe that in spite of growth of the total utility, the utility
value gained by u2 , which is one, is lower than in the case of sincere voting.

The egalitarian variant comes in handy, for the scenarios where it is essential to guar-
antee a certain level of utility for every manipulator. Specifically, the utility of an egroup
is the utility of a manipulator whose sum of utilities of candidates from the egroup is the
smallest; thus, the egalitarian variant aims at maximizing this number. For a real-world
example, imagine a parliament (voters) deciding about possible steps to reduce particulate
matter (candidates). Seeking a way to reduce particulate matter below a certain threshold,
a coalition of representatives from districts currently not meeting the threshold decides to
vote strategically. Naturally, particulate matter reduction (utilities) are differently affected
by different steps in the respective districts. The goal of the coalition is that even the worst
district is below the threshold, which corresponds to egalitarian aggregation.

The candidate-wise egalitarian variant models again scenarios where, as in the util-
itarian variant, the overall utilities from members of an egroup are summed up. The
utility of the respective candidates, however, is aggregated in a pessimistic way, that
is, assuming the lowest utility assigned by any member of the coalition is taken into
the sum. For a real-world example, imagine a parliament (voters) deciding on different
actions (candidates) to support the economy after a crisis. Representatives of the same

v1, v2 ∶ o1 ≻ o2 ≻ m1 ≻ m2 ≻ b1 ≻ b2,

v3 ∶ m2 ≻ m1 ≻ b2 ≻ b1 ≻ o1 ≻ o2.

Autonomous Agents and Multi-Agent Systems (2021) 35:38	

1 3

Page 9 of 41  38

party naturally work together as a coalition of strategic voters. Each representative has
a different prediction from their own group of experts on the effectiveness of the actions
(utilities), which at the end will sum up. To be on the safe side, the coalition decides
to take the most pessimistic evaluation any expert group makes for a respective candi-
date into account for their decision, which corresponds to our candidate-wise egalitarian
aggregation variant.

We formalize the described variants of k-egroup evaluation (for r manipulators)
with Definition 1.

Definition 1  Given a set of candidates C, a k-egroup S ⊆ C , and a family of manipula-
tor utility functions U = {u1, u2,… , ur} where ui ∶ C → ℕ , we consider the following
functions:

–	 utilU(S) ∶=
∑

u∈U

∑

c∈S u(c),
–	 egalU(S) ∶= minu∈U

∑

c∈S u(c),
–	 candegalU(S) ∶=

∑

c∈S minu∈U u(c).

Intuitively, these functions determine the utility of a k-egroup S according to, respec-
tively, the utilitarian, the candidate-wise egalitarian, and the egalitarian variant of evaluat-
ing S by a group of r manipulators (identifying manipulators with their utility functions).
We omit subscript U when U is clear from the context. To illustrate Definition 1 we apply
it in Example 3.

Example 3  Consider our example set of candidates C = {b1, b2,m1,m2, o1, o2} and two
manipulators u1 , u2 whose utility functions over the candidates are depicted in the table
below.

u(⋅) b1 b2 m1 m2 o1 o2

u1 10 5 4 0 0 0
u2 1 2 5 7 0 0

Then, evaluating the utility of 2-egroup S = {b1,m1} applying the three different evalu-
ation variants gives:

–	 util (S) = (10 + 4) + (1 + 5) = 20,
–	 egal (S) = min{(10 + 4);(1 + 5)} = 6,
–	 candegal (S) = min{10, 1} +min{4, 5} = 5.

Analyzing Example 3, we observe that we can compute the utilitarian value of egroup S
by summing up the overall utilities that each candidate in S contributes to all manipulators;
for instance candidate b1 always contributes the utility of 11 = 10 + 1 to the manipulators,
independently of other candidates in the egroup. Following this observation, instead of
coping with a collection of utility function, we can “contract” all manipulator’s functions
to a single function. The new function assigns each candidate a utility value equal to the
sum of utilities that the contracted functions assign to this candidate. Analogously, we can
deal with the candidate-wise egalitarian variant by taking the minimum utility associated
to each candidate as the utility of this candidate in a new function. Thus, in both variants,

	 Autonomous Agents and Multi-Agent Systems (2021) 35:38

1 3

38  Page 10 of 41

we can consider a single utility function instead of a family of functions. The conclusion
from the above discussion is summarized in the following observation.

Observation 1  Without loss of generality, one can assume that there is a single utility
function over the candidates under the utilitarian or candidate-wise egalitarian evaluation.

Proof  Consider a multiset of manipulator utility functions U = {u1, u2,… , ur} and a k
-egroup S. For the utilitarian variant, create a new utility function u′ that assigns to
each candidate the sum of utilities given to this candidate by all manipulators; that
is, u�(c) ∶=

∑

i∈[r] ui(c) for all c ∈ C . Since for each candidate function u′ returns
the sum of utilities given to a candidate by all functions from family U, it holds that
utilU(S) =

∑

i∈[r]

∑

c∈S ui(c) =
∑

c∈S

∑

i∈[r] ui(c) =
∑

c∈S u
�
i
(c).

We follow a similar strategy proving Observation 1 for the candidate-wise egalitarian
evaluation. We introduce a function u′ defined as u�(c) ∶= minu∈U u(c) for each candi-
date c ∈ C . Naturally, candegal U(S) =

∑

c∈S minu∈U u(c) =
∑

c∈S u
�(c) . 	� ◻

3.2 � Breaking ties

In this work, we consider three different ways of breaking ties which are all established
already in the literature: lexicographic tie-breaking, optimistic tie-breaking and pessimistic
tie-breaking. Lexicographic tie-breaking is standard in the great majority of works about
single-winner or multiwinner voting. Even though the usual motivation for it is to obtain
simpler models, still there are situations in which lexicographic tie-breaking is what one
can encounter in reality (e.g., if ties are broken by age). Nevertheless, our main motiva-
tion to consider lexicographic tie-breaking is to have a simple baseline, also allowing us
easily compare our findings with other works. The two other tie-breaking mechanisms we
consider are optimistic and pessimistic tie-breaking. They are used to model the two most
natural types of manipulators: Optimistic manipulators would try to manipulate whenever
there is a chance that ties are broken so that they are better off compared to truthful voting.
Pessimistic manipulators will only manipulate when they are better off compared to truth-
ful voting no matter how ties will be broken.

Before formally defining our tie-breaking rules, we briefly discuss some necessary nota-
tion and central concepts. Consider an election (C, V), a size k for the egroup to be chosen,
and a scoring-based multiwinner voting rule R . We can partition the set of candidates C
into three sets C+ , P , and C− as follows: The set C+ contains the confirmed candidates, that
is, candidates that are in all co-winning k-egroups. The set P contains the pending candi-
dates, that is, candidates that are only in some co-winning k-egroups. The set C− contains
the rejected candidates, that is, candidates that are in no co-winning k-egroup. Observe
that |C+

| ≤ k , |C+ ∪ P| ≥ k , and that every candidate from P ∪ C− receives fewer points
than every candidate from C+ . Additionally, all candidates in P receive the same number
of points.

We define the following families of tie-breaking rules which are considered in this work.
In order to define optimistic and pessimistic rules, we assume that in addition to C+ , P , and
k, we are given a family of utility functions which are used to evaluate the k-egroups as dis-
cussed in Sect. 3.1. We call such a quadruple a tie-breaking perspective.

Lexicographic. F lex . A tie-breaking rule F belongs to F lex if and only if ties are
broken lexicographically with respect to some predefined order >F of the candidates

Autonomous Agents and Multi-Agent Systems (2021) 35:38	

1 3

Page 11 of 41  38

from C. That is, F selects all candidates from C+ and the top k − |C+
| candidates from P

with respect to >F .
Optimistic. F eval

opt
 , eval ∈ { util , egal , candegal } . A tie-breaking rule belongs to F eval

opt

if and only if it always selects some k-egroup S such that C+ ⊆ S ⊆ (C+ ∪ P) and there is
no other k-egroup S′ with C+ ⊆ S� ⊆ (C+ ∪ P) and eval (S�) > eval (S).

Pessimistic. F
eval
pess

 , eval ∈ { util , egal , candegal } . A tie-breaking rule belongs
to F eval

pess
 if and only if it always selects some k-egroup S such that C+ ⊆ S ⊆ (C+ ∪ P)

and there is no other k-egroup S′ with C+ ⊆ S� ⊆ (C+ ∪ P) and eval (S�) < eval (S).
We remark that the definitions above come in two, substantially different variants.

For each lexicographic tie-breaking rule, there is always exactly one egroup that will be
selected by the rule for a particular set of pending set candidates. However, it is not the
case for the families of pessimistic and optimistic families of rules. In fact, there might
be many possible egroups whose value, computed in terms of a respective evaluation
variant, is exactly the same. Such a feature seems to contradict the idea of a tie-breaking
rule that should not, by itself, introduce ties again. However, we argue that choosing
arbitrary equally-valued (“tied”) egroup is a proper way to circumvent this problem.
Indeed, according to a particular evaluation all egroups with the same value are indistin-
guishable from each other.

3.3 � Limits of lexicographic tie‑breaking

From the above discussion, we conclude that lexicographic tie-breaking is straightfor-
ward in the case of scoring-based multiwinner voting rules. Basically any subset of
the desired cardinality from the set of pending candidates can be chosen; in particular,
the best pending candidates with respect to the given order can be chosen. Although this
sounds naturally at a glance, for many other prominent multiwinner voting rules, such as
Chamberlin-Courant [14] or STV [46], not every subset of the desired cardinality from
the set of pending candidates can be chosen.

It remains to be clarified whether one can find a reasonable order of the pending
candidates in order to model optimistic or pessimistic tie-breaking rules in a sim-
ple way. We show that this is possible for every F eval

bhav
 , with every combination of

eval ∈ { util , candegal } and bhav ∈ {opt, pess} , using the fact that in these cases we can
safely assume that there is a single utility function (see Observation 1). On the contrary,
there is a counterexample for eval = egal and bhav ∈ {opt, pess} . On the way to prove
these claims we need to formally define what it means that one family of tie-breaking
rules can be used to simulate another family of tie-breaking rules. To this end, we intro-
duce the concept of equivalence between tie-breaking perspectives.

Definition 2  Let { ℂ , ℙ , 𝕂 , 𝕌 } be a set of attribute tags (treated exactly as usual
characters), C be a fixed set of candidates, X = (C+,P, k,U) and X̂ = (Ĉ+, P̂, k̂, Û) be tie-
breaking perspectives over C, where C+ ⊂ C and P ⊆ C . Then, X and X′ are:

–	 ℂ -equivalent if and only if C+ = Ĉ+,
–	 ℙ -equivalent if and only if P = P̂,
–	 � -equivalent if and only if k = k̂ , and
–	 � -equivalent if and only if U = Û.

	 Autonomous Agents and Multi-Agent Systems (2021) 35:38

1 3

38  Page 12 of 41

Additionally, for a subset P of symbols { ℂ , ℙ , 𝕂 , 𝕌 } , we say that X and X′ are P
-equivalent if and only if, for each symbol � ∈ P , they are �-equivalent.

One can easily verify that the equivalence notions from Definition 2 indeed meet the
requirements of equivalence relations; thus, we can speak of equivalence classes of tie-
breaking perspectives (with respect to a given equivalence notion).

Definition 3  For a nonempty set { ℂ , ℙ , 𝕂 , 𝕌 } of attribute tags, and for two tie-
breaking families F and F′ , we say that F can P-simulate F′ if, for every nonempty set
of candidates C and for every tie-breaking perspective X over C, there exists a rule F ∈ F
such that for each tie-breaking perspective in the equivalence class of X according to P
-equivalence there exists a rule F� ∈ F

� such that F and F′ yield the same output for this
perspective. We call rule F an P-simulator.

At first glance, Definition 3 might seem overcomplicated. However, it is tailored to
grasp different degrees of simulation possibilities. On the one hand, one can always find
a lexicographic order and use it for breaking ties if all of the following are known: con-
firmed candidates, pending candidates, utility functions, and the size of an egroup; for-
mally, the family of lexicographic tie-breaking rules { ℂ , ℙ , 𝕂 , 𝕌 }-simulates every
other family. Thus, one needs some flexibility in the definition of simulation for it to be
non-trivial. On the other hand, it is somewhat clear that without fixing the utility func-
tions, one cannot simulate optimistic or pessimistic tie-breaking rules. In other words,
we have the following observation.

Observation 2  The family of lexicographic tie-breaking rules does not
{ ℂ , ℙ , 𝕂 }-simulate F eval

bhav
.

Proof  Suppose k = 1 , C+ = � , and P = {b1, b2} ; that is, we are going to select either b1 or
b2 who are tied. Let us fix a family U = {u1} of utility functions such that u1(b1) = 1 and
u1(b2) = 0 . For the family U of utility functions clearly F eval

opt
 selects candidate b1 . Now,

consider a family U� = {u�
1
} of utility functions where u′

1
 assigns utility one to candidate b2

and zero otherwise. For this family, F eval
opt

 selects candidate b2 . This means that we cannot
find a { ℂ , ℙ , 𝕂 }-simulator F from family F lex of tie-breaking rules because in the first
case F would have to choose b1 and in the second case b2 would have to be chosen. This
is impossible using a single preference order over {b1, b2} . Similar families of functions
(obtained by exchanging each one with zero and vice versa) yield a proof for F eval

pess
 as well. 	

� ◻

Next, we show that for some cases it is sufficient to fix just the utility functions in
order to simulate optimistic or pessimistic tie-breaking rules (see Proposition 1). For
other cases, however, one has to fix all of the following: confirmed candidates, pending
candidates, utility functions, and the size of an egroup (see Proposition 2).

Proposition 1  For every eval ∈ { util , candegal } and bhav ∈ {opt, pess} , the family F lex
can { � }-simulate F eval

bhav
 ; additionally, for m candidates and r utility functions, a { � }

-simulator F ∈ F lex can be found in O(m ⋅ (r + logm)) time.

Proof  Recall from Observation 1 that if eval ∈ { util , candegal } , then there exists a single
utility function u′ that is equivalent to the given family of utility functions (with respect to

Autonomous Agents and Multi-Agent Systems (2021) 35:38	

1 3

Page 13 of 41  38

the evaluation of egroup utilities). Hence, we compute such a function u′ in O(m ⋅ r) time
precisely following its definition as in the proof of Observation 1. We say an order >F
of the candidates is consistent with some utility function u if c>F c′ implies u(c) ≥ u(c�)
for optimistic tie-breaking and c>F c′ implies u(c) ≤ u(c�) for pessimistic tie-breaking.
Any lexicographic tie-breaking rule defined by an order >F that is consistent with the util-
ity function u′ simulates F eval

bhav
 . We compute a consistent order by sorting the candidates

according to u′ in O(m ⋅ logm) time. 	� ◻

Proposition 1 describes a strong feature of optimistic utilitarian and candidate-wise
egalitarian tie-breaking and their pessimistic variants. Intuitively, the proposition says that
for these tie-breaking mechanisms one can compute a respective linear order of candidates.
Then one can forget all the details of the initial tie-breaking mechanism and use the order
to determine winners. The order can be computed even without knowing the details of an
election. Unfortunately, the simulation of pessimistic and optimistic egalitarian tie-break-
ing turns out to be more complicated.

Proposition 2  For each nonempty set P ⊆ { ℂ , ℙ , 𝕂 , 𝕌 } of size at most three,
the lexicographic tie-breaking family of rules does not P-simulate F egal

bhav
 assuming

bhav ∈ {opt, pess}.

Proof  From Observation 2 we already know that the family of lexicographic tie-breaking
rules cannot { ℂ , ℙ , 𝕂 }-simulate the family of egalitarian pessimistic tie-breaking
rules or the family of egalitarian optimistic tie-breaking rules.

Next, we build one counterexample for each of the remaining size-three sub-
sets of { ℂ , ℙ , 𝕂 , 𝕌 } to show our theorem. To this end, let us fix a set of candi-
dates C = {b1, b2,m1,m2, o1, o2} (compatible with our running example) and a fam-
ily U = {u1, u2} of utility functions as depicted in the table below.

u(⋅) b1 b2 m1 m2 o1 o2

u1 10 5 4 0 0 0
u2 1 2 5 7 0 0

First, we prove that the family F lex cannot { ℂ , ℙ , 𝕌 }-simulate F egal

bhav
 for any

bhav ∈ {opt, pess} . Let us fix C+ = � , P = C⧵{o1, o2} . We consider the optimistic vari-
ant of egalitarian tie-breaking for k = 1 , so we are searching for a 1-egroup. Looking at the
values of U, we see that candidate m1 gives the best possible egalitarian evaluation value
which is four. This means that a { ℂ , ℙ , 𝕌 }-simulator F ∈ F lex has to use an order
where m1 precedes both b1 and m2 . However, it turns out that if we set k = 2 , then the best
2-egroup consists exactly of candidates b1 and m2 . This leads to a contradiction because
now candidates b1 and m2 should precede m1 in F’s lexicographic order. Consequently, fam-
ily F lex does not { ℂ , ℙ , 𝕌 }-simulate F egal

opt  . Using the same values of utility functions
and the same sequence of the values of k we get a proof for the pessimistic variant of egali-
tarian evaluation.

Second, we prove that the family F lex cannot { ℙ , 𝕂 , 𝕌 }-simulate F egal

bhav
 for

bhav ∈ {opt, pess} . This time, we fix P = C⧵{o1, o2} , k = 2 . We construct the first case
by setting C+ = {o1} . Using the fact that in both functions candidate o1 has utility zero, we
choose exactly the same candidate as in the proof of { ℂ , ℙ , 𝕌 }-simulation for the case
k = 1 ; that is, for the optimistic variant, the winning 2-egroup is m1 and o1 . Consequently,

	 Autonomous Agents and Multi-Agent Systems (2021) 35:38

1 3

38  Page 14 of 41

m1 precedes b1 and m2 in the potential {P, k,U}-simulator’s lexicographic order. Towards
a contradiction, we set C+ = � . The situation is exactly the same as in the proof of the
{ ℂ , ℙ , 𝕌 }-simulation case. Now, the winning 2-egroup consists of b1 and m2 which
ends the proof for the optimistic case. By almost the same argument, the result holds for
the pessimistic variant.

Finally, we prove that the family F lex cannot { ℂ , 𝕂 , 𝕌 }-simulate F egal

bhav
 for

bhav ∈ {opt, pess} . We fix C+ = � , k = 2 . For the first case we pick P = {b2,m1,m2} . The
best egalitarian evaluation happens for the 2-egroup consisting of b2 and m1 . This imposes
that, in the potential { ℂ , 𝕂 , 𝕌 }-simulator’s order, b2 and m1 precede the remaining
candidates (in particular, m1 precedes m2 ). However, for P = C the best 2-egroup changes
to that consisting of b1 and m2 which gives a contradiction ( m2 precedes m1 ). As in the pre-
vious cases, the same argument provides a proof for the pessimistic variant. 	� ◻

Proposition 2 implies that pessimistic and optimistic egalitarian tie-breaking cannot
be simulated without having full knowledge about an election. In terms of computational
complexity, however, finding winners for pessimistic egalitarian tie-breaking remains trac-
table whereas the same task for optimistic egalitarian tie-breaking is intractable. We devote
the next section to show this dichotomy as well as to establish computational hardness of
computing winners for the other introduced tie-breaking rules.

4 � Complexity of tie‑breaking

It is natural to ask whether the tie-breaking rules proposed in Sect. 3.2 are practical in
terms of their computational complexity. If not, then there is little hope for effective and
efficient coalitional manipulation because tie-breaking might be an inevitable subtask to
be solved by the manipulators. Indeed, manipulators might not be “powerful” enough to
secure victory of their desired egroup completely avoiding tie-breaking.

Clearly, we can perform every lexicographic tie-breaking rule that is defined through
some predefined order of the candidates in linear time. Hence, we focus on the rules that
model optimistic or pessimistic manipulators. To this end, we analyze the following com-
putational problem.

F
eval
bhav

 -Tie-Breaking ( F eval
bhav

 -TB)
 eval ∈ { util , egal , candegal } , bhav ∈ { opt , pess }

Input: A set of candidates C partitioned into a set P of pending candidates and a set C+ of
confirmed candidates, the size k of the excellence-group such that |C+

| < k < |C| , a
family of manipulator utility functions U = {u1, u2,… , ur} where ui ∶ C → ℕ , and a
non-negative, integral evaluation threshold q.

Question: Is there a size-k set S ⊆ C such that S is selected according to F eval
bhav

 , C+ ⊆ S , and
eval (S) ≥ q?

Naturally, we may assume that the number of candidates and the number of utility func-
tions are polynomially upper-bounded in the size of the input. However, both the evalua-
tion threshold and the utility function values are encoded in binary.

Note that an analogous problem has not been considered for single-winner elections.
The reason behind this is that, for single-winner elections, optimistic and pessimistic tie-
breaking rules can be easily simulated by lexicographic tie-breaking rules. To obtain them,

Autonomous Agents and Multi-Agent Systems (2021) 35:38	

1 3

Page 15 of 41  38

it is sufficient to order the candidates with respect to their value to manipulators, com-
puted separately for every candidate. However, one cannot simply apply this approach for
egroups, because there might be exponentially many different egroups to consider. Even if
this exponential blow-up were acceptable, it would still be unclear how to derive an order
of candidates from the computed values of egroups. Yet, using a different technique, we
can simulate tie-breaking in multiwinner elections with a lexicographic tie-breaking rule
for several variants of evaluation.

4.1 � Utilitarian and candidate‑wise egalitarian: tie‑breaking is easy

As a warm-up, we observe that tie-breaking can be applied and performed efficiently if the
k-egroups are evaluated according to the utilitarian or candidate-wise egalitarian variant.
The corresponding result follows almost directly from Proposition 1.

Corollary 1  Let m denote the number of candidates and r denote the number of
manipulators. Then one can solve F eval

bhav
 -Tie-Breaking in O(m ⋅ (r + logm)) time for

eval ∈ { util , candegal } , bhav ∈ {opt, pess}.

Proof  The algorithm works in two steps. First, compute a lexicographic tie-breaking
rule F lex that simulates F eval

bhav
 in O(m ⋅ (r + logm)) time as described in Proposition 1.

Second, apply tie-breaking rule F lex , and evaluate the resulting k-egroup in O(k ⋅ r) time.
The running time of applying a lexicographic tie-breaking rule is linear with respect to the
input length (see Sect. 3.3). 	� ◻

4.2 � Egalitarian: being optimistic is hard

In this subsection, we consider the optimistic and pessimistic tie-breaking rules when
applied for searching a k-egroup evaluated according to the egalitarian variant. First, we
show that applying and evaluating egalitarian tie-breaking is computationally easy for pes-
simistic manipulators but computationally intractable for optimistic manipulators even if
the size of the egroup is small. Being pessimistic, the main idea is to “guess” the manipu-
lator that is least satisfied and select the candidates appropriately. We show the computa-
tional worst-case hardness of the optimistic case via a reduction from the W[2]-complete
Set Cover problem parameterized by solution size [21].

Theorem 1  Let m denote the number of candidates, r denote the number of manipulators,
q denote the evaluation threshold, and k denote the size of an egroup. Then one can solve
F

egal
pess

 -Tie-Breaking in O(r ⋅ m logm) time, but F egal

opt -Tie-Breaking is NP-hard and W[2]

-hard when parameterized by k even if q = 1 and every manipulator only gives either utility
one or zero to each candidate.

Proof  For the pessimistic case, it is sufficient to “guess” the least satisfied manipulator x by
iterating through r possibilities. Then, select k − |C+

| pending candidates with the smallest
total utility for this manipulator in O(m logm) time. Finally, comparing the k-egroup with

	 Autonomous Agents and Multi-Agent Systems (2021) 35:38

1 3

38  Page 16 of 41

the worst minimum satisfaction over all manipulators to the given lower bound q on satis-
faction level solves the problem.

We prove the hardness for the optimistic case reducing from the W[2]-hard Set
Cover problem which, given a collection S = {S1, S2,… , Sm} of subsets of uni-
verse X = {x1, x2,… , xn} and an integer h,8 asks whether there exists a family S ⊆ S
of size at most h such that

⋃

S∈S S = X . Let us fix an instance I = (X,S, h) of Set
Cover. To construct an F egal

opt -Tie-Breaking instance, we introduce pending candidates
P = {c1, c2,… , cm} representing subsets in S and manipulators u1, u2,… , un representing
elements of the universe. Note that there are no confirmed and rejected candidates. Each
manipulator ui gives utility one to candidate cj if set Sj contains element xi and zero other-
wise. We set the excellence-group size k ∶= h and the threshold q to be 1.

Observe that if there is a size-k subset P′ ⊆ P such that mini∈[n]
∑

c�∈P� ui(c
�) ≥ 1 , then

there exists a family S� = {Sj ∶ cj ∈ P�}—consisting of the sets represented by candidates
in P′—such that each element of the universe belongs to the set

⋃

S∈S S . For the reverse
direction, assume there is a family S′ such that each element of the universe belongs to the
set

⋃

S∈S S . Then, consider the size-k subset P� = {cj ∶ Sj ∈ S
�} . Assume towards a con-

tradiction that there is an i ∈ [n] with
∑

c�∈P� ui(c
�) < 1 . Then, by construction of the utility

functions, it must hold that xi ∉
⋃

S∈S S —a contradiction. Thus, mini∈[n]
∑

c�∈P� ui(c
�) ≥ 1.

Since Set Cover is NP-hard and W[2]-hard with respect to parameter h, we obtain that
our problem is also NP-hard and W[2]-hard when parameterized by the size k of an excel-
lence-group. 	� ◻

Inspecting the W[2]-hardness proof of Theorem 1, we learn that a small egroup size
(alone) does not make F egal

opt -Tie-Breaking computationally tractable even for very sim-
ple utility functions. Next, using a parameterized reduction from the W[1]-complete Mul-
ticolored Clique problem [28], we show that there is still no hope for fixed-parameter
tractability (under standard assumptions) even for the combined parameter “number of
manipulators and egroup size”; intuitively, this parameter covers situations where few
manipulators are going to influence an election for a small egroup.

Theorem 2  Let k denote the size of an egroup and r denote the number of manipulators.
Then, parameterized by r + k , F egal

opt -Tie-Breaking is W[1]-hard.

Proof  We describe a parameterized reduction from the W[1]-hard Multicolored Clique
problem [28]. In this problem, given an undirected graph G = (V ,E) , a non-negative inte-
ger h, and a vertex coloring �∶ V → {1, 2,… , h} , we ask whether graph G admits a color-
ful h-clique, that is, a size-h vertex subset Q ⊆ V such that the vertices in Q are pairwise
adjacent and have pairwise distinct colors. Without loss of generality, we assume that the
number of vertices of each color is the same; to be referred to as y in the following. Let
(G,�) , G = (V ,E) , be a Multicolored Clique instance. Let V(i) = {vi

1
, vi

2
,… , vi

y
} denote

the set of vertices of color i ∈ [h] , and let E(i, j) = {e
i,j

1
, e

i,j

2
,… , e

i,j

|E(i,j)|
} , defined for i, j ∈ [h] ,

i < j , denote the set of edges that connect a vertex of color i to a vertex of color j. We

8  Note that we indeed reuse the variable names m and n as there will be a one-to-one correspondence
between subsets and candidates as well as between elements and voters so that the usual meaning of m
and n is preserved.

Autonomous Agents and Multi-Agent Systems (2021) 35:38	

1 3

Page 17 of 41  38

disregard possible edges between vertices of the same color as they cannot be part of any
multicolored clique anyway.

Candidates. We create one confirmed candidate c∗ and |V| + |E| pending candidates.
More precisely: for each � ∈ [y] , we create one vertex candidate ai

�
 for each ver-

tex vi
�
∈ V(i) , i ∈ [h] and for each i, j ∈ [h] such that i < j we create one edge candidate bi,jt

for each edge ei,jt ∈ E(i, j) , t ∈ [|E(i, j)|] . We set the size k of the egroup to h +
(

h

2

)

+ 1

and set the evaluation threshold q ∶= y + 1 . Next, we describe the manipulators and explain
the high-level idea of the construction.

Manipulators and main idea. Our construction will ensure that there is a k-egroup X

with c∗ ∈ X and egal (X) ≥ q if and only if X contains h vertex candidates and
(

h

2

)

 edge

candidates that encode a colorful h-clique. To this end, we introduce the following
manipulators.

1.	 For each color i ∈ [h] , there is a color manipulator �i ensuring that the k-egroup contains
a vertex candidate ai

zi
 corresponding to a vertex of color i. Herein, variable zi denotes

the id of the vertex candidate (resp. vertex) that is selected for color i.
2.	 For each i, j ∈ [h] such that i < j , there is one color pair manipulator �i,j ensuring that the

k-egroup contains an edge candidate bi,jzi,j corresponding to an edge connecting vertices
of colors i and j. Herein, variable zi,j denotes the id of the edge candidate (resp. edge)
that is selected for color pair {i, j} , i < j.

3.	 For each i, j ∈ [h] such that i ≠ j , there are two verification manipulators �i,j , �′i,j ensuring
that vertex vi

zi
 is incident to edge ei,jzi,j if i < j or incident to edge ej,izj,i otherwise.

It is easy to verify that if there exists a k-egroup in agreement with the description in the
previous three points, then this k-egroup must encode a colorful h-clique.

Utility functions. Let us now describe how we can guarantee the intended roles of the
manipulators introduced in points 1 to 3 above using utility functions.

1.	 Color manipulator �i , i ∈ [h] , has utility y for the confirmed candidate c∗ , utility one for
each candidate corresponding to a vertex of color i, and utility zero for the remaining
candidates.

2.	 Color pair manipulator �i,j , i, j ∈ [h] , i < j , has utility y for the confirmed candidate c∗ ,
utility one for each candidate corresponding to an edge connecting a vertices of colors
i and j, and utility zero for the remaining candidates.

3.	 Verification manipulator �i,j , i, j ∈ [h] , i ≠ j , has utility � for candidate ai
�
 , � ∈ [y] , util-

ity q − � for each candidate corresponding to an edge that connects vertex vi
�
 to a vertex

of color j, and utility zero for the remaining candidates.
4.	 Verification manipulator �′

i,j
 , i, j ∈ [h] , i ≠ j , has utility q − � for candidate ai

�
 , � ∈ [y] ,

utility � for each candidate corresponding to an edge that connects vertex vi
�
 , to a vertex

of color j, and utility zero for the remaining candidates.

Correctness. We argue that the graph G admits a colorful clique of size h if and only if
there is a k-egroup X with c∗ ∈ X and egal (X) ≥ q.

Suppose that there exists a colorful clique H of size h. Create the k-egroup X as follows.
Start with {c∗} and add every vertex candidate that corresponds to some vertex of H and
every edge candidate that corresponds to some edge connecting vertices of H. Each color

	 Autonomous Agents and Multi-Agent Systems (2021) 35:38

1 3

38  Page 18 of 41

manipulator and color pair manipulator receives total utility y + 1 , because H contains, by
definition, one vertex of each color and one edge connecting two vertices for each color
pair. It is easy to verify that the verification manipulator �i,j must receive utility � from a
vertex candidate and utility q − � from an edge candidate and that the verification manipu-
lator �′

i,j
 must receive utility q − � from a vertex candidate and utility � from an edge candi-

date. Thus, egal (X) = q = y + 1.
Suppose that there exists a k-egroup X ⊆ C such that egal (X) ≥ q . Since each color

manipulator cannot achieve utility y + 1 unless c∗ belongs to the winning k-egroup, it fol-
lows that c∗ ∈ X . Because each color manipulator �i receives total utility at least y + 1 , X
must contain some vertex candidate ai

zi
 corresponding to a vertex of color i for

some zi ∈ [y] . We say that X selects vertex vi
zi
 . Since each color pair manipulator �i,j

receives total utility at least y + 1 , X must contain some edge candidate bi,jzi,j corresponding
to an edge connecting a vertex of color i and a vertex of color j for some zi,j . We say that
X selects edge ei,jzi,j . We implicitly assumed that each color manipulator and color pair
manipulator contributes exactly one selected candidate to X. This assumption is true
because there are exactly k − 1 such manipulators and each needs to select at least one can-
didate; hence, X is exactly of the desired size. In order to show that the corresponding ver-
tices and edges encode a colorful h-clique, it remains to show that no selected edge is inci-
dent to a vertex that is not selected. Assume towards a contradiction that X selects an edge
e
i,j
zi,j

 and some vertex vi
zi
∉ e

i,j
zi,j

 . However, either verification manipulator �i,j or verification
manipulator �′

i,j
 receives the total utility at most q − 1 ; a contradiction. 	� ◻

Finally, devising an ILP formulation, we show that F egal

opt -Tie-Breaking becomes
fixed-parameter tractable when parameterized by the combined parameter “number of
manipulators and number of different utility values.” This parameter covers situations
with few manipulators that have simple utility functions; in particular, when few vot-
ers have 0/1 utility functions. The subsequent Theorem 3 shows that neither few utility
functions (Theorem 1) nor few manipulators (Theorem 2) make F egal

opt -TB fixed-param-
eter tractable, but only combining these two parameters allows us to deal with the prob-
lem in FPT time.

Theorem 3  Let u diff denote the number of different utility values and r denote the number
of manipulators. Then, parameterized by r + u diff , F egal

opt -Tie-Breaking is fixed-parameter
tractable.

Proof  We define the type of any candidate ci to be the size-r vector
t = (u1(ci), u2(ci),… , ur(ci)) . Let T = {t1, t2,… , t

|T |

} be the set of all possible types.
Naturally, the size of T is upper-bounded by ur

diff
 . We denote the set of candidates of

type ti ∈ T by Ti . Now, the ILP formulation of the problem using exactly |T | + 1 variables
reads as follows. For each type ti ∈ T  , we introduce an integer variable xi indicating the
number of candidates of type ti in an optimal k-egroup. We use variable s to represent the
minimal value of the total utility achieved by manipulators. We define the following ILP
with the goal to maximize s (indicating the utility gained by the least satisfied manipulator)
subject to:

(1)∀ti ∈ T∶ 0 ≤ xi ≤ |Ti|,

Autonomous Agents and Multi-Agent Systems (2021) 35:38	

1 3

Page 19 of 41  38

Constraint set (1) ensures that the solution is achievable with given candidates. Constraint
(2) guarantees a choice of an egroup of size k. The last set of constraints imposes that s
holds at most the minimal value of the total utility gained by manipulators. By a famous
result of Lenstra [34], this ILP formulation with the number of variables bounded by
ur
diff

+ 1 yields that F egal

opt -Tie-Breaking is fixed-parameter tractable when parameterized by
the combined parameter r + udiff . 	� ◻

5 � Complexity of coalitional manipulation

In the previous section, we have seen that breaking ties optimistically or pessimistically—
an essential subtask to be solved by the manipulators in general—can become computa-
tionally challenging; in most cases, however, this problem turned out to be computationally
easy. In this section, we move on to our full framework and analyze the computational
difficulty of voting strategically for a coalition of manipulators. To this end, we formal-
ize our central computational problem. Let R be a multiwinner voting rule and let F be a
multiwinner tie-breaking rule.

R-F-eval-Coalitional Manipulation ( R-F-eval-CM)
 eval ∈ { util , egal , candegal }

Input:t An election (C, V), an egroup size k < |C| , r manipulators represented by their utility
functions U = {u1, u2,… , ur} such that, for all i ∈ [r] , ui ∶ C → ℕ , and a non-negative,
integral evaluation threshold q.

Question: Is there a size-r multiset W of manipulative votes over C such that an k-egroup S ⊂ C that
wins the election (C,V ∪W) under R and F yields eval (S) ≥ q?

The R-F-eval-CM problem is defined very generally; namely, one can consider any
multiwinner voting rule R (in particular, any single-winner voting rule is a multiwinner
voting rule with k = 1 ). In our paper, however, we focus on �-Bloc; hence, from now on,
we narrow down our analysis of R-F-eval-CM to the �-Bloc-F-eval-CM problem.

In line with our intention to model optimistic and pessimistic attitudes of manipulators,
we require that the evaluation of an optimistic/pessimistic tie-breaking rule F is the same
as that of the manipulator’s. Indeed, only when this is the case the tie-breaking rule reflects
that the manipulator’s expect a certain (pessimistic or optimistic) outcome of an election in
case of a tie. More formally, for every eval ∈ { util , egal , candegal } , we focus on variants
of �-Bloc-F-eval-CM where F ∈ {F lex , F

eval
opt

 , F eval
pess

}.9 We always allow lexicographic

(2)
∑

ti∈T

xi = k,

(3)∀𝓁 ∈ [r]∶
∑

ti∈T

xi ⋅ ti[𝓁] ≥ s.

9  The excluded problem variants might become relevant for situations where a tie-breaking is performed by
a third party external to the manipulators. However, in such a case, the third party should have its own util-
ity function over the candidates, which is beyond our model.

	 Autonomous Agents and Multi-Agent Systems (2021) 35:38

1 3

38  Page 20 of 41

tie-breaking because it models cases where a tie-breaking rule is fixed, known to all voters
and, more importantly, irrelevant of manipulator utility functions.

On the way to show our results, we also use a restricted version of �-Bloc-F-eval-Coa-
litional Manipulation that we call �-Bloc-F-eval-Coalitional Manipulation . In this var-
iant, the input stays the same, but all manipulators cast exactly the same vote to achieve the
objective.

To increase readability, we decided to represent manipulators by their utility functions.
As a consequence, we frequently use, for example, u1 referring to the manipulator itself,
even if we do not care about the values of utility function u1 at the moment of usage. In the
paper, we also stick to the term “voters” meaning the set V of voters of an input election.
We never call manipulators “voters”; however, we speak about the manipulative votes they
cast.

As for the encoding of the input of R-F-eval-CM, we use a standard assumption;
namely, that the number of candidates, the number of voters, and the number of manipula-
tors are polynomially upper-bounded in the size of the input. Analogously to F eval

bhav
 -Tie-

Breaking, both the evaluation threshold and the utility function values are encoded in
binary.

In the subsequent sections, we first focus on the (computationally simpler) utilitarian
and candidate-wise egalitarian evaluation variants (Sect. 5.1) and then consider the egali-
tarian evaluation (Sect. 5.2).

5.1 � Utilitarian and candidate‑wise egalitarian: manipulation is tractable

We show that �-Bloc-F-eval-Coalitional Manipulation can be solved in polyno-
mial time for any � ∈ ℕ , any eval ∈ { util , candegal } , and any tie-breaking rule
F ∈ {F lex ,F

eval
opt

,F eval
pess

} . Whereas in general, for |I| being the input size, our algorithm
requires O(|I|5) steps, for Bloc (i.e., � = k ), we present a better, quadratic-time algorithm
(with respect to n).

In several proofs in Sect. 5.1 we use the value of a candidate for manipulators (coalition)
and say that a candidate is more valuable or less valuable than another candidate. Although
we cannot directly measure the value of a candidate for the whole manipulators’ coalition
in general, thanks to Observation 1 we can assume a single utility function when discuss-
ing the utilitarian and candidate-wise egalitarian variants. Thus, assigning a single value to
each candidate is justified.

We start with an algorithm solving the general case of �-Bloc-F -eval-Coalitional
Manipulation, eval ∈ { util , candegal } , F ∈ {F lex ,F

eval
opt

,F eval
pess

} . The basic idea is to
“guess” the lowest final score of a member of a k-egroup and (assuming some lexi-
cographic order over the candidates) the least preferred candidate of the k-egroup that
obtains the lowest final score; there are at most polynomially many (with respect to the
input size) pairs to be guessed. Then, the algorithm, in polynomial time (with respect to
the input size), finds an optimal manipulation leading to a k-egroup represented by the
guessed pair. At first glance it might seem that it is enough to use a greedy algorithm for
finding an optimal manipulation for a guessed pair. However, observe that a fundamen-
tal task here is, given a number of points to distribute (by manipulators), to find a selec-
tion of most-preferred members of a k-egroup where each selected member requires a
certain number of points to be selected. This task however is just another interpretation
of (a variant of) the weakly NP-hard Knapsack problem [31]. Fortunately, the weights of

Autonomous Agents and Multi-Agent Systems (2021) 35:38	

1 3

Page 21 of 41  38

the items can be upper-bounded by the number of manipulators times size of the egroup,
so that this Knapsack variant can indeed by solved in polynomial time.

Theorem 4  Let m denote the number of candidates, n the number of voters, k the size of
a desired egroup, and r the number of manipulators. One can solve �-Bloc-F-eval-Coa-
litional Manipulation in O(k2m2r(n + r)) time for any eval ∈ { util , candegal } and
F ∈ {F lex ,F

eval
opt

,F eval
pess

}.

Proof  We prove the theorem for the lexicographic tie-breaking rule F lex . This is sufficient
since, using Proposition 1, one can generalize the result for the cases of utilitarian and
candidate-wise egalitarian variants. The basic idea of our algorithm is to fix certain param-
eters of a solution and then to reduce the resulting subproblem to a variant of the Knapsack
problem with polynomial-sized weights. The algorithm iterates through all possible value
combinations of the following two parameters:

–	 the lowest final score z < |V ∪W| of any member of the k-egroup and
–	 the candidate ĉ with final score z such that c is the least preferred member of the k

-egroup with respect to tie-breaking rule F lex.

For each combination of the parameters, the algorithm computes an optimal solution
if it exists. In this case, an optimal solution is a manipulation leading to an egroup that
maximizes the utility for the manipulation among all egroups described by the param-
eters z and ĉ . The algorithm outputs “yes” if, among the solutions computed for all com-
binations of the parameters, there exists a manipulation resulting in an egroup that has at
least the utility requested by the instance’s input. Otherwise, the algorithm outputs “no.”

To show how to compute an optimal manipulation for some combination of the param-
eters, let us fix some z and ĉ . We denote by C+ the set of candidates who get at least z + 1
approvals from the non-manipulative votes or who are preferred to ĉ according to F lex and
get exactly z approvals from the non-manipulative votes. Assuming that the combination of
parameter values is correct, all candidates from C+ ∪ {ĉ} must belong to the k-egroup. Let
k+ ∶= |C+

| . For sanity, we check whether k+ < k , that is, whether candidate ĉ can belong
to the k-egroup if the candidate obtains final score z. We discard the corresponding com-
bination of solution parameter values if the check fails. Next, we ensure that ĉ obtains the
final score exactly z. If ĉ receives less than z − r or more than z approvals from non-manip-
ulative votes, then we discard this combination of solution parameter values. Otherwise,
let ŝ ∶= z − score V (ĉ) denote the number of additional approvals candidate ĉ needs in
order to get final score z. Let k∗ ∶= k − k+ − 1 be the number of remaining (not yet fixed)
members of the k-egroup. Let s∗ ∶= r ⋅ 𝓁 − ŝ be the number of approvals to be distributed
to candidates in C⧵{ĉ}.

Now, the manipulators have to influence further k∗ candidates to join the k-egroup (so
far only consisting of C+ ∪ {ĉ} ) and distribute exactly s∗ approvals in total to candidates in
C⧵{ĉ} but at most r approvals per candidate. To this end, let C∗ denote the set of candidates
which can possibly join the k-egroup. For each candidate c ∈ C⧵(C+ ∪ {ĉ}) it holds that
c ∈ C∗ if and only if

1.	 z − r ≤ score V (c) ≤ z − 1 if c is preferred to ĉ with respect to F lex , or
2.	 z − r + 1 ≤ score V (c) ≤ z if ĉ is preferred to c with respect to F lex.

	 Autonomous Agents and Multi-Agent Systems (2021) 35:38

1 3

38  Page 22 of 41

A straightforward idea is to select the k∗ elements from C∗ which have the highest values
(that is, utility) for the coalition. However, there are two issues: First, s∗ might be too
small; that is, there are too few approvals to ensure that each of the k∗ best-valued can-
didates gets the final score at least z (resp. at least z + 1 ). Second, s∗ might be too large;
that is, there are too many approvals to be distributed so that there is no way to do this
without causing unwanted candidates to get final score at least z (resp. at least z + 1).

Fortunately, we can easily detect these cases and deal with them efficiently. In the for-
mer scenario we reduce the remaining problem to an instance of Exact k -item Knapsack—
the problem in which, for a given set of items, their values and weights, and a knapsack
capacity, we search for k items that maximize the overall value and do not exceed the knap-
sack capacity. In the latter case, we show that we can discard the corresponding combina-
tion of solution parameters.

First, if s∗ ≤ r ⋅ k∗ , then one can certainly distribute all s∗ approvals (e.g., to the k∗ can-
didates that will finally join the k-egroup). Of course, it could still be the case that there are
too few approvals available to push the desired candidates into the k-egroup in a greedy
manner. To solve this problem, we build an Exact k∗ -item Knapsack instance where each
candidate c∗ ∈ C∗ is mapped to an item. We set the weight of c∗ to z − score V (c

∗) if c∗ is
preferred to ĉ with respect to F lex and otherwise to (z + 1) − score V (c

∗) . We set the value
of each c∗ ∈ C∗ to be equal to the utility that candidate c∗ contributes to the manipulators.
Now, an optimal solution (given the combinations of parameter values is correct) must
select exactly k∗ elements from C∗ such that the total weight is at most s∗ . This corresponds
to Exact k -item Knapsack if we set our knapsack capacity to s∗ . Furthermore, finding
any such set with maximum total value leads to an optimal solution. Even if the final total
weight s′ of the chosen elements is smaller than s∗ , we can transfer the Exact k -item Knap-
sack solution to the correct solution of our problem. The total weight corresponds to the
number of approvals used. Thus, with the Exact k -item Knapsack solution we spend s′
approvals and, because of the monotonicity of �-Bloc together with the assumption that
s∗ ≤ r ⋅ k∗ , we use s∗ − s� approvals to approve the chosen candidates even more.

Second, if s∗ > r ⋅ k∗ , then one can certainly ensure that each of the k∗ most valued can-
didates from C∗ achieves the final score at least z (resp. at least z + 1 ). In many cases, it will
not be a problem to distribute the remaining approvals; for example, one can safely spend
up to r approvals for each candidate from C⧵C∗ , that is, to candidates that have no chance
to get enough points to join the k-egroup or to candidates which are already fixed to be in
the k-egroup. Furthermore, each candidate from C∗ that is not among the k∗ most valued
candidates can be safely approved z − score V (c

∗) − 1 times (resp. z − score V (c
∗) times)

without reaching final score z (resp. z + 1 ); we denote by s+ the total number of approvals
distributed in this way. So, if s∗ ≤ s+ + r ⋅ k∗ (note that we also assume s∗ > r ⋅ k∗ ), then
we can greedily push the k∗ most valued candidates from C∗ into the k-egroup (spending
r ⋅ k∗ approvals) and then safely distribute the remaining at most s+ approvals to other can-
didates as discussed. If s∗ > s+ + r ⋅ k∗ , then there is no possibility of distributing approv-
als in a way that ĉ is part of the k-egroup. Towards a contradiction assume that ĉ is part of
the k-egroup obtained after distributing s+ + r ⋅ k∗ + 1 approvals. This means that we spend
all possible s+ approvals so that ĉ is not beaten and r ⋅ k∗ approvals to push k∗ candidates to
the winning k-egroup. Giving one more approval to some candidate c′ from C∗ that is not
yet in the k-egroup, by definition of C∗ and s+ , means that the score of c′ is enough to push
ĉ out of the final k-egroup; a contradiction. Consequently, for the case of s∗ > s+ + r ⋅ k∗ ,
we discard the corresponding combination of solution parameters.

As for the running time, the first step is sorting the candidates according to their values
in O(m(r + log(m))) time. Then let us consider the running time of two cases s∗ ≤ r ⋅ k∗

Autonomous Agents and Multi-Agent Systems (2021) 35:38	

1 3

Page 23 of 41  38

and s∗ > r ⋅ k∗ separately. In the former case, we solve Exact k -item Knapsack in O(k2mr)
time by using dynamic programming based on analyzing all possible total weights of the
selected items until the final value is reached [31, Chapter 9.7.3]10 (note that the maxi-
mum possible total weight is upper-bounded by kr ). If s∗ > r ⋅ k∗ , then each manipula-
tor approves at most m candidates which gives running time O(m ⋅ r) . Thus, we can con-
clude that the running time of the discussed cases is O(k2mr) . Additionally, there are
at most n + r values of z and at most m choices of ĉ . Summarizing, we get the running
time O(k2m2r(n + r)) . 	� ◻

Next, we show that Bloc-F-eval-CM (i.e., the special case of �-Bloc-F-eval-CM where
� = k ) can be solved in quadratic time, that is, much faster than the general variant of the
problem. On our way to present this results, we first give an algorithm for �-Bloc-F-eval
-CM with consistent manipulators. Then, we argue that it also solves Bloc-F-eval-CM.
The algorithm “guesses” the minimum score among all members of the winning egroup
and then (according to the tie-breaking method) selects the best candidates that can reach
this score.

Proposition 3  Let m denote the number of candidates, n denote the number of vot-
ers, and r denote the number of manipulators. Then one can solve �-Bloc-F-eval-Coa-
litional Manipulation with consistent manipulators in O(m(m + r + n)) time for any
eval ∈ { util , candegal } and F ∈ {F lex ,F

eval
opt

,F eval
pess

}.

Proof  Consider an instance of �-Bloc-F lex-eval-CM with consistent manipulators with an
election E = (C,V) where C is a candidate set and V is a multiset of non-manipulative
votes, r manipulators, an egroup size k, and a lexicographic order >F used by F lex to break
ties. In essence, we introduce a constrained solution form called a canonical solution and
argue that it is sufficient to aim for only this type of solutions. Then we provide an algo-
rithm that efficiently seeks for an optimal canonical solution.

At the beginning, we observe that when manipulators vote consistently, then we can
arrange the top � candidates of a manipulative vote in any order. Hence, the solution to our
problem is a size-� subset (instead of an order) of candidates which we call a set of sup-
ported candidates; we call each member of this set a supported candidate. We now intro-
duce a vital concept of the proof, the “strength” of the candidates.

Strength order of the candidates. Additionally, we introduce a new order >
S

 of the can-
didates. It sorts them descendingly with respect to the score they receive from voters and,
as a second criterion, according to the position in >F . Intuitively, the easier it is for some
candidate to be a part of a winning k-egroup, the higher is the candidate’s position in >

S
 .

As a consequence, we state Claim 1.

Claim 1  Let us fix an instance of �-Bloc-F lex-eval-CM with consistent manipulators and a
solution X which leads to a winning k-egroup S. For every supported (resp. unsupported)
candidate c, the following holds:

10  Kellerer et al. [31] present dynamic programming based on all possible total values of items. However
(what they also remark), these can be exchanged with all possible total weights of items leading to an algo-
rithm with running time polynomial in the maximum weight of items.

	 Autonomous Agents and Multi-Agent Systems (2021) 35:38

1 3

38  Page 24 of 41

1.	 If c is part of the winning k-egroup, then every supported (resp. unsupported) predeces-
sor of c, according to >

S
 , belongs to S.

2.	 If c is not part of the winning k-egroup, then every supported (resp. unsupported) suc-
cessor of c, according to >

S
 , does not belong to S.

Proof  Fix an instance of �-Bloc-F lex-eval-CM with consistent manipulators and a solu-
tion X resulting in winning k-egroup S. Let us consider the respective order >

S
 over the

candidates in the instance.
We first show that Statement 1 regarding supported candidates holds. According to the

statement, fix some supported candidate c ∈ S and let p be a predecessor of c (according
to >

S
 ). Towards a contradiction, let us assume that p ∉ S . This implies that either (i) the

score of p is smaller than the score of c or (ii) their scores are the same but c>F p . Let us
focus on case (i). Both considered candidates are supported by all manipulators (note that
manipulators vote consistently). Thus, as a consequence of p>

S
c , we have that the score

of p is at least as high as the score of c; a contradiction. Next, consider case (ii), where p
and c have the same scores. Consequently, the mutual order of c and p in >

S
 is the same as

their order in >F (in other words, the order of c and p in >
S

 does not depend on scores of c
and p because those must be the same prior to any manipulation). Since c>F p , it follows
that, by definition of >

S
 , it must hold that c>

S
p ; a contradiction again. Eventually, we

obtain that p has to be part of S which completes the argument.
An analogous approach leads to proofs for the remaining three cases stated in the theo-

rem. 	� ◻

Claim 1 justifies thinking about >
S

 as a “strength order”; hence, in the proof we use the
terms stronger and weaker candidate. Using Claim 1, we can fix some candidate c as the
weakest in the winning k-egroup and then infer candidates that have to be and that cannot
be part of this k-egroup. To formalize this idea, we introduce the concept of a canonical
solution.

Canonical solutions. Assuming the case where k ≤ � , we call a solution X leading to a
winning k-egroup S canonical if all candidates of the winning egroup are supported; that
is, S ⊆ X . In the opposite case, k > � , solution X is canonical if X ⊂ S and X is a set of the
� weakest candidates in S. For the latter case, the formulation describes the solution which
favors supporting weaker candidates first and ensures that no approval is given to a candi-
date outside the winning k-egroup.

Canonical solutions are achievable from every solution without changing the winning k
-egroup. One cannot prevent a candidate from winning by supporting the candidate more
because this only increases the candidate’s score. Consequently, we can always transfer
approvals to all candidates from the winning k-egroup. For the case k > � , we then have to
rearrange the approvals in such a way that only the weakest members of the k-egroup are
supported. However, such a rearrangement cannot change the outcome because, according
to Claim 1, we can transfer an approval from some stronger candidate c to a weaker candi-
date c′ keeping both of them in the winning k-egroup.

Dropped and kept candidates. By the assumption that k < m , for every solution (includ-
ing canonical solutions) we can always find the strongest candidate who is not part of
the winning egroup. We call this candidate the dropped candidate. Note that we use the
strength order in the definition of the dropped candidate; this order does not take manipula-
tive votes into account. Further applying the assumption that � < m , without loss of gen-
erality, we can assume that the dropped candidate is not a supported candidate. This holds

Autonomous Agents and Multi-Agent Systems (2021) 35:38	

1 3

Page 25 of 41  38

true because if the dropped candidate is not in the winning k-egroup even if supported, then
we can support any other candidate c (which must exist because � < m ) without changing
the winning k-egroup. Due to Claim 1, if c is not in the winning k-egroup, then, even after
supporting, c (is by definition weaker than the dropped candidate) cannot become a mem-
ber of k-egroup. Otherwise, supporting c clearly cannot prevent it from being a member
of the winning k-egroup. Naturally, by definition of the dropped candidate, all candidates
stronger than the dropped candidate are members of the winning k-egroup. We call these
candidates kept candidates.

High-level description of the algorithm. The algorithm solving �-Bloc-F lex-eval-CM
with consistent manipulators iteratively looks for an optimal canonical solution for every
possible (non-negative) number t of kept candidates (alternatively the algorithm checks all
feasible possibilities of choosing the dropped candidate). Then, the algorithm compares all
solutions and picks one that is resulting in an egroup liked the most by the manipulators.
Observe that k − � ≤ t ≤ k . The upper bound k is the consequence of the fact that each
kept candidate is (by definition) in the winning k-egroup. Since all candidates except for
kept candidates have to be supported to be part of the winning egroup, we need at least
k − � kept candidates in order to be able to complete the k-egroup.

What remains to be done. Procedure 1 describes how to look for an optimal canonical
solution for a fixed number t of kept candidates. First, partition the candidate set in the fol-
lowing way. By C∗ we denote the kept candidates (which are the top t candidates according
to >

S
 ). Consequently, the (t + 1)-st strongest candidate is the dropped candidate; say c∗ .

For every value of t, the corresponding dropped candidate, by definition, is not allowed to
be part of the winning egroup. Let

be the set of distinguished candidates. Each distinguished candidate, if supported, is pre-
ferred over c∗ to be selected into the winning k-egroup. Consequently, the distinguished
candidates are all candidates who can potentially be part of the winning k-egroup. We
remark that to fulfill our assumption that the dropped candidate is not belonging to a win-
ning egroup, it is obligatory to support at least k − t distinguished candidates. Note that
C∗ ∪ {c∗} ∪ D ≠ C is possible. The remaining candidates cannot be part of the winning
k-egroup under any circumstances assuming t kept candidates. Also, set D might consist
of less than k − t required candidates (which is the case when there are too few candidates
that, after supported, would outperform c∗ ). If such a situation emerges, then we skip the
respective value of t. Making use of the described division into c∗ , D, and C∗ , Procedure 1
incrementally builds the set X of supported candidates associated with an optimal solution
until all possible approvals are used. Observe that since k < |C| and � < |C| , it is guaran-
teed that for t = k Procedure 1 will return a feasible solution for t; in fact, this solution will
always result in a winning egroup consisting of all t kept candidates (irrespective of D).

D = {c ∈ C⧵(C∗ ∪ {c∗}) ∣(score V (c) + r > score V (c
∗))∨

(score V (c) + r = score V (c
∗) ∧ c>F c∗)}

	 Autonomous Agents and Multi-Agent Systems (2021) 35:38

1 3

38  Page 26 of 41

Detailed description of the algorithm. Before studying Procedure 1 in detail, consider
Fig. 1 illustrating the procedure on example data. In line 1, the procedure builds set X of
supported candidates using the k − t best valued distinguished candidates. Since only the
distinguished candidates might be a part of the winning k-egroup besides the kept candi-
dates, there is no better outcome achievable. Then, in line 2, the remaining approvals, if
they exist, are used to support kept candidates. This operation does not change the result-
ing k-egroup. Then Procedure 1 checks whether all � approvals were used; that is, whether
� = |X| . If not, then there are exactly � − |X| remaining approvals to use. Note that at this
stage set X contains k supported candidates which correspond to the best possible k-egroup;
however, without spending all approvals. Let us call this k-egroup S. It is possible that
there is no way to spend the remaining � − |X| approvals without changing the winning k
-egroup S. Then substitutions of candidates occur. The new candidates in the k-egroup can
be only those that are distinguished and so far unsupported whereas the exchanged ones
can be only so far supported distinguished candidates. This means that each substitution
lowers the overall value of the winning k-egroup. So, the best what can be achieved is to
find the minimal number of substitutions and then pick the most valuable remaining candi-
dates from D to be substituted. The minimal number of substitutions can be found by ana-
lyzing how many candidates would be exchanged in the winning k-egroup if the weakest
� − |X| previously unsupported candidates were supported. The procedure makes such a
simulation and computes the number p of necessary substitutions, in lines 4-6. Supporting
the � − |X| − p weakest unsupported candidates and then the p most valuable so far unsup-
ported distinguished candidates gives the optimal k-egroup for t kept candidates (when all
approvals are spent). Note that the number � of approvals is strictly lower than the number
of candidates, so one always avoids supporting c∗.

Running time. To analyze the running time of the algorithm, several steps need to be
considered. At the beginning we have to compute values of candidates and then sort the
candidates with respect to their value. This step runs in O(rm + m logm) time. Similarly,
computing >

S
 takes O(�n + m logm) time. Moreover, Procedure 1 needs O(m) steps to

find an optimal canonical solution for some fixed number t of kept candidates. Finally, we
have at most � + 1 possible values of t. Summing the times up, together with the fact that
� < m , we obtain the running time O(m(m + r + n)).

Autonomous Agents and Multi-Agent Systems (2021) 35:38	

1 3

Page 27 of 41  38

Pessimistic and Optimistic Evaluation. Due to Proposition 1, the algorithm we presented
can be applied also for pessimistic and optimistic evaluation because of the possibility of
simulating these evaluations by a lexicographic order in time O(m(r + log(m))) . 	� ◻

For Bloc, we will show that manipulators can always vote identically to achieve an opti-
mal k-egroup. In a nutshell, for every egroup the manipulators can only increase the scores
of the k-egroup’s members by voting exactly for them. This fact leads to the following
theorem.

Theorem 5  Let m denote the number of candidates, n denote the number of voters, and r
denote the number of manipulators. One can solve Bloc-F-eval-Coalitional Manipulation
in O(m(m + r + n)) time for any eval ∈ { util , candegal } and F ∈ {F lex ,F

eval
opt

,F eval
pess

}.

Proof  We show that for Bloc-F-eval-Coalitional Manipulation the manipulators have no
incentive to deviate from one optimal profile (i.e., they vote in the same manner). Let us
fix an optimal k-egroup S. If there exists a candidate c ∈ S which is not approved by some
manipulator u∗ , then there exists also some candidate c� ∉ S which is approved by u∗ ( u∗
approves at most k − 1 candidates from S). Observe that in the Bloc voting rule by shift-
ing a candidate up in a preference order we only increase the candidate’s score; as a result,

(a)

(d)(c)

(b)

Fig. 1   An illustrative example of a run of Procedure 1 for t = 2 , nine candidates, 7-Bloc, and 4-egroup. The
horizontal position indicates the strength of a candidate—with the strength decresing from left to right—
and the vertical position indicates the value of a candidate. Since the number r of manipulators determines
only the set of distinguished candidates, we do not specify r explicitly. We indicate the set of distinguished
candidates instead. Figure 1a–d step by step present the execution of Procedure 1 on the way to find an opti-
mal 4-egroup.

	 Autonomous Agents and Multi-Agent Systems (2021) 35:38

1 3

38  Page 28 of 41

we cannot prevent the candidate from winning by doing such a shift. Using this observa-
tion, we can exchange some candidate c ∈ S with some candidate c� ∉ S in the preference
order of u∗ without preventing c from winning. We repeat exchanging candidates until all
manipulators approve only candidates from S. Then we obtain an optimal vote by fixing a
preference order over those candidates arbitrarily (there might be more than one optimal
vote but all of them place only candidates from set S at the first k places). Concluding, we
can use the algorithm from Proposition 3 which works in the given time. 	� ◻

5.2 � Egalitarian: manipulation is hard even for simple tie‑breaking

In Sect. 4.2, we showed that already breaking ties might be computationally intracta-
ble. These intractability results only hold with respect to the egalitarian evaluation and
optimistic manipulators. We now show that this intractability of F egal

opt -Tie-Breaking
extends to coalitional manipulation for any tie-breaking rule and egalitarian evaluation.
This includes the pessimistic egalitarian case which we consider to be highly relevant as
it naturally models searching for a “safe” voting strategy.

Proposition 4  For any tie-breaking rule F , there is a polynomial-time many-one reduc-
tion from F egal

opt -Tie-Breaking to �-Bloc-F-egal-Coalitional Manipulation.

Proof  We reduce an instance of F egal

opt -Tie-Breaking to �-Bloc-F-egal-Coalitional Manip-
ulation; however, before we describe the actual reduction, we present a useful observation
concerning F egal

opt -Tie-Breaking in the next paragraph.
Let us fix an instance I of F egal

opt -Tie-Breaking with a confirmed set C+ , a pending set P,
a size k of an egroup, a threshold q, and a set of manipulators represented by a family U
of utility functions. We construct a new equivalent instance I′ of F egal

opt -Tie-Breaking with
a larger set of manipulator utility functions U′ ⊇ U . The construction is a polynomial-time
many-one reduction which proves that we can “pump” the number of manipulators arbitrar-
ily for instance I. To add a manipulator, it is enough to set to q the utility that the manipu-
lator gives to every candidate. Naturally, such a manipulator cannot have the total utility
smaller than q, so the correct solution for I is also correct for I′ . Contrarily, when there is
no solution for I, it means that for every possible k-egroup S′ there is some manipulator ū
such that egal ū(S�) < q . Consequently, one cannot find a solution for I′ as well, because the
set of possible k-egroups and their values of egalitarian utility do not change.

Now we can phrase our reduction from F egal

opt -Tie-Breaking to �-Bloc-F-egal-
Coalitional Manipulation. Let us fix an instance I of F egal

opt -Tie-Breaking with a con-
firmed set C+ , a pending set P, a size k of an egroup, a threshold q, and a set U of r utility
functions. Because of the observation about “pumping” instances of F egal

opt -Tie-Breaking,
we can assume, without loss of generality, that 𝓁 ⋅ r ≥ k − |C+

| holds. In the constructed
instance of �-Bloc-F-egal-CM equivalent to I, we build an election that yields sets P
and C+ and aim at an egroup of size k. However, it is likely that we need to add a set of
dummy candidates that we denote by D. It is important to ensure that the dummy candi-
dates cannot be the winners of the constructed election. To do so, we keep the score of
each dummy candidate to be at most 1, the score of each pending candidate to be r + 2 ,
and the score of each confirmed candidate to be at least 2r + 3 . The construction starts
from ensuring the scores of the confirmed candidates. Observe that in this step we add at
most (2r + 3) ⋅ |C+

| voters (in case � = 1 ). If � > |C+
| , then we have to add some dummy

candidates in this step. We can upper-bound the number of the added dummy candidates

Autonomous Agents and Multi-Agent Systems (2021) 35:38	

1 3

Page 29 of 41  38

by (2r + 3) ⋅ |C+
|(𝓁 − 1) (this bound is not tight). Analogously, we add new voters such

that each pending candidate has score exactly r + 2 . At this step we have the election where
we are able to spend 𝓁 ⋅ r ≥ k − |C+

| approvals. We can select every possible subset of
pending candidates to form the winning k-egroup by approving candidates in this subset
exactly once. However, to be sure that we are able to distribute all approvals such that
there is no tie, we ensure that the remaining 𝓁 ⋅ r − (k − |C+

|) approvals can be distributed
to some candidates without changing the outcome. To achieve this goal, we add exactly
𝓁 ⋅ r − (k − |C+

|) dummy candidates with score 0. We set the evaluation threshold of the
newly constructed instance to q.

By our construction, we are always able to approve enough pending candidates to form
a k-egroup without considering ties, and we cannot make a dummy candidate a winner
under any circumstances. Thus, if F egal

opt -Tie-Breaking has a solution S, then we approve
every candidate c ∈ S such that c was in the pending set P before, and we obtain a solution
to the reduced instance. In the opposite case, if there is no such a k-egroup whose egali-
tarian utility value is at least q, then the corresponding instance of �-Bloc-F-egal-Coa-
litional Manipulation also has no solution since the possible k-egroups are exactly the
same. The reduction runs in polynomial time. 	� ◻

Observe that the reduction proving Proposition 4 does not change the egroup size k.
Additionally, the increase of the number of manipulators in the resulting instances is poly-
nomially upper-bounded in the egroup size k of input instances. This is due to the fact that
even if we need to “pump” an initial instance to achieve 𝓁 ⋅ r ≥ k − |C+

| , then we add at
most

⌈

k−|C+
|

�

⌉

≤ k manipulators. Thus, together with Theorem 1 and Theorem 2, Proposi-
tion 4 leads to the following theorem.

Theorem 6  Let F be an arbitrary tie-breaking rule. Then, �-Bloc-F-egal-Coalitional
Manipulation is NP-hard. Let r denote the number of manipulators, q denote the evaluation
threshold and k denote the size of an egroup. Then, parameterized by r + k , �-Bloc-F-egal
-CM is W[1]-hard. Parameterized by k, �-Bloc-F-egal-CM is W[2]-hard even if q = 1 and
every manipulator only gives either utility one or zero to each candidate.

Combining exhaustive enumeration of values describing essential properties of solu-
tions and an extension of the ILP from Theorem 3, we show that, for the combined param-
eter “number of manipulators and number of different utility values,” fixed-parameter trac-
tability of F egal

opt -Tie-Breaking extends to coalitional manipulation for both optimistic and
pessimistic egalitarian tie-breaking.

Theorem 7  Let r denote the number of manipulators and u diff denote the number of differ-
ent utility values. Parameterized by r + u diff , �-Bloc-F-egal-Coalitional Manipulation with
F ∈ {F egal

pess
,F

egal

opt
} is fixed-parameter tractable.

Proof  In a nutshell, we divide �-Bloc-F egal
pess

-egal-CM and �-Bloc-F egal

opt -egal-CM into sub-
problems solvable in FPT time with respect to the combined parameter “number of manip-
ulators and number of different utility values.” We show that solving polynomially many
subproblems is enough.

The main idea. We split the proof into two parts. In the first part, we define subproblems
and show how to find a solution assuming that the subproblems are solvable in FPT time
with respect to the parameter. In the second part, we show that, indeed, the subproblems

	 Autonomous Agents and Multi-Agent Systems (2021) 35:38

1 3

38  Page 30 of 41

are fixed-parameter tractable using their ILP formulations. The inputs for �-Bloc-F egal
pess

-egal-CM and �-Bloc-F egal

opt -egal-CM are the same, so let us consider an arbitrary input
with an election E = (C,V) where |V| = n , |C| = m , a size k of an excellence-group, and r
manipulators represented by a set U = {u1, u2,… , ur} of their utility functions. Let u diff be
the number of different utility values.

An election resulting from a manipulation and a corresponding k-egroup emerging from
the manipulation can be described by three non-negative integer parameters:

1.	 the lowest final score z of any member of the k-egroup;
2.	 the number p of promoted candidates from the k-egroup with a score higher than z

which, at the same time, have score at most z without taking manipulative votes into
consideration;

3.	 the number b of border candidates with score z.

Observe that if as a result of a manipulation the lowest final score of members in a
final k-egroup is z , then the promoted candidates are part of the k-egroup regardless of
the tie-breaking method used. For border candidates, however, it might be necessary to
run the tie-breaking rule to determine the k-egroup. In other words, border candidates
become pending candidates unless all of them are part of the k-egroup. By definition,
no candidate scoring lower than the border candidates is a member of the k-egroup,
which gives border candidates their name. From now on, we refer to the election situ-
ation characterized by parameters z, p, b as a state (resp. input state). Additionally, we
call a set of manipulator votes a manipulation.

Part 1: High-level description of the algorithm. For now, we assume that there is a
procedure P which runs in FPT time with respect to the combined parameter “number
of manipulators and number of different utility values.” Procedure P takes values z , p , b
and an instance of the problem as an input, and it finds a manipulation which leads to a k
-egroup maximizing the egalitarian utility under either egalitarian optimistic or egalitar-
ian pessimistic tie-breaking with respect to the input state. If such a manipulation does not
exist, then procedure P returns “no.” The algorithm solving �-Bloc-F egal

pess
-egal-CM and

�-Bloc-F egal

opt -egal-CM runs P for all possible combinations of values z , p , and b . Eventu-
ally, it chooses the best manipulation returned by P or returns “no” if P always returned
so. Since the value of z is at most |V| + |W| and b together with p are both upper-bounded
by the number of candidates, we run P at most (n + r)m2 times. Because the input size
grows polynomially with respect to the growth of the values r , m, and n, the overall algo-
rithm runs in FPT time with respect to the combined parameter “number of manipulators
and number of different utility values.”

Part 2: Basics and preprocessing for the ILP To complete the proof, we describe pro-
cedure P used by the above algorithm. In short, the procedure builds and solves an ILP
program that finds a manipulation leading to the state described by the input values. Before
we describe the procedure in detail we start with some notation. Fix some values of z , b ,
p and some election E = (C,V) that altogether form the input of P . For each candidate
c ∈ C , let a size-r vector t = (u1(c), u2(c),… , ur(c)) , referred to as a type vector, define the
type of c. We denote the set of all possible type vectors by T = {t1, t2,… , t

|T |

} . Observe
that |T | ≤ ur

diff
 . With each type vector ti , i ∈ [|T |] , we associate a set Ti consisting of all

candidates of type ti . We also distinguish the candidates with respect to their initial score
compared to z . A candidate of type ti ∈ T  , i ∈ |T | , with score z − j , j ∈ [r] ∪ {0} , belongs
to group Gj

i
 . We denote all candidates with a score (excluding manipulative votes) higher

Autonomous Agents and Multi-Agent Systems (2021) 35:38	

1 3

Page 31 of 41  38

than z by C+ , whereas by C− we denote the candidates with a score (excluding manipula-
tive votes) strictly lower than z − r . For each type ti ∈ T of a candidate, we define function
obl(ti) ∶= |C+ ∩ Ti| , which gives the number of candidates of type ti that are obligatory
part of the winning k-egroup.

At the beginning, procedure P tests whether the input values z , b , and p represent a
correct state. From the fact that there has to be at least one candidate with score z , we get
the upper bound k − |C+

| − 1 for value p . To have enough candidates to complete the k
-egroup, we need at least k − |C+

| − p candidates with score z after the manipulation which
gives b ≥ k − |C+

| − p . Finally, the state is incorrect if the corresponding set C+ contains
k or more candidates. If the input values are incorrect, then P returns “no.” Otherwise,
P continues with building a corresponding ILP program. We give two separate ILP pro-
grams—one for the optimistic egalitarian tie-breaking and the other one for the pessimistic
egalitarian tie-breaking. Both programs consist of two parts. The first part models all pos-
sible manipulations leading to the state described by values z , p , and b . The second one is
responsible for selecting the best k-egroup assuming the particular tie-breaking and consid-
ering all possible manipulations according to the first part. Although the whole programs
are different from each other, the first parts stay the same. Thus, we postpone distinguish-
ing between the programs until we describe the second parts. For the sake of readability,
we present the ILP programs step by step.

ILP: Common part. For each group Gj

i
 , i ∈ [|T |] , j ∈ [r] ∪ {0} , we introduce variables

x
j

i
 and xj+

i
 indicating the numbers of, respectively, border and promoted candidates from

group Gj

i
 . Additionally, we introduce variables o and ō . The former represents the number

of approvals used to get the obligatory numbers of border and promoted candidates. The
latter indicates the number of approvals which are to be spent without changing the final k
-egroup (thus, in some sense a complement of the obligatory approvals) resulting from the
manipulation (e.g., approving candidates in C+ , who are part of the winning k-egroup any-
way, cannot change the outcome). We begin our ILP program with ensuring that the values
of xj

i
 and xj+

i
 are feasible:

The constraints ensure that exactly p candidates are selected to be promoted (5), exactly b
candidates are selected to be border ones (6), and that, for every group, the sum of border
and promoted candidates is not greater than the cardinality of the group (4). The last two
constaint sets ensure that candidates who have score z are either promoted or border can-
didates (7) and that candidates with initial score z − r cannot be promoted (i.e., get a score
higher than z ) (8). Next, we add the constraints concerning the number of approvals we

(4)∀ti ∈ T, j ∈ [r] ∪ {0}∶ x
j+

i
+ x

j

i
≤ |G

j

i
|,

(5)
∑

ti∈T,j∈[r]∪{0}

x
j+

i
= p,

(6)
∑

ti∈T,j∈[r]∪{0}

x
j

i
= b,

(7)∀ti ∈ T∶ x0+
i

+ x0
i
= |G0

i
|,

(8)∀ti ∈ T∶ xr+
i

= 0.

	 Autonomous Agents and Multi-Agent Systems (2021) 35:38

1 3

38  Page 32 of 41

need to use to perform the manipulation described by all variables xj
i
 and xj+

i
 . We start with

ensuring that the manipulation does not exceed the number of possible approvals. As men-
tioned earlier, we store the number of required approvals using variable o.

Then, we model spending the ō remaining votes (if any) to use all approvals.

The upper bound on the number of votes one can spend without changing the outcome pre-
sented in constraint (11) consists of three summands. The first one indicates the number of
approvals which can be spent for candidates whose initial score was either too high or too
low to make a difference in the outcome of the election resulting from the manipulation.
The second summand counts the approvals we can spend for potential promoted and bor-
der candidates that eventually are not part of the winning k-egroup; we can give them less
approvals than are needed to make them border candidates. The last summand represents
the number of additional approvals that we can spend on the promoted candidates to reach
the maximum of r approvals per candidate. This completes the first part of the ILP program
in which we modeled the possible variants of promoted and border candidates for the fixed
state (z, b, p).

ILP extension for optimistic egalitarian tie-breaking. In the second part, we find the
final k-egroup by completing it with the border candidates according to the particular tie-
breaking mechanism. Let us first focus on the case of the optimistic egalitarian tie-break-
ing. We introduce constraints allowing us to maximize the total egalitarian utility value of
the final egroup; namely, for each group Gj

i
 , i ∈ [|T |] , j ∈ [r] ∪ {0} , we add a non-neg-

ative, integral variable xj∙
i
 indicating the number of border candidates of the given group

chosen to be in the final k-egroup. The following constraints ensure that we select exactly
k − |C+

| − p border candidates to complete the winning egroup and that, for each group Gj

i
 ,

we do not select more candidates than available.

To complete the description of the ILP, we add the following final set of constraints defin-
ing the egalitarian utility s of the final k-excellence-group:

(9)o =
∑

ti∈T, j∈[r]∪{0}

(

x
j

i
⋅ j + x

j+

i
⋅ (j + 1)

)

,

(10)o ≤ �r.

(11)

ō ≤ r|C− ∪ C+
| +

∑

ti∈T

∑

j∈[r]

(

|G
j

i
| − x

j

i
− x

j+

i

)

(j − 1)

+
∑

ti∈T,j∈[r]

(

x
j+

i
⋅ (r − j − 1)

)

,

(12)ō + o = �r.

(13)
∑

ti∈T, j∈[r]∪{0}

x
j∙

i
= k − |C+

| − p,

(14)∀ti ∈ T, j ∈ [r] ∪ {0}∶ x
j∙

i
≤ x

j

i
.

Autonomous Agents and Multi-Agent Systems (2021) 35:38	

1 3

Page 33 of 41  38

We set the goal of the program to maximize s and thus our program simulates the egalitar-
ian optimistic tie-breaking.

ILP extension for pessimistic egalitarian tie-breaking. To solve our subproblem for the
case of pessimistic egalitarian tie-breaking, we need a different approach. We start with
an additional notation. For each type of candidate ti ∈ T  , let bi =

∑

j∈[r]∪{0} x
j

i
 denote

the number of border candidates of this type. For each type ti ∈ T and manipulator uq ,
q ∈ [r] , we introduce a new integer variable dq

i
 . Its value corresponds to the number of

border candidates of type ti who are part of the worst possible winning k-egroup according
to manipulator uq ’s preferences; we call these candidates the designated candidates of type
ti of manipulator uq . For each variable dq

i
 , we define a binary variable used [dq

i
] which has

value one if at least one candidate of type ti is a designated candidate of manipulator uq .
Similarly, we define fullyused [dq

i
] to indicate that all candidates of type ti are designated

by manipulator uq . To give a program which solves the case of pessimistic egalitarian tie-
breaking, we copy the first part of the previous ILP program (constraints from (4) to (12))
and add new constraints. First of all, we ensure that each manipulator designates not more
than the number of available border candidates from each type and that every manipulator
designates exactly k − p − |C+

| candidates.

The following forces the semantics of the variables used ; that is, a variable used [dq
i
] ,

i ∈ [|T |] , q ∈ [r] , has value one if and only if variable dq
i
 is at least one.

Similarly, for the variables fullyused , we ensure that fullyused [dq
i
] , i ∈ [|T |] , q ∈ [r] , is

one if and only if manipulator uq designates all available candidates of type ti.

Since our task is to perform pessimistic tie-breaking, we have to ensure that the designated
candidates for each manipulator are the candidates whom the manipulator gives the least
utility. We impose this by forcing that the more valuable candidates (for a particular manip-
ulator) are used only when all candidates of all less valuable types (for the manipulator) are
used (i.e., they are fully used). To achieve this we make use of the used and fullyused vari-
ables in the following constraints.

(15)∀q ∈ [r]∶
∑

ti∈T, j∈[r]∪{0}

ti[q] ⋅ (x
j+

i
+ x

j∙

i
) +

∑

ti∈T

ti[q] ⋅ obl(ti) ≥ s.

(16)∀ti ∈ T, q ∈ [r]∶ 0 ≤ d
q

i
≤ bi,

(17)∀q ∈ [r]∶
∑

ti∈T

d
q

i
= k − p − |C+

|.

(18)∀ti ∈ T, q ∈ [r]∶ used [d
q

i
] ≤ d

q

i
,

(19)∀ti ∈ T, q ∈ [r]∶ used [d
q

i
]n ≥ d

q

i
.

(20)∀ti ∈ T, q ∈ [r]∶ fullyused [d
q

i
] ≥ 1 − (bi − d

q

i
),

(21)∀ti ∈ T, q ∈ [r]∶ bi − d
q

i
≤ n(1 − fullyused [d

q

i
]).

(22)∀q ∈ [r] ∪ {0}∀ti, ti� ∈ T with ti[q] > ti� [q]∶ used [d
q

i
] ≤ fullyused [d

q

i�
].

	 Autonomous Agents and Multi-Agent Systems (2021) 35:38

1 3

38  Page 34 of 41

Finally, we give the last set of constraints where s represents the pessimistic egalitarian k
-egroup’s utility which our ILP program wants to maximize:

The ILP programs, for both tie-breaking variants, use O(rur
diff

) variables. So, according to
Lentra’s result [34], we obtain fixed-parameter tractability with respect to the combined
parameter r + u diff . Consequently, procedure P is in FPT with respect to the same param-
eter. 	� ◻

Finally, by using ideas from Theorem 4, we proceed with Theorem 8—a counterpart
of Theorem 7 but for lexicographic tie-breaking; namely, we obtain fixed-parameter tracta-
bility for egalitarian coalitional manipulation with lexicographic tie-breaking. As byprod-
uct (following from Proposition 1), the fixed-parameter tractability from Theorem 8 also
holds for the remaining tie-breaking variants: optimistic and pessimistic tie-breaking for
both utilitarian and candidate-wise egalitarian variants.

Theorem 8  Let r denote the number of manipulators and u diff denote the number of dif-
ferent utility values. For every eval ∈ { util , candegal } , �-Bloc-F-egal-Coalitional
Manipulation with F ∈ {F lex ,F

eval
opt

,F eval
pess

} parameterized by r + u diff is fixed-parameter
tractable.

Proof  The general proof idea is to show an algorithm which solves problem �-Bloc-F lex

-egal-Coalitional Manipulation in the requested time. Proposition 1 implies that the result
holds for all F ∈ {F lex ,F

eval
opt

,F eval
pess

} for every eval ∈ { util , candegal }.
To solve �-Bloc-F lex-egal-Coalitional Manipulation we create an ILP for all possible

value combinations of the following parameters:

–	 the lowest final score z < |V ∪W| of any member of the k-egroup and
–	 the candidate ĉ which is the least preferred member of the k-egroup with final score z

with respect to the tie-breaking rule F lex.

Having z fixed, let C+ denote the set of candidates which get at least z + 1 approvals from
the non-manipulative votes or which are preferred to ĉ with respect to F and get exactly
z approvals from the non-manipulative votes. Assuming that the combination of param-
eter values is correct, all candidates from C+ ∪ {ĉ} must belong to the k-egroup. We check
whether |C+

| < k , that is, whether there is space for candidate ĉ in the k-egroup. If the
check fails, then we skip the corresponding combination of solution parameter values.
Next, we ensure that ĉ obtains final score exactly z. If ĉ receives less than z − r or more
than z approvals from non-manipulative votes, then we discard this combination of solu-
tion parameter values. Otherwise, let ŝ ∶= z − score V (ĉ) denote the number of additional
approvals candidate ĉ needs in order to get final score z.

We define the type of some candidate ci to be the size-r vector
tj = (u1(ci), u2(ci),… , ur(ci)) . We denote by T = {t1, t2,… , t

|T |

} the set of all possible
types. Observe that |T | ≤ ur

diff
 . With each type vector ti , i ∈ [|T |] , we associate a set Ti

consisting of all candidates of type ti . Having ĉ (and z) fixed, we distinguish candidates
according to types further. For j ∈ [r] ∪ {0} , all candidates with score z − j (obtained from
the non-manipulative votes) that are preferred (resp. not preferred) to candidate ĉ according

(23)∀q ∈ [r]∶
∑

ti∈T

(d
q

i
+ obl(ti)) ⋅ ti[q] ≥ s.

Autonomous Agents and Multi-Agent Systems (2021) 35:38	

1 3

Page 35 of 41  38

to F , fall into group Gj+

i
 (resp. Gj−

i
 ). We denote by Cr candidates that do not fall into any

of such groups. For each type ti ∈ T of a candidate, we define function obl(ti) = |C+ ∩ Ti|
which gives the number of candidates of type ti who are obligatory part of the winning
k-egroup. For each manipulator q ∈ [r] , by g(q) ∶=

∑

ti∈T
obl(ti) ⋅ ti[q] we denote the guar-

anteed utility of q, that is, the utility achieved from the candidates in C+.
We give the following ILP formulation of the problem using 2r|T | + 2 variables. For

all groups Gj+

i
 and Gj−

i
 , i ∈ [|T |] , j ∈ [r] ∪ {0} , we introduce variables xj+

i
 and xj−

i
 respec-

tively. The variables indicate, respectively, the number of candidates from groups Gj+

i
 and

G
j−

i
 whom we push to the winning k-egroup. Also, we introduce two additional variables s

and u. The former one represents the minimal value of the total utility achieved by manipu-
lators. The latter one indicates the number of approvals which were spent without changing
the outcome. To shorten the ILP we define

Intuitively, Mful ĉ
z
 is the number of approvals used to add potential egroup members to the

winning k-egroup. Also, we define

Fbid ĉ
z
 represents the number of approvals which cannot be used if one wants to avoid

pushing candidates outside of the solution (given by values of the variables x) to the
winning k-egroup; for example, if some candidate c needs j approvals to be part of the
winning k-egroup, then we subtract r − j + 1 approvals from the whole pool of r approv-
als for this candidate because we can use only j − 1 approvals not to push c into the
k-egroup. We define the following constraints to construct our program the goal of which
is to maximize s:

Mful ĉ
z
∶=

∑

ti∈T,j∈[r]

x
j+

i
⋅ j +

∑

ti∈T,j∈[r−1]∪{0}

x
j−

i
⋅ (j + 1).

Fbid ĉ
z
∶=

∑

ti∈T,j∈[r]∪{0}

[

(r − j + 1)(|G
j+

i
| − x

j+

i
) + (r − j)(|G

j−

i
| − x

j−

i
)
]

.

(24)∀ti ∈ T, j ∈ [r] ∪ {0},⋆ ∈ {+,−}∶ x
j⋆

i
≤ |G

j⋆

i
|,

(25)∀ti ∈ T∶ xz−
i

= 0,

(26)∀ti ∈ T∶ x0+
i

= |G0+
i
|,

(27)Mful ĉ
z

≤ r ⋅ 𝓁 − ŝ,

(28)(|C| − 1)r − Mful ĉ
z
− Fbid ĉ

z
≥ u,

(29)u + Mful ĉ
z

= r ⋅ 𝓁 − ŝ,

(30)

∑

ti ∈ T, j ∈ [r] ∪ {0},

⋆ ∈ {+,−}

x
j⋆

i
= k − |C+

| − 1,

	 Autonomous Agents and Multi-Agent Systems (2021) 35:38

1 3

38  Page 36 of 41

Constraint (24) ensures that the candidates picked into a solution are available and can
be part of the solution. Observe that candidates in G0+

i
 have to be part of the solution and

candidates in Gz−
i

 cannot be part of the solution. These two facts are ensured by Con-
straints (25) and (26). Constraint (27) forbids spending more approvals than possible to
push some candidates to the k-egroup. The same role for “wasted” approvals plays Con-
straint (28). The upper bound of wasted approvals is counted in the following way: From
the maximal number of possible approvals (we subtract one from the number of candi-
dates because we give exactly ŝ approvals to candidate ĉ ), we first subtract the approvals
already given to candidates in the k-egroup (i.e., Mful ĉ

z
 ); next, we subtract all approvals

that would push candidates outside of the solution given by the variables x to the k-egroup
(i.e., Fbid ĉ

z
 ). Constraint (29) ensures that, altogether, we spend exactly as many approvals

as required, and Constraint (30) holds only when a proper number of candidates are pushed
to be part of k-egroup. The last constraint forces maximization of the egalitarian utility of
the winning k-egroup when s is maximized.

Using our technique we can obtain a solution by making O(nm) ILPs with at most
2rur

diff
+ 2 variables. We return “yes” if there exists an ILP that achieves a k-egroup

with the utility at least the given threshold and “no” otherwise. According to Lenstra’s
result [34], the constructed ILPs yield fixed-parameter tractability with respect to the com-
bined parameter r + u diff . 	� ◻

6 � Conclusion

We developed a new model for and started the first systematic study of coalitional manipu-
lation for multiwinner elections. Our analysis revealed that multiwinner coalitional manip-
ulation requires models which are significantly more complex than those for single-winner
coalitional manipulation or multiwinner non-coalitional manipulation. As described in the
introduction, depending on the aggregation function our model may assume a given, fixed
coalition of manipulators can compensate their (potential) utility loss after a manipulation
in some way. Thus, in particular, our model does not analyze the dynamics of a coalition
but rather it tries to assess its potential and possible influence. Finding the quality of possi-
ble manipulations for a given coalition is essential to answer more general questions about
coalitions such as “what is the most profitable coalition for a given agent?”. Being able to
answer such questions, one can investigate the dynamics of coalitions formation. We dis-
cuss this future direction in more detail in the last paragraph of this section.

In our work, on the one hand, we generalized several tractability results for coalitional
manipulation of �-Approval by Conitzer et al. [17] and Lin [35] and for (non-coalitional)
manipulation of Bloc by Meir et al. [38] and Obraztsova et al. [42] to tractability of coali-
tional manipulation of �-Bloc in case of utilitarian or candidate-wise egalitarian evaluation
of egroups. On the other hand, we showed that coalitional manipulation becomes intracta-
ble in case of egalitarian evaluation of egroups.

(31)
∀q ∈ [r]∶ g(q) +

∑

ti ∈ T, ⋆ ∈ {+,−},

j ∈ [r] ∪ {0}

x
j⋆

i
⋅ ti[q] ≥ s.

Autonomous Agents and Multi-Agent Systems (2021) 35:38	

1 3

Page 37 of 41  38

Let us discuss a few findings in more detail (Table 1 surveys all our results). We studied
lexicographic, optimistic, and pessimistic tie-breaking and showed that, with the excep-
tion of egalitarian group evaluation, winning excellence-groups can be determined very
efficiently. The intractability (NP-hardness, parameterized hardness in form of W[1] - and
W[2]-hardness) for the egalitarian case, however, turns out to hold even for quite restricted
scenarios. We also demonstrated that numerous tie-breaking rules can be “simulated” by
(carefully chosen) lexicographic tie-breaking, again except for the egalitarian case. Inter-
estingly, the hardness of egalitarian tie-breaking holds only for the optimistic case while
for the pessimistic case it is efficiently solvable. Hardness for the egalitarian optimistic sce-
nario, however, translates into hardness results for coalitional manipulation regardless of

Table 1   Computational complexity of tie-breaking and coalitional manipulation

Our results for �-Bloc hold for any � ≥ 1 , and thus cover SNTV. The parameters are the size k of the
egroup, the number r of manipulators, and the number u diff of different utility values. Furthermore, m is
the number of candidates and n is the number of voters. The result marked with † holds for all possible
combinations of the respective evaluation and behavior variants. The results marked with ⋄ hold also for
F = F lex

F
eval
bhav

 -Tie-Breaking, easy cases:

Settings (evaluation, behavior) Complexity Reference

Utilitarian or cand.wise egalitarian, optimistic
or pessimistic

O(m ⋅ (r + logm)) Cor. 1 †

Egalitarian, pessimistic O(r ⋅ m logm) Thm. 1

F
egal

opt -Tie-Breaking (egalitarian, optimistic):

Parameters, restrictions Complexity Reference

General NP-hard Thm. 1
k, 0/1 utilities and q = 1 W[2]-hard Thm. 1
r + k W[1]-hard Thm. 2
r + u diff FPT Thm. 3

�-Bloc-F-eval-Coalitional Manipulation

Utilitarian/cand.wise egalitarian, optimistic/pessimistic:

Restrictions Complexity Reference

General O(k2m2r(n + r)) Thm. 4 ⋄
Consistent manipulators O(m(m + r + n)) Prop. 3 ⋄
� = k O(m(m + r + n)) Thm. 5 ⋄

�-Bloc-F-eval-Coalitional Manipulation

Egalitarian, optimistic/pessimistic:

Parameters, restrictions Complexity Reference

General NP-hard Thm. 6 ⋄
k, 0/1 utilities and q = 1 W[2]-hard Thm. 6 ⋄
r + k W[1]-hard Thm. 6 ⋄
r + u diff FPT Thm. 7 and Thm. 8 ⋄

	 Autonomous Agents and Multi-Agent Systems (2021) 35:38

1 3

38  Page 38 of 41

the specific tie-breaking rule. On the contrary, coalitional manipulation becomes tractable
for the other two evaluation strategies—“candidate-wise” egalitarian and utilitarian. Addi-
tionally, for few manipulators and few different utility values the manipulators assign to
the candidates, manipulation becomes tractable also for the egalitarian optimistic scenario.

Our study provides a handful of practically efficient algorithms allowing for experi-
mental studies of coalitional manipulability, as shown by Kalkbrenner [30], who imple-
mented and tested our algorithms. Among many issues that such studies can address,
there are a few remarkable ones like “is finding a successful manipulation hard in prac-
tice?”, “how likely is a successful manipulation?”, and “how much, in practice, can an
election outcome be affected by a coalition?” (all questions were previously studied in
the single-winner case). For example, Kalkbrenner [30] asked this kind of questions
for the San Francisco Election Data from Preflib [37]. In her preliminary results, she
showed that under certain election parameters already a group of significantly fewer
than 0.1% of voters could have manipulated the elections successfully replacing at least
one candidate. Even though this result sounds alarming, it is unsure how robust it is
with respect to different election parameters. Thus, we find it interesting to apply our
algorithms to empirically advance our understanding of manipulability of real-life elec-
tions, in particular San Francisco Election Data.

One may also want to consider further evaluation functions to model different vari-
ants of manipulators’ behavior. One also technically natural variant is to consider
minc∈S minu∈U u(c) , introducing a very pessimistic viewpoint of a coalition: “The worst
candidate from the shortlist is finally chosen and the most-pessimistic expert from the
coalition is right with its evaluation.” This evaluation function would have in common
with util and candegal that one can also assume without loss of generality that there is just
one utility function (Observation 1). However, results do not directly translate because, for
the evaluation, only the worst candidate in the k-excellence-group would matter. This prop-
erty has a Chamberlin-Courant flavor, but with essentially only one voter, which suggests
that one might expect computational tractability for our coalitional manipulation problems
assuming the pessimistic evaluation in question.

In our study, we entirely focused on shortlisting as one of the simplest tasks for mul-
tiwinner elections to analyze our evaluation functions. It is interesting and non-trivial to
develop models for multiwinner rules that aim for proportional representation or diversity.
For shortlisting, extending our studies to non-approval-like scoring-based voting corre-
spondences would be a natural next step. In this context, already seeing what happens if
one extends the set of individual scores from being only 0 or 1 to more (but few) numbers
is of interest. Moreover, we focused on deterministic tie-breaking mechanisms, ignoring
randomized tie-breaking—another issue for future research.

An analysis of the manipulators’ behavior, briefly mentioned at the beginning of this
section, directing towards game theory seems promising as well. (Even more so since we
identified polynomial-time algorithms for a few variants of coalitional manipulation.) One
very interesting question about coalitions is, for example, whether a particular coalition
is stable. Intuitively, the utility for every voter that is a part of the manipulating coali-
tion should not be below the utility the voter receives when voting sincerely. This is of
course only a necessary condition to ensure the stability of a coalition. A more sophisti-
cated analysis of stability needs to consider game-theoretic aspects such as Nash or core
stability [41].

Acknowledgements  We thank the anonymous reviewers of IJCAI ’17 and JAAMAS for their construc-
tive and valuable feedback. Robert Bredereck was from mid-September 2016 to mid-September 2017 on

Autonomous Agents and Multi-Agent Systems (2021) 35:38	

1 3

Page 39 of 41  38

postdoctoral leave at the University of Oxford, supported by the DFG fellowship BR 5207/2. Work partially
done while Robert Bredereck was with TU Berlin. Andrzej Kaczmarczyk was supported by the DFG project
AFFA (BR 5207/1 and NI 369/15).

Funding  Open Access funding enabled and organized by Projekt DEAL.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

	 1.	 Aziz, H., Gaspers, S., Gudmundsson, J., Mackenzie, S., Mattei, N., & Walsh, T. (2015). Computational
aspects of multi-winner approval voting. In Proceedings of the 14th international conference on autono-
mous agents and multiagent systems, AAMAS ’15 (pp. 107–115).

	 2.	 Aziz, H., Brill, M., Conitzer, V., Elkind, E., Freeman, R., & Walsh, T. (2017a). Justified representation in
approval-based committee voting. Social Choice and Welfare, 48(2), 461–485.

	 3.	 Aziz, H., Elkind, E., Faliszewski, P., Lackner, M., & Skowron, P. (2017b). The Condorcet principle for multi-
winner elections: from shortlisting to proportionality. In Proceedings of the 26th international conference
on artificial intelligence, IJCAI ’17 (pp. 84–90).

	 4.	 Barberà, S., & Coelho, D. (2008). How to choose a non-controversial list with k names. Social Choice and
Welfare, 31(1), 79–96.

	 5.	 Barberà, S., & Coelho, D. (2010). On the rule of k names. Games and Economic Behavior, 70(1), 44–61.
	 6.	 Barberà, S., Sonnenschein, H., & Zhou, L. (1991). Voting by committees. Econometrica, 59(3), 595–609.
	 7.	 Barrot, N., Gourvès, L., Lang, J., Monnot, J., & Ries, B. (2013). Possible winners in approval voting. In Pro-

ceedings of the 3rd international conference on algorithmic decision theory, ADT ’13 (pp. 57–70).
	 8.	 Bartholdi, J. J., III., Tovey, C. A., & Trick, M. A. (1989). The computational difficulty of manipulating an

election. Social Choice and Welfare, 6(3), 227–241.
	 9.	 Baumeister, D., & Rothe, J. (2015). Preference aggregation by voting, chap 4. In J. Rothe (Ed.), Economics

and computation: An introduction to algorithmic game theory, computational social choice, and fair divi-
sion (pp. 197–325). Berlin: Springer.

	10.	 Betzler, N., Slinko, A., & Uhlmann, J. (2013). On the computation of fully proportional representation.
Journal of Artificial Intelligence Research, 47, 475–519.

	11.	 Brandt, F., Conitzer, V., Endriss, U., Lang, J., & Procaccia, A. D. (Eds.). (2016). Handbook of computa-
tional social choice. Cambridge: Cambridge University Press.

	12.	 Bredereck, R., Kaczmarczyk, A., & Niedermeier, R. (2017). On coalitional manipulation for multiwinner
elections: Shortlisting. In Proceedings of the 26th international joint conference on artificial intelligence,
IJCAI ’17 (pp. 887–893).

	13.	 Caragiannis, I., Kalaitzis, D., & Markakis, E. (2010). Approximation algorithms and mechanism design
for minimax approval voting. In Proceedings of the 24th AAAI conference on artificial intelligence (AAAI
’10) (pp. 737–742). AAAI Press.

	14.	 Chamberlin, J. R., & Courant, P. N. (1983). Representative deliberations and representative decisions: Pro-
portional representation and the Borda rule. American Political Science Review, 77(3), 718–733.

	15.	 Coleman, T., & Teague, V. (2007). On the complexity of manipulating elections. In Proceedings of com-
puting: The 13th Australasian theory symposium (pp. 25–33).

	16.	 Conitzer, V., & Walsh, T. (2016). Barriers to manipulation in voting, chap 6. In F. Brandt, V. Conitzer,
U. Endriss, J. Lang, & A. D. Procaccia (Eds.), Handbook of computational social choice (pp. 126–145).
Cambridge: Cambridge University Press.

	17.	 Conitzer, V., Sandholm, T., & Lang, J. (2007). When are elections with few candidates hard to manipu-
late? Journal of the ACM, 54(3), 1–33.

	18.	 Cygan, M., Fomin, F. V., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk, M., et al. (2015). Parameter-
ized algorithms. Berlin: Springer.

	19.	 Davies, J., Katsirelos, G., Narodytska, N., Walsh, T., & Xia, L. (2014). Complexity of and algorithms for
the manipulation of Borda, Nanson’s and Baldwin’s voting rules. Artificial Intelligence, 217, 20–42.

http://creativecommons.org/licenses/by/4.0/

	 Autonomous Agents and Multi-Agent Systems (2021) 35:38

1 3

38  Page 40 of 41

	20.	 Debord, B. (1992). An axiomatic characterization of Borda’s k-choice function. Social Choice and Wel-
fare, 9(4), 337–343.

	21.	 Downey, R. G., & Fellows, M. R. (2013). Fundamentals of parameterized complexity. Berlin: Springer.
	22.	 Elkind, E., & Rothe, J. (2015). Cooperative game theory, chap 3. In J. Rothe (Ed.), Economics and com-

putation: an introduction to algorithmic game theory, computational social choice, and fair division (pp.
135–193). Berlin: Springer.

	23.	 Elkind, E., Faliszewski, P., Skowron, P., & Slinko, A. M. (2017). Properties of multiwinner voting rules.
Social Choice and Welfare, 48(3), 599–632.

	24.	 Erdélyi, G., Fellows, M. R., Rothe, J., & Schend, L. (2015). Control complexity in Bucklin and fallback
voting: An experimental analysis. Journal of Computer and System Sciences, 81(4), 661–670.

	25.	 Faliszewski, P., Skowron, P., Slinko, A. M., & Talmon, N. (2016). Multiwinner analogues of the plurality
rule: Axiomatic and algorithmic perspectives. In Proceedings of the 30th AAAI conference on artificial
intelligence, AAAI ’16 (pp. 482–488).

	26.	 Faliszewski, P., Skowron, P., Slinko, A. M., & Talmon, N. (2017a). Multiwinner voting: A new challenge
for social choice theory, chap 2. In U. Endriss (Ed.), Trends in computational social choice (pp. 27–47).
New York: AI Access.

	27.	 Faliszewski, P., Skowron, P., & Talmon, N. (2017b). Bribery as a measure of candidate success: Complex-
ity results for approval-based multiwinner rules. In Proceedings of the 16th international conference on
autonomous agents and multiagent systems, AAMAS ’17 (pp. 6–14).

	28.	 Fellows, M. R., Hermelin, D., Rosamond, F., & Vialette, S. (2009). On the parameterized complexity of
multiple-interval graph problems. Theoretical Computer Science, 410(1), 53–61.

	29.	 Flum, J., & Grohe, M. (2006). Parameterized complexity theory. Berlin: Springer.
	30.	 Kalkbrenner, L. (2019). Coalitional manipulation for multiwinner elections: Algorithms and experiments.

Bachelor thesis. http://​fpt.​akt.​tu-​berlin.​de/​publi​catio​ns/​theses/​BA-​lydia-​kalkb​renner.​pdf.
	31.	 Kellerer, H., Pferschy, U., & Pisinger, D. (2004). Knapsack problems. Berlin: Springer.
	32.	 Klaus, B., Manlove, D. F., Rossi, F., Aziz, H., Savani, R., Chalkiadakis, G., & Wooldridge, M. (2016).

Coalitional formation. In F. Brandt, V. Conitzer, U. Endriss, J. Lang, & A. D. Procaccia (Eds.), Handbook of
computational social choice (pp. 331–396). Cambridge: Cambridge University Press (chap 14–16, part 3).

	33.	 Lackner, M., & Skowron, P. (2018). Approval-based multi-winner rules and strategic voting. In Proceed-
ings of the 27th international joint conference on artificial intelligence, IJCAI ’18 (pp. 340–346).

	34.	 Lenstra, H. W. (1983). Integer programming with a fixed number of variables. Mathematics of Operations
Research, 8(4), 538–548.

	35.	 Lin, A. (2011). The complexity of manipulating k-approval elections. In Proceedings of the 3rd interna-
tional conference on agents and artificial intelligence, ICAART ’11 (pp. 212–218).

	36.	 Lu, T., Tang, P., Procaccia, A. D., & Boutilier, C. (2012). Bayesian vote manipulation: Optimal strategies and
impact on welfare. In Proceedings of the 28th conference on uncertainty in artificial intelligence, UAI ’12
(pp. 543–553).

	37.	 Mattei, N., & Walsh, T. (2013). Preflib: A library for preferences. In Proceedings of the 3nd international
conference on algorithmic decision theory, ADT ’13 (pp. 259–270).

	38.	 Meir, R., Procaccia, A. D., Rosenschein, J. S., & Zohar, A. (2008). Complexity of strategic behavior in
multi-winner elections. Journal of Artificial Intelligence Research, 33(1), 149–178.

	39.	 Ministry of Science and Higher Education of the Republic of Poland. (2019). Informations on the election
of The Board of Research Excellence (in Polish). http://​www.​bip.​nauka.​gov.​pl/​g2/​orygi​nal/​2019_​03/​c435c​
5061f​0aab7​158eb​a2716​553f2​40.​pdf. Accessed July 30, 2019

	40.	 Niedermeier, R. (2006). Invitation to fixed-parameter algorithms. Oxford: Oxford University Press.
	41.	 Nisan, N., Roughgarden, T., Tardos, É., & Vazirani, V. V. (2007). Algorithmic game theory. Cambridge:

Cambridge University Press.
	42.	 Obraztsova, S., Zick, Y., & Elkind, E. (2013). On manipulation in multi-winner elections based on scoring

rules. In Proceedings of the 12th international conference on autonomous agents and multiagent systems,
AAMAS ’13 (pp. 359–366).

	43.	 Scheuerman, J., Harman, J. L., Mattei, N., & Venable, K. B. (2019). Heuristics in multi-winner approval
voting. CoRR abs/1905.12104.

	44.	 Skowron, P. (2015). What do we elect committees for? A voting committee model for multi-winner rules.
In Proceedings of the 24th international conference on artificial intelligence, IJCAI ’15 (pp. 1141–1147).

	45.	 Skowron, P., Faliszewski, P., & Slinko, A. M. (2015). Achieving fully proportional representation:
Approximability results. Artificial Intelligence, 222, 67–103.

	46.	 Tideman, N., & Richardson, D. (2000). Better voting methods through technology: The refinement-man-
ageability trade-off in the single transferable vote. Public Choice, 103(1–2), 13–34.

http://fpt.akt.tu-berlin.de/publications/theses/BA-lydia-kalkbrenner.pdf
http://www.bip.nauka.gov.pl/g2/oryginal/2019_03/c435c5061f0aab7158eba2716553f240.pdf
http://www.bip.nauka.gov.pl/g2/oryginal/2019_03/c435c5061f0aab7158eba2716553f240.pdf

Autonomous Agents and Multi-Agent Systems (2021) 35:38	

1 3

Page 41 of 41  38

	47.	 Walsh, T. (2011). Where are the hard manipulation problems? Journal of Artificial Intelligence Research,
44, 1–29.

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

	On coalitional manipulation for multiwinner elections: shortlisting
	Abstract
	1 Introduction
	2 Preliminaries
	3 Model for coalitional manipulation
	3.1 Evaluating -egroups
	3.2 Breaking ties
	3.3 Limits of lexicographic tie-breaking

	4 Complexity of tie-breaking
	4.1 Utilitarian and candidate-wise egalitarian: tie-breaking is easy
	4.2 Egalitarian: being optimistic is hard

	5 Complexity of coalitional manipulation
	5.1 Utilitarian and candidate-wise egalitarian: manipulation is tractable
	5.2 Egalitarian: manipulation is hard even for simple tie-breaking

	6 Conclusion
	Acknowledgements
	References

