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Abstract
For a finite group G, letHg,G,ξ be the stack of admissible G-covers C → D of stable
curves with ramification data ξ , g(C) = g and g(D) = g′. There are source and target
morphisms φ : Hg,G,ξ → Mg,r and δ : Hg,G,ξ → Mg′,b, remembering the curves C
and D together with the ramification or branch points of the cover respectively. In this
paper we study admissible cover cycles, i.e. cycles of the form φ∗[Hg,G,ξ ]. Examples
include the fundamental classes of the loci of hyperelliptic or bielliptic curves C with
marked ramification points. The two main results of this paper are as follows: firstly,
for the gluing morphism ξA : MA → Mg,r associated to a stable graph A we give a
combinatorial formula for the pullback ξ∗

Aφ∗[Hg,G,ξ ] in terms of spaces of admissible
G-covers and ψ classes. This allows us to describe the intersection of the cycles
φ∗[Hg,G,ξ ]with tautological classes. Secondly, the pull–push δ∗φ∗ sends tautological
classes to tautological classes and we give an explicit combinatorial description of
this map. We show how to use the pullbacks to algorithmically compute tautological
expressions for cycles of the form φ∗[Hg,G,ξ ]. In particular, we compute the classes
[H5] and [H6] of the hyperelliptic loci in M5 and M6 and the class [B4] of the
bielliptic locus inM4.
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1 Introduction

1.1 Motivation: admissible cover cycles

A classical way of constructing closed subvarieties of the moduli spaceMg,n of stable
curves is by considering families of finite covers of curves; for examplewe can consider
the closure of the locus of smooth curves (C, p1, ..., pn) such that there exists a finite
degree d cover C → D to a curve of fixed genus g′ with fixed ramification profile at
the marked points pi of C . An example would be the loci Hg,n1,2n2 and Bg,n1,2n2 of
hyperelliptic and bielliptic curves with n1 marked fixed points of the corresponding
involution and 2n2 marked points pairwise switched.
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Given such a locus of covers it is natural to study its fundamental class in the
Chow or cohomology ring1 of Mg,n . The class of any locus of admissible covers
of genus 0 curves with fixed degree d and fixed ramification profile is tautological
(see [18]). However, not all classes coming from spaces of admissible covers are
tautological (see for example [27,47]). In fact such classes are the prime example of
explicit nontautological algebraic classes.

In the cases where the admissible cover cycles are tautological, there is a wide
literature on expressing such cycles in terms of decorated stratum classes, which are
a set of additive generators of the tautological ring.2 In [15, Theorem 2.2] the class
[Wp] ∈ A1(M2,1) of the locus of pointed genus 2 curveswhere themarked point is one
of theWeierstrass points of the curve is computed in terms of decorated stratumclasses.
Since every genus 2 curve is hyperelliptic and the Weierstrass points coincide with
ramification points of the hyperelliptic map, the cycle [Wp] equals [H2,1,0], the class
of the locus of hyperelliptic genus 2 curves with one point fixed by the involution. The
computation of the class [H3] ∈ A1(M3) of the locus of genus 3 hyperelliptic curves
is well known (see for example [30, Section 3.H]). The computation of [H4] in terms
of decorated stratum classes is much harder and was first given in [18, Proposition 5].
More recently in [11] a generating series for the class of the locus [H2,n1,0] is given
for all 0 ≤ n1 ≤ 5 in terms of ψ classes and graphs. In [19] the class [B3] ∈ A2(M3)

of the locus of bielliptic curves of genus 3 is calculated.
In this paper, we give a systematic way for computing the intersection of admissible

cover cycles with decorated stratum classes and show how to use this information to
compute the admissible cover cycles, in the cases where they are tautological.

1.2 The tautological ring

In the following we give a reminder about the tautological ring on the moduli space
of curves. For a more detailed introduction see e.g. [3,17,37].

Themoduli spaceMg,n of stable curves (C, p1, . . . , pn) has a stratification accord-
ing to the topological type ofC . This type is encoded in a stable graph A, whose vertices
V (A) correspond to the irreducible components of C and whose edges E(A) corre-
spond to nodes ofC connecting these components. Further, the vertices of A carry legs
l1, . . . , ln indicating on which component the marked points p1, . . . , pn are located.

Given a stable graph A we can parametrize the closure of the locus of stable curves
(C, p1, . . . , pn) with type A by a map

ξA : MA =
∏

v∈V (A)

Mg(v),n(v) → Mg,n

which glues a union of marked curves by identifying pairs of markings and forms the
corresponding stable curve, prescribed by the data of the graph A.

1 In this paper we restrict to the case of rational coefficients, both for Chow groups and for cohomology
groups.
2 See the following section for a reminder about the tautological ring.
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On the moduli spacesMg(v),n(v) there are natural cycle classes given by the cotan-
gent line bundles ψi and the Arbarello–Cornalba classes κa . We call a decorated
stratum class the pushforward of a product of κ and ψ classes under the morphism
ξA. In particular, pushing forward the fundamental class of MA gives (a multiple
of) the class of the closure of the locus of curves of type A. The vector spaces
R•(Mg,n) ⊂ A•(Mg,n) and RH•(Mg,n) ⊂ H•(Mg,n) spanned by decorated stra-
tum classes turn out to be closed under the intersection product and are called the
tautological rings. Alternatively (see [18]) these rings can be defined as the small-
est system of Q-subalgebras of A•(Mg,n) and H•(Mg,n) closed under pushforward
along the gluing and forgetful morphisms.

The intersection between two decorated stratum classes has an explicit, combina-
torially defined expression in terms of decorated stratum classes. This result was first
written down in [27] and has since been implemented as a computer program, see
[41,48].

Our primary goal in this paper is to derive a similar formula for the intersection
of a locus of admissible covers with a decorated stratum class. In order to state our
results, we need to establish some notation in the following section.

1.3 Stacks of admissible G-covers

A modular interpretation for the loci of covers can be given by stacks of admissible
covers. The definition of admissible covers was first written down in [29] for the case
of d-sheeted covers of genus 0 curves and later clarified and extended in [4,7,31]. See
Definition 3.2 for a reminder.

In this paper, we are going to study loci of admissible G-covers for a fixed finite
group G, that is, admissible covers ϕ : C → D of curves together with a G-action on
C making ϕ the quotient map.

The reasonwhywe restrict ourselves toG-covers instead of arbitrary covers of fixed
degree is that it makes the moduli spaces of such covers behave like G-equivariant
versions of moduli spaces of curves, allowing a simple description of the correspond-
ing combinatorics. Since every degree 2 cover is automatically a Z/2Z-cover, the
important cases of hyperelliptic and bielliptic loci are covered by our treatment. For a
remark about the case of arbitrary covers see Sect. 1.6 below.

Given a G-cover ϕ : C → D, the ramification points of ϕ are exactly those smooth
points ofC having a nontrivialG-stabilizer. The ramification behaviour ofϕ is encoded
in a monodromy datum ξ , a tuple of elements of G generating the stabilizers at the
various marked points in C .

Fix a genus g ≥ 0, a finite group G and a monodromy datum ξ = (h1, . . . , hb) ∈
Gb. Then we can define a stackHg,G,ξ whose objects are given by morphisms

G � (C, (pi,a) i=1,...,b
a∈G/〈hi 〉

)
ϕ−→ (D, (qi )i=1,...,b) (1)

where (C, (pi,a)i,a) and (D, (qi )i ) are (connected) stable curves, with the genus of
C being g. The map ϕ : C → D is an admissible cover such that the action of G on
C is a principal G-bundle outside the preimages of markings and nodes of D. Further
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we have ϕ−1(qi ) = {pi,a : a ∈ G/〈hi 〉} for all i . The monodromy of the G-action at
the pi,a is given by a hi a−1 and the G-action permutes the points pi,a according to
left-multiplication of G on a ∈ G/〈hi 〉.

The spaceHg,G,ξ is a smooth proper Deligne-Mumford stack. It is closely related
to the stacks of pointed admissible covers defined in [31]. For further discussion of
stacks of admissibleG-covers, in particular concerning the singularities and birational
geometry of their coarse moduli spaces, see also the papers [22,23].

A crucial difference between our paper and [31] is that we require the curve C to
be connected, while in [31] also disconnected admissible covers are considered. We
ask C to be connected since it allows us to define maps

Hg,G,ξ Mg,r

Mg′,b

φ

δ (2)

where r and b are the number of ramification and branch points of the admissible
cover and where φ sends the admissible cover (1) to the stable curve (C, (pi,a)i,a)
and δ sends it to (D, (qi )i ). The map φ is representable, finite, unramified and a
local complete intersection, while δ is flat, proper and quasi-finite, but in general not
representable.

We obtain a cycle class φ∗[Hg,G,ξ ] ∈ A•(Mg,r ). These cycles (and their pushfor-
wards under forgetful maps π : Mg,r → Mg,n) are the main objects of study in this
paper. These include the cycles of loci Hg,n1,2n2 and Bg,n1,2n2 of hyperelliptic and
bielliptic curves mentioned above.

1.4 Intersection results

Now we are ready to present our results about the intersection of φ∗[Hg,G,ξ ] with a
cycle ξA∗[MA] coming from a boundary stratum for a stable graph A. In the result, we
use that, similarly to Mg,n , the space Hg,G,ξ has a stratification by topological type.
Roughly, the strata are enumerated by the stable graphs 	 of the curves C together
with aG-action on	 induced by theG-action on the components, nodes andmarkings
of C (see Sect. 3.4). Denoting the graph with G-action by (	,G), the corresponding
locus inHg,G,ξ admits a parametrization by an equivariant gluing map

ξ(	,G) : H(	,G) =
∏

w∈V (	)/G

Hg(w),Gw,ξw
→ Hg,G,ξ .

The factors Hg(w),Gw,ξw
correspond to orbits of vertices in 	 under G. Indeed, for

a curve in Hg,G,ξ with stable graph (	,G), an orbit of a vertex w in 	 corresponds
to an orbit of components of the curve. Since G acts by isomorphisms of the curve,
all these components are isomorphic, and their isomorphism type is specified by an
element of Hg(w),Gw,ξw

.
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One checks that the intersection of (the image of) φ : Hg,G,ξ → Mg,r with (the
image of) ξA is given as the union of the spacesH(	,G) such that 	 is a specialization
of the graph A. Technically speaking this means that we have a morphism f : 	 → A
of stable graphs (also called an A-structure on 	 or a contraction of 	) such that
each G-orbit of edges of 	 contains at least one edge coming from A. For details see
Definition 4.1. We call such an f a generic A-structure on (	,G). Denote by HA;G,ξ

the set of isomorphism classes of generic A-structures (	,G, f ) for a given space
Hg,G,ξ .

In this situation, the composition of ξ(	,G) with the map φ : Hg,G,ξ → Mg,r

factors through the gluing maps ξ	 and ξA via a diagram

H(	,G) Hg,G,ξ

M	 Mg,r

MA

φ f

ξ(	,G)

φ(	,G) φ

ξ	

ξA

(3)

Theorem 1 see Theorem 4.9. We have

ξ∗
Aφ∗([Hg,G,ξ ]) =

∑

(	,G, f )∈HA;G,ξ

ctop(E f ) ∩ φ f ∗[H(	,G)].

where ctop(E f ) is the top Chern class of an excess intersection bundle. It is the product
of factors −(ψh + ψh′) for some half-edges h, h′ of A, as described in Proposition
4.7.

By the projection formula this theorem allows us to express the intersection of
φ∗[Hg,G,ξ ] with a decorated stratum class for the graph A using tautological classes
and the fundamental classes of the factors in H(	,G). One thing to note is that in
the description of the map φ(	,G), diagonal embeddings 
 : Mgi ,ni → (Mgi ,ni )

×m

naturally appear (see Sect. 3.4). Thus to give a complete description of the intersection
of φ∗[Hg,G,ξ ] with a decorated stratum class, we need to understand the class of the
diagonal. While this class will not be tautological in general, it is tautological for
many small (g, n) and in that case we can describe its Kunneth decomposition (see
Application 2.27).

There are several variants of the above result. With a bit more care, it is possible to
replace φ∗[Hg,G,ξ ] by a pushforward π∗φ∗[Hg,G,ξ ] from a moduli space with more
markings (in other words, we forget some of the ramification points). This is described
in Sect. 4.4.

Another interesting consequence of the proof of the theorem above is the following
result.
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Theorem 2 see Theorem 4.10 and Corollary 4.11 For the maps φ, δ as in the diagram
(2), the composition

δ∗φ∗ : A•(Mg,r ) → A•(Mg′,b)

sends tautological classes to tautological classes.More precisely, on decorated bound-
ary strata, this map admits an explicit, combinatorial formula.

In particular, this theorem allows us to compute intersection numbers of cycles
φ∗[Hg,G,ξ ] with decorated boundary strata of the complementary dimension: these
strata are mapped to tautological zero cycles via δ∗φ∗ and we can compute the degrees
of those explicitly.

See the papers [12,13] for a different approach to boundaries of loci of curves with
given automorphism groups from the perspective of hyperbolic surfaces.

1.5 Applications

One of the main applications of the results in the previous section is that they often
allow us to compute cycles of admissible covers in terms of decorated stratum classes
in the case that these cycles are tautological. Let α ∈ H2i (Mg,n) be an admissible
cover cycle, i.e. a cycle of the form α = π∗φ∗[Hg,G,ξ ] for some forgetful map π :
Mg,r → Mg,n . Assume that α is tautological.

The first method to compute α is to calculate its intersection numbers with tauto-
logical cycles of the complementary cohomological degree 2(3g − 3 + n − i). If the
pairing

RH2i (Mg,n) ⊗ RH2(3g−3+n−i)(Mg,n) → Q

is perfect in the relevant degree (e.g. if all cohomology is tautological) then these
intersection numbers completely determine α.

A second method is to compute the pullback of α via boundary maps ξA : MA →
Mg,n for various stable graphs A. Using a variant of Theorem 1 (see Theorem 4.10)
we can express the result in terms of cycles of smaller-dimensional spaces Hgi ,Gi ,ξi ,
which can be computed by recursion. Comparing the result with the pullbacks of a
basis of RH2i (Mg,n) we obtain a linear condition on α ∈ RH2i (Mg,n). Combining
this information for different graphs A is often sufficient to compute α.

Since these computations quickly become untractable by hand, we have imple-
mented the operations discussed in this section in a computer program [14], written in
SAGE [44]. This program uses several functions already implemented in [41]. By now,
the program has been expanded to allowmore general computations in the tautological
ring of Mg,n and has found a range of other applications (see [14] for details).

Using the program we are able to greatly extend the list of such classes which can
be computed (as well as repeat and verify most of the afformentioned calculations). In
Figs. 1 and 2we give lists of the values (g, n1, n2) forwhichwe can calculate the cycles
[Hg,n1,2n2 ] and [Bg,n1,2n2 ] of hyperelliptic and bielliptic curves as sums of decorated
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Fig. 1 Values of g, n1, n2 for which we computed the cycle [Hg,n1,2n2 ] explicitly

Fig. 2 Values of g, n1, n2 for
which which we computed the
cycle [Bg,n1,2n2 ] explicitly

stratum classes. Note that in the hyperelliptic case, we always have n1 ≤ 2g + 2 and
in the bielliptic case n1 ≤ 2g − 2.

As explicit examples, we give expressions for the cycles [H5] ∈ H6(M5) and
[B4] ∈ H6(M4) in Theorems 5.5 and 5.7. We describe the computation of [H6] ∈
H8(M6) in Remark 5.6.

Together with the program [14], these explicit formulas can be used to further study
properties of admissible cover cycles. For example, in Remark 5.14 we explain how
the formulas for [Bg] have been used to verify expressions for Hodge integrals on
bielliptic loci shown in [43].

Our methods also allow us to go beyond the case of double covers. In Sect. 5.4 we
give some examples of cycles of cyclic triple covers that we can currently compute,
which can be used to verify of formulas from [35] of Hodge integrals against such
loci.

1.6 Outlook

The results in our paper show that cycles of admissible covers behave very well under
intersection with tautological classes. It is therefore natural to define an extension of
the tautological ring obtained by adding all such cycles. As shown in [27,47], this
eventually gives strictly more cycle classes.

However, to work with this extension we must also understand the intersection of
different admissible cover cycles. We investigate a first example of this in Sect. 5.5,
where we pull back the locus of bielliptic curves in M4 to the space of hyperellip-
tic curves. As shown there, this intersection between the hyperelliptic and bielliptic
locus again has a neat description in terms of admissible cover spaces and the Chern
class of the excess bundle is tautological. We expect this to be true in general, which
would allow us to write down an explicit additive set of generators for the extended
tautological ring, together with a combinatorial description of their intersections.

Another direction is the generalization from admissibleG-covers to arbitrary covers
of a fixed degree d. As described in [4, Section 4.2], for every admissible cover E → D
of degree d there is a Sd -admissible cover C → D such that E = C/Sd−1, where Sd
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is the symmetric group. In other words we have a diagram

C

E D

/Sd−1
/Sd

This suggests, given a space Hg,G,ξ and a subgroup H ⊂ G, to consider the map

φH : Hg,G,ξ → Mg′′,b′ ,
[
(G � (C, (pi,a)i,a) → (D, (qi )i ))

] → (C/H , (η(pi,a))i,a),

where η : C → C/H is the quotient map. For the trivial subgroup H = {eG} ⊂ G we
obtain our previous map φ, for H = G we obtain the map δ. By the argument above,
for G = Sd the cycles φSd−1∗[Hg,G,ξ ] allow us to describe all degree d admissible
covers, and we expect that they behave similarly to the cycles φ∗[Hg,G,ξ ] we saw
above. We plan to investigate this in further papers.

Finally, it is possible to look at the intersection theory on the spacesHg,G,ξ them-
selves. There is a natural definition of a tautological ring R•(Hg,G,ξ ) ⊂ A•(Hg,G,ξ )

and thus of tautological relations in this ring. A first basic way to obtain such relations
is to pull back usual tautological relations onMg′,b via the target map δ : Hg,G,ξ →
Mg′,b. Any tautological relation on Hg,G,ξ pushes forward to a relation between
cycles from admissible cover spaces under the source map φ : Hg,G,ξ → Mg,r . Such
relations can potentially be used to express one admissible cover cycle in terms of
smaller-dimensional ones, enabling us to compute them recursively.

1.7 Outline of the paper

In Sect. 2we recall the definition of decorated stratumclasses and compute the intersec-
tion between such classes following [27]. This sectionmainly serves as a warm-up and
to establish notation. In Sect. 3 we introduce the stack of admissible covers and state
a number of facts for later. We compute the intersection between spaces of admissible
covers and decorated stratum classes in Sect. 4. Finally in Sect. 5 we show how these
theorems can be used to compute classes of admissible covers in terms of decorated
stratum classes. We give a number of examples explicitly.

2 Intersections in the tautological ring

In this section wewill compute the intersection between two decorated stratum classes
in terms of decorated stratum classes. This was first done in [27]. The purpose of this
section is to introduce notation and to serve as awarmup for laterwhenwewill compute
the intersection between decorated stratum classes and stacks of pointed admissible
G-covers. Readers familiar with tautological classes can likely skip to Sect. 3 and
refer back to this section as necessary.
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Definition 2.1 Recall that an undirected finite graph (or simply graph) is a triple

(V , E, s : E → Sym2 V )

where V is a finite set of vertices, E is a finite set of edges and s sends each edge into
the second symmetric power of V thus assigning two vertices to every edge.

Definition 2.2 We define a stable graph 	 to be the data

	 := (V , H , L, g : V → Z≥0, ι : H → H , a : H → V , ζ : L → V )

which satisfies the following conditions:

(i) ι is a fixed point free involution,
(ii) let E be the set of orbits of ι and let s : E → Sym2 V be the function induced

by a on E then (V , E, s) is a connected graph,
(iii) for each vertex v ∈ V the stability condition 2g(v)−2+|a−1(v)|+|ζ−1(v)| > 0

is satisfied.

Notation 2.3 We call the elements of H half edges and the elements of L legs. We
call g the genus function and the genus of a vertex is defined to be g(v). For a vertex
v ∈ V we set n(v) = |a−1(v)| + |ζ−1(v)| the number of half edges plus legs incident
to v. The genus of a stable graph 	 is defined to be

g(	) :=
∑

v∈V
g(v) + h1(	).

We will say that a stable graph 	 is n-pointed if n = |L|.
Example 2.4 Given a stable curve C over SpecC, we associate a stable graph to C as
follows. Let V be the set of irreducible components of C , let H be the set of sections
of the normalization of C corresponding to the nodes of C , L the set of marked
points of C , g the function sending the irreducible components to the genus of their
normalization, ι the involution identifying sections h ∈ H mapping to the same node
of C , a the map identifying sections with the irreducible component they lie on and
ζ the map sending a marked point to its corresponding irreducible component. The
graph (V , H , L, g, ι, a, ζ ) is stable and is called the dual graph of C (see Fig. 3 for
an illustration).

The following definition formalizes the concept that a stable graph A is a contraction
of a stable graph 	. We follow the terminology in [27], see also [25,33] for related
definitions.

Definition 2.5 Let A and 	 be genus g stable graphs with set of legs L	 = L = L A.
An A-structure on 	 is a triple

(α : V	 � VA, β : HA ↪→ H	, γ : H	\ Im β → VA)

which satisfies the following conditions:
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Fig. 3 A curve and its dual graph. When the genus of a vertex is 0 we shall depict it as a black dot

(i) the map β commutes with the involutions, i.e. β ◦ ιA = ι	 ◦ β,
(ii) the map α respects the leg assignments, i.e. α ◦ ζ	 = ζA,
(iii) if h ∈ Im β and a	(h) = v then aA(β−1(h)) = α(v),
(iv) if h ∈ H	\ Im β and a	(h) = v then α(v) = γ (h),
(v) if v ∈ VA then

(α−1(v), γ −1(v), β(a−1
A (v)) ∪ ζ−1

A (v), g	, a	, ι	, ζ )

is a stable graph of genus g(v) (where g	 , a	 and ι	 are restricted to the appro-
priate subsets and ζ is defined by ζ	 on ζ−1

A (v) and by a	 on β(a−1
A (v))).

Remark 2.6 If 	 has an A-structure f = (α, β, γ ) and A has a B-structure g =
(α′, β ′, γ ′) it is easy to check that there exists a unique γ ′′ : H	 \ Im(β ◦ β ′) → VB

making (α′ ◦ α, β ◦ β ′, γ ′′) a B-structure on 	. Indeed, γ ′′ is given as α′ ◦ γ on
H	 \ Im β and as γ ′ ◦β−1 on Im β \ Im β ◦β ′. We can therefore define amorphism of
n pointed genus g stable graphs 	 → A as an A-structure on 	. An isomorphism of
stable graphs f : A → B is thus a B-structure f = (α, β, γ ) on A and an A-structure
g = (α′, β ′, γ ′) on B such that g◦ f = (idVA , idHB , id∅) and f ◦g = (idVB , idHA , id∅).

We have formed an essentially finite category of stable graphs of genus g with set
of legs L .

Example 2.7 Let

	 = 1 1 1

h1 h2
h3 h4

h5 h6
v1 v2 v3

, A = 2 1
v′
1 v′

2

h′
1

h′
2

h′
3 h′

4

One A-structure on 	 is

α : v1, v2 → v′
1

v3 → v′
2

β : h′
i → hi

γ : h5, h6 → v′
1.

In total there are 4 different A-structures which can be given to 	. Indeed we can
send h′

1 to h1, h2, h5, or h6 and each of these choices completely determines an
A-structure on 	.
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Notation 2.8 For a stable graph 	 we define

M	 :=
∏

v∈V
Mg(v),n(v).

There is a natural gluing morphism

ξ	 : M	 → Mg,n

defined by 	. It glues the curve

(
∐

v∈V
Cv → S ; (σh : S → Ca(h))h∈H , (σ ′

l : S → Cζ(l))l∈L

)
∈ M	

over S together by gluing the section σh to σι(h).
The morphism ξ	 is a representable morphism of Deligne-Mumford stacks (see [3,

Proposition 10.25]) and since both its domain and codomain are smooth and complete
it is an lci and proper morphism.

If we have a morphism of stable graphs 	 → A we can construct a corresponding
map of moduli spaces

ξ	→A : M	 → MA

defined as a composition of gluing morphisms component wise.

Remark 2.9 The image of ξ	 in Mg,n equals the closure of the locus of all curves in
Mg,n with dual graph isomorphic to 	. The generic degree of ξ	 equals the order of
the automorphism group of 	.

Let A and B be n pointed genus g stable graphs. We will compute the intersection

ξA∗([MA]) · ξB∗([MB])

as an explicit sum of classes of Mg,n . By the excess intersection formula (see for
example [21, Proposition 17.4.1]) we have to identify the fiber product

FA,B MB

MA Mg,n

p2

p1 ξB

ξA

and the top Chern class of the excess intersection bundle E = p∗
1NξA/Np2 . We will

prove FA,B is isomorphic to a disjoint union of stacksM	 where 	 is a graph which
appears as a specialization of both A and B.
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Definition 2.10 We will say that 	 has an (A, B)-structure ( f , g), or that 	 is an
(A, B)-graph, if 	 has both an A-structure f = (αA, βA, γA) and a B-structure
g = (αB, βB , γB). We say that ( f , g) is a generic (A, B)-structure on 	 if every edge
of 	 corresponds to an edge of A or an edge of B, i.e. if

βA(HA) ∪ βB(HB) = H	.

We say that two stable graphs 	, 	′ with (A, B)-structures ( f , g) and ( f ′, g′) are
isomorphic (A, B)-graphs if there exists an isomorphism τ : 	 → 	′ such that the
following diagram commutes

B

	 	′

A

g

τ

f

g′

f ′

.

Example 2.11 Let

A = B = 3

h1

h2

.

There are three stable graphs which admit a generic (A, B)-structure:

	1 = 3

h′
1

h′
2

	2 = 2 1

h′
1 h′

2

h′
3 h′

4

	3 = 2

h′
1

h′
2

h′
3

h′
4

.

The stable graph 	1 has two isomorphism classes of generic (A, B)-structures ( f , g):
Set f = (α f , β f , γ f ) and g = (αg, βg, γg). Up to isomorphism we can assume that
β f (h1) = h′

1, there are then two possible nonisomorphic choices for the images of
βg(h1), namely h′

1 and h′
2.

The graph 	2 has four isomorphism classes of generic (A, B)-structures: There
is always an isomorphism such that β f sends the edge (h1, h2) to (h′

1, h
′
2). We then

have β f (h1) = h′
1 or β f (h1) = h′

2 and these choices are nonisomorphic. Since the
(A, B)-structure is generic βg must send (h1, h2) to (h′

3, h
′
4) and we again have 2

choices.
The stable graph 	3 has only one isomorphism class of stable (A, B)-structures

( f , g). Up to isomorphism we have β f (h1) = h′
1 and βg(h1) = h′

3.

Notation 2.12 Let A and B be stablen pointed genus g graphs.Wewill denote byGA,B

a set of representatives of the set of all isomorphism classes of generic (A, B)-graphs.
We set

X =
∐

(	, f ,g)∈GA,B

M	.
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Proposition 2.13 (see Proposition 9, [27])There is a natural isomorphismX ∼−→ FA,B.

In the following we recall the proof of the above proposition, since
our proofs in Sect. 4.1will follow a similar strategy andwe introduce some essential

terminology on the way.
We start by giving a different modular interpretation ofM	 for any stable graph 	

(see [3, page 315] or [27, Section A2]):

Definition 2.14 Let 	 = (V , H , L, g, ι, a, ζ ) be an n-pointed stable graph of genus
g and let C be an n-pointed stable curve

π : C → S, si : S → C i = 1, ..., n

of genus g over a connected base S. A 	-marking on C is the following additional
data: (this is called a 	-structure in [27])

(i) #E additional disjoint sections σ1, ..., σe(	) of π with image in the singular locus
of C ,

(ii) #H sections σ̃1,1, σ̃1,2, σ̃2,1, ..., σ̃e(	),2 of the normalization C̃ of C along the
sections σi ,

(iii) #V disjoint connected componentsCv ofC\{σi }whose union isC\{σi } and such
that each Cv remains connected upon pullback along any morphism S′ → S of
base schemes (we shall call such components π -relative components of C\{σi }),

(iv) a choice of isomorphism between 	 and the stable graph

({Cv}, {σ̃i, j }, {s}, g, ι, α, ζ )

where g(Cv) is the arithmetic genus ofCv , the involution ι is defined by ι(σ̃i,1) =
σ̃i,2, α maps σ̃i, j to the π -relative component corresponding to the component
of C̃ it lies on and ζ maps s′

i to the π -relative component it lies on.

We will denote the curve C together with the data of a 	-marking on C by C	 .

The data of a 	-marking on a stable curve can be pulled back under any morphism
of connected base schemes.We can therefore define a stackM′

	 whose objects consist
of stable curves with 	-marking and whose morphisms respects the 	-marking under
pullback.

Proposition 2.15 (SeeProposition8, [27])There exists a natural isomorphismbetween
M	 and M′

	 .

Proof We can construct a natural morphism fromM	 toM′
	 by assigning the canon-

ical 	-marking to the universal curve overM	 . In the other direction given a S valued
point of M′

	 we naturally obtain a collection of v(	) stable curves by analysing
the π -relative components of C . Since we have a bijection between these curves and
v(	) and a bijection between the sections of the normalization ofC and the sections of
curves inM	 we obtain a S valued point ofM	 . It is straightforward to check that this
correspondence induces a bijection on the space of morphisms between corresponding
objects. ��
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Proof of Proposition 2.13 In this proof we will always use the modular interpretation
of curves with a 	-structure for M	 and write M	 for M′

	 everywhere.
Let u : X → MA be the map defined as ξ f : 	→A : M	 → MA on the connected

component M	 of X indexed by (	, f , g). Similarly define v : X → MB to be the
map ξg : 	→B : M	 → MB on the connected component of X indexed by (	, f , g).
An object (C	, f , g) ofX, over a connected base scheme S, consists of a graph 	 with
a generic (A, B)-structure ( f , g) together with a stable curve C over S endowed with
a 	-marking. Let (C	, f , g) be one such object of X over S. By definition we have
ξA(u(C	, f , g)) = C = ξB(v(C	, f , g)) a natural isomorphism ξA ◦ u ⇒ ξB ◦ v is
therefore given by the identity. We have the following diagram:

X

FA,B MB

MA Mg,n .

u

v

q

⇒
p2

p1 ξB

ξA

where the map q is given by the strict universal property of the fiber product. It sends
the object (C	, f , g) over S to the object (CA,CB, idC ) over S and a morphism
C ′

	 → C	 over S′ → S to the induced pair of morphisms (C ′
A → CA,C ′

B → CB).
We want to prove that q is an isomorphism. We will do so by defining a map

r : FA,B → X and showing that r ◦ q and q ◦ r are naturally isomorphic to the
respective identities on X and on FA,B .

Let (DA,CB, α : D ∼−→ C) be an object of FA,B over S. Following the notation of
Definition 2.14wewill define an A-marking onC by passing through the isomorphism
α:

(i) if {σi } are the e(A) sections of � : D → S in the singular locus of D defined by
the A-marking, we get sections σ ′

i := α ◦ σi in the singular locus of C ,
(ii) the pullback of α along the partial normalization C̃ → C defines a map α̃ : D̃ →

C̃ , in this way we obtain sections {σ̃ ′
i, j } := {α̃ ◦ σ̃i, j } in the partial normalization

C̃ of C at {σ ′
i },

(iii) if Dv,A are the � ′ relative components of D then the π -relative components are
given by Cv,A := α(Dv,A),

(iv) we obtain an isomorphism of stable graphs by the composition

({Cv,A}, {σ̃ ′
i, j }, {α ◦ sk }, g′, ι′, a′, ζ ′) ({Dv,A}, {σ̃i, j }, {sk }, g, ι, a, ζ ) Aλ

where λ is the isomorphism of stable graphs defined by the A-structure on D.

Let τi be the sections onC defined by the B-structure,Cv,B the π -relative components
defined by the B-structure. The curve C now comes with the following structure:

i a set of sections E := {σ ′
i } ∪ {τi } of π in the singular locus of C ,

ii a set of sections H := {σ̃ ′
i, j } ∪ {τ̃i, j } in the partial normalization of C at E ,

iii a set of π -relative components V of C\{σ ′
i } ∪ {τi }.
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This data defines a stable graph

	 := (V , H , {α(si )}, g, ι, a, ζ )

as in Definition 2.14.iv (where the α(si ) are the n sections of C outside of the singular
locus corresponding to the marked points). This data defines a 	-marking on C .

This 	 has an (A, B)-structure, indeed let αA : V → VA, be the map of π -relative
components given by the inclusion C\{σ ′

i } ∪ {τi } ↪→ C\{σ ′
i }, let βA : HA ↪→ H be

the obvious inclusion of sections and let γA : H\ Im β → HA be the map that sends
τ̃i, j to the π -relative componentCv,A in which τi lies. In this way we have constructed
an A-structure f = (αA, βA, γA) on 	 and we can define a B-structure g on 	 in the
same way. Clearly H = βA(HA) ∪ βB(HB), so the (A, B)-structure is generic. In
other words we have defined an object (C	, f , g) of X over S. This completes the
definition of the functor r on the objects of FA,B .

Let (λ1 : D′
A → DA, λ2 : C ′

B → CB) be a morphism inFA,B over λ : S′ → S. Let
C ′

	′ and C	 be the curves with 	′ and 	-structure defined as above by D′
A, C

′
B and

respectively DA, CB . The maps λ1 and λ2 together define an isomorphism of stable
graph 	′ → 	 which commutes with the respective (A, B)-structures ( f ′, g′) and
( f , g) of these graphs. In other words this defines an isomorphism of (A, B)-graphs
and a map

(C ′
	′ , f ′, g′) → (C	, f , g).

This completes the definition of the functor r on the morphisms of FA,B .
It remains to check that r and q are inverses of each other. Let (C	, f , g) be an

object ofX. Then q(C	, f , g) = (CA,CB, idC ). If we pass this through the above con-
struction we see that r(CA,CB, idC ) = (C	′ , f ′, g′) where 	 and 	′ are isomorphic
(A, B)-graphs. In other words r ◦ q is the identity on X.

In the other direction let (DA,CB, α : D → C) be a S-point of FA,B . We have

q(r(DA,CB, α)) = q((C	, f , g)) = (CA,CB, α).
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An isomorphism between DA and CA is given by passing the A-structure through α

as above when we define the functor r . It is clear that this defines an isomorphism of
objects (DA,CB, α) → (CA,CB, α). It follows that q ◦ r is naturally isomorphic to
the identity on FA,B . ��

Let A and B be n pointed genus g stable graphs. To identify the excess bundle
E := p∗

1NξA/Np2 onFA,B of the intersection betweenMA andMB we can compute
the excess bundle on the connected components of X. For any (	, f , g) ∈ GA,B

consider the diagram

M	 MB

MA Mg,n

ξ	→A

ξ	→B

ξB

ξA

.

We want to identify

E	 := ξ∗
	→ANξA/Nξ	→B .

and to compute the top Chern class ctop(E	).
Let π : Mg,n+1 → Mg,n be the forgetful morphism, let ωπ be the dualizing sheaf

and let σi be the sections Mg,n → Mg,n+1 given by the n markings. Set

Li = σ ∗
i (ωπ).

Recall (see for example [3, Section 13.3]) that the normal bundle NξA can be identified
with

NξA =
⊕

(h,h′)∈EA

L∨
h ⊗ L∨

h′ ,

similarly

Nξ	→B =
⊕

(h,h′)∈EB\ Im βB

L∨
h ⊗ L∨

h′ .

It follows that

E	 =
⊕

(h,h′)∈Im βA∩Im βB

L∨
h ⊗ L∨

h′ .

Since c1(Lh) = ψh , the top Chern class of E is just the product over the relevant
ψ-classes.

In conclusion we get:



79 Page 18 of 69 J. Schmitt, J. van Zelm

Proposition 2.16 Let A and B be stable graphs, then

ξ∗
AξB∗([MB]) =

∑

	∈GA,B

ξ	→A∗

⎛

⎝
∏

(h,h′)∈Im βA∩Im βB

(−ψh − ψh′) · [M	]
⎞

⎠

Proof This follows directly from the excess intersection formula (see [21, Proposition
17.4.1], Proposition 2.13 and the computation above. ��

2.1 Decorated stratum classes

We will now define decorated stratum classes and compute the product of two such
classes.

For a given space Mg,n let π : Mg,n+1 → Mg,n be the map forgetting the
marking n + 1 and stabilizing, with sections σi : Mg,n → Mg,n+1 corresponding to
the markings i for i = 1, . . . , n. Let ωπ be the relative dualizing sheaf.

Recall the ψ-classes and (Arbarello–Cornalba) κ classes onMg,n are defined by

ψi = σ ∗
i c1(ωπ) ∈ A1(Mg,n), κ j = π∗(ψn+1)

j+1 ∈ A j (Mg,n).

Now let A = (V , H , L, g, ι, a, ζ ) be a stable graph and v ∈ V . Consider the
projection map

pv : MA =
∏

w∈V
Mg(w),n(w) → Mg(v),n(v).

We will set κv,i := p∗
v(κi ) ∈ Ai (MA) and ψv,i := p∗

v(ψi ) ∈ A1(MA).

Definition 2.17 A decorated stable graph Aθ is a stable graph A together with a
decoration

θ =
∏

v∈V

⎛

⎝
∏

i∈a−1(v)∪ζ−1(v)

ψ
ai
v,i

m∏

j=1

κ
b j
v, j

⎞

⎠ ∈ A•(MA).

Remark 2.18 Restricted to each vertex the decoration θ is just a monomial in ψ and κ

classes. Given another decoration θ ′ the product θ · θ ′ in A•(MA) is given by

θ · θ ′ =
∏

v∈V

⎛

⎝
∏

i∈a−1(v)∪ζ−1(v)

ψ
ai+a′

i
v,i

m∏

j=1

κ
b j+b′

j
v, j

⎞

⎠

Notation 2.19 We set

[Aθ ] := 1

|Aut A|ξA∗(θ) ∈ A•(Mg,n)
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and will call [Aθ ] a decorated stratum class. If θ = 1 we will drop it from the notation.
We will draw decorated stratum classes by attaching a number of arrowheads to

each half edge or leg i equal to ai and by attaching the monomial

m∏

j=1

κ
b j
v, j

to each vertex v.

Example 2.20 Let A be the graph 32 .
If v1 is the vertex of genus 2 and v2 is the vertex of genus 3 and we have a decoration
θ = ψ2

v2,h
κ2
v1,1

we will draw the decorated graph Aθ as

32
κ2
1

.

Warning 2.21 There are two conflicting notations in the literature for decorated stra-
tum classes. One is as given in 2.19 the other one is without dividing by the size of
the automorphism group of A.

The advantage to our definition is that the class [A] is the Poincaré dual of the
closure of the locus of all stable curves with dual graph isomorphic to A. In particular
[A] corresponds to an actual closed integral substack of Mg,n . The advantage of not
dividing by the order of the automorphism group is that it makes calculations slightly
easier.

Remark 2.22 The codimension (or degree) of ψi in A•(Mg,n) is 1, the codimension
of κ j is j and the codimension of [A] ∈ A•(Mg,n) equals the number of edges of A.
Therefore if Aθ is a decorated boundary graph with decoration

θ =
∏

v∈V

⎛

⎝
∏

i∈a−1(v)∪ζ−1(v)

ψ
ai
v,i

m∏

j=1

κ
b j
v, j

⎞

⎠

then

codim[Aθ ] = #EA +
∑

i∈H∪L

ai +
∑

v∈V , j

jbv, j .

To determine the product [Aθ ]·[Bλ] for two decorated stable graphs Aθ , Bλ we need
to know the pullback of θ under ξ	→A. Since the pullback is a ring homeomorphism
this can be done by pulling back the individual ψ and κ classes in θ .

Lemma 2.23 Let f = (α, β, γ ) : 	 → A be a map of stable graphs, then

ξ∗
f : 	→A(ψv,i ) = ψa	◦β(i),β(i),

ξ∗
f : 	→A(κv,i ) =

∑

w∈α−1(v)

κw,i .
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Proof The first of these is trivial, the second is [3, Lemma 4.31]. ��

Corollary 2.24 Let A and 	 be stable graphs, let f be an A-structure on 	 and let θ

be a decoration on A. We have

ξ∗
f (θ) =

∏

v∈VA

⎛

⎜⎝
n(v)∏

i=1

ψ
ai
a	◦β f (i),β f (i)

m∏

j=1

(
∑

w∈α−1
f (v)

κw, j )
b j

⎞

⎟⎠

Theorem 2.25 Let Aθ and Bλ be decorated stable n pointed genus g graphs. Then

[Aθ ] · [Bλ] = 1

|Aut A| · |Aut B|
∑

(	, f ,g)∈GA,B

ξ	∗

×
⎛

⎝ξ∗
f (θ) · ξ∗

g (λ)
∏

(h,h′)∈Im βA∩Im βB

(−ψh − ψh′)

⎞

⎠ .

Proof This follows by pushing forward the expression of Proposition 2.16. ��

Remark 2.26 If Aθ and Bλ define classes in complementary degrees for Mg,n , i.e.
[Aθ ] · [Bλ] is a zero cycle, we can compute the degree of this zero cycle using The-
orem 2.25. Indeed, the formula above reduces this to the question of computing the
intersection numbers of κ and ψ-classes on the factors Mg(v),n(v) of the spaces M	 .
These intersection numbers are governed by the KdV hierarchy as shown by Kont-
sevich [34] after a conjecture by Witten. Thus in principle, we are able to compute
intersection numbers of decorated strata classes.

Application 2.27 As an application of the intersection numbers above, we remark that
for some g, n it is possible to express the class of the diagonal [
] = [
Mg,n

] ∈
H6g−6+2n(Mg,n × Mg,n) in terms of tautological classes. Indeed, assume that
H∗(Mg,n) = RH∗(Mg,n) and let (ei )i be a basis of the tautological ring as a Q-
vector space. By Remark 2.26 we can compute the pairing matrix ηi, j = deg(ei · e j ).
Let (ηi, j )i, j be the inverse matrix. Then we have a Kunneth decomposition of the
diagonal

[
] =
∑

i, j

ηi, j ei ⊗ e j ∈ H∗(Mg,n × Mg,n) = RH∗(Mg,n) ⊗ RH∗(Mg,n).

The assumption that all cohomology is tautological is for instance satisfied for all
spacesM0,n (see [32]),M1,n for n ≤ 10 (see [27, Proposition 2] and [38]) andM2,n
for n ≤ 8 (see [39,40]).

We are going to see an application of these tautological Kunneth decompositions
in Sect. 5.2.
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3 Stacks of pointed admissibleG-covers

In the following section we introduce the stacks Hg,G,ξ parametrizing finite covers
ϕ : C → D of (connected) curves together with a G-action on C , such that C has
genus g and such that ϕ is the quotient map under the G-action. Further included is
the data of a tuple of smooth points pi,a ∈ C , containing all ramification points of ϕ,
such that the behaviour of the G-action at these points is described by a monodromy
datum ξ .

This problem has been studied in a number of contexts. In [29] Harris andMumford
first introduced the notion of an admissible cover, a technical condition we need to
require if the curves C, D above become nodal. This allowed them to write down a
compact moduli space for such covers. However, they did not require the data of a
G-action on C but considered all covers ϕ of a given degree.

The paper [4] by Abramovich, Corti and Vistoli instead notes that if we take the
quotient stack [C/G] instead of the quotient D = C/G in the realm of schemes,
the data of the quotient morphism ϕ : C → [C/G] is equivalent to a stable map
[C/G] → BG of the (stacky) curve [C/G] into the classifying stack BG of the finite
group G. In [31], Jarvis, Kaufmann and Kimura take a variant of this construction.
The crucial difference is that they consider the data of marked points on C , not on
[C/G]. This is also the convention of our paper and it will be the case that our space
Hg,G,ξ is a union of connected components of their moduli space. The only further
restriction we impose is that the domain C of the cover is a connected curve.

Finally, there is the book [7] by Bertin and Romagny, which focuses on the data of
the G-action on the curve C . This action of course determines the data of the quotient
map ϕ : C → C/G. This perspective and their results will be useful, since later in our
paper we are interested in the map φ : Hg,G,ξ → Mg,r which forgets the data of the
group action and cover and just remembers the curve C with the markings pi,a . Here
is where we crucially use the connectedness of C , since C with the marked points pi,a
is a stable curve.

Our goal in the following is to give a self-contained introduction to the theory of
admissible G-covers and to define the stack Hg,G,ξ . We prove properties and func-
torialities of this stack which we will use later, often citing relevant results from the
literature. We comment on the detailed relation between our convention and those in
the references above in Remark 3.6.

3.1 Group actions on smooth curves

As awarm-upwe start in the situation of a finite groupG acting effectively on a smooth
curve C , i.e. via an injective group homomorphism G ↪→ Aut(C). Then the quotient
D = C/G exists (as a scheme) and it is itself a smooth curve. The corresponding
quotient map ϕ : C → D is a Galois cover, i.e. the group of automorphisms of C
over D acts transitively on the fibres and is in fact equal to G.

A general point of D has exactly |G| preimages under ϕ, corresponding to the fact
that the general point of C has trivial stabilizer in G. The ramification points p of ϕ
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are exactly those points which have a nontrivial stabilizer H = Gp. We recall the
following result about the local action of H around p.

Lemma 3.1 Let the finite group G act on the smooth curve C effectively and let p ∈ C
be a point. Then the stabilizer H = Gp of p is a cyclic group. The induced action of
a generator of H on TpC ∼= C is given by multiplication with a primitive e-th root of
unity, where e = |H |.

It follows that there exists a distinguished generator h of H acting by the root
ζe = exp(2π i/e). We call h the monodromy of G at p.

Now note that for q = ϕ(p) we have a bijection

G/H → ϕ−1(q), gH → gp.

If we had chosen a different point p′ = tp ∈ ϕ−1(q), t ∈ G, we would have obtained
a stabilizer Gp′ = t Ht−1 with the distinguished generator h′ = tht−1. Overall we
see that to a branch point q of ϕ we can uniquely associate a conjugacy class [h] of
G. If q1, . . . , qb ∈ D are the branch points of ϕ, we can write a formal sum

[h1] + · · · + [hb]

of the corresponding conjugacy classes. In [7] this is called the Hurwitz datum associ-
ated to ϕ. By making this a formal sum and by having conjugacy classes [hi ] instead
of group elements, this is independent of a choice of ordering of branch points qi as
well as a distinguished point in the preimage ϕ−1(qi ).

For our purposes it will be more convenient to include this ordering and the choice
of a preimage. For us a monodromy datum will be an ordered tuple

ξ = (h1, . . . , hb)

of elements hi ∈ G.
We immediately note that formally it makes sense to include entries of the form

eG in ξ , where eG ∈ G is the neutral element. This corresponds to marking a point
q ∈ D such that G acts freely on the fibre ϕ−1(q).

Knowing the full branching behaviour of ϕ it is easy to write down the Riemann–
Hurwitz formula

2g − 2 = |G|(2g′ − 2) +
b∑

i=1

(
|G| − |G|

ordG(hi )

)
. (4)

determining the genus g′ of D.

3.2 Admissible covers

As a next step we need to understand what happens when the curves C and D degen-
erate, obtaining nodal singularities. In this case, we must require the map ϕ : C → D
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to be an admissible cover. The following definition is essentially the same as in [31,
Definition 2.1], with the crucial difference that we require the curveC to be connected.

Definition 3.2 An admissible G-cover over a scheme S is a map ϕ : C → D between
connected, nodal curves over S togetherwith an actionG � C ofG onC andmarkings
q1, . . . , qb : S → D, such that

– (D, q1, . . . , qb) is a stable curve,
– ϕ is finite, mapping every node of C to a node of D,
– the action ofG preserves ϕ and the restriction of ϕ over the set Dgen - of unmarked,
smooth points of D-is a principal G-bundle,

– the local picture of C → D → S at a point of C over a node of D is (analytically
isomorphic to) that of

SpecA[ζ, η]/(ζη − a) → SpecA[x, y]/(xy − ae) → SpecA,

at (ζ, η) = (0, 0) for some e ≥ 1, where ϕ∗x = ζ e and ϕ∗y = ηe,
– the local picture ofC → D → S at a point ofC over amarking of D is (analytically
isomorphic to) that of

SpecA[ζ ] → SpecA[x] → SpecA,

at ζ = 0 for some e ≥ 1, where ϕ∗x = ζ e,
– for each geometric nodal point P ∈ C with image point s ∈ S, the stabilizer GP

is cyclic and its action on the fiber Cs is balanced, i.e. the local picture around P
looks like SpecA[ζ, η]/(ζη − a) and for a generator h of GP the action is given
by

h.(ζ, η) = (μζ, μ−1η)

with a primitive root μ of unity of order equal to the order of h.

Given an admissible G-cover, it is natural to place markings on C at the preimages
of the markings qi of the curve D. While in [31] exactly one marking pi is chosen in
the preimage of every qi , it will be more convenient for us to have individual markings
at all preimage points of qi . Note that these two data are equivalent: given anymarking
pi ∈ ϕ−1(qi ) with stabilizer 〈hi 〉 under G, the remaining points in ϕ−1(qi ) are given
by the G-orbit of pi and naturally bijective to G/〈hi 〉 via a → api . Below we denote
the markings api by pi,a .

Definition 3.3 A pointed admissible G-cover withmonodromy data ξ = (h1, . . . , hb)
∈ Gb over a scheme S is an admissible G-cover

ϕ : G � C → (D, q1, . . . , qb) → S

together with sections

pi,a : S → C, i = 1, . . . , b, a ∈ G/〈hi 〉,
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such that

– ϕ−1(qi ) = {pi,a : a ∈ G/〈hi 〉} for i = 1, . . . , b and for h ∈ G we have
hpi,a = pi,ha ,

– the monodromy of the G-action at the marking pi = pi,[eG ] corresponding to the
neutral element eG ∈ G is given by hi for all i , i.e. the generator hi of the stabilizer
Gpi of pi acts on Tpi C by multiplication with the root ζe = exp(2π i/e) of unity,
where e = ordG(hi ).

The reason we mark the other preimages of qi as well is the following.

Lemma 3.4 Given a pointed admissible G-cover ϕ : G � (C, (pi,a)i,a) →
(D, q1, . . . , qb), the curve (C, (pi,a)i,a) is stable.

Proof This is essentially clear: a rational component C ′ of C must map to a rational
component D′ of D. Then D′ contains at least 3 special points and each has some
preimage in C ′ which is again a special point, so C ′ is stable. ��
Definition 3.5 For a genus g ≥ 0, a finite group G and a monodromy datum ξ =
(h1, . . . , hn) with elements h1, . . . , hn ∈ G, define the stack Hg,G,ξ whose objects
over a scheme S are pointed admissible covers

ϕ : G � (C, (pi,a) i=1,...,b
a∈G/〈hi 〉

) → (D, q1, . . . , qb) → S. (5)

Isomorphisms between such objects are G-equivariant isomorphisms of the curves C
fixing the markings.

Define the stackHg,G,ξ as the open substack ofHg,G,ξ where the curve C (and D)
is smooth.

In the future we will abbreviate the notation in (5) to (C → D, (pi,a)i,a, (qi )i ) or
even (C → D), with the understanding that the data of the group action on C and the
markings is implicit.

Remark 3.6 We want to outline here how the space Hg,G,ξ compares to other con-
structions in the literature.

As remarked before, our definition is closest to the one from [31]. Given g,G, ξ =
(h1, . . . , hb) denote by g′ the genus of the curve D, which can be computed via the
Riemann–Hurwitz formula (4). Then the spaceHg,G,ξ is (canonically isomorphic to)

the union of the components of the spaceMG
g′,b(h1, . . . , hb) in [31] where the domain

C of the admissible cover ϕ : C → D is connected.
On the other hand, in [7, Definition 6.2.3.] Bertin and Romagny also define a stack

Hg,G,[h1]+···+[hb], whichwe denote byH
BR
g,G,ξ for clarity. Instead of pointed admissible

G-covers, it just parametrizes admissibleG-coversϕ : G � C → (D, q1, . . . , qb) →
S such that for all i some preimage pi of qi has monodromy given by hi . In other
words there is no distinguished preimage of qi . By comparison of definitions, one sees
that this has a relation to the space Ad,e

g′,b defined in [4, Appendix B.2.] as

Ad,e
g′,b =

⋃

ξ

HBR
g,G,ξ .
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Here the union on the right goes over all monodromy data ξ giving rise to the rami-
fication multiplicities specified by the vectors d, e of positive integers. By the results
from the Appendix and Theorem 4.3.2. of [4] there exist natural isomorphisms and
inclusions as open and closed substacks

Ad,e
g′,b

∼= Admd,e
g′,b(G) ⊂ Admg′,b(G) ∼= Bbal

g′,b(G) = Mg′,b(BG).

The stack on the right is the stack of balanced twisted stable maps to the classifying

stack BG of the finite group G. The basic idea how to go fromHBR
g,G,ξ toMg′,b(BG)

is that given a curve C → Spec(C) with action by G we can take the quotient of G on
both sides (acting trivially on Spec(C)) and obtain a morphism [C/G] → BG. The
inverse operation is taking the fibre product via the universal torsor Spec(C) → BG.

From the proof of [31, Theorem 2.4] it follows that the canonical map Hg,G,ξ →
HBR

g,G,ξ , forgetting the distinguished markings pi,a in C and only remembering the
markings qi in D, is étale, since it is a union of components of an iterated fibre

product of étale morphisms to HBR
g,G,ξ .

3.3 Properties ofHg,G,�

In this section we collect results about the stacks Hg,G,ξ we are going to use later.
We recall that g ≥ 0 is the genus of the domain curve C of the admissible covers,
G a finite group, ξ = (h1, . . . , hb) a monodromy datum of elements hi ∈ G. We
require that the number g′ determined by the formula (4) is a nonnegative integer,
giving the genus of the curve D in the admissible cover ϕ : C → D. Let furthermore
n = ∑b

i=1 |G|/ordG(hi ) be the total number of markings pi,a in C .

Theorem 3.7 The stackHg,G,ξ is a smooth proper Deligne-Mumford stack of dimen-
sion 3g′ − 3 + b over C.

There exist natural maps

Hg,G,ξ Mg,r

Mg′,b

φ

δ (6)

defined by

φ((C → D, (pi,a)i,a, (qi )i )) = (C, (pi,a)i,a),

δ((C → D, (pi,a)i,a, (qi )i )) = (D, (qi )i ).

The morphism φ is representable, finite, unramified and a local complete intersection.
The morphism δ is flat, proper and quasi-finite, however not necessarily repre-

sentable. Moreover, δ is étale over Mg′,b.



79 Page 26 of 69 J. Schmitt, J. van Zelm

Proof Since Hg,G,ξ is a union of components of MG
g′,b(ξ) from the paper by Jarvis,

Kaufmann and Kimura, the fact that Hg,G,ξ is a smooth, proper Deligne-Mumford
stack together with the properties of δ overMg′,b follow from [31, Theorem 2.4]. The
property that δ is étale overMg′,b is discussed in the proof of [7, Proposition 6.5.2.].
Also, that δ is not necessarily representable comes from the possibility of having
G-equivariant automorphisms of (C, (pi,a)i,a) over the identity map on D (see the
discussion preceding Theorem 3.19 for details).

The proof of the properties of φ is exactly analogous to the proof of [7, Proposition
6.5.2.].

Indeed, assume we are given an S-point S → Mg,r for a scheme S, given by a
family of stable curves (C, p1, . . . , pn) → S. Then we first want to show that the
pullback of φ given as

F := Hg,G,ξ ×Mg,r
S → S

is finite and unramified,withF an algebraic space. For T → S amorphismof schemes,
giving a T -point ofF over S means specifying a suitable G-action on CT := C ×S T .
Once thisG-action is specified, we obtain the admissible cover asCT → D = CT /G.
To express the G-action, let

A = {η ∈ AutS(C) : η({p1, . . . , pn}) ⊂ {p1, . . . , pn}}

be the group of automorphisms of C over S leaving invariant the set of marked points.
Then A → S is finite and unramified (corresponding to the fact that the quotient
Mg,r/Sn is still a separated Deligne-Mumford stack).

We can specify a G-action on CT by giving a T -point of the |G|-fold product

AG = A ×S A ×S · · · ×S A

satisfying a number of closed conditions (defining aG-action, permuting themarkings
pi in the correct way, with the correct local monodromies, etc.). ThusF is represented
by a closed subscheme ofAG so it is finite and unramified over S. We conclude that φ
is representable, finite and unramified. Since Hg,G,ξ and Mg,r are smooth, it is also
a local complete intersection. ��

We call φ the source morphism and δ the target morphism, since they remember
the source and target of the admissible cover, respectively.

Definition 3.8 We denote by [Hg,G,ξ ] ∈ A3g′−3+b(Mg,r ) the pushforward of the
fundamental class of Hg,G,ξ under the map φ.

These cycles and their intersections with tautological classes are the main object
of study of the present paper.
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Over the stack Hg,G,ξ we have universal curves C,D with sections pi,a, qi and a
universal admissible G-cover

C D

Hg,G,ξ

ϕ

π
π̃

pi,a

qi

. (7)

The pointed families of curves C,D induce the maps φ, δ from Theorem 3.7. There
is a natural isomorphism C ∼= Hg,G,(ξ,eG ), see [7, Section 6.5.2].

Given one of the markings pi,a on Hg,G,ξ we define ψpi,a ∈ A1(Hg,G,ξ ) as the
pullback of the correspondingψ-class onMg,r under φ. This is equivalent to defining
it as c1(p∗

i,aωπ) by the functoriality of the relative dualizing sheaf.

Similarly, given � ≥ 1 we define κ� ∈ A�(Hg,G,ξ ) as the pullback of κ� ∈
A�(Mg,r ) under φ. For notational distinction we will write the ψ and κ classes on
Mg′,b as ψ ′

qi and κ ′
�. Then we have the following convenient comparison result (see

[28, Proposition 4.4] for a related result).

Lemma 3.9 Assume the stabilizer of pi,a has order ei = ordG(hi ), then we have

ψpi,a = 1

ei
δ∗(ψ ′

qi ) ∈ A1(Hg,G,ξ ). (8)

On the other hand, for � ≥ 1 we have

κ� = |G|δ∗(κ ′
�) ∈ A�(Hg,G,ξ ). (9)

Proof To prove (8) consider the universal admissible cover (7). Then we have

δ∗(ψ ′
qi ) = q∗

i (c1(ωπ̃ )) = (ϕ ◦ pi,a)
∗(c1(ωπ̃ )) = p∗

i,a(ϕ
∗c1(ωπ̃ ))

Since ϕ is ramified along the sections p j,a with ramification index e j − 1, we have

ωπ = ϕ∗ωπ̃ ⊗
(
⊗ jOC(R j )

⊗e j−1
)

, (10)

where R j is the union of the images of the sections p j,a . The equation above just says
that ϕ is ramified along the divisors R j with ramification index e j − 1. Inserting in
our computation above and using the sections p j,a′ are all disjoint from pi,a , except
pi,a itself, we obtain

δ∗(ψ ′
qi )=p∗

i,a

(
c1(ωπ)−(ei − 1)(pi,a)∗[Hg,G,ξ ]

)=ψqi,a +(ei − 1)ψqi,a =eiψqi,a .

The statement about κ classes is proved exactly as in [7, Théorème 10.3.4.]. ��
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3.4 Boundary strata ofHg,G,� and admissible G-Graphs

The moduli spaceMg,n has a stratification indexed by stable graphs 	. Similarly, the
spaceHg,G,ξ has a stratification indexed by stable graphs 	 together with a G-action.
This is described in detail in Chapter 7 of [7].We summarize the results in our notation.

Given (C → D, (pi,a)i,a, (qi )i ) ∈ Hg,G,ξ let 	 be the dual graph of C . Since the
action of G on C permutes the irreducible components and nodes of C , respectively,
we obtain a group action G � 	 on the stable graph. In particular, for each leg or
half-edge l we can write down its stabilizer Gl , which is a cyclic group.

We need to record some finer data describing the action ofGl onC around the point
corresponding to l, namely the monodromy of theG-action there. Let v ∈ V (	) be the
vertex adjacent to l, let Cv be the normalization of the component of C corresponding
to v and let xl ∈ Cv be the point corresponding to the leg or half-edge l. If l is a leg
this is just the position of the corresponding marking, if l is a half-edge this is the
corresponding preimage of the node. Elements in the stabilizer Gl preserve the vertex
v and correspondingly there is an action Gl � Cv fixing xl . For e = |Gl | there is then
a unique element hl ∈ Gl acting as multiplication by ζe = exp(2π i/e) on the tangent
space TxlCv .

Definition 3.10 We call the data

(	,G) = (G � 	, (hl)l∈L(	)∪H(	)) (11)

the admissible G-graph associated to (C → D, (pi,a)i,a, (qi )i ).

Note that from the balancing condition of the group action on C it follows that
for two half-edges a, b forming an edge we have ha = h−1

b . Moreover, there is no
element t ∈ G preserving the edge but flipping the orientation, i.e. with ta = b. Such
an element would correspond to a stabilizer of a node which exchanges the branches
of the node, contradicting the local picture of the action around nodes from Definition
3.2.

Wedenote byHg,G,ξ (	,G) the set of elements inHg,G,ξ with associated admissible
G-graph (	,G) and byHg,G,ξ (	,G) its closure. This defines a stratification ofHg,G,ξ

similar to the stratification of Mg,n by boundary strata. In the following we want to
derive a parametrization ofHg,G,ξ (	,G) by a generalization of the usual gluing maps
associated to the graph 	.

Since the general case of these equivariant gluingmapshas a fairly technical descrip-
tion, let us first look at a concrete example.

Example 3.11 The spaceH2,Z/2Z,(1,1) parametrizes double coversC → E from genus
2 curves C to genus 1 curves E , ramified at two points p1, p2 ∈ C . One boundary
stratum of this space is given by the locus of curves

(C, p1, p2) = (C1, q) ∪q=q ′ (C2, q
′, p1, p2, q ′′) ∪q ′′=q (C1, q), (12)
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where C1 has genus 1, C2 has genus 0 and C2 carries a G = Z/2Z-action leaving
p1, p2 fixed and exchanging q ′, q ′′. This action extends to all of C , where the first
component C1 is exchanged with the second one.

The corresponding G-admissible stable graph (	,G) is given by

(	,G) = 0

1

1

Then we see a point in the closureHg,G,ξ (	,G) can be specified by giving (C1, q) ∈
M1,1 = H1,{0},(0) and (C1, p1, p2, q ′, q ′′) ∈ H0,G,(1,1,0). This means that the corre-
sponding equivariant gluing map

ξ(	,G) : M1,1 × H0,G,(1,1,0) → H2,Z/2Z,(1,1)

glues two copies of C1 and one copy of C2 to obtain the curve C from (12) together
with the natural G-action on C .

Now we want to write down a similar map ξ(	,G) for a general admissible G-graph
as in (11). As in the example, the domain of ξ(	,G) will need one factor Hg(v′),Gv′ ,ξv′
for a representative v′ of each orbit of the vertices V (	) under G.

Because of this, it will be convenient to introduce the quotient graph 	̃ = 	/G. Its
sets of vertices, half-edges and legs are the quotient sets of the corresponding sets for
	 under the equivalence relation of being in the same G-orbit. Denote the quotient
maps by

πV : V (	) → V (	̃), πL : L(	) → L(	̃), πH : H(	) → H(	̃). (13)

Since the group action respects the incidence of legs and half-edges with vertices and
does not reverse the orientation of an edge, this is a well-defined stable graph. In fact,
if (	,G) is the admissible G-graph associated to (C → D, (pi,a)i,a, (qi )i ), then 	̃ is
canonically identified with the dual graph of (D, (qi )i ).

Now choose a section of πV , i.e. a set V ′ ⊂ V (	) of representatives v ∈ V (	) for
each [v] ∈ V (	̃). For each v′ ∈ V ′ choose representatives L ′

v′, H ′
v′ of the legs and

half-edges in 	 incident to v′ up to the action of Gv′ . With these choices made, there
are natural G-equivariant identifications

π−1
V ([v′]) ∼= G/Gv′ (v′ ∈ V ′),
π−1
L ([l]) ∼= G/Gl (l ∈ L ′

v′), π−1
H ([h]) ∼= G/Gh (h ∈ H ′

v′).

For every v′ ∈ V ′ let
ξv′ = (hl : l ∈ L ′

v′ ∪ H ′
v′) (14)
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be a monodromy datum. We will construct a natural morphism

ξ(	,G) : H(	,G) =
∏

v′∈V ′
Hg(v′),Gv′ ,ξv′ → Hg,G,ξ , (15)

whose image isHg,G,ξ (	,G).
The idea is the following: for a curve C with group action by G and admissible

G-graph 	, look at the orbit of a vertex v′ ∈ V ′. This orbit corresponds to an orbit
of the component Cv′ of C associated to v′. Since G acts on C by isomorphisms, all
components in theG-orbit ofCv′ must be isomorphic. On the other hand, the stabilizer
Gv′ of v′ acts on Cv with monodromy datum ξv′ . The idea of the map ξ(	,G) is to take
all these restricted actions Gv′ � Cv (together with the marked points from ξv′) and
to reconstruct the curve C from this.

The first step is to go from Cv′ to the orbit of components of C , which were all
isomorphic to Cv′ . So for each v′ ∈ V ′ and for an element (Gv′ � Cv′, (pv′

i,a)i,a) ∈
Hg(v′),Gv′ ,ξv′ there is a (usually disconnected) curve

Ĉv′ =
⋃

[g]∈G/Gv′
Cv′

together with a G-action on Ĉv′ such that the induced action on the connected com-
ponents is the left-multiplication of G on G/Gv′ and such that on the component
Cv′ ⊂ Ĉv′ corresponding to the trivial element [eG] the induced action of Gv′ is the
given one.

Note that for the action of G on Ĉv′ there is a choice involved. This is the same
kind of ambivalence that appears when defining the induced representation of Gv′ in
G by choosing a set of representatives of G/Gv′ . In the end, the resulting map ξ(	,G)

does not depend on this choice.
Themap ξ(	,G) is defined by taking the disjoint union of all curves Ĉv′ , v′ ∈ V ′, and

glueing them together to a curve C according to the graph 	. Since the actions of G
on the curves Ĉv are compatible with this gluing, the new curve C inherits a G-action.
Taking the quotient map C → D = C/G gives the desired admissible G-cover. This
ends the construction of ξ(	,G).

From the construction above it follows that the composition of ξ(	,G) with the map
φ forgetting the G-action factors through the gluing map ξ	 associated to the stable
graph 	 as

H(	,G) = ∏
v′∈V ′ Hg(v),Gv,ξv

Hg,G,ξ

M	 = ∏
v∈V (	) Mg(v),n(v) Mg,r

ξ(	,G)

φ(	,G) φ

ξ	

(16)

For the map φ(	,G) note that the set V (	) is a disjoint union of the G-orbits of
the elements v′ ∈ V ′. Then φ(	,G) is a product of maps φ followed by diagonals

 : Mg(v′),n(v′) → ∏

v∈Gv′ Mg(v′),n(v′). These diagonal maps arise since in the
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construction above, when defining Ĉv we take the disjoint union of identical curves
Cv , indexed by G/Gv , which is canonically bijective to the orbit of v.

Putting everything together, we see that the map φ(	,G) factors as

φ(	,G) :
∏

v′∈V ′
Hg(v),Gv,ξv

︸ ︷︷ ︸
=H(	,G)

∏
φ−−→

∏

v′∈V ′
Mg(v′),n(v′)

∏

−−→

∏

v′∈V ′

∏

v∈Gv′
Mg(v′),n(v′)

︸ ︷︷ ︸
=M	

.

(17)
Likewise we have a map

δ(	,G) : H(	,G) →
∏

v′∈V ′
Mg′(v′),b(v′) := M	/G , (18)

given by taking the target morphism δ : Hg(v′),Gv′ ,ξv′ → Mg′(v′),b(v′) for each v′ ∈
V ′ ∼= V (	/G).

Definition 3.12 Amorphism of admissible G-graphs f : (	′,G) → (	,G) is a usual
morphism of stable graphs f : 	′ → 	 (see Definition 2.5) which is equivariant with
respect to the G-action and such that for each half-edge l of 	 mapping to a half-edge
l ′ of 	′ we have hl = h′

l ′ , where h, h′ are the monodromy data of (	,G) and (	′,G),
respectively.

For an admissible G-graph (	,G) the set of automorphisms of (	,G) is denoted
Aut(	,G) ⊂ Aut(	).

Proposition 3.13 (See [7], Proposition 7.4.1.) The morphism ξ(	,G) has as image the
closure Hg,G,ξ (	,G) of the set of elements in Hg,G,ξ with associated admissible
G-graph (	,G). It is generically of degree |Aut(	,G)| onto its image.

One quickly checks that the domain of ξ(	,G) (and thusHg,G,ξ (	,G)) is of the same
dimension as the spaceM	/G associated to the quotient graph 	/G. In particular, the
boundary divisors ofHg,G,ξ are indexed by the admissible G-graphs (	,G) such that
	/G has exactly one edge. In other words, 	 has exactly one G-orbit of edges.

3.5 Abstract characterization of admissible G-Graphs

In Definition 3.10 we defined the admissible G-graph associated to a given pointed
admissible G-cover (C → D, (pi,a)i,a, (qi )i ). However, for computations it will be
necessary to give a purely combinatorial definition of an admissible G-graph.

It turns out that not every graph 	 with a group action by G and monodromy data
at the half-edges and legs can occur as the admissible G-graph of an admissible G-
cover. This is related to the fact that not every tuple (g,G, ξ) leads to a nonempty
spaceHg,G,ξ . The question whetherHg,G,ξ is empty (and more generally the degree
of the map δ : Hg,G,ξ → Mg′,b) can be answered in terms of the group theory of G.

We begin by defining a group action with stabilizer data on a stable graph.
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Definition 3.14 Let G be a finite group and 	 = (V , H , L, g, ι, a, ζ ) an n-pointed
stable graph. A G-action on 	 is an action of G on the sets V , H , L such that g :
V → Z≥0 is G-invariant and such that ι, a, ζ are G-equivariant.

A G-action with stabilizer datum on 	 is a G-action together with a collection
(hl)l∈H∪L of elements of G such that the stabilizer of each leg or half-edge l of 	 is
cyclic with generator hl and such that for each l ∈ H we have hι(l) = h−1

l (In other
words, for (l, l ′) forming an edge of 	 we have hl ′ = h−1

l ) and hgl = ghlg−1 for
g ∈ G.

A pre-admissible G-graph (	,G) is a stable graph 	 together with a G-action and
stabilizer datum such that the induced action of ι on the quotient H/G is fixed point
free, i.e. for an edge (l, l ′) there is no element t ∈ G with tl = l ′.

One verifies easily that the admissible G-graph associated to a given admissible
G-cover (C → D, (pi,a)i,a, (qi )i ) gives a pre-admissibleG-graph in the sense above.
However, not every pre-admissibleG-graph will correspond to some (nonempty) stra-
tum of a suitable space of pointed admissible G-covers.

Definition 3.15 Let (	,G) be a pre-admissible G-graph. With respect to a choice
l1, . . . , lb ∈ L of representatives of the G-action on L , the monodromy datum of
(	,G) is the collection (hl1, . . . , hlb ) ∈ Gb.

For each vertex v of 	 with stabilizer Gv under G let L ′
v, H

′
v be representatives

of the legs and half-edges of 	 incident to v up to the action of Gv . Then the tuple
(hl)l∈L ′

v∪H ′
v
is called the local monodromy datum at v.

Definition 3.16 An admissible G-graph is a pre-admissible G-graph (	,G) such that
for each vertex v of 	, the spaceHg(v),Gv,(hl )l∈L′

v∪H ′
v
is nonempty (for some choice of

representatives L ′
v, H

′
v as above3).

Note that the space Hg(v),Gv,(hl )l∈L′
v∪H ′

v
is nonempty if and only if its interior part

Hg(v),Gv,(hl )l∈L′
v∪H ′

v
is nonempty. Indeed, the balancing condition of admissible covers

was chosen in such a way that a nodal admissible cover can always be smoothed in a
family (see [4]).

Using the definition of the G-equivariant gluing maps ξ(	,G) above, the following
is immediate.

Proposition 3.17 A pre-admissible G-graph (	,G) with monodromy datum ξ corre-
sponds to a nonempty stratum of the spaceHg,G,ξ if and only if (	,G) is an admissible
G-graph.

Proof If (	,G) is admissible, the domain of the equivariant gluing map ξ(	,G) is
nonempty and thus a general element of its image will be in the stratumHg,G,ξ (	,G).
On the other hand, if the stratum corresponding to a pre-admissible G graph (	,G)

is nonempty, then suitable components of the normalization of a general element
C → D in this stratum (as described above) will give elements in the spaces
Hg(v),Gv,(hl )l∈L′

v∪H ′
v
, which are thus nonempty, hence (	,G) is admissible. ��

3 The nonemptyness of the space of pointed admissible G-covers is independent of these choices.
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Using this result and Definition 3.16 we can reduce the classification of the strata
in our space of pointed admissible G-covers to the question for which (g,G, ξ) the
space Hg,G,ξ is nonempty.

A first obvious criterion is that the Riemann–Hurwitz formula needs to be satisfied,
in the sense that for ξ = (h1, . . . , hb) the number

g′ = 1

2|G|

(
2g − 2 − |G|

b∑

i=1

(1 − 1

ordG(hi )
)

)
+ 1 (19)

is a nonnegative integer.
If this is satisfied, it makes sense to ask what the degree of the map δ : Hg,G,ξ →

Mg′,b is. In otherwords, given a smooth curve D of genus g′ withmarkingsq1, . . . , qb,
howmanypointed admissibleG-covers (C → D, (pi,a)i,a, (qi )i ) lie above it (counted
in a stacky sense, i.e. dividing by automorphisms)? This can be answered in terms of
classical Hurwitz theory (see e.g. [20] or [9] for a modern treatment). The following
discussion is related to results in [7, Chapter 2.3] concerning the number of connected
components of the spaces Hg,G,ξ .

Let the fundamental group � of D punctured at q1, . . . , qb—with respect to some
base point y ∈ D∗ = D \ {q1, . . . , qb}—be given by

� = 〈A1, . . . , Ag′ , B1, . . . , Bg′ , γ1, . . . , γb〉/〈
⎛

⎝
g′∏

j=1

[A j , Bj ]
⎞

⎠ γ1 · · · γb〉. (20)

Here the A j , Bj are the usual generators of the fundamental group of D and the γk
are loops around the punctures at qk .

Given a G-cover ϕ : C → D whose branch points are contained in {q1, . . . , qb},
it is étale over D∗. For a loop γ in D∗ based at y, we get a permutation of ϕ−1(y) by
lifting γ under ϕ and sending the start point of the lifted path to the end point. Choose
a base point x ∈ ϕ−1(y), then lifting the path γ starting at x there exists a unique
gγ ∈ G such that the lifted path ends at gγ x . The map

ψ : � → G, γ → gγ (21)

is a group homomorphism.4

If we had chosen a different base point x ′ = ηx ∈ ϕ−1(y) for η ∈ G, we would
have obtained g′

γ = ηgγ η−1. Thus ψ is only unique up to conjugation in G.
From the presentation in (20) it is clear that ψ is determined by the images

a j , b j , σk ∈ G of the generators A j , Bj , γk of �. Conversely, for any choice of
such a j , b j , σk ∈ G satisfying (

∏
j [a j , b j ])σ1 · · · σb = eG we obtain a group

homomorphism ψ . Thus, at least in principle, we can understand the set of group
homomorphisms Hom(�,G) very concretely as a subset of the finite set G2g′+b.

4 If composition in � is defined as usual by concatenation of paths, we actually have to replace � with
the opposite group �op. Since these groups are isomorphic by g → g−1 this does not change any of the
following conclusions, so to keep notation simple we just write �.
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Due to the way we constructed ψ from a G-cover C → D, it is contained in a
special subset Homξ (�,G) of the set of all homomorphisms Hom(�,G).

Definition 3.18 We define Homξ (�,G) to be the set of group homomorphisms ψ :
� → G satisfying

(1) The homomorphism ψ is surjective.
(2) The elements σk = ψ(γk) describing the monodromy around the points qk ∈ D

are contained in the conjugacy class [hk] of the elements hk from the monodromy
datum ξ .

Since these properties are invariant under conjugatingψ with an element of G, denote
by Homξ (�,G)/G the quotient of Homξ (�,G) under this conjugation action.

We claim that the morphismψ from (21) is contained in Homξ (�,G). Property (1)
follows from the fact that the cover C is connected. Indeed, this is the case iff we can
connect our base point x ∈ C to any other point t x in the same fibre by some path γ̂ ,
for t ∈ G. In this case we can choose γ̂ such that it lies completely over D∗. But then
it is the unique lift of the path γ = π ◦ γ̂ ∈ � and so ψ(γ ) = gγ = t , hence every
element t ∈ G lies in the image of ψ . Finally property (2) comes from the definition
of the monodromy datum of a cover.

On the other hand, given ψ ∈ Homξ (�,G) we can reverse the construction (by
Riemann’s existence theorem) and obtain a G-cover ϕ : C → D with ramification
behaviour described by ξ . Moreover, up to isomorphism, the cover ϕ does not change
if we conjugate ψ by an element of G.

Note however that for the markings (pi,a)i,a in C we can have some additional
choices: in the preimage of the marking qi ∈ D there is at least one marking pi
with mondoromy hi (i.e. with stabilizer generated by hi such that hi acts by multi-
plication with exp(2π i/ ordG(hi )) on Tpi C). For a different preimage ηpi of qi , the
corresponding monodromy is given by ηhiη−1. Thus the set of all points in the fibre
with monodromy hi is given by the quotient of the centralizer CG(hi ) = {η ∈ G :
ηhiη−1 = hi } by the subgroup generated by hi .

A priori it would seem that the choice of markings is parametrized by the product∏b
j=i CG(hi )/〈hi 〉. However, we also need to consider the automorphisms of the G-

cover C → D. First, any isomorphism ρ : C → C covering the identity of D = C/G
is of the form p → ηp for some η ∈ G, since C → D is a G-Galois cover. This
isomorphism is G-equivariant iff ρ(bp) = bρ(p) for all b ∈ G, i.e. η commutes
with all elements b ∈ G. Conversely, for such a η ∈ C(G) the map ρ(p) = ηp is
a G-equivariant isomorphism of C over the identity of D. Thus the set of choices of
markings is actually parametrized by (

∏b
i=1 CG(hi )/〈hi 〉)/C(G).

We have now assembled all relevant ingredients to write down the degree of δ.

Theorem 3.19 Let g ≥ 0, G a finite group and ξ = (h1, . . . , hb) a monodromy datum.
Then the spaceHg,G,ξ is empty unless the number g′ from (19) is a nonnegative integer.
If this number is a nonnegative integer, the degree of the map δ : Hg,G,ξ → Mg′,b is
given by

deg(δ) = ∣∣Homξ (�,G)/G
∣∣ ·

(
b∏

i=1

|CG(hi )|
ordG(hi )

)
/ |C(G)| , (22)
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for Homξ (�,G)/G as in Definition 3.18.
In particular, the space Hg,G,ξ is empty iff Homξ (�,G) = ∅.

Proof In the section above we have shown that the preimage of a general C-point
(C, q1, . . . , qn) ∈ Mg′,b is isomorphic to the quotient of

(
Homξ (�,G)/G

) ×
b∏

i=1

CG(hi )/〈hi 〉

by the action of C(G). This gives the multiplicity from above. ��
For general finite groups G and monodromy data ξ it can be difficult to compute

this degree. However, for a cyclic group G = Z/mZ it is possible to write it very
explicitly.

Proposition 3.20 Let m ≥ 1 and let G = Z/mZ. Let g ≥ 0, ξ = (h1, . . . , hb) a
monodromy datum such that the number g′ from (19) is a nonnegative integer. Let
m0 = gcd(m, h1, . . . , hb) and let p1, . . . , ps be the distinct prime factors of m0.

Then the space Hg,G,ξ is empty unless h1 + · · · + hb = 0 ∈ Z/mZ. If this sum
vanishes, the degree of δ satisfies

deg(δ) = m2g′−1
s∏

j=1

(
1 − 1

(p j )2g
′

)
·

b∏

i=1

gcd(m, hi ), (23)

where gcd(m, 0) = m. In particular, assuming h1 + · · ·+ hb = 0 ∈ Z/mZ, the space
Hg,G,ξ is always nonempty for g′ ≥ 1 and is nonempty for g′ = 0 iff m0 = 1.

Proof First we compute Homξ (�,G). As we saw, a group homomorphism ψ : � →
G is uniquely determined by the images a j , b j , σk of the generators A j , Bj , γk of �.
The second condition of Definition 3.18 forces σk to lie in the conjugacy class [hk].
Since G is abelian we have σk = hk for all k. On the other hand, the homomorphism
ψ is surjective onto G iff the elements a j , b j , σk generate G. In other words if and
only if

1 = gcd(m, a1, . . . , ag′ , b1, . . . bg′ , σ1, . . . , σb) = gcd(a1, . . . , ag′ , b1, . . . bg′ ,m0).

(24)
Each a j , b j can be chosen from 0, 1, . . . ,m−1, so there arem2g′

choices in total. We
need to subtract those where all the numbers a j , b j and m0 share a common factor.
For each number q dividing m there are m/q numbers among 0, . . . ,m − 1 divisible
by q, namely 0, q, . . . , q(m/q − 1). Thus there are (m/q)2g

′
choices of a j , b j with

common factor q.
We see that from the set of all m2g′

choices of a j , b j we must subtract

s⋃

j=1

{
(a1, . . . , bg′) : p j | gcd(a1, . . . , bg′ ,m0)

}
, (25)
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which is exactly the set of choices not satisfying (24).Applying the inclusion-exclusion
principle for computing the cardinality of (25) we obtain

|Homξ (�,G)| = m2g′ −
∑

∅�=S⊂{1,...,s}
(−1)|S|+1

(
m∏
j∈S p j

)2g′

= m2g′ ∑

S⊂{1,...,s}
(−1)|S| 1∏

j∈S(p j )2g
′

= m2g′ ∑

S⊂{1,...,s}

∏

j∈S

(
− 1

(p j )2g
′

)

= m2g′
s∏

j=1

(
1 − 1

(p j )2g
′

)

To compute the remaining factors from (22) coming from the choice of markings
and from automorphisms, we note that CG(hi ) = C(G) = G since G is abelian. Note
also that |G|/ ordG(hi ) = gcd(m, hi ). This explains the remaining terms in (23) and
finishes the proof. ��

4 Pullbacks by boundarymorphisms

Let A be an n pointed graph of genus g and letG be a finite group. In this sectionwewill
compute the intersection between [MA] and [Hg,G,ξ ] using the excess intersection
formula (cf. [21, Proposition 17.4.1]). For this we need to identify the fiber product
MA ×Mg,r

Hg,G,ξ and compute the top Chern class of the resulting excess bundle.

4.1 The fibre product

Recall thatHg,G,ξ is stratified according to admissible G-graphs (	,G). The stratum
corresponding to (	,G) is contained in the image of MA iff 	 has an A-structure.
This leads to the following definition.

Definition 4.1 Let (	,G) be an admissible G-graph and A a stable graph. An A-
structure f on (	,G) is an A-structure f = (α, β, γ ) on	.We say that the A-structure
on (	,G) is generic if

G Im β = H	.

An isomorphism of A-structures (	′,G, f ′) → (	,G, f ) is an isomorphism of
admissibleG-graphs (	′,G) → (	,G) such that the induced diagramof stable graphs

A

	′ 	

f ′
f



Intersections of loci of admissible covers with tautological… Page 37 of 69 79

commutes.

Notation 4.2 For a spaceHg,G,ξ , such that the number ofmarkings pi,a isn, and afixed
stable graph A of genus g with n legs we will denote byHA;G,ξ a set of representatives
of isomorphism classes of generic A-structures (	,G, f ) on admissible G-graphs
(	,G) for Hg,G,ξ .

For a generic A-structure (	,G, f ) there exists a natural map

φ(	,G, f ) : H(	,G)

φ(	,G)−−−→ M	

ξ f :	→A−−−−→ MA,

where the first map was defined above and the second map is the partial gluing map
induced by the A-structure on 	.

Proposition 4.3 There is a natural Cartesian diagram

∐
(	,G, f )∈HA;G,ξ

H(	,G) Hg,G,ξ

MA Mg,r

∐
ξ(	,G)

∐
φ(	,G, f ) φ

ξA

.

Example 4.4 Let G = Z/2Z and let ξ = (1, ..., 1) = (18) be the monodromy datum
of length 8 prescribing 8 fixed points under G. For the stable graph

A = 2

...1 8

h1

h2

we will compute the setHA;G,ξ . In other words we want to know which admissible G-
graphs (	,G) admit a generic A structure.We claim that all such admissibleG-graphs
have the following form:

2(	1,G) =
h̃1 h̃2

	1/G =

1(	2,G) =
h̃1 h̃2

1

	2/G =

.

where the generator τ = 1 of G acts as the involution fixing all the legs and all the
vertices and switching the edges.

To see this first note that by definition for any admissible G-graph (	,G) with
monodromy datum ξ , the genus of 	/G must equal 0. It immediatly follows that 	

cannot have any loops. Since A has only one edge, the cardinality of G is 2 and the A
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structure is generic 	 has at most 2 edges. The possible admissible G-graphs are now
completely determined by the condition that for each vertex v the involution τ must
fix exactly 2g(v) + 2 legs or half-edges incident to v.

There are in total
(8
6

)
admissibleG-graphs of the form (	1,G) given by the different

distributions of the legs. Likewise there are 1
2

(8
4

)
admissible G-graphs of the form

(	2,G).
For each A-structure f = (α, β, γ ) on (	1,G) we can compose f with an iso-

morphism of (	1,G) such that the edge (h1, h2) is mapped to (h̃1, h̃2). There are two
possible choices, eitherβ(h1) = h̃1 orβ(h1) = h̃2. After these choices the A-structure
f is completely determined so there are 2 isomorphism classes of generic A-structure
on (	1,G). The same argument holds for (	2, τ2) and there are 2 isomorphism classes
of A-structures on (	2,G).

Granted Proposition 4.3 it now follows that we have a fibered diagram.

(H(	1,G))
�2(86)

∐
(H(	2,G))

�(84) H3,G,(18)

MA M3,8

φ

ξA

.

An easy dimension count shows that there is no excess of intersection. We have there-
fore computed the intersection between [φ(H3,G,(18))] and [ξA(MA)] in A•(M3,8).

For the proof of Proposition 4.3, we will proceed in the same way as in the proof
of Proposition 2.13.

Definition 4.5 Let C → D be an admissible cover of Hg,G,ξ over a connected base
scheme S. A (	,G)-marking on C → D is a 	-marking on C (see Definition 2.14)
such that the action of G on 	 is induced by the action of G on C . We will denote an
admissible cover with (	,G) marking by (C → D)(	,G).

A (	,G)-marking on C → D defines a 	-marking on C and a 	/G-marking on
C/G. The data of a (	,G)-marking can be pulled back along morphisms of base
schemes S′ → S (by definition of the pullback of an admissible cover along such
a morphism and the pullback of the 	-structure on C). We define a stack H′

(	,G) of
admissible covers with a (	,G)-marking.

Proposition 4.6 There is a natural isomorphism H′
(	,G) � H(	,G).

Proof The proof is completely analogous to that of Proposition 2.15. ��
Proof of Proposition 4.3 Weuse themodular interpretation ofH(	,G) given by admissi-
ble covers with a (	,G)-marking from Proposition 4.6 and the modular interpretation
of MA in terms of curves with an A-marking (Definition 2.14).

An object ((C → D)(	,G), f ) of
∐

(	,G, f )∈HA;G,ξ
H(	,G) over a (connected)

scheme S consists of an admissible G-graph (	,G) with a generic A-structure f
and a Hurwitz cover C → D with a (	,G)-marking. By definition we have

ξA ◦ φ(	,G, f )((C → D)(	,G), f ) = C = φ ◦ ξ(	,G)((C → D)(	,G), f ).
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We have a natural isomorphism ξA ◦ φ(	,G, f ) ⇒ φ ◦ ξ(	,G) given by the identity, so
the strict universal property of fibre products (of stacks) gives us a morphism

q :
∐

(	,G, f )∈HA;G,ξ

H(	,G) → MA ×Mg,r
Hg,G,ξ .

In other words we have a commutative diagram

∐
(	,G, f )∈HA;G,ξ

H(	,G)

MA ×Mg,r
Hg,G,ξ Hg,G,ξ

MA Mg,r .

∐
φ(	,G, f )

∐
ξ(	,G)

q

⇒

p2

p1 φ

ξA

We will construct an inverse functor r to q.
Let (C ′

A,C → D, α : C ′ ∼−→ C) be an object of MA ×Mg,r
Hg,G,ξ over a base

scheme S and let G be the group associated to the admissible cover C → D. As
explained in the proof of Proposition 2.13 the A-structure on C ′ again passes through
α to define an A-structure on the curveC . We now have the following data onC → D:

(i) a set of sections

E :=
⋃

a∈G
{a(σi )}i

in the singular locus of C where σi are the sections defined by the A-structure
on C ′,

(ii) a set of sections

H :=
⋃

a∈G
{a(σ̃i, j )}i, j

in the normalization C̃ of C ,
(iii) a set V of π -relative components of C\E
This data defines a stable graph

	 := (V , H , L, g, ι, a, ζ )

where g is the genus function that assigns the geometric genus to each element of V ,
ι is the involution defined by ι(a(σ̃i,1)) = a(σ̃i,2) for all a ∈ G, and a : H → V is
the function that sends a section to the π -relative component it lies on.
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Fig. 4 The curve C with A structure and 	 structure when G � Z/2Z with generator τ

The action of G on C (and on the normalization C̃) induces a G-action (with
stabilizer datum) on 	. Since C → D is an object ofHg,G,ξ , it follows that (	,G) is
an admissible G-graph.

Let β : HA ↪→ H be the obvious inclusion. Let α : V → VA be the map sending a
π relative component of D	 to the π relative component of DA it is mapped to under
the partial normalization defined by the sections E\ Im β. Let γ : H\ Im β → VA

be the map which sends a section a(σi, j ), where a is not the trivial element, to the
π -relative component of CA it is mapped to under the partial normalization map. This
defines an A-structure f on (	,G). This A-structure is generic since Gβ(HA) = H
by definition of H (where HA is the set of half edges of A) (Fig. 4).

Note that f is unique up to isomorphisms of A-structures on (	,G). We therefore
have a well defined object of

∐
(	,G, f )∈HA;G,ξ

H(	,G). This defines the functor r on

the objects of MA ×Mg,r
Hg,G,ξ .

Let (λ : C ′
1 → C ′

2, η : (C1 → D1) → (C2 → D2)) be a morphism in MA ×Mg,r

Hg,G,ξ (note that ξA(λ) = φ(η)). By passing through the above construction we
see that we get an isomorphism of admissible G-graphs (	1,G) → (	2,G) which
commutes with the A-structures f1 and f2 on	1, 	2.We therefore obtain a morphism

((C1 → D1)(	1,G), f1) → ((C2 → D2)(	2,G), f2).
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This defines a morphism in
∐

(	,G, f )∈HA;G,ξ
H(	,G). This completes the definition of

the functor

r : MA ×Mg,r
Hg,G,ξ →

∐

(	,G, f )∈HA;G,ξ

H(	,G).

It remains to check that r ◦ q and q ◦ r are naturally isomorphic to the respective
identity maps. Let ((C → D)(	,G), f ) be an object of

∐
(	,G, f )∈HA;G,ξ

H(	,G). Since
f is a generic A-structure on (	,G) it is easy to verify that

r ◦ q((C → D)(	,G), f ) = r(CA, (C → D), idC )

= ((C → D)(	,G), f ).

If (C ′
A, (C → D), α) is an object of MA ×Mg,r

Hg,G,ξ , then

q ◦ r(C ′
A, (C → D), α) = q((C → D)(	,G), f )

= (CA, (C → D), idC ).

The isomorphism α induces an isomorphism of curves with A structure α−1 : C ′
A →

CA so (CA, (C → D), α) and (CA, (C → D), idS) are isomorphic by (α−1, idC→D).
We thus have a natural isomorphism of functors q ◦ r ∼�⇒ id. ��

4.2 The excess bundle

Let A be a stable n pointed genus g graph. We have shown in Proposition 4.3 that the
diagram

∐
(	,G, f )∈HA,G,ξ

H(	,G) Hg,G,ξ

MA Mg,r .

∐
ξ(	,G)

∐
φ(	,G, f ) φ

ξA

(26)

is Cartesian.We can compute the excess bundle separately on each componentH(	,G)

of the disjoint union above. Each component H(	,G) comes with an A-structure f =
(α, β, γ ) on 	 so we have to compute

E f = φ∗
f NξA/Nξ(	,G)

,

where we abbreviate φ(	,G, f ) as φ f from now on.
Let us slightly abuse notation and also denote by β the induced map of edges

EA → E	 . Let N be a set of representatives for the orbits of the action of G on E
such that N ⊂ Im β (this is possible since the A-structure f is generic). Then:
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Proposition 4.7 With the above notation we have on H(	,G) that

ctopE f =
∏

(h,h′)∈Im β\N
−ψh − ψh′ . (27)

Some remarks concerning this formula: given a graph (	,G) and a half-edge h, for
any element t ∈ G we have ψth = ψh , since the corresponding cotangent spaces are
related by the action via t . This shows that the above formula is independent of the
choice of representatives N made before.

In fact, we can interpret this formula as follows: for any orbit of an edge e = (h, h′)
in 	 let k = | Im β ∩ (Ge)| be the number of edges in this orbit coming from the graph
A. By the assumption that the A-structure on (	,G) is generic, we have k ≥ 1. Then
the orbit of e contributes a factor (−ψh − ψh′)k−1 to the Chern class ctopE f of the
excess bundle. In particular, there is excess if and only if there is an orbit of edges
containing at least two edges coming from A.

For the proof of Proposition 4.7 we will use the following fact:

Lemma 4.8 Recall that fibre products (of stacks) commute are compatible with com-
position. That is, if we have maps f1 : X1 → Z, f2 : X2 → X1 and g : Y → Z then
there is an isomorphism X2 ×X1 (X1 ×Z Y ) � X2 ×Z Y . Moreover if the morphisms
f1 and f2 are lci, then in the resulting diagram

X2 ×X1 (X1 ×Z Y ) � X2 ×Z Y X1 ×Z Y Y

X2 X1 Z

h2

g2

h1

g1 g

f2 f1

we have

ctop(g
∗
2N f1◦ f2/Nh1◦h2) = ctop(g

∗
2N f2/Nh2) · h∗

2ctop(g
∗
1N f1/Nh1).

Proof of Proposition 4.7 We will argue by induction on the edges of A. We will show
that whenever multiple edges of A land in the same G orbit of edges of 	 there is
a contribution to the excess bundle and then identify this contribution for each such
edge of A.

We can decompose the map ξA into a sequence of gluing morphisms ξi each gluing
a single edge. In this way we obtain a sequence of fibered diagrams

F ... Fi Fi−1 ... Hg,G,ξ

MA ... MAi MAi−1 ... Mg,r

∐
φ f

ηi

φi φi−1 φ

ξi

. (28)

Abusing notation we then have

ctop(φ
∗
f NξA/Nξ(	,G)

) =
#EA∏

i=1

ctop(φ
∗
i Nξi /Nηi ).
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It therefore suffices to determine ctop(φ∗
i NξAi

/Nηi ) for each i .
By Proposition 4.3 the fibre products Fi of Diagram (28) take the form

Fi =
∐

(	i ,G, fi )∈HAi ,G,ξ

H(	i ,G)

Let H(	′,G) ⊂ Fi be one of the components. The map

φ(	i ,G, fi ) : H(	i ,G) → MAi

factors as ξ	i→Ai ◦ φ	i where φ	i : H	i ,G ↪→ M	i is the source map and
ξ	i→Ai : M	i → MAi is the gluing morphism.

We can then form the fibered diagram

∐
B∈GAi+1,	i

∐
(	i+1,G, fi+1)∈HB,G,ξ

H(	i+1,G) H(	i ,G)

∐
B∈GAi+1,	i

MB M	i

MAi+1 MAi

∐
ξ ′
i+1

∐
φ f

φ	i

ξ	i→Ai

ξi+1

. (29)

where the lower square is Cartesian by Proposition 2.13 and the upper square is
Cartesian by Proposition 4.3.

Since codimMAi
Im(ξi+1) = 1 the codimension of ξ ′

i+1(H(	i+1,G)) in H(	i ,G) is

either 1 or 0. If it is 1 then there is no excess on this irreducible component.
If the codimension is 0 then H(	i+1,G) = H(	i ,G), i.e. (	i+1,G) = (	i ,G).

Restricting Diagram (29) we get

H(	i+1,G) H(	i ,G)

M	i M	i

MAi+1 MAi

idH

φ	i+1 φ	i

ξ	i→Ai+1

idM

ξi+1

.

We deduce that

φ∗
	i+1

ξ∗
	i→Ai+1

Nξi+1/NidH = φ∗
	i+1

(
ξ	i→Ai+1Nξi+1/NidM

)
= φ∗

	i+1
(Lh ⊗ Lh′)

where (h, h′) is the edge of 	 corresponding to the edge of Ai+1 glued together by
the morphism ξi+1 and where the second equality is due to.
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Now note that this situation only occurs when Ai+1 is a specialization of 	i . In
other words this situation occurs exactly if and only if the node glued together by ξi+1
is already a node of 	, which can only happen if and only if the edge glued by ξi+1 is
in the G orbit of one of the edges glued by MAi → Mg,r . ��

From the excess intersection formula, Propositions 4.3 and 4.7 we now obtain:

Theorem 4.9 We have

ξ∗
Aφ∗([Hg,G,ξ ]) =

∑

(	,G, f )∈HA;G,ξ

φ f ∗(ctopE f ∩ [H(	,G)]).

where ctop(E f ) is as in Proposition 4.7.

Note that for an A-structure f = (α, β, γ ) appearing in the above sum and a factor
(−ψh − ψh′) from ctop(E f ) (where (h, h′) is an edge of 	 in Im β), we have, by
definition of ψ classes on spaces of admissible covers

−ψh − ψh′ = φ∗
f (−ψβ−1(h) − ψβ−1(h′)).

In other words the class ctop(E f ) is a pullback of a suitable combination of ψ-classes
onMA. By the projection formula and slight abuse of notation, we can therefore also
write

ξ∗
Aφ∗([Hg,G,ξ ]) =

∑

(	,G, f )∈HA;G,ξ

ctopE f ∩ φ f ∗[H(	,G)].

4.3 Pushing forward by the target morphism

Let

Hg,G,ξ Mg,r

Mg′,b

φ

δ (30)

be the diagram from Theorem 3.7 and let [Aθ ] be a decorated stratum class onMg,r .
In certain situations it is useful to compute the pull–push

δ∗φ∗[Aθ ]

in terms of decorated stratum classes on Mg′,b. We can now do this by forming the
diagram
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∐
(	,G, f )∈HA,G,ξ

H(	,G) MA

Hg,G,ξ Mg,r

∐
(	,G, f )∈HA,G,ξ

M	/G Mg′,b

∐
φ f

∐
δ(	,G) ∐

ξ(	,G)
ξA

φ

δ

∐
ξ	/G

.

To express δ∗φ∗[Aθ ] we first observe that

φ∗[Aθ ] = φ∗ξA∗θ =
∑

(	,G, f )∈HA,G,ξ

ξ(	,G)∗
(
ctop(E f ) · φ∗

f θ
)
.

Here we use that the upper right square is Cartesian by Proposition 4.3 and the excess
bundle of the pullback along φ is given, for each (	,G, f ) ∈ HA,G,ξ , in terms of a
pullback of ψ classes on M	 , as ctop(E f ) in Proposition 4.7.

As a next step, the commutativity of the left part of the diagram above implies that

δ∗φ∗[Aθ ]=
∑

(	,G, f )

δ∗ξ(	,G)∗
(
ctop(E f ) · φ∗

f θ
)=

∑

(	,G, f )

ξ	/G∗δ(	,G)∗
(
ctop(E f ) · φ∗

f θ
)
.

The term ctop(E f ) · φ∗
f θ is a linear combination of monomials α j in κ and ψ-

classes onH(	,G). Using (30) and Lemma 3.9 we can find for any such monomial α j

a monomial term5 α̃ j in κ and ψ-classes on M	/G such that α j = δ∗
(	,G)α̃ j . Let F

be the Q-linear extension of the map α j → α̃ j , such that α = δ∗
(	,G)F(α) for any

polynomial α in κ and ψ-classes on M(	,G). Then we have

δ(	,G)∗ctop(E f )·φ∗
f θ=δ(	,G)∗δ∗

(	,G)F(ctop(E f )·φ∗
f θ)= deg δ(	,G)·F(ctop(E f )·φ∗

f θ)

again by the projection formula.
Combining these resultsweget the following combinatorial description of δ∗φ∗[Aθ ]

by the excess intersection formula and the projection formula:

Theorem 4.10 With the above notation we have

δ∗φ∗ξA∗([θ ]) =
∑

(	,G, f )∈HA;G,ξ

deg δ(	,G) ξ	/G∗(F(ctopE f · φ∗
f (θ)) ∩ [M	/G]).

Note that deg δ(	,G) is given componentwise in Theorem 3.19 (and more explicitly
for G cyclic in Proposition 3.20).

Corollary 4.11 If Hg,G,ξ is a stack of pointed admissible G-covers with source and
target morphisms φ and δ, then in particular Theorem 4.10 implies that the pull–push

δ∗φ∗ : A•(Mg,r ) → A•(Mg′,b)

5 That is, a rational coefficient times a monomial in κ and ψ-classes.
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sends tautological classes to tautological classes.

4.4 Forgetting points

In practice we are usually interested in the image of Hg,G,ξ under the composition

φ(hk1 ,...,hk j )
: Hg,G,ξ

φ−→ Mg,r
π−→ Mg,n (31)

whereπ is themap forgetting themarkings associated to hk1 , ..., hk j and theirG-orbits,

and stabilizing the resulting curve. For example the hyperelliptic locus Hg ⊂ Mg

can be defined in our terms as φ(12g+2)(Hg,Z/2Z,(12g+2)).
We are therefore interested in computing the intersection between such a locus and a

decorated stratum class. If A is an n-pointed stable graphwe can form the commutative
diagram

∐
B∈AA

MB Mg,r

MA Mg,n

∐
ξB

∐
πB π

ξA

(32)

where AA is the set of all isomorphism classes of r -pointed graphs B such that after
forgetting r − n of the legs of B we get A (recall here that if f = (α, β, γ ) : A′ → A
is an isomorphism of stable graphs then the leg assignment must commute with α, i.e.
α ◦ ζA′ = ζA, in particular a permutation of the set of legs of a stable graph A does
not neccesarily induce an isomorphism of A). We define the map πB : MB → MA

as the map forgetting the relevant points (and stabilizing) componentwise.
The diagram (32) is not Cartesian. Indeed Mg,r has connected fibers over Mg,n

but
∐

B∈AA
MB → MA does not have connected fibers. However the map

ξ :
∐

B∈AA

MB → MA ×Mg,n
Mg,r

is proper and generically 1-to-1 (unwrapping definitions we see that ξ is surjective and∐
ξB is generically injective so ξ is as well). It follows that π∗([A]) = ∑

B∈AA
[B].

To summarize, we have the following diagram.

∐
B∈AA

∐
(	,G, f )∈HB,G,ξ

H(	,G) Hg,G,ξ

∐
B∈AA

MB Mg,r

MA Mg,n

∐
ξ(	,G)

∐
φ f φ

∐
πB

∐
ξB

π

ξA
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Then putting everything together, we get the following generalization of Theorem
4.9.

Theorem 4.12 With notation as above we have

ξ∗
Aπ∗φ∗([Hg,G,ξ ]) =

∑

B∈AA

∑

(	,G, f )∈HB;G,ξ

(πB)∗ctopE f ∩ φ f ∗([H(	,G)]). (33)

Next we want to generalize Theorem 4.10. That is, looking at the diagram

Hg,G,ξ Mg,r Mg,n

Mg′,b

φ

δ

π

(34)

we want to compute the pull–push δ∗φ∗π∗[Aθ ] for decorated stratum classes [Aθ ] on
Mg,n .

From the diagram (32) it follows that

π∗[Aθ ] = π∗ξA∗θ =
∑

B∈AA

ξB∗π∗
Bθ. (35)

The maps πB are just products of the usual forgetful maps between moduli spaces of
stable curves. The pullback of monomials θ in κ and ψ-classes is determined by the
following well known result

Proposition 4.13 Letπ : Mg,n+1 → Mg,n be the map forgetting marking n+1. Then
we have

ψi = π∗(ψi ) + Di,n+1

κa = π∗(κa) − ψa
n+1

where Di,n+1 is the divisor which has the markings i and n + 1 on an irreducible
component R of arithmetic genus 0 and all other markings on a component of genus
g not containing R.

Again, putting things together we can first use Eq. (35) and Proposition 4.13 to
compute the pullback π∗[Aθ ] in terms of decorated stratum classes [Bθ ′ ] on Mg,r

and then apply Theorem 4.10 to each of these [Bθ ′ ] and push the result forward through
δ.

4.5 Example computations

In the following we apply the techniques from the last sections to compute some
examples of pullbacks for hyperelliptic and bielliptic cycles.
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Notation 4.14 We will denote by Hg,n1,2n2 ,Bg,n1,2n2 ⊂ Mg,n1+2n2 the spaces

φ(12g+2−n1 )(Hg,Z/2Z,(12g+2,0n2 )),

φ(12g−2−n1 )(Hg,Z/2Z,(12g−2,0n2 )),

respectively. Note that on the smooth locus these are the hyperelliptic and bielliptic
curves of genus g with n1 points fixed by the covering involution and n2 pairs of points
conjugate under the covering involution. We will drop n1 and n2 from the notation
when they are both zero.

Example 4.15 Let A be the stable graph

2 2

v1 v2

we will use Theorem 4.9 to compute ξ∗
A([B4]) = ξ∗

A[φ(16)(H4,Z/2Z,(16))]. We form
the diagram

∐
B∈AA

∐
(	,G, f )∈H

(B,G,(16))
H(	,G) H4,Z/2Z,(16)

∐
B∈AA

MB M4,6

MA M4

where the upper square is Cartesian. The set AA consists of all possible distributions
of legs over the vertices of A. We claim that from the nonemptyness condition of
admissible G graphs it follows that any graph B in AA, such that there exists an
admissible G graph (	,G) with generic B structure, will have one leg attached to one
of the vertices and all other legs to the other vertex. Indeed since A has a separating
edge, any B ∈ AA has a seperating edge. It follows that for any (	,G) with a generic
B structure the graph 	 and thus 	/G must also have a seperating edge. The graph
	/G without the legs is therefore of the form

1 0

v1 v2
.

From Riemann–Hurwitz it now follows that to satisfy the nonemptyness condion the
vertex of genus 1 must have 2 legs and/or half edges and the vertex of genus 0 must
have 6 legs and/or half edges attached to it. This proves the claim. The set of graphs
in AA having nonzero intersection with φ(H4,Z/2Z,(16)) thus consists of graphs of the
following form:

B1 = 2 2

v1 v2
B2 = 2 2

v1 v2

The corresponding admissible G-graphs in HBi ,Z/2Z,(16) are, respectively, of the form



Intersections of loci of admissible covers with tautological… Page 49 of 69 79

(	1,G) = 2 2

H2,Z/2Z,(12)
H2,Z/2Z,(16)

(	2,G) = 2 2

H2,Z/2Z,(16) H2,Z/2Z,(12)

with the obvious Bi -structure on (	i ,G). Note that the top Chern class of the excess
bundle is trivial. We therefore have

ξ∗
Aφ(16)∗[H4,Z/2Z,(16)] =

(
6

1

)(
φ(1)∗[H2,Z/2Z,(12)] ⊗ φ(15)∗[H2,Z/2Z,(16)]

+ φ(15)∗[H2,Z/2Z,(16)] ⊗ φ(1)∗[H2,Z/2Z,(12)]
)

.

For smooth bielliptic curves of genus 4 the bielliptic involution is unique and
generically such curves have no further automorphisms. Therefore the degree of
φ(16)∗ : H4,Z/2Z,(16) → M4 onto its image is 6!, the number of possible order-
ings of the 6 ramification points of the bielliptic map. Similarly the degree of
φ(1)∗ : H2,Z/2Z,(12) → M2,1 to its image is 1 and the degree ofφ(15)∗ : H2,Z/2Z,(12) →
M2,1 is 5!. Thus

ξ∗
A[B4] = 1

6!ξ
∗
Aφ(16)∗[H4,Z/2Z,(16)]

=
(6
1

)

6!
(
φ(1)∗[H2,Z/2Z,(12)] ⊗ φ(15)∗[H4,Z/2Z,(12)]

+ φ(15)∗[H4,Z/2Z,(16)] ⊗ φ(1)∗[H4,Z/2Z,(12)]
)

= 1

5!
(
[B2,1] ⊗ 5![H2,1] + 5![H2,1] ⊗ [B2,1]

)

= [B2,1] ⊗ [H2,1] + [H2,1] ⊗ [B2,1] ∈ A3(M2,1 × M2,1).

This computation will turn out useful later when we compute [B4] in Theorem 5.7.

Example 4.16 Let

A = 1

and consider the maps φ(18) : H3,Z/2Z,(18) → M3, δ : H3,Z/2Z,(18) → M0,8. We
will compute δ∗φ∗

(18)
([A]) using Theorem 4.10. We will go step by step through the

different parts of the equation

– First note that # Aut A = 8 so [A] = 1
8ξA∗([MA]).

– The set A, introduced in (32), consists of all possible distributions of the legs
{1, ..., 8} over the vertices of A. Since A has only one vertex, the set AA consist
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of a single element.

A =

⎧
⎪⎪⎨

⎪⎪⎩
B := 1

...1 8

i1
i2

i3
i4

⎫
⎪⎪⎬

⎪⎪⎭

– There are two possible types of admissible Z/2Z-graphs with a generic B-
structure.

(	1,Z/2Z) = 1

h1 h2

h3h4

h5 h6

h7 h8

(	2,Z/2Z) = 1

.

There are 1
2

( 8
2,4,2

)
possible nonisomorphic distributions of the legs for the graph

	1 and
( 8
2,2,4

)
for 	2.

– There are 8 isomorphism classes of B-structures on (	1, Z/2Z). For any generic
B-structure f ′ on (	1, Z/2Z) there exists an automorphism of B-structures

(	1, Z/2Z, f ′) → (	1, Z/2Z, f )

with f = (α, β, γ ) such that the edges of B are mapped to the edges (h1, h2) and
(h5, h6) under β. There are 4 possible choices for the image of the half edge i1 and
given this choices there are 2 possible images for the halfedge i3. This completely
determines a B-structure on (	1, Z/2Z). A similar argument shows that there are
8 isomorphism classes of generic B-structures for (	2, Z/2Z).

– We have deg δ(	1,Z/2Z) = deg δ(	2,Z/2Z) = 2 by Proposition 3.20.
– For all generic B-structures f on 	1 and 	2, the set Im β f ∩ G(Im β f ) is empty,
so the top Chern class of the excess bundle is 1.

– The graph A is undecorated, in other words θ = 1. Therefore we have

δ(	i ,Z/2Z)∗φ∗
fi π

∗
B(θ) = deg δ(	i ,Z/2Z) = 2

.
– The image of δ∗φ∗

(18)
: A•(M3) → A•(M0,8) lies in the S8 invariant part

A•(M0,8)
S8 of A•(M0,8). Denote by d2,4,2, d4,2,2 ∈ A•(M0,8)

S8 the classes
given by taking the sum over all nonisomorphic dual graphs of the form (respec-
tively):
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Note that there are 1
2

( 8
2,4,2

)
irreducible boundary components in d2,4,2 and

( 8
2,2,4

)

in d4,2,2.
Putting everything together we have

δ∗φ∗
(18)([A]) = 1

8
· 1

(
1

2

(
8

2, 4, 2

)
· 16 · 2

(
8

2, 4, 2

)−1

d2,4,2

+
(

8

2, 2, 4

)
· 16 ·

(
8

2, 2, 4

)−1

d2,4,2

)

= 2d2,4,2 + 2d4,2,2 ∈ R2(M0,8)

More examples are given in [46, Section 2.3].

5 Computing tautological expressions for admissible cover cycles

Let φξ̃ : Hg,G,ξ → Mg,n be the composition π ◦ φ as in (31), let H := Im φξ̃ and

assume that the class [H] is tautological. We can then try to compute [H] in terms of
decorated stratum classes. In this section we will outline a few possible methods using
Theorems 4.9 and 4.10 to do this.

5.1 Perfect pairing

The intersection pairing Hk(Mg,n) ⊗ H2 dimMg,n−k(Mg,n) → C is perfect since
Mg,n is a smooth complete Deligne-Mumford stack. The Gorenstein conjec-
ture asks whether this pairing restricted to the tautological rings RH2k(Mg,n) ⊗
RH2 dimMg,n−2k(Mg,n) is perfect as well. As was first shown in [42] the Gorenstein
conjecture is false in general.However formany lowvalues of g,n and k it is known that
H2k(Mg,n) = RH2k(Mg,n) and H2 dimMg,n−2k(Mg,n) = RH2 dimMg,n−2k(Mg,n)

so that the pairing in this degree is also perfect when restricted to the tautological ring.
In particular this is the case

– for g = 0 [32] and g = 1 [38] and arbitrary n as well as g = 2, n ≤ 19 [40],
– for k = 0, 1 [1],
– for (g, n) = (3, 0), (3, 1), (3, 2), (4, 0). Here the ranks of the cohomology groups

H2k(Mg,n) have been computed [5,8,24,26] and agree with the ranks of the inter-
section pairing on RH2k(Mg,n) computed in [48].

Assume [H] ∈ H2k(Mg,n) is tautological and that the intersection pairing ofMg,n

restricted to the tautological ring is perfect in degree 2k. Thenwe can compute this class
in the following way. Suppose we have fixed bases {Di } and {D̂ j } for RH2k(Mg,n)

and for RH2 dimMg,n−2k(Mg,n) where Di and D̂ j are decorated stratum classes. As
described in Remark 2.26 we can compute the intersection matrix

M = (Di · D̂ j )i j .
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By assumption, there is a unique expression [H] = ∑
ai Di , which we want to com-

pute. It must satisfy

([H] · D̂ j ) j =
(
∑

i

ai Di · D̂ j

)

j

.

We can compute the numbers on the left hand side using Theorem 4.10. Indeed, for any
decorated stratum class D̂ j = [Aθ ], the theorem allows us to express the zero cycle
δ∗φ∗

ξ̃
[Aθ ] in terms of tautological classes. Again using Remark 2.26 we can compute

the degree of this tautological zero cycle.
Finally, since M is an invertible matrix by assumption, we can solve this expression

for the ai .

Example 5.1 We can use this method to compute the class of the hyperelliptic locus in
the genus 3 case explicitly.

A basis for A1(M3) is given by λ, δ0 and δ1 (or κ1, δ0 and δ1, note that 12λ =
κ1 + δ0 + δ1). A basis in terms of decorated stratum classes for A5(M3) is given by
(see [16])

D̂1 =
[ ]

D̂2 =
[ ]

D̂3 =
[

1

]

The intersection numbers between the bases have been computed in [16, pg. 418] (or
use Theorem 2.25):

λ · D̂1 = 0 λ · D̂2 = 0 λ · D̂3 = 1
96

δ0 · D̂1 = − 1
4 δ0 · D̂2 = 0 δ0 · D̂3 = 1

8
δ1 · D̂1 = 1

8 δ1 · D̂2 = − 1
16 δ1 · D̂3 = − 1

96

Recall that we denote by [H3] the class 1
8!φ(16)∗[H3,Z/2Z,(16)]. We leave it as an

exercise to the reader to compute the intersection numbers

[H3] · D̂1 = − 1
8 [H3] · D̂2 = 3

16 [H3] · D̂3 = 0

using Theorems 4.9 or 4.10. Solving the resulting system of equations we get the well
known expression

[H3] = (9λ − δ0 − 3δ1) ∈ A1(M3)

Remark 5.2 The Sage program [14] has this technique implemented as a function.
However it is computationally not the most efficient method. It suffices to compute
[B2,2,0] in a short amount of time but most classes which are more complicated
require too much computing time and memory. The problem is that in calculating the
intersection of [Im φξ̃∗] with a decorated stratum class [Aθ ] we first have to pull back
[Aθ ] through the forgetful map π : Mg,r → Mg,n . If the number r − n is very high
then the pullbackπ∗[Aθ ] in terms of decorated stratum classes involves a large number
of different classes which leads to a large increase in computation time. Moreover,
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many of these classes live on complicated stable graphs. The classification of all
G-admissible graphs with large codimension is another computationally intensive
operation.

5.2 Repeated pullback to lower genus

A second method for studying cohomology classes such as α = φξ̃∗[Hg,G,ξ ] on

Mg,n is to pull them back via the boundary gluing maps ξA for stable graphs A. As
the following result of Arbarello and Cornalba shows, knowing all the pullbacks ξ∗

Aα

is in many cases sufficient to determine α uniquely.

Lemma 5.3 (Lemma 2.5, 2.6, [2]) LetA be the set of stable graphs A of genus g with
n markings having exactly one edge. Then the pullback

Hk(Mg,n)

∏
ξ∗
A−−−→

∏

A∈A
Hk(MA)

via all boundary gluing maps ξA : MA → Mg,n is injective for k ≤ d(g, n) with

d(g, n) =

⎧
⎪⎨

⎪⎩

n − 4 if g = 0,

2g − 2 if n = 0,

2g − 3 + n if g > 0, n > 0.

Remark 5.4 In particular note that dimCHg = 2g− 1 and dimC Bg = 2g− 2 and so,
since the cohomological degree is computed in terms of the real codimension, we have
[Hg] ∈ H2g−4(Mg) and [Bg] ∈ H2g−2(Mg). Hence the classes of the (unmarked)
hyperelliptic and the bielliptic loci are always in the range of Lemma 5.3.

In a lot of ways, computing the pullback by ξA gives us finer information than
the method of Sect. 5.1, since knowing the pullback ξ∗

Aα determines the intersection
number of α with any decorated stratum class Aθ on the graph A. The only intersection
numbers we cannot obtain this way are those with pure polynomials in κ andψ-classes
onMg,n .

So for every stable graph A we form the diagram

∐
B∈A

∐
(	,G, f )∈HB,G,ξ

H(	,G) Hg,G,ξ

∐
B∈AMB Mg,r

MA Mg,n

∐
ξ(	,G)

∐
φ f φ

∐
πB

∐
ξB

π

ξA

.
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Using Theorem 4.9 we can express the pullback ξ∗
Aπ∗φ∗([Hg,G,ξ ]) as

ξ∗
Aπ∗φ∗([Hg,G,ξ ]) =

∑

B∈A

∑

(	,G, f )∈HB;G,ξ

(πB)∗ctopE f ∩ φ f ∗([H(	,G)]). (36)

Our goal is to express the right hand side of (36) entirely in terms of decorated
strata. As shown in Proposition 4.7, the cycle ctopE f is a combination of ψ-classes,
which are tautological. Also we know how the pushforward (πB)∗ acts on tautological
classes. Now observe that the map φ f is the composition ξ f ◦φ(	,G) and we also know
how the partial gluing map ξ f acts on tautological classes. Thus effectively, we have
to be able to express terms of the form (φ(	,G))∗[H(	,G)].

The spaceH(	,G) itself was a product ofmoduli spacesHg(v),Gv,ξv
for a set of repre-

sentatives v of the G-action on V (	). Since these spaces have smaller dimension than
Hg,G,ξ , we assume that the corresponding cycles φ∗[Hg(v),Gv,ξv

] ∈ H∗(Mg(v),n(v))

are tautological and that we have computed them in terms of the generators of the
tautological ring.

From the definition of φ(	,G) we saw in (17) that it factors as a product of the maps
φ for the spaces Hg(v),Gv,ξv

composed with diagonal morphisms 
 : Mg(v),n(v) →∏
w∈Gv Mg(v),n(v), where Gv is the orbit of v ∈ V (	) under the action of G. By

Application 2.27, we can express the class of the diagonal in terms of (tensor products
of) tautological classes in the case that the entire cohomology H∗(Mg(v),n(v)) is tauto-
logical. As discussed in Application 2.27, this is the case for many small (g(v), n(v)).

Suppose that the cycles φ∗[Hg(v),Gv,ξv
] and the classes of the diagonals appear-

ing in (36) are tautological. Then we can determine ξ∗
Aπ∗φ∗([Hg,G,ξ ]) in terms of

decorated stratum classes. Using Theorem 2.25 we can on the other hand compute
ξ∗
A : R•(Mg,n) → R•(MA) explicitly as a linear map in terms of (generating sets

of) decorated stratum classes. Thus knowing ξ∗
Aπ∗φ∗([Hg,G,ξ ]) determines the class

π∗φ∗([Hg,G,ξ ]) in terms of decorated stratum classes up to the kernel of ξ∗
A.

Note that in order to compute the kernel of ξ∗
A, we need to identify all relations

between decorated stratum classes on Mg,n and on the factors of MA. While in
principle these relations can be determined from the intersection form (in case that all
cohomology in the corresponding degrees is tautological), this is too computationally
intensive in most cases. Instead, we use the implementation of the generalized Faber-
Zagier relations from [41], which are known to be a complete set of relations in many
cases.

If we can do this for a number of graphs Ai and if

⋂
ker ξ∗

Ai
= {0}

then we can completely determine the class π∗φ∗([Hg,G,ξ ]). In some cases where
the intersection of kernels is not trivial, we can obtain some further linear restrictions
on π∗φ∗([Hg,G,ξ ]) by computing intersection numbers with polynomials in κ and
ψ-classes on Mg,n as described in Sect. 5.1.

As an example we will now compute the class of the hyperelliptic locus in genus 5.
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Theorem 5.5 In R3(M5) we have

[H5] = 13307
360 κ3 − 1583

288 κ2κ1 + 37
144κ

3
1 − 1943

288

[ κ2

4 1

]
+ 5

72

[ κ2
1

4 1

]
+ 407

96

[ κ1

4 1

]

− 28807
1440

[
4 1

]
+ 11

4

[ κ2

3 2

]
− 11

12

[ κ2
1

3 2

]
− 23

144

[ κ1κ1

3 2

]
+ 89

144

[ κ1

3 2

]
+ 307

144

[ κ1

3 2

]

− 274397
288

[ κ2

3 2

]
+ 34355

288

[ κ2
1

3 2

]
+ 135

32

[ κ1

3 2

]
− 8219

96

[ κ1

3 2

]
+ 21923

1440

[
3 2

]
− 31163

1440

[
3 2

]

+ 208729
720

[
3 2

]
− 79

144

[
3

κ1

11

]
+ 1975

288

[
3 11

]
− 11

12

[
1

κ1

13

]
+ 1

16

[
1

κ1

13

]
+ 11

12

[
1 13

]

− 23
18

[
2

κ1

12

]
− 4057

32

[
2

κ1

12

]
+ 199

32

[
2 12

]
+ 34147

96

[
2 12

]
+ 509

24

[
2 12

]
− 23717

288

[
1

κ1

22

]

+ 10315
96

[
1

κ1

22

]
+ 13163

96

[
1 22

]
− 1909

16

[
1 22

]
− 13

36

[
2 11

1
]

− 53
36

[
2 11 1

]
+ 425

36

[
1 12

1
]

+ 273
4

[
1 12 1

]
− 1141

288

[ κ1 κ1

4 1

]
+ 26357

1440

[ κ1

4 1

]
− 2063

288

[
3 11

κ1 ]
− 35713

144

[
2 12

κ1 ]
− 35

576

[
4

κ2 ]

− 1
36

[
4

κ2
1 ]

+ 97
288

[
4

κ1 ]
− 469

480

[
4

]
− 61

160

[
4

]
− 71

576

[
3 1

κ1 ]
− 5

96

[
3 1

κ1 ]

+ 181
288

[
3 1

]
+ 19

192

[
3 1

]
− 1

8

[
3 1

κ1 ]
+ 5

16

[
3 1

κ1 ]
+ 259

288

[
3 1

]
− 305

288

[
3 1

]

− 13
288

[
2 2

κ1 ]
− 2063

192

[
2 2

κ1 ]
+ 13285

288

[
2 2

]
+ 11

192

[
2 2

]
+ 1

12

[
2 2

]
− 365

288

[
2 2

]

− 7
288

[
211

]
− 1

16

[
2 1 1

]
+ 17

48

[
2 1 1

]
− 19

48

[
2

1

1

]
+ 7

576

[
3

]

Proof of Theorem 5.5 Consider the following two graphs

A1 = 22 A2 = 3 2 .

Using Theorem 2.25 (and [14]) the pullbacks

ξ∗
A1

: A3(M5) → A3(M2,2 × M2,2)

ξ∗
A2

: A3(M5) → A3(M3,1 × M2,1)

can be computed in terms of decorated stratum classes. It turns out that ker ξ∗
A1

∩ξ∗
A2

=
{0}. By Theorem 4.9 we have

ξ∗
A1

[H5] = −
[

22

H2,0,2 H2,0,2 ]
−

[
22

H2,0,2 H2,0,2 ]

= −ψ1 ∩ [H2,0,2] ⊗ [H2,0,2]−[H2,0,2]⊗ψ1 ∩ [H2,0,2]∈R•(M2,2×M2,2).

The class [H2,0,2] ∈ A1(M2,2) was originally computed in [6, Lemma 6]. We have:

[H2,0,2] =
[
2

1

2

]
+

[
2

1

2

]
− 3

[
2

1

2

]
− 6

5

[
11

1

2

]
− 1

5

[
11

12
]

− 1

10

[
1

1

2

]
.

This immediately gives ψ1 ∩ [H2,0,2] as a class in terms of decorated stratum classes.
We thus know ξ∗

A1
([H5]) in terms of decorated stratum classes.

By Theorem 4.9 we have

ξ∗
A2

([H5]) = [H3,1,0 × H2,1,0] ∈ H6(M3,1 × M2,1)
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The class [H2,1,0] has originally been computed in [15, Theorem 2.2]. We have

[H2,1,0] = 3ψ1 − 6

5

[
11

]
− 1

10

[
1

]
.

The class [H3,1,0] was first computed in [10] using an expression for [H4] in terms
of decorated stratum classes proven in [18, Proposition 5]. Indeed, for the graph

B = 3 1 .

it is true that

ξ∗
B([H4]) = [H3,1,0] ⊗ [H1,1,0] ∈ A2(M3,1) ⊗ A0(M1,1)

From this, Chen and Tarasca computed the cycle [H3,1,0] in [10, Theorem 4.1]. In our
preferred basis, it has the expression

[H3,1,0] = 6

[
3
]

− 24
7

[
21
]

− 1
7

[
21
]

− 1
10

[
1 2

]
− 53

7

[
2 1

]
+ 48

35

[
11 1

]

+ 54
35

[
1 1 1

]
− 2

7

[
2

]
− 6

7

[
2

]
+ 1

84

[
2

]
− 53

84

[
2

]
+ 4

35

[
11

]

+ 9
70

[
1 1

]
− 1

35

[
1 1

]
+ 1

105

[
1

]
.

��
Remark 5.6 In the same way we can find an expression for [H6] ∈ R4(M6) in terms
of decorated stratum classes. Let

A1 = 32 A2 = 4 2 .

With the help of a computer one verifies that, restricted to R4(M6), we have

ker ξ∗
A1

∩ ker ξ∗
A2

= {0}.

We have

ξ∗
A1

[H6] = −
[

23

H3,0,2 H2,0,2 ]
−

[
23

H3,0,2 H2,0,2 ]

and

ξ∗
A2

([H6]) = [H4,1,0 × H2,1,0]

the classes [H3,0,2] and [H4,1,0] can readily be computed fromour expression for [H5].
We thus obtain an expression for [H6]. The set of decorated stratum classes in R4(M6)

up to Pixton’s relations is of cardinality 376 (so conjecturally dim R4(M6) = 376).
To save ink we shall therefore not write down an explict expression for [H6] here, but
it is available upon request.
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The number of decorated stratum classes in R5(M7) is 7078. Our computer is not
powerful enough to compute all the Pixton relations between these decorated stratum
classes. Although most likely with more serious computing power computing these
relations and computing H7 is still possible. In general, with our method the main
difficulty for computing [Hg] ∈ Rg−2(Mg) seems to be the computation of Pixton’s
relations. That is, in all cases where we can compute these relations - both onMg and
on the spacesMgi ,ni appearing in the boundary divisors - we can also compute [Hg].

5.3 Example: the bielliptic locus in genus 4

As an application of the methods of the previous section, we now compute the class
[B4] ∈ H6(M4) of the locus of bielliptic curves in genus 4.

The dimension of H6(M4) is 32 by [8, Theorem 1]. By [48, Page 11] the dimension
of RH6(M4) is also 32, hence the cohomology group is completely tautological. A
basis for H6(M4) in terms of decorated stratum classes is given by taking the last 32
generators of the relation given in [48, Proposition 2].

Theorem 5.7 In H6(M4) we have

[B4] = 480

[
2 2

]
+180

[
21 1

]
−354

[
12 1

]
−36

[ 1

1

2
]

−378

[
1

1

1

1
]
+ 816

5

[
111 1

]

−7

[
3
]

+ 7
3

[
2

]
− 133

16

[
3
κ1

]
+ 665

16

[
3

]
+ 75

4

[
12
]

+ 19
6

[
12
]

− 310
3

[
12
]

− 136
3

[
12

]
− 37

120

[
1

]
+ 133

144

[
2

]
− 9

2

[
2

]
+ 20

9

[
2

]

+ 101
36

[
2

]
− 85

24

[
11

]
− 221

30

[
11
]

+ 26
15

[
11

]
+ 243

10

[
11
]

− 57
16

[
21

]

− 45
16

[
12

]
− 421

12

[
21
]

− 70
3

[
12
]

+ 37
3

[ 1

2

]
− 191

5

[
1

1

1

]
+17

[
111

]

− 251
4

[
1 11

]
− 2019

10

[

1

11 ]

Remark 5.8 We only know that the equality of Theorem 5.7 holds in cohomology.
Because the entire cohomology ring is tautological we know that the cohomology
class [B4] is tautological. However the authors are unaware of any argument that the
corresponding Chow class is tautological.

By Riemann–Hurwitz, a bielliptic involution on a genus 4 curve has 6 fixed points,
so the natural space describing such curves isH4,Z/2Z,(16). As a first step, we need to

compare the fundamental class [B4] with the pushforward φ(16)∗[H4,Z/2Z,(16)] sup-
ported on the same locus.

Next we want to show that on the generic bielliptic curve C of genus 4, the
bielliptic involution is unique. Assume otherwise, i.e. that C has two distinct biel-
liptic involutions τ1, τ2. Then inside Aut(C) they generate a (finite) subgroup. Since
τ 21 = idC = τ 22 , this subgroup must be a dihedral group of the form D2n , where the
additional relation (τ1τ2)

n = idC holds.
We now consider theRiemann–Hurwitz formula for the quotientmapC → C/D2n .

Let g′ be the genus of C/D2n , then since there exists a map C/〈τ1〉 → C/D2n , given
by taking a further quotient, we have g′ ≤ 1, since by assumption C/〈τ1〉 has genus
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1. Let b be the number of branch points of C → C/D2n and let h1, . . . , hb ∈ D2n be
generators of the stabilizers of some point over these b branch points. Then Riemann–
Hurwitz tells us

6 = 2 · 4 − 2 = (2n) · (2g′ − 2) +
b∑

i=1

(
2n − 2n

ord hi

)
.

Now ord hi ≥ 2, so 2n − 2n
ord hi

≥ 2n − n = n and we conclude

6 ≥ 2n(2g′ − 2) + bn �⇒ 6

n
+ 2(2 − 2g′) ≥ b.

Since τ1, τ2 were distinct by assumption, we have n ≥ 2, which implies b ≤ 7 in the
case g′ = 0 and b ≤ 3 in the case g′ = 1. Correspondingly, the moduli spacesMg′,b
parametrizing the curve C/D2n with marked branch points have dimensions at most
4 and 3, respectively. Since this dimension is the same as the corresponding space
H4,D2n ,ξ ′ parametrizing the curve C with D2n-action, the general bielliptic curve of
genus 4 cannot have such an action of a dihedral group D2n , since the space of bielliptic
curves is of dimension 6. Thus the bielliptic involution on the general bielliptic curve
is unique.

We conclude that the degree of the map φ(16) : H4,Z/2Z,(16) → B4 ⊂ M4 to its
image is given by the number of ways to order the 6 fixed points of the bielliptic
involution, which is |S6| = 6!. To summarize we have

[B4] = 1

6!φ(16)∗[H4,Z/2Z,(16)].

We determine this class by pullback to three distinct boundary strata. Let

A = 12 B = 2 2 C = 3 1 .

The pullback maps

ξ∗
A : H6(M4) → H6(MA), ξ∗

B : H6(M4) → H6(MB),

and ξ∗
C : H6(M4) → H6(MC )

can be computed in terms of bases of decorated stratum classes by Theorem 2.25,
using the generalized Faber-Zagier relations calculated by [41]. Inside the vector space
H6(M4) = RH6(M4) of dimension 32, we have

dim ker ξ∗
A = 4, dim ker ξ∗

B = 14, dim ker ξ∗
C = 3

and it holds that

(ker ξ∗
A) ∩ (ker ξ∗

B) ∩ (ker ξ∗
C ) = {0}.
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Thus the pullbacks of [B4] via ξA, ξB, ξC uniquely determine [B4]. Furthermore,
looking at the dimensions of the kernels of ξ∗

A, ξ∗
B, ξ∗

C we see that the linear system of
equations for [B4] which they provide is significantly overdetermined. This provides
a check for the computations below: an error in the formulas for ξ∗

A[B4], ξ∗
B[B4] or

ξ∗
C [B4], which form the inhomogeneous term of the corresponding linear equation,
would in general cause this equation to have no solution.

In the following we compute the pullbacks of [B4] and point out for various classes
that appear in the expression for these pullbacks how to express them as tautological
classes.

Lemma 5.9 The pullback of [B4] along ξA is given by:

ξ∗
A([B4]) = −

[
12

B2,0,2 H1,0,2 ]
−

[
12

B2,0,2 H1,0,2 ]
−

[
12

H2,0,2 B1,0,2 ]

−
[

12

H2,0,2 B1,0,2 ]
+

[
12

H2,2,0 H1,1,0 ]
+ 4

[

11

1

H1,0,2


M1,2 ]

= − ψ1[B2,0,2] ⊗ [H1,0,2] − [B2,0,2] ⊗ ψ1[H1,0,2] − ψ1[H2,0,2] ⊗ [B1,0,2]
− [H2,0,2] ⊗ ψ1[B1,0,2] + [H2,2,0] ⊗ [H1,0,2] + 2[H1,0,2 × 
M1,2

].

where 
M1,2
is as in Application 2.27.

Proof This is an application of Theorem 4.9. Let A be the set consisting of all pos-
sible distributions of 6 legs on A. Graphs in A having nonzero intersection with
φ(H4,Z/2Z,(16)) are of the form:

B1 = 2 1

e1

e2

B2 = 2 1

e1

e2

B3 = 2 1 .

The following admissible G-graphs admit a B1-structure:

(	1,1, Z/2Z) = 12 (	1,2, Z/2Z) = 1

1

1

ẽ1

ẽ2

.

There is up to isomorphism one B1-structures f on (	1,1, Z/2Z). The top Chern class
of the excess bundle E f is given by a ψ class on each side. In other words

c1(E f ) ∩
[

12

H
2,Z/2Z,(16,0) H1,Z/2Z,(0)

]
= −

[
12

H
2,Z/2Z,(16,0) H1,Z/2Z,(0)

]
−

[
12

H
2,Z/2Z,(16,0) H1,Z/2Z,(0)

]
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There are 2 isomorphism classes of B1-structures on (	1,2, Z/2Z). Indeed a B1-
structure f = (α, β, γ ) on (	1,2, Z/2Z) can be given either by sending e1 to ẽ1
or to ẽ2 under β. It is easy to see they are not isomorphic.

The admissible bielliptic pairs with a B2-structure are given by

(	2,1, Z/2Z) = 12 (	2,2, Z/2Z) =
1

1 1

ẽ1

ẽ2

Again there is up to isomorphism only one B2-structure f on (	2,1, Z/2Z) and the
excess bundle is given by

E f ∩
[

12

H
2,Z/2Z,(16,0) H1,Z/2Z,(0)

]
= −

[
12

H
2,Z/2Z,(16,0) H1,Z/2Z,(0)

]
−

[
12

H
2,Z/2Z,(16,0) H1,Z/2Z,(0)

]

There are 2 isomorphism classes of B2-structures on (	2,2, Z/2Z). We can send the
edge e1 to either ẽ1 or ẽ2 and this completely determines the B2-structure.

There is only one admissible pair (	3,1, Z/2Z) with a B3-structure. It is given by

(	3, Z/2Z) = 12

There is only one isomorphism class of B3-structures and the top Chern class of the
excess bundle is trivial.

We have determined the sum of the classes in the expression of Theorem 4.9.
Pushing all of these classes forward through the morphisms πB ◦ φ f we obtain the
desired expression. ��
Remark 5.10 The classes [B1,0,2] and [B2,0,2] are relatively easy to compute in terms
of decorated stratum classes (see [46, Remark 3.4.2, Proposition 3.2.10]). We have
[H1,0,2] = [M1,0,2]. The class [H2,0,2] is computed in [6, Lemma 6]. The class
[H2,2,0] is given as [DR2(2)] in [45, Theorem 0.1]. The class [H1,0,2] is given as [ Ā2]
in [36, Theorem 3.33]. The class of the diagonal [
M1,2

] can easily be determined by

Application 2.27. We have thus completely determined the class ξ∗
A([B4]) in terms of

decorated stratum classes.

The pullback of [B4] under ξB and ξC now works in a similar way.

Lemma 5.11 We have

ξ∗
B([B4]) = [B2,1,0 × H2,1,0] + [H2,1,0 × B2,1,0] ∈ H6(M2,1 × M2,1).

Proof This is Example 4.15. ��
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Lemma 5.12 In H6(M3,1 × M1,1) we have

ξ∗
C ([B4]) =

[
13

B3,1,0 H1,1,0 ]
+ 2

[

12

1

H2,0,2


M1,1 ]

= [B3,1,0 × H1,1,0] + 2[H2,0,2 × 
M1,1
]

The class ofB3,1,0 ⊂ M3,1 has not been computed before but it can be determined
by further pullbacks to the boundary.

Proof of Theorem 5.7 We have determined the three linear maps ξ∗
A, ξ

∗
B and ξ∗

C in terms
of a basis of decorated stratum classes for H6(M4).

We have also determined the the pullbacks ξ∗
A[B4], ξ∗

B[B4] and ξ∗
C [B4] in terms

of decorated stratum classes. Since the kernels of ξ∗
A, ξ∗

B, ξ∗
C have trivial intersection,

this completely determines the class [B4]. ��

Remark 5.13 The class [B4] has first been computed in [46] using the combined infor-
mation of ξ∗

A[B4], ξ∗
B[B4] and the pull–push δ∗φ(1(10))[B4] through the hyperelliptic

curves

H4,Z/2Z,(110) M4

M0,10

φ
(110)

δ .

This last operation is not covered by our previous results but will be described in
Sect. 5.5. It should be seen as proof of concept that the intersection of two loci of
admissible covers can again be described in terms of tautological classes and further
spaces of admissible covers. It turns out that the result for δ∗φ∗

(110)
[B4] is consistent

with the formula in Theorem 5.7, providing a further check of the previous computa-
tions.

5.4 Further examples and applications

Using our implementation of the methods in the previous sections, we can compute
many more examples of admissible cover cycles.

Apart from the hyperelliptic and bielliptic cycles listed in Figs. 1 and 2 in the
introduction, we can compute a few other loci of admissible covers.

– [H3,Z/2Z,()] ∈ H6(M3), the cycle of genus 3 curves C admitting an unramified
double cover of a genus 2 curve,
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– [H3,Z/3Z,(0)] ∈ H4(M1,3), the cycle of elliptic curves (E, p0, p1, p2) such that
there exists an unramified triple6 cover E → E ′ to an elliptic curve E ′ such that
p0, p1, p2 form a fibre,

– π∗[H3,Z/3Z,(1,2)] ∈ H8(M3), the cycle of genus 3 curves C admitting a cyclic
triple cover of a genus 1 curve, with full ramification at 2 points.

In particular, ourmethods allowus to gobeyond the case of double covers.As explained
in [14, Section 4.4.3], the explicit expressions for such cycles of triple covers can be
used to verify formulas for Hodge integrals against these cycles, proven in [35].

Note that, as described before in Remark 5.6, one of the main bottlenecks in the
above computations is the enumeration of all tautological relations in various spaces
RH2k(Mg,n), which is done using the program [41]. Since cycles of admissible covers
tend to have high codimension k, it takes a long time to enumerate all decorated
stratum classes of this degree and to compute the coefficients of the relations between
them. Using a more refined approach to express tautological classes in a basis of
RH2k(Mg,n), e.g. by computing intersection numbers of cycles in opposite degree,
could potentially allow us to extend the above list of examples.

Remark 5.14 As an application of our computations, we can verify a formula for
Hodge-integrals on bielliptic loci from [43]. More precisely, [43, Theorem 4] shows
an equality between generating series of equivariant Gromov-Witten invariants of
Hilbn(C2) and Symn(C2), after suitable coordinate change. For n = 2 and g = 1 the
series can be explicitly computed on theHilbert scheme side, thus yielding a prediction
for Sym2(C2). Using localization techniques, this in turn can be expressed in terms of
integrals of bielliptic cycles against products of λ-classes. To state the corresponding
result, let λi ∈ H2i (Mn+1) be the i th Chern class of the Hodge bundle and let

φ : Hn+1,Z/2Z,(12n) → Mn+1

be the map remembering the bielliptic curve, without markings. Consider the gener-
ating series of integrals

F(u) =
∞∑

n=1

u2n−1

(2n − 1)!
∫

Hn+1,Z/2Z,(12n )

φ∗ (λn+1λn−1) .

Then a computation in [43, Section 0.6] shows that

F(u) = i

24

(
1 − eiu

1 + eiu

)
= 1

48
u + 1

576
u3 + 1

5760
u5 + · · · . (37)

Now, up to a factor, the pushforward φ∗[Hn+1,Z/2Z,(12n)] is exactly the class [Bn+1]
of the bielliptic locus and by the projection formula we have

∫

Hn+1,Z/2Z,(12n )

φ∗ (λn+1λn−1) =
∫

Mn+1

φ∗[Hn+1,Z/2Z,(12n)] · λn+1λn−1

6 Such a cover must necessarily be a group homomorphism. It follows that it is a cyclic cover and in fact
for the elliptic curve (E, p0) the point p1 is a 3-torsion point and p2 = 2 · p1.
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For n = 1, 2, 3 we can compute the class of the bielliptic locus in terms of decorated
stratum classes and thus the corresponding intersection numbers with λn+1λn−1. The
results agree with the coefficients in F(u) predicted by the formula (37) above. This
provides a further nontrivial check for our computations.

5.5 Intersecting with the hyperelliptic locus

In [19] the authors calculate the class [B3] of the bielliptic locus in genus 3 by pulling
it back to the hyperelliptic locus (and evaluating it on a small number of test surfaces).
In other words they compute the pull–push of [B3] along the diagram

H3,Z/2Z,(18) M3

M0,8

φ
(18)

δ .

The spaceM0,8 is relatively easy to understand; the inverse image of B3 along φ(18)

can be determined by set theoretic arguments.7 This allows the authors to compute
the class I := δ∗φ∗

(18)
([B3]) up to a constant. The authors then determine the com-

position δ∗ ◦ φ∗
(18)

: A2(M3) → A2(H3,Z/2Z,(18)) → A2(M0,8), in terms of a basis

for A2(M3) consisting of products of divisors and κ2, by computing the pull–push
δ∗φ∗

(18)
(D) for all boundary divisors D ∈ A1(M3) and multiplying out on both sides,

and by directly computing δ∗φ∗
(18)

(κ2). Since dim A2(M3) = 7, dim A2(M0,8) = 6

and δ∗φ∗ is surjective this determines 5 out of the 7 coefficients of the class [B3], where
one coefficient is missing because the pullback of [B3] to the hyperelliptic locus is
only determined up to a scalar.

Using Theorem 4.10 this approach becomes a bit more systematic. Indeed we have
seen that the composition

δ∗φ∗
ξ̃

: Rk(Mg,n) → Rk(Hg,G,ξ ) → Rk(Mg′,b)

can be computed algorithmically. If we want to compute the class [φξ̃ ′Hg,G ′,ξ ′ ] of
another space of admissible covers then we still have to determine the intersection

φ∗
ξ̃
[φξ̃ ′Hg,G ′,ξ ′ ]. (38)

7 In the original published version of the paper the authors make a mistake in this part of the argument (see
[46, Remark 3.4.2] for details).
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Currently such pullbacks have not been worked out in full generality, but the expec-
tation is that the fibered diagram

F Hg,G ′,ξ ′

Hg,G,ξ Mg,n

φ
ξ̃ ′

φ
ξ̃

and its excess bundle can be analysed in a way similar to that of Proposition 4.3 and
4.7. At the moment we just have set theoretic arguments to analyse the pullback (38)
in particular cases.

Pulling Back the Bielliptic Locus in Genus 4 As an example we will now sketch the
computation of the pullback of [B4] to the stackH4,Z/2Z,(110) parametrizing hyperel-
liptic curves of genus 4.

H4,Z/2Z,(110) M4

M0,10

φ
(110)

δ .

We start by giving the set theoretic intersection of the bielliptic and hyperelliptic
locus.

Proposition 5.15 The inverse image ofB4 under the map φ(110) : H4,Z/2Z,(110) → M4
is given by two strata:

(i) the locus A ⊂ H4,Z/2Z,(110) of admissible hyperelliptic covers C → D where
C is a curve with two irreducible components C1 and C2 of genus 1 and 2
respectively and two nodes between them; and where C2 admits a bielliptic
involution switching the nodes,

(ii) the locus B ⊂ H4,Z/2Z,(110) of admissible hyperelliptic covers C → D where C
is a curve with two irreducible components C1 and C2 of genus 1 and 2 and two
nodes between them; and where C1 admits a bielliptic involution switching the
nodes.

Proof Since A and B are subsets of the stack H4,Z/2Z,(110), one sees easily that the
hyperelliptic involution exchanges in both cases the nodes connecting C1 and C2. On
the other hand, we also have a bielliptic involution in both cases: for A it is given
by the required bielliptic involution on C2 and by the hyperelliptic involution of C1.
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On the other hand, for B the bielliptic involution is given by the required bielliptic
involution on C1 and by the hyperelliptic involution on C2.

That these are all loci follows from a combinatorial exhaustion in the spirit of [19,
Proposition 3] (in particular from the Castelnuovo–Severi inequality it follows that
there are no smooth curves of genus ≥ 4 with both a hyperelliptic and a bielliptic
involution). ��

In the following proposition, we show that the lociA and B are again parametrized
by spaces of admissible G-covers. Since the hyperelliptic and bielliptic involution
commute, they naturally induce an action of the group G = Z/2Z × Z/2Z, which
appears in the formulas.

Proposition 5.16 Let φZ/2Z,((0,1)2) denote the composition

φZ/2Z,((0,1)2) : H2,Z/2Z×Z/2Z,((1,0)3,(0,1),(1,1)) → H2,Z/2Z,(16,0,0) → H2,Z/2Z,(16,0),

where the first map forgets the second Z/2Z action and the second forgets the pair of
markings that previously had stabilizer (0, 1). Let φZ/2Z denote the map

φZ/2Z : H2,Z/2Z×Z/2Z,((1,0)2,(1,1)2) → H2,Z/2Z,(14,02) → H2,Z/2Z,(14,0).

forgetting the secondZ/2Z action and one of the pair of points that previously had sta-
bilizer (1, 1). Let ξ : H2,Z/2Z,(16,0)×H1,Z/2Z,(14,0) → H4,Z/2Z,(110) be themap gluing
the admissible hyperelliptic covers together in the points not fixed by the involution.
We have

A = ξ
(
Im φZ/2Z,((0,1)2),H1,Z/2Z,(14,0)

)

B = ξ
(H2,Z/2Z,(16,0), Im φZ/2Z

)
.

Proof We adopt the notation of Proposition 5.15. It is obvious that both A and B are
contained in the image of ξ .

We start by consideringA. There are no conditions on the curve C1. Let f : C2 →
D2 be the hyperelliptic map on C2 and let σ be the corresponding hyperelliptic invo-
lution. The curve C2 also admits a bielliptic involution τ , the involutions σ and τ

commute and the involution σ ◦ τ is a bielliptic involution. The involution τ induces
an involution on D2. Modding out by this involution gives a map D2 → R where R
is a stable genus 0 curve. By the Riemann–Hurwitz formula, the ramification divisor
of the composition g : C2 → D2 → R has degree 10. The only ramification points of
g are the fixed points of σ , τ and σ ◦ τ . Therefore the fixed points of σ and of τ and
of σ ◦ τ are distinct.

The situation is summarized by the following diagram. Where the upper middle
map is the hyperelliptic map. The lower middle map is the map D2 → R and the
upper maps on the right and left are the two bielliptic maps.
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f

g = 2

g = 1 g = 1
g = 0

g = 0

Identifying σ with (1, 0) and τ with (0, 1) it follows that cover C2 lies in the image
of φZ/2Z,((0,1)2).

The case of B is analogous. ��
Let us denote by

H
s
0,1,2m :=

⋃

σ∈S2m

σ(H0,1,2m) ⊂ M0,1+2m

the image under the action of the symmetric group S2m acting on the 2m-markings
permuted by the hyperelliptic involution. We can draw a conclusion from Proposition
5.16 in terms of loci on the target space as follows

Proposition 5.17 Let ξ̃ : M0,7 ×M0,5 → M0,10 be the gluing morphism gluing the
curves together in the last points. Let δ : H4,Z/2Z,(110) → M0,10 be the target map.
We have

δ(A) = ξ̃ (H
s
0,1,6 × M0,5)

δ(B) = ξ̃ (M0,7 × H
s
0,1,4).

Proof This follows immediately from applying the targetmap to the loci of Proposition
5.16. In particular note that δ induces a quotient map on the loci of Proposition 5.16
given by the Z/2Z action associated to the hyperelliptic structure. ��

Consider now the commutative diagram (which we know to be Cartesian on the
level of sets)

A ∪ B B4

H4,Z/2Z,(110) M4

g

i
φ

(110)

. (39)

We have codimM4
B4 = 3. Since codimM0,10

ξ̃ (H
s
0,1,6 × M0,5) = 3 the excess

bundle E = i∗Nφ
(110)

/Ng is trivial onA. We have codimM0,10
ξ̃ (M0,5×H

s
0,1,4) = 2.

Let φ(16) : H2,Z/2Z,(16,0) → M2,2 be the source map and let p : B → H2,Z/2Z,(16,0)
be the projection onto the second factor. The excess bundle restricted to B is given by

p∗Nφ
(16)

.
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From the excess intersection formula we get the following.

Proposition 5.18 Let a, b ∈ Q>0 be the multiplicity of the loci A,B in the (stack-
theoretic) fibre product (39). Let δ̃ : H2,Z/2Z,(16,0) → M0,7 be the target map. With
the above notation and that of Proposition 5.17, we have,

δ∗φ∗
(110)([B4]) = ξ̃∗(a[Hs

0,1,6]⊗[M0,5]+b(δ̃∗c1(Nφ
(16)

)∩[M0,7])⊗[Hs
0,1,4]). (40)

The classes [Hs
0,1,4] and [Hs

0,1,6] can be computed in terms of decorated stratum
classes as outlined in the rest of this paper. On the other hand we have

δ̃∗c1(Nφ
(16)

) = δ̃∗φ∗
(16)([H2,0,2])

the class [H2,0,2] was first computed in terms of decorated stratum classes in [6,
Lemma 6] and is again easy to compute with the methods of this paper. The pull–push
map

δ̃∗φ∗
(16) : A1(M2,2) → A1(M0,7)

can be computed in terms of bases of decorated stratum classes using Theorem 4.10.
Together this gives an expression in terms of decorated stratumclasses for δ̃∗c1(Nφ

(16)
).

Details of these computations can be found in [46]. We end up with an expression
in terms of decorated stratum classes for

(40).
The pull–push

δ∗φ∗
(110) : A3(M4) → A3(M0,10)

can also be determined in terms of bases of decorated stratum classes. Now
dim A3(M4) = 32, dim A3(M0,10) = 21 and δ∗φ∗ turns out to be surjective. Above,
we determined the image of [B4] under δ∗φ∗ up to 2 coefficients a, b. This gives
19 = 21 − 2 out of the 32 coefficients necessary to compute [B4]. In [46] this com-
putation was necessary for the computation of [B4].
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