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Abstract
Key message  This review for the first time gathers the current state of knowledge on the role of plant and microbial 
methyl salicylate (MeSA) signaling processes in forest ecosystems. It aims to establish a basis for the use of high-MeSA-
emitting trees as a silvicultural tool aiming to enhance stability and resilience in managed temperate forests affected 
by climate change.
Abstract  Methyl salicylate (MeSA) is a volatile plant and microbial signaling compound involved in systemic acquired resist-
ance (SAR) and defense against pests and microbial pathogens, and antagonists. MeSA emitted by plants is also believed 
to trigger SAR in neighboring plant individuals, thus contributing to the resilience of the entire plant community. In this 
review, we discuss volatile plant-to-plant communication processes with a special focus on MeSA and provide an overview 
about the occurrence of MeSA in fungi and other microbes. We summarize present findings on the role of MeSA in plants 
and particularly in birches (Betula spp.) and discuss the potential use of MeSA and MeSA-emitting plants in agriculture and 
forestry. MeSA levels in plant tissues are adjusted by methylation of salicylic acid to MeSA and the reverse process of dem-
ethylation. Some plant species possess constitutively high MeSA levels and thus are suitable for experiments of admixture 
of high MeSA plants, e.g., birches of the subgenera Betulenta and Acuminata in plant communities such as mixed forests. 
Furthermore, knowledge of candidate genes and the molecular pathways underlying high MeSA emission is expected to 
offer a basis for altering MeSA levels and/or the selection of high MeSA mutants.

Keywords  MeSA emission · Trees · Betula · Salicylic acid · Systemic acquired resistance (SAR) · Biogenic volatile organic 
compounds (BOVC)

Volatile compounds and the health of forest 
ecosystems

Climate change and the spread of invasive phytophagous 
organisms and disease agents in the course of ongoing bio-
logical globalization increasingly affect forests by altering 
inter-species competitiveness in biocenoses and upsetting 
the intricate dynamic balances that ensure ecosystem stabil-
ity and resilience (Gauthier et al. 2015; Roques et al. 2020; 
Weiskopf et al. 2020).

The warm winter of 2019–2020 and the dry, hot summers 
of 2018, 2019, and 2020 left forests in large parts of Europe 
stressed and prone to outbreaks of bark beetle and other 
pests (Huang et al. 2020; Netherer et al. 2019; Schuldt et al. 
2020). This points to a need for a profound understanding of 
ecophysiological processes at the ecosystem level to be able 
to adjust management to future environmental conditions.
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It is well established that multi-trophic interactions and 
defense in forest ecosystems are mediated and coordinated 
by a suite of interlinked signaling mechanisms that depend 
on biogenic volatiles (Šimpraga et al. 2019; Zemankova 
and Brechler 2010). These include compounds that are 
emitted by plants upon exposure to biotic stress factors and 
induce in others the response to build up resistance ahead 
of infestation. This leads to a more effective resistance at 
the community or ecosystem level. Metaphorically speak-
ing, the volatile signals may be described as a warning call 
or “call to arms” for other plants to be prepared and thus 
contribute to the stability and fitness of the entire plant 
community. Alternatively, the interaction was pictured as 
some plants “eavesdropping” on foreign signals that betray 
other plant’s state of fitness (Baldwin et al. 2006; Karban 
et al. 2004) to monitor for imminent threats. A classic 
example of such a plant–plant communication is the famed 
“talking trees” (Baldwin and Schultz 1983; Haukioja et al. 
1985). In the words of Baldwin et al. (2006), the “chemi-
cal vocabulary” of volatile organic compounds (VOCs) 
include ethylene, terpenoids, methyl jasmonate (MeJA), 
methyl salicylate (MeSA), and a plethora of other com-
pounds. Perception of any of these volatiles alone or in a 
complex bouquet of other substances may trigger signal-
ing cascades including endogenous hormonal responses 
via jasmonate (JA), indole-3-acetic acid (IAA), or sali-
cylic acid (SA) signals, leading to the buildup of sys-
temic acquired resistance (SAR). Responses may include 
accumulation of defense substances or induction of long-
distance signaling compounds that attract organisms that 
act antagonistically to the pest or disease agent. Many 
compounds appear to fulfill multiple functions, depend-
ing on their concentration and the context of other vola-
tiles present and some have signaling functions that reach 
across kingdoms (Raffa et al. 2005). This versatility and 
multi-functionality of volatiles contribute to the complex-
ity and dynamic flexibility of the entire system including 
plant–plant, plant–herbivore, and plant–predator interac-
tions. MeSA, for example, a volatile benzenoid compound, 
is produced both in fungi and in higher plants and is likely 
to act as a volatile signal between plants, between fungi, 
and between plants and fungi. Furthermore, as outlined 
below, it seems to be part of plant signals directed at 
insects. MeSA is one of the best-studied biogenic volatile 
organic compounds (BVOCs) linked to aphid infestation 
(Blande et. al. 2010; Staudt et. al. 2010). A study of multi-
trophic interactions involving MeSA suggests that its role 
varies depending on plant and insect species (Yangang 
et al. 2020). It may not only work as a deterrent but also 
be intricately linked to insect–insect pheromone signaling 
(Rouyar et al. 2015; Xu and Turlings 2018).

The chemical structure of MeSA and its biosynthesis are 
shown in Fig. 1.

MeSA is a beta hydroxy acid that is, via its precursor 
compound SA, derived from the isochorismate (IC) and phe-
nylalanine ammonia-lyase (PAL) pathways (Lefevere et al. 
2020). MeSA was first isolated from wintergreen Gaultheria 
procumbens (Cahours 1843) but is found widely in the plant 
kingdom. In some cases, it reaches concentrations that make 
its typical “wintergreen aroma” perceivable to the human 
nose, such as in the taxa discussed below (Pavlovic et al. 
2007; Liu et al. 2013; Ashburner et al. 2013; Singewar et al. 
2020b).

Methyl salicylate (MeSA) in fungi and other 
microbes

Microbial involvement in MeSA emissions has been shown 
in several cases, and in some instances, the levels of MeSA 
in connection with disease patterns in woody plants are 
so high that the scent is easily perceptible. A symptom of 
elm phloem necrosis caused by phytoplasma is a distinct 
MeSA odor (Sinclair et al. 2001; Swingle 1942). Wood 
infested with aspen fire sponge Phellinus tremulae (Hyme-
nochaetaceae) also exudes a typical wintergreen-like MeSA 
aroma (Collins and Halim 1972). It remains unclear though, 
whether the substance emitted is essentially of plant or 
microbial origin or a result of microbial metabolization of a 
plant compound. Interestingly also synthetic pathways that 
do not lead via SA have been described in fungi. MeSA 
emission causing a noticeable wintergreen smell even inde-
pendent of a tree host was shown in P. tremulae in in vitro 
culture (Ayer and Cruz 1995; Verrall 1937). In this case, 
the MeSA emitted most likely originates solely in the fun-
gal metabolism independent of any plant derived SA as 
substrate.

Fig. 1   Structure and biosynthesis of methyl salicylate in plants: 
S-adenosyl-l-methionine (SAM)-dependent methylation of SA into 
MeSA by salicylic acid methyl transferase, a member of the SABATH 
gene family. In the process, S-adenosyl-l-methionine (SAM) donates 
a methyl group and is converted into S-adenosyl homocysteine 
(SAH). The reverse reaction is catalyzed by salicylic acid-binding 
protein 2 (SABP2), a methylesterase (Modified from Singewar 2020c)
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There are striking differences in MeSA emission lev-
els between individual strains of the same fungal species. 
Nobles (1948) reported that the MeSA odor of P. ignariusis 
was only faint in some cultures and nonexistent in others. 
Baxter (1951) found no “wintergreen”–MeSA smell in P. 
ignarius nigricans cultures. Interestingly, P. ignarius strains 
isolated from birch trees were observed to emit MeSA only 
in small amounts and those isolated from aspen appeared to 
both emit and tolerate more MeSA in culture (Verrall 1937).

While MeSA synthesis in Phellinus is well established, 
and strains of this fungus are even used industrially to pro-
duce this compound (Batt and Tortorello 2014), it is likely 
that more fungal species possess the ability to synthesize 
MeSA.

It is possible that MeSA synthesized and emitted by fungi 
has a role in defense against other microbes. Thus, the emit-
ting fungus itself may be resistant to MeSA or any defense 
mechanisms it triggers, but fight infection with other com-
peting microbes. Given the volatility of the compound, it 
may work beyond its immediate habitat and influence com-
petition within larger forest microbial communities. A fun-
gicidal effect of MeSA was shown, for example, with the 
ascomycetes Colletotrichum camelliae (Glomerellaceae), 
which causes anthracnosis in tea shrubs (Camellia sinensis) 
(Zhang et al. 2006).

Depending on the fungal species effects vary dramati-
cally and sometimes not inhibition of growth but rather the 
opposite is observed. Lin et al. (2017) found that MeSA 
had a positive effect on both hyphal growth and toxicity of 
Lecanicillium lecanii (Cordycipitaceae), an entomopatho-
genic fungus used to produce biopesticides for applications 
in horticulture and agriculture.

The presence of MeSA in non-plant organisms (e.g., 
microbes) suggests a function in the complex signaling 
networks between individuals of different species and even 
across different kingdoms (Morath et al. 2012). Notably, SA 
on its own has antifungal effects (Amborabé et al. 2002; da 
Rocha Neto et al. 2015) suggesting a microbial conversion of 
plant SA into MeSA which may enable the fungi to remove 
SA from host tissue by volatilizing it. In dead tissues, it 
appears more plausible that saprophytic fungi produce an 
antimycotic compound to keep other competing fungal spe-
cies at bay. Metabolizing plant SA into volatile MeSA may 
yield a double benefit to parasitic fungal organisms that 
grow on live plants by adjusting SA concentrations in the 
host tissue to a level they can tolerate and at the same time 
inhibiting other microbes that compete for the same niche.

Understanding the role of fungal MeSA-signaling 
requires elaborate in vivo and in vitro studies. It needs 
extended surveys on MeSA emissions of fungi on both living 
and dead forest trees, especially birches including high- and 
low-MeSA-producing species. Such a survey could in a first 
approximation be performed using the simplest olfactory 

method: checking whether the fungus smells of "winter-
green" or not.

Role of MeSA in plants

MeSA produced in plants in response to environmental 
stress acts through its anti-oxidative effects (Ismail et al. 
2006), anti-microbial properties (Dai and Mumper 2010), 
or via SA-dependent signaling pathways (Boba et al. 2017). 
Its role as a long-distance signaling molecule with a func-
tion in SAR has been studied extensively in Arabidopsis 
thaliana and Nicotiana tabacum (Shulaev et al. 1997; Vlot 
et al. 2008) (Fig. 2). It is well established that plants syn-
thesize SA, the precursor compound, as a signal that ini-
tiates defense mechanisms upon pathogen infection (Vlot 
et al. 2009). Earlier, SA was considered to be the mobile 
signal in the SAR mechanism (Dempsey et al. 1999; Dur-
rant and Dong 2004; Yalpani et al. 1991) since a moving 
molecule is required to transfer signals from pathogen-
affected tissues to distant healthy tissues (Jenns and Kuc 
1979). To elucidate the role of SA in SAR Gaffney et al. 
(1993) expressed the nahG gene from Pseudomonas putida 
which encodes a salicylate hydroxylase that converts SA to 
catechol in tobacco under a constitutive 35S-promoter. Three 
lower leaves of plants from the same lines were infected with 
tobacco mosaic virus (TMV) to study the effect of the nahG 
gene transcript on SA accumulation. The concentrations of 
salicylate hydroxylase protein, nahG mRNA, and SA were 
assayed using leaves that showed lesions amid infection. SA 
levels in wild-type-treated plants increased to 6000 ng of 
SA per gram of TMV-infected tissue, which is a 185-fold 
increase in comparison to controls treated with a virus-free 
medium. Transgenic lines showed a substantial increase of 
nahG mRNA and salicylate hydroxylase activity resulting in 
an only two-fold increase in SA upon TMV infection. These 
lines were used for grafting experiments by Vernooij et al. 
(1994) who joined wild-type scions with nahG-transgenic 
rootstocks and vice versa. The rootstocks of grafted plants 
were inoculated with TMV and the infection allowed to pro-
gress for seven days. Plants with transgenic rootstocks were 
still able to transmit a signal across the graft junction into 
the wild-type tissue which was thus protected from pathogen 
attack (Vernooij et al. 1994). The results suggest an involve-
ment of a vascular-mobile molecule in long-distance signal-
ing and the establishment of SA-dependent SAR (Vernooij 
et al. 1994).

Li et al. (2018) showed a rise in both SA and MeSA levels 
in Populus tomentosa after infection with the fungal patho-
gen Botryosphaeria dothidea (Botryosphaeriaceae). The SA 
level was found to be elevated after 6 h and remained steady 
between 12 and 72 h. The MeSA level in contrast began to 
rise 48 h after inoculation. The chronological sequence and 
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the molecules’ chemical structure suggest that SA may be 
converted into MeSA, giving rise to a mobile signal. Thus, 
MeSA is a candidate molecule for signaling that initiates 
responses in the healthy tissues of the plant. Furthermore, 
MeSA levels declined under the same condition after a fur-
ther 48 h suggesting its short-term signaling activity and 
subsequent conversion of MeSA back to SA. 14C labels 
were recovered in SA after treating tobacco plants with 
14C-MeSA which demonstrated that MeSA signals can be 
modified by demethylation and conversion into SA suggest-
ing MeSA signals can be regulated by demethylation to SA 
(Shulaev et al. 1997) (Fig. 2). Detailed analysis of pathogen-
induced MeSA production in poplar revealed accumulation 
of SA and MeSA near the site of infection, providing strong 

evidence for the role of MeSA in induced defense mecha-
nisms (Li et al. 2018).

Kumar and Klessig (2003) downregulated the expression 
of salicylic acid-binding protein 2 (SABP2), a methylester-
ase involved in MeSA biosynthesis, in tobacco by means of 
RNA interference (RNAi) and found suppression of SAR 
development. In grafting experiments using the same lines 
wild-type scions were grafted onto rootstocks with silenced 
SABP2 expression, and vice versa (Park et al. 2007). Small 
lesions occurring after TMV infection at the rootstock sug-
gested that SAR was induced in the wild-type scion grafted 
on either SABP2-silenced or wild-type rootstocks. In con-
trast, larger lesions were observed in SABP2-silenced sci-
ons grafted onto wild-type or SABP2-silenced rootstocks, 

Fig. 2   Ecological and economic advantages of MeSA signals in man-
aged forest ecosystems: as a signaling element between multiple 
organisms MeSA contributes to maintaining ecological stability. A 
Involvement of MeSA in SAR and airborne signals “warning” against 
pathogen attack. B High MeSA emission by plants protects them 
from herbivores and microbial damage. C MeSA helps to activate the 

biocontrol activity by attracting predatory arthropods of aphids that 
harm the plants. D Short rotation forestry with high- and low-MeSA-
producing forest tree species. E Traditional economic use of forest 
trees for timber and fuelwood production. F Production of organic 
MeSA from the bark of high-MeSA-emitting tree species
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indicating a failure of SAR in the plants. The results suggest, 
although MeSA esterase is not required to trigger SAR, it is 
vital for transmitting the SAR signal in distal tissues (Park 
et al. 2007).

Furthermore, a function of airborne MeSA in long-
distance signaling promoting resistance against TMV was 
shown by Shulaev et al. (1997). In TMV-infected 5-week-old 
tobacco plants 185 µg MeSA was collected from total vola-
tiles, compared to only 23 µg collected from non-infected 
plants (Shulaev et al. 1997).

MeSA emission is also an element in an indirect defense 
mechanism that is activated upon herbivore attack to attract 
these herbivores’ natural enemies (Van Den Boom et al. 
2004; Mallinger et al. 2011; Ghirardo et al. 2012). Here, 
volatile compounds like MeSA are referred to as herbivore-
induced plant volatiles (HIPV) (Gadino et al. 2012). Preda-
tory arthropods are attracted by HIPVs suggesting that these 
compounds indicate the presence of potential prey (Fang 
et al. 2015). Aphids were shown to move away from plants 
treated with an exogenous dose of 10 μl MeSA per plant, 
suggesting that the potential prey also perceives the signal 
(Coppola et al. 2018). Measurements of seasonal emissions 
of BVOC from Pseudotsuga menziesii (Pinaceae) by gas 
chromatography–mass spectrometry (GC–MS) showed that 
MeSA emission was elevated not only in response to biotic 
stress but also rose in the summer heat and fell with the 
temperatures in winter (Joó et al. 2011) (Fig. 2).

In response to pathogen attack, almost all plant species 
produce MeSA as a long-distance mobile signal-inducing 
SAR (Chen et al. 2019; Liu et al. 2011; Shine et al. 2019). 
Therefore, we denote species that synthesize MeSA mostly 
when needed in defense as “low-MeSA-producers”. In con-
trast, species that have constitutively high MeSA levels 
are referred to as “high MeSA-producers” (Singewar et al. 
2020b).

In some species, concentrations reach a level sufficient for 
the characteristic aroma to be well perceivable to the human 
nose such as in species of the genera Polygala, Gaultheria, 
Filipendula, Primula, and Betula (Pavlovic et al. 2007; Liu 
et al. 2013; Joshi and Subedi 2014; Joshi 2015; Bijttebier 
et al. 2016; Olennikov et al. 2016; Singewar et al. 2020b). 
Also, some ferns such as Asplenium lamprophyllum (Asple-
niaceae) or Polypodium vulgare (Polypodiaceae) contain 
MeSA (Briggs and Taylor 1947).

The MeSA odor is colloquially referred to as “winter-
green” after Gaultheria procumbens (Ericaceae), the epon-
ymous American wintergreen. Gaultheria species of the 
Himalayas and South India are known as Eastern Teaberry. 
Most of the approximately 134 species in the genus contain 
high MeSA levels and were historically used to produce 
wintergreen oil for numerous applications (Liu et al. 2013).

The compound is, as noticeable by the wintergreen scent, 
also emitted from crushed roots of Polygala species, e.g., the 

perennial White Milkwort (Polygala alba, Polygalaceae) or 
the biannual Candy Root P. nana. GC–MS analyses showed 
MeSA to be the main constituent of essential oils extracted 
from roots of P. paniculata (89.1%) and P. cyparissias 
(97.8%) (Pizzolatti et al. 2009). Several species of the genus 
are linked to a rich native North American ethnobotanical 
heritage (Moerman 1986).

Trees of the genus Parkia (Mimosaceae) have been 
reported to emit a MeSA aroma from their bark (Hopkins 
1986). There appear to be no studies exploring whether the 
MeSA emission, is possibly age dependent or triggered by 
specific environmental factors since it not constitutively high 
in all individuals of the species. Also, high levels of MeSA 
were found in trees of the neotropical genus Pouroma (Urti-
caceae) (Lopes et al. 2002). The intensity of the MeSA scent 
differs among species in the genus with a weaker odor being 
found for instance in P. bicolor and P. villosa and a stronger 
one in P. cecropiifolia, P. guianensis, and P. myrmecophila. 
The odor emanates from all parts of the trees. A particu-
larly strong scent not only comes from bark and branches 
(Gaglioti 2015) but also leaves and fruit harbor a winter-
green aroma (Lopes-Lutz et al. 2010). In the woody liana 
Ampelozizyphus amazonicus (Rhamnaceae) from Amazonia, 
high MeSA content is not only obvious from the interior 
cortex emitting a MeSA smell but is also reflected in its 
ethnopharmacological significance (Ducke 1935).

Likewise, some Betula species (specifically, of the sub-
genera Aspera and Acuminata; Section Lentae) produce a 
high amount of MeSA in their leaves and bark (Ashburner 
et al. 2013; Singewar et al. 2020b). MeSA synthesized and 
emitted by birch species may be of significance for inter-
species signaling in forest ecosystems. MeSA in the genus 
Betula is discussed in a separate section below.

MeSA appears also to have another role that is rather 
different from putative functions in defense, namely in 
pollinator attraction. This is suggested by the observation 
that in some taxa, MeSA is contained in the bouquet that 
makes up the floral scent. The Tiaré flower Gardenia tait-
ensis (Rubiaceae), traditionally used to make perfume and 
anti-inflammation medicine, contains MeSA (Claude-Lafon-
taine et al. 1992) and its scent has a note of "wintergreen". 
Some Plumeria rubra (Apocynaceae) selections also have 
that note in their floral bouquet (Goswami and Chauhan 
2016). Several orchids, e.g., species of the genera Catase-
tum (Chandra et al. 2014) or Anguloa have floral aromas 
with an "overwhelming scent of oil of wintergreen" (Oake-
ley 1991,2005), e.g., A. clowesii, the Tulip orchid (Seaton 
2020). Besides, some fruit, e.g., the pineapple guava Acca 
sellowiana (Myrtaceae), have a faint wintergreen aroma 
(Harrison 1967), which may be hypothesized to be part of 
an olfactory attractant for frugivorous mutualists involved in 
the plant’s dispersal strategies.
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In the process of ripening, various fruits produce MeSA 
which, as one element in a large suite of compounds, con-
tributes to the flavor (Paul and Pandey 2014; Baldwin et al. 
2000; Amoore 1952). A selection of high MeSA-producing 
taxa are listed in Table 1.

Betula species with high MeSA contents

The genus Betula is a major group of trees and shrubs in 
the Betulaceae family. Birches are widely distributed in 
the Northern Hemisphere (Shaw et al. 2015), especially in 
temperate and boreal ecosystems. The genus encompasses 
between 30 and 120 species (Furlow 1990; Koropachinskii 
2013; McAllister and Rushforth 2011) and some new spe-
cies were recently discovered (Jie et al. 2014; McAllister 
and Rushforth 2011). Hybridization between different Bet-
ula species gives rise to natural hybrids some of which are 
considered species by some authors (Koropachinskii 2013; 
McAllister and Rushforth 2011; Zeng et al. 2008). The rapid 
growth, comparatively short life cycle, and abundance of 
seed are typical for pioneer species that play an important 
role in the regeneration of forests for example after forest 
fires (Fischer et al. 2002). Within the wide geographical 
distribution of the genus Betula, there are species adapted 
to various climatic and edaphic conditions (Hemery et al. 
2010; Hynynen et al. 2009). Wind pollination helps birches 
to maintain high genetic variability to survive in a range of 

environmental conditions (Yasaka et al. 2009; Aspelmeier 
and Leuschner 2004). Birch can readily establish on a given 
site and create ideal conditions for other non-pioneer tree 
species (Prévosto and Curt 2004; Rosenvald et al. 2014). 
Thus, birches significantly contribute to the recovery of tem-
perate and boreal forests after disturbances (Dubois et al. 
2020). Birch enhances soil porosity and water infiltration 
improves soil quality and thus contributes to biodiversity 
(Perala and Alm 1990).

Among trees of relevance to forestry, several American 
and Asian birch species contain high concentrations of 
MeSA, which is perceptible upon scratching young twigs 
(Singewar et al. 2020b). Among the North American spe-
cies, Sugar birch (B. lenta), the rare Virginia round-leaf birch 
(B. uber) (described by some authors as B. lenta var. uber) 
and Yellow birch (B. alleghaniensis) contain high MeSA 
levels, as noticeable by the scent of wounded bark (Singewar 
et al. 2020b). B. lenta was historically an important source of 
Oleum betulae, birch oil, or oil of wintergreen, aromatic oil 
with a high MeSA content. For both B. lenta (Gilmore 1933) 
and B. alleghaniensis (Tantaquidgeon 1942), a medicinal use 
by Native Americans is well documented.

Among the Asian birches, the Japanese species B. grossa, 
B. corylifolia, and B. globispica have a high MeSA con-
tent and accordingly the "wintergreen" smell emanating 
from young twigs when scratched (Ashburner et al. 2013; 
Singewar et al. 2020b). The East-Asian species B. insignis, 
the Chinese endemite B. austrosinensis, and the Caucasian 

Table 1   Genera that were reported to emit high levels of MeSA. There appears to be a predominance of woody and perennial species that pro-
duce high MeSA

Genus/species Family Plant parts Plant habit References

Acca sellowiana Myrtaceae Fruit Shrub, tree Harrison (1967)
Ampelozizyphus amazonicus Rhamnaceae Bark Woody liana Ducke (1935)
Anguloa spp. Orchidaceae Floral Perennial Oakeley (1991), Oakeley (2005) and Seaton 

(2020)
Betula spp. Betulaceae Young bark Tree Ashburner et al. (2013) and Singewar et al. 

(2020b)
Catasetum spp. Orchidaceae Floral Perennial Chandra et al. (2014)
Filipendula spp. Rosaceae Leaves, roots Perennial Bijttebier et al. (2016), Joshi (2015), Olennikov 

et al. (2016) and Pavlovic et al. (2007)
Gardenia taitensis Rubiaceae Floral Shrub Claude-Lafontaine et al. (1992)
Gaultheria spp. Ericaceae Leaves Small shrub Liu et al. (2013) and Joshi and Subedi (2014)
Parkia spp. Fabaceae Bark Tree Hopkins (1986)
Plumeria rubra Apocynaceae Floral Shrub, tree Goswami and Chauhan (2016)
Polygala spp. Polygalaceae Roots Perennial and biannual Pizzolatti et al. (2009)
Pouroma spp. Urticaceae Ubiquitous, esp. bark Shrub, tree Lopes et al. (2002), Gaglioti (2015) and Lopes-

Lutz et al. (2010)
Primula spp. Primulaceae Roots Perennial herbs Steinegger and Hänsel (2013) and Wyk and Wink 

(2018)
Securidaca longepedunculata Polygalaceae Roots Tree Belmain et al. (2001), Jayasekara et al. (2002, 

2005) and Nébié et al. (2004)



1761Trees (2021) 35:1755–1769	

1 3

B. megrelica and B. medwediewii also belong to the "win-
tergreen" birch group characterized by their unmistakable 
aroma. B. alnoides, the alder-leaf birch from South East 
Asia, and B. maximowicziana, the monarch birch from the 
Caucasus, have lower MeSA contents, but the scent is still 
perceptible (Dũng et al. 1995; Nath et al. 1991).

The latest phylogenetic evolutionary analysis of birches 
showed absolute clustering of high MeSA producers, B. 
grossa, B. alleghaniensis, and B. lenta suggesting their pro-
gressive evolutionary relationship (Singewar et al. 2020b). 
These results were consistent with previous studies that sug-
gest the subgenus Betulenta (including B. grossa, B. allegh-
aniensis, and B. lenta) be among the oldest (Bina et al. 2016; 
De Jong 1993). Various evolutionary and population studies 
in the genus Betula (Bina et al. 2016; Li et al. 2005; Wang 
et al. 2016) along with the most recent network analysis 
(Singewar et al. 2020b) gave rise to the hypothesis that the 
diploid B. lenta is one of the ancestors of the genus Betula 
which constitutively produces high MeSA. This hypoth-
esis is also supported by an earlier network analysis which 
yielded evidence that B. lenta including B. lenta var. uber 
forms the oldest clade (Bina et al. 2016). These results sug-
gest that the ancestral ability of high MeSA production was 
passed on to some of the later evolving Betula species, while 
others lost their MeSA-producing potential (Singewar et al., 
2020b; Hughes 2012; Bina et al. 2016).

Several natural or garden-origin hybrids between "win-
tergreen" birches and sympatric “low MeSA” species of 
other subgenera have been described. Betula × purpusii, 
is a hybrid between B. alleghaniensis and B. pumila var. 
glandulifera (Dancik and Barnes 1972) and B. murrayana 
is a back–cross between B. × purpusii and B. alleghaniensis 
(Barnes and Dancik 1985). Natural hybrids of B. allegh-
aniensis and papyrifera were also described (Barnes et al. 
1974). Betula × jackii is a hybrid of B. lenta and B. pumila 
(Jack 1895), of which different lines display a varying inten-
sity of the scent.

Besides, historical breeding trials produced vari-
ous hybrids of “high–MeSA” 'wintergreen' birches and 
“low–MeSA” birches of other subgenera, such as crosses 
of B. turkestanica and B. alleghaniensis (Hoch et al., 2002). 
Hybrids between B. lenta and B. alleghaniensis are also 
published (Sharik and Barnes 1971). High-MeSA-producing 
birches are listed in Table 2.

Candidate genes of MeSA 
biosynthesis and metabolism in low‑ 
and high‑MeSA‑producing birches

Several studies confirmed that salicylic acid methyltrans-
ferase (SAMT) and salicylic acid-binding protein 2 (SABP2) 
enzymes mediate the biosynthesis of MeSA in many plant 

species (Chen et al. 2003; Clarke et al. 2000; Effmert et al. 
2005; Zhao et al. 2009, 2016) (Fig. 1). The enzymes were 
functionally characterized through gene expression studies 
and biochemical analyses in various plant species such as 
Vitis vinifera, A. thaliana, Clarkia breweri, N. tabacum, and 
Populus trichocarpa (Chen et al. 2003; Kumar and Kles-
sig 2003; Ross et al. 1999; Zhao et al. 2008, 2009, 2016). 
However, very little is known about SAMT and SABP2 at 
gene and enzyme levels in birches (Singewar et al. 2020a).

MeSA is produced by methylation of SA catalyzed by 
SAMT, utilizing S-adenosyl-l-methionine (SAM) as a cofac-
tor. SAM is the most common methyl donor for methyl trans-
fer reactions (D'Auria et al. 2003; Ross et al. 1999) (Fig. 1). 
Upregulation of SAMT at the infection site increases MeSA 
synthesis and MeSA is transported to uninfected sites of the 
plants as a long-distance signaling molecule (Li et al. 2018), 
prior to being reverted to SA (Forouhar et al. 2005; Li et al. 
2018). SABP2, possessing esterase activity, catalyzes the 
conversion of MeSA to SA by demethylation (Kumar 2014; 
Park et al. 2007) (Fig. 1). Silencing and overexpression of 
SAMT and SABP2, respectively, resulted in lower MeSA lev-
els and a weakened SAR, indicating MeSA synthesis to be 
mediated by SAMT and SABP2 (Kumar and Klessig 2003; 
Zhao et al. 2009). One function of MeSA production may be 
to lower SA concentration to non-cytotoxic levels (Manthe 
et al. 1992; Vlot et al. 2009).

In a recent study, the SAMT and SABP2 genes were 
cloned from four high (B. lenta, B. alleghaniensis, B. grossa, 
and B. medwediewii) and four low (B. utilis, B, pendula, B. 
nana, and B. alnoides) MeSA-producing birches (Singewar 
et al. 2020a). In bark tissues, B. alleghaniensis and B. lenta 
showed higher relative expression of SAMT than low-MeSA-
producing species. The higher expression of SAMT in bark 
tissues of constitutively high-MeSA-producing birches 

Table 2   Betula species reported to contain high levels of MeSA 
according to Ashburner et al. (2013) and Singewar et al. (2020b)

MeSA is present in the young bark of all species listed

Betula species Native range Plant habit

B. alleghaniensis North America Tree
B. alnoides Southeast Asia Tree
B. alnoides spp. luminifera Southeast Asia Tree
B. corylifolia Japan Tree
B. austrosinensis/insignis China Tree
B. globispica Japan Tree
B. grossa Japan Tree
B. lenta North America Tree
B. lenta var. uber North America Tree
B. medwediewii Caucasus Tree
B. megrelica Caucasus Tree, shrub
B. maximowicziana East Asia, China Tree
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supports its significance for MeSA synthesis (Singewar 
et al. 2020a). In contrast, high SABP2 expression in the bark 
of low-MeSA-producing species B. utilis and B. pendula, 
appears consistent with a high rate of reversion of MeSA to 
SA, resulting in lower MeSA levels.

Extensive genomic analysis revealed that SAMT and 
SABP2 enzymes belong to the SABATH and MES fami-
lies, respectively (D'Auria et al. 2003; Yang et al. 2008). 
Both families were recently studied in silver birch (Betula 
pendula) (Singewar et al. 2021). Plant SABATH and MES 
family members catalyze methylation and demethylation 
of many hormones, signaling molecules, and floral scent 
metabolites, including SA, JA, and IAA. The name SABATH 
is an acrostic based on the three genes that were first isolated 
and characterized; Salicylic acid methyltransferase, Benzoic 
acid methyltransferase, and Theobromine synthase (D'Auria 
et al. 2003). The resulting methyl esters of SA (MeSA), JA 
(MeJA), and IAA (MeIAA; methyl IAA) are demethylated 
by methyl esterases (MES) that belong to the α/β hydrolase 
superfamily.

MeSA in folk medicine, food, and cosmetic 
industry

MeSA is a major constituent of essential oil extracted from 
birch bark (Başer and Demirci 2007; Nath et  al. 1991; 
Angmo et al. 2012; Ashburner et al. 2013; Singewar et al. 
2020b). It was used as a herbal medicine in various parts of 
the world (Clark 1999). Indigenous Native American and 
Canadian First Nation communities used plants with high 
MeSA content, including birch, for pain relief, antipyretic, 
and treatment of gastrointestinal ailments (Anderson et al. 
2017; Clark 1999). MeSA is frequently used as a fragrance 
ingredient and for its anti-inflammatory activity for muscle 
and joint pain and rheumatic conditions (Mason et al. 2004). 
Similar to North America, various species of "wintergreen" 
birches have been used in the folk medicine of different cul-
tures in Asia. B. insignis, for example, finds use as an anti-
septic in Chinese medicine, and B. alnoides bark is used in 
Asia to treat fever, inflammations, and sprains (Quattrocchi 
2012).

In Southern Brazil, no less than 19 species of the genus 
Polygala (Polygalaceae) are known to be used in folk medi-
cine for topical anesthesia (Pizzolatti et al. 2009; Wurdack 
and Smith 1971). In Eastern Africa, Polygala species are 
used to treat fever, cough, cold and other ailments (Ajali 
and Chukwurah 2004). Extracts of Polygala campestris, 
P. cyparissias, P. paniculata, P. pulchella, and P. sabulosa 
showed a strong effect against the opportunistic fungal spe-
cies Cryptococcus gattii (Filobasidiaceae) and Sporothrix 
schenckii (Ophiostomataceae) (Johann et al. 2011). High 
MeSA contents appear to be a trait shared by other genera 

of the Polygalaceae (milkwort family). Dried powdered 
roots of the African violet tree Securidaca longepeduncu-
lata (Polygalaceae) that contain high MeSA levels are used 
as traditional medicine or for storage pest control (Belmain 
et al. 2001; Jayasekara et al. 2002, 2005).

Various species of the genus Gaultheria have been used 
in traditional medicines (Joshi and Subedi 2014; Liu et al. 
2013; Sievers 1947), and over-the-counter preparations in 
both Western and Asian medicine and dentistry, e.g., heat 
ointments and sports massage oils, antiseptic mouthwashes, 
or toothpaste (Elvin-Lewis 1983). It also found use as a fra-
grance and flavoring agent, e.g., for chewing gum or soft 
drinks such as "Birch beer".

MeSA has been commonly used in the postharvest man-
agement of fruit since it delays senescence through upregu-
lating the activity of alternative oxidase (AOX) (Valverde 
et al. 2015). The treatment of freshly harvested sweet pep-
pers, pink tomatoes (Fung et al. 2006), and sweet cherry 
trees with MeSA was found to reduce free radicals that could 
damage the cells resulting in fruit spoilage (Valverde et al. 
2015). The red color development and ethylene produc-
tion of tomatoes (Lycopersicon esculentum, Solanaceae) 
were delayed when 0.5 mM MeSA was applied to mature 
green fruit. The treatment lowered transcript levels of LE-
ACS2 and LE-ACS4, ACC synthases that are upregulated 
in response to ethylene and that are linked to fruit ripening 
(Ding and Wang 2003).

Use of MeSA and MeSA‑emitting plants 
in agriculture and forestry

The anti-microbial and insect-deterring effects mentioned 
above make MeSA a suitable tool to protect stored seeds 
from insects, as used for example by applying root bark 
extracts or powders of the Violet tree Securidaca longepe-
dunculata (Polygalaceae) in grain storage (Jayasekara et al. 
2002).

Kalaivani et al. (2016) found that treatment of rice seeds 
with MeSA significantly reduced bacterial blight caused by 
Xanthomonas oryzae pv. oryzae in the seedlings. Further-
more, they found that treatment also enhanced germination 
and seedling growth, suggesting an influence on plant hor-
mone metabolisms. An increase in seed germination upon 
MeSA pretreatment was also observed in different crops 
including wheat (Dolatabadian et al. 2009), maize (Khodary 
2004), barley (Almeida 2012), and pea (McCue et al. 2000). 
In addition, MeSA has been applied as an artificial spray 
in various crops to attract beneficial insects (De Boer and 
Dicke 2004).

Effects observed with the artificial application of MeSA 
suggest that MeSA emitted by plants may also have com-
parable effects in the context of their ecosystem. Natural 



1763Trees (2021) 35:1755–1769	

1 3

emissions of volatiles from plants play a role in horticultural 
"companion planting". The volatile compounds can either 
overlay and mask the insect-attracting emissions of the 
actual target plant, attract predators, or possibly act directly 
as repellents. For example, it was shown that interplanting 
Tagetes patula (Asteraceae) between tomato plants in green-
houses protected against whitefly infestation by limonene 
emissions (Conboy et al. 2019). In experimental agroforestry 
systems, similar observations were made using “aromatic” 
trees. For example, potatoes growing between rows of citrus 
trees showed less insect damage (Mousa and Ueno 2019).

The use of companion planting in silviculture to man-
age emissions of volatiles as a protective mechanism is a 
new concept. Intermediate planting of Cedrela odorata and 
Azadirachta indica (both Meliaceae and both rich in aro-
matic compounds), in stands of West African Iroko (Milicia 
excelsa, Moraceae) resulted in higher seedling survival rates 
and a lower infestation with Phytolyma lata (Homoptera; 
Psylidae) (Ugwu et al. 2017).

Emission of MeSA by birch foliage following infestation 
with harmful insects has been proven (Blande et al. 2010). 
The effect of the substance may also extend well beyond the 
immediate crown space of the emitting plant and benefit 
neighboring individuals of the same and other species.

Jactel et al. (2011) showed that MeSA lowered attractivity 
of pheromone traps to pine processionary moths in maritime 
pine (Pinus pinaster, Pinaceae) stands suggesting either a 
repellent function or lowered pest population densities. In 
Tortix viridana larval-feeding experiments with tolerant 
(“T-oaks”) and susceptible oaks (“S-oaks”), HIPV emis-
sions profiles were followed before, during, and after larval 
feeding for 2.5 days (Ghirardo et al. 2012). Most relevant 
to larvae feeding, besides mono-, sesqui-, and homoterpe-
nes also MeSA emission was induced. However, no differ-
ence could be detected between the S- and T-oaks (Ghirardo 
et al. 2012). Attack by pine processionary moth (Thaume-
topoea pityocampa, Thaumetopoeidae) on P. pinaster also 
decreased when the trunks were surrounded by cut birch 
branches (Jactel et al. 2011)–an effect to which MeSA emis-
sion may have contributed. Also, maritime pine P. pinaster 
suffered less infestation by pine processionary moth when 
associated with birch (B. pendula). However, the protective 
effect weakened over time (Castagneyrol et al. 2020).

The use of birch as an accompanying tree species could 
therefore be particularly effective in the early phases of forest 
development. Such use would then correspond to the classical 
forestry use of birch as a “nurse crop” or “nurse stand” that 
can be established on open areas to be newly afforested, for 
example by sowing on snow (Sieber 1929; USFS 1948), prior 
to the stand of target species. Trees suitable for nurse stands 
may also be introduced as an element in a temporary mixture 
to facilitate the establishment of more long-lived tree species 
that do not grow well on an open field. Today, nurse stands 

have virtually disappeared from the management strategies in 
European forestry. Birches, therefore, are mostly of importance 
in the natural regeneration of forests and unmanaged stands 
undergoing natural succession dynamics.

Historically, a change from mixed forests with uneven 
age structure and different stages of regeneration to even-
aged coniferous monocultures must have equaled a signifi-
cant change in atmospheric chemistry and the bouquet of 
volatile signaling compounds wafting through the stands. 
As climate change alters inter-species competition in trees 
and shifts optimum sites of individual species, volatiles in 
forests will likely change accordingly, and therefore, changes 
in the dynamics of pests and pathogens may be observed. 
Šimpraga et al. (2019) suggest that "Future forestry practices 
should consider the importance of BVOCs in attraction and 
repulsion of attacking bark beetles, but also take an advan-
tage of herbivore-induced BVOCs to improve the efficiency 
of natural enemies of herbivores".

Understanding such processes of change and developing 
approaches for enhancing resilience requires integrated work 
that spans from the molecular base of resistance and devel-
opment to physiological and ecological studies that explore 
interactions between species.

Future perspectives

Variations in MeSA emission by Phellinus strains col-
lected from birch and other woody plants were shown using 
American birch trees, including the high-MeSA-emitting B. 
lenta. It remains to be investigated whether this early find-
ing (Verrall 1937), which was based solely on the olfactory 
perceptibility of the substance, can be confirmed with Euro-
pean birches and Phellinus strains, as well as with European 
Phellinus strains on B. lenta and other wintergreen birches 
and using modern analytical methods. Various birches have 
been extensively used to produce MeSA for decades; still, 
a comprehensive analytical examination is needed to evalu-
ate their MeSA-producing ability. Initial phylogenetic and 
expression analysis with birches have defined the candidate 
genes mediating high and low-MeSA production (Singewar 
et al. 2020a, b). These selected candidate genes could be 
subjected to further functional studies like targeted mutagen-
esis and genetic modifications through CRISPR/Cas technol-
ogy generating gain and loss of function mutants to modify 
MeSA levels (Kalaivani et al. 2016).

Fieldwork with short rotation copies and MeSA distil-
lation from birches could give rise to the mass production 
technology of organic MeSA (Fig. 2).
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Conclusions

Silvicultural practices that change the bouquet of volatile 
compounds by altering species composition may offer a 
way to engineer the complex and dynamic “safety net” 
made of volatile signaling compounds. Birch species are 
the only high-MeSA forest trees known to the authors to be 
hardy in the temperate zone. They are, therefore, promis-
ing for starting research in silvicultural systems that make 
use of volatile emissions and inter-species communication 
to enhance these managed ecosystems' stability and resil-
ience to pest and pathogen attacks.

It appears likely that MeSA is only one element in 
highly complex signaling pathways and networks. It 
is, however, a compound that is not only accessible to 
research with current analytical methods but also can be 
modified in forest stands without applying any transgenic 
methods. Nature offers a suitable tool in high- and low-
MeSA birches, and the range of species and hybrids that 
fall in between. Baldwin et al. (2006) speak of “mute” and 
“deaf” plants that allow studying the interactions utiliz-
ing VOCs. Plants that have especially high natural MeSA 
emissions and are, therefore, to stay with the simile used 
by Baldwin et al. (2006), particularly "VOCal", are ideal 
for such studies.

Further work requires close monitoring of ecosystem 
dynamics, pathogenesis, and insect populations and, there-
fore, calls for long-term, multi-disciplinary projects. It 
requires thorough knowledge of ecosystem dynamics in 
natural stands of high-MeSA birches in North America 
and Asia and existing ex situ collections or plantations of 
such species. Data from forest ecosystems possibly also 
open perspectives for advanced studies of agricultural 
intercropping and agroforestry systems.

Understanding the interplay of methylation and demeth-
ylation, glucosylation, and deglucosylation in altering and 
adjusting endogenous pools of MeSA and its active and 
inactive forms at a molecular level provides a basis for the 
search for natural high-MeSA–emitting mutants of birches 
that are in their nominate form low-MeSA producers—and 
the reverse, low-MeSA mutants of e.g., B. lenta and other 
high MeSA species.

Successful identification of such mutants would allow 
comparative studies with higher precision. It also allows 
studies and larger scale experiments in regions where no 
high MeSA-birch species are native without a need to 
introduce a non-native tree-crop that possibly alters native 
forest ecosystems. Such work is a contribution to develop-
ing a new silviculture to make forests healthy and stable 
for an age of climate change and biological globalization.
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