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PROJECT 

ABSTRACT 

Diffuse gliomas are the most aggressive and incurable type of adult 

brain cancer. Humanized mouse models are useful for understanding the 

molecular mechanisms of tumor types and finding new therapeutic targets. 

However, comparing tumor models and tumor samples from patients 

remains difficult. To overcome this challenge, I developed a novel 

computational framework called CAPE for comparing tumor models and 

patient expression profiles. This computational toolkit based on non-

negative matrix factorization allowed the integration of samples and the 

equal evaluation of clusters and the associated gene modules. I used CAPE 

to compare the expression profiles of humanized mouse glioma subtype 

avatar models (GSA) generated in the laboratory and adult-type diffuse 

glioma patients. The analysis revealed a strong resemblance between the 

models and the proneural glioblastoma subtype. The integration of the 

expression profiles of in vitro and in vivo GSA using CAPE also revealed that 

transplantation improved the acquisition of new tumor states in the models. 

To further investigate the model changes, I combined novel genetic tracing 

reporter phenotypic selection with CAPE. The results showed that a subset 

of in vivo GSA populations selected using the reporters clustered with 

patients with astrocytic-like identities. Furthermore, CAPE showed that GSA 

models treated in vitro with human serum, TNFα, or ionizing radiation 

revealed changes in the cellular identity toward a mesenchymal state upon 

reporter selection. Ultimately, I annotated the GSA populations in different 

conditions using single-cell transcriptomics. The results showed the 

presence of all glioblastoma states in vivo and upon external factor 

activation. The comparison between the GSA single-cell populations and 

patients confirmed this identity. Overall, this outcome aligned with the 

CAPE results, with a strong acquisition of the astrocytic-like and 
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oligodendrocyte progenitor-like cells in vivo. In conclusion, this study 

established a comprehensive framework for testing and validating the 

improvement of tumor models to mimic patients, thereby opening up a new 

avenue for understanding tumor biology and treatment response.   
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ZUSAMMENFASSUNG  

Diffuse Gliome sind die aggressivste und unheilbarste Form von 

Hirntumoren bei Erwachsenen. Humanisierte Mausmodelle sind nützlich, um 

die molekularen Mechanismen von Tumorarten zu verstehen und neue 

therapeutische Ziele zu finden. Der Vergleich von Tumormodellen und 

Patientenproben bleibt jedoch  ein schwieriges Unterfangen. Um diese 

Herausforderung zu meistern, habe ich ein neuartiges computergestütztes 

System namens CAPE für den Vergleich von Tumormodellen und 

Expressionsprofilen von Patienten entwickelt. Dieses auf der nicht-

negativen Matrixfaktorisierung basierende Toolkit ermöglicht die 

Integration von Proben und die entsprechende Einordnung von Clustern und 

den zugehörigen Genmodulen. Ich habe CAPE verwendet, um die 

Expressionsprofile von humanisierten Maus-Gliom-Subtyp-Avatarmodellen 

(GSA), die im Labor erzeugt wurden, und von Patienten mit diffusem Gliom 

vom Erwachsenentyp zu vergleichen. Die Analyse suggerierte eine starke 

Ähnlichkeit zwischen den Modellen und dem proneuralen Glioblastom-

Subtyp. Die Integration der Expressionsprofile von in vitro und in vivo 

erzeugten Glioblastomen mit Hilfe von CAPE zeigte auch, dass die 

Transplantation die Entstehung neuer Tumorstadien in den Modellen 

verbesserte. Um die Dynamik der Modelle weiter zu untersuchen, 

kombinierte ich neuartige genetische Reporter für Zellzustandsänderungen 

und CAPE. Die Ergebnisse zeigten, dass eine Untergruppe von in vivo GSA-

Populationen, die mit den Reportern selektiert wurden, mit Patienten mit 

astrozytären Identitäten geclustert wurden. Darüber hinaus zeigte  CAPE, 

dass GSA-Modelle, die in vitro mit Humanserum, TNFα oder ionisierender 

Strahlung behandelt wurden, Veränderungen der zellulären Identität in 

Richtung eines mesenchymalen Zustands zeigten. Schließlich habe ich die 

GSA-Populationen unter verschiedenen Bedingungen mit Hilfe der 

Einzelzelltranskriptomik klassifiziert. Die Ergebnisse zeigten das 

Vorhandensein aller Glioblastom-Stadien in vivo und bei Aktivierung durch 
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externe Faktoren. Der Vergleich zwischen den GSA-Einzelzellpopulationen 

und Patienten bestätigte diese Identität. Insgesamt stimmte dieses Resultat 

mit den CAPE-Ergebnissen überein, die eine starke Anreicherung von 

Eigenschaften astrozytärer und oligodendrozytärer Vorläuferzellen in vivo 

zeigten. Zusammenfassend lässt sich sagen, dass mit dieser Studie ein 

umfassender Rahmen für die Erprobung und Validierung der Verbesserung 

von Tumormodellen zur Nachahmung von Patienten geschaffen wurde, 

wodurch sich ein neuer Weg zum Verständnis der Tumorbiologie und des 

Ansprechens auf die Behandlung eröffnet. 
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AIMS OF THE PROJECT 

▪ Aim 1: To compare the expression profiles of GSA and glioblastoma 

patients by defining the models changes under different conditions. 

▪ Aim 2: To identify cell populations and asses tumor heterogeneity in 

the GSA models by contrasting single-cell expression profiles from 

glioblastoma patients and models. 

▪ Aim 3: To determine and rank the potential transcriptional modules that 

could transform GSA models into a particular glioblastoma identity. 
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BACKGROUND 

1. EPIDEMIOLOGY, ORIGIN, AND CLASSIFICATION OF DIFFUSE 

GLIOMAS 

1.1 EPIDEMIOLOGY OF DIFFUSE GLIOMAS IN ADULTS 

Cancer refers to a group of diseases defined by the uncontrolled 

growth of resident cells. This growth ultimately forms a mass known as a 

tumor. This abnormal cell development, or carcinogenesis, causes 

complications in the surrounding tissue and can lead to the death of the 

patient. Moreover, tumor cells can travel to foreign tissue, developing new 

masses, in a process known as metastasis. In some cases, tumors reappear 

after therapy, a process known as tumor recurrence. Thus, cancers require 

ongoing monitoring of patients throughout treatment and throughout their 

subsequent lives. Cancer is prevalent worldwide and is one of the leading 

causes of human death in developed countries [1]. However, despite its 

prevalence, a full understanding of tumor biology and an effective general 

therapeutic approach for cancers remain elusive. 

In general, cancer types can be classified based on histology [2] and 

tissue of origin [3]. Hence, tumor types are usually named by their primary 

location (e.g., lung cancer, colorectal cancer, cancer of the central nervous 

system), even if they have been propagated to another region. The World 

Health Organization (WHO) keeps the classifications of cancer types up to 

date as new information emerges in the literature. Tumors of the CNS 

represent several diseases that affect the brain and neuronal tissue in the 

spinal cord. The most recent WHO classification of tumors of the CNS 

differentiates among eleven categories [3] spanning different ages, grades 

of severity (grades 1 to 4), and prognoses. In particular,  diffuse gliomas 
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are the most common brain cancer affecting adults. Diffuse gliomas are 

subdivided into six families, of which diffuse gliomas astrocytoma IDHmut 

and glioblastoma IDH1wt are the only grade 4 affecting adults (Fig.B1). 

These grade 4 adult-type diffuse gliomas are fatal, with a median overall 

survival rate with standard treatment of 14 to 17 months [4]. Tumors of 

the CNS are relatively infrequent, accounting for less than 1% of all tumors 

diagnosed in the USA [5], but are very aggressive. In fact, grade 4 adult-

type diffuse gliomas alone account for 49.1% of the total malignant tumors 

detected [6]. 

In general, adult-type diffuse gliomas appear spontaneously, which 

makes their early detection and diagnosis complicated. Moreover, the  

growth location of the tumor in the brain imposes important difficulties in 

diagnosis and treatment. In fact, the most common primary detectable 

symptom is the observable neurological consequences affecting patients 

[7]. Although some studies suggest that certain germline variations are 

linked to tumorigenesis in gliomas, the significance of these variations is 

still being debated [8]. Furthermore, some neural pathologies, such as 

epilepsy and Li-Fraumeni syndrome, have been linked to tumorigenesis and 

can affect treatment [9] but not prevention. Therefore, diagnosis relies 

mostly on the observable symptoms in patients after the appearance of the 

tumor.  

Following clinical examination and evaluation of the possibility of a 

brain tumor, preoperative diagnosis using MRI determines the size and 

location of the tumor. This step is followed by surgery, where tumor 

samples obtained through microsurgical resection or stereotactic biopsy 

help to complete the diagnosis. Afterward, the tumor histopathology and 

molecular assessment of the sample using the most recent classification [3, 

10] will determine the type and grade of the tumor, as well as the best 

treatment to be provided to the patient [11]. 
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The treatment of adult-type diffuse glioma patients is challenging due 

to the location in the brain and the heterogeneity of the tumor grade. The 

standard therapeutic strategy to treat these tumors involves a combination 

of radiotherapy and alkylating agent-based chemotherapy after tumor 

resection [7]. In this strategy, radiotherapy is administered at various 

doses. The radiation dose is defined by the type of tumor and the age of 

the patient (e.g., Grade 4, 50-60 Gy at 1.2-2 Gy/day). Radiotherapy is 

combined with chemotherapy using alkylating agents such as temozolomide 

or DNA alkylation compounds that can cross the blood–brain barrier (e.g., 

nitrosourea class agents such as lomustine). In some countries (e.g., USA), 

therapy also includes treatment with bevacizumab (an anti-VEGF agent). 

However, no studies support an increase in overall survival in patients. 

Currently, new therapies for patients are being investigated, such as tumor 

treating fields therapy [13] or cell-based immunotherapy and target 

therapy [12]. Although these techniques improve the prognosis of patients, 

adult-type diffuse gliomas remain incurable. 
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Figure B1.  Characterization of diffuse gliomas  
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1.2 ORIGIN AND GROWTH OF ADULT-TYPE DIFFUSE GLIOMAS 

A better understanding of glioma tumorigenesis is important to 

improve the prognoses of patients. Two types of processes contribute to 

tumor growth: genetic and nongenetic events [13]. Genetic changes 

influence the generation of tumor-initiating cells that sustain tumor growth. 

In particular, the accumulation of single-nucleotide mutations [14] and 

clusters of genomic aberration [15] transform normal cells, conferring 

beneficial traits for cell clonal selection. In addition, there are nongenetic 

determinants that play a paramount role in tumorigenesis, such as cell 

plasticity [16] and the tumor microenvironment (TME) [17]. In that sense, 

tumor growth depends on the genetic changes and the location of each 

cancer type [18]. A complete understanding of these processes in incurable 

malignancies, such as adult-type diffuse gliomas, will lead to therapies with 

better prognoses for patients [19]. 

Adult-type diffuse gliomas originate in the brain. The most accepted 

theory is that the tumor starts with genetic changes in neural stem cells 

(NSCs) or neural progenitor cells (NPCs) in the brain [20, 21]. In humans, 

only two adult brain regions sustain self-differentiating cells: the 

subventricular zone (SVZ) and the subgranular zone (SGZ) [22]. Currently, 

the SVZ is most accepted as the area where adult-type diffuse gliomas 

develop [23]. In 2018, Lee et al. showed the presence of shared glioma 

driver mutations (e.g., mutations in the TERT promoter) in both 

nonneoplastic and neoplastic tissues in the SVZ [23]. In contrast, it is 

uncertain whether the SGZ plays a role in the carcinogenesis of adult-type 

diffuse gliomas [24]. All these studies support the hypothesis that the SVZ 

location is the origin of this tumor, yet further work is required to fully 

understand all the steps that occur in early tumorigenesis. 
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Despite the available information, the exact cell-of-origin and the 

steps in early tumor growth in gliomas are still debated. Different studies 

using genetically engineered mouse models revealed the ability of different 

glial cells to form tumors, such as oligodendrocyte progenitor cells (OPCs) 

or astrocytes [25, 26]. In addition, different studies found similarities 

between the expression profiles of differentiated glioma cells to astrocytes, 

oligodendrocytes, or neural progenitor cells [27, 28]. Specifically, Couturier 

et al. showed that glioblastoma IDH1wt cells recapitulate the differentiation 

process of glial cells in the fetal brain [29]. Relatedly, several studies 

adding GBM driver mutations such as TP53, NF1, or IDH to healthy human 

neural stem cells indicated tumor growth in animal models [30]. Another 

important point of study in adult-type diffuse gliomas is the sequence of 

the acquisition of genetic alterations. In 2019, Körber et al. showed that 

copy-number aberrations, such as chr7amp or chr10del, occur prior to the 

gain of point mutations, such as TERT [31]. These results were supported 

by the findings in Johnson et al. The authors used single-cell expression 

profiles and whole-genome sequencing to define the clonal evolution of the 

cells. The analysis showed similar results: copy-number alterations were 

acquired prior to the driver mutation [32]. Despite this, more additional 

studies are needed to understand the sequence of the early events that 

give rise to distinct adult-type diffuse gliomas. 

The genetic changes in healthy cells are unable to explain all the 

tumor heterogeneity observed in adult-type diffuse gliomas [33]. Other 

nongenetic events, such as the TME and cell plasticity, play significant roles 

in the development and recurrence of GBM. Previous observations showed 

that even though early events are related to the mutation of the 

populations, later or recurrent events are more related to nongenetic 

determinants [34]. In gliomas, different cell types in the brain (e.g., 

microglia and neurons) interact with tumor cells, triggering new pathways 

and processes that contribute to tumorigenesis and increased tumor 
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heterogeneity. The effect of the TME in gliomas is well known [35]. For 

example, several studies have shown how brain cells (e.g., astrocytes), 

resident microglia, or migrating immune cells (e.g., natural killer or T cells) 

interact and contribute to tumorigenesis in adult-type diffuse gliomas [36]. 
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1.3 MOLECULAR CLASSIFICATION OF ADULT-TYPE DIFFUSE GLIOMAS 

Microarray platforms opened a new era of high-throughput analysis 

in clinical and tumor research, helping to classify cancer types and subtypes 

[37–39]. Later, next-generation sequencing (or NGS) approaches permitted 

the examination of hundreds of samples at bulk [40] and single-cell levels 

[41], improving tumor classification. To better understand tumor 

heterogeneity, a large number of patients must be considered to account 

age groups, ethnicities, and tissue regions [42, 43]. This approach has been 

possible due to numerous large-scale consortiums, including TCGA [44], 

PCAWG [45], CPTAC [46], and TARGETx [47]. The use of different high-

throughput methods helped provide new insights into tumorigenesis in 

adult-type diffuse glioma. This achievement led to the identification of 

different glioma types, subtypes, and states. 

Molecular profiles are the best way to classify diffuse gliomas  [48]. 

The most recent classification of tumors of the CNS [3] subdivides adult-

type diffuse glioma into oligodendroma IDHmut, astrocytoma IDHmut, and 

glioblastoma IDHwt. From those, only Astrocytoma IDHmut and glioblastoma 

IDHwt adult-type diffuse gliomas are categorized as grade 4 (i.e., the most 

severe type). Interestingly, previous classification based on 

histopathological traits [48] defined grade 4 adult-type glioma as 

glioblastoma multiforme or GBM. However, the addition of molecular 

profiles changed the CNS classification in 2016 [10]. In this classification, 

glioblastoma multiforme was divided as glioblastoma IDHwt and 

glioblastoma IDHmut. 

Grade 4 adult-type diffuse glioma can be further classified into 

distinct subtypes using different molecular profiles [28, 44]. Specifically, 

gene expression levels are a good indicator of cellular activity and subtype-

specific gene signatures. In 2006, Phillips et al. demonstrated that GBM 



Background 

Page | 21  

expression profiles could be clustered into three subtypes: proneural (PN), 

mesenchymal (ME), and proliferative [27, 28]. The analysis based on the 

clustering of expression profiles (microarrays) defined the features of the 

GBM subtypes (e.g., survival and enriched pathways) and their similarities 

in specific brain cell types. In 2010, Verhaak et al. used expression profiles 

and consensus hierarchical clustering on microarray expression profiles to 

define four GBM subtypes: proneural (PN), classical (CL), mesenchymal 

(ME), and neural (NE) [28]. Additionally, the authors integrated genetic 

profiles into the analysis to associate mutations (e.g., IDHmut) and copy-

number profiles (e.g., PDGFRA) with the subtypes. This analysis showed 

that the PN subtype contained both IDHmut and IDHwt samples. A followed-

up analysis in Brennan et al. defined the GBM genetic profiles [49]. Finally, 

in 2016, Ceccarelli et al. confirmed the difference between glioblastoma 

IDHmut and IDHwt using a multiomic evaluation [50]. This analysis confirmed 

that IDHmut and IDHwt constitute different types of adult-type diffuse glioma, 

and this division was included in the WHO 2016 classification [10]. 

The development of single-cell transcriptomics profiles allowed the 

comprehensive evaluation of GBM cell populations [51]. In 2017, Wang et 

al. [35] used nonnegative matrix factorization (NMF) to evaluate the 

expression profiles of glioblastoma IDHwt patients to define three subtypes: 

PN, ME, and CL. In this case, the analysis included several microarrays, 

RNA-seq, and single-cell RNA-seq datasets. To define the genes used for 

the analysis, the authors identified the fraction of the genes that belong to 

neoplastic cells. Importantly, in 2019, Neftel et al. integrated several 

single-cell transcriptome profiles of glioblastoma IDHwt patients and defined 

four distinct tumor states: OPC-like, NPC-like, MES-like, and astrocytic-like 

(AC) [52]. In this case, the state correlated with the previous subtypes: 

NPC/OPC corresponded to the PN subtype, AC to the CL subtype, and MES 

to the ME subtype. Furthermore, the authors revealed that these are 

transitory states that can interchange. The analysis also showed that all 
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these states present cycling cells, indicating self-renewal capabilities for 

each tumor state. In addition, the analyses corroborated the copy-number 

amplifications associated with the subtypes. For example, the OPC state 

exhibited PDGFRA amplification, whereas the NPC exhibited CDK4 

amplification. 

Overall, the classification of grade 4 adult-type diffuse glioma into 

subtypes varies, whereas new studies reveal unknown subtype-related 

relationships and characteristics [53–55] . 
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2. COMPUTATIONAL METHODS TO CHARACTERIZE TUMOR MODELS 

2.1 METHODS TO INTEGRATE THE EXPRESSION PROFILES OF TUMOR 

MODELS AND PATIENTS 

Tumor models aim to mimic the molecular features of cancer. 

Therefore, tumor models must be compared to the type of tumor they 

recapitulate to understand its significance. In that sense, NGS molecular 

profiles have become essential in the characterization of existing tumor 

models. In particular, among the various profiles, gene expression has 

become critical in determining tumor identity and transcriptional signaling 

in various tumors, including grade 4 adult-type diffuse gliomas (see 

Background 1.3). It is essential to interpret these data to develop 

computational methods to assess the similarities between tumor models 

and patients. There are three general approaches to quantitatively 

evaluating tumor models using expression profiles: correlation, 

classification against a known set of genes and patients, and the integration 

of molecular profiles followed by clustering analysis.  

The correlation between the gene expression values of patients and 

models aims to reflect the grade of similarity [56]. This method is based on 

quantifying the linear dependence in gene expression values between tumor 

models and patients (e.g., Pearson correlation). Therefore, the expression 

values should be corrected to avoid technical bias such as batch effect  in 

order to compare the profiles. In the literature, there are several attempts 

to compare the expression profiles of models and patients based on 

correlation. For example, Chen et al. (2015) evaluated hepatocellular 

carcinoma cell lines and the expression profiles of patients and assessed 

the correlation of the most variable genes [57]. Similarly, Vincent et al. 

(2017) compared the expression profiles of several melanoma cell lines and 
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patients [58]. The authors of this study established a ranking of cancer cell 

lines based on the average correlation coefficient of all genes in all cell line-

malignant cell pairs. In another study, Cheng et al.  (2018) compared the 

expression profiles of head and neck cancer cell lines and patients. For that 

purpose, they used the Spearman rank coefficient, a nonparametric 

measure of correlation [59]. Using this correlation, the authors focused on 

comparing copy number changes and expression profiles to assess models 

and patient similarities. In general, despite the simplicity of the approach, 

correlation only evaluates similarity but does not define individual 

differences. 

Classification methods rely on the use of the expression profiles of 

patients as a reference to compare models. The classification can be 

performed either by the definition of subtype-specific gene signatures or by 

the implementation of classifiers with known tumor subtypes. In the first 

case, the evaluation using the gene signatures implies calculating a score 

that defines the subtype in the models. These signature genes determine 

the identity of the sample and help define the model. A simple method of 

applying this strategy is to evaluate the enrichment of upregulated subtype-

specific genes in the model (e.g., hypergeometric test). Another approach 

is the individual evaluation of each sample subtype-specific score (e.g., 

ssGSEA). Overall, the major drawback of this approach is that they rely on 

previous knowledge regarding the tumor. 

The evaluation using machine learning classifiers is the second type 

of classification method. In this strategy, the expression profiles from 

tumor patients associated with specific subtypes are applied as a reference 

to compare tumor models. Therefore, these expression profiles are used to 

train a model with annotated classes (i.e., tumor subtypes) that are used 

as a reference. This reference is then employed to define the identity of a 

new cohort of tumor patients or models. Usually, distinct correction or 



Background 

Page | 25  

regularization methods are applied to avoid technical bias (e.g., using only 

the most-variable genes). There are multiple implementations of tumor 

classifiers [60–63]. For example, the web platform GlioVis incorporates the 

SubtypeME algorithm, which uses a combination of support vector machine 

(SVM), K-nearest neighbor, and ssGSEA to classify any input to the glioma 

subtypes [64]. Another example is MINT, which allows the identification of 

molecular signatures across experiments and platforms [65]. In general, 

classifiers are useful for differentiating between multiple tumor types. For 

example, Peng et al. (2021) developed a pancancer classifier using a top 

pair random forest approach that allows the classification of any tumor 

model within the cancers and subtypes defined in TCGA [66]. Despite the 

ability of the classifiers to easily integrate different expression profiles, it 

allows only the evaluation of similarities to a known phenotype.  

The last strategy to compare tumor models and patients is the 

integration of the expression profiles. In this method, the values are first 

corrected to remove technical differences between patients and tumor 

molecular profiles, followed by unsupervised clustering of the samples. 

Specifically, the integration approach allows unbiased correlation of the 

sample identity and the expressed gene. For example, in 2021, Warren et 

al. developed Celligner [67]. The authors defined Celligner as a multistep 

procedure that removes variation and clusters integrated samples. 

Specifically, Celligner employs a contrastive PCA [68] and a modified 

version of mutual nearest neighbor [69] to correct technical differences. 

Once this step is finished, clusters are defined using algorithms that were 

originally built to cluster single-cell data (e.g., Louvain clustering from 

Seurat). In particular, the authors used this methodology to evaluate the 

similarities between the expression profiles of cancer cell lines [70] and 

TCGA samples. The major drawback of this approach is the requirement of 

the proper correction of the expression values to be integrated, which it 

might be challenging to define. 
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Although several methods have been proposed and used through 

years and technologies, the challenges in integrating the expression profiles 

from tumor models and patients still remain. For example, classifier 

methods or score systems, such as ssGSEA, can analyze only known 

subtypes. Therefore, the main objective is to develop methodologies that 

allow the simple evaluation of similarity between tumor models and patients 

as well as definition of the genes missing in the models. These methods will 

contribute to improving the evaluation of the specific differences between 

models and patients. 
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2.2 METHODS TO INTEGRATE THE SINGLE-CELL PROFILES OF TUMOR 

MODELS AND PATIENTS  

Evaluating expression profiles at the single-cell level has opened new 

avenues for assessing tumor heterogeneity. This technology can examine 

the transcriptomic profile of nonneoplastic and neoplastic populations 

within a tissue. Furthermore, the development and commercialization of 

droplet sequencing approaches enabled the generation of thousands of 

cellular profiles from a single sample. In parallel, the development of novel 

computational algorithms has been essential for analyzing the hundreds of 

thousands of transcriptomes produced from cells and yielding more 

accurate comparisons. The increased sample size and ability to focus on 

neoplastic cells alleviates some of the constraints imposed by bulk 

expression profiles. In recent years, several methods for integrating single-

cell transcriptomic profiles across multiple conditions or sequencing runs 

have been developed. We can distinguish methods using cell population 

markers to differentiate populations, methods projecting a reference into 

the data to be explored, and methods integrating multiple datasets. 

The first type of analysis relies on the definition of cell population 

markers. The expression profiles of cells that cluster together reveal 

specific marker genes that define their activity and differentiate them from 

other populations. Therefore, the simplest strategy for assessing the 

similarities between cell populations in tumor models and patients is to 

examine the enrichment of specific signatures upregulated in the tumor 

models. The enrichment of gene signatures can be evaluated at the 

population level (e.g., hypergeometric test) or in individual cells (e.g., 

ssGSEA). An example of this type of analysis would be the use of AUCell 

within SCENIC [71, 72] .AUCell estimates the enrichment of individual cells 

in the signature genes of tumor cell populations. Then, using the gene 

distribution, AUCell assigns each cell a defined identity. Interestingly, this 
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method allows the definition of different cells with a shared identity, which 

is useful for observing transitions between tumor states. There are several 

examples of evaluating tumor models by defining cellular identity [73, 74]. 

However, this methodology relies on marker genes. Therefore, previous 

knowledge built on the cell population of patients is still needed. 

Another approach to evaluating tumor models at the single-cell level 

is using single-cell profiles of tumor patients as a reference. In this case, 

single-cell expression profiles from patients are first analyzed to define the 

tumor-specific populations. Then, this dataset or “cell atlas” serves as a 

reference onto which new datasets are projected. In this case, there are 

two main approaches to projecting cells: similarity (e.g., scMAP, which is 

based on a scoring system that reflects correlation measures) and the 

generation of a classifier with the reference dataset (e.g., singleCellNet, 

which is based on a top pair random forest classifier). For example, using 

a projection approach, Couturier et al. (2020) integrated human tumor 

samples and fetal development [29]. For that purpose, they generated an 

atlas of fetal profiles using the PC space and then diffusion maps to 

integrate the tumor profile and evaluate various differentiation routes. In 

another study, Tan et al. (2019) developed a classifier by integrating 

several tumor data [75]. This method first builds a reference from different 

patients using a top pair random forest classifier, which allows the 

evaluation of the cell types in new profiles. The major drawback of these 

strategies is that they depend on the generation of a well-defined reference 

where to map tumor models. 

A final approach to compare the single-cell profiles of models and 

patients is the integration of different datasets. This method allows the 

comparison without relying on reference datasets or defined populations. 

There are several approaches to integrating datasets, such as those based 

on decomposition methods (e.g., LIGER), neighborhood evaluation methods 
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(e.g., KNN), correlation methods (e.g., CCA), and autoencoders (e.g., 

scVI). Despite the variability, the foundation of all these methods is the 

correction of the potential technical differences between datasets, followed 

by the analysis of the cell populations. Specifically, most of these methods 

rely on defined populations and the ability to differentiate between them. 

There are several examples in the literature of using this approach to 

compare single-cell profiles between tumor models and patients. Pine et al. 

integrated single-cell transcriptomics from GSC, patients, and GLICO 

models using batch-balanced k-nearest neighbors (BBKNN) to correct for 

technical differences and then evaluated the profiles [76]. Alternatively, 

Kiner et al. (2020) assessed the similarities between single-cell profiles of 

tumor cell lines and patients by integrating the corresponding single-cell 

samples [77]. In general, this method allows unbiased evaluation while 

preserving marker gene expression and cell populations. The main 

disadvantage of this methodology is that it is dependent on the assessment 

and correction of the technical differences. Therefore, as at the bulk level, 

a good control or a reference sample might be required for successful 

integration. 

Overall, single-cell transcriptomics has improved the evaluation of 

tumor heterogeneity and the identification of specific events or tumor 

states. In addition, the evaluation of cell populations helped to understand 

the similarities and differences between models and patients.  Despite this, 

there is still a need to develop new methods to compare datasets and 

populations from tumor models and patient samples. In particular, the 

generation of a large amount of single-cell profiles from many patients is 

still required to bring these tools to their full potential.  
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RESULTS 

1. COMPARISON OF THE MOLECULAR PROFILES OF PATIENTS AND ADULT-

TYPE DIFFUSE GLIOMA MODELS 

1.1 GENETIC CHARACTERIZATION OF GLIOMA SUBTYPE AVATAR 

MODELS (GSA) 

1.1.1 Complete genetic profiling of GSA models 

To create an accurate representation of glioma patients, we 

generated subtype-specific adult-type diffuse glioma models, referred to as 

glioma subtype avatar models, or GSA models. To design the models, we 

modified human neural stem cells derived from human brain samples with 

genetic modifications specific to adult-type diffuse glioma patients [28, 49]. 

In total, we generated two GSA models, named after the mutational status 

of isocitrate dehydrogenase: IDH1wt and IDH1mut. However, a complete 

genetic characterization of these models was still lacking. Therefore, I 

evaluated the genetic profiles of the GSA models using whole genome 

sequencing and annotated the single nucleotide variations (SNVs). 

The generation of GSA models started with the acquisition of neural 

stem cells from subventricular zone brain samples from human epilepsy 

patients. Then, we modified the neural stem cells by introducing a set of 

mutations and knockdowns (i.e., impaired gene expression) representative 

of two well-defined subsets of glioma patients (Fig.R1, see Background 

1.3). The IDH1mut GSA model contained the IDH1R132H and TP53R273H point 

mutations and PTEN knockdown. These mutations are frequently observed 

in patients with adult-type diffuse glioma IDH1mut [49]. Comparison with 

the transcription-based classification (Background 1.3) showed that the 

IDH1 and TP53 genes in combination are frequently mutated in a subset of 
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patients and are associated with the proneural subtype [28]. In contrast, 

the IDH1wt GSA model contained knockdown of the PTEN, TP53, and NF1 

genes. These mutations are frequently associated with the transcriptome-

based ME subtype [49]. 

Figure R1. A diagrammatic representation of the Glioma subtype avatar models (GSA). GSA 

models of IDH1wt (above) and IDH1mut (below). The models are depicted in the two conditions 

in vitro and in vivo. The latter was obtained through orthotopic injection of in vitro samples 

into the brain of an NSD-Mouse. 

To characterize the mutational status of the GSA models, we 

generated whole-genome sequencing profiles for each model (n=1). 

Following the sequencing of the samples, I used bwa [78] to map the reads 

to the GRCh38 assembly. I used the GATK v4.0 pipeline and Mutect2 variant 

calling to extract the SNVs associated with the GSA models [79]. 

Additionally, to retain only single nucleotide variations and not somatic 

variations, I filtered the called variants using the “1000G” dataset for 

positions annotated as single-nucleotide polymorphisms [80]. Then, using 

cancer-related SNV repositories such as COSMIC [81], I annotated the 

genetic profile of each model and evaluated the predicted effect on the 
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protein using snpEff [82]. Overall, I discovered 2,950 SNVs in the IDH1mut 

model and 2,623 SNVs in the IDH1wt model. Only ~ 35% of the SNVs (918 

SNVs) and ~50% of the genes (1050 genes) were common between the 

models. 

Next, I examined the overlap between the SNV profiles of glioma 

patients and the GSA models. To achieve this, I correlated the SNVs in the 

GSA and TCGA-GBM samples (Mutect2 dataset, 392 samples, 2013), 

filtering by the exact genomic position and the nucleotides that changed in 

the sequence (Table R1). Then, I evaluated whether the results were 

consistent with the design of the GSA  models and in comparison, to the 

genetic profiles of glioma patients. I noticed that the IDH1mut model 

contained the expected point mutations IDH1 p.R132H and TP53 p.R273H, 

corroborating the experimental design of the model. Interestingly, both the 

IDH1wt and IDH1mut models shared the TP53 p.V216M missense mutation 

present also in patients. 

Gene Coding Model Patient (%) 

TP53 p.R273H IDH1mut 35.7 % 

TP53 p.V216M IDH1wt/mut 35.7 % 

IDH1 p.R132H IDH1mut 6.1 % 

SYT4 p.R288W IDH1mut 0.76 % 
 

Table R1. The identified SNV from the genetic profiles of GSA models and TCGA-GBM (n= 

392 samples). The correlation matched gene and protein modification.  

Finally, to expand the evaluation of the status of glioma driver 

mutations, I examined the overlap between genes in the GSA models and 

the collection of pancancer drivers defined by TCGA [83]. In total, of the 

seventeen glioblastoma drivers identified in the pancancer study, ten (59%) 
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and six (35%) genes were mutated in the IDH1mut and IDH1wt GSA models, 

respectively (Fig.R2). 

Figure R2. The heatmap displays the mutational status of GSA models and TCGA-GBM 

samples. The Y-axis label represents the correlated glioblastoma driver genes [83]. The color 

of the bar indicates the identified mutation type. The percentages in the TCGA -GBM column 

represent the relative number of patients for each gene.  

1.1.2 Characterization of the Copy-number alterations in GSA models  

Copy-number alterations (CNAs) are a hallmark of solid tumors and 

major contributors to adult-type diffuse glioma tumor heterogeneity [28, 

49]. Therefore, I generated and analyzed the CNA profiles of the GSA 

models to complete their genetic evaluation. In addition, I assessed the 

overlap between the CNA profiles in patients and in the GSA models at the 

gene level. 

I used the whole-genome sequencing profiles of the GSA models (see 

Results 1.1.1) to call the amplification and deletion regions present in 
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each model. To call the CNA profiles, I used CNVKit [84]. Then, to improve 

the calling quality, I filtered out the black-listed human genome parts from 

the profiles [85] (i.e., regions in the genome defined by the high content 

of repetitive regions) and evaluated the CNAs that fell within gene regions. 

In total, I called nine CNAs that included twenty-two genes amplified (i.e., 

log2FC) in both the IDH1wt and IDH1mut GSA models. Surprisingly, I found 

an almost complete overlap between models copy number profiles. This 

finding suggests that the genomic aberrations occurred prior to the genetic 

modification of the neural stem cells. 

The CNV profiles showed that both models carried focal CNV in the 

chr7 amplification and chr10 deletion hallmark also observed in adult-type 

diffuse glioma patients [28]. Interestingly, I also observed an amplification 

in the 4q12 chromosomal region (Fig.R3A) associated with the expression-

based glioblastoma classification PN subtype [28]. Finally, I evaluated the 

overlap between the CNA profiles in the GSA models and patients using 

TCGA-GBM profiles at the gene level. To delimitate the number of genes, I 

only considered those genes listed as known glioblastoma 

amplifications/deletions [86]. In total, I found that our models shared three 

gene amplifications with patients: the CDK4, PDGFRA, and MYC genes 

(Fig.R3B). Notably, previous studies correlated CDK4 amplification with 

the NPC-like state and PDGFRA with the OPC-like state [52], indicating a 

potential similarity to these glioblastoma states of the GSA models. 
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Figure R3. Copy number alterations in IDH1wt /mut GSA models. (A) The panel above displays 

the amplification and deletion identified in the GSA models (GScore, GISTIC2). The 

annotated chromosomal arm represents the focal 4q12 amplification [28] (B) The scatterplot 

depicts the comparison between log2FC of IDH1wt /mut GSA models CNA. The genes with 

amplification are annotated in red, while those with a deletion are annotated in blue. The 

graph labels correspond to genes associated with adult-type diffuse gliomas amplifications.
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1.2 COMPUTATIONAL FRAMEWORK TO COMPARE THE EXPRESSION 

PROFILES OF TUMOR MODELS AND PATIENTS 

1.2.1 Comparison of avatar models and patient expression profiles 

Tumor models should represent their human analogous. Specifically, 

reliable models should be of use in drug testing or understanding complex 

tumor events, otherwise inaccessible from tumor samples only [78]. 

Publicly available databases, such as TCGA, allow the scientific community 

access to a wide set of molecular profiles of tumor patients [87]. This 

includes bulk expression profiles from thousands of donors, which can be 

used for tumor classification and subtype-specific pathway evaluation. 

However, the integration of the expression profiles from models and 

patients is still challenging. Currently, there are already proposed methods 

to integrate models and patients, including Celligner [67] (see Background 

2.1). Although useful, these methods are still difficult when integrating 

multiple tumor cohorts and models or may give results that are difficult to 

interpret. To overcome these computational challenges, I developed an 

unbiased computational framework named CAPE (for Comparison of Avatar 

models and Patients expression profiles) that integrates current batch 

correction methods and NMF to compare the expression profiles of tumor 

models and patients. 

In essence, CAPE integrates the bulk transcriptome profiles from 

tumor models and patients by defining the optimal sample aggregation of 

a corrected matrix, associating at the same time each group with a specific 

gene module (Fig.R4, see Methods). CAPE consists of three steps. First, 

CAPE takes the gene count matrix of models and patient samples and 

aggregates them into a SummarizedExperiment object [88]. In the process, 

it defines the metadata indicating the name, batch, and origin of the 

samples (i.e., model, or patient sample). After aggregation, a new function 
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reduces the variability between conditions by withdrawing poorly 

represented genes and applying count-per-million normalization. Then, 

CAPE removes potential technical differences between datasets using RUV-

Seq [89]. This method is based on a statistical framework using support 

vector decomposition and a set of control genes to correct the unwanted 

variation (i.e., technical bias). In CAPE, a function uses the indicated set of 

genes (e.g., housekeeping genes) or extracts the empirical control genes 

comparing dataset conditions as an input for the correction.

Figure R4. The scheme depicts the steps performed by CAPE in sequential order to integrate 

the expression profiles of tumor models and patients.

In the second part, CAPE evaluates the aggregation of the samples 

using NMF [90]. CAPE allows the user to assess the NMF decomposition of 

the matrices of combined patient-model samples and the samples for each 

individual dataset. NMF clustering is remarkably useful for dividing complex 

datasets and assigning clusters to their meta-modules. NMF works by 

decomposing the gene expression matrix n x m into the product of two 

matrices: n x k (basis matrix) and k x m (coefficient matrix), where n 

represents the genes, m the samples, and k the number of factors that 

define the decomposition. Hence, the selection of the factor k (or k-factor) 

is a critical part of the NMF algorithm and defines the data separation. CAPE 

selects this factor based on the selection of the best cophenetic value as 

defined in Brunet et al. [91]. This measure indicates the grade of correlation 
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between integration after generating different runs of factorizations 

(nrun=10). By default, CAPE selects the highest cophenetic value across a 

range of distinct k-factors (e.g., k=2 to k=15) to set the final matrix 

decomposition. Despite this, an individual function has been set up to 

modify this selection manually. 

In the last step, CAPE evaluates NMF decomposition by correlating 

each cluster with a specific gene module. In this step, the framework 

identifies the specific genes by comparing each group versus the rest using 

the basis matrix. The identification of each gene module is based on the 

selection of the genes above a log2FC threshold in comparison to the other 

clusters. In addition, I also included several extra individual functions to 

extract and evaluate the gene module information, such as annotating 

cluster tumor subtypes (see Results 1.3). Finally, to help the scalability of 

using this framework, CAPE was divided into different R functions and added 

to a public repository (https://gitlab.com/gargiulo_lab/cape) to be used by 

the scientific community.  

1.2.2 Comparison using CAPE of GSA and glioblastoma patients reveal 

a PN subtype identity in the models  

The genetic profiles of the GSA models recapitulated alterations 

observed in adult-type diffuse glioma patients (see Results 1.1). However, 

the grade of overlap between the transcriptome profiles of the tumor 

models and patients is still unknown. To evaluate whether our models 

recapitulated glioblastoma tumor formation and subtype specification, we 

generated several in vivo GSA model expression profiles. Then, I used the 

CAPE framework to integrate and compare the expression profiles of GSA 

models and glioblastoma patients. 

We first generated several in vivo GSA expression profiles after 

orthotopic transplantation (i.e., introduced into the host the tumor initiating 

https://gitlab.com/gargiulo_lab/cape
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cells in the same location as the tumor growth) of in vitro IDH1wt/mut GSA 

model cells into the brains of immune-compromised mice. After three to 

four weeks, the mice started to show signals of tumor formation and thus 

were sacrificed to isolate the individual tumors. Consecutively, we 

generated RNA-seq profiles using individual tumors. In total, we generated 

several in vivo samples for each GSA model developed at two different times 

and sequencing locations (Supplementary). I integrated the expression 

profiles of the GSA models and TCGA-GBM [28, 35, 52] to assess the 

performance of CAPE (Fig.R5). To evaluate only the expression profiles of 

glioblastoma patients, I used only IDH1wt samples [3]. 

Figure R5. Schematic depicting the integration between the expression profiles of in vivo 

IDH1wt/mut GSA models and IDH1wt TCGA-GBM. The text within each box denotes the 

integration parameters. 

CAPE contains several sequential steps (see Results 1.2.1 and 

Fig.R5). First, I used the combined function (combineMatrix) to generate 

an integrated matrix of the transcriptome profiles of glioblastoma patients 

(n=141) and GSA models (n=18). This function also removed low-count 

genes from the analysis (i.e., genes with 0 counts in more than 95% of 

input samples). Second, I normalized the data and removed the unwanted 

variation between conditions using nfmBatchCorrect (see Results 1.2.1). 

To that end, I used a maximum of 9,334 genes empirically obtained by 

comparing the different datasets (Fig.R6A). Correction of the datasets can 

bias the results and affect NMF clustering. Then, in the third step, I 

assessed the correlation before and after the correction of the data to 

evaluate the coherence in the integration. The Spearman correlation for 
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each sample between corrections scored a minimum sample correlation (or 

min. sample. cor) of 0.89 and an average sample correlation of 0.95, 

indicating a low impact of the correction of the data in the expression 

profiles (Fig.R6B). The comparison for each dataset was also significant 

(cor.test, adj.pvalue < 0.05). Finally, I assessed the sample distribution 

over a glioblastoma subtype gene set [35]. For that purpose, I computed 

the z-score for the CL, PN, and ME glioblastoma subtype gene sets for the 

corrected and noncorrected matrices [35]. Then, I evaluated the position 

of each sample in a ternary graph (which depicts the ratios of the three 

variables as positions inside an equilateral triangle), where each of the 

three axes corresponded to one of the glioblastoma subtypes. The analysis 

showed a clear distribution of both the IDH1wt and IHD1mut GSA models 

samples toward the PN axis before and after the correction (Fig.R6C). 

Intriguingly, the evaluation also shifted toward the CL subtype, suggesting 

that GSA models recapitulate certain grades of intratumor heterogeneity. 

Overall, these results indicated the ability of CAPE to generate a reliable 

correction of the data by maintaining the sample identity.  
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Figure R6. Evaluation of the correction step of the CAPE framework. (A) The scatter plot 

depicts the interquartile range (IQR) of the gene expression values distribution (avg. 

logCPM). The color represents the total number of empirical genes utilized by RUV-seq to 

generate the corrected matrix. The number displayed in the upper-right corner of the graph 

represents the ratio of empirical control versus total genes  shared between datasets. (B) The 

boxplot describes the spearman correlation between the non-corrected matrix and the 

corrected for each sample grouped by dataset. (C) Ternary plot illustrating the non- (left) and 

corrected matrix (Right). Each axis represents a subtype of the glioblastoma gene set [35]. 

The color indicates the dataset of the sample. 

After correction of the data, I evaluated the clustering using NMF. 

The CAPE framework integrates the NMF algorithm into the clustNMF 
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function. Unlike tumor models, the expression profiles of tumor patients 

might contain contamination corresponding to the tumor 

microenvironment. Thus, to reduce the effect of the TME improving 

integration, I computed NMF clustering using only bona fide glioblastoma 

genes as defined in Wang et al. [35]. Then, I used k-factors from 2 to 8 as 

NMF parameters to determine the best decomposition of the samples (the 

brunet algorithm, which randomly initialized the decomposition, used 

Kullback–Leibler divergence as the loss function, and multiplicatively 

updated it to infer the decomposition). The evaluation using cophenetic 

values (Fig.R7A) showed that k=2 and k=4 represent the best k values 

(>0.99) to define the decomposition. Therefore, in line with the biological 

context, I selected k=4 to define the clusters. Interestingly, NMF 

decomposition revealed that GSA models clustered in the same group 

regardless of the sequencing run (Fig.R7B). Hence, the remaining clusters 

contained only profiles from glioblastoma patients. Finally, I evaluated the 

identity of each cluster using the given gene modules and glioblastoma 

subtype gene set [28, 35, 52] (Fig.R7C-D). The enrichment analysis 

(hypergeometric test) using several glioblastoma subtype gene sets 

indicated that each cluster was subtype specific. Particularly, the evaluation 

of the cluster that included the GSA model samples showed an enrichment 

of the PN subtype [28, 35]. 
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Figure R7. Evaluating the NMF decomposition step in the integration of expression profiles 

from in vivo GSA models and TCGA-GBM samples. (A) The barplot represents the cophenetic 

values for each k-factor in the NMF decomposition. The green bar represents the k selected 

for integration. (B) Consensus heatmap of the NMF decomposition. The values represent the 

connective score between n=10 runs for the selected NMF k-factor. The colored bar with 

annotations represents the samples. (C) The heatmap indicates the significant enrichment of 

glioblastoma subtype gene sets for each cluster-specific gene module [28, 35, 52]. The 

orange dashed box represents the model cluster. (D) UMAP for dimensional reduction using 

fitted values from the MMF decomposition. The shape of the dots indicates the origin of the 

sample. The color represents the enhanced glioblastoma gene set. The GSA samples were 

circled. 
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1.2.3 Benchmark CAPE results using different clinical cohorts and 

computational methods 

In Results 1.2.2, I highlighted the ability of the CAPE framework to 

integrate the expression profiles of GSA models and glioblastoma patients. 

However, to establish the potential of CAPE to generate consistent 

integrations, I needed to demonstrate that it yielded similar results using 

different cohorts. For that purpose, I assessed the capabilities of CAPE by 

integrating the GSA models and different glioblastoma cohorts. In addition, 

I benchmarked the integration of the GSA models and TCGA-GBM samples 

using Celligner to evaluate the consistency of the results using different 

approaches [67] 

First, I integrated the expression profiles of GSA models and three 

cohorts of glioblastoma patients as an alternative to TCGA [46, 92, 93]. To 

faithfully compare the previous GSA integration with the TCGA-GBM cohort, 

I used the same parameters as the previous analysis (see Results 1.2.2) 

and maintained glioma bona fide genes only [35]. First, I evaluated the 

consistency of the data before and after removing unwanted variations 

using Spearman correlation (min. sample cor. >0.95) and assessed the 

distribution of glioblastoma subtypes using a ternary representation (see 

Results 1.2.2). As previously observed, the analysis showed a distribution 

of GSA models toward the PN glioblastoma subtype and a shift toward the 

CL subtype (Fig.R8A). The comparison of the correlation at the dataset 

level also indicated significant values before and after the integration 

(Fig.R8B). Then, I computed the NMF decomposition using k-factors from 

4 to 8. The cophenetic values of the integration showed the highest value 

at four well-defined clusters (cophenetic value >0.99; Fig.R8C). The 

annotation of the integration revealed the enrichment of PN markers in the 

GSA model clusters (C1 cluster) (Fig.R8D). 
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Figure R8. Evaluating the CAPE integration between the expression profiles of GSA models 

and GBM alternative cohorts. (A) Ternary plot illustrating the transform matrix. Each axis 

represents a subtype of glioblastoma [35]. The color indicates the origin of the sample. (B) 

The boxplot describes the correlation between the non-transform matrix and the transform 

matrix. (C) The heatmap shows the significant enrichment of glioblastoma subtype gene sets 

[28, 35, 52] for each cluster-specific gene module. The orange dashed box represents the 

model cluster. (D) UMAP dimensional reduction using fitted values from the MMF 

decomposition. The shape of the dots indicates the origin of the sample. The color represents 

the enhanced glioblastoma gene set. The GSA samples were circled. 

Second, I compared the integration of GSA models with alternative 

selection of glioblastoma models and patient cohorts to assess the ability 

of CAPE to integrate different datasets. To this end, I used CAPE to evaluate 

the integration of the expression profiles of GSA, patient derived xenograft 

(PDX) [94, 95], and glioma stem cells (GSC) [92] with multiple glioblastoma 

cohorts [46, 92, 93]. I used similar settings to compare the results of the 

integration (see Results 1.2.1) and used bona fide glioma genes only [35]. 

As previously described in Results 1.2.1, the evaluation of the data 

transformation using a ternary plot showed that the GSA models were 

located toward the PN subtype axis (Fig.R9A). Furthermore, the correlation 

was also significant between the corrected and uncorrected matrix for each 

dataset (min. sample cor. > 0.67, cor.test < 0.05, Fig.R9B), with just one 

PDX sample having low correlation values. After the correction of the data, 
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I evaluated the NMF decomposition. The clustering showed four well -

defined groups (>0.99 cophenetic value). The analysis of GSA models still 

maintained the PN identity (Fig.R9C). Interestingly, in contrast to the GSA 

samples, the clustering showed that the GSC and PDX samples were 

completely integrated with glioblastoma samples (Fig.R9D). This indicates 

the ability of CAPE to define the clusters of different tumor models. 

Figure R9. Evaluating the CAPE integration between the expression profiles of GSA models, 

PDX, GSC, and GBM cohorts. (A) Ternary plot illustrating the transform matrix. Each axis 

represents a subtype of glioblastoma [35]. The color indicates the origin of the sample. (B) 

The boxplot describes the correlation between the non-transform matrix and the transform 

matrix. (C) The heatmap shows the significant enrichment of glioblastoma subtype gene sets 

[28, 35, 52] for each cluster-specific gene module. The orange dashed box represents the 

model cluster. (D) UMAP dimensional reduction using fitted values from the MMF 
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decomposition. The shape of the dots indicates the origin of the sample. The color represents 

the enhanced glioblastoma gene set. The GSA samples were circled. 

Finally, I assessed the integration of the expression profiles of in vivo 

GSA models and glioblastoma patients (TCGA-GBM IHD1wt) using Celligner 

[67] to benchmark the results from CAPE , I used only bona fide glioma 

genes only [35], after the integration. After following the Celligner pipeline 

[67], the integration yielded three defined clusters (Fig.R10A). 

Specifically, the GSA models were mostly included in the C0 cluster (n=14) 

and marginally included in the C2 cluster (n=4, Fig.R10B). Next, I 

extracted the cluster-specific markers using the FindAllmarkers function 

from Seurat as described in the methods. Then, I evaluated the enrichment 

of glioblastoma gene sets in each cluster-specific marker. The analysis 

showed that the C0 cluster was enriched in the CL, PN, and NPC1 

glioblastoma states, while the C2 cluster was enriched in the ME subtype. 

In contrast, the C1 cluster did not present any enrichment (Fig.R10C). 

Finally, I used ssGSEA to define the individual score of the glioblastoma 

subtype gene sets [28, 35, 52]. The evaluation of the distribution of each 

score in UMAP dimensional reduction showed a high density of PN subtypes 

in the GSA models. In general, these results demonstrated that the GSA 

models correlated with the PN subtype. In addition, the comparison 

between the integration methods revealed that CAPE performed better than 

Celligner at defining discrete glioblastoma subtypes. 
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Figure R10. Integration using Celligner between expression profiles of in vivo IDH1wt/mut GSA 

and TCGA-GBM cohort. (A) UMAP dimensional reduction of the corrected matrix. The color 

of the dots corresponds to each cluster. The shape of the dots represents the origin of the 

samples. The circle represents the GSA model samples. (B) The bar plot indicates the total 

number of samples included in each cluster. The color represents the origin of the sample. 

(C) The dot-plot represents the glioblastoma subtype gene sets significantly enriched by each 

cluster. C1 is not displayed because it did not enrich for any glioblastoma gene set. (D) The 

UMAP dimensional reduction indicates the ssGSEA enrichment for each indicated 

glioblastoma gene set [28, 35, 52]. The color represents the score distribution across all 

samples.  
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1.3 CAPE ANALYSIS REVEALS SPECIFIC DIFFERENCES BETWEEN GSA 

MODELS AND GLIOBLASTOMA PATIENTS  

1.3.1 Using CAPE to characterize gene module differences between 

GSA and glioblastoma patients 

Matrix decomposition methods generate interpretable solutions after 

complex integrations (see Results 1.2.1). In particular, the CAPE 

framework generates two outputs: the cluster of samples and the cluster-

specific gene modules. Both outputs are useful for interpreting the 

integration between the expression profiles of tumor models and patients. 

Specifically, the evaluation of the gene modules identifies the biological  

information that defines each cluster (e.g., activated pathways). Therefore, 

I used CAPE to identify the genes that differed between the GSA models 

and glioblastoma patients and evaluate the pathways contributing to the 

differences. 

First, I evaluated the correlation between gene modules for each 

CAPE integration (see Results 1.2.2 & 1.2.3). After the clustering 

definition, CAPE obtains the cluster-specific gene modules (log2FC >1). For 

example, the integration of the expression profiles of GSA and TCGA-GBM 

showed four well-defined gene modules (Fig.R11A). To assess the grade 

of similarity between GSA models and glioblastoma cohorts at the gene 

level, I estimated the correlation of the gene modules obtained from 

different CAPE integrations using the Jaccard similarity coefficient. I applied 

the Jaccard index between pairs of gene modules from all integrations. 

Then, I evaluated the grouping using hierarchical clustering and heatmap 

representation (Fig.R11B). The analysis showed that gene modules were 

clustered by glioblastoma subtype [35]. 
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Figure R11. Evaluating gene module similarities across different CAPE integrations between 

expression profiles from GSA and glioblastoma patients. (A) Heatmap compares cluster-

specific gene modules obtained from the NMF decomposition between the expression profiles 

from in vivo GSA and TCGA-GBM samples. The values represent the scaled values of the 

NMF basis matrix. The orange dashed box represents the GSA cluster. (B) The heatmap 

represents the correlation (Jaccard index values) between gene modules obtained from the 

indicated CAPE integrations (pan = GBM + panGBM + panModel, GSA = GSA + TCGA, gbm 

= GBM + panGBM). Color bars indicate the CAPE integration (left) and the enriched 

glioblastoma gene set (Right) [35]. The orange dashed box represents the model cluster.  

Second, I evaluated the pathways represented in each cluster of the 

GSA and TCGA-GBM integration. For that purpose, I assessed the 

enrichment of hallmark gene sets using a hypergeometric test (MSigDB 

v7.2, adj.pvalue < 0.05, gene count). I observed that each cluster 

presented different associated pathways (Fig.R12). Interestingly, the C3 

cluster (ME subtype) had the highest number of enriched pathways, 

indicating higher transcriptional activation. The C3 cluster (ME subtype) 

showed the enrichment of hallmarks such as those for the epithelial -to-

mesenchymal transition (EMT), TNFα signaling via NF-kB, KRAS signaling, 

coagulation, and the inflammatory response. In contrast, the C4 cluster (CL 

subtype) was enriched in NOTCH signaling hallmarks and apical junctions. 

The C2 cluster (PN cluster associated with patients only) presented 

enrichment in hallmarks for MYC signaling and oxidative phosphorylation. 

The analysis of the hallmarks implicated in the cluster associated with the 

GSA models (C1 cluster) was related to proliferation. 
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Figure R12. The bar plots represent the significantly enriched hallmarks (MSigDB v7.2, 

adj.pvalue <=0.05) in the cluster-specific gene modules for the CAPE integration between 

the expression values of GSA models and TCGA-GBM samples. The orange dashed box 

represents the model cluster.  

Finally, I used PROGENy [96] to further define the cluster-specific 

pathways. Briefly, PROGENy fits a gene expression matrix to a precomputed 

reference model of cancer-associated pathways associating each sample 

and pathway to a value. First, to generate the PROGENy score in the CAPE 

integration, I filtered the corrected matrix using all the genes in the gene 

modules. Then, I applied PROGENy to the filtered matrix to obtain a matrix 

of cancer-associated pathways for each sample. To compare the pathways 

between clusters, I assessed the difference between cluster-specific 

samples for each pathway and a random selection of samples (adj.pvalue 

<0.01, Fig.R13, see Methods). As a result, the analysis showed different 

activations for each group in comparison to the other. C3 cluster (ME 

subtype) activity was associated with the TNFα, TP53, TGFß, and NF-kB 

pathways. On the other hand, the C1 cluster (GSA model-associated 

cluster) was enriched with the MAPK and PIK3 pathways.  
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Figure R13. The heatmap illustrates the significant cancer-related pathways for each cluster 

in the CAPE integration between expression profiles of GSA models and TCGA-GBM. The 

value represents the t.test. Test difference between each cluster samples and the rest 

(adj.value < 0.05). The orange dashed box represents the model cluster.   

1.3.2 Evaluation of cluster-specific transcriptional regulators to 

improve GSA models  

The main objective for tumor models is to faithfully represent the 

molecular features observed in human samples. Modifying the growth 

conditions by adding external factors or changing transcriptional signaling 

through TF activation might be the simplest strategy to modulate the model 

identity. However, understanding the required conditions to promote these 

changes is still challenging. In that sense, the ability of CAPE to associate 

a set of genes with samples is useful to infer those factors. The comparison 

between GSA models and glioblastoma patients using CAPE showed the 

representation of each glioblastoma subtype. Therefore, I used the outcome 

of the CAPE integration between the expression profiles of GSA models and 

glioblastoma patients to define the elements activated in each subtype and 

not in the models. 

First, I aimed to evaluate the transcription factors regulating 

glioblastoma subtypes. For that purpose, I generated the gene regulatory 

network (GRN) of glioblastoma IDH1wt by integrating the expression profiles 
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of different cohorts using CAPE (see Results 1.2.3). Additionally, to 

maintain the same conditions as before, I used bona fide glioma genes to 

reduce the effect of the microenvironment [35]. The integration showed a 

good correlation between samples (min. sample cor. >0.87, Fig.R14A), 

and NMF clustering divided the profiles into three clusters (cophenetic value 

0.99; Fig.R14B). Then, the annotation of the cluster-specific gene modules 

indicated the enrichment of the glioblastoma subtypes for each cluster 

(Fig.R14C). To infer the GRN associated with glioblastoma patients, I used 

SCENIC [97]. This method uses the GRNBoost2 algorithm to infer the TF-

gene interaction [97] and then defines the TF regulon (i.e., all the genes 

targeted by the TF). 

Figure R14. Evaluating the CAPE integration between the expression profiles of glioblastoma 

cohorts. (A) Schematic of the CAPE integration. (B) The boxplot describes the correlation 

between the non-transform matrix and the transform matrix. (C) Consensus heatmap of the 

NMF decomposition. The values represent the connective score between n=10 runs for the 

selected NMF k-factor. The colored bar with annotations represents the samples.  (D) The 

heatmap indicates the significant enrichment of glioblastoma subtype gene sets for each 

cluster-specific gene module (adj.pvalue < 0.05) [28, 35, 52].  

After the generation of GRN, I evaluated the TF enrichment for each 

gene module (Fig.R11A, adj.pvalue < 0.05, gene count >5). The 

evaluation of specific TFs showed a different enrichment for each subtype 

(Fig.R15A). The C3 cluster (ME subtype) was enriched in different TFs that 
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formed a large TF network compared to other clusters. In particular, this 

cluster showed different regulon interconnections, such as FOSL1/2, RELB, 

NFKB2/1, CEBPB, ETS2, SP1, FLI1, IRF8/4, BCL3, and RUNX3, related to 

the ME subtype. On the other hand, the C1 cluster (PN cluster associated 

with GSA models only) revealed several enriched TFs related to the cell 

cycle, such as E2F2/8 and E2F2, and NPC-related TFs, such as SOX4/11 and 

MYC.

Figure R15. The connective networks represent the significantly enriched regulon for each 

cluster in the CAPE integration of expression profiles from GSA models and TCGA-GBM. The 

grey dots denote all genes associated with the orange-colored TF-regulon. The dot size 

indicates the number of genes associated with each regulon in the analysis. The orange 

dashed box represents the model cluster.

Finally, I evaluated which growth factors, cytokines, or hormones that 

appeared in each cluster gene module to define potential cluster-specific 

upstream regulators. For that purpose, I used the Omnipath database [98]. 

This package contains information about pathway-related databases 

focusing on ligand receptor gene interactions. I extracted the values from 

databases with curated entries (CancerCellMap [99], CellPhoneDB [100], 
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CellChatDB [101], and CellTalkDB [102]). Then, I ranked the upstream 

regulators present in each cluster using the NMF-based values (Fig.R16A). 

The analysis showed different upstream regulators linked to each cluster. 

For example, the C3 cluster (ME subtype) expressed the SPP1, CCL2, 

TGFB1, LIF, or IL1B gene. Next, I correlated all the upstream regulators in 

the clusters with the receptors in the GSA models to identify the best 

candidates to promote changes. To this end, I sorted the upstream 

regulators based on the expression of the receptor in the GSA models (avg. 

normalized gene expression, Fig.R16B). The analysis showed PDGFA 

(upregulated in the C4 cluster) and LIF (upregulated in the C3 cluster) as 

the top potential regulators. Finally, I evaluated the coexpression of 

different upstream regulators related to patients to simplify the selection. 

The analysis indicated that there were five clusters, including several 

upstream regulators and many clusters of just individual regulators. This 

result provides knowledge of how to improve the models toward specific 

subtypes by simply using already-published analytical packages and 

databases. 



Results 

Page | 57  

Figure R16. Evaluating the upstream regulators active in each cluster of the CAPE 

integration between expression profiles of in vivo GSA models and TCGA-GBM patients. (A) 

The scatter plots define the external factors detected in each cluster. The x -axis represents 

the growth factor, and the y-axis represents the NMF basis value in the indicated cluster. 

Color code indicates the type of upstream regulator according to OmniPath  database . (B) 

The heatmap defines the relation between detected upstream regulators in the CA PE 

integration (y-axis) and their corresponding receptors expressed in the in vivo GSA models 

(x-axis). The scale indicates the average expression values in GSA model samples (quantile 

normalization). The average expression of the reporters determines the order. (C) The 

heatmap illustrates the correlation between growth factors based on the co -expression of 

their associated receptors in GSA samples. The annotation denotes the cluster in the CAPE 

integration. 
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2. USING CAPE TO ASSESS THE GLIOBLASTOMA STATE ACQUISITION 

IN GSA MODELS 

2.1 GSA MODELS ACQUIRED NEW GLIOBLASTOMA STATES AFTER 

ENGRAFTMENT 

2.1.1  CAPE analysis revealed differences in GSA model expression 

profiles in vitro and in vivo 

Nongenetic features contribute to tumor heterogeneity (Background 

1.2). In particular, in gliomas, the interaction between tumor cells and the 

brain microenvironment contributes to tumor differentiation [36]. GSA 

models can represent the growth conditions of adult-type diffuse gliomas 

in the brain. In that context, in vitro GSA models represent tumor-initiating 

cells with self-renewal capabilities with the potential to differentiate into 

tumors, and the in vivo GSA models recapitulate the tumor growth. 

However, the difference between in vitro and in vivo GSA models is still 

unknown. Therefore, I used CAPE to integrate and evaluate the main 

difference between the expression profiles of in vitro and in vivo GSA 

models. 

We generated several transcriptome profiles of in vitro (n=8) and in 

vivo GSA (n=17) IDH1wt/mut models in three different sequencing runs. I 

used CAPE to integrate and assess the differences between GSA models 

under different conditions (Fig.R17A). First, I assessed the step of batch 

correction using the correlation between samples before and after 

correction. The minimum Spearman correlation for all the samples was 

0.94, and the difference between datasets was statistically significant 

(adj.pvalue < 0.05, Fig.R17B). Then, I evaluated the clustering of the 

expression profiles using NMF decomposition. The analysis showed two 
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well-defined clusters (Fig.R17C). Specifically, the integration separated 

between in vitro and in vivo samples in the C1 (8/4) and C2 (0/13) clusters, 

respectively (Fig.R17D). These results indicated that our models do not 

cluster based on the sequencing batch or the IDH1 mutational status. 

Finally, I used cluster-specific gene modules to evaluate the enrichment 

(adj.pvalue <0.05 and gene count >5) of glioblastoma subtype gene sets 

[28, 35, 52]. I observed that the C2 cluster (in vivo GSA) acquired AC, OPC, 

and NPC1 glioblastoma states [49], while the C1 cluster (in vitro GSA) was 

only enriched for the MES 2010 subtype genes (Fig.R17E). This result 

suggests increased tumor heterogeneity upon engraftment. 

Figure R17. Evaluation of CAPE integration between expression profiles of in vivo and in 

vitro IDH1wt/mut GSA models. (A) Schematic of the CAPE integration. (B) The boxplot 

describes the correlation between the non-transform matrix and the transform matrix.  (C) The 

barplot represents the cophenetic values for each k -factor in the NMF decomposition. The 

green bar represents the k selected for integration.  (D) UMAP dimensional reduction using 

fitted values from the MMF decomposition. The annotation corresponds to the information in 

(E). The color indicates the NMF clusters. (E) The heatmap shows the significant enrichment 

of glioblastoma subtype gene sets for each cluster-specific gene module [28, 35, 52]. 

After integration, I assessed the functional differences between 

clusters. First, I evaluated the hallmark gene sets (MSigDB v7.2) enriched 

in each group using cluster-specific gene modules (Fig.R18A). The analysis 
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showed that the C2 cluster (in vivo GSA) enriched hallmarks related to the 

IFN response, proliferation, and the EMT. Alternatively, the C1 cluster ( in 

vitro GSA) was enriched in hallmarks of myogenesis, cholesterol 

biosynthesis, and hypoxia. Next, I used the Dorothea database [103] to 

evaluate the activated transcription factors in each cluster (Fig.R18B). I 

observed the enrichment of the TFs STAT1, SOX10, and NKFB1 in the C2 

cluster (in vivo GSA). On the other hand, the regulon analysis in the in vitro 

cluster suggested changes related to adipogenesis, such as changes in 

SREBP1 [104] and KLF5 [105], and stemness, such as changes in PRDM14 

[106]. These results indicate differences in the transcriptional regulation 

between tumor  growth conditions recapitulated in the clusters. 

Figure R18. Evaluation of the enriched pathways and TF regulons in the CAPE integration 

between the expression profiles of in vivo and in vitro IDH1wt/mut GSA models. (A) The bar 

plots represent the significantly enriched hallmarks (MSigDB v7.2, adj. pvalue <=0.05) in the 

cluster-specific gene modules. (B) The connective networks represent the significantly 

enriched regulon for each cluster. The grey dots denote all genes associated with TF-regulon. 

The dot size indicates the number of genes associated with each regulon in the analysis.  

Lastly, I used omnipath database [98] (see Results 1.3.2) to identify 

the upstream regulators expressed in each cluster that define cell 

homeostasis under different conditions. From the omnipath database, I 

selected only manually curated databases (CancerCellMap [99], 

CellPhoneDB [100], CellChatDB [101], and CellTalkDB [102]) to extract the 

cluster-specific upstream regulators. Then, I correlated the average 
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expression of the samples in each cluster and the NMF-decomposition basis 

score to rank the upstream regulators (Fig.R19). The results showed that 

the C2 cluster (in vivo GSA) expressed PTN, IL6ST, JAG1, IL1RAP, and 

FGF12 as top upstream regulators (>q90), while the C1 cluster ( in vitro 

GSA) expressed the molecules GPI, VEGFA, and VGF. Overall, the 

integration of the expression profiles of in vitro and in vivo GSA models 

using CAPE revealed the difference between differentiation and 

proliferation. 

Figure R19. Evaluation of the upstream regulators active in each cluster of the CAPE 

integration between the expression profiles of in vivo and in vitro IDH1wt/mut GSA models. The 

scatter plots depict the external factors detected in each cluster gene module. The x-axis 

represents the external factor, while the y-axis represents the average log2 Expression. The 

dashed lines represent the expression values at the q50, q75, and q90. The labels indicate 

the genes with an expression above q90.  

2.1.2 Using CAPE and genetic tracing reporter to evaluate the PN-to-

ME transition in GSA models in vivo  

The analysis of single-cell expression profiles of glioblastoma patients 

revealed multiple tumor states within a single patient [51, 52]. Similarly, 

the evaluation of the differences between in vitro and in vivo GSA models 

revealed an increase in tumor heterogeneity upon engraftment (see 

Results 2.1.1). However, it remains difficult to dissect and evaluate the 

individual glioblastoma subtypes in GSA models. To this end, we created a 

set of glioblastoma subtype-specific tracing reporters to assess the 
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acquisition of different subtypes in the cells [107]. To validate these 

changes, we isolated cells expressing the genetic tracing reporter and 

generated expression profiles under different in vivo and in vitro conditions. 

Then, I evaluated these changes by comparing the expression profiles 

between conditions. To assess the model identity, I used CAPE to integrate 

the expression profiles of the new in vivo GSA models and glioblastoma 

patients. 

We developed a genetic reporter that recapitulates the transcriptional 

signaling of glioblastoma subtypes [107]. Briefly, these reporters, named 

synthetic locus control regions (hereafter sLCRs), are formed by adding 

multiple sequences of cis-regulatory elements (or CREs) followed by a 

fluorescence reporter (Fig.R20A). CREs are derived by identifying DNA 

regions within the locus of a set of signature genes (e.g., MES signature 

genes) that are enriched in transcription factor binding sites (or TFBSs) 

associated with the target phenotype (e.g., MES TFs). Consequently, 

whenever the TF(s) bind in any of the CRE regions, the signal activates the 

fluorescence reporter, signifying the activation of the phenotype.  To 

evaluate glioblastoma heterogeneity, we generated several IDH1wt GSA cell 

lines integrating glioblastoma subtype sLCRs (see Methods). In particular, 

we used the MGT#1 reporter to assess the transition of the GSA models to 

the ME subtype. For that purpose, we generated several transcriptome 

profiles of in vitro and in vivo GSA models after selecting the MGT#1high 

population using fluorescence-activated cell sorting (FACS) (Fig.R20B). 
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Figure R20. (A) Scheme of the sLCR conceptualization. (B) The scheme represents the 

generation and analysis of the expression profiles of in vivo/in vitro IDH1-wt/mut GSA non- and 

MGT#1 samples. 

I compared the transcriptome profiles of MGT#1 and non-MGT#1 

IDH1wt GSA under in vitro and in vivo conditions to identify changes 

corresponding to ME subtype acquisition. First, I identified the upregulated 

genes of each condition using differential expression analysis (see 

Methods). Then, I performed gene sets enrichment analysis using 

glioblastoma gene sets [28, 35, 52] to evaluate changes in specific 

subtypes (Fig.R21A). The analysis showed that the activation of the 

MGT#1 reporter recapitulated the acquisition of the ME subtype under in 

vivo conditions. In contrast, a comparison of non-MGT#1 and MGT#1high in 

vivo GSA revealed an enrichment of the PN subtype in the non-MGT#1 in 

vivo samples. Subsequently, we identified the upstream regulators 

activated in the in vivo MGT#1high conditions in comparison to the in vitro 

non-MGT#1 conditions using ingenuity pathway analysis [108] (Fig.R21B). 
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The results showed the activation of the IFN / , NF-kB, TNF , and IL6 

upstream regulators under the in vivo MGT1high conditions. In contrast, the 

analysis revealed the activation of the IKZF1, SREBF1/2, and SCAP 

upstream regulators under in vitro non-MGT1 conditions. Interestingly, 

these results correspond to the outcome of the evaluation of in vitro and in 

vivo GSA models using CAPE (see Results 2.1.1).

Figure R21. Comparison of MGT#1 in vivo and in vitro transcriptome profiles. (A) Bubble plot 

of GSEA adj.pvalue s for the specified glioblastoma subtypes/states and comparisons [28, 

35, 52]. (B) Ingenuity pathway upstream regulator analysis of differential expression between 

in vitro non-MGT1 and in vivo MGT1 High. 

After the comparison between conditions, I used CAPE to integrate 

the transcriptome profiles of the in vivo MGT#1high GSA models and

glioblastoma patients (Fig.R22A). Moreover, I included the in vivo GSA 

expression profiles (see Results 1.2.2) to compare the changes to previous 

results. I used CAPE with the same parameters as in previous integrations 

(see Results 1.2.2) and included bona fide genes only [35]. First, I 

evaluated the consistency of the correction before and after removing the 

batch effect using Spearman correlation (min. sample cor. >0.80, 

adj.pvalue < 0.05. Then, I used NMF decomposition to divide the dataset 

into four clusters based on the best cophenetic value (>0.99). The analysis 

showed that most of the GSA samples clustered together with glioblastoma 
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patients in the C2 cluster. Interestingly, the analysis also revealed that 

some of the in vivo MGT#1high samples clustered together with patients in 

the C1 (n=3) and C4 (n=3) clusters (Fig.R22C). Finally, I evaluated the 

enrichment of glioblastoma subtype gene sets [28, 35, 52] in each cluster-

specific gene module (Fig.R22B). The analysis revealed that the C2 cluster 

(in vivo bulk GSA) was enriched with PN subtype markers, indicating 

similarities with previous CAPE integrations (see Results 1.2.3). In 

contrast, the C1 and C4 clusters (in vivo MGT#1high GSA) were also enriched 

in the CL subtype and AC state, respectively. This result indicated that the 

FACS selection of GSA model cells using the MGT#1 reporters captured the 

change in glioblastoma subtype identity under in vivo conditions. 

Figure R22. Evaluation of CAPE integration between expression profiles of in vivo GSA 

MGT1High models and TCGA-GBM patients. (A) Scheme of the CAPE integration. (B) 

Consensus heatmap of the NMF decomposition. The values represent the connective score 

between n=10 runs for the selected NMF k-factor. The colored bar with annotations 

represents the samples. (C) The heatmap indicates the significant enrichment of glioblastoma 

subtype gene sets for each cluster-specific gene module. The orange dashed box represents 

the model cluster [28, 35, 52]. (D) The barplot represents the total number of samples 

included in each group. The color indicates the dataset  
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2.2 EVALUATION OF THE PN-TO-ME TRANSITION UPON EXTERNAL 

FACTOR ACTIVATION USING GSA MODELS 

2.2.1 MGT#1 reporter activation showed in vitro the MES subtype 

acquisition in response to various stimuli 

The glioblastoma cellular identities showed plasticity to 

transdifferentiation between states [52]. However, the complete set of 

transcriptional and regulatory elements leading to the emergence of each 

glioblastoma identity is still incomplete. In that sense, the GSA models 

displayed a solid PN identity (see Results 1.2 & 1.3). Thus, our models 

represent an excellent system to investigate changes between glioblastoma 

states from the PN subtype, particularly to investigate the PN-to-ME 

transition. To this end, we tested the effect of several external activators 

of the ME subtype using in vitro IDH1wt GSA models and an MGT#1 genetic 

tracing reporter (Fig.R23). To evaluate the changes, we generated several 

transcriptome profiles of nontreated (control) and FACS-sorted MGT#1high 

populations upon external factor activation. 

Figure R23. The scheme represents the generation and analysis of the expression profiles 

of in vitro IDH1wt GSA naive and MGT#1 samples. 
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We evaluated the activation of the ME subtype in response to different 

external factors under in vitro conditions. These factors correspond to 

upstream regulators observed to be related to the ME subtype, such as LIF 

(see Results 1.3.2), TNFα (see Results 1.3.2), human serum (HuS) 

[109], oxidized low-density lipoprotein (OxLDL) [110], and activin A [111]. 

To include the effect of treatment and the microenvironment, we also 

evaluated the activation of the MGT#1 reporter under ionizing radiation 

(IR) [112], microglia (C20-MG [35, 113]), and nitric oxide (NOC_18) [114]. 

In total, the datasets of different conditions contained six control samples 

and twenty-five treated in vitro GSA IDH1wt samples. I estimated the 

differentially regulated genes between the control and treated samples to 

assess the changes acquired upon external factor addition. The analysis 

showed common differentially expressed genes between several activation 

cues, indicating shared pathway activation. Then, I estimated sample 

aggregation using uniform manifold approximation and projection (UMAP) 

for dimensional reduction, integrating only the combination of all 

upregulated genes for each comparison (Fig.R24B). 

Figure R24. Analysis of upregulated genes between in vitro IDH1wt GSA naive and MGT#1 

samples upon activation by an external factor. (A) The upset graphic represents the common 

upregulated genes for each external factor activation. (B) UMAP of expression values. The 

dimension reduction includes all upregulated genes for  each external factor. 

Next, I evaluated the identity acquisition using gene sets enrichment 

analysis of glioblastoma gene sets [28, 35, 52] for each comparison. The 
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results showed that, except for Activin-A, external activation of in vitro GSA 

models and FACS selection of MGT#1high cells activated the ME subtype 

(Fig.R25A, adj.pvalue <0.05). Despite this, the analysis revealed that 

activation of some external factors also recapitulated markers of the CL 

subtype and AC state. This result is in line with previous observations using 

the MGT#1 reporter (see Results 2.1.2). Then, I evaluated the ability of 

the upregulated genes in each comparison to define the subtypes in 

glioblastoma patients. To achieve this, I computed the ssGSEA in the 

expression profiles of glioblastoma patients using the upregulated genes 

and the glioblastoma subtype gene sets as input [28, 35, 52]. The analysis 

indicated that OxLDL, NOC18, C20MG, IR, HuS, and TNFα upregulated 

genes similar to the current ME signature gene sets (Fig.R25B). In 

addition, the evaluation of the patients also revealed clustering based on 

glioblastoma subtypes. 

Figure R25. Analysis of upregulated glioblastoma genes in the comparison between in vitro 

IDH1wt GSA naive and MGT#1High samples upon activation by an external factor. (A) The 

heatmap represents the -log10 adj.value of GSEA results for the indicated glioblastoma 

subtypes/states and comparisons between the identified MES-inducing stimuli [28, 35, 52]. 

(B) The heatmap represents the relative ssGSEA normalized score for the indicated gene 

sets [28, 35, 52] in glioblastoma patients (TCGA-GBM). It includes the glioblastoma subtype 

gene sets and the upregulated genes from the comparison. The annotate bar indicates the 

status of the IDH1 mutation.  

Next, I identified the pathways that were activated upon the addition 

of each external factor. First, I used PROGENy [96] to assess the expression 
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of cancer-related pathways in the samples (Fig.R26A, see Methods). The 

analysis showed differences in the activated pathways upon the addition of 

distinct external factors. Specifically, I found that the addition of HuS 

distinctively activated TGFβ and MAPK signaling, and TNFα activated the 

TNFα and NF-kB pathways, consistent with previous results (see Results 

1.2.2). 

Finally, I identified the transcription factors controlling the activation 

of the MGT#1 reporter upon exposure to different stimuli using master 

regulator analysis [115]. This method uses an expression matrix (e.g., 

complete matrix) to infer the gene regulatory network and a list of genes 

to evaluate the MRA (e.g., upregulated genes for each external factor 

comparison). The assessment of MRA showed a difference in the number of 

TF-activated cells for each comparison (Fig.R26B). Then, I calculated the 

correlation between master regulators controlling each external factor 

activation using the Jaccard similarity coefficient and hierarchical clustering 

(Fig.R26C). The analysis revealed two major clusters, with one cluster 

containing control samples and the other not containing them. Specifically, 

the cluster without the control contains the HuS, IR, LIF, and TNFα TFs, 

indicating a similar process in response to the activation of these various 

external factors. 

Figure R26. Analysis of the activated pathways and TF in the comparison between in vitro 

IDH1wt GSA naive and MGT#1 samples upon activation by an external factor . (A) The dot 

plot displays the PROGENy score for each indicated pathway for each category of samples 

in the analysis. (B) Barplot with the total MRA in each comparison. (C) The heatmap 
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represents the correlation (Jaccard index values) between the master regulators identified  

in each category of samples in the analysis. Hierarchical clustering utilizing the Manhattan 

distance and complete clustering method.  

2.2.2 Comparison of the effect of in vitro upstream regulators  in the 

GSA models using CAPE 

The analysis of the expression profiles of the in vitro MGT#1high 

showed the activation of the ME subtype upon the addition of external 

factors (see Results 2.2.1). However, the pairwise comparison between 

control and MGT#1high samples focused on individual changes in each factor 

and not on the comparison to patients. Therefore, I used the CAPE 

framework to integrate and evaluate the expression profiles of in vitro GSA 

MGT#1high and glioblastoma patients. 

The enrichment analysis of the pathways and the MRA showed 

differences in the effect of each external factor on the GSA models (see 

Results 2.2.1). I first used the CAPE framework to select the best external 

factors promoting the acquisition of the ME subtype in the models 

(Fig.R27). To this end, I used CAPE with default parameters (see Results 

1.2.2) to integrate the expression profiles of the control and the in vitro 

IDH1wt MGT#1high GSA models. First, I evaluated the correlation for each 

sample before and after the transformation to assess the effect of the batch 

correction (min. sample cor. >.98). Then, I used NMF decomposition to 

evaluate the clustering of the samples. The analysis divided the expression 

profiles into two clusters (cophenetic value > 0.99). Specifically, the 

analysis revealed that the C1 cluster contained the expression profiles of 

the in vitro IDH1wt GSA model treated with TNFα, HuS, and IR, while the 

C2 cluster contained the control and the remaining treated samples. I 

extracted the specific gene modules to evaluate the enrichment of 

glioblastoma subtype gene sets in each cluster. The enrichment analysis 

showed the acquisition of OPC/PN/CL markers in the C2 cluster (including 
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the control samples) and the MES1/2 markers in the C1 cluster (not 

including the control samples) (Fig.R28A). This result indicated that the 

external factors that activated the MGT#1 reporter in the C1 cluster 

samples most effectively promoted the ME subtype. 

Figure R27. The scheme represents the CAPE generation between the expression profiles 

of in vitro IDH1-wt GSA naive and MGT#1 High upon external factor activation samples. 

Next, I evaluated the pathways and TF(s) correlated with each 

cluster. For that purpose, I analyzed the hallmark gene sets enriched in 

each cluster-specific gene module. The results showed that the C1 cluster 

(not including the control samples) was enriched in hallmarks of hypoxia, 

TNFα signaling, and EMT, while the C2 cluster (including the control 

samples) presented enrichment of hallmarks of cholesterol biosynthesis, 

the unfolded protein response, and oxidative phosphorylation. This result 

indicated distinct pathway activation for each cluster. Then, I evaluated the 

enrichment of TF regulon activation using the Dorothea database [103]. 

The results showed that the C1 cluster activated inflammatory TFs, such as 

RELA or NFKB1, and hypoxia TFs, such as HIF1A, while the C2 cluster was 

only enriched in the SREBP1 TF. 
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Figure R28 Evaluation of the CAPE integration between expression profiles of in vitro GSA 

MGT1High and naïve samples. (A) Consensus heatmap of the NMF decomposition. The values 

represent the connective score between n=10 runs for the selected NMF k -factor. The colored 

bar with annotations represents the samples and conditions. (B) The bar plots represent the 

significantly enriched hallmarks (MSigDB v7.2, adj.pvalue <=0.05) in the cluster-specific gene 

modules. (C) The connective networks represent the significantly enriched regulon for each 

cluster. The grey dots denote all genes associated with TF-regulon. The dot size indicates 

the number of genes associated with each regulon in the analysis.  

The CAPE integration showed that the HuS, IR, and TNFα samples 

were the best candidates to recapitulate the ME subtype identity. Therefore, 

I used CAPE to integrate the expression profiles of this selection of in vitro 

MGT#1high samples and glioblastoma patients (TCGA-GBM, IDH1wt only). To 

this end, I used CAPE with default parameters (see Results 1.2.2) and 

bona fide glioma genes only [28, 35, 52]. First, I calculated the correlation 

for each sample before and after transformation to assess the effect of the 

batch correction (min. sample cor. >0.88). Then, I used NMF decomposition 

to evaluate the clustering of the samples. The analysis indicated the division 

of the samples into four clusters (cophenetic value 0.99, R29A). The results 

showed that in vitro MGT#1high samples clustered together with patients in 

the C3 cluster. Then, I estimated the enrichment of glioblastoma subtype 

gene sets in each gene module. The analysis indicated that the C3 cluster 

was enriched in ME subtype and MES2 state markers (Fig.R29B). 

Interestingly, the C1 cluster was also enriched in ME subtype markers. 

Finally, I calculated the enrichment of hallmark gene sets (MSigDB v7.2, 
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adj.pvalue <=0.05) for each cluster-specific gene module. In particular, I 

evaluated the difference between the two clusters enriched in ME subtype 

markers (C1 and C3 clusters). The assessment of the enrichment showed 

that the C3 cluster (including GSA samples) is mainly driven by EMT and 

hypoxia, while the C1 cluster (only patients) is related to the IFNγ/α 

response and the inflammatory response. These analyses indicated the 

ability of these factors to promote the PN-to-ME transition in the GSA 

models. 

 Figure R29. Evaluation of the CAPE integration between expression profiles of treated in 

vitro GSA MGT1High models and TCGA-GBM patients. (A) Consensus heatmap of the NMF 

decomposition. The values represent the connective score between n=10 runs for the 

selected NMF k-factor. The colored bar with annotations represents the samples . (B) The 

heatmap indicates the significant enrichment of glioblastoma subtype gene sets [28, 35, 52] 

for each cluster-specific gene module. The orange dashed box represents the model cluster.  

(C) The bar plots represent the significantly enriched hallmarks (MSigDB v7.2, adj. pvalue 

<=0.05) in the cluster-specific gene modules.  
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3. CHARACTERIZATION OF THE SIMILARITY OF CELL POPULATIONS IN  

GSA MODELS AND PATIENTS 

3.1 IDENTIFYING THE CELL POPULATIONS IN THE GSA MODELS UNDER 

VARIOUS GROWTH CONDITIONS 

3.1.1 Evaluation of the in vivo GSA cell populations using scRNA-seq 

revealed the presence of all glioblastoma states 

The comparison between the expression profiles of the in vitro and in 

vivo IDH1wt/mut GSA models showed the enrichment of several glioblastoma 

states upon engraftment (see Results 2.1.1). However, the identity of the 

cell populations within each model is still unknown. We generated several 

in vivo GSA IDH1wt/mut single-cell RNA sequencing (scRNA-seq) profiles to 

identify the cell populations that composed the models. 

We obtained scRNA-seq profiles from three biological samples for 

each in vivo IDH1wt and IHD1mut GSA model (i.e., six different mouse hosts, 

Fig.R30). We generated the profiles using a barcoding strategy to identify 

biological replicates and GSA model cells within the samples (see 

Methods). scRNA-seq profiles of xenograft models (e.g., GSA models) 

might contain contaminating host cells (e.g., mouse) within the model cells 

that affect the analysis. Therefore, I mapped the scRNA-seq datasets to the 

human (CRCh38) and mouse (mm10) assemblies to evaluate the expression 

of mouse genes in the cells. To remove the source of contamination, I kept 

only those cells that did not express any mouse gene. In total, the scRNA-

seq dataset retained 6,787 cells, from which 2,963 and 3,824 cells 

corresponded to in vivo GSA IDH1mut and IDH1wt, respectively. 
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Figure R30. The scheme represents the analysis of the single-cell expression profiles of in 

vivo IDH1wt/mut GSA models (n=3 each)  

I processed the scRNA-seq profiles using the Seurat v4 pipeline 

[116]. First, I removed low-quality cells (Methods) and doublets (i.e., two 

different cells encapsulated in the same droplet) from the scRNA-seq data 

using DoubletFinder [117]. In total, the dataset retained 3,578/3824 IDH1wt 

and 2,700/2,963 IDH1mut GSA cells. Then, I generated a shared nearest 

neighbor (SNN) graph and Louvain clustering to define the cell populations 

in the scRNA-seq profiles (Fig.R31A). The analysis showed six clusters (C0-

5). To assign each cell to the IDH1wt/mut GSA model, I annotated the cells 

using the information defined by the barcoded metadata (Fig.R31B). The 

evaluation of the cells represented in each cluster indicated the presence 

of IDH1wt and IDH1mut GSA cells in all cell populations (Fig.R31D). To 

statistically evaluate this clustering, I computed the enrichment 

(hypergeometric test, adj.pvalue < 0.05) of IDH1wt/mut GSA cells in each 

cluster (Fig.R31E). The results indicated that the C1 and C2 clusters were 

enriched in IDH1mut cells, while the C0, 3, 4, and 5 clusters were enriched 

in IDH1wt cells. 
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Figure R31. Evaluation of the analysis of single-cell transcriptome profiles of in vivo

IDH1wt/mut GSA models. (A) UMAP representation of cell populations defined in single-cell 

expression profiles. (B) UMAP representation annotated by GSA model. (C) UMAP 

representation of individual cell-defined cell-cycle stage in the single-cell expression profiles. 

(D) The bar plot represents the number of cells for each GSA model included in the defined 

cell population in the single-cell profile. (E) The heatmap represents the enrichment ( 

fisher.test, adj.pvalue < 0.05) for the GSA cell population in each cluster

Next, I evaluated the pathways and transcription factors activated in 

each cluster. To this end, I first computed the markers that defined each 

population using findAllMarkers [116]. Then, I estimated the enrichment of 

hallmark gene sets for each cluster-specific marker gene (MSigDB v7.2, 

adj.pvalue < 0.05, gene count >5, Fig.R32A). The analysis revealed 

distinct activation of pathways in each cluster. In particular, the C0 and C4 

clusters (enriched in IDH1wt cells) activated the EMT (C0 cluster), IFN

response (C4 cluster), TNF signaling (C4 cluster) and IL6-JAK-STAT3 

signaling (C4 cluster). In contrast, the C1 and C2 clusters (enriched in 

IDH1mut cells) showed enrichment of the MYC target hallmark. Finally, I 

evaluated the enrichment of TF in each specific cluster marker gene using 

the Dorothea database [103] (Fig.R32B). The analysis revealed several 

TFs regulating each cluster, indicating specific activation.
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Figure R32. Evaluation of pathways and TF of the analysis of single-cell transcriptome 

profiles of in vivo IDH1wt/mut GSA models. (A) The bar plots represent the significantly 

enriched hallmarks (MSigDB v7.2, adj.pvalue <=0.05) in the cluster-specific marker genes. 

(B) The dot plots represent the significantly enriched TF-regulon (DorotheaDB [103], 

adj.pvalue <=0.05) in the cluster-specific gene modules.  

After the evaluation of the cell populations in the in vivo IDH1wt/mut 

GSA models, I assessed the enrichment (hypergeometric test, adj.pvalue < 

0.05) of each cell population in the glioblastoma gene sets. The analysis 

revealed that the C0 and C4 clusters (enriched in IDH1wt) were enriched in 

AC and MES1/2 markers, while the C2 cluster (enriched in IDH1mut) showed 

enrichment of PN subtype and NPC1-2 state markers (Fig.R33A-B). 

Interestingly, in comparison to the C4 cluster, C0 was also enriched in OPC 

markers. In contrast, C3 was enriched in cell cycle markers.  
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Figure R33. Evaluation of the enrichment of glioblastoma markers in the single-cell 

transcriptome profiles of in vivowt/mut GSA models. (A) UMAP representation of cell 

populations defined in single-cell expression profiles.  (B) The bar plots represent the 

significantly enriched glioblastoma subtype gene sets [28, 35, 52] (adj.pvalue <=0.05) in the 

cluster-specific marker genes  

Finally, I used AUCell to individually evaluate the glioblastoma 

identity of the cells in the scRNA-seq profiles without considering clusters 

[72]. AUCell computes a rank-based score to assign each cell an identity 

defined by a specific set of marker genes. I ran AUCell to assign the 

glioblastoma state identity to the GSA model cells [52]. The analysis of the 

distribution of the AUCell score in the UMAP revealed different regions 

enriched (Fisher’s exact test, adj.pvalue < 0.05) for different glioblastoma 

states (Fig.R34A-B). The analysis showed that the C0 cluster (enriched in 

IDH1wt) was enriched in the OPC, AC, and MES1 states, while the C1 

(enriched in IDH1mut) was enriched in the NPC1/2 states. Finally, I 

evaluated the enrichment of the assigned glioblastoma state by the GSA 

model (Fig.R34C). The results indicated an enrichment of OPC and NPC1-

2 in IDH1mut, while IDH1wt was more enriched in the MES1-2 glioblastoma 

states. 

In conclusion, for all the analyses, the dynamics of the populations 

of the in vivo IDH1wt/mut GSA models reflected the glioblastoma state 

distribution observed in patients. 
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Figure R34. Evaluation of cell-specific glioblastoma gene sets in the single-cell transcriptome 

profiles of in vivo IDH1wt/mut GSA models. (A) UMAPs indicate the AUCell score for each 

indicated glioblastoma gene set. The color represents the score distribution across all cells.

(B) The heatmap represents the enrichment (fisher.test, adj.pvalue < 0.05) for the 

glioblastoma gene sets [52] in each cluster identified in the single-cell expression profile

using AUCell. (C) The heatmap represents the enrichment (fisher.test, adj.pvalue < 0.05) for 

the glioblastoma gene sets [52] in each GSA model identified in the single-cell expression 

profile using AUCell. Heatmaps hierarchical clustering was generated using Manhattan 

distance and complete clustering method.

3.1.2 Analysis of the ex vivo GSA scRNA-seq profiles after treatment

revealed the acquisition of specific glioblastoma states

The analysis of the in vivo single-cell expression profiles of the 

IDH1wt/mut GSA models showed the predominance of the OPC and AC states 

(see Results 3.1.1). At the same time, we demonstrated the ability of the 

GSA models to acquire different glioblastoma states upon external factor 

activation (see Results 2.2.1). However, the changes in the GSA models 

at the single-cell level using external factor activation are still unknown. 

Therefore, we generated scRNA-seq profiles of GSA models treated with 

different external factors to evaluate the effect of the treatment on the 

heterogeneity of the models.
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We generated two scRNA-seq profiles of ex vivo IDH1wt/mut GSA 

models upon external factor activation (Fig.R35, see Methods). 

Specifically, we treated ex vivo IDH1wt GSA with external factors activating 

the ME subtype (TGFβ and TNFα) and ex vivo IDH1mut treated with external 

factors activating the PN subtype (IGF2, BDNF, NRG1) (see Methods). In 

addition, we included in vitro nontreated cells as a control in the profiles. 

Figure R35. The scheme represents the analysis of the single-cell expression profiles of 

naïve and in vitro IDH1wt and IDH1mut GSA models upon external factor activation.  

I individually analyzed each scRNA-seq dataset using the Seurat v4 

pipeline [116]. First, I removed low-quality cells (see Methods) and 

doublets from the scRNA-seq profiles using DoubletFinder [117]. As a 

result, 3,683 ex vivo IDH1wt cells and 2,885 ex vivo IDH1mut GSA cells were 

retained. Then, I performed SNN graph and Louvain clustering to define the 

cell populations in each scRNA-seq profile. The analysis indicated eight 

clusters in the ex vivo IDH1wt (Fig.R36A) and six clusters in the ex vivo 

IDH1mut profiles (Fig.R36C). 



Results

Page | 81

Figure R36. Evaluation of the analysis of single-cell transcriptome profiles of naïve and ex 

vivo IDH1wt/mut upon external factor activation GSA models. (A) UMAP representation of cell 

populations defined in single-cell expression profiles of IDH1wt sample. (B) UMAP 

representation of individual cell-defined cell-cycle stage in the single-cell expression profiles

of the IDH1wt sample. (C) UMAP representation of cell populations defined in single -cell 

expression profiles of the IDH1mut sample. (D) UMAP representation of individual cell-defined 

cell-cycle stage in the single-cell expression profiles of the IDH1mut sample.

Next, I used AUCell to individually evaluate the glioblastoma identity 

of the cells in the scRNA-seq profiles without considering clusters [72]. I 

ran AUCell to assign the glioblastoma state [52] identity to each cell of the 

scRNA-seq profile of ex vivo GSA models. The evaluation of the AUCell score 

distribution in the UMAP of each profile revealed the activation of different 

glioblastoma states in the models (Fig.R37A-D). The analysis of the 

enrichment of glioblastoma states ( exact test, adj.pvalue < 0.05) 

showed the activation of MES1 (C7 cluster) and NPC1 (C5 cluster) states in 

the ex vivo IDH1wt profiles and OPC/AC (C0 cluster) in the ex vivo IDH1mut
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profile. This result indicated the ability of the selected external factors to 

promote the MES (IDH1wt treated) and PN identity (IDH1mut treated) in the 

GSA models. 

Figure R37. Evaluation of cell-specific glioblastoma gene sets in the single-cell transcriptome 

profiles of naïve and ex vivo IDH1wt/mut upon external factor activation GSA models.  (A) 

UMAPs indicate the AUCell score for each indicated glioblastoma gene set of the IDH1wt 

sample. The color represents the score distribution across all cells. (B) The heatmap 

represents the enrichment (fisher.test, adj.pvalue < 0.05) for the glioblastoma gene sets [52] 

in each cluster identified in the single-cell expression profile of the IDH1wt sample using 

AUCell. (C) UMAPs indicate the AUCell score for each indicated glioblastoma gene set of the 

IDH1mut sample. The color represents the score distribution across all cells. (D) The heatmap 

represents the enrichment (fisher. Test, adj.pvalue < 0.05) for the glioblastoma gene sets 

[52] in each cluster identified in the single-cell expression profile of the IDH1mut sample 

using AUCell.  
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Next, I assessed the activated pathways in each scRNA-seq profile to 

evaluate the effect of external factors. To this end, I first computed the 

markers that defined each population using findAllMarkers (Wilcox. Text, 

adj.pvalue < 0.05, log2FC > 0.5) [116]. Then, I estimated the enrichment 

of hallmark gene sets for each cluster-specific marker gene (MSigDB v7.2, 

adj.pvalue < 0.05, gene count >5, Fig.R38A-B). The scRNA-seq profiles of 

the ex vivo IDH1wt GSA model showed enrichment of hallmarks for EMT, 

hypoxia, cholesterol homeostasis, and apoptosis in the C7 cluster (enriched 

in the MES1 state). On the other hand, the same analysis indicated that in 

the scRNA-seq profiles of the ex vivo IDH1mut GSA model, MTORC1 signaling 

was enriched in C0 (enriched in OPCs). These results indicate the ability of 

the cell populations to promote the activation of a different signal for each 

model. 

Figure R38. Evaluation of pathways and TF of the analysis of single -cell transcriptome 

profiles of naïve and ex vivo IDH1wt/mut upon external factor activation GSA models.  (A) The 

bar plots represent the significantly enriched hallmarks (MSigDB v7.2, adj. pvalue <=0.05) in 

the cluster-specific marker genes of the IDH1wt sample. (B) The bar plots represent the 

significantly enriched hallmarks (MSigDB v7.2, adj.pvalue <=0.05) in the cluster-specific 

marker genes of the IDH1mut sample  
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3.2 COMPARISON OF THE GSA POPULATIONS IDENTITY TO PATIENTS 

3.2.1 Integration of ex vivo and in vivo scRNA-seq profiles revealed 

differences between cell population in GSA models   

The analysis of the single-cell expression profiles of in vivo and ex 

vivo GSA models showed the enrichment of specific glioblastoma states for 

each GSA model and treatment (see Results 3.1). Despite this, a 

comparison of the ability to recapitulate glioblastoma states in different 

conditions is still lacking. To this end, I integrated the scRNA-seq profiles 

of the ex vivo and in vivo IDH1wt/mut GSA models to compare the identity of 

the cell populations in each condition. 

I integrated and evaluated the scRNA-seq profiles of the in vivo and 

ex vivo IDH1wt/mut GSA models using Seurat v4 [108]. The high expression 

of cell cycling genes in the scRNA-seq profiles can mask the effects of 

marker genes, hindering the integration of the samples [118]. Therefore, I 

used only the noncycling cells to reduce the potential bias in the integration. 

I integrated the models using the CCA algorithm in Seurat v4 [116]. Then, 

I performed SNN graph and Louvain clustering to define the cell populations 

in the integration. The analysis revealed eight different clusters 

(Fig.R39A). The evaluation of the dataset identity per cluster indicated a 

similar distribution for all the scRNA-seq profiles (Fig.R39B). I calculated 

the enrichment (Fisher Test, adj.pvalue < 0.05) of each GSA profile within 

the clusters of the integration to evaluate the distribution of samples 

(Fig.R39C). The analysis showed the enrichment of in vivo IDH1wt cells in 

the C3-6 clusters, while the C1-2 clusters were enriched in the in vivo 

IDH1mut and ex vivo IDH1wt/mut cells. Interestingly, the C0 cluster was 

enriched in ex vivo IDH1wt/mut cells, and the C7 cluster was enriched in ex 

vivo IDH1wt cells only. 
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Figure R39 Evaluation of the integration between single-cell transcriptome profiles of in vivo 

and ex vivo upon external factor activation of IDH1wt/mut GSA models. (A) UMAP 

representation of cell populations defined in single-cell expression profiles . (B) The bar plot 

represents the number of cells included in the indicated cluster for each dataset. (C) The 

heatmap represents the enrichment ( fisher.test, adj.pvalue < 0.05) for the dataset cells in 

each cluster 

After integration, I evaluated the glioblastoma state for each cluster. 

To this end, I first computed the markers that defined each population using 

findAllMarkers (Wilcox. Test, adj.pvalue < 0.05, log2FC 0.5). Then, I 

assessed the enrichment of glioblastoma subtype gene sets for each cluster 

(Fig.R40A). The results indicated that the C5 cluster (enriched with in vivo 

IDH1wt cells) is enriched in the MES1-2 state, the C7 cluster (enriched with 

ex vivo IDH1wt cells) in the NPC1-2 state, the C4 cluster (enriched with in 

vivo IDH1wt cells) in the AC/OPC state, and the C3 cluster (enriched with in 

vivo IDH1wt cells) in the MES2 state (Fig.R40B). Then, I evaluated the 

enrichment by an integrated dataset. The analysis showed that NPC1-2 was 

enriched in ex vivo IDH1wt and MES1-2/AC/OPC in in vivo IDH1wt 

(Fig.R40C). 

Finally, I used AUCell to individually estimate the glioblastoma 

identity of the cells in the scRNA-seq profiles without considering clusters 

[72]. I ran AUCell to assign the glioblastoma state identity to each cell in 

the integration of the GSA models [52]. The analysis of the distribution of 

the AUCell score in the UMAP showed that different glioblastoma states 



Results

Page | 86

were enriched ( exact test, adj.pvalue < 0.05) for each GSA model 

(Fig.R40E-F). The analysis showed that in vivo IDH1wt was enriched in the 

AC/MES2 states, in vivo IDH1mut in AC/OPC, ex vivo IDH1wt in MES1/NPC1-

2, and ex vivo IDH1mut in the NPC1-2/OPC state. These results indicate that 

engraftment conditions promote the acquisition of AC, while the ex vivo

condition recapitulates features of the NPC state.

Figure R40. Evaluation of the analysis of the glioblastoma state representation of the 

integration between single-cell transcriptome profiles of in vivo and ex vivo upon external 

factor activation of IDH1wt/mut GSA models. (A) UMAP representation of glioblastoma states

[28, 35, 52] enriched in the integration. (B) The heatmap represents the enrichment 

(fisher.test, adj.pvalue < 0.05) for the glioblastoma gene sets [28, 35, 52] in each cluster 

identified in the integration. (C) The heatmap represents the enrichment ( fisher.test, 

adj.pvalue < 0.05) for the glioblastoma subtype gene sets [28, 35, 52] in each dataset 

included in the integration. (D) UMAPs indicate the AUCell score for each indicated 

glioblastoma gene set [52]. The color represents the score distribution across all cells. (E)

The heatmap represents the enrichment ( fisher.test, adj.pvalue < 0.05) for the glioblastoma

subtype gene sets [52] in each dataset included in the integration using AUCell. (F) The 

heatmap represents the enrichment ( fisher.test, adj.pvalue < 0.05) for the glioblastoma gene 

sets [52] in each dataset included in the integration using AUCell .
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3.2.2 Integration of scRNA-seq profiles of models and glioblastoma 

patients corroborated GSA cellular identity   

The integration of the expression profiles of in vivo GSA models and 

glioblastoma patients at the bulk level showed a predominant PN subtype 

identity in the models (see Results 1.2). At the same time, the 

modification of the growth conditions of the GSA models indicated their 

ability to modulate their identity upon external factor addition (see Results 

2.1.2 & 2.2.2). In addition, the analysis of the single-cell expression 

profiles confirmed different glioblastoma states in vivo and upon external 

factor activation (see Results 3.2.1). However, a comparison of scRNA-

seq profiles between GSA models and glioblastoma patients was still 

lacking. To that end, I integrated the scRNA-seq profiles of glioblastoma 

patients and GSA models to evaluate the correlation at the single-cell level. 

First, I integrated several publicly available scRNA-seq datasets to 

generate a combined cohort of glioblastoma patients [29, 119, 120](see 

Methods). For that purpose, I processed each scRNA-seq profile using the 

Seurat v4 pipeline [108]. I removed low-quality cells and doublets from 

each scRNA-seq profile using DoubletFinder [117]. Then, I generated a 

shared nearest neighbor (SNN) graph and performed Louvain clustering to 

define the cell populations in each scRNA-seq profile. To integrate only 

tumor populations and not populations from the microenvironment, I 

evaluated the copy-number aberrations (i.e., hallmarks of tumor cells) 

using copyKat [121] and removed these cells from the profiles. Finally, to 

improve the integration (see Results 3.2.1), I retained only the noncycling 

cells from each scRNA-seq profile. In total, I obtained 14,745 cells from 21 

scRNA-seq profiles of glioblastoma patients (8,919 cells from ten profiles 

[119], 4,085 from six profiles [29] and 1,741 from five profiles [120]). 
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Figure R41. The scheme represents the integration between single-cell expression profiles 

from ex vivo/in vivo IDH1wt/mut GSA models and glioblastoma patients.

Next, I combined the scRNA-seq profiles of the GSA models and 

glioblastoma patients (Fig.R41). First, I combined the scRNA-seq matrix 

using the function createLiger from the LIGER package [122]. Then, I 

integrated the samples using the rPCA algorithm from the Seurat v4 

pipeline [116]. After integration, I generated a SNN graph and performed 

Louvain clustering to define the cell populations in the integration. The 

analysis revealed twelve clusters (Fig.R42A). The evaluation of the 

datasets represented in each cluster revealed eight clusters with the GSA 

models and glioblastoma patient cells (Fig.R42B-C). The evaluation of the 

distribution of GSA model cells (Fig.R42D) showed the enrichment of in 

vivo IDH1wt/mut in the C5 clusters and ex vivo IDH1wt/mut in the C1-3 clusters. 

This analysis recapitulates previous differences between the models.
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Figure R42. Evaluation of the integration between single-cell transcriptome profiles of 

glioblastoma patients, in vivo and ex vivo, upon external factor activation of IDH1wt/mut GSA 

models. (A) UMAP representation of the cell populations defined in the integration. (B) UMAP 

representation indicates the cell origin. (C) The bar plot represents the number of cells 

included in the indicated cluster for each dataset.  (D) The heatmap represents the enrichment 

(fisher.test, adj.pvalue < 0.05) for the dataset cells in each cluster . 

Next, I assessed the glioblastoma state for each cluster in the 

integration. To this end, I first computed the markers that define each 

population using findAllMarkers (Wilcox. Text, adj.pvalue < 0.05, log2FC 

>0.5) [116]. Then, I evaluated the enrichment of markers in various 

glioblastoma subtype gene sets (Fig.R43A). The analysis revealed a similar 

clustering of the enriched cell populations (see Results 3.1). In particular, 

the results showed that the in vivo IDH1wt is associated with 

AC/NPC/OPC/MES1 states, in vivo IDH1mut to OPC/NPC1 state, ex vivo 
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IDH1wt to AC/NPC1-2/MES1, and ex vivo IDH1wt to AC/MES1-2/NPC1-2 

states.  

Finally, I used AUCell [72] to assign the glioblastoma state identity 

to each cell in the integration [52]. The analysis of the distribution of the 

AUCell identity in the UMAP showed that different glioblastoma states were 

enriched (Fisher’s exact test, adj.pvalue < 0.05) for each GSA model 

(Fig.R43C-D). The analysis revealed that the ex vivo IDH1wt dataset was 

enriched in MES1-2/NPC1-2 cell populations, and ex vivo IDH1mut was 

enriched in OPC/NPC, in vivo IDH1mut in the AC/NPC1 cell populations, and 

in vivo IDH1wt in AC/MES1-2. These results are similar to the previous 

selection validating the analysis (Fig.R43D). 

Overall, the integration of scRNA-seq profiles of GSA models and 

glioblastoma patients showed similarities in the cell identity in the models 

and the patients. Furthermore, the analysis recapitulates previous findings 

from individual observations. 
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Figure R43. Evaluation of the glioblastoma state enrichment in the integration between 

single-cell transcriptome profiles of glioblastoma patients, in vivo and ex vivo upon external 

factor activation of IDH1wt/mut GSA models. (A) UMAP representation of the enrichment of 

glioblastoma states [52] in the integration. (B) The heatmap represents the enrichment ( 

fisher.test, adj.pvalue < 0.05) for the glioblastoma state [52] for each dataset. (C) UMAP 

representation of the AUCell enrichment of glioblastoma states in [52] the integration. (D)

The heatmap represents the enrichment ( fisher.test, adj.pvalue < 0.05) for the glioblastoma

state [52] for each dataset using AUCell. 
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DISCUSSION 

1. COMPARISON OF THE MOLECULAR PROFILES OF PATIENTS AND ADULT-

TYPE DIFFUSE GLIOMA MODELS 

Humanized mouse tumor models exhibit tight control of the genetic 

profiles compared to patient-derived tumor models, thus aiding in 

controlled drug screenings and improving the understanding of the biology 

of the tumor. To answer those questions in adult-type diffuse glioma, we 

generated two models that represent the patient profiles by the genetic 

modification of nontumor-derived neural stem cells. First, I validated the 

presence of the genetic alterations introduced to generate the IDH1wt and 

IDH1mut models. Whole-genome sequencing analysis revealed a distinct 

mutational profile between the models corresponding to the expected 

profiles, validating the experimental design. In addition, the analysis 

revealed that both GSA models carried almost identical copy-number 

alterations (CNAs). Since the initial cells for the study originated from 

nontumor human cells, these findings implied that CNAs occurred during 

the early stages of cell immortalization. This observation might reveal 

processes related to the spontaneous acquisition of large genomic 

alterations such as Chromothripsis [15], the presence of external 

chromosomes [123] or altered clones in nontumor neural stem cells. 

Remarkably, the acquisition of CNAs parallels the early events governing 

the formation and evolution of adult-type diffuse gliomas [31]. Despite this, 

limited access to the cell of origin in these models prevents a more in-depth 

examination of the cause of these aberrations. Interestingly, the analysis 

also revealed that the 4q12 chromosomal region, which contains the 

PDGFRA gene, is amplified in both models. This gene is strongly associated 

with the glioblastoma PN subtype [28] and the OPC state [52]. In addition, 

GSA models also amplified the MYC and CDK4 genes associated with the 

NPC glioblastoma state [52]. Overall, the evaluation of the copy-number 
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profiles suggested that GSA models were similar to the PN/NPC/OPC 

glioblastoma states. 

Following the genetic characterization of the GSA models, the 

expression profiles of the models were compared to those of glioblastoma 

patients to determine their similarity level and identify the different active 

pathways. The difference between the expression profiles of tumor models 

and patient genomes presents a challenge that hinders the evaluation of 

the identity of the models. In particular, in avatar models, the similarities 

and differences between tumor models and patients are initially unknown. 

In that sense, the definition of the grade of overlap, as well as the exact 

tumor features of the models, remains difficult to assess at the bulk and 

single-cell levels. Another issue associated with this comparison is that the 

assessment of the expression profiles in different sequencing runs leads to 

technical differences that must be corrected prior to evaluating the models 

(e.g., batch correction). These issues imply that complex pipelines and 

orthogonal analysis should be used, but these methods are not always easy 

to implement, and the biological interpretation of the results can be 

difficult. To overcome these challenges, I developed a new computational 

framework: CAPE. This computational approach uses batch correction and 

NMF to integrate bulk RNA-seq datasets of models and patient genomes. 

Specifically, NMF deconvolution generates interpretable solutions that 

enable easy grouping of genes and samples into different clusters without 

establishing previous assumptions. To the best of my knowledge, there are 

only a few algorithms available to integrate expression profiles from models 

and patient at the bulk level, such as Celligner [67] or CancerCellNet [66]. 

In particular, Celligner searches for the most variable genes and applies a 

modified version of the mutual nearest neighbor to generate the correction. 

In that regard, Celligner will require the presence of similar sample types 

to integrate the sample [69], which may imply poor performance with only 

a few tumor model samples. If the correction step fails, Celligner will have 
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difficulty defining the cluster markers and may miss some results. In 

contrast, CAPE relies on the identification of empirical control genes or the 

use of housekeeping genes to correct the batch effect in the dataset using 

RUV-seq [89] prior to computing NMF deconvolution. As a result, CAPE 

allows for the integration of smaller datasets (i.e., few model samples) but 

may perform worse when integrating multiple tumor types and models. In 

that sense, CAPE still has room for improvement by better defining the 

control genes used for batch correction. For example, an ideal experimental 

design to support the full potential in CAPE might include control genes 

whose expression is known, such as an RNA spike-in, to allow for correction. 

This approach will translate to more accurate NMF deconvolution. Despite 

the clear shortcomings, the CAPE framework still provides a novel, simple 

and adaptable method for evaluating tumor model bulk expression profiles 

and comparing clusters and gene modules to patients. This advantage might 

help us to understand complex interactions in specific tumor types or to 

facilitate studies such as the evaluation of PDX biobanks to improve 

personalized medicine-based cancer treatment. 

To test the newly developed method, I used CAPE to integrate the 

expression profiles of in vivo GSA IDH1wt/mut isogenic models and TCGA-GBM 

IDH1wt patients. The complete experimental evaluation of GSA models and 

the control over the cell-of-origin and genomic profiles makes these models 

suitable to assess the framework. First, I evaluated the batch correction 

using Spearman correlation and single-sample enrichment. The analysis 

revealed a significant correlation between the samples before and after data 

correction, even to potential outliers (min correlation value), confirming 

that, with the correct setup, the batch correction step avoided substantially 

altering the expression profiles. As an additional control, the glioblastoma 

subtype gene set score was independently estimated for each sample using 

a ternary graph and revealed that PN-type features were maintained after 

the correction step. Interestingly, the analysis showed a shift toward the 
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CL subtype and not to the MES subtype, indicating that the in vivo GSA 

models presented a certain grade of tumor heterogeneity toward a PN/CL 

subtype. This result might indicate that under in vivo conditions, 

oligodendrocyte (associated to PN) and astrocyte ( associated to CL) fates 

are favored more than mesenchymal fate in GSA models. The clustering of 

the corrected matrix using NMF deconvolution revealed four clusters. One 

cluster grouped the IDH1wt/mut GSA samples, and the remaining clusters 

included samples from glioblastoma patients only. This result revealed that 

NMF finds the best deconvolution approach by including the models and the 

patients in separate clusters. Finally, NMF generates sample clustering and 

gene modules. These outputs can be used to evaluate the enrichment of  

the glioblastoma gene sets for each cluster. The analysis showed that PN, 

CL, and MES subtype markers were enriched in the clusters with 

glioblastoma patients, while the cluster containing the GSA models was 

enriched in the PN subtype. Together, the enrichment of PN markers and 

the division of patients according to glioblastoma subtype corroborated the 

predominant PN identity of GSA models. 

Since CAPE relies on the identification of negative empirical genes, it 

might generate different outcomes depending on the input samples.  To 

evaluate the extent of this bias over different conditions, I compared the 

outcome of integrating GSA models with different GBM cohorts and tumor 

models. Specifically, I performed two integrations, one with three patient 

cohort alternatives to the TCGA-GBM cohort and another integrating all 

patient cohorts and several tumor models. In both cases, the integration 

showed IDH1wt/mut GSA models clustered as the glioblastoma PN subtype. 

In particular, the integration of the expression profiles of the GSA models 

with other GBM models (PDX [94, 95] and GSC [92]  models) and multiple 

cohorts of glioblastoma patients preserved the PN identity of the GSA 

models despite the number of different datasets. In this case, NMF 

deconvolution included PDX and GSC samples in the cluster with patients. 
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Despite this, the analysis suggested a different integration in which GSA 

models are integrated with patients. These findings could imply that when 

multiple models and cohorts are combined, the differences are established 

at the level of the glioblastoma subtype rather than with the models. This 

indicated that our models have enough similarities to PN patients but can 

still be improved. Overall, the outcome of these additional integrations 

indicated the ability of CAPE to differentiate between samples even when 

multiple cohorts are integrated and GSA models are clustered under the 

same phenotype. 

In addition, to compare the results to other methods of integration, I 

benchmarked CAPE using Celligner [67]. In this case, the evaluation of the 

markers of each cluster revealed two predominant groups enriched in 

OPC/CL/NPC and MES glioblastoma states. Notably, most GSA model 

samples clustered with the OPC/CL/NPC cluster. These results showed that 

GSA samples still clustered together as the PN subtype using an alternative 

method. Despite this, Celligner had more difficulty distinguishing between 

the three glioblastoma subtypes. This might be explained by the method 

used to generate the integration, which benefits from the presence of more 

samples to generate the integration. In that sense, this analysis 

demonstrated that the cluster definition was more precise with CAPE in a 

smaller group of samples. This issue impacts the definition of cluster-

specific gene modules, highlighting the value of using CAPE to investigate 

the differences between tumor models and patients.  

As mentioned, CAPE NFM deconvolution also generates cluster-

specific gene modules, and it presents a great advantage in comparison to 

other methods. In particular, the integration of models and patients helps 

to differentiate those pathways expressed at lower levels in the models. To 

confirm whether CAPE generated comparable results even with distinct 

cohorts, I evaluated the correlation between gene modules generated in 
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different integrations of the GSA model and those found in glioblastoma 

patients using the Jaccard index and hierarchical clustering. Notably, the 

analysis corroborated the observation that different CAPE integrations 

generated similar results even with a variety of cohorts of patients. In 

particular, the analysis showed the clustering of the samples based on 

glioblastoma subtype identity. This result demonstrated the capability of 

CAPE to produce consistent gene modules in different integrations. 

However, despite this, further analysis of the correlation between gene sets 

might be necessary. For example, by analyzing the gene regulatory 

networks using different integration and conditions, CAPE might 

differentiate between processes and generate better results that can help 

improve the models. 

After determining the identity of each cluster, I compared the 

differences between gene modules in models and patients. Since CAPE 

performance improved in direct comparisons, I used the in vivo GSA and 

GBM-TCGA integration to better evaluate the differences between the model 

and patient. Specifically, the evaluation of the active hallmarks in the 

cluster with only patients displayed an enrichment on oxidative 

phosphorylation hallmark not enriched in the cluster with GSA models. 

Remarkably, this characteristic defined a glioblastoma subtype based on 

metabolic classification [53]; thus, it may distinguish between PN identity 

in GSA models and a specific subset of glioblastoma patients. In addition 

to the enrichment, I estimated the tumor-related pathways in each cluster 

using Progeny and evaluated the enrichment of particular pathways in the 

samples that compose a cluster. Interestingly, this analysis showed that 

the GSA models activated the PIK3 and MAPK pathways, which, together 

with the hallmark enrichment, may indicate proliferative activity [124]. This 

might explain the lack of integration of our models in the patient-specific 

clusters. In comparison to the other cluster, the upregulation of TGFβ, 

TNFα, NF-kB, and hypoxia pathways in the MES subtype cluster, 
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characteristic of the subtype, supported the validity of the hallmarks 

observed and indicated a more differentiated state. 

The ability of CAPE to generate cluster-specific gene modules allowed 

us to define the difference between GSA and glioblastoma patients to 

improve the models. In particular, this feature enables us to evaluate 

specific differences in factors, such as TFs, druggable targets, and upstream 

regulators required for cluster activation. In comparison to other methods, 

such as Celligner or CancerCellNet, NMF deconvolution facilitates the 

generation of more interpretable solutions. Therefore, I used CAPE to 

integrate a cohort of glioblastoma patients using several datasets and 

generated a gene-regulatory network tailored to the patients [46, 92, 93]. 

Then, I analyzed the TF regulon enriched in the gene modules resulting 

from the CAPE integration of GSA models and glioblastoma patient. The 

analysis revealed that the model-only PN cluster was enriched in 

transcription factors associated with neural stem cells (i.e., SOX4 or 

SOX11), proliferation (i.e., E2F2-3-8), or CNV-amplified TF genes (i.e., 

MYC). Notably, the elements enriched in the MES cluster showed 

interconnected TFs, such as FOSL1/2, RELB, NFKB2/1, CEBPB, ETS2, and 

BCL3, related to the activation of TNFα signaling via NF-kB [125]. These 

TFs were previously identified in the MES subtype, validating the results. 

Finally, to assess the potential effect of upstream factors upregulated in 

the patients on modifying GSA models, I correlated the expression of 

specific receptors in the models with the list of growth factors from the 

integration. PDGFA emerged as the most important upstream regulator in 

the analysis. This factor has been associated with astrocytic secretion [126] 

activating the OPC differentiation process. In our analysis, its receptor, 

PDGFRA, was amplified in the GSA models. In addition, the ranked list also 

showed the upstream factors LIF (i.e., EMT [127]), CD70 (i.e., TNF ligand 

family [128]), (i.e., tumor growth), and TGFB1 (i.e., EMT). These factors 

are associated with the MES subtype cluster and are candidates for 
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promoting the transition from the PN subtype to the MES subtype in the 

GSA models. Finally, I evaluated the coexpression of receptors and revealed 

that the selected factors could be grouped into five clusters. For example, 

the analysis revealed that LIF, IL6, or IL11 [129] could promote the 

transition from the PN subtype to the MES subtype in our models focused 

on EMT. These findings demonstrated the potential of CAPE to generate 

results that are conveniently accessible for improving and defining models 

compared to patient profiles. 

Overall, in this section, I demonstrate the correlation between the 

expression profiles of IDH1wt/mut GSA models, which each have their own 

unique genetic profile, and the expression profiles of glioblastoma patients. 

To achieve this, I designed the CAPE framework. This framework evaluates 

the similarities between datasets more straightforwardly than currently 

available methods by simultaneously defining the cluster-specific identity 

and gene modules to improve the models. CAPE is generally useful for 

evaluating tumor models when the experimental design changes, as it 

identifies the cellular identity and the information required to improve 

them. This framework identified the adult diffuse glioma GSA models as PN 

and distinguished them from other glioblastoma subtypes in multiple 

comparisons. Simultaneously, it identified elements that could potentially 

improve GSA models. In future analysis, CAPE can benefit from a better 

experimental design in which external RNA is included to improve the 

correction. At the same time, the ability to generate gene modules can be 

used to build complex regulatory networks in which several factors are 

combined to uncover previously unknown connections between gene 

modules and sets of patients. 
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2. USING CAPE TO ASSESS THE GLIOBLASTOMA STATE ACQUISITION 

IN GSA MODELS 

GSA models can replicate various conditions of glioblastoma tumor 

growth. In that sense, in vitro conditions represent a glioma stem cell state, 

whereas the in vivo conditions indicate a tumor differentiation state upon 

interaction with the environment. I integrated in vitro and in vivo IDH1wt/mut 

samples using CAPE to evaluate the transcriptional changes between growth 

conditions. Notably, the integration revealed a nearly perfect separation 

between in vitro and in vivo samples, regardless of IDH1 status or 

sequencing batch. This indicates that the main difference between the 

models is due to the environment and not genetic profiles. In addition, the 

evaluation also uncovered disparities in glioblastoma state acquisition. 

Specifically, only the in vivo cluster presented enriched markers for 

OPC/AC/NPC glioblastoma states. This result indicated an increase in the 

tumor heterogeneity of GSA models upon engraftment in comparison to the 

glioma initiating state. To evaluate the main differences between these 

changes, I focused on the evaluation of each cluster of activated pathways, 

TFs, and upstream regulators. The analysis showed that the in vivo cluster 

presented enrichment in hallmarks such as IFN response, EMT related and 

proliferation markers, whereas the in vitro cluster presented enrichment in 

hallmarks related to metabolic processes such as glucose metabolism. 

Similarly, the evaluation of TF enrichment linked the in vivo condition to 

glioblastoma states TF such as STAT1 [130], NFKB1 [28], and SOX10 [131]. 

In contrast, the analysis of in vitro TFs revealed regulons related to glioma 

stem cell maintenance, such as CLOCK [132], PRDM14 [133], and CTCFL 

[134]. Finally, the analysis of growth factors expressed in each cluster 

supported these differences between conditions. Analysis of the in vitro 

upstream regulators revealed that the most significant growth factor in the 

population is GPI, an autocrine motility factor involved in glucose 

metabolism [135]. Specifically, this factor has previously been identified as 
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a factor that maintains stem cell homeostasis [135]. The most significate 

growth factor in the in vivo cluster was pleiotrophin (PTN), a chemotactic 

factor shown to promote angiogenesis and the migration of glioblastoma 

cells from the subventricular zone [136]. Interestingly, EGF, FGF, and 

PDFGA are active in vitro due to the composition of the cell culture media, 

which can explain the differences in proliferation and metabolic activation 

in vivo and in vitro, respectively. Despite this, in vitro GSA models still 

exhibited upregulation of  another set of regulators such as IGF2, which 

was validated by mass spectrometry in the laboratory (data not shown), 

demonstrating the ability of CAPE to identify important activators. Overall, 

all these analyses demonstrated that in vitro populations maintain the stem 

cell population, whereas in vivo samples are susceptible to proliferation, 

EMT, and IFN modulation establishing more differentiated tumor states. 

To study glioblastoma heterogeneity, the laboratory developed and 

tested a new approach to generate genetic tracing reporters known as 

synthetic locus control regions or sLCR [107]. We used this method to 

investigate the changes in the GSA models as they transitioned from the 

PN to the MES glioblastoma subtype. In particular, I assessed the 

differences between the expression profiles of in vitro and in vivo GSA after 

FACS selected samples carrying the sLCR reporter. The analysis of 

differentially expressed genes between conditions revealed the enriched 

genes for the predicted glioblastoma subtype validating the reporter 

selection. Notably, in the comparison between MGT#1high in vitro and in 

vivo, the evaluation also showed an enrichment upon in vivo conditions of 

the AC glioblastoma state [137]. This result was in part expected due to 

the MES subtype including some features shared with the AC glioblastoma 

state [107]. Despite this, this outcome corroborated the acquisition in the 

GSA models of the AC glioblastoma state under in vivo conditions observed 

in the ternary graphics and CAPE integrations. Overall, these results 

indicated that GSA cells undergo astrocytic differentiation in the host brain. 
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Remarkably, the analysis of the upstream regulators activated by the in 

vivo MGT#1high showed the upregulation of IL6, NF-kB and IFNγ/α signaling, 

similar to the results of CAPE integration of the in vitro and in vivo GSA 

samples. To test these changes compared to glioblastoma patients, I used 

CAPE to integrate in vivo MGT#1high and bulk GSA samples together with 

TCGA-GBM IDH1wt glioblastoma patient samples. Strikingly, the analysis 

indicated that most in vivo MGT#1high GSA populations resembled the PN 

subtype and not the MES subtype. These results suggested a strong 

influence of the cell of origin or the CNA on the phenotype of the tumor 

models that might be difficult to overwrite without the addition of external 

factors. Despite this, some MGT#1high samples also clustered within the CL 

subtype or AC state cluster. Interestingly, this outcome differs from in vivo 

GSA bulk integration and indicated that selecting GSA populations using 

sLCR helped to enrich the GSA models in some samples toward a CL/AC 

glioblastoma state. 

The comparison between growth conditions demonstrated that in vitro 

GSA populations acted as glioma stem cells. In that sense, it is possible to 

use in vitro GSA to assess which changes contribute to the differentiation 

of glioblastoma subtypes. In particular, we evaluated the effect of external 

factors regulating the changes in in vitro GSA MGT#1high cells to identify 

the factors that promote the PN-to-MES transition [107]. The differential 

expression analysis between treated and control cells revealed that, except 

for Activin A, all stimuli resulted in an increase in the expression of MES 

markers. Surprisingly, some external factors, such as IR, also activated 

several other glioblastoma states. For example, human serum (HuS) and 

ionizing radiation (IR) activated ME/MES1-2 and the CL/AC state. This 

finding is in line with previous analysis where in vivo GSA MGT#1high also 

enriched CL features, indicating some granularity in the selection by the 

reporters. In addition, the examination of cancer-related pathways revealed 

disparities in the activation of various upstream regulators. Specifically, the 



Discussion  

Page | 104  

analysis showed that HuS activated TGFβ, whereas TNFα primarily activated 

inflammatory pathways. In both cases, those pathways are related to the 

glioblastoma MES subtype. To define the TF controlling each upstream 

regulator activation, I analyzed the master regulator (i.e., TF) for each 

condition. Remarkably, the master regulator analysis (MRA) revealed a 

correlation between the TFs activated by each different upstream regulator. 

Specifically, the clustering of the correlation between upstream regulators 

revealed a distinct cluster of TNFα, HuS, and IR opposite to the other cluster 

containing the control samples. These results suggested that certain 

triggers promote the PN-to-MES transition more effectively than others. 

I used CAPE to compare the expression profiles of in vitro IDH1wt GSA 

control and MGT#1high samples and assess the distinctions between external 

factor activation. Surprisingly, the integration displayed two well-defined 

clusters, where HuS, TNFα, and IR samples clustered together, while the 

remaining samples clustered with the control. Consequently, this analysis 

validated the previous findings made using master regulator analysis. In 

particular, the evaluation of the gene module indicated that the two clusters 

were enriched in MES1/2 and PN/OPC/CL markers. Interestingly, the 

MES1/2 cluster included samples treated with HuS, TNFα, and IR. 

Therefore, the CAPE integration showed that among all the external factors 

in the analysis these are the best strategies to promote the PN-to-MES 

transition in the GSA models. To fully evaluate this hypothesis, I used CAPE 

to integrate the models with more ME-like MGT#1high expression profiles 

with glioblastoma patients. Remarkably, the integration showed that 

MGT#1high GSA models clustered with patients in the MES subtype cluster, 

indicating that a change in identity in vitro in the GSA models is possible 

under certain conditions. This supported our previous hypothesis that MES 

is an activated state highly dependent on the activation of specific signaling 

pathways. 
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Overall, this analysis demonstrated the ability of CAPE to differentiate 

between conditions as well as to define the best strategy to promote our 

GSA models toward a more MES subtype identity. This section also 

highlights the practical usage of CAPE and the sLCRs to evaluate, improve 

and understand tumor models. Specifically, the analysis demonstrated the 

potential of combining sLCR genetic tracing reporters to select specific 

states in vitro upon external factor activation and CAPE to estimate their 

differences. In that sense, I also implemented an automatic pipeline for the 

generation and selection of genetic tracing reporters (  see Publications). 

The integration of both newly developed frameworks can be coupled 

utilizing CAPE as a validation tool or to construct the input data required to 

design the reporters (e.g., integration of multiple cohorts of cancer 

patients). In general, this strategy will help to determine the model identity 

and allow for the evaluation of how different external factors influence the 

models. 
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3. CHARACTERIZATION OF THE SIMILARITY OF CELL POPULATIONS IN  

GSA MODELS AND PATIENTS 

The integration of in vitro and in vivo GSA models using CAPE 

revealed the presence of several glioblastoma states upon engraftment. The 

integration at the bulk level has the advantage of the analysis of several 

cohorts of patients, as well as the ability to integrate new conditions of the 

same model in a relatively inexpensive manner. Despite this, it lacks a 

proper view of cell population heterogeneity and the ability to differentiate 

between intermediate states. To directly assess these changes, I examined 

the single-cell expression profiles of IDH1wt/mut in vivo GSA models. 

Interestingly, the analysis revealed that all defined clusters incorporated 

cellular profiles from both models. This observation indicated similarities 

between GSA models and explained the lack of separation in the NMF 

integrations at the bulk level. However, the evaluation of the enrichment of 

IDH1wt and IDH1mut GSA model cells in each cluster indicated a distinction 

between models. In combination, these results concluded that the GSA 

models showed specific differences but not enough to create a strong 

separation between models highly influenced by the cell of origin or the 

copy-number profiles. Remarkably, the enrichment of the glioblastoma 

gene set revealed these differences between clusters. In particular, IDH1wt-

enriched clusters expressed AC/MES markers, whereas IDH1mut-enriched 

clusters expressed OPC/AC markers. Surprisingly, both clusters 

upregulated markers of the AC state, corroborating the previous 

observations at the bulk level to detect the AC state in vivo. Finally, to 

evaluate the cell identity without defining the clusters, I used AUCell 

software from SCENIC. Notably, the assessment of the AUCell score 

distribution in the UMAP indicated high OPC and AC scores in both models. 

Explicitly, the evaluation of the enrichment of cell identity within each group 

revealed that IDH1wt enriched MES cells more than IDH1mut, whereas 

IDH1mut enriched OPC cells. Interestingly, the same evaluation by cluster 
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showed enrichment of OPCs in IDH1wt-enriched clusters, which explains the 

observations at the bulk level of the in vivo GSA PN/CL identity. Overall, 

the evaluation of single-cell profiles of in vivo GSA models corroborated the 

observations made at the bulk level using CAPE and genetic tracing 

reporters and highlighted some of the differences between models. 

To assess whether the addition of external factors to the in vivo 

population could also generate changes at the single-cell level, we 

generated two ex vivo single-cell profiles by adding external factors 

activating the ME (TGFβ [28] and TNFα [28]) and PN (BDNF [138], IGF1 

[139], NRG1 [94]) subtypes in IDH1wt/mut GSA models. The individual 

evaluation of the single-cell profiles showed different clusters for each 

integration, indicating the presence of different cell populations. Notably, 

the definition of cluster-specific markers for each individual dataset and the 

evaluation of glioblastoma state enrichment also indicated differences 

between ex vivo GSA profiles. In particular, the analysis revealed the 

enrichment of the OPC state markers in the IDH1mut profile and in the MES1 

state markers in the IDH1wt profile-specific clusters. Furthermore, the 

evaluation of the hallmark enrichment analysis revealed different pathway 

activation. In the case of the MES-enriched clusters in ex vivo GSA models, 

the IDH1wt profile activated EMT, hypoxia, and apoptosis. Specifically, EMT 

is enriched in the MES state. In contrast, the OPC cluster in the ex vivo 

IDH1mut profile showed enrichment of MTORC1 signaling, which is part of 

the IGF1 signaling pathway [140]. Remarkably, mTOR signaling was also 

associated with OPC activation [141], indicating a specific activation 

pathway toward a more PN/OPC subtype identity. Therefore, the treatment 

of ex vivo GSA cells with external factors promoted the acquisition of the 

ME and PN subtype cell populations in the models. 

To contextualize the changes in the ex vivo populations, I also 

evaluated the integration of scRNA-seq profiles of in vivo and ex vivo GSA 
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models. Interestingly, the integration analysis showed cells from each 

single-cell profile in all the defined clusters and not individual clusters, 

indicating similarity between profiles. Despite this, a detailed evaluation of 

the enrichment of dataset-specific cells in each cluster revealed differences 

between GSA models. Specifically, the results indicated that in vivo GSA 

IDH1wt cells presented more exclusive cell populations than the other 

profiles. In the same sense, the analysis of the enrichment of glioblastoma 

subtype gene sets in each cluster revealed that in vivo IDH1wt was enriched 

in clusters upregulating MES1/2 and AC/OPC state markers, while the other 

profiles were enriched in individual glioblastoma states. In addition, the 

evaluation of the cell-specific glioblastoma state score using AUCell 

revealed the enrichment of MES cells in in vivo/ex vivo IDH1wt profiles, 

whereas in vivo/ex vivo IDH1mut profiles were enriched in OPC cells. 

Interestingly, the ex vivo IDH1wt profile showed more enrichment of MES1 

cells than the in vivo IDH1wt profile, which can be explained by the 

treatment of the GSA models with TGFβ and TNFα, as was previously 

reported. Notably, the in vivo profiles presented enrichment for AC state 

cells, while ex vivo NPC. This observation corroborated the ability of the in 

vivo conditions to promote the AC state in the GSA models. Overall, the 

integration validated the individual analysis and showed the differences 

between the treatment, profiles and growth conditions. 

Finally, the integration of the GSA model and glioblastoma cell 

populations was required to evaluate the identity of the single-cell profiles 

of GSA models. First, to generate a reference dataset of patients, I compiled 

and analyzed multiple publicly available glioblastoma single-cell expression 

profiles [29, 119, 120]. I combined only noncycling cells from each dataset 

to limit the effect of the cell cycle on the integration of scRNA-seq profiles 

of glioblastoma patients and GSA models. The integration revealed different 

clusters in which GSA models were integrated into nearly all clusters. 

Notably, the enrichment analysis indicated the presence of all glioblastoma 
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states in the integration. In particular, the evaluation of the GSA cells 

enriched for each cluster indicated similarities with individual analysis. For 

example, the analysis revealed the enrichment of in vivo IDH1wt GSA cells 

in AC/NPC1/OPC/MES1-enriched clusters. The enrichment analysis using 

AUCell showed similar results, corroborating the observation. In that sense, 

the evaluation of the enrichment demonstrated that in vivo/ex vivo IDH1wt 

was enriched in MES state cells more than the in vivo/ex vivo IDH1mut GSA 

models. Interestingly, I also observed enrichment of in vivo cell profiles in 

AC populations, which supported the hypothesis that AC is acquired during 

engraftment. This analysis corroborated the similarities between the single-

cell profiles of GSA models and glioblastoma patient, indicating similar cell 

populations. 

Overall, in this part, I demonstrated how single-cell profiles replicated 

previous observations at the bulk level using CAPE and sLCR selection. 

Interestingly, the analysis at the single-cell level reveals the predominance 

of some profiles for specific glioblastoma states not captured by the bulk 

profiles. In particular, the evaluation of the in vivo GSA model profiles 

revealed a predominant AC/OPC population in both models, similar to what 

was observed using CAPE but with a preference for the MES subtype in the 

in vivo profiles. This finding indicates that bulk RNA-seq helps identify the 

predominant population but not small changes. Nevertheless, CAPE was 

able to differentiate the PN-to-MES transition under the correct treatment, 

which still underscores the ability of the framework to generate results at 

a lower cost. Similarly, the ex vivo GSA-generated profiles showed enriched 

cell populations in the expected MES and PN subtypes, similar to the results 

obtained using genetic tracing reporters and external factor activation. 

Overall, the integration of in vivo and ex vivo GSA model and glioblastoma 

patient genome profiles confirmed the cellular identity observed in the 

individual analyses.   
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METHODS  

1. GENERATION OF THE MOLECULAR PROFILES  

Generation of GSA models  

Generation of GSA models  

Briefly, the laboratory-generated two adult-type diffuse glioma 

models: GSA IDH1mut and IDH1wt, by transforming human neural stem 

cells derived from human sub-ventricular zone samples of non-glioma 

patients (NPC-hSVZ, provided by R. Glass, LMU, Munich, Germany). The 

models contain the knockouts and knock-downs outlined in Results 1.1.1. 

In particular, the IDH1mut was modified with pLenti6.2/ V5-IDH1-R132H 

(supplied by Hai Yan, Duke University, Durham, North Carolina), p53R173H, 

and p53R273H (provided by D. Peeper). The IDH1wt GSA model was 

generated by transforming the same NPC-hSVZ with Prospero-sh-PTEN, 

pLKO.1-sh-TP53 (TRCN0000003754), and IRS-shNF1 constructs. 

NOD mice (Jackson Laboratory, NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ 

mice) were used for research involving orthotopic glioma xenografts. The 

study included both male and female mice. In general, the laboratory 

utilized mice aged 7 to 12 weeks. Xenograft studies of adulty-type diffuse 

glioma were conducted by transplanting in vitro GSA model cells 

orthotopically into the brains of mice. The tumor was removed if there was 

no neurological signal 5 to 8 weeks after the injection. Brains were collected 

immediately after euthanasia and examined with a fluorescence microscope 

to determine the tumor size and presence  (data not shown). Xenografted 

tumors were processed the same day for FAC analysis and sorting, or cells 

were frozen in a medium containing 10% DMSO until needed. All in vivo 

experiments are conducted in accordance with a protocol approved by the 
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Institutional Animal Care and Use Committee and European Union 

regulations. 

Generation and processing of WGS profiles for GSA models in 

vitro 

Generation of GSA whole-genome sequencings  

One In vitro sample of IDH1wt (100 ng/ul) and IDH1mut (120 ng/ul) 

GSA models were used to generate the whole-genome sequencing profiles. 

Briefly, the laboratory extracted gDNA from each GSA model and 

segmented the genome using Tn5 tagmentation. Then, the library was 

prepared using the fragmented DNA and sequenced using NovaSeq. The 

IDH1wt sample contained a total of 459,515,606 reads, while IDH1mut 

contained 356,367,591 reads.  

Generation of the GSA models SNV profiles   

After sequencing, I evaluated the raw data quality using FastQC 

v0.11.8. Then, I applied to trim galore (parameters: --paired --nextera) to 

remove the sequencing adapters. Next, I mapped the raw sequence to the 

human genome (GRch38) using the bwa mem algorithm [78]. After the 

alignment, I used the GATK v4 pipeline [79] to call the SNV. First, the 

mapping files were sorted using the SortSam function from Picard 

(parameters: VALIDATION_STRINGENCY = STRICT). Then, the duplicated 

reads were eliminated using the MarkDuplicates function. To identify known 

variants and re-align the sequence, I used the BaseRecalibrator and 

ApplyBQSR functions of the GATK v4 pipeline [79]. I excluded known 

variants (parameter: --known-sites) in both functions. Then, I used Mutect2 

[79] to call the specific SNV (parameters: true -L -L somatic-hg38-only-

gnomad.vcf.gz --panel-of-normals 1000g pon.hg38.vcf.gz). Specifically, I 

used the Funcotator repository (ftp://gsapubftp-

ftp://gsapubftp-anonymous@ftp.broadinstitute.org/bundle/funcotator/
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anonymous@ftp.broadinstitute.org/bundle/funcotator/) to define SNV 

variants and removed the known variants. After this step, I followed the 

pipeline to collect information to help the final variant calling. Then, I 

applied the GetPileupSummaries (parameters: --variant somatic-hg38-af-

only-gnomad.vcf.gz) and LearnReadOrientationModel function to generate 

the files to clean the variants. Finally, I filter those low-quality variants 

using the output of the previous functions.  As a result of running the GATK 

v4 pipeline, I generated two files, one in the VCF format and the other in 

MAF format, for each model. 

Generation of the GSA models CNA profiles 

Evaluation of the copy-number profiles used as input the deduplicated 

alignment file (above). To call for Copy-number alterations I used CNVKit 

[84]. Each final call was annotated with the UCSC GRch38 2013 value and 

To generate the CNV cnvkit.py batch was used (parameters: --normal 

control.bam --specifically targets exon.baits.annotate.bed --mark refFlat 

GRCh38 2013 UCSC.txt as annotated --fasta Human Assembly 38 

Filter.fasta diagram --disperse -m wgs). I used as a control file the whole-

genome sequencing iPS-derived NSC. To compare the calls with the TCGA 

whole-exome sequencing profiles, generate baits.py was used to generate 

only exome regions. Finally , to compare with TCGA-GBM the segmented 

files were re-process using GISTIC2 [142]. CNV for each model IDH1wt 31 

amplifications and 30 deletions and IDH1mut 26 amplifications and 22 

deletions. 

I used the R v4.0 environment to evaluate and represent the data. In 

particular, the SNV profiles were processed using maftools v2.6.05  [143] 

using the maf files as input. The evaluation of glioblastoma patients was 

generated after downloading profiles using TCGAbiolink [144] (Mutect2 

Samples=392).  

ftp://gsapubftp-anonymous@ftp.broadinstitute.org/bundle/funcotator/
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Generation of RNA-seq profiles of GSA models 

Generation of the RNA-seq profiles 

The Bulk in vivo GSA samples (Results 1.2, 1.3, and 2.1) were 

processed in two separate sequencing runs. At NKI Amsterdam and at the 

MDC Berlin. Briefly, following orthotopic transplantation, six IDH1wt and 

IDH1mut samples were sequenced. RNA was extracted in this instance using 

the Trizol protocol. Then, NextSeq 500 was used to generate the profiles. 

Schmitt et al. [107] describe how RNA-seq samples for Results 2.1.1 and 

2.2 were produced. 

After sequencing, fastq files were evaluated with FastQC v0.11.8. The 

adapters were trimmed using skewer v0.2.2 (default parameters). Then, I 

mapped the reads to the GRch38 human assembly (TCGA assembly G200 

GRCh38.d1.fa) using  STAR v2.6.0c (parameters: --out 

FilterMultimapscores within range 1 FilterMultimapNmax maximum of 20 --

out --align FilterMismatchNmax to 10 --align IntronMax 5000000 1000000 

--sjdbScore 2 --align MatesGapMax SJDBoverhang --limit Min 1 --

genomeLoad NoSharedMemory BAMsortRAM --readFilesCommand output --

out FilterMatchNminOverLread 0 --sjdbOverhang 200 --out 

FilterScoreMinOverLread 0 --sjdbOverhang 0 --out SAMstrandField 

intronMotif SAM attributes NH Within HI NM MD AS XS –out SAMunmapped 

--out SAMtype BAM SortedByCoordinate --twopass1reads --twopass1reads 

N -1 Basic --twopassMode). Finally, I used HTSeq package 

[145](parameters: -s reverse -i gene name) to extract the gene counts per 

samples (gencode.v22.annotation.gtf) 

Generation of the glioblastoma patient’s expression profiles 

To generate a multi-dataset cohort of adult-type diffuse gliomas, I 

downloaded and processed the data associated with each indicated dataset   

[46, 92, 93]. First, the data was downloaded from SRA. For the TCGA data, 
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HTSeq count profiles were downloaded 

from https://portal.gdc.cancer.gov/  and integrated as a count matrix. 

Then, I processed each patient cohort using the same pipeline to process 

the GSA models' RNA-seq profiles (above). Only IDH1wt samples were 

considered in the integration.  

Generation GSA models scRNA-seq profiles 

Generation of the in vivo scRNA-seq  

After orthotopic transplantation, In vivo GSA cells from three IDH1WT 

and three IDH1mut tumors were isolated, processed, and then, sequenced 

using 10x Genomics Chromium technology. The GEMs (Gel Bead-In 

EMulsions) protocol was used to maximize the number of cells. In total, six 

barcodes were applied to differentiate between the six samples.  The same 

library was generated twice to increase the number of cells in the analysis. 

The raw sequences were mapped to the genome and counted using 10x 

Genomics Cell Ranger v6.1.2 multi-function. The GRCH38 and mm10 

assemblies were used in this analysis to identify the host (mouse) and 

donor (human) cells.  

Generation of the ex vivo scRNA-seq  

Ex vivo GSA IDH1wt cells were treated with TNFα 100 ng/ml and TGFβ 

5 ng/ml over two days and then used for sequencing. In the same way, ex 

vivo GSA  IDH1mut  were treated with NRG1 90 ng/ml, IGF1 10 ng/ml, and  

BDNF 100 ng/ml over two days and then used for sequencing. The library 

was created using 10x Genomics' Chromium technology v2. The raw 

sequences were mapped to the human genome (GRCH38) and counted 

using 10x Genomics Cell Ranger v.3.0.0.  

  

https://portal.gdc.cancer.gov/
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2. ANALYSIS AND COMPUTATIONAL METHODS 

Analysis the results of the CAPE integrations 

The CAPE framework is detailed in the results section (see Results 

1.2). The parameters for each CAPE integration are described in the results 

(see Results 1.2 & 2.1.2 & 2.2.2 ). The results were generated in the R 

v4.0 environment. The graphical representations were generated ggplot2 

v3.35. 

Description of the CAPE framework 

Briefly, the framework starts by combining the input expression 

profiles and generating the metadata saving the information in a 

summarizedExperiment object using the function combineMatrix. The same 

function removes low-count genes defined as n counts in at least 90% of 

all samples (parameter: n = 0 counts ). Then,  it uses the cpm function 

from edgeR v3.26 R package [146] to correct the sequence depth and 

normalizes the output matrix using quantile normalization 

(normalize.quantiles.robust function from preprocessCore R package [147], 

parameters: remove.extreme=both).  

As previously stated, the RUV-seq [89] algorithm within the 

nmfBatchCorrection function is used for batch correction of the datasets  

(see Results 1.2). The framework corrects the data after identifying the 

empirical genes using the RUVg function as described in the RUV-seq 

pipeline [89]. In brief, the CAPE generates comparisons between datasets 

and selects those genes with low changes in expression to define the list of 

genes for correction. The total number of genes can be defined and used 

for the correction. If the list of control genes  (e.g., housekeeping genes) 

is known, it can be passed as input to correct the data-set instead of using 

the approach described in the RUV-seq documentation. After batch 
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correction, if a list of genes is provided,  only those genes are kept for 

further analysis. Otherwise it will use all the genes in the integration. For 

example,  CAPE decompositions used only bona fide glioma genes from 

Wang et al. [35] (see Results 1.2 & 2.1.2 & 2.2.2 ). All the different 

corrections matrices are stored in the SummarizedExperiment and are 

accessible through the metadata. 

CAPE clustering using the NMF v0.23.0 [90] R package. 

The clustNMF function uses as input the summarizedExperiment, and it 

generates the decomposition after defining the number of runs, the times 

the NMF approaches a solution, and the number of k to evaluate. In the 

dissertation results, the algorithm used as default Brunet et al. 2004 NMF 

algorithm [91], k2 to 8, and nrun=10 (see Results 1.2 & 2.1.2 & 2.2.2 ). 

However, these parameters are adjustable in the clustNMF function. More 

information about each parameter can be found in the NMF v0.23.0  [90] 

documentation. To evaluate the best decomposition, CAPE selects the best 

k by finding the highest cophenetic value (> 0.99) as defined in Brunet et. 

al. [91]. However, the k factor parameter can be changed by using 

the includeNMF function. As output, the NMF decomposition generates a 

consensus matrix defining the clusters of the samples and the matrix 

corresponding to the gene grouped by the cluster. The algorithm defines 

each cluster-specific gene module in CAPE as the log2FC > 1 between 

clusters. The includeNMF function also updates the metadata and the gene 

modules if a different k is indicated. All the information about the 

decomposition, as well as the results of the clustering, are stored within 

the SummarizedExperiment. The framework can be accessed through 

(https://gitlab.com/gargiulo_lab/cape) 

Evaluation of the CAPE framework batch correction 

The evaluation of the integration is determined in several steps. First, 

I used the normalized quantile matrix to compute the  interquartile range 

https://gitlab.com/gargiulo_lab/cape
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(IQR) by row (RowIQR) to evaluate the data distribution (see Fig.R6). 

Second, I calculated the spearman correlation using the cor R function 

between the quantile normalized matrix and the batch corrected matrix for 

all samples. These values defined the minimum and mean correlation 

between matrices of each dataset. Then, the significance of the correlation 

for each sample  is calculated using the cor.test function 

(method=spearman). To compare the significance of each dataset, I used 

Fisher's combined probability test (poolr R package [148]). Finally, I 

compared the distribution of the samples using single-sample gene set 

enrichment (GSVA v1.38, method="zscore"[149] )  of glioblastoma gene 

sets from Wang et. al. 2017 [35]. The data is scaled to the min value to 

remove negative values. To evaluate the results, I used ternary graphics ( 

ggtern R package [150] ).  

Evaluation of the CAPE framework clustering 

The NMF decomposition is evaluated in two steps. First,  I extracted 

the NMF decomposition metrics from the summary function of the NMF 

v0.23.0 package [90]. The selection of the best cophenetic is  obtained 

from this table in the summarizedExperiment metadata. Then, to 

graphically evaluate the cophenetic values I used ggplot2 v3.35. In the 

second step, the NMF decompositions are evaluated using the 

consensusmap function (parameters: method=complete, 

distance=Euclidean)  of the  NMF v0.23.0 R package [90].  

The generation of the CAPE gene modules is described above. To 

evaluate the basis heatmap , I extracted the basis values using the basis 

function of the  NMF v0.23.0 package [90], and filtered the matrix to 

represent only the genes defined in the gene modules. The heatmap is 

generated using the pheatmap function of the pheatmap v1.0.1 

(clustering_method = "ward.D2", clustering_distance_cols = "correlation")  
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Evaluation of the CAPE framework gene modules 

To evaluate the enrichment of the gene modules for different gene 

sets, I used the enricher function of the ClusterProfiler v.2.1.2  R package 

[151]. Then, the results were filtered by adj.pvalue < 0.05 and gene count 

>5. The gene sets used in the analysis were the glioblastoma subtype/state 

markers [28, 35, 52], molecular hallmarks from MSigDB v7.2 

(https://www.gsea-msigdb.org/gsea/msigdb), and the TF regulons from 

Dorothea v1.3.3 R package [103] (I only retained used the A, B, C 

confidence levels from the dorothea_hs object). The representation of the 

enrichment results barplot used ggplot2 v3.35. The values represented the 

-log10(adj.pvalue) of each enriched gene set (above).  To represent the TF 

networks, I used cnetplot function of the enrichplot v1.10.2, which uses the 

output of the enricher function as input.  

The evaluation of active pathways was generated using progeny ( 

parameters: perm = 100, scale = FALSE, z-scores = FALSE) function from 

progeny v.1.12.0 R package [96].  I used as input the corrected matrix 

filtered by the gene module. To compare the results for each cluster, I 

compared the pathway score between a cluster ( formed by all the samples 

in the cluster) and a control ( formed by samples randomly selected from 

the other cluster) using the t.test function of the R stats package 

(alternative=”greater”).  Then, I correct the p-value using the p.adjust 

function   of the R stats package (method=“bonferroni"). The graphical 

evaluation was generated using the pheatmap function of the pheatmap 

v1.0.1 R package (clustering_method = "complete", 

clustering_distance_cols = " row"). The cancer-related pathways are sorted 

by cluster and the graphic represents the -log10(adj.pvalue). 

The evaluation of the upstream regulators was generated using the 

Omnipath v2 database [94]. In detail, I used the import_omnipath_intercell 

function to import the database (https://omnipathdb.org/intercell) and  

https://www.gsea-msigdb.org/gsea/msigdb
https://omnipathdb.org/intercell
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focused the comparison on manually curated repositories only. Therefore, 

I included only the entries from CancerCellMap [99], CellPhoneDB [100], 

CellChatDB [101], and CellTalkDB [102] databases. Then, I filtered the 

tables for those annotated as cytokine, growth factor, and hormone. Next, 

I selected from each gene module all the ligand genes in the Omnipath table   

( “from” is the ligand , while  “to” is the receptor). The rank of each 

upstream regulator was generated based on the NMF basis value (Fig.R16). 

The representation in Fig.R19 represents the correlation between the NMF 

basis values and average gene expression for each cluster. Finally, to 

compare the ligand-receptor between GSA models and patients (Fig.R16),  

I evaluated all the selected ligands (y-axis) and the expressed receptors in 

the models (x-axis).  The heatmap was generated using ggplot2 v3.35 and 

it represented the mean of Log2 gene expression values of the receptors in 

the model. The co-expressed ligand was evaluated based on the correlation 

(parameters: method=pearson) of the receptor expressed in the models. 

The heatmap was generated using the pheatmap function of the pheatmap 

v1.0.1 (parameters: clustering_method = 

"average",clustering_distance_cols="manhattan", 

clustering_distance_rows= "manhattan"). 

Benchmark of the CAPE results 

Comparison between the CAPE integration gene modules  

To correlate the gene modules from different CAPE integrations (see 

Results 1.3.1 & Fig.R11), I computed the Jaccard similarity coefficients 

(jaccard function of the Jaccard v0.1.0 R package). The correlation was 

calculated using only the genes of each gene module in the comparison. 

The representation of the correlation between modules was generated using 

the pheatmap function of the pheatmap v1.0.1 (parameters: 

clustering_method = "ward.D2", clustering_distance_cols="manhattan",  

clustering_distance_rows= "manhattan"). The input of the heatmap was the 
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matrix of the  Jaccard similarity coefficients for comparison. To annotate 

the subtype, I computed the enrichment of the glioblastoma subtypes gene 

set in wang et. al. [35] using the enricher function from the clusterProfiler 

v.2.1.2  R package [151]. 

Integration of models and patients using Celligner  

To benchmark CAPE results, I evaluated the integration of the 

expression profiles of GSA models and TCGA-GBM patients using Celligner 

[67]. In order to compare the results I integrated the expression profiles 

using  the cpm matrix of the CAPE integration in Results 1.2.2. I used 

Celligner following the steps described in the algorithm repository 

(https://github.com/broadinstitute/celligner). The Global variables 

modified in the analysis were  n_PC_dims = 5,  mod_clust_res = 0.6, 

fast_cPCA = 20. I used the default for the other parameters. Only ( not 

reduced to bona fide genes )  The output is a Seurat v4 [116] object with 

the  integration. To generate the Uniform manifold approximation and 

projection (UMAP) dimensional reduction I used the corrected matrix 

(Fig.R10A). Then, I used the umap function (parameters: n_neighbors = 

20, metric = 'manhattan', min_dist = 0.1) from the uwot v0.1.11 R 

package. The graphical representation was generated using ggplot2 v3.35.  

After the integration, I used the FindAllMarkers (parameters: test.use 

= 'LR') Seurat v4 R package [116] to evaluate the markers for each cluster. 

I filtered the results using p_val_adj < 0.05 & avg_log2FC > 1 & pct.2 < 

0.75 to define the gene markers for each cluster. Then, I used enricher 

function (p.adjust < 0.05 &  Count >= 3 ) of clusterProfiler v.2.1.2 R 

package [151] to evaluate the glioblastoma gene sets [28, 35, 52] enriched 

in each cluster. I used ggplot2 v3.35 to generate the representation of the 

enriched gene sets for each cluster (Fig.R10C). Finally, to evaluate the 

glioblastoma gene sets enrichment of each sample (Fig.R10C),  I used 

ssGSEA. I used the gsva function (parameters: method = 'ssgsea', 

https://github.com/broadinstitute/celligner
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ssgsea.norm=TRUE) of the GSVA v1.38 R package [149] to generate the 

ssGSEA values. Then, to generate the graphical representation of the scores 

in the UMAP, I used the plot_density function of the Nebulosa v1.6 R 

package [152] 

Analysis of RNA-seq profiles from genetic tracing reporter GSA 

models 

Analysis of the sLCR high expression profiles of in vitro and in vitro GSA 

models 

The RNA-seq analysis of in vivo and in vitro GSA sLCR high/low (non-

MGT#1 and MGT#1) data set was conducted using R v3.6 (see Results 

2.1.2). After the data processing step (above), the quality of each sample 

was individually assessed using dupRadar v1.18 R package [153] (default 

parameters) and subsequently evaluated by the correlation between the 

number of genes and average  counts for each sample (data showed in 

[107] ). Then, differential expression analyses between specific sLCR 

activation, high/low, and in vivo/in vitro were conducted using DESeq2 

v1.24 [154] on raw prefiltered counts (>100 and >50). Of note, principal 

component analysis was used to identify potential outliers in the in vivo 

samples data set and only MGT#1high homogeneous samples were used in 

different comparisons (data showed in [107] ). Differential upregulated 

regulated genes were considered if log2FC >1, adj.pval < 0.05 and base 

mean > 5.  

Then, to evaluate the gene set enrichment  of glioblastoma gene sets 

[28, 35, 52],I used runGSA function  of piano v2.0.2 R package [155] 

(parameters: geneSetStat=“page,” signifMethod=“geneSampling” , 

nPerm=1000). The graphical representations of this analysis were 

generated using ggplot2 v3.3.2. The values represented the -

log10(adj.pvalue) of the indicated comparisons (Fig.R21A). Then, we 
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computed Ingenuity pathway analysis to generate the upstream regulators 

and selected the top10 for the representation (Fig R21B).   

Analysis of the MGT#1 high expression profiles upon external factor 

activation 

The analysis of RNA-seq samples upon external factor activation (data 

showed in [107] ) of the MGT#1 sLCR  was generated using R v3.6 (see 

Results 2.2.1). First, I filtered low-count genes in the matrix using the 

filterByExpr function from the edgeR v3.26 R package [146] . Next, I used 

DESeq2 v1.24 [154] to evaluate the differential expression analysis of each 

MGT#1High condition versus the control. The external factor TNFα, Leukemia 

inhibitory factor (LIF), Human Serum (HuS), Ionized radiation (IR), Activin 

A (ACT), NOC-18,  oxidized LDL (OxLDL), and C20-human microglia co-

culture [113] were individually compared to control samples (CTRL).  Of 

note, the analysis includes four different sequencing runs, so the sva v3.32 

R package [156] was applied for batch correction if necessary. The 

upregulated genes were considered as log2FC > 1, adj.pvalue >  0.05, and 

base mean 5. The control upregulated genes were defined by comparing 

the control and all remaining samples. I used the upset function of the 

UpSetR v1.4 R package to identify the genes shared between all the 

comparisons (Fig.R24A).  

Then, I evaluated the upregulated genes. First, I used GSEA to 

evaluate the enrichment of glioblastoma gene sets [28, 35, 52] for each 

comparison (Fig.R25A). The analysis was generated using the runGSA 

(parameters: geneSetStat=“page,” signifMethod=“gene sampling,” and 

nPerm=1000) of the piano v2.0.2 R package [155]. Then, I generated the 

graphical representation using pheatmap function (parameters: 

clustring_method=”ward.D2”, clustering_distance_row & 

clustering_distance_cols =”manhattan”) of the pheatmap v1.0.12 R 

package. Second, I computed the UMAP dimensional reduction (Fig R25B) 
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using the umap function (parameters: n_neighbors = 10, metric = 

"manhattan", search k = 100) from the uwot v0.1.11 R package. I used as 

input the matrix of all the filtered samples to retain only the upregulated 

genes. To remove the batch effect between samples, I used 

removeBatchEffect function of the limma v3.46 R package [157]. Finally, I 

used the gsva function (parameters: method=”ssgsea”, 

ssgsea.norm=TRUE) from GSVA v1.32.0 [149] R package to obtain the 

enrichment of glioblastoma gene sets and MGT#1High upregulated genes. As 

input, I used the normalized TCGA-GBM matrix. The heatmap 

representation (Fig.R25) was generated using the pheatmap function 

(parameters: clustring_method=”complete”, clustering_distance_row & 

clustering_distance_cols =”euclidean”) of  pheatmap v1.0.12 R package.  

The master regulator analysis was generated using the RTN v2.2 R 

package [115] and following the default pipeline. Briefly, I used the rtni 

function to generate the gene regulatory network. As input, I used the 

batch-corrected matrix. The list of TF to evaluate was defined in the 

humantfs.ccbr database v1.01 [158]. Then,  I evaluated the master 

regulator analysis using the mra function (parameters: 

permutations=1000). To individually assessed the master regulator for 

each upstream regulator,  I used the upregulated genes from each 

comparison as “hits” as described RTN v2.2 R package [115]. Then, I 

evaluated the total MRA for each external factor activation using ggplot2 

v3.35 (Fig.R26B). Finally, I assessed the correlation between MRA using 

the  Jaccard similarity coefficients. The graphical representation was 

generated using the pheatmap function (parameters: 

clustring_method=”complete”,clustering_distance_row & 

clustering_distance_cols =”manhattan”) of pheatmap v1.0.12 R package 

(Fig.R26C). 
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Analysis of scRNA-seq profiles  

Analysis of the scRNA-seq profiles of in vivo GSA models 

To evaluate the IDH1wt/mut in vivo GSA scRNA-seq profiles, I used the 

Seurat v4.0.3 R package [116]. First, I evaluated the raw data and used 

mouse genes to account for the potential host contamination. I kept only 

those cells with 0 counts of mouse genes for further analysis. Then,  I 

filtered low-quality cells from the non-contaminated samples using 

nFeature RNA < 100 & nFeature RNA > 7000 & percent.mt < 10 & nCount 

RNA > 6000 parameters. Next, I used DoubletFinder v2.0.3 [117] to remove 

the doublets and kept only singletons. To process the data, I followed the 

SCTtransform pipeline described in the Seurat v4.0.3 R package [116].  

After processing, I computed the UMAP using the RunUMAP function with 

default parameters (Fig.R31). The evaluation of the cell cycle was 

generated by using the cellCyleScoring function. To define the cells of the  

IDH1wt and IDH1mut, I annotated the data based on the barcodes defined in 

the 10x protocol. 

Analysis of the scRNA-seq profiles of ex vivo GSA models 

To evaluate the ex vivo GSA profiles, I used the Seurat v4.0.3 R 

package [116]. The profiles were analyzed individually. First, I filtered the 

low-quality cells for the ex vivo IDH1wt (parameters: nFeature_RNA 700 & 

nFeature_RNA < 4200 & percent.mt < 7 & nCount_RNA < 20000) and 

IDH1mut (parameters: nFeature_RNA 1000 & nFeature_RNA < 3800 & 

percent.mt < 7 & nCount_RNA < 15,000) profiles. Next, I used 

DoubletFinder v2.0.3 [117] to remove the doublets and kept only the 

singletons. Finally, I generated the transformation using SCTransform. 

After processing, I computed the UMAP using the RunUMAP function with 

default parameters (Fig.R36). The evaluation of the cell cycle was 

generated by using the cellCyleScoring function. 



Methods 

Page | 130  

Integration of  the scRNA-seq profiles of in vivo and  ex vivo GSA models 

I used the Seurat v4.0.3 R pipeline [116] to integrate the scRNA-seq 

profiles of in vivo GSA and the ex vivo GSA models.  To avoid potential 

unspecific cell integrations, I integrated only cells annotated in the cell 

cycle G1 phase. I used the Canonical Correlation Analysis (CCA) algorithm 

following the default pipeline described in the Seurat v4.0.3 R pipeline 

[116] to integrate the single-cell profiles. Specifically, I used the 

FindIntegrationAnchors (parameters: normalization.method = 'SCT') and 

IntegrateData ( parameters: dims=1:30) function as described in the 

pipeline. The number of features used for the integration is 30,000 to 

include all the genes. 

Integration of  the scRNA-seq profiles of in vivo and  ex vivo GSA models 

and patients 

To process the integration of in vivo GSA, ex vivo GSA and 

glioblastoma patients scRNA-seq profiles, I used the Seurat v4.0.3 pipeline 

[116].   

First, I downloaded several publicly available scRNA-seq of 

glioblastoma patients from [29, 119, 120]. Using the metadata from the 

publications, I kept only the samples identified as IDH1wt . Next,  I used the 

Seurat v4.0.3 pipeline [116] to process the profiles individually. For each 

comparison, I applied the filters min.cells=500, min.features=1000. Then, 

I filtered the low-quality cells  using nFeature_RNA > 200 & nFeature_RNA 

< q75 and percent.mt < q75. The q75 represents the value of those 

parameters in the percentile 75% of their distribution. Next, I used the 

SCTransform pipeline [116] of the Seurat v4.0.3 R pipeline [116] to process 

the profiles. In addition, the nontumor cells of each sample were annotated 

and filtered using a combination of gene markers and copy-number 

alterations. The copy-number alterations were identified using the copyKat 
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R package [121] (default parameters). Only those profiles that contained 

more than 500 cells and more than 1000 genes/cell were kept for further 

analysis.  

To integrate the GSA and patients datasets, only the G1 cells were 

kept for the integration. First, the datasets were combined using LIGER 

[159], then converted to a Seurat object using the ligerToSeurat function. 

Then, the datasets were integrated following the Seurat v4.0.3 R pipeline 

[116].  In this case, the integration used the rPCA algorithm. Finally, the 

processing was generated following the default (above). 

Evaluation of the scRNA-seq profiles results and enrichment 

The evaluation of the population markers in the different single-cell 

analyses and integrations using the FindAllMarkers function of the Seurat 

v4 R package [116]. The cluster-specific gene markers were considered 

after filtering the results using adj.pvalue < 0.05, avg.log2FC >.25 , and 

pct.2 < .5. I used the enricher function of the ClusterProfiler v.2.1.2 R 

package [151] to evaluate the enrichment of different genesets.  The gene 

sets used in the analysis were the glioblastoma subtype/state markers [28, 

35, 52], molecular hallmarks from MSigDB v7.2 (https://www.gsea-

msigdb.org/gsea/msigdb), and the TF regulons from Dorothea v1.3.3 R 

package [103] (I only retained used the A, B, C confidence levels from the 

dorothea_hs object).  The graphical representation was generated using the 

pheatmap function (parameters: 

clustring_method=”complete”,clustering_distance_row/_cols=”manhattan”

) of pheatmap v1.0.12 R package. 

Finally, to evaluate the enrichment of the glioblastoma gene sets 

[28, 35, 52], I used AUCCell [72] (default parameters). I generated a 

graphical representation of the AUC scores distribution within the UMAP 

dimensional reduction using the plot_density function of the Nebulosa v1.6 

https://www.gsea-msigdb.org/gsea/msigdb
https://www.gsea-msigdb.org/gsea/msigdb


Methods 

Page | 132  

R package [152]. Finally, I used the fisher exact test (adj.pvalue < 0.01) 

to evaluate the enrichment of cells within each indicated condition (e.g., 

datasets).  I used ggplot2 v.3.3.5 to generate the different representations. 

The heatmaps were generated using the pheatmap function (parameters: 

clustring_method=”complete”, 

clustering_distance_row/_cols=”manhattan”) of pheatmap v1.0.12 R 

package. 
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SUPPLEMENTARY DATA 

SAMPLES 

ID Fig. IDH1 Ori. Rep. NGS Cond. Treat. 

- R2,3 IDH1wt GSA 1 WGS In vitro - 

- R2,3 IDH1mut GSA 1 WGS In vitro - 

TCGA 

R6,7,9,10,
11,12,13,1
4,15,16,22,

29 

IDH1wt GBM 141 RNA-seq - - 

CPTAC R8,9,11,14 IDH1wt GBM 91 RNA-seq - - 

GSE119834 R8,9,11,14 IDH1wt GBM 41 RNA-seq - - 

GSE48865 R8,9,11,14 IDH1wt GBM 70 RNA-seq - - 

GSC R9,11,14 IDH1wt GSC 39 RNA-seq In vitro - 

GSE148292 R9,11,14 IDH1wt PDX 8 RNA-seq In vivo - 

GSE127274 R9,11,14 IDH1wt PDX 4 RNA-seq In vivo - 

GSA-B1 

R6,7,10,11
,12,13,15,1
6,17,18,19,

22 

IDH1wt GSA 6 RNA-seq In vivo - 

GSA-B1 

R6,7,10,11
,12,13,15,1
6,17,18,19,

22 

IDH1mut GSA 2 RNA-seq In vivo - 

GSA-B1 
R17,18,19,

22 
IDH1wt GSA 1 RNA-seq In vitro - 

GSA-B1 
R17,18,19,

22 
IDH1mut GSA 1 RNA-seq In vitro - 

GSA-B2 
R6,7,10,11
,12,13,15,1
6,17,18,19 

IDH1wt GSA 4 RNA-seq In vivo - 

GSA-B2 
R6,7,10,11
,12,13,15,1
6,17,18,19 

IDH1mut GSA 6 RNA-seq In vivo - 

MGT1-B1 
R17,18,19,
26,25,26,2

8,29 
IDH1wt GSA 3 RNA-seq In vitro - 

MGT1-B1 
R26,25,26,

28,29 
IDH1wt GSA 3 RNA-seq In vitro C20MG 

MGT1-B1 
R26,25,26,

28,29 
IDH1wt GSA 2 RNA-seq In vitro TNFa 
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MGT1-B2 
R17,18,19,
26,25,26,2

8,29 
IDH1wt GSA 3 RNA-seq In vitro - 

MGT1-B2 
R26,25,26,

28,29 
IDH1wt GSA 3 RNA-seq In vitro TNFa 

MGT1-B2 
R26,25,26,

28,29 
IDH1wt GSA 3 RNA-seq In vitro HuS 

MGT1-B2 
R26,25,26,

28,29 
IDH1wt GSA 3 RNA-seq In vitro NOC_18 

MGT1-B2 
R26,25,26,

28,29 
IDH1wt GSA 3 RNA-seq In vitro IR 

MGT1-B2 
R26,25,26,

28,29 
IDH1wt GSA 3 RNA-seq In vitro OxLDL 

MGT1-B3 
R26,25,26,

28,29 
IDH1wt GSA 3 RNA-seq In vitro LIF 

MGT1-B3 
R26,25,26,

28,29 
IDH1wt GSA 3 RNA-seq In vitro ACT 

- R21,22 IDH1wt GSA 34 RNA-seq In vivo MGT1High 

- R21,22 IDH1wt GSA 36 RNA-seq In vivo 
Non-

MGT1High 

- R21,22 IDH1wt GSA 3 RNA-seq In vitro MGT1High 

- R21,22 IDH1wt GSA 3 RNA-seq In vitro 
Non-

MGT1High 

In vivo 
IDH1mut GSA 

R31,32,33,
34,39,40,4

2,43 
IDH1mut GSA 3 scRNA-seq In vivo - 

In vivo 
IDH1wt GSA 

R36,37,38,
39,40,42,4

3 
IDH1wt GSA 3 scRNA-seq In vivo - 

Ex vivo 
IDH1mut GSA 

R36,37,38,
39,40,42,4

3 
IDH1mut GSA 1 scRNA-seq Ex vivo 

IGF1, 
NRG1, 
BDNF 

Ex vivo 
IDH1wt GSA 

R36,37,38,

39,40,42,4
3 

IDH1wt GSA 1 scRNA-seq Ex vivo TNFa,TGFB 

- R40,42,43 IDH1wt GBM  scRNA-seq - - 

   [ Rep.=Replicate; Fig.=Figure; Cond.=Condition; Treat.=treatment; WGS = Whole-Genome-

Sequencing]   
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GENE SET  

Dataset Group Gene set 

Wang  

et al. 2017 

ME 

S100A11, ARPC1B, CTSC, NPC2, GLIPR1, VDR, BCL3, PLAUR, PRSS23, TGFBI, LY96, 
RAB27A, P4HA2, TNFAIP8, CLEC2B, IGFBP6, S100A4, BACE2, RUNX1, CAV1, TDO2, 
GCNT1, IL7R, ITGB1, FTL, DKK1, SLPI, SOCS3, ACPP, LOX, CDCP1, COL1A2, IKBKE, 
SLC16A3, SYNGR2, SDC1, CD72, CNN2, LUM, PTGS2, FHL2, BNC2, COL5A1, PDK3, 
ANPEP, COL15A1, LGALS8, SFT2D2, ECGF1, UAP1, TGM2, CXCL6 , LOXL2, FAP, PTGES, 
FTH1, DSC2, BST1, FTHP1, CTSW, LOC57228, DYRK3, PAPPA, DCBLD2, IL1A, CMKLR1, 
NFKB2, AFP, ITGBL1, CPZ 

Wang  

et al. 2017 

CL 

PTPRA, ELOVL2, SOX9, MLC1, CENTD1, PAX6, ARNTL, BBS1, DENND2A, SGEF, PLCG1, 
VAV3, ZHX3, RASGRP1, BBOX1, EYA2, ZC3H14, C14orf159, ACSL3, LHFP, MYO6, NCOA1, 
CDH4, PLCE1, USP8, METTL8, ACSBG1, TP53BP2, FGFR3, SLC20A2, CST3, ZFHX4, 
ZNF45, DTNA, SEPT11, TJP1, MEOX2, ZNF211, SALL1, UPF1, STXBP3, MYO5C, MOSC2, 
KIAA0329, KIAA0355, SUOX, EGFR, PPARGC1A, SLC4A4, POLRM T, SPRY2, GRIK1, 
RBCK1, LPIN2, C5orf4, PNPLA6, NPEPL1, ST5, BCKDHB, PHKB, CAMK2B, BAG5, SCAMP4, 
SLC3A2, MAP4, SSFA2, TMEM131, PTPN11, VAPB, SLTM 

Wang  

et al. 2017 

PN 

TMSL8, MLLT11, HN1, RAB33A, MYT1, FAM77C, HOXD3, HDAC2, KLRC3, C1QL1, 
LOC81691, NPPA, MNX1, CA10, PTTG1, HRASLS, UGT8, PFN2, MTSS1, TBPL1, EPHB1, 
TCP1, DCTN3, PAK7, PTTG3, ERBB3, RASL11B, SOX10, H2AFZ, SMPD3, MYB, SLC1A1, 
CAMKV, NARF, C2orf27, CDKN1C, ZNF804A, PDGFRA, BCL11A, ANKS1B, NDUFB11, NMU, 
DYNC1I1, JPH3, GABRA3, FA2H, MAST1, IL1RAPL1, B4GALNT1, C20orf42, SIM2, GPR23, 
TNRC4, ACOT7, REC8, SLC17A6, MAGEL2, BRSK2, PKMYT1, KLRK1, DCT, SUSD5, 
GABRB3, GBX2, CENPJ, KLRC4, GRID2, CENTG1, DAZ4, DAZ1  

Verhaak  

et. al. 2010 

MESVSALL_UP 

TCIRG1, ARPC1B, DOK3, VDR, DSE, S100A11, SHC1, CTSC, TGFBR2, MA N2A1, LY96, 
CAST, CSTA, ALDH3B1, AIM1, TNFAIP8, CD14, IL4R, SLC16A3, MVP, CEBPB, SQRDL, 
TRADD, FCGR2B, STAB1, FMNL1, TGFBI, TNFRSF1B, CTSZ, PLAUR, SLC10A3, LCP2, FES, 
ARHGAP4, ITGA5, RHBDF2, AMPD3, NPC2, SERPINB1, GCNT1, MYO1F, PLAU, CLCF1, 
RAB27A, ITGB2, IQGAP1, ELF4, LRRFIP1, GNA15, DPYD, MAN1A1, CD2AP, CTSB, TIMP1, 
MAFB, LHFPL2, CAPG, JAK3, RABGAP1L, FNDC3B, CYBB, RELB, LAPTM5, NRP1, P4HA2, 
DENND1C, TGOLN2, RBMS1, CLIC1, SLC11A1, C5AR1, MYH9, ZNF217, ANXA2, LCP1, 
FCGR2A, PLK3, STAT6, IL1R1, FURIN, LOX, NOD2, CTSA, TNFRSF14, CASP1, HEXA, 
FOSL2, MAN2B1, ADAM12, POLD4, SLA, HCLS1, NCKAP1L, GRN, CSF1, RUNX2, CFI, 
MGAT1, PIK3CD, ABCC3, RHOG, FCER1G, TPP1, LTBP2, TMBIM1, BNC2, STEAP3, CASP4, 
DEF6, WAS, SLC7A7, IL15RA, SERPINE1, GFPT2, SAT1, IL13RA1, S100A4, CTS S, TAPBP, 
C1S, LNPEP, APOBEC3C, PTPN6, SCPEP1, SP100, IL7R, SH2B3, FHOD1, BACE2, TNFAIP3, 
LAMB1, IRAK1, CLEC7A, NFKB2, LIMS1, PTPN18, ST3GAL1, NOD1, CD44, SLC15A3, UPP1, 
FXYD5, WIPF1, RRAS, BCL3, NAGA, MAPK13, CDCP1, ANXA1, CD4, SYNPO, RUNX1, 
NNMT, MAP2K3, CCR1, THBS1, ADAM8, ZC3H12A, PTRF, ICAM1, SH3TC1, MANBA, IRAK3, 
MAP3K6, STXBP2, NAGPA, TRPV2, TLR1, ITGA4, MR1, TNFRSF1A, PRDM1, PRKCD, 
PROCR, SPI1, COL1A2, ITGB1, FAM129A, APOBEC3F, PTPN7, C2  

Verhaak  

et. al. 2010 

CLVSALL_UP 

MLC1, PIPOX, SOX9, DENND2A, PDGFA, NES, KCNF1, PTPRA, LAMB2, GLG1, SEMA6D, 
CDH4, SPRY2, CDH2, NPAS3, ITGB8, ACSBG1, SLC12A4, LMO2, TRIB2, KLHL4, SEMA6A, 
SIPA1L1, PTPN21, SLC4A4, MEGF8, ACSL3, NR2E1, CD97, IRS2, WSCD1, EYA2, ITGA7, 
JAG1, ADAM19, RBM42, GAS1, SALL1, TRIM9, FZD3, SCRN1, BLM, MEIS1, SMO, DAG1, 
LHFP, SPRY4, EGFR, FABP7, EPHB4, PLCG1, DLC1, MCC, B3GALT1, POMT2, DDR1, 
GRIK5, SPRY1, ATP1B2, FGFR3, TMEM161A, ZNF45, CDH6, ANXA5, ZNF227, PTN, LFNG, 
HS3ST3B1, ERBB2, SDC3, CITED1, ZNF211, MEX3C, FBXO17, ARSJ, PRKD2, RGS6,  TLE1, 
POLRMT, CCND2, RFX2, MED16, UPF1, CC2D1A, NPEPL1, PEPD, ADAMTS9, CREB5, GLI2,  
POFUT1, THSD1, ZNF134, SOCS2, NOTCH3, ERCC2, FJX1, ARNTL, KLHDC8A, LRP1, 
TTYH1, TEAD3, AASS, CDK6, SLC1A3, CLIP2, VPS16, ABCD2, TTC23, SPRED2, ACTN4, 
UNC45A, EHD2, PLEKHA4, JUND, SAMD4A, ETV4, EMP3, ZNF264, FKBP10, YAP1, 
KIAA0355, SLC6A9, EXTL3, CD151, GNG7, SCAMP4, TMEM158, SLC4A3, PCDHGC3, ZYX, 
TNPO2, ARHGEF18, ZNF20, TMED1, CKB, ALDH7A1, MTMR3, BBOX1, TGIF2, SLC20A2, 
CHMP2A, MRC2, AKT2, QTRT1, TMEM147, HMG20B, EFEMP2, GPR56, CST3, TRIP6, 
SMAD1, LRFN3, RIN1, HES1, ITPR2, RASGRP1, TYK2, RFXANK, SLC1A2, FZR1, POU3F2, 
SSH3, DOCK6, TBX2, LAMA5, MYO5C, TRPM3, ZNF444, NCLN, PTPRZ1, ZNF419, KEAP1, 
GPR125, ZNF471, LRP5, BTBD2, STMN3, ARHGEF12, ALK, DCHS1, CCDC130, AGT, 
SEMA5A, RRBP1, SHOX2, BICD1, LAMA2, CADM4, BBS1, AP3D1, GNAS, RGS12, PRPF31, 
ADORA1, INHBB, ABI2, SSFA2, SIN3B, PTRF, WIZ, ZNF512B, CALM1, STK11, TLK1, 
CAMK2B, PVR, IRF3, ZFHX4, HRH1, SLC12A9, PTPN11, SGSM2, TLE2, ETV5, MARK1, 
PACSIN3, KCNIP1, CHERP, FOXG1, RHBDF1, F3 

Verhaak  

et. al. 2010 

PNVSALL_UP 

DCX, EPHB1, SCN3A, DNM3, KLRC3, SATB1, MYT1, NOL4, ALCAM, C1QL1, CXXC4, FHOD3, 
CRMP1, GSTA4, RAB33A, WASF1, DUSP26, CLASP2, MLLT11, CHD7, CBX1, SOX4, UGT8, 
TOX3, DPYSL4, PPM1E, SLCO5A1, GPR17, TTC3, BCL7A, STMN4, GRIA2, KIF21B, MTSS1, 
IL1RAPL1, DGKI, CNTN1, RBPJ, GNG4, AMOTL2, ELAVL3, MARCKSL1, RALGPS1, SOX11, 
MAST1, TOP2B, PAK3, PODXL2, OLIG2, PAK7, ERBB3, C1orf106, PLCB1, TMEFF1, 
SORCS3, MAP2, CDK5R1, NKX2-2, NRXN2, KLHL23, ZNF711, RALGPS2, RUFY3, FLRT1, 
LPHN3, LRP6, SLC1A1, RAP2A, ICK, VAX2, HN1, TRO, PFN2, ATP1A3, TMCC1, HRASLS, 
DBN1, GSK3B, TAGLN3, MMP16, KHDRBS3, MAGEH1, BRD3, KIF5C, PELI1, ACACA, BCAN, 
BEX1, RNF144A, EFS, FBXO21, CSNK1E, MICAL3, BASP1, ZEB2, ADD2, ZBTB5, BRSK2, 
MATR3, PDE10A, STMN1, TCEAL2, NCAM1, CA10, DPF1, HOXD3, KCND2, ARHGEF9, 
OPCML, BAHCC1, DLL3, FSD1, UBE2O, KLF12, PCBP4, BEX4, NR0B1, DSCAM, ENAH, 
SPTBN2, NXN, FXYD6, EYA1, MAPT, MNX1, ZCCHC14, HNRNPR, ASRGL1, FGF12, 
TMEM57, KIF1A, NFIB, CAMTA1, CIT,  REEP1, TDRKH, HDAC2, ANKRD28, SMC3, VEZF1, 
SCN1A, LSAMP, ZNF248, DNAJB5, SNAP91, MKRN3, FAM110B, YPEL1, TSPYL4, SOX10, 
DRP2, CELSR3, P2RX7, SEC61A2, ZNF510, ZNF10, BCOR, NRXN1, SLC38A1, REC8, TNK2, 
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LBR, ZNF286A, GNAI1, GRID2, PTPRS, CACNG4, H3F3A, RBM12B, PLCB4, RAF1, CBX5, 
PSIP1, TMEM35, RPRM, ZNF804A, CDC7, LRRC20, RUNDC3A, TOPBP1, TUB, CASC3, 
GPSM2, MMP15, H1FX, ZBED4, ARVCF, CASK, MED24, ZNF184, BOP1, PHF2, CLGN, HLTF, 
PCDH11X, CRB1, ZNF292, ATRNL1, STXBP1, BPTF, RAPGEF2, FGF14, IKBKAP, SMPD3, 
GADD45G, SETD5, PCGF2, MED13L, LARGE, PATZ1, ACVR2B, AGPAT4, HNRNPA1, 
PCDH7, TCF4, DZIP3, MTMR9, PDGFRA 

Neftel  

et. al. 2019 

MES1 

CHI3L1, ANXA2, ANXA1, CD44, VIM, MT2A, C1S, NAMPT, EFEMP1, C1R, SOD2, IFITM3, 
TIMP1, SPP1, A2M, S100A11, MT1X, S100A10, FN1, LGALS1, S100A16, CLIC1, MGST1, 
RCAN1, TAGLN2, NPC2, SERPING1, C8orf4, EMP1, APOE, CTSB, C3, LGALS3, MT1E, 
EMP3, SERPINA3, ACTN1, PRDX6, IGFBP7, SERPINE1, PLP2, MGP, CLIC4, GFPT2, GSN, 
NNMT, TUBA1C, GJA1, TNFRSF1A, WWTR1 

Neftel  

et. al. 2019 

MES2 

HILPDA, ADM, DDIT3, NDRG1, HERPUD1, DNAJB9, TRIB3, ENO2, AKAP12, SQSTM1, MT1X, 
ATF3, NAMPT, NRN1, SLC2A1, BNIP3, LGALS3, INSIG2, IGFBP3, PPP1R15A, VIM, PLOD2, 
GBE1, SLC2A3, FTL, WARS, ERO1L, XPOT, HSPA5, GDF15, ANXA2, EPAS1, LDHA, P4HA1, 
SERTAD1, PFKP, PGK1, EGLN3, SLC6A6, CA9, BNIP3L, RPL21, TRAM1, UFM1, ASNS, 
GOLT1B, ANGPTL4, SLC39A14, CDKN1A, HSPA9  

Neftel  

et. al. 2019 

AC 

CST3, S100B, SLC1A3, HEPN1, HOPX, MT3, SPARCL1, MLC1, GFAP, FABP7, BCAN, PON2, 
METTL7B, SPARC, GATM, RAMP1, PMP2, AQP4, DBI,  EDNRB, PTPRZ1, CLU, PMP22, 
ATP1A2, S100A16, HEY1, PCDHGC3, TTYH1,  NDRG2, PRCP, ATP1B2, AGT, PLTP, GPM6B, 
F3, RAB31, PPAP2B, ANXA5, TSPAN7  

Neftel  

et. al. 2019 

OPC 

BCAN, PLP1, GPR17, FIBIN, LHFPL3, OLIG1, PSAT1, SCRG1, OMG, APOD, SIRT2, TNR, 
THY1, PHYHIPL, SOX2-OT, NKAIN4, LPPR1, PTPRZ1, VCAN, DBI, PMP2, CNP, TNS3, 
LIMA1, CA10, PCDHGC3, CNTN1, SCD5, P2RX7, CADM2, TTYH1, FGF12, TMEM206, NEU4, 
FXYD6, RNF13, RTKN, GPM6B, LMF1, ALCAM, PGRMC1, HRASLS, BCAS1, RAB31, PLLP, 
FABP5, NLGN3, SERINC5, EPB41L2, GPR37L1  

Neftel  

et. al. 2019 

NPC1 

DLL3, DLL1, SOX4, TUBB3, HES6, TAGLN3, NEU4, MARCKSL1, CD24, STMN1, TCF12, 
BEX1, OLIG1, MAP2, FXYD6, PTPRS, MLLT11, NPPA, BCAN, MEST, ASCL1, BTG2, DCX, 
NXPH1, HN1, PFN2, SCG3, MYT1, CHD7, GPR56, TUBA1A, PCBP4, ETV1, SHD, TNR, 
AMOTL2, DBN1, HIP1, ABAT, ELAVL4, LMF1, GRIK2, SERINC5, TSPAN 13, ELMO1, GLCCI1, 
SEZ6L, LRRN1, SEZ6, SOX11 

Neftel  

et. al. 2019 

NPC2 

STMN2, CD24, RND3, HMP19, TUBB3, MIAT, DCX, NSG1, ELAVL4, MLLT11, DLX6 -AS1, 
SOX11, NREP, FNBP1L, TAGLN3, STMN4, DLX5, SOX4, MAP1B, RBFOX2, IGFBPL1, 
STMN1, HN1, TMEM161B-AS1, DPYSL3, SEPT3, PKIA, ATP1B1, DYNC1I1, CD200, SNAP25, 
PAK3, NDRG4, KIF5A, UCHL1, ENO2, KIF5C, DDAH2, TUBB2A, LBH, LOC150568, TCF4, 
GNG3, NFIB, DPYSL5, CRABP1, DBN1, NFIX, CEP170, BLCAP  

CAPE 

GSA-TCGA  

(*) 

C1 

OS9, PDGFRA, RPL4, DST, NPM1, VCAN, EIF4B, PHLDA1, MYC, PRKDC, CENPF, TTC3, 
COL11A1, CNTN1, PEG10, FAT1, SACS, TOP2A, CCT5, PRRC2C, CDK6, MATR3, MMP16, 
HAPLN1, HMGA1, TPR, REV3L, CCND1, CHIC2, TBL1XR1, ATRX, RSL1D1, SLC38A1, 
SMARCC1, MKI67, SOX11, NUDT3, MAZ, BIRC6, IGF2, EEF1D, OSBPL8, MAP3K1, SMG1, 
USP34, GNB4, RBPJ, FUBP1, SOX6, VPS13C, TTC37, CHD7, MDN1, ATP13A3, MBNL3, 
ASPM, SFT2D2, ERBB3, CHD1, PPFIBP1, GNL3, LRP6, PTPRJ, DDX21, MAN1A2, SMC4, 
DKC1, RNF144A, AKAP9, ZNF644, THOC2, HEATR1, MIB1, LBR, SH3KBP1, PHIP, SMCHD1, 
SLC26A2, NIPBL, FANCI, ATM, DCX, PSME4,  RIF1, MEX3A, NUP155, SOX5, RC3H2, 
CEP350, IGF1R, FAM20B, NIN, BDP1, ASCC3, TOPBP1, KCND2, RRP1B, FAT3, PPIP5K2, 
AHCTF1 

CAPE 

GSA-TCGA  

(*) 

C2 

TUBA1A, RPLP0, RPS18, RPS11, RPS6, RPSA, RPS3A, RPL8, RPS8, RPS3, RPS5, RPS19, 
RPL32, S100B, RPL9, RPS14, RPLP1, RPL27, RPS16, RPS9, RPL27A, RPL18, TSPAN31, 
RPL24, RPL35, RPL18A, MDM2, NDUFA4, RPL29, RPLP2, DCTN2, RPS15A, PFN2, RPS15, 
STMN1, RPS21, FAU, RPL36, SGCB, RPS13, RPS29, DTX3, HSBP1, RPS10, SIRT2, RPS26, 
ATP6V0B, SLC29A1, SNRPD2, RPS28, UBL5, SCRG1, P SMA7, COX6A1, COX7A2, COX6B1, 
UQCRQ, COX5B, COX7B, CYC1, EIF3K, NDUFB7, ZNHIT1, UQCRH, CPM, UQCR11, 
FUNDC2, NDUFB2, ANAPC11, PSMB3, C1QBP, PHPT1, PSMD13, DYNLT1, GTF3A, NME1, 
DCTN3, STARD3NL, SNRPE, C12orf57, NDUFB11, C19orf53, ROMO1, B4GALNT1, HAX1, 
SLC35E3, DDIT3, SUCLG1, STOML2, NDUFA2, RBX1, UQCR10, SF3B5, COX5A, PIP4K2C, 
BUD31, NUP107, COMMD7, NDUFA3, LYPLA1 

CAPE 

GSA-TCGA  

(*) 

C3 

CLU, CHI3L1, SPP1, FN1, CTSB, SOD2, A2M, LTF, COL1A2, COL1A1, COL3A1, CD44, 
TIMP1, COL6A1, CTSD, PLTP, GSN, COL6A2, ANXA2, NDRG1, EFEMP1, SERPINE1, TGFBI,  
HSPB1, SPOCK2, GRN, S100A10, ITGB2, FLNC, SCG2, S100A11, GPNMB, TMBIM1, SYNPO, 
ITGB1, JUNB, CAPG, THBS1, SOCS3, FBLN1, COL5A1, GAA, COL18A1, COL5A2, CADM3, 
CAV1, ITGA3, CCL2, ARPC1B, TNS3, SPOCD1, SLC39A14, MAN1C1, TPPP3, BH LHE40, 
SHC1, PCOLCE, IL13RA1, SDC4, LGMN, EMILIN1, MVP, FOSL2, TPM2, GM2A, ITGA5, 
NNMT, ACTA2, RGS2, CA12, NRP1, SLC20A1, RNASET2, LOXL2, ST6GAL1, ANKH, 
ANGPTL4, SNX10, SLC2A3, PLP2, BHLHE41, RDH10, TGM2, CP, SPOCK1, TGFB1, LHFPL2, 
TGFBR2, OLFML3, CFI, GFPT2, CERCAM, MYLK, PRSS23, GBP2, MFSD1, DCBLD2, LOX, 
PROS1, HSPA1B,  
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CAPE 

GSA-TCGA  

(*) 

C4 

EGFR, PTPRZ1, BCAN, SLC1A3, SDC3, NES, DDR1, ATP1A2, CCT6A, NCAN, MLC1, FADS2, 
SPTAN1, AHCYL1, NFIX, TTYH3, CLSTN1, CLIP2, CCND2, PCDHGC3, RGMA, SCRN1, 
SOX2, NCAM1, ADCYAP1R1, SNRNP200, PRRC2A, CTNND2, VOPP1, CIRBP, AGRN, 
RASSF2, GPR37L1, SOX9, PREX1, TRIM9, ITGB8, DCLK2, DAG1, ITGA7, HNRNPUL1, ABAT, 
FYN, CSPG5, SLC44A2, APC2, CDC42EP4, OLFM2, FAM168A, EDNRB, ID4, KHSRP, CLIP3, 
PLCG1, FGFR3, WSCD1PTPRA, SNRNP70, NDRG4,  PTPRS, SLC4A4, CDH2, DPP6, STAT1, 
SLC7A5, MAPT, MSI2, NOTCH1, LENG8, CCDC80, NLGN3, PTPN11, KLHDC8A, MEGF8, 
AP3D1, DENND2A, CELSR2, LPL, CENPB, TNPO2, ASTN1, WDR6, MIDN, LFNG, HIP1, 
PHGDH, PLXNB1, MYO9B, PNMA2, EXTL3, SUPT5H, ARHGEF6, JAM2, FLOT2, AKT1, 
NOVA1, AKT2, SEC14L1, REPIN1, KCNJ10 

CAPE 

GSA-GBM  

(*) 

C1 

OS9, PDGFRA, RPL4, TUBB, HNRNPA1, RPS2, RPL3, CDK4, RPL19, RPL10, NCL, RPL5, 
RPL7A, RPS4X, TRIO, RPS11, YBX1, PTMA, NPM1, HNRNPU, HNRNPH1, RPSA, NONO, 
RPLP1, LDHB, RPL32, RPL37A, RPL11, RPS3, RPS27, RPL37, RPS24, ILF3, RPS23, RPL12, 
NAP1L1, RPS27A, SET, SERBP1, RPL23, NACA, RPS7, PEG10, RPS14, HSPD1, RPL9, 
CHD4, CENPF, RPS12, RPL14, PARP1, RPL10A, RBMX, RPS5, FUS, MARCKSL1, BTF3, 
TOP2A, HNRNPA3, ACLY, CCT3, ODC1, RPL30, RPL35, RPL27, FASN, RPS2 5, CBX3, 
RPL18A, TOMM20, SOX4, SRSF3, RBM3, HNRNPR, COL11A1, RPS16, RPL35A, XRCC6, 
MCM7, RPL23A, CCT5, SYNCRIP, PAICS, SRSF11, RPL38, MKI67, ILF2, RPS13, DHX15, 
SRSF1, EEF1B2, HDGF, SOX11, CCT7, RPL34, TRA2B, LAPTM4B, RCC2, RBBP7, MYC  

CAPE 

GSA-GBM  

(*) 

C2 

CHI3L1, FN1, SOD2, FTL, TNC, COL3A1, A2M, CTSB, FLNA, COL1A2, LTF, COL1A1, VEGFA, 
CD44, TIMP1, COL6A1, MYH9, ANXA2, COL6A2, EFEMP1, TMSB10, SAT1, NDRG1, 
SERPINE1, TGFBI, POSTN, IGFBP3, VMP1, TLN1, COL5A2, MCL1, THBS1, AKAP12, MYL6, 
EMP1, CALD1, MMP14, IQGAP1, ITGB1, CTSD, RCAN1, HIF1A, PLTP, ACTN1, ADAM9, 
GPNMB, MRC2, LAMB1, LGALS1, NRP2, GNS, COL5A1, SOCS3, GRN, DNAJB1, SLC39A14, 
NRP1, FOSL2, SERPINH1, FAM20C, COL8A1, ITGA3, PLXND1, DCBLD2, SLC2A3, JUNB, 
CP, CA12, CLIC1, MTRNR2L1, GPX1, HSPG2, PLOD1, PLOD2, ITGA5, SPOCD1, ITGB2, 
CAV1, FBN1, BHLHE40, FNDC3B, COL18A1, DPYD, VCL, CCL2, PRRX1, SLC2A1, ARL4C, 
TNFAIP2, NNMT, CAST, OSMR, SHC1, IFI16, MYOF, S100A10, SULF1, NPC2, MVP, GBP2  

CAPE 

GSA-GBM  

(*) 

C3 

DST, SPTBN1, QKI,  NTRK2, DYNC1H1, SPTAN1, MAP2, MDM2, PCDH9, KIF1A, KIF1B, APC, 
SCD, CNP, TAOK1, CPSF6, ZEB2, TF, VPS13C, CCDC88A, BIRC6, WDFY3, DCLK1, UBB, 
USP34, SYNE2, SESN3, KIDINS220, MKLN1, NF1, ABCA2, PCM1, LRP1B, ASH1L, CHD9, 
FAT3, NUDT3, HECTD1, VPS13D, RUFY3, MED13L, ATM, CLDND1, SECISBP2L, DO CK4, 
ZBTB20, CEP350, TNRC6B, AKAP9, LYST, CPEB4, FRYL, APLP1, ARAP2, CDC42BPA, 
PPP3CA, AKT3, PTAR1, MGA, RIF1, DOCK10, ALCAM, DICER1, TPPP, JMJD1C, BAZ2B, 
NCDN, PKP4, PURA, ZNF91, ANK3, LNPEP, DMXL1, MYO9A, PHF3, DSEL, NTRK3, RB1CC1, 
VPS13B, TMEM132B, CPLX2, SLAIN1, TMEM106B, HOOK3, ANKRD12, ANLN, CADM3, 
GUCY1A2, RABEP1, ALMS1, N4BP2L2, PHC3, ADAM22, BSN, KLHL24, GRIN2B, PIKFYVE, 
NCAM2, CLSTN2, UNC80 

CAPE 

GSA-GBM  

(*) 

C4 

EGFR, CST3, ATP1A2, DDR1, SDC3, PEA15, NCAN, MLC1, ATP1B2, LANCL2, SCRN1, AGT, 
PDPN, PCDHGC3, SLC4A4, CLIP2, CHCHD2, SEC61G, GATM, TSC22D4, APC2, RGMA, 
TRIM9, VOPP1, SOX9, EDNRB, TTYH1, FABP7, STAT1, WSCD1, PON2, GPR37L1, 
CDC42EP4, KLHDC8A, DCLK2, PBXIP1, WLS, MEGF8, SLC44A2, GNA12, CCDC80, FGFR3, 
LRP4, PTPRA, IFI6, DENND2A, SRI, OLFM2, NLRP1, ELOVL2, SUMF2, DPP6, HOPX, 
ALDH1L1, PRCP, JAM2, LFNG, OAS3, CSPG5, CORO2B, RHBDD2, WBP2, PSRC1, STMN3, 
DNAJB2, MGLL, ARHGEF26, ALDH7A1, RND2, FAM181B, CPNE2, CLIP3, NPAS3, PDGFA, 
MED29, ARHGEF10L, CRIP2, P2RY1, GNG7, SGSM2, LRRC4B, CD82, NRBP2, PHKG1, 
SMARCD3, MOXD1, C2orf72, ARC, RAMP1, FIBIN, RPH3A, ADORA1, RGS12, CDH4, REEP2, 
SALL2, FOXG1, CTSF, TOB2, SEZ6  

CAPE panGBM 
(*) 

C1 

CLU, EGFR, PTPRZ1, SLC1A3, CST3, PMP2, CCND2, NES, MLC1, CHCHD2, AGT, ITGB8, 
SEC61G, GJA1, CCT6A, ADCYAP1R1, DTNA, RASSF2, PCDHGC3, GATM, FABP7, LANCL2, 
SCRN1, SLC4A4, PDPN, VOPP1, SOX9, PON2, EDNRB, TRIM9, HOPX, KLHDC8A, CCDC80, 
RGMA, WSCD1, LIFR, LPL, SUMF2, GPR37L1, ID4, CDK6, F3, PNMA2, PRCP, ARHGEF6, 
ELOVL2, HEPACAM, IFI6, FGF1, CPSF6, ID3, DENND2A, OLFM2, NLRP1, FGFR 3, LFNG, 
LRP4, ALDH1L1, CNR1, ELN, FAM181B, RFX4, FREM2, FAT3, SPRY4, GRIA1, SEMA6D, 
METTL7B, FJX1, LDLRAD3, DSEL, OAS3, RNF180, PDGFA, SLC20A2, RAMP1, PSPH, 
NPAS3, MASP1, TIMP4, FIBIN, TNFRSF19, ARHGEF26, FRS2, ACSS3, CD82, PDZD2, 
ALDH6A1, KLHL4, CDH6, CDH4, PHKG1, SOCS2, ST8SIA5, ATP13A4, C21orf62, PIPOX, 
LRRN3, P2RY1, TRIM69 

CAPE panGBM 

(*) 
C2 

FN1, COL3A1, COL1A2, COL1A1, AHNAK, COL6A2, THBS1, COL5A2, COL5A1, HSPG2, 
EFEMP1, POSTN, FSTL1, FBN1, LAMB1, IGF2, LUM, CP, CAV1, COL8A1, COL12A1, NID1, 
CDH11, COL18A1, MGP, LOXL2, PCOLCE, AXL, ADAMTS1, UACA, MYO1B, COLEC12, 
FBLN1, CFH, COL7A1, MFAP4, LOX, SNED1, IER3, UNC5B, THSD4, HMCN1, NID2, OLFML3, 
ANPEP, SERPINF1, OLFML2A, COL14A1, P4HA2, ACSS2, LRIG3, NEDD4, PCDH18, ZFHX3, 
CMKLR1, FAT4, FBN2, TTN, RCN3, FZD1, KDR, VLDLR, SEMA3C, CTSK, ITGA8, CDCP1, 
ADAMTS12, S100A4, MYO1D, ITGA4, KLF4, SFRP1, LOXL1, COL15A1, PLA2R1, LEPR, 
PHACTR2, GPRC5C, PHLDB2, TPBG, BICC1, TSHZ3, CRABP2, BNC2, HGF, ENO3, ECM1, 
RNF152, SNAI2, MMP11, ALDH1L2, CLMP, ATP8B1, FAP, LRRK1, PPIC, COPZ2, MYH11, 
SPTLC3, EBF1 

CAPE panGBM 

(*) 
C3 

CHI3L1, SPP1, FTL, SOD2, FLNA, CTSB, A2M, TNC, CD44, TMSB10, TIMP1, LTF, IGFBP3, 
GPNMB, SAT1, SQSTM1, CALU, VMP1, IQGAP1, RCAN1, ACTN1, AKAP12, CPD, CLIC1, 
NRP2, DCBLD2, RNF213, DNAJB1, CA12, SLC39A14, WWTR1, FAM20C, SOCS3, CTSC, 
CAST, SHC1, ATP13A3, SLC2A3, MMP9, CCL2, SLC20A1, LMAN1, SLC5A3, TIPARP, NPC2, 
SPOCD1, LHFPL2, TUBA1C, DPYD, MYL12A, RDH10, OSMR, NNMT, PYGL, STEAP3, CSF1, 
IL13RA1, MAN2A1, SLC4A7, HSPA1B, ZNF436, ITGB2, GBP2, NRIP1, PTX3, PROS1, SDC4,  
RGS2, GFPT2, TNFAIP2, LIMS1, DNAJC3, MAN1C1, PARP4, ERRFI1, RASSF8, PPP1R15A, 
RND3, PLP2, TNFRSF12A, BACH1, ICAM1, TNFRSF10B, UGCG, GLIPR1, GPX3, SOAT1, 
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CHST2, HSPA1A, UPP1, CXCR4, CFI, RUNX1, SBNO2, LIF, SLC25A37, NQO1, BACE2, 
SLC39A8, GEM 

CAPE panGBM 
(*) 

C4 

OS9, HNRNPA2B1, HNRNPA1, PDGFRA, SRRM2, CDK4, RPL5, YBX1, NCL, GNB1, KIF1A, 
PABPC1, CNP, MARCKSL1, STMN1, HIPK2, FUS, ILF3, SFPQ, RPL28, HNRNPA3, MRFAP1, 
PFN2, RPS16, SLC44A1, CNTN1, EWSR1, TSPAN31, RAB7A, ABCA2, SNRNP70, ENO2, 
SOX4, SF1, ODC1, FASN,  HNRNPM, LENG8, DYNLL2, HNRNPD, SIRT2, EPB41L2, APLP1, 
PCBP2, MCM7, TOP2A, PTPRF, DCTN1, LUC7L3, DBN1, OLIG1, SRSF11, WDR6, U2AF2, 
HNRNPA0, NASP, SLC7A5, PSIP1, SLC6A8, PHLDB1, CSNK1E, UBAP2L, ACAP3, KHDRBS1, 
MAPK8IP3, SBF1, CCNL2, PGRMC1, ZMIZ1, SRCAP, PHGDH, PUM2, NCDN, DDX42, TAF15, 
RAB14, CHD3, RERE, SRRT, TARDBP, CSNK1D, EEF1A2, SNX1, KDM1A, ANP32A, 
COL20A1, ATXN2L, PURB, ALCAM, CIC, PPP3CA, GNAO1, HMGB2, HNRNPAB, SOX11, 
PNISR, NLGN2, PKP4, RBPJ, SMARCC1 

CAPE 

In vitro-in 
vivo GSA (*) 

C1 

ALDOA, MT-RNR1, FASN, SCD, KIF1A, HMGCS1, FADS2, MT-ND2, IGF1R, SREBF2, FDPS, 
SPTBN2, INSIG1, SV2A, ALDOC, FDFT1, LSS, EEF1A2, ENO2, COL6A1, PI4KA, ACAT2, 
ZMYM3, PLEC, TCF20, FABP7, DHCR7, PRUNE2, PPP1R9B, THRA, HECTD4, ABCA2, 
ATP1A3, BAZ2A, PCSK2, DNM1, GRINA, NDRG1, STXBP1, ADCY1, AIFM1, CAMKV, KIF5A, 
NCDN, ITPR1, SPRY4, HK1, NRN1, NLGN2, MSMO1, MINK1, WBP2, LPIN1, DDX19A, KIF3C, 
GABBR1, SLC25A23, TMEM132A, TUBA4A, FBXL16, SIPA1L1, CNTNAP1, SYNGAP1, 
ACSS2, MADD, NFASC, NDRG4, CLCN6, BRSK1, TECR, BHLHE40, MAPK3, ADCY9, 
EPB41L1, DLG4, L1CAM, MTATP6P1, SYNGR1, GAA, IGF2, RAPGEF5, TENM4, CLSTN3, 
SPOCK1, VAMP2, RNF44, NOTCH3, ATP2B2, DTNA, PDZD2, GGT7, SREBF1, NRP2, ACSL1, 
GNAL, PCYT2, CMIP, RTN1, PER1, PRKACA 

CAPE 

In vitro-in 

vivo GSA (*) 

C2 

PDGFRA, DST, PTN, VCAN, MATR3, C1orf61, RPL9, BCAN, CNTN1, HAPLN1, ODC1, 
RHOBTB3, GPM6A, EDIL3, RBM3, PMP2, NCAN, APBB2, ETV1, MBNL3, SOX6, EID1, ASPM, 
LIMA1, GNB4, SOX2, LINC00461, CCDC50, HMGN2, GNG12, RSL24D1, SNORA73B, DCX, 
GNG2, SEMA5A, MRPL42, SPARCL1, SPCS3, NOVA1, FGD5-AS1, GUCY1A2, ILDR2, KRR1, 
ARRDC3, GAB1, SYNE2, FAM171B, CCDC14, USP1, TMEM106B, RAB31, CCSAP, SMC2, 
STAT1, MAD2L1, ANXA5, UST, CENPE, GPSM2, NRXN1, SCD5, ROBO2, IL1RAP, FGF12, 
CADM2, HDAC9, ETS1, FAM131B, LRRK2, SCRG1, GRIA4, BRCA2, NLGN1, SEMA6D, 
SNORD17, PSMA2, RCAN1, APOD, LRRN1, ELMOD2, TNR, MEGF10, SKIL, PIK3R2, SRSF8, 
DUT, NLGN4X, CMTM6, CDK1, ZNF300, ZNF562, BRINP3, RPS27L, ARL4A, KAT2B, RBBP8, 
SCARNA10, KIAA1143, FER, RPAP2  

CAPE MGT1    

in vivo - 
TCGA (*) 

C1 

BCAN, APP, NES, ITM2C, SDC3, FLNA, LRP1, ATP1B2, CKB, ATP1A2, NCAN, VEGFA, 
AEBP1, CCT6A, TIMP2, NFIX, FADS2, MLC1, GJA1, TTYH1, CLSTN1, GPC1, TTYH3, 
PRRC2A, PLEC, JUN, CLIP2, CTNNA1, AGRN, MRFAP1, ACTN4, ATN1, SOX2, SCRN1, 
PREX1, CIRBP, LTBP3, EDNRB, WLS, NCOR2, TLN1, PRKCSH, LRIG1, LAMB2, SOX9, 
RASSF2, DAG1, SLC3A2, APC2, SF1, TRIM9, ITGA7, CLIP3, DCLK2, ID4, KHSRP, SLC44A2, 
NFE2L1, NFIC, ATP6V0E2, SNRNP70, FAM168A, USP11, ITGB8, EZR, LENG8, PLCG1, 
ATP2B4, CDC42EP4, UBE2H, STAT1, PLXNB2, STAT3, PYGB, PBXIP1, MAPT, ITPKB, 
GNA12, AP3D1, PTPRF, EPAS1, GLG1, SCARA3, CTNND1, TMEM132A, MEGF8, CLPTM1, 
MYO9B, TGOLN2, SLC4A4, CDH2, MLEC, PTPRA, FGFR3, CSNK1D, AHNAK, NFASC, 
SUPT5H, WSCD1, RNF187 

CAPE MGT1    
in vivo - 

TCGA (*) 

C2 

OS9, CDK4, PDGFRA, MAP2, DST, TSPAN31, VCAN, STMN1, MDM2, ODC1, CNTN1, TTC3, 
HSPD1, SLC44A1, PRKDC, SOX4, DCTN2, TOP2B, RBMX, TOP2A, LAPTM4B, USP9X, 
CENPF, TNPO1, CCT5, TSFM, DTX3, SACS, MYC, OGT, PPP3CA, FAT1, SRSF1, SOX11, 
HMGA1, CCND1, COL11A1, BCLAF1, SLC29A1, MMP16, TBL1XR1, TMPO, MATR3, DHX15, 
SLC38A1, LRPPRC, ATRX, REV3L, PUM2, KDM1A, CASK, NCDN, METTL1, PURB, BIRC6, 
APBB2, KPNA2, DCX, GNG2, XPOT, USP34, SPTBN2, ALCAM, MAZ, RAP2A, RBPJ, OSBPL8, 
TP53, CPSF6, CSE1L, CHD7, ATCAY, SMG1, MED13, B4GALNT1, TARDBP, HAPLN1, 
HDAC2, GNB4, FUBP1, MKI67, SOX6, ZNF638, CHIC2, NUDT3, GSK3B,  ERBB3, U2SURP, 
AKT3, CEP170, TTC37, ABCE1, UBE3A, OPA1, SLC35F1, VPS13C, STXBP1, ZMYM2, DSEL, 
MIB1 

CAPE MGT1    

in vivo - 
TCGA (*) 

C3 

FTL, TPT1, B2M, CTSB, RPLP0, FN1, RPS18, COL1A2, TMSB10, COL3A1, CD63, COL1A1, 
RPS8, RPS3A, MYL6, RPLP1, RPS14, RPS19, RPS5, LTF, SEC61G, TIMP1, PGK1, RPL27, 
RPL27A, RPS9, RPS16, COL6A2, S100A6, RPL24, ANXA2, SAT1, GPX1, SERF2, RPS15A, 
HOPX, IGFBP3, RPL36, RPS21, TGFBI, FAU, POSTN, SERPINE1, RPS29, CALU, LGALS3, 
MMP14, CLIC1, GUK1, RPS10, ARPC5, SERPINH1, CD164, ATP6V0B, SNRPD2, MGP, 
PSMA7, ARPC3, UBL5, TRAM1, S100A11, SH3BGRL3, SSR4, PCOLCE, LAMB1, CLDND1, 
PRDX4, COL5A2, SRPX, NNMT, MYL12A, THBS1, COL5A1, UQCRQ, CAV1, ARPC4, CCL2, 
ZNHIT1, MAGT1, ARPC1B, IFNGR1, EMILIN1, RGS2, SPOCD1, TMEM14C, DYNLT1, LUM, 
UQCR11, SDC2, CA12, LOXL2, AP2S1, POMP, ITGA5, TMEM219, SLC40A1, IL13RA1, 
SYNGR2, PLP2, OLFML3 

CAPE MGT1    
in vivo - 
TCGA (*) 

C4 

CLU, CHI3L1, AGT, EGFR, LPL, RGMA, CRB2, SRP9, APOBEC3C, DTNA, NLRP1, PMP22, 
ADCYAP1R1, PPT1, NPC2, SULF1, B3GNT9, PLCD3, PCSK1N, LEPRO T, PNMA2, CTSF, 
TAF10, PARP9, ZNF395, RAMP1, ABLIM1, MT1X, PLCD1, ALDH1L1, RWDD1, EFEMP2, 
C2orf68, PRELP, PSMD6, TGM2, GDE1, GAS2L1, RRM2B, TXN2, TMEM170A, DPM1, 
RNF139, MPDU1, FAM131A, RRAGA, HSD17B12, ECI2, MYOF, BTN3A2, MRPL47, SLC43A2, 
ZNF529, DOLPP1, RND3, ST3GAL3, ARFIP2, SMG9, ELAVL3, PARP4, MRPS17, PHLDA3, 
IL17RC, SUMF1, KRBA1, BCAM, SIAE, SIPA1, NICN1, ARRDC1, YRDC, ZNF140, CEND1, 
BUB1, TMEM208, ALKBH7, C1GALT1, PAN2, IL33, TMEM134, SP100, LRRCC1, ALDH5A1, 
ST3GAL5, RENBP, PTPMT1, NAGLU, TRNAU1AP, DCK, FBXO4, FRG1, DRG2, GPD1, 
SCML1, PEX11A, SHMT1, FBXO10, PARP3, PPIL3, MIIP  
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CAPE 
MGT1High        

in vitro  (*)  

C1 

PGK1, NDRG1, IGFBP3, IGFBP5, FLNB, GRB10, RNF19A, SLC2A3, PFKFB4, PHF19, 
SLC2A1, ICAM1, GBE1, CA9, L1CAM, GSN, ZNF395, IL1RAP, ADAM19, CAPN 5, AHNAK2, 
LRP2, ADAMTS9, TMEM45A, FOSL2, NFKB2, EPAS1, LIF, CACNA1H, MATN2, UNC13A, 
LOXL2, DPYSL4, PCDH1, DNAH11, GAP43, TAGLN2, DUSP5, GABRB3, RELB, BEND5, 
SPAG4, ANXA1, TFPI, STC1, PSMD5, SYNPO, PIK3CD, NCAN, PAQR5, IER3, NOVA2, 
MICALL2, SLC4A4, EHD2, TRAF1, ESPN, SYT12, CDKN1A, LRRC4B, TMEM158, ZNF440, 
PRSS35, CRABP2, FZD8, CHI3L1, SERPINE1, HLA-B, ALPL, TTN, GPRC5A, TGFB1, SDC4, 
BCL3, MAPK8IP2, SEMA5B, ZNF256, TIFA, EGR2, SGCD, EMILIN1, EMP1, AMPD3, 
CHRNB2, PTPRU, CXCL16, VDR, EMILIN3, FANK1, ZIK1, COL5A2, INHBE, ZNF610, ZNF525, 
UNC5B, PTGS2, NOL4, TBX2, MATN1, EPHA10  

CAPE 

MGT1High        
in vitro  (*) 

C2 

FASN, PTPRZ1, TRIO, REV3L, FTL, SRRM2, SLC26A2, MMP16, LSS, SQLE, FDFT1, DDX5, 
SAT1, LRP6, MAP2, NUFIP2, SLC44A1, ACACA, RNF213, SRSF11, SREK1, PCDH1 5, FABP7, 
TJP1, ELOVL6, CD164, TAF1D, FUBP1, LUC7L3, ELOVL5, TXNRD1, LRP8, SOX4, PRDX1, 
CHD2, SEL1L3, NKTR, DOCK10, KIF21A, ITGB8, PNISR, SERINC5, CAD, PDE4B, CYCS, 
APC, SOX6, PMP2, UTRN, TMEM167A, AIFM1, APBB2, BCAP29, ANKRD50, SUGP2, MVD, 
HSPA4, RNF157, CCNL2, STARD9, TBC1D14, ANKRD10, COL19A1, BCHE, FNBP4, ACOX1, 
KCND2, OLIG2, PTPRK, QPRT, TIA1, KLHL24, COG5, PIKFYVE, SALL3, TMEM33, RGMB, 
CCDC14, CREBZF, MAPK8IP3, VPS13B, SNX13, SYNE2, AGPAT4, CREB5, FGFBP3, MCF2L, 
DSEL, CELF2, GAB1, CCNL1, LUC7L, ATR, M BNL3, RDH11, CLK1, PDXDC1, CDHR1, TTL, 
ARHGEF7 

CAPE    

MGT1High-
TCGA   (*) 

C1 

CLU, CHI3L1, SPP1, SPARC, EGFR, CST3, SOD2, HLA-B, LTF, UBB, S100A6, CD44, 
EFEMP1, ANXA2, GATM, AEBP1, TAGLN2, ANXA1, HOPX, EMP1, S100A16, HSPB1, NLRP1, 
SPOCK2, PDPN, S100A10, LGALS3, TMBIM1, FGF1, SERPINB6, ITGB2, CAPG, S100A11, 
DPP7, TPPP3, CBR1, CDKN1A, MDK, CAV1, RAMP1, CSRP2, BST2, NNMT, GPX3, ABCA1, 
MT1X, MGP, IFI16, FABP5, SDC4, PLP2, CCL2, TRIP6, SYNM, DHRS3, S1PR3, MOXD1, 
PSMB8, PHKG1, VAMP5, CRB2, SLC40A1, VCAM1, CP, HSPA1A, CFLAR, HSPB6, GBP2, 
AXL, HNMT, ANGPTL4, CXCR4, MICALL2, HSPA1B, TGFB2, AVIL,  BBOX1, PARP10, ADM, 
PHLDA3, PDLIM4, FBLN5, CYP27A1, SAMD9L, CAPS, RHOG, FAM111A, UBA7, SCPEP1, 
NME3, TCIRG1, SAA1, IAH1, UPP1, IL33, GSTM2, SP100, GNG11, IFI35, HA P1 

CAPE    
MGT1High-
TCGA   (*) 

C2 

BCAN, PTPRZ1, SDC3, CKB, NCAN, CCT6A, FADS2, MARCKSL1, TTYH1, TUBB2B, SPTAN1, 
NFIX, FXYD6, RTN3, NCAM1, CLSTN1, CNP, MAP2, MAGED1, CLIP2, CTDSP2, RASSF2, 
OLIG1, AP2B1, SOX2, SGCB, KIF1A, ABAT, FYN, CSPG5, DCLK2, SOX8, HNR NPUL1, 
TRIM9, CADM4, KIF1B, TCF12, DAG1, CRMP1, FAM168A, MAPT, WSCD1, USP11, PTPRS, 
ETV1, DPP6, NLGN3, MAPK8IP1, PTPRA, NOTCH1, STMN3, OLIG2, AIF1L, DYNLL2, MCM7, 
ZNF664, GRIK3, DBN1, SOX4, PLXNB1, CELSR2, DPYSL5, ABCA2, TNPO2, SCG3, ASTN1, 
DENND2A, PIK3R1, HIP1, SEZ6L, MIDN, DGCR2, PNMA2, KCNJ10, LSAMP, CACNG4, 
SEMA5A, NOVA1, REPIN1, ARC, SLC25A23, CPNE2, NLGN2, GNAO1, PSIP1, VGF, LRRN2, 
BTBD2, CORO2B, LRRC4B, NFIB, LRP4, ZEB1, SEZ6, ITPK1, ACAP3, DVL3, APBA2, 
SEMA6A, ZFAND3 

CAPE    

MGT1High-
TCGA   (*) 

C3 

VIM, A2M, FLNA, TNC, COL1A2, COL6A1, COL3A1, COL1A1, HSPA5, MAP1B, HSP90B1, 
NDRG1, VEGFA, COL6A2, IGFBP3, P4HB, CLIC4, MYH9, TPM4, CALU, PDIA3, PDIA4, 
PLOD1, CALD1, LAMC1, MRC2, AKAP12, FKBP9, LAMB1, PAM, IQGAP1, WWTR1, ADAM9, 
FKBP10, SLC2A1, BCAT1, ITGB1, GALNT2, PXDN, CA12, PLOD2, PRUNE2, HSPG2, SHC1, 
FGFR1, COL5A2, NID1, CTSC, FAT1, GRB10, BHLHE40, USP9X, SLC39A14, PLOD3, FBLN1, 
CPD, NRP2, PCOLCE, OSMR, SLC2A3, CAST, ITGB5, COL5A1, LMAN1, IGF2R, LAMA4, 
PYGL, SLC20A1, PABPC4, FOSL2, LOXL2, QSOX1, IL13RA1 , ERRFI1, TPM2, HK2, ADAM10, 
AKAP13, FLNB, ATP13A3, SLC5A3, VCL, ANO6, TPM1, PROS1, ESYT2, FGFRL1, LOX, 
DCBLD2, PTK7, FNDC3B, DDR2, ANKH, FURIN, IGF1R, LHFPL2, LTBP1, SFT2D2, LUM, 
TUBB6 

CAPE    
MGT1High-
TCGA   (*) 

C4 

TUBA1A, TPT1, RPL13A, RPS18, CDK4, RPS11, RPS6, RPS3A, RPSA, RPS8, RPS3, RPL7A, 
RPL9, RPS5, RPS14, OS9, RPS19, RPL32, RPLP1, RPL37A, RPS7, PPIA, RPL27, RPL27A, 
RPS16, RPS9, RPL13, TSPAN31, RPL18, RPL35, RPL18A, RPL24, RPL10A, RPS15A, RPL29, 
RPLP2, RPL35A, RPS21, RPL36, NDUFA4, RPS13, RPS15, FAU, RPL34, RPL38, RPL41, 
RPS29, PRDX2, RPS10, SLC25A5, SUB1, C1orf43, SRP9, HSBP1, SNRPD2, COX7C, RPS26, 
RPL39, PHB2, PRMT1, COX7A2, TSFM, RPS4Y1, CYCS, PSMA7, SSR4, CAND1, COX7B, 
UQCRQ, UQCRH, RSL24D1, CYC1, PSMB1, C1QBP, SNRPB, EIF3K, METTL1, FUNDC2, 
GTF3A, NME1, ERH, PSMB3, PHB, TBCA, CUTA, JTB, SNRPE, C12orf57, TMEM106C, 
HSPE1, STOML2, ATP6V1G1, TOMM22, PDCD6, NDUFB11, HAX1, DCTN3, LYPLA1, PSMA5, 
RBX1 

GSA-TCGA      
(Celligner) 

C0 

TUBB2B, OLIG1, IGF2, OLFM2, RNFT2, TTYH1, SOX2-OT, SERPINH1, DDIT3, LGALS3, 
MEST, DLL3, GAS5, ATP1B2, SGCB, SCG3, EDNRB, PCDHGC3, EPDR1, NDFIP1, LBH, 
AIF1L, DPP6, SCRG1, KLHL4, BEX1, GAP43, RPH3A, GNG7, TUBB4A, SEMA3F, FZD8, 
PLAT, CAPN5, NLGN3, ADAMTS9, WSCD1, IL1RAP, PLLP, KCNIP1, NGFR, STK17A, 
COL26A1, FAM168A, ACAN, CRB1, CITED1, UGT8, ADAMTSL2, SLC35A5, GDAP1L1, 
LRRC4B, TAGLN2, MDFI, SCRN1, MAPK8IP1, ITGA8, SEMA5B, MRAS, DPYSL5, PNMA2, 
NPPA, RET, CPXM1, CA10, MAPT, NEK6, ELAVL3, DRAXIN, RDX, EMC10, B3GAT1, SUSD1, 
PCDHGC4, STK32A, PODXL, TUBB2A, TNFRSF12A, NPAS3, SLC4A8,  FOXF2, CSPG5, 
PIEZO2, NOVA2, NACAD, FGFBP3, ARC, SPRY4, FEZ1, CDH2, NXPH1, PCDH17, SYTL2, 
TMEM132B, PDGFA, CASP3, TRPM8, SPSB4, B3GNT7, SEMA5A, GSX1, PHLPP1, SCHIP1, 
RPE65, NMU, ECI2, LHFPL3, DOK5, AFAP1L1, GALR1, SOX9, C1orf226, TCEAL5, SHISA9, 
POU3F1, TMEM51, DPF3, C3orf70, CRYZ, CERS4, PNMA1, SYNDIG1, GLDC, SPNS2, EYS, 
FLT1, ELFN2, CACNG8, TNFRSF19, MMD2, GRIK4, FEM1C, NXPH3, FAM86DP, SLC39A3, 
FLRT1, SPON2, TMEM9B, MYO16, THSD1, MAP6D1, TMEM132C, C2orf80, PCDH1, 
ADAMTS18, SHROOM2, RHPN2, SERPIND1, PEPD,  TMCC3, NTNG2, MIR4458HG, YBX1P1, 
F12, LINC00888, C11orf49, SMAD1, PRIMA1, TBCB, ZIM2 -AS1, GREB1, LIPE, ADAMTS9-
AS2, ZNF613, TUBB2BP1 
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GSA-TCGA      

(Celligner) 
C1 

CAPN6, PCDHGA12, BAALC-AS1, LINC01152, DLGAP1-AS5, MT1M, FAM184B, DMBX1, 
WNT4, MYOZ2 

GSA-TCGA      
(Celligner) 

C2 

GFAP, MTRNR2L12, MTRNR2L2, RN7SL396P, MYBPH, PLXND1, SNORA53, RN7SL674P, 
RN7SL767P, MTRNR2L3, NLRP1, POM121L9P, SERPINA5, CCDC3, NWD2, PREX2, 
ADAMTSL4, RN7SL128P, LAMC2, MUC1, GALNT5, CD180, FGR, USP6, CXCL3, SFN, ANO4, 
NFAM1, MTATP8P1, LINC01579, POU2F2, APOBR, FER1L4, RPL18AP15, CCSER1, SOX21, 
CLDN23, KCNJ2, PRAM1, STXBP2, UNC13D, POLD4, P2RY6, CEACAM21, SH3TC1, 
SERPINB9, FERMT3, PTPN6, MLKL, LILRA6, MYO1G, PIK3CD, EEF1A1P33, ITGAM, KCNK6, 
ALDH3B1, SPN, ZNF826P, PIK3CG, CSF2RB, EEF1A1P27, TLR6, LDLRAD2, OSCAR, 
ADAMTS16, CACNA2D4, DLX4, DENND1C, RASAL3, PRICKLE3, AQP3, FAT2, EIF4A1P6, 
TNFRSF11A, AC132812.1, CFB, KLHL6, PPARG, IL6R, TMEM52B, SIGLEC11, NLRP3, IPO4, 
RPL7P10, NPEPL1, CYP2S1, NOD2, GPR132, ATP8B4, CD300E, WDFY4, TMEM150B, 
VSIG10L, GAS6-AS1, IL15RA, EPHA1, VENTX, SLC22A18, SLC9A7P1, EIF4A2P3, LILRB3, 
SLC46A3, TUBB1, HSPD1P6, GPR84, KYNU, CD300C, PTPN22, RN7SL138P, CD7, INTS6P1, 
RIPK3, PTPRH, IL2RB, DOK2, RASGRP4, GLIS1, STX11, CD28, PLEKHS1, PARP15, 
IL12RB1, BATF, MIR222HG, IFI30, TNFRSF9, CD68, CLDN7, MUC3A, NCF1C, HRH2, FCAR, 
SELE, SNORA60, SH3RF2, LACC1, FFAR4, NLRP4, NMD3P1, C17orf102, SUCNR1, ESR1, 
LINC01127, FRK, ACTA2-AS1, TNFSF15, PTCRA, RAC2, FCGR2C, CYP26C1, PKD2L1, 
AL021807.1, ADAM32, EPS8L1, PCDHB18P, TNFRSF10A, N CF1B, ICOSLG, ADTRP, 
TMEM26, S100P, RCVRN, TMEM236, GPBAR1, PIK3R5, LINC00968, TIMD4, MESTP1, EMB, 
PIK3R6, C11orf45, SRMS, CXorf21, MS4A4E, FAM3B, TRIM58, LINC00944, NCF2, TRIM63, 
ELANE, CD300LF, PCDHA8, DMBT1, CHST13, FLG, GUCY2D, PPATP1, SNORD89, LCNL1  

In vivo GSA 
scRNA-seq 

C0 

APOE, APOC1, CLU, SERPINE2, BASP1, EGFR, LUZP2, cons3, EMP3, CST3, C1QL1, TPM2, 
MIA, SEMA5A, IGFBP5, TTYH1, PLAT, RPS5, LGALS1, RPL22L1, RPL28, TIMP1, HSPB1, 
SELM, CITED1, ITM2B, VGF, C1orf61, PCSK1N, CTHRC1, CYB5D2, SCRG1, APOD, P PAP2B, 
GRID2, ATP1B2, EMP2, TSC22D1, ZNF667-AS1, SEPW1, CHMP2A, RABAC1, TCEAL3, 
NKAIN4, YWHAE, NDUFA3, PHLDA2, PFN1, POLR2I, HEY1, RAB2A, AKAP12, C4orf48,  
NTRK2, BEX4, TCEAL4, TXNIP, CNRIP1, METRN, TXNDC17, GAP43, PDLIM2, RPL18, 
APLP2, PLP1, TMEM98, SSR4, KDELR1, ZFP36L2, SVIP, MDK, TSC22D4, BEX1, CSPG5, 
CLEC11A, TMEM147, MT-RNR1, DBI, CD81, TBCB, CD63, DHRS7, cons1, SPRY1, SCAND1, 
CETN2, ECH1, PCDH9, PEG10, CD59, RPS16, FTL, SARAF, PSMD8, SYT11, PTN, SPCS2, 
DSTN, C1QBP, NGFRAP1, RPS19, ARL4A, TROVE2, TMCO1, MT3, FCGRT, DPP6, FEZ1, 
SAT2, TMEM256, RBM3, PMP22, CTTNBP2, SCD5, NAA38, ZNF580, SEC61G, MT -ND1, GAL, 
SOCS2, PDCD5, CALM1, NUDT4, SFRP1, PLD3, PSENEN, C12orf57, CPNE3, EIF3K, MESP1, 
RHOB, OST4, RHOC, RPS9, TCEAL8, NENF, CLTA, TSEN34, UBE2M, MED15P9, HEY 2, 
S100A13, TSPAN7, TCEA1, TMSB4X, MRPL36, SPP1, XYLT1, HSP90B1, MPZL1, MLF2, PGF, 
MT-ND4L, ASAH1, URI1, UQCRFS1, GCSH, COX6B1, RPL7, EIF4EBP1, ETFB, AC012146.7,  
ERLEC1, RAMP2, ATP2B1, MT-ND5, MT-ND2, LAMTOR1, FTH1, LINC00152, ATP6AP2, 
TM4SF1, PTMS, IGFBP2, RPS11, SUB1, STARD3NL, GSTP1, RP11-660L16.2, ZFP36, 
TAGLN2, IL6ST, LAMTOR2, SULF2, RAB31, SNRPD2, IFI27L2, CFL1, BARX1, BAALC, 
TRMT10C, SNHG6, DYRK4, TRAPPC1, SEPT7, mVenus, TNFRSF12A, CD9, SNX10, IFT57, 
PDCD6, CCSAP, ITM2C, RAC1, LDHB, SEPT9, DRAP1, CCDC85B, TMEM219, TIMM8B, 
PAFAH1B3, GADD45GIP1, CD99, NUCB2, BCAP31, RCN1, RGS10, SEC62, BCAP29, 
CHMP4B, TMBIM6, ARL6IP5, MAGED2, RAMP1, MTPN, LEF1, LAMTOR5, WBP5, NPW, 
LAPTM4A, BEX2, CCDC107, TMED2, TSPO, PRMT1, IGFBP3, GYPC, RPL13A, PSMC4, 
AP2S1, PPIB, ZNHIT1, PGRMC1, LRPAP1, ATP5E, EDNRB, TRIM24, PPAPDC1B, PLEKHB1, 
MLEC, CCDC47, RNF19A, STOML2, LPL, IFITM2, ISOC2  

In vivo GSA 

scRNA-seq 
C1 

CDKN2A, CDK4, TSPAN31, METTL1, RPS4Y1, TSFM, MARCH9, OS9, GAS5, RPS8, EEF1A1, 
RPS12, SOX4, METTL21B, RPL12, RPS18, GNB2L1, AKAP7, RPL5, RPS28, NUPR1, RPS23,  
RPL11, RPS14, SLC25A6, RPL36, RP11-231C18.1, ZFAS1, UQCRH, RPS10, ARL4C, 
NDUFA11, RPL22, RPS17, EEF2, COX7A2, PRDX1, LAMA4, C6orf48, NUP93, RPLP1, 
HSP90AB1, RPL35A, EEF1B2, PSTPIP1, LRRC75A-AS1, NEUROD1, EIF3E, CCND1, RPS13, 
RPL10A, RPL4, CUTA, RPL39, RPL32, RPL18A, SEPP1, RPL10, RPS27L, RPL34, RPL30, 
S100B, RPL31, EIF3H, NACA, YBX1, GNG5, RPL23, SNHG5, EIF3G, TIMM13, WWTR1, 
HIST1H2AC, BTF3, HIGD2A, NDUFS5, MYL12A, RPL14, RPS2, MARCKSL1, RGS16, PVT1, 
RPL6, RHOBTB3, WDR83OS, RPS7, RPL26, EIF1AY, LYRM4, PABPC1, MTAP, UQCRB, 
SRM, RPL21, HES6, RPL37, PFDN6, ATP6V0B, LSM7, SF3B5, EPB41L4A -AS1, RPF1, RP3-
428L16.2, RPL24, HINT1, HAPLN1, LPPR5, UQCR11.1, CTD-3014M21.1, RPS15A, GLIPR1, 
JUNB, C19orf70, CAP1, DANCR, RPS3A, NDUF AF4, RPL29, ZYX, RWDD1, RPS3, BAG1, 
RPS4X, TSPAN3, CSAG1, SNHG19, NSA2, NRXN1, PFDN5, TPT1, WASF1, MRPL54, COX7C, 
RPS24, RPL27A, SOD3, RP11-425L10.1, NPM1, GAD1, EDIL3, IGBP1, CAP2, SH3BGRL3, 
PDCD2, RPL3, SCP2, RPP40, HNRNPA1, DPH5, ALKBH7, AKIRIN1, OAZ1, LMO4, MIF, 
CRIPT, MRPS10, UBL5, C19orf43, RSL1D1, COX5A, ID2, CDKN2B, HIST3H2A, MAGEA1, 
FOS, UGT8, TXN, ARC, RPS25, THSD4, RPL41.1,  IER2, ATP5G2, CTSC, RPL15, ETV1, 
C15orf61, HMGN3, RPL13, RSL24D1, RP11-698N11.2, RNF5, MAGEA6, TIAM2, MAP1LC3B, 
ATP6V1G1, RPS6, UBA52, C11orf96, RPS26, RPL19, ABRACL, INSM1, YTHDF2, NREP, 
NHP2, SFT2D1, RPF2, PTRHD1, RPL9, CKB, ADAMTS1, PRDX2, BTF3L4, CCND2, MRTO4, 
PDGFA, TCEB2, PBX3, TAF12, UFC1, PMP2, VTA1, OLIG1, EEF1D, FAHD1, RPLP2, 
FAM173A, EIF3I, SPATC1L, CHIC2, ATP5O, GOPC, YRDC, SYF2, KDM5B, PNRC1, RPL37A, 
ATP6V0E1, AVIL, PSMB1, RPS27A, SSU72, PHYHIPL, GNL2, LINC01158, RPS27, 
EBNA1BP2, MTIF3, HDAC2, IQGAP2, PPP1R11, SNHG8, MRPL14, MRPS18A, LSM10, 
TATDN1, ATP5L, HMOX2, PRAME, GADD45G, ICK, RPL8, RPL21P44, ACOT13, KIF21A, 
DHCR7, EPB41, MRPS15, SERBP1, RP11-231C18.2, RIOK1, MPC1, INPP4B, POLR3K, 
RPL36A, SYT1 

In vivo GSA 

scRNA-seq 
C2 

NEAT1, MALAT1, GOLGA8A, GOLGA8B, KCNQ1OT1, DST, Rn45s, SREK1, SRRM2, OS9, 
TRIO, PAXBP1, NKTR, GABPB1-AS1, CCNL2, MACF1, RPL21P44, REV3L, COL20A1, FUS, 
PTPRZ1, SNRNP70, DDX17, MT-CO1, WSB1, GPR98, OGT, TXLNGY, MT-RNR2, CCDC144B, 
AKAP9, MDM4, TSPAN31, PNISR,  LUC7L3, VPS13C, RP11-161M6.2, N4BP2L2, MT-CO3, 
POLR2J3, PVT1, SOX6, LUC7L, SACS, MT-ND3, ANKRD11, DDX5, FAM49B, TMEM259, 
CYP27B1, MAT2A, PRPF4B, ZCCHC11, BDP1, MT-CO2, MMP16, NOVA1, SON, chrHS-22-
38-28785274-29006793.1, BOD1L1, ATM, ARGLU1, ZRANB2, ZNF292, COL9A3, HNRNPH1, 
RERE, MT-CYB, SALL3, ZFYVE16, COL11A1, ATRX, ANKRD10, SRSF11, MT -ATP6, PEAK1, 
NAIP, SMG1, FLNA, CNKSR3, CCNL1, CHD9, ZNF207, MAPK8IP3, CCDC14, SUGP2, 
CHTF18, ZNF638, LL22NC03-2H8.5,  LRP6, SF1, PPP6R2, EWSR1, ILF3, MARCH9, 
SERINC5, LINC00461, MAN2A2, KMT2C, ASH1L, USP34, SPAG9, UBE2G2, LINC00969, 
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CELF1, KIF21A, RP5-1039K5.19, GOLGB1, FAT1, FNBP4, HNRNPU-AS1, VCAN, THOC2, 
GLS, SPEN, MALAT1.1, DIP2A, SIPA1L2, AGO3, RBBP6, MT -ND4, RSRP1, NUFIP2, 
ANKRD36C, CASC21, EPB41L2, PLEKHH2, DYNC1LI2, R IF1, EIF3B, CHD7, SSFA2, ACAP3, 
BPTF, PDGFRA, PTPRS, VMP1, TNRC6A, SLC16A1-AS1, PNN, ZKSCAN1, SNHG14, 
AC159540.1, SPTBN1, HCG18, HERC2P2, HIPK2, CENPF, TTC3, AHI1, MT -ND5, LARS, 
MAP3K4, MT-ND4L, CTD-2537I9.12, PKN2, KMT2A, GPBP1, EIF4G3, GTF2H2, PRRC2B, 
CHD4, TRIM44, ANKRD12, SNRNP200, CSPG4, UTRN, ZC3H11A, PRKDC, TNRC6B, RBM5, 
CDC37, MDN1, LRPPRC, SFPQ, CAMSAP2, RNPC3, RHOT2, SPPL2B, SRGAP2, GPATCH2L, 
MAP3K1, BIRC6, KIF1B, METTL1, MLLT4, RCC2, TNRC6C, MT -RNR1, MCM3AP, ZMYM2, 
IGF2BP2, GABBR1, DDX3Y, TAOK3, PCSK7, SRSF1, HUWE1, MCL1, KANK1, EIF4G1, 
MARCH6, SKIV2L2, SYNE2, MAML2, CPNE7, PABPC1L, QKI,  SF3B1, RPAP2, ATP1A1, 
FBXO22, ITPR2, PPIP5K2, WDR60, TMEM161B-AS1, RBM25, WDR90, SHPRH, MSI2,  
NCOR1, SOX11, LARP1, CLCN7, IGF1R, IQGAP1, TTC14, BRWD1, RP11 -1023L17.1, MT-
ND2, CREB5, CHD1, TPR, LPHN3, TCF4, ZEB2, PHLDB1, PLCG1, UBE3A, SPRED1, EZH2, 
KNOP1, MCAM, AKAP13, MYSM1, EGR1, PLXNB1, TAF1D, RP11 -382A18.3, NPEPPS, 
RBM39, PRPF38B, CPSF6, SETX, PSMA3-AS1, SYNC, CTC-444N24.7, CC2D1A, TRIM9, 
LENG8, NCAN, HGS, GOLGA4, FAM133B, AGO2, SLC26A2, SMCHD1, MT-ND6, AGAP2, 
MAP2, DYNC1H1, HNRNPA2B1, FAM118A, XRCC2, DDX46, MAP1B, PAPD4, ZNF37BP, 
GGA1, NOM1, FASN, KIAA1109, USP9X, RANBP2, KANSL1, DDX39B, YEATS2, UPF3A, TTL, 
IKBKB, DLGAP1, RNMT, TRIP12, XPO1, NASP, PCDH7, DSEL, AHSA2, ABCF1, MT-ATP8, 
SMARCA4, EXOC7, KIAA0907, NUDT3, CTB-89H12.4, IGF2BP3, BRD7P4, SLTM, ZNF451, 
DDX3X, PKD1, TAOK1, ZMYND8, SCAF11, NCKAP1, WDR11, VPS13A, IL1RAPL1, KAT2A, 
TRPM7, SLC4A7, TBL1XR1, USP8, ANKRD10-IT1, RP11-571I18.5, TNPO1, HERC2, PHIP, 
GUSBP3, RP11-571M6.7, ABI2, MTATP6P1, RUFY3, RSBN1L, TUG1, RBM28, RP3 -368A4.6, 
SRSF10, MT-ND1, ATP13A3, CEP152, ADAR, XXbac-BPG283O16.9, GRIK3, NSUN5P1, 
ADNP, MAGI2, CLTC, INPPL1, CHRM3, DHX9, HPS4, MBNL1, MUS81, BRD1, AFF4, TCF25, 
TIA1, MYH10, PIAS2, DKFZp434P228, TSFM, POU3F2, ZNF644, MEF2A, RP11-631M6.2, 
MAP4K4, PCDH9, NIPBL, LINC01578, TTC37, USP22, RP11 -444D3.1,  HERC2P9, MYO9A, 
CREBZF, MYO19, NFATC2IP, PUM1, FUBP1, AFG3L2, SORL1, CEP350, CDK12, MIA3, 
DNMT1, PCNXL4, RP11-366L20.2,  PPFIBP1, USP7, PRKY, WDR73, EIF4A2, CCDC88A, 
ATP9B, ZC3H7A, HOMER1, FTX, WHSC1L1, PJA2, KRR1, ANKRD36, ICE1, MYO10, SMC1A, 
OCLN, PCNXL2, TRA2B, SRSF2, DDX42, INTS1, NES, OIP5 -AS1, APC, EML4, EPN2, 
LRRC58, SENP6, RRBP1, SLC38A2, KIAA0020, MYEF2, DMXL2, IFT80, DNAJC10, RP11 -
513I15.6, RP11-315A16.1, AVIL, PWAR6, JMJD1C, DHX36, AFG3L1P, AC005154.6,  
HNRNPU, FRYL, ATG16L2, SPTAN1, MAP4, ANKS3, BAI3,  MYO9B, TCERG1, TARBP1, 
PLXNA3, TJP1, NRBP2, PTCHD1, LRP8, PHF3, PAPD7, GATAD1, ANKDD1A, NPIPB5, 
PIEZO1, APBB2, TRA2A, RNF213, RP11-421E14.2, SLC44A1, FGFR1, ZBTB37, MTCH1, 
SOX4, MLLT6, BAZ1B, CBX5, SLC25A36, EIF2AK4, ARID4B, ONECUT2, PHF14, FUT9, 
PCMTD2, RP3-368A4.5, ANKRD17, CNTN1, TBC1D9B, NSRP1, PRRC2C, SGSM3, GTF2I, 
DCP2, SNHG9, RBMX, MEF2C, NRD1, ZNF891, LINC00657, SUPT16H, ZNF621, PTPN13 , 
NR2F1, MMS22L, PRMT2, C5orf24, HERC4, CTD-2228K2.7, PPP1R12A, UNC80, RP3-
394A18.1, KMT2E, DDX21, BTAF1, RP11-463O12.5, APP, GOLIM4, EIF3A, KDM5D, 
AC078842.4 

In vivo GSA 
scRNA-seq 

C3 

HIST1H4C, TOP2A, NUSAP1, UBE2C, HMGB2, MKI67, CCNB1, CENPF, TPX2, ASPM,  BIRC5, 
HIST1H1C, HIST1H1E, CENPE, PRC1, PTTG1, GTSE1, DLGAP5, KIF4A, UBE2S, TUBA1B, 
PBK, UBE2T, CCNB2, HMGN2, DHRS2, SGOL2, CDK1, SMC4, ARL6IP1, HIST2H2AC, CKS2, 
CASC5, TYMS, CKAP2, KPNA2, H2AFZ, SPC25, MAD2L1, CDKN3, AURKA, HMMR, ECT2, 
PLK1, KIAA0101, NDC80, CKS1B, NUF2, HIST1H3B, KIF14, CCNA2, PRR11, NCAPG, 
TACC3, HMGB1, KIF11, H2AFX, HIST1H2AH, TUBB, DEPDC1, ESCO2, KIF23, BUB1B, 
RRM2, SGOL1, STMN1, CDCA8, CENPK, DTYMK, CENPA, SMC2, CENPU, KIF2C, HMGB3, 
TMSB15A, MIS18BP1, AURKB, CENPW, DHFR, ARHGAP11A, CDC20, CENPH, CENPM, 
CEP55, DBF4, RAD21, KIF20B, HIST1H3D, TK1, ANP32E, LMNB1, DUT, CCDC34, TMPO, 
TUBB4B, CALM2, FAM64A, RNASEH2A, ATAD2, FANCI, NUCKS1, CDCA5, HJURP, 
RAD51AP1, CDCA2, BUB1, RPA3, DEK, HIST1H2AG, FOXM1, RTKN2, TTK, DIAPH3, 
DEPDC1B, RANBP1, NCAPD2, BRCA2, H2AFV, CKAP5, FBXO5, RRM1, KIF22, NEK2, 
NCAPH, ANLN, MND1, SKA3, KNSTRN, KIF15, CDCA3, BUB3, MXD3, SHCBP1, RACGAP1, 
GGH, SKA2, DDX39A, KIFC1, TMEM106C, GMNN, TUBA1C, HN1, KIF18A, CLSPN, TYMSOS, 
LSM4, MELK, NCAPG2, LBR, SPDL1, HIRIP3, ZWINT, BRCA1, MGME1, PCNA, CHEK1, 
SPAG5, MYBL2, SMC1A, ORC6, RFC3, MZT1, NUDT1, NCAPD3, PSIP1, CKAP2L, G2E3, 
USP1, LGALS1, TRIP13, H1FX, DCXR, ANP32B, PSRC1, RAD51C, C21orf58, CENPN, VRK1, 
EZH2, GAS2L3, BARD1, PHGDH, CDC25C, ATAD5, MIS18A, HP1BP3, KIAA1524, CEP135 , 
SNRPG, POLD3, CEP152, TROAP, MNS1, NRGN, SAE1, PRAC2, ALYREF, RHNO1, ASF1B, 
MCM4, EMP2, LSM5, E2F7, CCDC18, RFC2, SYNE2, TMEM97, EXOSC8, COX8A, OIP5, 
SMC3, NEIL3, WHSC1, FEN1, MRPL51, KIF20A, MCM10, ITGB3BP, STRA13, HSPB11, CIT,  
PSMC3, DNMT1, RFC4, ANAPC11, DNAJC9, FBLN1, PRIM1, CENPJ, CDC25B, SNRPB, 
GNG4, PTMA, HNRNPD, RAN, SKA1, CSE1L, HINT2, RMI2, SETD8, TUBB6, DSN1, 
CDK5RAP2, CTCF, LSM3, COMMD4, CCNF, YWHAH, CDKN2C, PIF1, CTHRC1, FANCD2, 
UBALD2, LIG1, DDIAS, NMU, CARHSP1, ERH, CMC2, MCM8, SUMO2, MAGOH B, RDX, 
RBBP8, PGP, CDC45, ARHGAP11B, HMGN5, MCM7, PSMC3IP, TUBA1A, FANCB, SAP30, 
PPIA, ACYP1, BTG3, COX17, HIST1H2AM, CDC6, PARPBP, CCP110, GINS1, CKB, SCLT1, 
CBX1, NASP, WDR34, TOPBP1, CENPL, XRCC2, RHEB, RNASEH2B, TTF2, TUBG1, TFDP1, 
KIF5B, SLC25A5, TMX4, HIST2H2AA4.1, RBBP7, CNIH4, MYBL1, ILF2, HELLS, FAM133A, 
C12orf75, PKMYT1, SIVA1, SPC24, BANF1, LRR1, PDS5B, CNTRL, POLE3, HIST2H2BF, 
CKLF, ARHGEF39, ASRGL1, HMGN1, POLA1, DCTN3, BCL7C, SAC3D1, RANGAP1, ACAT2, 
CALM3, NDE1, ZWILCH, NSL1, KIF18B, HNRNPA2B1, HNRNPUL1, CDCA4, PARP1, EXO1, 
YEATS4, PPP2R3C, TP53I11, MRE11A, PPIH, HNRNPA3, H2AFY, HAUS1, CENPO, CEP57, 
PXMP2, CDC27, PRPSAP1, DTL, BLM, DCP2, SAPCD2, HAUS8, CHAF1A, SH3KBP1, CBX5, 
PTGES3, CLGN, TPRKB, HAT1, SUZ12, SMS, MTHFD2, IDH2, HADH, HIST1H4H, 
HIST1H2BF, CSRP2, SASS6, RPL22L1, DESI2, HNRNPH3, UPF3B, CENPC, GINS2, NFYB, 
CHRAC1, PHF19, ANP32A, CDKN1B, C12orf65, BRIP1, ITGB1BP1, SNRPD3, HIST1H4E, 
INCENP, CNRIP1, PPIF, SRSF3, SFPQ, CACYBP, GEN1, LDHA, RBL1, ACTL6A, CEP295, 
ATP2A1-AS1, STIL, PFN1, RAD23A, CDCA7L, RPA2, TIMM10, NUP50, HLTF, HDGF, 
TXNDC12, XRCC4, HAPLN1, CCNG2, C19orf48, BOLA3, TUBB2B, IQGAP3, DCAF7, HPRT1, 
WDR76, PLK4, PPDPF, CEP78, FOPNL, PA2G4, MT2A, PMF1, ALDH7A1, TPI1, NT5DC2, 
ANKRD32, TMEM237, AP2S1, NUP85, LMO7, STAG1, CDT1, PGRM C1, AKR1B1, SRP9, 
SEPT10, BRD8, KIAA0586, SUPT16H, NAA38, CENPQ, ZMYM1, UQCC3, POP7, SPA17, 
COQ2, GPSM2, ZGRF1, DCK, WBP11, KPNB1, HIST1H2BC, TIMELESS, MSH2, NRM, 
KHDRBS1, FADS1, GAL, CEP70, PITHD1, IKBIP, CHEK2, VPS29, NDUFA6, JADE1, MCM3, 
MASTL, FAM136A, ODC1, APOLD1, EMC9, SSRP1, C14orf80, CHCHD2, PARP2, PCNT, 
PNRC2, PPM1G, XPO1, GPN3, ADD3, MPHOSPH9, MAD2L2, ERI2,  CRNDE, IFI27L1, EZR, 
C5orf34, POC1A, CEP57L1, HIST2H4B, POLQ, RAD1, PKM, EIF5A, UCHL5, RAD18, RSRC1, 
RPA1, RNF26, UACA, ASCL1, HIST1H2AE, BASP1, NUP37, PHIP, FAM83D, TPGS2, 
RNASEH2C, ARL6IP6, METTL4, PAICS, VDAC3, MZT2B, PHTF2, NUDT15, EXOSC9, 
YWHAQ, XRCC5, SHMT2, TFAM, PIN1, PSMG2, RAB8A, HIST1H3H, HMGXB4,EIF4EBP1, 
PAFAH1B3, PKIA, HNRNPR, SEPT7, ZNF714, SKP2, PCM1, ACAA2, CETN3, EME1, HES6, 
HNRNPAB, VBP1, TOMM5, NFATC2IP, FXYD6, VKORC1, FAM76B, GLRX5, NUDCD2, 
COPS3, ZNF724P, C4orf27, H3F3B, SET, POLR3K, FDPS, RALY, NUDT21, WDR54, PRDX3, 
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BAZ1B, RBX1, RBMX, FAM122B, HN1L, MRPL22, SNRPD1, GGCT, SNRPE, E2F8, CCDC167, 
PCBP2, PGAM1, PRPS1, HRASLS, H3F3A, CNTLN, C9orf142, ICT1, TCTEX1D2, RMI1, 
CEP128, ENDOG, LIN9, PRKAR2B, CENPI, LKAAEAR1, NUDT5, WEE1, CISD2, CCDC150, 
SNX5, DERL3, CEBPG, NUP155, TAF15, POLA2, TBC1D1, HMGA1, KDELC2, MTFR2, 
MED21, CTSV, NCAPH2, GSTP1, MRPL17, RECQL, HSP90AA1, SOGA1, NPW,  CBX3, 
WDHD1, CTDSPL2, RELL1, XRCC6, OXCT1, LIN54, CCT5, DNAJC21, SLC25A11, PSPH, 
TECR, RAD51, COMMD2, UBA2, C2orf69, TMEM60, MORC4, DYNLL1, ITGAE, SLBP, 
HIST1H2BO, PDIA4, CTD-2194L12.3, CHRNA5, RFC1, MYH10, UQCC2, HIST2H2AB, CPSF3, 
FGD5-AS1, SLC29A1, CBR3, CDKN2D, QSER1, CYB5A, SNRNP40, TMX1, CCDC77, PPIG, 
RFC5, PFN2, PPP2R5E, RUVBL2, EIF4EBP2, FAM111B, NSMCE4A, GMPS, FUZ, DPM2, 
FAM161A, CEP112, GPD2, MAGOH, KATNBL1, NEDD1, PPP1CA, TMEM160, LYAR, 
PTPLAD1, GAMT, TMEM107, RP11-620J15.3, ARMC1, MEA1, MZT2A, RP11-480I12.5, POC5, 
RPN2, NCAM1, SMCHD1, RCC1, GINS4, MORF4L2, SQLE, FN3KRP, IMMP1L, CFL1, GRK6, 
MYEF2, SEPT11, TNFAIP6, FAM96A, DLEU2, USP13, MRPL23, RFWD3, IER3IP1.1, PIGX, 
CEP192, HSPA14, LSM8, NDUFC2, PDCD5, CADM1, NAP1L4, PPP2R5C, UBL7 -AS1, LRRK2, 
GLO1, NUP62, RHOA, PCBP1, ENC1, DONSON, MMD, IFT81, HAUS6, ARL6IP4, NIF3L1, 
ASNS, VEZF1, PRKDC, MIF4GD 

In vivo GSA 
scRNA-seq 

C4 

CXCL10, ISG15, IFI6, IFITM3, BST2, HLA-B, IFI44L, IFI27, GBP1, IFIT3, IGFBP5, IFIT1, 
MT2A, PARP14, IFIT2, HLA-E, STAT1, B2M, WARS, HLA-C, VEGFA, PLSCR1, IFITM1, 
RSAD2, RNF213, HERC5, IFITM2, NRN1, APOL6, RDH10, MX2, SP100, LY6E, IGFBP2, 
DDX58, IFI35, PDGFRA, BNIP3, LGALS3BP, EIF2AK2, SAMD9, IFI44, IFIH1, LAP3, SPP1, 
PSMB9, XAF1, TAP1, HLA-A, GAPDH, IRF1, A2M, RARRES3, NDRG1, SOCS2, S AMHD1, 
DLK1, SOCS1, ISG20, OAS1, ARID5B, USP18, HILPDA, LYPD1, TRIM22, SERPING1, 
SLC2A3, TMEM158, PSME1, EGFR, PARP9, CCSAP, SLC5A3, SAMD9L, DTX3L, ATP1B2, 
UBE2L6, AKAP12, CD9, FOLH1, NUPR1, CXCL11, FTL, SELM, LGMN, TMSB10, OAS3, FN1, 
C5orf56, C19orf66, IFIT5, ERAP2, CD74, MT3, VGF, ADAR, ALDOA, PSME2, ERRFI1, STAT2, 
GLRX, NUB1, TNFSF10, MDK, HERC6, TAPBP, BANCR, ENPP2, IFI16,  CHPF, CALD1, 
RNF19A, PTGDS, APOL2, PLEKHA4, BNIP3L, TRIM56, SOCS3, BRI3, ST13, NAMPT, NCOA7, 
OPTN, RBCK1, SCD, RABAC1, UGP2, GBP3, CMPK2, APOL1, PNPT1, PLOD2, HES4, 
TRIM25, CTSS, HELZ2, PPM1K, TNC, P4HA1, IL18BP, CD47, NT5C3A, OASL, APP, SQSTM1, 
AGT, IL13RA1, DRAP1, LRP2, ITM2B, TAP2, PML, MAF, RP9P, WSB1, CD59, ARRDC3, 
PDE4B, HIST1H2AC, RPL28, DDX60L, OAS2, GBP2, CFH, RAB4A, GSTK1, SP ATS2L, EIF1, 
ZNFX1, CALCOCO2, PSENEN, HM13, SMIM14, DDIT4, OSMR, TNFSF13B, NANOS1, FTH1, 
BHLHE40, C4orf3, CHMP5, XRN1, GLTSCR2, CALR, LGALS1, CEBPB, DNAJB9, IFI27L2, 
HSPB1, BAALC, DNAJA1, CIR1, SP110, ART3, PCGF5, IDH1, SAT2, ERAP1, MED15P9, 
EPB41L4B, TIMP1, SEC61G, CLU, KDELR1, RTP4, CHIC2, PMP22, SCAMP1 -AS1, ARMCX3, 
EGLN3, PTP4A3, ACSBG1, LAPTM4A, SCN9A, SSR4, OBSL1, ASPH, CEBPD, LNPEP, 
TRIM69, GAS5, ARHGAP42, RNF114, RPS5, ZFAS1, GOLGB1, NUCB1, UBALD2, DDX60, 
RPL36AL, FKBP9, WBP5, NFIL3, FBXL5, FNDC3B, BATF3, SOCS2-AS1, CAPNS1, YPEL5, 
PLD3, TMEM219, CSTB, LST1, C8orf59, ANKRD20A4, SARAF, CASP4, C4orf33, RPL29, 
PSAP, ZNF581, SH3GLB1, GSDMD, C12orf57, GUK1, OST4, RPS19, SH3BGRL3, APOL4, 
CSF1, TMEM45A, GBP1P1, TRIM5, RHOU, FAM45A, RPL18, PDLIM2, FCGRT, STAT3 , 
SHISA5, IL6ST, PTPRA, TRANK1, CARD16, CLIC2, AC007246.3, KDM7A, CASP1, C1orf53, 
KIAA0040, ZNF608, DHRS2, RGS10, PCMTD1, RAB13, BATF2, FAM89A, ARMCX1, 
TMEM178B, NFKBIA, NPC2, AGTRAP, TNFRSF1A, EFNA1, LHX9, ARPC1B, RORA, 
COMMD6, MITD1, FAU, TNIP2, SRPX, PLTP, SERF2, CST3, TSHZ1, CA9, ATP6V1F, GLIS3, 
TLR3, RNF7, RPL39, AFF3, INSIG2, LINC00152, IRF2, FAM43A, OGFR, TPP1, MIR4435 -
1HG, TRAFD1, HAS2, HIST1H2BD, TFPT, DHX58, PTPN2, IGF2, PARP10, TRIM21, SKAP2, 
RBM43 

In vivo GSA 

scRNA-seq 
C5 

SNHG9, RP11-329L6.2, RPS17, RPS29, RPL13A, RPL38, OS9, CDK4, RPL35, RPL36, 
RPL37A, RPL27A, RPL15, ZSCAN16-AS1, RPS11, MRPS27, NT5C3B, COL20A1, RABGGTB, 
AKR1B1, SLMO2, DAP3, BCYRN1, NELFE, NAA20, RPL32, AK2, THOC7, SRSF6, ACBD3, 
CYB5R3, RAB5C, RPL21, CCDC25, MFGE8, GNB2, MRPL1, BIRC2, EEF1A2, TMEM126A, 
CGGBP1, CNOT7, EEF2, RPL34, CIB1, ISOC2, ATP6AP1, C6orf48, RAB8B, YES1, RPS27, 
RPLP2, RPL3, TARDBP, RAP1B, POLE4, AHCY, USP3, TMEM208, HINT2, IRF2BP2, GTF2F2, 
RPL23, FSCN1, FAM192A, CHCHD5, KRAS, RPS28, DDX10, CLIC4, IPO5, NUDT5, C OPZ1, 
MPST, TRIM28, MRPS18B, NOP14, ADI1, PPP2R1A, ELAVL1, TMEM259, SF3A3, ATP5E, 
CUEDC2, MAP2K2, SDCBP, PSME2, SDHD, RPL14, BAX, BNIP3, KPNA4, ETF1, TMEM161B -
AS1, ZNF770, POP7, C7orf55, RPL22, MRPS15, MCM7, AP3B1, PPP1CA, PPP2CB, 
PGRMC2, MTHFD2L, NUDT4, MPC1, RAD51C, NOC3L, TMOD3, TXNDC12, UBE2E3, ITGAE, 
CLPTM1L, UTP11L, PBDC1, DNAJC21, CNIH1, ARPC1A, TIPRL, SDF4, KCTD20, RPL24, 
NDUFV1, FAM98A, FAM177A1, DPM3, MRPL27, RPL37, PCNP, TTC19, APMAP, GDI1, 
CEBPZOS, SEC61A1, PREPL, RNF181, REEP5, ERCC1, BCAS2, RPS18, ETV5, SELT, 
CCDC90B, RPL23A, NMT1, C1orf131, TFRC, KPNA2, RPS12, KANK1, SSU72  

Ex vivo 
IDH1wt GSA 
scRNA-seq 

C0 

MYC, ACAT2, LDHA, ENO1, TSFM, CCT5, SRSF7, PRDX1, HSP90AA1, NPM1, HNRNPA2B1, 
C1QBP, RAN, ATP1B3, PSMB1, PDIA3, CD9, PPIB, PRDX4, FDPS, PRMT1, HSP90AB1, SSB, 
PKM, PCNA, PDIA6, VDAC1, PSMA5, CD63, PSMC4, TUBA1A, PGK1, PSMA4, PSMB6, SRI,  
ATP5C1, HSPD1, PSMB3, ATP5B, OLIG2, MRPL13, NQO1, SLBP, FDFT1, PHGDH, CCT7, 
SPCS2, EIF4A3, LAPTM4A, LDHB, SKP1, EMC7, MDH1, SDHB, NDUFB6, HNRNPH3, CCT8, 
ILF2, XRCC6, HNRNPM, NASP, PSMA1.1, SNRPB2, UBC, RPN2, ID4, TMED9, MRPL3, DDX5, 
PSMA2.1,  CTSC, PSMC5, SPCS1, CACYBP, PTTG1, ALDOA, DCAF13, HLA -A, RUVBL1, 
COPS6, SSBP1, EBNA1BP2, MCM7, TMBIM6, NME1, YWHAQ, FKBP4, PGRMC1, PGAM1, 
UQCRC2, WBSCR22, PSMD2, NDUFC2, HSPE1, PSMD8, LAPTM4B, PDHB, PFDN2, ADH5, 
EIF3I, HSPA9, UQCRFS1, MCM3, PSMD14, DKC1, PSMA7, CFL1, EIF5A, PRDX6, EID1, 
POMP, DHCR7, PSMA3, PRDX3, C14orf166, SNRPA1, B2M, PPT1, ETFA, UCHL1, CD81, 
NUDC, PPIA, PPA1, HNRNPF, CCT3, ATP6V0B, PCMT1, EMC4, TRAP1, M RPL47, PSMB2, 
PDHA1, MRPL40, TXNDC12, BCAP31, RTCB, RAB7A, MYL12A, TM4SF1, APLP2, SCRG1, 
MRPS18C, AIFM1, GLRX3, PARK7, OLIG1, DBI,  HNRNPD, MAGOH, DPM1, IMP3, MDH2, 
EIF6, CNIH4 

Ex vivo 
IDH1wt GSA 

scRNA-seq 

C1 

GAS5, C1orf61, RPL13A, DDIT4, SLC25A6, OLIG1, EEF2, BTG1, MXD4, EEF1A1, LMO4, 
NEAT1, RP11-231C18.1, RPL28, ZFAS1, RPL3, EPB41L4A-AS1, VIM, PNRC1, RPL5, 
C6orf48, RPL10, RPS18, RPS11, LRRC75A-AS1, RPS27, HNRNPA1, RPS9, RPS28, RPS19, 
SAT1, MARCH9, RPL7A, RP11-329L6.2, RPS12, RPS5, RPL11, MT-CO2, GLTSCR2, IGBP1, 
EIF3H, RPL12, RPL10A, RPL18, MT-CYB, SNHG5, RPS15A, RPL13, SNHG8, RPL34, RPS16, 
RPL14, RPL15, RPL18A, RPS14, EIF4B, RPL22, RPL7, RPL4, TPT1, GNB2L1, RPL3P4, 
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RPS2, MT-ND2, PFDN5, RPS25, RPS27A, IGFBP5, RPL35A, MT-ND4, HIST3H2A, RPS29, 
EEF1B2, RPL30, RP11-234A1.1, LINC01158, RPS4X, RPL39, RPL37, ATP5G2  

Ex vivo 
IDH1wt GSA 
scRNA-seq 

C2 

CTNNB1, HNRNPH1, SOX11, SET, PTPRS, CDC42, C1orf56, GOLIM4, CAPZA1, WTAP, 
PHKG1, RQCD1, CTTN, FTL, MDM4, YWHAE, MT-ND6, EIF2S3, TSPYL1, PPP1CB, 
ANKRD40, METRN, SRSF6, MT-ND1, MT-ND4, MT-ND5, RP11-538P18.2, PPP1R14B, 
LRRC75A, OS9, RPS29, MT-CO2, CDC42SE1, PPP3CA, WDR43, CDK6, HMGCS1, MT -CO1, 
RPL41.1, KCNQ1OT1, RP11-294J22.6, NUCKS1, LINC01578, RPS27, SOX4, MT -ATP6, 
KPNB1, MT-CO3, HMGN2, GTF3A, HMGA1, LETM1, ADNP, NUP155, LSM12, RPS28, 
TOR1AIP2, OSBPL8, NEAT1, PTP4A2, IAH1  

Ex vivo 

IDH1wt GSA 
scRNA-seq 

C3 

HIST1H4C, HIST1H1C, KIAA0101, HIST1H1E, TYMS, DUT, CDK4, UBE2T, TK1, PCNA, 
RRM2, DHFR, TSFM, CARHSP1, HMGB2, STRA13, TUBB, CKS1B, PSMC3IP, ZWINT, 
HIST2H2AC, SDF2L1, FEN1, MYBL2, RANBP1, CDCA5, UBE2C, IDH2, HSPB11, TOP2A, 
CENPK, METRN, ALYREF, CENPM, GINS2, TMEM106C, CLSPN, DCTPP1, TUBA1B, RFC2, 
AURKB, TNFRSF12A, METTL1, HSPA5, CENPU, RPA3, GMNN, DNMT1, CDK1, MCM7, 
RAD51AP1, RAD51C, ASF1B, WDR34, CSRP2, DNAJB11, SIVA1, MCM3, RFC4, USP1, 
CDC45, RNASEH2A, H2AFZ, POLR3K, DEK, PSMG1, HSP90B1, SMC2, MAD2L1, TUBB4B, 
ATAD2, CISD2, UQCRC1, CACYBP, COX5A, MRPS34, MRPL37, POP7, SMC4, EMP3, 
PPP1CA, ADRM1, BUB3, CD320, HAUS1, PPM1G, SMC1A, TUBA4A, CISD1, NTMT1, LSM6, 
ORC6, E2F1, PGP, FBXO5, IER2, TTYH1, PIN1, UBE2M, HAPLN1, DYNLL1, PHF5A, UBE2I, 
XRCC5, TUBG1, KIF22, TOMM40, CCND3, NETO2, PPIF, H2AFX, MAD2L2, VPS29, EXOSC9, 
CDCA4, ENO1, NDUFS3, TMPO, CALR, MELK, UQCC2, DTYMK, SLBP, PPIB, COMMD4,  
VKORC1, SAP30, DNAJC9, PA2G4, CHCHD3, GGCT, SNRNP70, PSMC3, RRM1, NCAPH2, 
MEA1, ARPC5L, NASP, CCNA2, AK2, IMPA2, ACAT2  

Ex vivo 
IDH1wt GSA 
scRNA-seq 

C4 

UBE2C, CENPF, CCNB1, TOP2A, CKS2, HMGB2, PLK1, NUSAP1, MKI67, ARL6IP1, AURKA, 
KPNA2, UBE2S, TPX2, CDC20, PTTG1, PRC1, CKS1B, ASPM, CENPA, CENPE, BIRC5, 
CCNB2, TUBB4B, CALM2, SGOL2, HMMR, PIF1, AURKB, CCNA2, GTSE1, KNSTRN, 
DLGAP5, HN1, KIF23, NUCKS1, DEPDC1, PSRC1, CDK1, CDKN3, SMC4, KIF14, HAPLN1, 
MAD2L1, SGOL1, KIF4A, CDCA3, SQLE, SCRG1, HNRNPDL, DEPDC1B, MSMO1, HMGB3, 
BUB3, SFPQ, NUF2, PDIA6, TUBB, DTYMK, KIF2C, UBE2T, CDCA8, TUBA1C, HSPA8, G2E3, 
CKAP2, TACC3, KIF5B, RCN2, DBF4, NDC80, LBR, DHX15, HSP90B1, PBK, MALAT1, 
SAPCD2, SAP30, ECT2, BUB1B, TMBIM6, RACGAP1, SYNCRIP, TUBB2B, UBALD2, KIF22, 
XRCC6, SPC25, CADM1, ARHGAP11A, PDIA4, RANBP1, HNRNPA2B1, OIP5, PHF19, 
XRCC5, ACSL3, BRIX1, APLP2, CD9, FAM64A, PRR11, ENC1, GPSM2, PSMA4, HNRNPR, 
SLTM, KIF20B, HSPD1, CASC5, NEK2, SMC2, UGP2, MORF4L1, PDIA3, HSP90AA1, SMC1A, 
SPCS2, IDI1, HMGB1, PCMT1, ESF1, INSIG1, TMEM97, APMAP, DHCR7, EXOSC8, DDX39A, 
ACTL6A, LDHA, NUDCD2, CENPW, HJURP, HMGN2, PSMC2, VRK1, DCAF13, CCDC47, 
TM4SF1, PRDX4, CEP55, CANX, ATP1B3, SNW1, METTL1, SLC3A2, SEPT7, MESDC2, 
MAPRE1, RNF26, SON, TROAP, SMC3, CDC27, CCT5, PTPLAD1, PHIP, CCND1, METTL 5, 
MIS18BP1, DCAF7, ZMPSTE24, P4HB, NCAPH, HMGCR, UGDH, PSMD11, TNFAIP6, 
ANP32E, LARP7, CCT6A, SLC39A10, CCNF, RBM25, RAC1, GTPBP4, NUDC, RAD21, 
WDR43, RHNO1, PSMC3, HNRNPH3, USP14, DDX1, ALG8, BUB1, PUF60, EIF3A, HNRNPA3, 
CDCA2, RPL7L1, FBXO7, MRTO4, H2AFV, TTK, SMARCC1, KIF20A, U2SURP, ZC3H13, 
KIAA0020, RAN, NCL, HNRNPU, PTN, TMX1, DNAJB11, SERBP1, KDELR2, THOC6, OCIAD1, 
CKAP5, NIN, CNIH4, NCAPG, COL11A1, SAE1, CDCA5  

Ex vivo 
IDH1wt GSA 
scRNA-seq 

C5 

MLLT11, MAP1B, ID2, MALAT1, CPE, HES6, ID1, TUBA1A, SOX4, MFAP4, TUBB2B, CD24, 
S100A2, MGP, INSM1, NEUROD1, AKAP7, GAP43, TMSB4X, SYT1, STMN2, TCF4, STMN1, 
DCX, CXXC5, NHLH1, H3F3B, BEX1, ETV1, DDAH2, TMSB10, MARCKS, GPM6A, TTC3, 
SCG3, ID3, ACTG1, MARCKSL1, CD63, SH3BGRL, NREP, ROBO1, GKAP1, RGS16, TUBB, 
DLL3, CRMP1, FXYD6, TSPAN31, EIF4A2, TAGLN3, CDKAL1, LAPTM4A, DUSP6, SSBP2, 
C1orf61, STMN4, BLCAP, SNN, H3F3A, UBE2E3, PCBP4, ITM2B, PCSK1N, HLA -A, THSD7A, 
EDIL3, CCNI, CALM1, RTN4, CDKN2C, ATRX, SH3BGRL3, MYL6, CDKN1A, MAGED2, LIMD2, 
NUPR1, TEX9, TMEM59, CHD9, PNRC1, ATP6V1G1, PRDX1, KIF5C, MAP2, NKAIN4, 
FNBP1L, APOE, C12orf57, EIF1, CMTM7, UBC, ATP2B1, GABARAPL2, EBF1, TRDC, BTG1, 
YWHAZ, FAM127A, ANKRD65, SERINC2, DNER, TSPAN5, SLC25A6, SAMD5, CNR1, RGMB, 
PNISR, RAB26, TCEAL4, IGBP1, SDC2, WBP5, CHRNA3, GAS5, SHF, COMMD6, NRXN1, 
SVIL,  DUSP5, CHRNA5, RALGAPA2, CHIC2, APLP1, EIF3H, GSTA4, GSN, MORF4L1, 
EIF4G2, IGFBP2, EEF2, FAM215B, PTP4A3, AUTS2, SESN3, PPP1R17, YPEL5, SBK1, 
MEIS3, IDS, SUMO2, AKIRIN2, FAM57B, RPRM, HIST1H2AC, DCC, SKIL, ROBO2, GAS2, 
SRP14, CNIH2, SNAP25, RGS2, ELAVL3, PAK3, DPYSL3, UQCRB, OST4, GSE1, ARMCX1, 
PERP, PHLDA3, DDR1, BTG2, MIAT, ARRDC3, MAGED1, D4S234E, AKT3, CTNND2, BTBD17  

Ex vivo 

IDH1wt GSA 
scRNA-seq 

C6 

CALM2, ANXA1, ACTB, PRDX1, PTGES3, UBC, HSP90AB1, KPNA2, CKS2, TXN, PSMA4, 
UBE2C, NCL, TUBB, SNRPD2, EIF4E, MAD2L1, SMS, SNRPB2, HNRNPK, VBP1, PA2G4, 
SOD1, UCHL1, PKM, SKP1, CYCS, EIF4A3, SEPT7, YWHAQ, GNL3, RPL35, MRPL42, 
RSL24D1, TUBB4B, HSP90AA1, SUB1, SNRPC, ARF4, SNRPD1, RPL31, MORF4L2, EIF3E, 
POLR2K, UBE2N, PTMA, ENO1, HMGB1, PGK1, H3F3A, CCNB1, CCT5, CMSS1, SNRPD3, 
EIF2S2, UQCRB, SSB, DSTN, CACYBP, PAICS, METAP2, MORF4L1, HSPD1, ANP32B, 
CCT3, DKC1, CCT4, COX7B, SSBP1, LDHA, PPIA, XRCC6, DDX5, CCT8, ATP5B, VDAC1, 
TCEB1, EIF1AY, SRSF3, PSMB3, NDUFA5, SNRPG, CKB, SEC61G , ZC3H15, MYL12B, 
DNAJC8, HNRNPA2B1, EIF5A, PFDN2, BRIX1, PFDN4, HNRNPC, NUDC, EDF1, ENY2, 
U2SURP, RSL1D1, UBE2L3, RPL36A, ATP5J2, SF3B6, SERBP1, LSM5, RPL21, PSMB7, 
NSA2, RANBP1, SUMO2, YWHAE, C1QBP, ARPC5, TPI1,  LDHB, PARP1, NPM1, CBX3, MYC, 
NDUFB2, TBCA, HSPA8, H2AFZ, HNRNPM, SRP9, ALDOA, NME1, UQCR10, PSMB1, LSM3, 
RPS8, HNRNPDL, PRDX2, PFN1, GAPDH, HSPE1, NDUFS5, GSTP1, RAN, RPS4Y1, 
POLR2F, RPL38, NHP2L1, ERH, LAMTOR5, SNRPE, PPA1, NDUFA1, MINOS1, STMN1, 
RPL22, RPL26, SRP14, RPL27, RPLP0 
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Ex vivo 

IDH1wt GSA 
scRNA-seq 

C7 

CYR61, ANXA1, IGFBP3, TNFRSF12A, CNN3, CRYAB, TMSB4X, ERRFI1, GADD45A, 
LGALS1, IGFBP5, PMP22, SERPINE2, TIMP1, RAB13, CITED2, ARID5B, MYL12B, TPM1, 
AKAP12, NES, CD63, CHI3L1, ANXA5, ZYX, SDC2, VIM, PHLDA2, CDKN2B, PDGFA, 
MYL12A, IER3, HBEGF, PLK2, RTN4, TAGLN2, RGS2, MCAM, ARF4, LRRN3, IL32, CTGF, 
CD59, ZFP36L2, LMNA, SH3BGRL3, TSPAN5, CLIC1, C9orf3, EIF1, EMP3, SNAPC1, RND3, 
HLA-A, SPARC, SNHG10, EIF4A2, ACTG1, VMP1, UGCG, ADAMTS1, PTRF, GLRX, WWTR1, 
MAP1LC3B, EMP1, SQSTM1, ITM2B, TMSB10,  RGS3, B2M, ACTN1, LAPTM4A, AKIRIN1, 
NEXN, RASSF1, S100A10, IL6ST, GLIPR1, PPP1R15A, DNM3OS, PRSS23, ELL2, 
LINC00152, RCAN1, CD44, MIR4435-1HG, FHL3, NEDD9, TSC22D2, GADD45B, LIMCH1, 
SPP1, PCF11, YPEL5, LHFP, SAMD4A, TOB2, PDP1, GSN, VOPP1, FSTL1, ETS1, ME TTL7B, 
TUFT1, PRNP, TMEM43, EVA1A, HEXIM1, COL4A1, SEMA3A, H3F3B, RRAS2, KLF5, 
S100A16, PVRL2, RUNX1, FOSL2, RBPMS 

Ex vivo 

IDH1mut GSA 
scRNA-seq 

C0 

SCRG1, OLIG1, PRDX1, APOD, CD63, UBC, BCAN, ENO1, HAPLN1, S100B, HLA -A, LDHB, 
OLIG2, NQO1, TSFM, CD9, GAPDH, ACTG1, MYC, MAGED2, PHGDH, PSAT1, TMBIM6, 
TSPAN31, ATP5B, LAPTM4A, CCND1, NPM1, DDX5, SKP1, EID1, MDH1, MRPS18A, ID2, 
DDOST, LDHA, BSG, UCHL1, LAPTM4B, ACAT2, ITM2C, NEU4, MGST3, ALDOA, EIF3D, 
GNB2L1, EEF2, CCT7, PSMB6, TUBA1A, MRFAP1, HSP90AB1, MGL L, ITM2B, DBI, ARPC3, 
RTN3, RAMP1, HSPA5, COL9A3, FABP7 

Ex vivo 
IDH1mut GSA 

scRNA-seq 

C1 

CTNNB1, HNRNPH1, SET, SOX11, HIST1H4C, YWHAE, C1orf56,  PHKG1, CDC42, CAPZA1, 
MT-ND6, PTPRS, MDM4, METRN, CBX6, GOLIM4, TSPYL1, MT -ND1, SRSF6, RPL41.1,  
TOR1AIP2, GTF3A, EIF2S3, CTTN, HMGA1, CDC42SE1, WTAP, PPP1R14B, MT -ATP6, 
ENAH, JTB, RPS29, SOX4, MT-ND4, TTC3, MT-CO3, TMSB4X, RPLP1, RPS27, RPS28, MT-
CO2, MT-RNR1, MT-RNR2, CDK6, MT-ND2, NEAT1, FTL, PPP3CA, OS9, HMGN1, 
KCNQ1OT1, RQCD1 

Ex vivo 
IDH1mut GSA 
scRNA-seq 

C2 

CENPF, CCNB1, UBE2C, HMGB2, CKS2, TOP2A, PTTG1, MKI67, UBE2S, NUSAP1, ASPM, 
PLK1, ARL6IP1, TPX2, BIRC5, AURKA, CENPE, PRC1, CDC20, CCNB2, DLGAP5, CKS1B, 
MALAT1, NUCKS1, GTSE1, KPNA2, CENPA, PSRC1, TUBB4B, HMMR, CALM2, SGOL2, 
NUF2, HMGN2, TUBB, PRR11, KIF14,  CDKN3, ANP32E, PIF1, HMGB3, KIF4A, TUBA1B, 
DEPDC1, SGOL1, AURKB, TUBB2B, HSP90AA1, KIF23, FAM64A, TUBA1A, KIF22, HSPA8, 
DEPDC1B, BUB1B, SFPQ, TACC3, LBR, CKAP2, KNSTRN, HN1, CASC5, MIS18BP1, SMC4, 
CDCA3, STMN1, G2E3, HNRNPR, HNRNPH1, DBF4, HMGB1, H2AFV, C CNA2, HP1BP3, 
TCF4, ARHGAP11A, HES6, KIF5B, PBK, SQLE, SLTM, SOX4, GPSM2, NDC80, ECT2, 
DTYMK, HNRNPA2B1, KIF2C, HMGCR, RACGAP1, OIP5, MARCKS, KIF20B, TOP1, CENPW, 
MAD2L1, CDK1, U2SURP, HNRNPA3, NFIA, SON, CDCA8, FANCI, HNRNPH3, NEK2, 
CDKN2C, SMC2, MSMO1, MAPRE1, H2AFZ, TMPO, CALM3, AVIL, DDX39A, MORF4L1, 
RCN2, TUBA1C, SAPCD2, PSMC2, HNRNPM, UBE2T, MZT1, SMC1A, BUB3, DNAJC8, 
SEPT7, PDIA4 

Ex vivo 
IDH1mut GSA 

scRNA-seq 

C3 

HIST1H4C, TYMS, HIST1H1C, TUBB, UBE2T, DUT, UBE2C, PCNA, HIST1H1E, KIAA0101, 
TK1, HMGB2, RRM2, MYBL2, CDCA5, TUBB4B, MCM7, TUBA1B, HIST2H2AC, CDK1, 
RANBP1, HSPB11, AURKB, PSMC3, STRA13, MKI67, FEN1, ALYREF, CKS1B, CDK4, SMC4, 
CENPM, DHFR, ZWINT, CDCA4, TUBB2B, H2AFZ, HSPA8, DTYMK, RFC2, CLSPN, TOP2A, 
CENPU, CDC45, PSMC3IP, SPC25, WDR34, IDH2,  CARHSP1, CACYBP, ORC6, RAD51C, 
ATP6V0B, RFC4, FBXO5, NUSAP1, DNMT1, TUBG1, DEK, SMC2, SLBP, MAD2L1, NUDC, 
SAE1, HAUS1, CENPK, RAD51AP1, RNASEH2B, SIVA1, RNASEH2A, CSRP2, ASF1B, 
TOMM40, GGCT, SMC1A, METRN, COMMD4, DCTPP1, VPS29, PDIA6, ID1, GINS2, BIRC5, 
PTBP1, VRK1, PPM1G, CALM2, TNFRSF12A, USP1, SAC3D1, TSFM, TUBA4A, CD320, SRM, 
SGOL1, CCNA2, PSMG1, TRA2B, KIF22, GMNN, ADRM1, CHAF1A, TUBB2A, RRM1, SNRPB, 
DNAJB11, ST3GAL4, CRELD2, TRIP13, CENPN, TMEM106C, NCAPH2, PA2G4, BTG3, 
SDF2L1, MTCH1, MRPS34, C20orf24,  PBK, H2AFX, MRPL37, CKB, PIN1, ENO1, YWHAH, 
ACTG2, HPRT1, IFRD1, ODC1, HADH, TUBB6, GTSE1, DNAJC9, MTHFD2, SNRPA1, 
TSEN34, SLC25A5, FH, SMC3, FAF1, COX5A, ABHD14A, HIRIP3, CHCHD3, MTHFD1, LRR1, 
THOP1, PPIF, LRPAP1, GNL1, CLN6, EZH2, CBR3, PRPS1, FAM50A,  ENOPH1, EXOSC9, 
MEA1, POLR3K, C3orf14, RRP1, ARPC5L, UBE2M, RPA3, BUB3, C9orf142, KPNA2, MPDU1,  
OXCT1, CTNNAL1, MND1, MAD2L2, ACAT2, COPRS, SMCHD1, MCM3, PGP, IER2, SCCPDH, 
NDC80, DNAJA1, NTMT1, IMPA2, CALR, CKLF, UBA2, RPF2, FOXM1, CYB5A, NT5DC2, 
DHRS13,  DSN1, ATAD2, EXO1, EIF5, TFDP1, MRPL39, RPN1, HNRNPD, TPX2, CCT2, 
GAPDH, KEAP1, TMPO, PHF19, PITHD1, PHGDH, HAT1, HNRNPDL, RAN, NDUFS3, TTYH1, 
CLIC1, SAP30, CCND3, NDUFA9, RFC3, UBE2A, FARSA, NKAIN4, SLC25A1, RRP7A, POP7, 
PPP1CA, AUP1, TRAP1, AP2S1, C14or f80, RHNO1, CDKN3, MRPL20, NCAPG, ATAD3A, 
LRRC59, MGME1, DDRGK1, DNAJC1, PDIA4, EXOSC8, GAMT, GLRX2, NIPA2, SNRPG, 
SVIP, COPS3, BAX, KIF23, UQCRC1, CDC6, GINS1, NSL1, SNRPD3, NUDT5, DPM2, FANCI,  
CKAP2, CMSS1, CCT4, CDT1, C19orf43, SLC29A1, SLC39A1, PPP5C, PTGES3, SGOL2, 
MIS18A, WBSCR22, PKMYT1, UQCC2, CHEK1, LSM4, RNPS1, EIF4EBP1, AK2, ADSL, 
PUSL1, POC1A, CMC2, EIF4A3, CCDC34, CD47, VKORC1, TOPBP1, UBE2I, ARHGDIA, 
CEP152, WBP11, SRRT, SEC11C, PAFAH1B3, YEATS4, ARHGAP11A, COPS8, CDKN2C, 
H2AFY, DUSP12, UFD1L,  RER1, ABHD12, IER5, WDR61, LSM3, ARF6, AIP, PRMT1, NUF2, 
PDXK, HEXB, NUCB2, HMBS, PSMD11, AKR7A2, APMAP, SNRNP70, KIAA1524, KLHDC3, 
TRMT6, HARS, SSRP1, PIGX, CD63, XRCC5, FTSJ2, BLM  

Ex vivo 
IDH1mut GSA 
scRNA-seq 

C4 

S100A4, TMSB4X, RPS4X, SLC25A6, TIMP1, RPL10, BEX1, ACTG2, PGK1, VIM, RPL39, 
PPIB, HSPB1, IGFBP2, PRDX4, LGALS1, BEX4, SSR4, RPL5, HSD17B10, ATRX, NES, GAS5, 
MAGED2, SNHG5, NDUFA1, WBP5, RPS4Y1, IGFBP5, ETFA, DDIT4, LINC01420, TCEAL4, 
SERPINF1, MCTS1, LAMTOR5, COX7B, AIFM1, IFITM3, C1orf61, SSR 2, BCAP31, SLC25A5, 
RPL4, HLA-C, PDHA1, LMNA, MORF4L2, TIMM17A, PKM, ATP6AP2, SMS, FLNA, NGFRAP1, 
TPM1, TRIP6, AP1S2, PSMA5, LDOC1, SNHG3, NPW, ID3, RBM8A, EEF1A1, RHOC, FHL1, 
SERF2, PNRC1, PARP1, CNN3, RPL36A, RPS17, DPM3, LINC01315, PCSK2, CRYAB, 
HTATSF1, TIMM17B, HPRT1, IGBP1, AKAP9, OAZ2, CTD-2192J16.15, MYL6, RABAC1, 
RP11-466H18.1, UTP14A, NKAP, SRP14, PSMD4, UBA1, MT-ATP6, DUSP9, RAB9A, 
OCIAD2, EEF1A2, RPL10A, CHIC2, CETN2, MAGEH1, TMEM9, EFNA4, DSTN, PDZD11, 
SLC38A5 
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Ex vivo 
IDH1mut GSA 

scRNA-seq 

C5 

CALM2, UBE2C, KPNA2, HMGB2, TUBB, CDK1, SNRPB2, NUSAP1, CCNB1, AURKA, ACTB, 
SEPT7, HSP90AB1, PSMA4, CKS2, HSPD1, BIRC5, PRDX1, HMGB1, TUBB4B, PTGES3, 
NCL, MORF4L1, HNRNPA2B1, PTMA, SF3B6, RANBP1, RSL24D1, SNRPD2, H3F3A, SPC25, 
CYCS, NME1, HNRNPK, UBC, C14orf166, HSP90AA1, VDAC1, SSB, HSPA9, ENO1, YWHAQ, 
PPIA, CCT5, SRP9, PKM, RPL31, TUBA1B, SLC25A5, HSPE1, TTK, RPL21, NPM1, TPI1, 
DSTN, C1QBP, GAPDH, RPL35  

GSA scRNA-

seq 
integration 

C0 

NME1, MYC, EIF5A, SNRPB, NPW, TUBA1B, IGFBP3, PFN1, C1Q BP, H2AFZ, RPL22L1, 
PFDN2, EBNA1BP2, NPM1, PA2G4, PTMA, PSMA7, RAN, HSPE1, HSPD1, RANBP1, ODC1, 
NHP2, CCT5, NDUFAB1, DCTPP1, UBE2S, HN1, SNRPD1, VGF, TXNDC17, HMGB1, PRMT1, 
GTF3A, MRPL36, ATP5G3, EIF4EBP1, HMGN2, POLR2F, ZNF593, SLIRP, PPIA, LDHA, 
PRDX6, MDH2, DDX21, SNRPB2, ERH, NHP2L1, NDUFS6, CYCS, NOP58, CKS2, ALYREF, 
PHB, HSP90B1, SPP1, MRPL12, TXN, CD320, TNFRSF12A, RPA3, PNO1, DYNLL1, PPA1, 
HNRNPAB, ATP5G1, LSM7, DKC1, BRIX1, COTL1, SLC25A5, PPP1R14B, LDHB, GRPEL1,  
PRDX4, NCL, PDCD5, CHCHD2, GPATCH4,  SNRPF, NDUFS5, ACTB, PRELID1, GSTP1, 
SNRPG, YBX3, NDUFB9, MRPS23, TXNL4A, LYAR, EXOSC4, YBX1, LSM4, SSBP1, MRPL20, 
TPI1, PAK1IP1, CYC1, MRPL3, PTTG1, SNRPD2, TOMM40, ANP32B, MIF, CCT2, BSG, SET, 
RAC3, NDUFC2, HMGB3, HSP90AB1, CFL1, STMN1, CCDC85B, DANCR, CMSS1, TRMT112, 
TMSB10, SDF2L1, UBE2M, MINOS1, GADD45GIP1, TUFM, SRM, EEF1B2, SNRPD3, HINT1, 
PSMD8, LSM5, NOP10, NUDT1, RUVBL1, PAICS, FAM173A, UQCRH, MYDGF, BOLA3, 
ATP5J2, NUDC, SNRPE, EIF2S2, FBL, METTL5, MRPS7, FAM60A  

GSA scRNA-

seq 
integration 

C1 APOD, CST3, SCRG1, PNRC1, C1orf61, FABP7  

GSA scRNA-
seq 

integration 
C2 

MALAT1, NEAT1, KCNQ1OT1, DST, MT-CO3, TRIO, MT-RNR2, GOLGA8A, MT-ATP6, 
GOLGA8B, MT-CO1, DDX17, REV3L, PTPRZ1, CCDC144B, MT-CYB, NKTR, FUS, MMP16, 
MT-ND6, MDM4, SNRNP70, MT-ND3, COL20A1, VMP1, GABPB1-AS1, SREK1, N4BP2L2, 
SOX11, MT-CO2, MT-ND5, POLR2J3, MT-ND4, LUC7L3, MT-ND1, CHRM3, MACF1, CHD4, 
LRP6, SF1, VPS13C, MT-ND2, ARGLU1, MARCH6, AKAP9, HIPK2, ANKRD11, HNRNPH1, 
WSB1, PAXBP1, SOX6, DDX5, OS9, MTATP6P1, SACS, PRKDC, CELF1, ZC3H11A, BDP1, 
CAMSAP2, MT-RNR1, CHD7, ITPR2, KMT2A, SRRM2, PNISR, BPTF, LINC00461, SALL3, 
SON, TMEM259, CENPF, IGF1R, SLC26A2, MCAM, PCDH9, SPTBN1, ZNF37BP, OGT, 
KMT2C, COL11A1, VCAN, MLLT4, PHLDB1, MT-ND4L, XYLT1, ASH1L, LINC00969, ZNF638, 
ATM, NAIP, USP34 

GSA scRNA-
seq 

integration 

C3 

APOE, CHI3L1, APOC1, NEAT1, MALAT1, KCNQ1OT1, DDIT4, DDIT3, CEBPG, GADD45A, 
PLAT, SQSTM1, GOLGB1, STK17A, JUN, GARS, CAMK2D, BOD1L1, CREB5, AKAP12, EGR1, 
JAG1, MAP1B, GOLGA4, SLC3A2, FOS, MAFG, CITED1, ZNF704, IER2, LINC00657, 
HERPUD1, HOMER1, MAGI2, SIPA1L2, LPP, ARF4, SOX11, TSPYL2, CKAP4, CCNL1, RTN4, 
MAP1LC3B, RLIM, MCL1, ZFP36L1, TARS, TEAD1, REV3L, TPM4, HSPH1, DYNC1LI2,  IDS, 
KPNA4, ANXA5, SARS, SECISBP2L, PSME4, GNG12, ACBD3, EPRS, ATP1A1, TAOK1, APC,  
N4BP2, CALU, XBP1, ETS1, HIPK2, RPL21P44, UFM1, DHRS2, CDR1 -AS, ANKRD12, 
COPB1, F2R, EIF1, EBLN3, SLC38A1, TRIO, PIK3CA, KDM5B, VMP1, TOPORS, RAI14, 
HMOX1, AFF4, NIPBL, MEF2A, SETD2, ACTR2, CSNK1A1, COPB2, MSH6, CASK, CDK12, 
CRK, ANKRD11, AAK1, TRA2B, ZDBF2, NAMPT, NAV1, BTG1, CHD1, DSEL, SMG1, COPA, 
TNRC6C, TSR1, KRAS, RPS6KB1, DHX33, PNPLA8, AGO2, ZNF131, SERINC1, MAGEA10, 
BDP1, ANKRD17, DST, REST, MIA3, RUFY3, ZNF326, KMT2A, MTPN, PGRMC2, EIF5, 
RABEP1, PRKACB, SUV420H1, CEBPB, KMT2C, CTC-444N24.11, SEC31A, DNAJC3, 
RPAP2, ABHD2, ARHGAP5, TNIK, SETX, ITGB8, FAM199X, KANSL1, ZNF721, MSANTD4, 
XIAP, JMY, HMGCS1, DLGAP1, SERINC3, PUM1, ZCCHC7, CEP350, UBN2, SOS1, PTGDS, 
ZNF638, FAT1, SIKE1, KIDINS220, MED19, ARMCX3, WDR82, TMX3, BEX1, LPHN3, POGK, 
BCL10, ADAM17, YES1, HNRNPH2, ARIH1, SLAIN2, IL6ST, PURB, SEC63, PEAK1, 
ARHGAP21, ZNF652, TGOLN2, MED10, TMSB4X, MRFAP1L1, MIB1, SPECC1, MAP9, 
TUBB2A, MED1, PPFIA1, TAF15, LSG1, RB1CC1, NUFIP2, CEP170, KIF1B, SV2A, ARCN1, 
IARS, SMEK1, EIF4G1, TRIM23, ZNF711, ASH1L, PBRM1,  SENP6, SETD5, NRIP1, SLC38A2, 
FN1, RIF1, BICD1, ZKSCAN1, SYT11, IQGAP1, TXNRD1, VEZF1, RNF115, SBDS, FAM63B, 
RAB1A, PTPN13, ZFAND5, SEMA6A, FKBP14, POLR3D, CHD2, APOOL, FBXO22, ZNF24, 
ZNF770 

GSA scRNA-
seq 

integration 
C4 

APOC1, NKAIN4, RPS26, GAPDH, METRN, MIA, RPS13, DBI, APOD, RPL18A, NACA, 
LRRC75A-AS1, RPL34, FAU, RPL30, S100B, RPL29, C1orf61,  SCRG1, RPS24, RPL6, RPL10,  
RPL39, RPL32, COMMD6, RPL13, RPS4Y1, RPS8, FTH1, RPS12, RPL8, RPS15A, RPS3A, 
RPS27A, RPL14, RPL11, RABAC1, RPLP1, OLIG1, RPL12, RPS7, R PL28, LGALS1, ALDOA, 
RPL41.1, RPL24, MT3, RPS19, TCEAL3, RPS5, RPL18, SNHG6, RPS15, C12orf57, BCAN, 
PPDPF, RPS28, RPL10A, RPL19, RPS27, RPL26, UQCRB, PFDN5, BASP1, GAS5, EEF1D, 
SERF2, RPL35A, TCEAL4, TMEM258, ITM2B, BCHE, RPS23, TIMP1, ZFAS1, B2M, RPS9, 
SNHG8, RPS4X, RPL5, TPT1, VEGFA, RPS3, PTN  

GSA scRNA-
seq 

integration 
C5 

ISG15, IFI6, IFITM3, BST2, HLA-B, IFI44L, IFI27, IFIT1, IFIT3, IFIT2, PARP14, MT2A, B2M, 
STAT1, WARS, HLA-E, HERC5, RNF213, HLA-C, PLSCR1, LY6E, IFITM2, DDX58, RDH10, 
EIF2AK2, LAP3, SP100, LGALS3BP, IFI35, IFI44, IRF1, HLA-A, SAMD9, IFIH1, PDGFRA, 
PSMB9, SAMHD1, TAP1, RP11-231C18.1, SOCS1, SOCS2, USP18, PSME1, TMEM158, 
ARID5B, LGMN, PMP2, CCSAP, ISG20, PARP9, NUPR1, LYPD1, UBE2L6, PSME2, DTX3L, 
ERAP2, OAS3, ATP1B2, A2M, C19orf66, IFIT5, UGP2, C5orf56,  PNPT1, ENPP2, ADAR, 
NCOA7, STAT2, NUB1, TAPBP, HERC6, VGF, TMSB10, PPM1K, HES4, SOD3, FOLH1, 
APOL2, PLEKHA4, DNAJA1, HELZ2, TRIM25, SELM, TNC, DRAP1, IL13RA1, APP, CD47, 
GSTK1, NAMPT, RBCK1, BAALC, OPTN, TRIM56, CD59, DDX60L, PML, MESDC2, TX NIP, 
TAP2, BRI3, IGFBP5, PPIB, CALR, ZNFX1, RHOBTB3, CHIC2, RAB4A, RNF19A, HSPA5, 
PCGF5, HM13, ERAP1, CST3, IGFBP2, RABAC1, PDE4B, HERPUD1, DTNBP1, CALD1, 
SMIM14, SPATS2L, IDH1, SP110, MT3, PSENEN, SCAMP1-AS1, PDIA6, NKAIN4, TOP1, 
UBALD2, IFNGR2, PTP4A3, CNP, SRGAP2C, RNF114, SPTBN1, MTSS1, C1orf53, IFI27L2, 
FAM45A, LAPTM4A, GSDMD, C4orf33, ARMCX3, SDF2L1, TRIM69, NUCB2, SCARB2, 
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GPBP1, CALCOCO2, UBE2A, IL6ST, GOLGB1, NUCB1, TSPO, FBXL5, PLOD2, TMEM50A, 
CHMP5, PDIA4, ITM2B, ARMCX1, ARL6IP5, SERF2, SSR4, SMARCA1, PTPRA, TIMP1, 
CSTB, STAT3, FCGRT, CIR1, C4orf48,  HSP90B1, PSAP, P4HB, GOLM1, TMEM219, RRBP1, 
COX14, GUK1, EIF3A, TMED10, TSC22D4, OST4, PHPT1, SH3BGRL3, SSR3, OGFR, 
AGTRAP, BTN3A2, RCN1, PDIA3, PGLS, GRN, GNB4, CNPY2, FKBP2, SH3GLB1, RAB3B, 
CD9, SEC61B, TXN, KDELR1, FTL, TMEM59, FMR1, RAB13, ERLEC1, C12orf57, EIF1, 
RPL36AL, RPL28, PSRC1, NRN1, ATP6V1F, STAU1, BRD7  

GSA scRNA-

seq 
integration 

C6 

NEAT1, OS9, COL20A1, CDK4, MALAT1, TSFM, GRID2, SNHG9, VPS13C, SNRNP70, 
METTL1, SREK1, MARCH9, PTPRZ1, KCNQ1OT1, RPS17, WSB1, LUC7L, CCDC144B, 
BCYRN1, VMP1, CCNL1, TOP2A, TSPAN31, SF1, SPRED1, MAZ, TRIM9, USP34, UBE3A, 
RPL36, DDX27, LRP6, MAPK8IP3, IGF2BP2, SMCHD1, KRR1, LRPPRC, CLTC, CDC5L, 
MACF1, COL9A3, ZFAND5, CNTN1, KMT2C, YTHDC1, MT-ATP8, RBBP6, XPO1, CAMSAP2, 
COPS2, TBL1XR1, ABI2, CHRM3, ST6GALNAC2, DSEL, NCKAP1, ADAR, USP11, TTC37, 
HUWE1, HDGFRP3, ZNF638, PIK3R1, TNRC6B, SMC1A, DYNLL2, ADNP, SEC31A  

GSA scRNA-
seq 

integration 

C7 

NEUROD1, SOX4, HES6, NHLH1, SSTR2, MAP1B, INSM1, NFIA, SOX11, BASP1, TMSB4X, 
SCG3, TUBA1A, NFIB, DLL3, DCX, THSD7A, SYT1, GAP43, MLLT11, ID2, CD24, GADD45G, 
GKAP1, MALAT1, TCF4, KCNQ1OT1, NREP, ZBTB18, LRRN3, MARCKS, CPE, MEX3A, EBF1, 
FNBP1L, BCL7A, CBFA2T2, H3F3B, BTG1, PTPRS, RND3, IER2, TCAF1, MAP2, PBX1, 
DDAH2, RTN4, TP53BP1, KLHL24, ARL4C, AFAP1, SPAG9, SHOX2, NRXN1, EYA2, KIF5C, 
MAP1A, CHGB, TUBB2B, TTC3, KLHL35, GPSM2, MAP4K4, TFDP2, STMN1, CEP170, BEX1, 
UBE2E3, PNRC1, NEDD4L, DYNC1I2, EZR, PKIA, SSBP2, GLCE, MARCH6, CSNK1E, TUBB, 
ELAVL2, ATRX, PROX1, MAP1LC3B, TNPO1,  ATCAY, DUSP1, CDKN1C, BTG2, NFIX, 
GLCCI1, PCP4, IRF2BP2, BSDC1, CHMP1B, DYNLT1, FBXO11, TOX3, SEPT3, GRB2, 
SPIRE1, FAM107B, YTHDF2, GPBP1, GPM6A, ANKRD12, KIAA1598, COPA, HIST1H2AC, 
ARID4B, PNISR, HIST1H1C, GLRX, GABRB3, JUND, RBFOX2, YWHAZ, BICD1, MAPT, 
EIF4G2, PRKX, GABARAPL2, BCL11A, RUFY3, SUMO2, RHOBTB3, SESTD1, CSDE1, SOX9, 
ELAVL3, H3F3A, PLEKHO1, KIDINS220, PAIP2, CDH7, SMIM14, RAD21, TCF12, LBH, 
TMSB10, USP48, CALM1, GPR56, RB1CC1, INA, KMT2E, YPEL5, RSF1, MIB1, RTF1, 
NOVA1, SEMA6A, KIF1B, USP22, PHF6, N4BP2L2, ATP6V1G1, DLX6-AS1, LHX1, IDS, GDI1, 
FZD3, SESN3, CBX1, DHRS2, GSK3B, HN1, RAD23B, KLHDC10, AC004158.3, POLR2K, 
CCNI, SYP, CREB1, ARID1A, JAKMIP2, RND2, CSNK2A2, BEX2, KIAA0430, MARCKSL1, 
ARHGAP21, VPS72, MIR99AHG, ANK2, SRP14, MARCH1, ZBTB20 , PHF14, SEZ6L2, RHOU, 
TMSB15A, PIK3R3, CGGBP1, CCNG2, UBE2H, KAT6B, RERE, PHF3, MIAT, RSBN1, CLK1, 
TSPAN5, PPP1R14C, ATF7IP, CIR1, JARID2, KLF12, GRIA4, LHFP, NDUFS1, DYNC1LI1, 
TAOK1, SPOCK1, SAT2, TRIM36, DPYSL4, RNF165, RASGEF1B, BAZ2B, SPATS2, STARD4 -
AS1, CRMP1, USP9X, FLRT3, NIPBL, SEMA6D, CPLX1, ZEB1, HEATR5B, TMOD2, ASNSD1, 
ZKSCAN1, DNAJB6, PTX3, NRCAM, KIF3C, KPNA6, CACNA2D1, CHN2, UBC, RHOB, 
CCDC136, RALGAPA2, F2R, SSBP3, HIST1H2BD, SCG2, EPC1, PSD3, GPC2, BNIP3L, 
KRAS, GNAI3, TGFB3, DCP2, POU2F1, KIAA1107, LRCH1, TTC28, SOGA1, ING4, ZNF766, 
ACVR2A, MXD4, RP3-449O17.1, SORBS2, SCAMP1, MTURN, BRD9, MLLT4, GPATCH2L, 
GALNT1, CLASP2, EVL, PCBP1-AS1, DOCK11, USP34, CRK, B3GALT2, PPP1R10, DAZAP2, 
CELF4, FRYL, ZEB2, TRIP12, CDK5R1, TRIM23, KLHDC2, GNG2, RP3-525N10.2, EYA1, 
YTHDC1, GPR161, TNRC6C, WDR47, EPHA4, N4BP2, CHD2, RALGDS, ZBTB10, GATS, 
TSC22D3, RBM41, AAK1, ZNF131, C8orf46, TUBGCP4, ZMYM2, HRK, TM9SF2, SECISBP2, 
LINC01158, XPR1, YPEL3, BCAS2, RBM15B, THOC1, RP3-368A4.6,  RAPGEF5, MUM1, 
DNAJC12, SH3BP5, EXOC5, ILKAP, MAPKAPK5-AS1, TGOLN2, KIAA0907, PHF21A, 
ZNF528-AS1, DNAJC18, PLCB1, CCER2, C14orf37, PIAS1, CAPN10, PTPN12, NSRP1, 
ESCO1, PBRM1, LRRTM2, SLC22A17, CAB39, MECP2, NCOR2, NCAN, USP3, GAA, AFF3, 
CALCOCO1, TOPORS, FJX1, TDG, ZNF708, HIST3H2A, MGEA5, HPCAL1, SRRM3, EPB41, 
RBM12B, CLIP3, SHOC2, AC004540.4, MTF2, SORBS1  

GSA & GBM 
scRNA-seq 
integration 

C0 

TUBA1B, HMGN2, KCNF1, FABP5, TNFRSF12A, CCND1, DBI, VGF, RPL22L1, COL9A3, 
TMEM158, S100A6, NME1, LGALS1, NES, CCT5, HMGB3, AGT, SNRPB, UBE2S, SR M, MDK, 
GPATCH4, ODC1, GAS1, METRN, PSMA7, HMGB1, PPP1R14B, TUBA1A, BIRC5, MINOS1, 
CD63, C1QBP, GSTP1, PPIA, TXNDC17, RAB13, KCNQ2, PRMT1, NUDT1, TOMM40, 
TIMM10, POLR2L, LMNA, PHB, CENPF, OCIAD2, PFN1, LSM7, DYNLL1, SNRPD1, RPL35, 
HNRNPAB, RAN, LSM4, ATP5MF, EIF5A, SRSF7, RANBP1, PTMA, HINT1, NIFK, POLR2F, 
PSMC5, LDHB, YBX1, S100A16, PSMD8, LDHA, PSMB3, NDUFS6, ANP32A, CCT2, JPT1, 
CYCS, NDUFC2, NDUFA6, C19orf48, NDUFB2, SLIRP, PRDX2, GAP43, METTL7B, H2AFV, 
TUBB, S100B, CKB, CCDC85B, PPDPF, GTF3A, RPS26, RUVBL1, F12, NCL, MDH2, 
NDUFB9, NDUFAF8, CD320, TUBB4B, UQCRFS1, EIF4A1, ADRM1, PSMC4, PLAT, STOML2, 
RPN2, HNRNPM, ATP5MC3, DCXR, SET, MZT2B, MRPL3, CITED1, MRTO4, PSMB1, PARK7, 
PSMB6, RPL8, TAF10, PSMA4, COX8A, EIF3G, UBE2M, ILF2, EBNA1BP2, PAK1IP1, EIF3K, 
HSD17B10, ROMO1, POLR3K, PA2G4, POLR2E, SNRPG, UFD1, MRPL12, PSMA2, 
HSP90AB1, TIMM13, NDUFA4, CCT3, MRPL4, SNF8, BUD23, RFXANK, ZYX, AHCY, 
ATP5F1B, PIN1, MRPL52, ATP5MG, RPL23A, PSMB2, HSPE1, LAPTM4B  
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C1 ISG15, HLA-E, GBP1, PCDH9, IFI6 
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DLL3, AC009041.2, SOX8, OLIG1, NKAIN4, CDKN1C, OLIG2, ETV1, GRIA2, SOX4, CADM2, 
GADD45G, SHD, SOX6, C1QL1, CCND1, TCF12, VCAN, HES6, NNAT, ATCAY, MAP2, 
SMOC1, COL20A1, GLCCI1, FERMT1, CHD7, NEU4, KHDRBS3, HIP1, PLPPR1, DSEL, 
MARCKSL1, EPN2, LIMA1, GPM6A, ARL4A, ASCL1, ZNF462, NXPH1, FXYD6, SCD5, FIBIN, 
CCND2, CNTN1, TNK2, TMEFF2, RBPJ, KCNQ1OT1, PDE4B, POLR2F, PHLDA1, MARCKS, 
SIRT2, NRCAM, PLLP, ALCAM, BEX1, ASIC1, LSAMP, KCND2, SCRG1, MIDN, CD82, 
MAML2, CTTNBP2, ADGRL3, MTSS1, ACAP3, FAM110B, NCAM1, ZEB2, NRXN1, SNX22, 
BCAN, SOX11, GPR17, TPP2, STMN1, NUPL2, TCF4, PCDH17, C11orf96, TMEM121, KIZ, 
CENPV, ARPP21, PTPRZ1, UGT8, JPT1, ASIC4, MLLT11, PTMA, TNR, ABHD2, TRAF4, 
LHFPL3, TFDP2, ANGPTL2, LRRN1, RBP1, MYT1, THY1, NOVA1, MYO10, MDFI, H3F3A, 
SLC2A13, SRGAP1, LINGO1, ELMO1, MAP1A, P2RX7, BTG2, RAP2A, CSPG4, PDGFRA, 
SEMA5A, TIMM50, METRN, HES5, DNER, SNTG1, TNS3, LRRC4C, LAPTM4B, SH3D19, 
ODC1, PODXL2, S100B, KLHL7, PIK3R1, GTF2I, C3orf70, ATF7IP, DCX, APC2, FAM181B, 
ST3GAL5, EPHB1, DNM3, FOS, PPP1R14B, NKX2-2, KCNQ2, ARC, HIPK2, MMP16, RFTN2, 
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PMP2, ZKSCAN1, KIF2A, PHYHIPL, SMARCC1, CHST11, KIF13A, RASSF2, FAM107B, LDHB, 
BCL7A, LDLRAD3, RAB33A, ZNF649, CADM4, TUBA1A, REPIN1, SCG3, NCALD, BCHE, 
ARHGEF7, EIF4G3, ZFYVE16, TUBB4A, CRB1, SOGA1, RTKN, SLC22A17, DUSP 6, AMOTL2, 
ERF, MEX3A, ZEB1, WNK3, UHRF1, RCN2, PCDH15, SHC3, GSK3B, ZCCHC24, HNRNPA1, 
PGRMC1, NOTCH1, CRMP1, CXADR, REC8, ABAT, DST, OPCML, CCDC88A, ID2, CSPG5, 
SERPINE2, PRDX2, NME1, SFPQ, DPYSL3, NCAM2, CASK, BAALC, CLASP2, CELF2, 
PHF14, DSCAM, ZNF326, SMARCD1, ZNF708, RPAIN, MALAT1, KMT2E, ANKRD10, PID1, 
JMJD1C, ZNF322, RSF1, MXD4, KDM1A, RBMX, NIN, KIF3A, ZNF431, MKLN1, TCAF1, 
C2orf80, APEX1, NFIX, MAP4K4, DDX5, TTC3, ZBTB20, EFS, WSCD1, REV3L, NLGN1, 
TOP2B, MYCBP2, ANP32A, RGCC, CBX5, GNAI1, RCOR2, SA PCD2, RTN3, MEGF11, 
DOCK10, LRP3, VXN, MAGI1, ELAVL3, UCHL1, PFN2, DBN1, SHISA4, SET, PRKDC, GPC2, 
GNG4, MUM1, STMN4, RIC3, SGTA, SNRPE, KANK1, SATB1, GSTA4, IGF2BP3, HNRNPAB, 
ZNF428, MAP4K5, BZW2, ANTXR1, MAD2L2, SCN3A, SCG5, FAM222A, KLHL24, CAMSAP2, 
TCEAL2, PRDX1, SETD5, GDAP1, GNG2, SLC44A1, TXNIP, CHD3, KLF13, TSC22D1, 
RBM25, ATP1B3, HOXA7, MRPS7, SULF2, HNRNPA3, PTP4A3, RICTOR, SERINC5, DHX36, 
PPP1R12A, HNRNPM, MYO5A, CELF5, PRPF40A, TAOK3, NASP, BAG1, SKIL, MAPK10, 
ETS1, VEZF1, ATRX, FYN, ILF3, UBB, SRSF3, ARHGEF2, NAV1, MAGEH1, CSNK1E, ZMAT3, 
TMEM100, MT-CO2, H2AFY, TMEM206, HNRNPD, ZNF738, CKB, SMARCA4, RSPRY1, 
KIF21A, AKAP9, ARHGAP35, CMTM5, SIK3, BPTF, MFF, LRP6, KDM4B, HNRNPA0, MNAT1, 
TSHZ1, PBRM1, FGF14, ATXN7L3B, SIX1, TMCC1, BRINP3, GRIK3, ARI D1A, PCMTD2, 
YBX1, BASP1, HRASLS, BRD8, CEP170, CCSER2, CHD4, BEST3, OLFM2, PLCB1, PIK3R3, 
AL391807.1, CACNG4, NCBP2, ARID4B, YTHDC1, BAX, NTM, SALL3, NSD3, KIAA0232, 
EPB41L2, MAPT, RERE, BTG1, USP24, PCBP4, TCF7L2, GDAP1L1, KLHL23, RNF130, 
CASTOR3, HNRNPDL, DLL1, POU3F3, GOLM1, NPPA, PPP2R2A, SYBU, UQCRB, MAP3K1, 
TSPO, ADGRG1, SOX9, KIAA1958, CHD6, BTF3L4  

GSA & GBM 

scRNA-seq 
integration 
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RPS18, ZFAS1, RPL41, RPL32, RPL34, RPL12, RPL11, RPS28, RPS19, RPLP1, RPL9, RPL3, 
TPT1, RPS14, RPL36, RPL30, NMB, RPS27, TOMM7, RPS4X, RPS12, RPL29, RPL37A, 
RPS27A, RPL39, RPL28, RPL26, RPS29, RPL27A, RPLP0, RPS8, RPS2, RPL18A, RPS15, 
RPL22, RPS15A, RPL13, RPL8, RPS25, FAU, RPS3, RPS16, RPS24, RPS21, RPL19, RPL10, 
RPS9, RPS6, RPS5, RPL35, RPS23, RPS3A, RPL21, RPL7A, L GALS1, RPL5, RPL35A, 
RPL13A, RACK1, COMMD6, RPL38, TMSB10, RPS10, RPL37, NACA, RPL6, PFDN5, RPL14, 
RPS13, RPL7, FTL, RPL18, RPL10A, UBA52, RPL36A, RPS11, RPL24, PHPT1, MZT2B, 
RPLP2, FTH1, COX7C, HIGD2A, GNG5, RPL23A, RPL31, EEF1A1, EEF1B2, PPDPF, NOP53, 
S100A11, UBL5, TPI1, VIM, SNRPD2, EPB41L4A-AS1, DDT, NENF, RPL15, COX7A2L, 
C19orf53, RPL17, RPSA, RPS7, MIF, C6orf48, GAPDH, TRMT112, TAGLN, EIF4B, PRDX6, 
RPL27 
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VEGFA, NDRG1, IGFBP5, IGFBP3, AKAP12, MT1X, HILPDA, LGALS3, I GFBP2, MT2A, NRN1, 
OLFM1, PGK1, VIM, SPP1, SCG2, YBX3, PLOD2, EIF1, NTRK2, CEBPD, GAPDH, HSPA5, 
TMSB10, CHI3L1, S100A11, SLC2A1, LMAN1, DDIT3, BNIP3L, BNIP3, ZFAS1, CEBPB, 
NAMPT, HSPA1A, BTG1, SERPINE1, HSP90B1, P4HA1, CAV1, ENO2, MCUB, IER5L, SSR3, 
ERO1A, P4HB, TPI1, CALR, EPAS1, TRIB3, CA12, XBP1, DNAJB9, SELENOS, SQSTM1, 
SEC61G, S100A10, SLC2A3, PDPN, CAMK2N1, LDHA, ASNS, EPB41L4A -AS1, SLC3A2, 
CAST, TPT1, CHPF, CRYAB, AK4, MAP1LC3B, GRB10, ENO1, RASSF8, ATF4, RACK1, 
NOP53, PFKP, FN1, DNAJB1, GARS, JAG1, ACTG1, MYDGF, GPI, MYO9B, EIF4EBP1, 
SARS, CANX, SCD, HSPB1, DDIT4, SLC16A1, NUPR1, SLC6A6, CXCL8, ZNF395, BHLHE40, 
RPL10, EMP1, CLIC1, HERPUD1, RPL9, UFM1, PYGL, FTL, EPRS, CYTOR, SERP1, FLNA, 
MEG3, WSB1, RPL34, PDIA6, CNN3, ABCA1, SELENOK, FAM162A, RDH10,  ERRFI1, VOPP1, 
EIF2S2, SOD2, LIMS1, ANXA2, PGM2L1, TPM4, TIMP1, IQGAP1, HSPA9, HSPA1B, SPOCD1, 
SMIM3, CDK2AP2, MIR4435-2HG, SVIP, RPL26, SERTAD1, OAZ1, YWHAH, AL590617.2,  
ITGB1, VKORC1, ATP13A3, SUCO, TAGLN, DNAJC3, SLC38A1, MT3, TNFRSF12A, MAP1B, 
SYTL2, SLC7A5, BLVRB, CALU, CEBPG, TMED2, PTX3, TCIM, ADM, PGM3, TENT5A, KDSR, 
INSIG2, WWTR1, DOK5, SUGT1, SEC31A, PLP2, HMOX1, ARF4, ACTN1, EIF3E, VGF, 
TRAM1, BRI3, FAM20C, RPS25, PADI2, TOMM20, TCEAL9, ARRDC3, ARL4C, PDIA3, 
SH3GLB1, RPS27, EIF4B, TAGLN2, RPL3, ARID5B, NUCB2, FNBP1, CAVIN1, ZFAND2A, 
HSPA13, TCEA1, ANXA1, TMF1, GAP43, BET1, HDLBP, TLN1, TMEM45A, MANF, FAT1, 
KDELR2, PJA2, RSRP1, CALD1, PTPRF, RPS18, PPIB, MEF2A, OXR1, UAP1, ATF5, IDS, 
METTL26, RPS13, ARL1, CFAP36, PPP1R15A, NACA, CIB1, CD9, FTH1, R ORA, WDR45B, 
RPL5, OBSL1, RPS8, ANKRD12, SHMT2, ALDOA, IFRD1, RBCK1, PAM, SERPINH1, SDC4, 
RNH1, PMEPA1, HSPH1, NUMA1, DDX3Y, LONP1, ACBD3, RPL14, SPCS2, EBLN3P,  
NFKBIA, NOL3, STK4, HSP90AA1, ATF3, UGCG, DAPK3, FOSL2, GOLT1B, RPS14, GBE1, 
PNRC1, CYR61, INAFM1, PDIA4, RRBP1, NARS, MORF4L2, TUBA1C, TGFB1I1, SLC25A37, 
ASPH, SLC25A36, SARAF, SIVA1, GADD45B, RPL11, RND3, CDV3, XPOT, UFL1, CCDC107, 
TAF1D, TMEM70, TAX1BP1, AL133453.1, EIF1B, RPL35A, PLOD1, GLUL, TNIP1, UPP1, 
RPL12, DHRS3, RSL1D1, RPL17, CCNI, CD44,  BACE2, PHGDH, RPL7, FGFR1, MYADM, 
DSTN, H2AFZ, SNHG7, EIF3D, EEF2, ELOC, YIPF2, SRSF5, SNHG8, NFIL3, RPS28, WEE1, 
COPB1, ANKRD28, PCOLCE2, ARF1, RPL32, SEL1L, PKD1, SERINC1, SLC5A3, CARS, 
AC093673.1, FNDC3B, DHPS, FAM114A1, DYNLT3, RNMT, SBDS, RPS3, FXR1,  COX7A2L, 
MTHFD2, TPM3, BACH1, MKNK2, SAT1, IL1RAP, TMED9, RRAS, MAP2K1, MYO1E, MXRA7, 
ARL6IP4, FAU, MIF, FERMT2, PRPF6, PRDX4, ELL2, OSTC, AC027031.2  
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scRNA-seq 
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CHI3L1, ID3, AQP4, HOPX, IGFBP7, CLU, GFAP, CST3, APOE, ID1, CRYAB, N MB, SLC1A3, 
FABP7, LPL, NCAN, ATP1B2, MT2A, CXCL14, MT3, LGALS3, TIMP1, RCAN1, SPP1, RAMP1, 
TRIM47, GATM, A2M, VIM, CNN3, PTN, SPARC, ANXA2, HTRA1, CITED1, NAMPT, CSRP2, 
SPARCL1, FJX1, PLTP, F3, ZFP36L2, SLC1A2, TTYH1, METTL7B, CD44, GLUL, C1orf61, 
TNC, PMP22, IFITM3, LMO2, MT1X, EMP3, CD99, AGT, TUBB2A, EMP1, CEBPD, LRIG1, 
C1R, TTYH3, ID4, UGP2, PLA2G16, CADM1, TSC22D4, GADD45B, ITM2C, FERMT2, PDLIM4, 
GPC1, RGMA, GAP43, S100A11, DCLK1, RHOB, HEY1, TAGLN, CAMK2N1, CLIC4, ITPR2, 
SERPINB6, LYPD1, B2M, ANXA1, S100A10, WLS, CD63, ARHGEF26, TMSB4X, IRS2, 
SLC4A4, ZFP36, EDNRB, PODXL, FLNA, SDC3, SFXN5, NEK6, TAGLN2, IFI27L2, TIMP3, 
SPON1, EFEMP2, NUDT4, JUNB, HSPB1, RHOC, CTSA, NACC2, DTNA, PROS1, GADD45A, 
MT1E, PLIN3, PLPP3, DCLK2, TMEM132A, TPM2, FAM107A, TIMP2,  GPM6B, LHFPL6, MLC1, 
KCNF1, PPP1CB, RASD1, HLA-C, PON2, LIFR, SEMA6A, MYL6, DPY19L1, PDPN, PHLDA3, 
MAN1C1, LGALS3BP, STK17A, HEPN1, NME3, SEMA6D, APC, HES1, BCAN, TSTD1, 
TNFRSF12A, BST2, CD81, S100A16, ITGA6, S100A13, SOCS3, ECI2,  COMT, CALM2, 
NLRP1, RAB31, MT-ND3, ETFB, GNG5, TNFRSF1A, PLEC, PTTG1IP, SRPX, HIF1A, 
RARRES3, NPDC1, MAP1B, PCDH9, CTSZ, CYR61, HLA-E, ATP1A1, DPP7, SCG2, FSTL1, 
ITM2B, PSRC1, TRIP6, OCIAD2, SEPT7, FAM181A, IFI16, SLC3A2, FABP5, CD59, NRP2, 
NEDD9, SPOCD1, SELENON, HEPACAM, ADAM9,  RFX4, AP1S2, SYPL1, HS6ST1, SNX3, 
HRH1, CSRP1, CALM1, RDX, CHPT1, TIPARP, CBR1, ACSL3, GJA1, LGALS1, EVA1C, 
LAMP1, SSFA2, CDH4, GPR37L1, PRDX6, LRRN3, CHL1, SDCBP, CDC42EP4, TNIK, SORT1, 
EFHD2, SAT1, TMEM205, SYMPK, CAMK2D, ANXA5, BBOX1, APLP2, GALK1, ITG A7, NFIA, 
MOXD1, MAOB, CA2, SIRPA, MT1M, NAT8L, TSPAN3, SMOX, SCARA3, CTSB, DKK3, 
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IFITM2, KAZN, SYNM, DPYSL2, ERBIN, DAG1, IQGAP1, S100A6, PEPD, PRR7, BAALC, 
ZNF436, CYSTM1, TUBB6, CDH2, CD151, GAS7, SEC14L2, SPTAN1, BLVRB, LAMB2, 
GLUD1, SIPA1L1, INAFM1, MRC2, NEAT1, GRN, DOK5, FEZ2, KDELR1, CERS1, CHCHD10, 
SNTA1, PRRX1, SEPT11, TMEM132B, ELOVL2, DNPH1, HLA-B, FAM69C, AIF1L, SMAD1, 
CFI, HSDL2, NPAS3, LMNA, NPC2, SPATS2L, METTL7A, EZR, PDLIM7, CLIC1, LTBP3, 
PLAU, DNASE2, IFT22, TSPAN5, ATP6AP2, TGFB2, DLC1, CPNE5, RYR3, ACTN1, PTPRA, 
TUBA1C, BCAP29, FAM20C, GSTK1, SCRN1, ADGRG1, VAMP5, PDLIM2, IFI6, ATP1A2, 
IL6ST, CARHSP1, TUBB2B, LRP10, TPST1, PLSCR1, PCSK1N, BICD1, ROM1, COL4A1, 
PKM, APC2, PLP2, LAPTM4A, RFTN1, DDAH1, FCGRT, ABCD3, CTSF, ACAA1, ALDH6A1, 
PTGR1, TMEM59L, DDRGK1, RAB34, MT-CYB, PRAF2, B4GAT1, C19orf70, TMEM147, 
CAMTA1, GLG1, PLA2G5, C1orf122, ENDOD1, OXTR, SHISA5, ENAH, LAMP2, FOXO1, 
SELENOW, DOCK7, FADS3, PRSS23, SERTAD1, C19orf53, TAPBP, SOD2, PSAP, BATF3, 
SBDS, SORBS1, PPIC, ERP29, DDR1, GCSH, ADD1, MAGED1, FKBP2, TMEM179B, CIB1, 
SRI, AEBP1, SPTBN1, PEA15, POU3F2, IQGAP2, GLIS3, SEC14L1, TMBIM6, RRBP1, 
SMIM29, SLC25A23, CRISPLD1, PSENEN, GALNT2, LAMA4, DPP6, RETREG1, ACTB, 
GSTT2B, NFKBIA, PPP2CB, CETN2, NAA38, CROT, CTNND2, MYL12A, FZD7, DBI,  PARP9, 
PPT1, PGLS, POR, ACTG1, TXNL4B, DPF3, PAXX, GNAI2,  NUCB1, ALKBH7, COL4A2, 
AHCYL1, CTSL, CSTB, PFN1, TMEM9B, GADD45GIP1, ANK2, NMT1, RHBDD2, MIR4435 -
2HG, GNG12, WWTR1, ASAH1, FAM3C, SPIRE1, PFKFB3, ZHX3, SSBP4, SLC25A18, 
UQCR11, ARL6IP5, ACTN4, LZTS1, ARL6IP1, PBXIP1, CCDC106, KTN1, SORL1, HES4, 
REX1BD, FGFR3, TGFB1, CPE, ERLEC1, CCL2, MT-CO3, KCTD12 
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AGT, SLC1A3, SOX9, SDC3, ITGB8, MALAT1, ATP1B2, GFAP, PTPRZ1, TNC, NEAT1, 
SLC1A2, LFNG, DCLK2, PCDH9, CLU, EDNRB, PIK3R1, BCAN, SEMA5A, AQP4, ACSL3, 
NPAS3, RGMA, LUZP2, LPL, CHL1, ATP1A2, CST3, GATM, EGFR, GPR37L1, MACF1, GAS1, 
DPP6, TRIB2, WLS, NTM, TRIM24, TANC2, CDK6, PCDHGC3, LMO2, NFIA, RRBP1, PLPP3, 
LRIG1, CSPG5, BICD1, ZNF708, FOSB, POLR2J3.1,  TTYH3, ARHGEF26, PR EX1, HOPX, 
KCNQ1OT1, SEMA6A, SRGAP2, EPN2, ARGLU1, ZBTB20, HIP1, ADGRL3, MSI2, MYO10, 
POU3F2, APC2, PMP2, DPY19L1, SPARC, LIFR, COL9A3, PTPRA, ILDR2, EGR1, LRP1, 
NCAN, DDR1, KMT2C, DTNA, TRIM9, FAM181B, QKI, IRS2, RASSF2, COL4A2, MRC2, 
B4GALT5, VCAN, MLC1, F3, IL6ST, SPON1, KCNF1, NORAD, NOTCH1, FJX1, KIF1B, ITGA7, 
TMEM132B, ROBO2, COL4A1, GLG1, SESN3, DAG1, SPATA6, CDH2, SPECC1, RAB31, 
CDH4, METTL7A, RCAN1, CRISPLD1, CAMK2D, GNA12, GTF2I, APOE, MAP3K1, ZFP36L2, 
ZNF254, UBL3, RFX4, PRRC2B, VMP1, POU3F3, SPTBN1, FOXG1, TRPS1, ENC1, GOLGB1, 
ZFP36L1, PTAR1, RAB3IP, DCLK1, MEST, ITPR2, GNB4, SRGAP2C, LYPD1, PLEKHA4, 
NLGN4X, SORT1, SMC5, ERBIN, SPRED1, MATN2, PODXL, ZHX3, CPEB4, IDH1, FZD3, 
ADGRG1, ADD1, ADAM9, ZNF91, ACTN4, IFI16, SCRN1, GRIK3, NUMBL, NFIB, RIC3 , NAV1,  
SIPA1L1, NKTR, ATRX, SPRY4, BAZ2B, PAG1, TNIK, RNF180, EIF4G3, LRRC17, WDR60, 
BPTF, TUT4, NES, EXTL3, ACSS3, PAXBP1, SFPQ, CCDC88A, MT -ND4L, CCNL2, STIM2, 
SEPT7, RB1, BMP7, WSCD1, CUX1, C1R, NEDD9, MAGED1, PTN, ARHGAP21, ELOVL2, 
TNPO1, SUGP2, ANK2, CHD1, REST, GPATCH2L, FAM69C, TNRC6B, STAT3, PCM1, 
TMEM131, SORBS1, NSD1, TRIL, FAT1, PTGFRN, ARNT2, PRPF4B, KCND3, CADM4, 
PMP22, SETD2, GRIA2, PIK3C2A, PDE4B, CCND2, SSFA2, CADM1, CREB5, RHOJ, CASK, 
TSPAN3, HEPN1, MMP2, SPAG9, CHD4, RYR3, BCAP29, ZNF106,  CHD9, APP, NTRK3, 
PDGFRA, CELSR2, ITGAV, TRIM47, ARAP2, SEMA6D, PLAT, ETV1, RBM26, METTL7B, 
ZFHX4, UHRF1, LDLRAD3, ADAR, ANKRD36C, APC, MAML2, ADAM23, ZNF43, CLIP2, 
NPTXR, CDCA7L, ANKRD17, PGAP1, KLF9, TJP1, C3orf70, IPO9, MCL1, VEZT, SACS, 
DDX17, LRRC58,  TFRC, ARHGEF6, ABHD2, HTRA1, CEBPD, TCF12, PCDH10, SRGAP2B, 
DST, PRRX1, PON2, SPEN, USP8, FOS, FABP7, CARMIL1, PJA2, SSR1, GPRC5B, SULF2, 
ANKRD10, BMPR2, LRRTM3, MT-ND5, ADAMTS6, PPP1CB, ZEB1, NCOA1, ATM, ABCD3, 
CANX, PUM1, CREBZF, ACER3, SKI,  COL6A1, UBE2G2, MYEF2, CORO2B, ERF, NCAM1, 
NIN, SLC6A9, APLP2, ZNF638, FMNL2, LINC00461, RSRP1, SERPINB6, ZNF493, ZNF827, 
CPXM1, CASC4, ARMCX3, KMT2B, HEPACAM, FAM20C, ANKIB1, NRDC, MKLN1, TAOK1, 
MUM1, MYO6, HEY1, ADGRB2, LRP1B, JUN, TAOK3, CYFIP1, LPP, MYH10, ABCA1,  
LHFPL3, ZKSCAN1, SCD5, KDM2A, SCARB2, RDX, KAT2B, PHF3, CLTC, SETD5, GRAMD2B, 
TCF4, PRRC2C, ARHGEF40, STK17A, FBXL5, AP3D1, QSER1, OGA, KIF21A, CAPN5, 
DOCK7, NOTCH3, TRIM73, C6orf62, ARID2, ZNF148, INTU, PHACTR4, FAM208A, ZNF260, 
REV3L, PLCE1, SPTAN1, TLK1, FTX, NCOR2, ATXN2, SOGA1, ASTN1, PURB, ACIN1, 
BCLAF1, LRRC4B, GLDC, CTNND2, DNAJC10, CALD1, USP34, MAP2, ETV5, PNN, ZNF431, 
MT-ATP8, RPGR, SREK1, ABI2, PARP14, ATP1A1, SWAP70, CLSTN1, TNKS, GNG7, NOVA1, 
PSRC1, PDGFA, PRKCA, SOX5, TMEM30A, ARHGAP35, PXDN, CHD7, SMARCD3, SPRY2, 
ARHGAP5, RFX3, FRYL, IGF2BP3, GOLGA4, LENG8, TP53  
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SOX11, NNAT, DCX, SOX4, CD24, STMN1, RND3, THSD7A, BASP1, INSM1, GADD45G, 
STMN4, NRXN1, NFIB, ELAVL3, FNBP1L, BTG1, AUTS2, TCF4, ARL4D, MAP1B, RBF OX2, 
HES6, CRMP1, RBP1, TAGLN3, NFIA, KIF5C, PAK3, C4orf48, CDK5R1, BEX1, JPT1, PKIA, 
CBX1, MLLT11, BCL7A, NREP, NFIX, PCSK1N, MARCKSL1, RPAIN, TTC3, ZC2HC1A, 
UCHL1, MAP2, SBK1, SCG3, GPM6A, MAPT, TSPAN13, KLHL7, AKAP9, ATP9A, PLK2, 
NEUROD1, CPE, BEX2, ZNF292, MEX3A, CEP170, TUBB, TMSB15A, CELF5, SRGAP3, 
KIF21A, EIF1B, MEG3, SLAIN1, PAFAH1B3, GPD1, KDM1A, PBX1, GSTA4, KIDINS220, 
APLP1, HIST1H4C, H3F3A, DBN1, GPC2, ARL4C, TMEM161B-AS1, ATCAY, THRA, 
CAMK2N1, MAP1LC3A, MEIS2, RERE, TUBA1A, TTC9B, ATRX, TOP2B, OLA1, TERF2IP, 
DLX6-AS1, DPF1, KHDRBS1, VAMP2, ZBTB18, UBE2E3, PROX1, GTF2I, KLC1, BLCAP, 
DLGAP4, MIDN, MAP4K4, NEDD4L, FOXG1, YWHAG, MYCBP2, ID2, TCEAL2, RUFY3, ENC1, 
SMARCD1, TCAF1, DDAH2, SOBP, PBRM1, TXNIP, DRAXIN, CBFA2T2, CHGB, APC, 
ZNF704, ATP6V1G1, DPYSL2, KDM6B, MARCKS, ZNF91, CCDC112, PGAP1, IGSF21, 
SSBP3, RPL7L1, GDAP1L1, SLC38A1, SNN, LINC00461, USP22, ARID4B, PTMS, LBH, 
C3orf14, PRKAR2B, SEPT3, TOX3, RSBN1L, MAPK10, GNG2, DDX24, EVL, KLHL23, DAAM1, 
SRPK2, CYTH2, CNIH2, ARID4A, CNOT2, PLCB1, EIF4G2, HMGB3, LANCL2, ZC3H13, 
REEP1, SRGAP1, MYT1, SEZ6L2, ZEB2, AKT3, TUBB2B, ZNF428, SPAST, SCN3A, TFDP2, 
CITED2, SMC3, MEX3B, SCX, RBX1, KLHDC8A, SEPT11, CCNG2, SNTG1, WDR82, NCAM1, 
BLOC1S6, CHD3, RB1CC1, DYNLL2, ASRGL1, DPYSL3, MALAT1, TSC22D1, PHF6, CEN PV, 
LRP8, TXN, CACNA2D1, NUDT3, GNAI1, AES, DTD1, HDGFL3, BCAS2, STXBP1, RTF1, 
BAZ2B, STRBP, TIA1, RNF165, HNRNPH2, CLASP1, SPIN1, TAF11, AFDN, KIF3A, TCEAL5, 
ANKRD46, VPS28, MAP6, SUMO2, DHX29, CD200, SHOX2, RTN2, UBE2S, PALM, CELF1, 
GSE1, SRRM3, ASB8, SPOCK1, TCEAL7, MBIP, AHDC1, PHF14, RCN2, LINC00662, RTN3, 
SNRPN, YPEL5, TUBB4A, MORF4L1, MORF4L2, TMX4, FOXN3, HPCAL1, DDX5, C14orf132, 
DPYSL5, KIFAP3, BRD3, ARX, KMT2E, DDX6, TNRC6C, MRPL21, CERS6, FAM89B, PSMB7, 
BPTF, RSBN1, NSFL1C, ELMO1, TNRC6B, CAMK2N2, TRIM36, ATP1B3, PIK3R3, CXADR, 
MKRN1, NCAN, MARCH6, ATP1A3, NDUFA8, ENAH, CHD6, DYNC1I2, SESTD1, RNF24, 
GNAQ, CLASP2, TRAPPC4, COX7A2, ASIC4, SATB1, NUAK1, PNPLA8, CALM1, BEX4, 
CCDC167, NRP1, BZW2, IFRD1, SPTAN1, ANK3, RCOR2, GOLM1, ZNF793, ATF7IP, CDO1,  
ACTR10, LCORL, MRPS36, DHPS, FEM1A, PCDHB9, PAFAH1B1, KAT6B, PODXL2, HIPK2, 
EPB41, DHX36, HSP90AA1, MAGED2, TOMM20, MPHOSPH8, KRAS, SPOP, CCSAP, RRM1, 
SPATS2, RBBP4, MRPL44, SYF2, ARL6IP6, SCG5, ZMAT2, PFN2, PTMA, BEND5, PPP2R5E, 
HNRNPAB, FAM49B, CBX3, TXNRD1, AKAP6, CAMLG, CDKN2D, MTSS1, CHD7, ABAT, 
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GNB1, SHF, ARF4, FZD3, GABARAPL2, CPEB4, SLC25A29, WDR47, MIEN1, BPGM, 
SMARCA4, CCDC28B, SNRPB2, GNG4, CDC34, DHX9, GKAP1, ATXN7L3B, POGZ, 
ARHGAP33, NLRP1, RAD21, DYNC1LI1, ELAVL4, PRKX, NAGK, HOXA7, USP11, MT -ND1, 
CCNI, SRRM1, ATAT1, ZNF711, CEMIP2, CHD9, ATP6V0E2, SYT11, NXPH1, CXXC5, 
CSNK1E, NIPBL, CWC27, DDX17, CNR1, UBE2I, ROBO2, AMER2, BRSK2, FAXC, NSD3, 
GRIN2B, DCTN3, DNAJA4, PPHLN1, KLHDC2, GABPB1-AS1, NOL4, PTP4A1, UBQLN1, 
FSD1, HIST1H1E, BRWD1, OCIAD1, FBXO11, KIF2A, CHMP5, MZT1, KLHL42, RASA1, 
BTF3L4, H1FX, RALGDS, C12orf65, NIPSNAP1, HSDL1, CCDC88A, SRSF10, CNKSR2, 
OSBPL8, RAB11B, PHF20, ZBTB41, SETBP1, YWHAQ, DCTN2, CNOT7, ARL8A, ZNF3, 
C12orf73, MXD4, MAP4, TTC28, VEZF1, DNAJC7, PJA1, VAT1, CUL1, PP M1L, UBE2V2, 
CALM3, VDAC3, KMT5B, ATL1, EMSY, SHD, ACTR6, PPP2CA, XRCC5, RAB6A, ARHGEF9, 
RPRD1A, MAPRE3, TCP1, TNRC6A, ENO2, G3BP2, MTURN, RTN4, EBAG9, ZNF281, PTBP2, 
TOX, YTHDF2, PDS5B, RAB2A, IK, AFAP1, TMSB10, RAB14, DNAJB6, POU2F2, RSF1, 
DPYSL4, ARPP21, SH3BP5, NR2F1, IRF2BP2, PRRC2B, RUNDC3A, ANKMY2, GRIA4, 
TRIM13, SOGA1, ORC4, GON4L, ZNF536, PINK1, HDAC9, FOXN2, PSMD7, PAIP1, BAG6, 
HEXDC, GALNT1, OSGEP, TBC1D7, ZBTB20, TIPRL, USP16, RBM25, WIPI2,  NPPA, SEZ6L, 
AK1, SUB1, CTNNBIP1, HTATSF1, SNX4, PRDX2,  MOSPD3, CDKN1B, KHDRBS3, SEC11C, 
CBLB, ZNF667-AS1, AMN1, RAB5C, PBX3, EPHB2, ZBTB33, LRRC4, DEK, ROBO3, TERF1, 
RALA, RIOK3, REC8, ARID1A, NCBP2, LRRC47, DUSP12, MACO1, AKAP17A, ZSCAN18, 
ZC3H6, KIAA0232, POLR2B, SVBP, APBA2, PLPPR2, GATAD2B, AASDHPPT, STRA P, 
ATP6V1H, MARCH1, AP2M1, GLCE, KIAA1549, LSAMP, SYNE2, CLIP3, B4GALNT1, NAP1L4, 
KMT2A, CNTFR, APC2, UPF3A, POLB, PABPN1, TLE2, ANAPC15  

GSA & GBM 

scRNA-seq 
integration 

C8 

PTPRZ1, EPN2, KCNQ1OT1, KCND2, C1QL1, SERPINE2, BCAN, PMP2, SEMA5A, ARL4A, 
S100B, SCRG1, NKAIN4, CYB5D2, OLIG1, LIMA1, CADM4, LUZP2, GRIA2, RAB31, LHFPL3, 
FAM107B, CADM2, DSEL, GRID2, VCAN, PDE4B, SOX6, PCDH9, KHDRBS3, NOVA1, 
SPATA6, MYO10, CNTN1, COL20A1, TSPAN7, ABAT, TRIM9, PDGFRA, MALAT1, METRN, 
BAALC, NLGN4X, PGRMC1, ABHD2, CSPG5, ATP1B2, TRIM24, MARCKS, PCDH10, SCD5, 
CTTNBP2, MAML2, LRP1, MT-ATP8, REV3L, SLC35F1, SHC3, PPAP2B, ZNF462, MAP3K1, 
KANK1, BCAP29, MTSS1, PCSK1N, TANC2, SESN3, TAOK3, ETV1, TCAF1, EIF4G3, CASK, 
RNF180, FXYD6, MMP16, LINC00511, SEPT7, APC, ATF7IP, PIK3R1, SCP2, C11orf96, 
APOD, NIPBL, MAP2, LSAMP, GALNT1, FAM181B, SULF2, ITM2C, FOS, PCMTD2, 
UQCR11.1, EDIL3, ARL2BP, ITGB8, LRRC4C, SERINC5, LINGO1, LYPD1, C1orf21, RAB8B, 
TCF12, PAK2, ZEB1, GLCCI1, CCND1, ATCAY, PHLDB1, LRP6, NCAM1, FAM110B, MT -
ATP6, FIBIN, CBX5, TIMP2, DCX, PRKDC, GPSM2, OLIG2, LINC00461, GTF2I, ATP6V0E2, 
APBB2, NRCAM, HNRNPA3, TTYH1, KCNQ2, RHOQ, RP11-146D12.2,  BRINP3, CELF2, 
GPM6A, RASSF2, PPFIBP1, NRXN1, GNAI2, DBI, SMARCD1, CHST11, PBX1, SCARB2, 
CREB5, NPAS3, MTATP6P1, TRIP12, B3GAT2, ADAM10, SCG3, EVI5, TRIB2, SEPT2, DSG2, 
CCDC88A, RNF157, LDLRAD3, GPM6B, DDAH1, GSK3B, PTPRA, CDK14, COL11A1, BRD7, 
PTGFRN, SDC3, FBXW11, ARL6IP5, SWAP70, AHCYL1, RAB3IP, SNX22, WNK3, AGO3, 
KIF1B, CTNND2, SLC44A1, CYTL1, UGP2, MT-ND3, ATRX, SON, SOX5, MAN1A2, CAMSAP2, 
RPN2, EDNRB, SMARCC1, SOX9, C3orf70, VMA21, TXNIP, ZNF480, SUPT16H, FEZ1, 
MAGED1, SEL1L3, BEX1, TTC37, FADS2, CEP170  
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GOLGA8A, GOLGA8B, NKTR, NEAT1, MALAT1, SNRNP70, GPR98, PAXBP1, DST, TRIO, 
WSB1, MYC, VPS13C, RP5-1039K5.19, ANKRD36C, TSPAN31, LL22NC03-2H8.5, MAN2A2, 
MARCH6, RBM6, MAPK8IP3, CD46, MCM3AP, TANC1, CAND1, CAPRIN2, APOE, SREK1, 
GABBR1, MACF1, THOC2, ARGLU1, TOP2A, SORL1, COL9A1, PCSK7, CYP27B1, LENG8, 
EZH2, KIAA2026, SUN1, TTC17, HPS4, CTB-89H12.4, PTK2, N4BP2L2, ZC3H7A, CHRM3, 
MMP16, DIP2A, RNPC3, IPO9, COL4A1, DPY19L3, KIAA1598, HNRNPU -AS1, LINC00969, 
TTL, PLCG1, CENPF, P2RX7, DDX17, ZC3H11A, KAT2A, NCOR2, SLC35E3, WDR90, MRC2, 
C5orf42, ZC3H14, HECTD4, PLXNA3, PPP6R2, UGGT2, PHTF2, DIP2C, SRF, BC YRN1, 
CNKSR3, IKBKB, ST6GALNAC2, KIAA0020, THBS2, CTTN, AHSA2, OS9, FUS, MYSM1, 
DGKI, MAP3K4, DDX3Y, SPECC1, SRRM2, FARP2, FMNL2, EML4, BIRC6, STAT5B, MTR, 
C7orf55-LUC7L2, ZBTB37, PGAP1, MALAT1.1, FUT9, PRRC2C, SLC35E2B, KRI1, USP36, 
TTLL3, MSL1, RP11-631M6.2, CPEB2, POLR3E, NOC2L, TULP4, SAMD4A, ADAMTS1, 
AKAP6, PPIP5K2, MTA1, CWF19L2, NOVA1, PGM2L1, TRPM7, AHI1, EP300, BRD1, FAT3, 
NRBP2, ASXL1, IGF2BP3, RP11-382A18.3, RNF213, UVSSA, HMGA2, SEL1L3, ZNF280D, 
WHSC1, SEMA3A, PCNT, ANKDD1A, TYRO3, QKI, SLC5A3, SNHG17, DDX39B, DDX55, 
SRGAP2, SETX, PRC1, PAPD4, TCERG1, CHKA, FUBP1, IFI44L, RP11 -366L20.2, SACS, 
PARP14, ULK1, FOXK1, KIAA1109, SYNC, INPPL1, TEAD1, XXbac -BPG283O16.9, LUC7L3, 
FGFR1, HERC4, IGFBP5, TOR1AIP2, PABPC1L, PCDH15, XYLT1, MT -RNR2, SLC16A1-AS1, 
TARBP1, RHOT2, CAMSAP2, ANKRD36, NR2F2-AS1, PCBP1-AS1, AKAP13, CHERP, 
REXO4, NUPL1, AGAP2, DNAJC10, PCAT1, RP11-444D3.1, SUGP2, IFT80, LAS1L, 
SERINC5, MBNL3, AGRN, YTHDC2, CLCN7, YEATS2, POLK, CLDN12, FARP1, UNKL, 
GPR126, USP3, CCDC14, RP11-1023L17.1, COL6A1, KIAA0101, SOGA1, HMGXB3, 
ANKRD50, MFGE8, ARHGEF7, SON, ZNF334, RALGPS2, GPSM2, CRAMP1L, DVL1, BRD9, 
MGEA5, UBAP2L, HERC2P2, HARS, EIF3B, DCAF16, KIAA0430, PCNX, SHC2, NFATC2IP, 
GOLGA2P7, WHSC1L1, INTS1, PIEZO1, ST5, KIAA0907, STK36, AGAP3, MAGI2 -AS3, 
GRIA3, LEF1, NPLOC4, CTC-444N24.7, DGKD, FAM118A, STAT1, AXIN1, ATRX, NSUN5P1, 
RP3-368A4.6, TMEM161B, IL1RAP, PPWD1, RNF111, UTRN, UPF2, TSPYL2, DUS1L, 
SAFB2, RNF144A, EMC10, GART, JMY, OPA1, PLEKHA4, SH3D19, LARP1, ACIN1, ATXN2L, 
LPHN1, CENPK, DNMT3A, GTF2H2, NRD1, DNASE1, CCAR1, PTPN13, PRPF3, TSHZ2, 
LINC01296, CPNE7, LIFR, PKD2, TNC, HNRNPA2B1, EIF2S3, TRIB1, CHTF18, ERBB3, 
PLXNB2, PVT1, KDM5D, SNHG14, GUSBP3, RIF1, CIC, PLXNB1, HERC2P9, SIPA1L2, 
GPR56, NSUN5P2, UTY, CDKN2A, FLVCR1, RABGGTB, GRID2, VIMP,  FAM184A, BTAF1, 
USP7, NABP1, LMNB1, GPR125, PUM2, ZSCAN30, EPB41L2, REV3L, MPHOSPH9, PLEC, 
PGM5P2, ZNF562, NBEA, JAG1, APOC1, NCOA6, HCFC1, SEH1L, JADE1, NIPBL, FAM214A, 
EDRF1, TIA1, ATG16L2, DLGAP1, RC3H1, NXF1, CTA-29F11.1, AFG3L1P, BRWD3, GLCCI1, 
FAM92A1, DGKH, GIGYF1, PCMTD2, STAG3L3, TRMT11, COL16A1, PTCH1, LAMB1, 
DYNC2H1, ARFGAP1, DENND4B, ANKRD36BP1, TRIP12, TRO, RP11 -315A16.1, SYNE2, 
ZNF37BP, ATP9B, LRIG2, PTPRZ1, ZNF529, PPP1R9A, PURB, PRKY, KANSL1, PCYT1A, 
BICD1, SIK3, FAM135A, RP3-394A18.1, ZNF133, BMPR1A, UHRF2, ERC1, ANKRD10-IT1, 
XPOT, PPFIA1, FCGRT, PROM1, LSG1, TP53BP1, NAIP, FANCI, NLGN1, ARHGEF40, NNT, 
TSPAN14, POM121, ZMYND8, ATP2B4, SMCHD1, SPEN, SCN1A, RBM12, WDR73, SLC38A1,  
PLAT, SLC6A6, CTD-3014M21.1, PLEKHH1, ZNF528-AS1, ZNF609, ERMARD, USP9X, HGS, 
KIAA0368, SOX10, STRA13, VGF, CEP85L, PHF3, NUP160, PCNXL4, DNAJC16, LINC00685, 
GAK, ASNS, DDX10, SH2B1, RP11-166D19.1, PCDH7, SNHG5, ZNF559, ARHGEF12, CSAD, 
NSD1, HELLS, ATP13A3, LL22NC03-N14H11.1, DMXL2, NUSAP1, IRX2, CTDSPL2, MYO5A, 
POLR3G, MED13L, MINA, SUV420H1, CLASP2, FAM212B, SLC7A1, FAM219B, NAA40, CTA -
941F9.10, UBE4A, PREX1, APBB2, ADAT2, ATN1, NAT8L, RP11 -317M11.1, PDE3B, ZNF451, 
ZNF711, RP11-463O12.5, BAI3, ISYNA1, PDXDC1, ARHGAP32, RIMKLB, IQGAP2, PEX1, 
KDM2A, MYT1, UPF3B, ZZZ3, HERC2, MYO9A, UBN1, YOD1, PPIL2, MYCBP2, SMARCAD1, 
TBL1XR1, GRIK2, WDR36, SPG11, TBCD, PCDH10, LMBRD2, CDK10, GGA3, TBC1D9B, 
KIF22, GLTSCR2, PXDN, C17orf85, AC005154.6, PBX3, NTRK3, DTWD1, XPO4, SS18L1, 
PHF12, TNRC6C, REST, AC159540.1, CYP20A1, LPAR4, APBA2, HOMER1, SGK3, CDK11B, 
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CACNA2D1, WDR82, DHX57, ESRRA, C1orf27, NDE1, GLIPR1, D2HGDH, CCDC84, HECTD1, 
RP5-984P4.6, CSNK1G3, ANKLE2, CLK2, CCNB1, WDR75, RAP1GDS1, UBTF, ZNF276, 
PRRX1, TTF2, KIAA1244, CREB3L2, CTC-444N24.11, ARID1B, FOXK2, BAHCC1, RBM4, 
CTD-2017F17.2, PCNXL2, SCML1, AMDHD2, AFG3L2, DOT1L, SLC26A2, DFFA, PUS7L, 
RNF44, ISG20L2, MAN2B2, CEP290, RBM28, MGA, UBE3C, GALT, PTPRK, COL12A1, XPO6, 
ATP5A1, ICE1, SETD2, OTUD4, LRP8, LHX4-AS1, TCF3, CYP4V2, ZNF780B, FAN1, SPTAN1, 
SHPRH, SEC31B, PHF20L1, VPS13B, RNF157, TRIM33, RRN3, PYGB, SPRY4, CTSC, 
EPHA3, PCGF3, NBPF1, CREBBP, FAM13A, HDGFRP2, ABCC5, PHF10, MIA3, ANAPC7, 
PAPD7, COL11A2, NUFIP2, ZMYM4, BAZ1A, BAI1, RASSF8-AS1, AGAP2-AS1, DIS3, 
MAP4K4, ANK3, MBD6, HAPLN1, MTAP, SPTLC2, MEGF10, ATP11C, HD AC6, TM9SF3, 
ZNF131, UBA1, NLN, STRIP1, USP22, PYGO1, AKAP1, TSC1, HMGB2, SCAF4, CEP192, 
ZDBF2, ULK3, RECQL, RCC2, RBM15, GPATCH2L, NR1D2, ATR, CASP8AP2, CLK1, 
CCP110, DKC1, SUPT16H, FRYL, KCND2, GTF3C1, LDOC1L, AMOTL1, CBX8, SLC38A2, 
FBRSL1, KLHL18, SCAF11, KIAA0195, GPR82, USP21, RP11-571I18.4, SYT1, RBM12B, 
FBXO22, FAM73A, ENPP1, FRMD6, NCOA2, ITFG3, CABIN1, LOXL3, SH3YL1, LZTR1, 
SLC1A1, C21orf59, TNRC18, UBA6, ZBTB11, UNC80, CEP95, VPS45, CLSPN, ZNF124, 
PSMA2.1, TMEM192, CNTNAP3B, CTBP2, RP11-146D12.2, AMPD2, ATF6B, DDI2, WNK3, 
CEP295, SMEK2, ZNF37A, WASF3, RP5-1014D13.2, CROCCP2, CDC42BPB, PLCE1, OCLN, 
ITGA2, HCG18, FMNL3, SLC38A10, AGFG1, GPNMB, KLHL17, MORC2, OXCT1, MTOR, 
METTL21B, CTD-2228K2.7, ATP7A, MTHFD1L, RHPN1, RP4-717I23.3, EIF2AK2, TMEM260, 
PAWR, EPB41L3, ENTPD6, ENC1, ZNF493, FEM1B, STRN4, CASKIN1, CCDC136, ORC2, 
MAP3K7, SBF2, ZYG11B, SMN1, SOX5, CUL4A, SLC25A29, KIAA1328, MPDZ, DOCK7, 
RGL2, HIPK1, ELK4, SGSM2, SLITRK2, ZHX3, ARHGAP5, OTUD7B, SKIL, PFAS, PDK1, CPD, 
ICE2, NF1, MATR3.1, MCM7, MAGI2, N4BP2, SLC1A5, AK9, TMEM161B-AS1, SLC2A13, 
PRR14L, PRR14, C16orf13, TNKS2, CCDC57, TPT1-AS1, FAM208B, TP53BP2, CELF1, NIN, 
CLCN5, MAP3K5, TRIM11, EEF2K, SLC6A8, KIF13A, CXCL10, RANGAP1, ORC6, ST6GAL1, 
PAM, PLEKHG2, ATP5B, PHF1, AL589743.1, ZNF721, ZNHIT6, ST3GAL6, ZBED6, GAD1, 
MED15, HES4, RP11-1H8.5, NCKAP1, SLC25A46, NEDD1, NADK, GRIA4, NSUN6, CCT6P3, 
C2CD2, ETNK1, PMM2, AUTS2, GPR173, TLE4, LRRC58, ANKRD26, LCORL, CDS2, CTB -
50L17.8, CHD8, POLA1, KDM6B, EIF4G3, URB1, KDM5B, PHF21B, TTC28, CRKL, SMC4 , 
RNF217, C11orf30, DDX54, TMEM181, CAPN7, AC004951.6,  GCN1L1, EXOC6, FNDC3A, 
LRRK2, RFFL, GPRIN3, CAD, SUPT5H, RP11-87H9.2, TDRD3, GALNT13, TEX10, ZZEF1, 
DNAJA3, RAD50, RMND5A, PIBF1, AQR, KIAA0930, PHLDB1, SCN3A, UBR3, NSMF, 
VPS37B, RP1-78B3.1,  PWAR6, CLUHP3, SEC22C, B4GALNT4, MYO1C, ANKS6, PACSIN2, 
HEY2, HPS3, MYO19, ZBTB1, BAZ1B, CENPC, SCARF2, NUMA1, RASAL2, YES1, 
UBE2Q2P1, PRKRIR, EHD3, TAF1, MFSD10, RRAGB, PTPRJ, UTP20, STXBP4, NOP2, ZFY, 
EEA1, IGF2R, DOCK1, VPS13D, RP3-368A4.5, SUN2, SSH2, NOM1, RAD54L2, LRRC37A2, 
EGR2, ATP8B2, THADA, BTBD7, PDZD8, ZBTB25, ERN1, KDM4B, CSGALNACT1, UBE2Q1, 
XRCC2, THOC1, DDR2, ZNF84, SPATA6, MCM2, TTBK2, PRPF8, RP11 -70L8.5, WDR19, 
CSNK1E, AC141586.5,  CNOT1, RP11-513I15.6, KAT6B, KIAA0226, TRRAP, PTAR1, GFM1, 
FMR1, ABCD4, HIST1H1C, RBM26, DOCK10, PLXNA2, RN7SK, SMIM8, CNST, ARNT2, 
HERC5, INO80D, LRRFIP1P1, PABPN1, ING5, ILDR2, KIAA1033, EPM2AIP1, UBN2, NSUN2, 
U2AF1.1, ZSCAN29, SLC35A3, TRIM56, ABCA3, AEBP1, SNHG1, CMTR1, SFSWAP, TTTY15, 
CNKSR2, CEP104, SFXN4, OIP5-AS1, AP3B1, TTC3P1, PLCB4, TRAK1, SOX2-OT, SGSM3, 
MLXIP, CLOCK, SKIV2L2, USP8, LAMA5, COL4A5, PDCD11, ZSWIM8, TANC2, SNHG3, CCS, 
ZFHX4, IGDCC4, MIB1, TBX1, TRIM73, DAP3, MIR503HG, KIAA1549, PNKP, WDR26, 
NPHP3, RP11-258C19.7, VARS, AGPAT6, TCEB3, CEP131, TRIT1, GAL3ST4, TRABD, 
ADRBK1, ACBD3, KLHL42, ZNF692, NFKB1, COG8, WNK2, ASPSCR1, SETD8, VWA9, TP53, 
PHLPP1, SETDB1, MAD2L1, TSC2, TRAPPC13, DOCK4, DKFZp434P228, QTRTD1, 
SLC12A2, PPM1B, MCM3AP-AS1, ZNF236, SLC9B2, ZNF587, EZH1, UBXN2A, TNFRSF19, 
HAGHL, KLHL23, KANK1, GOLGA3, SLC7A11, E2F3, CSPG4, SMARCA4, RP11 -797A18.5,  
PELI1, LINC00963, CKAP5, CLEC2D, RP11-159D12.2, ZC3H12C, SFI1, UAP1L1, FAM91A1, 
BACH1, TIAM2, AAK1, CSNK1G1, NLGN2, SH3KBP1, PTPLB, CCNH, C3orf17, NRP2, GCC2, 
CPSF1, CNTN1, RRP1B, UBXN7, C5orf63, RP11-104N10.2, NARF, TMUB2, AGK, ANKIB1, 
CTD-2270P14.1, SPCS3, NR2F1, PEX26, SOS1, NR0B1, MAP4K5, MAMLD1, ENTPD4, 
LMBR1, MLLT10, ADCY6, EPT1, AC009133.12, ARHGAP17, SUZ12P1, SCAMP4, ZC3H7B, 
GTPBP3, UPF3A, FAM21C, OPHN1, PCF11, ACSS1, BRD8, ZCCHC3, CYTH2, HIS T2H2AC, 
RP11-421E14.2,  FAT1, LPIN2, ERCC5, SPICE1, C7orf73,  GDF11, SOCS7, SRCAP, PDS5B, 
SATB1, RRN3P1, ERBB4, TBC1D16, COPA, STX16, AFTPH, GATAD2A, MON2, DNM1, 
NUP98, PARP6, KLF7, ERO1LB, ZDHHC8, RABL2B, LINC01314, ZMIZ2, ZNF557, TBC1D10B, 
TIGD7, IRF2BP2, ZNF506, SCAND2P, CRYBG3, NUP155, CCDC137, C21orf58, COL19A1, 
ZNF320, PCID2, RAD17, PRDM2, ENGASE, CERK, GNPTAB, UBE3D, RP4 -605O3.4, PYGL, 
ZNF26, AGPAT4, KDM7A, MNT, STK4, ERBB2IP, CLIP1, SNX5, COBL, RBBP7, PTPRM, 
PPP2R3B, RP3-525N10.2,  PITRM1, FAM208A, KMT2B, MARK1, DISC1, CASKIN2, ZNF519, 
YIPF4, SPATA13, TARS2, WWP2, CCDC85C, RP11-571M6.7, WAPAL, RP11-138A9.1, 
ACTN2, DNAJC2, GGT7, TET3, U2AF2, TPM1, MTMR12, NUS1, TSEN54, RP11 -268G12.1, 
LINC00470, FAM193B, RP11-544A12.8, RHBDD3, ANKRD13B, MED1, ZNF407, DUXA P8, 
ATG9A, KLHL36, ODF2L, PPP1R12C, FAM27E3, RBMXL1, CAPN15, BCL11A, RP13 -638C3.4, 
RPS6KB2, CRTAP, KIAA1919, GARS, FAM160A2, TENM3, ZBED4, CEP170, QPRT, AKAP11, 
CWC27, XPC, CA12, AGAP1, FKBP10, NUP50, POLH, MDC1, CRHR1 -IT1, AMMECR1, 
KIAA0586, TTC39C, FAM20B, ZNF770, KIAA0141, ARHGAP10, ERLIN1, ZNF33A, CAMSAP1, 
ATP1A1, ASAP2, ZMYM3, SLC1A3, MCM3, CBWD5, PTCD2, FAM195A, PDE12, ADARB1, 
UFD1L, TPCN2, ZNF121, RASA1, RQCD1, EMC1, ZNF17, STAG2, DENND5B, MIA, AKT2, 
CNTNAP1, RABGAP1, KCTD7, MKI67, TTLL12, TAF9.1, CE P164, C19orf26,  RECQL5, DHFR, 
ADAM12, SCAPER, AP003900.6, MPPED2, PARP2, DONSON, LATS1, GAB1, EXOC1, 
FAM178A, ANKRD20A4, ADAMTS6, FAM179B, SEC24B, GTPBP2, TRIM27, ASPM, CDH11, 
ANKRD54, TTC37, pk, ZFYVE27, RPAP1, ZNF827, HBS1L, RRP7B, ZNF736, CDH10, 
SPATA5, STAT3, HSPG2, PLEKHG1, CHIC1, USP33, FOXO3, FAM13B, ZMYM1, SLC39A10, 
ENO2, ITGB5, CTD-2587M2.1, MCPH1, SNTB1, PDCD4, TRIP11, STXBP5, MREG, RP11 -
458F8.4, CSNK1D, GAB2, SURF6, RP11-545I5.3, SPG21, PSMA1.1, FNBP1, ZNF217, 
R3HDM1, TPX2, IKZF2, WBP5, PTPLAD1, CYLD, RP11-1114A5.4, TRIM25, RABL6, ATG2B, 
TMEM257, ZNF598, KIAA0232, ARFGAP3, ZNF316, ATXN7, NAF1, AC015813.1, IKBIP, 
USP24, IFRD2, FRMD4A, GTF3C4, RP11-226M10.3, EPHB3, NPTN, NPIPB4, TNPO1, SCAF8, 
TBC1D9, UBAP2, TRMU, AKT3, PM20D2, WDR27, PIK3C2A, CCDC15 0 
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PLP1, PTGDS, MBP, GSN, SELENOP, CLDN11, ANLN, LARP6, TF, PPP1R14A, IFIT3, NKX6 -
2, CRYAB, RNASE1, TMEM144, ABCA2, SGK1, QDPR, LGALS3BP, KCNMB4, CLDND1, MAG, 
RARRES3, GSTO1, HSPA2, HAPLN2, SHTN1, APLP1, AMD1, IFIT2, ENPP2, LHPP, SLC44A1, 
RAB40B, UGT8, PSAP, HLA-C, AMER2, HLA-B, NCOA7, ADIPOR2, OSBPL1A, CERCAM, 
AATK, SUN2, EDIL3, PLLP, CNP, PIP4K2A, B2M, ERMN, BCAS1, TUBB4A, TRIM2, DNER, 
S100A1, MOG, NDRG1, DOCK5, ALCAM, DPYSL2, GNAO1, CNTN2, SEMA3B, PDK4, PAQR8, 
EMC10, WNK1, RGCC, CDKN1C, ATP1B1, CBR1, VWA1, BEX1, GPRC5B, KIF1A, SPOCK3, 
RAPGEF5, SERINC1, HLA-E, CHADL, FAM102A, CFL2, ELOVL1, NACAD, B3GAT1, SIRT2, 
FAM107B, REEP3, MTUS1, AIF1L, SLC24A2, CTSD, PACS2, RNF13, ELOVL5, TPPP, 
NCAM2, AGFG1, NFASC, MAP4K4, FA2H, PXK, DNAJC6, DYNC1LI2,  B3GAT3, CD9, 
PLA2G16, FAIM2, DAZAP2, SLC48A1, PRNP, MPC1, CD82, NDRG2, SOX10, SFT2D1, 
SPTLC2, SPOCK1, ARHGAP21, ARL8A, CDK18, TTLL7, SLAIN1, SEPT4, SCG5, DDR1, 
LAMP1, SCD5, GTPBP6, NFKBIA, MTURN, RNF130, MYRF, DICER1, FGFR2, DST, ARL6IP5, 
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CAMK2N1, ANKH, GBP2, PLCL1, CTTNBP2,  VAMP5, PRUNE2, CAPNS1, PLXDC2, MBNL2, 
CNDP1, EFHD1, APBB1, HLA-A, SCARB2, SLC22A17, SYT11, SHISA4, MAL, GLUL, PTCD3, 
MYLIP, ANKS1B, FRMD4B, TFEB, HIPK2, BIN1, BEX4, RETREG1, SREBF1, FBXO7, SMOC1, 
YWHAZ, MAP7, PCSK6, APOL2, MAP1LC3B, SGMS1, CARNS1, EPB41L2 , SORT1, USP31, 
PPP2R2A, LAMP2, KLK6, SESTD1, CLASP2, MAP4K5, SVIP, HSD17B12, CD47, ARHGAP22, 
SCD, NF1, SASH1, FUT8, PADI2, KLF13, PPM1K, SERPINI1, PPA1, RFTN2, DNM3, 
MAPK8IP1, TSPAN15, PSMB9, OTUB1, NPC1, SNX30, PNKD, CPD, SPG7, SYNGR2, MAPK1, 
ARRDC2, SLC12A2, SNAPIN, PLPP2, NFE2L2, SAP30BP, CERS2, CERS4, PTP4A2, ERBB3, 
TMTC4, ATL1, SCN1B, MRPS18B, HSBP1, S100B, TMBIM4, PIM3, GRHPR, RNF216, RAB14, 
MVB12B, VRK2, STMN1, SEPT10, AIF1, ATP6V1A, APP, ZMAT3, EVI2A, CA2, MOBP, NISCH, 
FTH1, DCTN6, PCDH9, CD59, BEX2, OMG, ZNF652, RPS6KA5, PHLDA3, UBALD2, 
TMEM178A, PRKACB, DIP2C, C4orf48, ATP8A1, TGOLN2, VXN, PRDX1, ADAR, TRAPPC10, 
RAB30, LIMCH1, NXPE3, CARD19, SOX8, SLC25A13, PPP4R3B, RDX, MPG, RAPGEF2, 
WDFY3, PDZD8, TBC1D12, SH3GL3, SMPD1, KCTD3, SPP1, STRN, PLEKHB 1, PSMD2, 
KANK1, COMMD4, HHIP, PKP4, CDH19, IRF1, NCBP3, NIPAL3, MEF2A, TNRC6C, PTPN13, 
SLC31A2, KIF13B, CYB5B, HBB, NINJ2, IGSF8, C11orf96, FEZ1, RNH1, LINC00844, TCEA2, 
TAOK1, PTMA, GPR37, TMEM208, ZDHHC20, HCN2, ZEB2, SQSTM1, TPRN, ATOX1, 
HERC3, HDAC5, EML2, KIF1BP, CTNNBIP1, NKAIN4, USP54, DAPK3, PTPRD, EEA1, 
ARHGDIA, SLC22A23, PDE1C, TTC37, ZBTB16, TLN1, COBL, SWI5, MIDN, LRCH3, ACACA, 
ITPKB, PARP14, MGRN1, LEPROT, HBA1, SH3GLB2, JOSD2, CCDC115, BTRC, DNM1L, 
TMED7, PLEKHH1, AK2, COX5B, LGMN, TTYH2, MFGE8, ARL2, ANKRD13A, NT5DC1,  
DAAM2, PEX16, RTN1, FMNL2, MAGT1, SEMA4D, PPP1R15B, PIGP, PRPF31, RBX1, 
NCOA1, KCNH8, RNF126, TAPBPL, OGFOD3, ERBIN, AC100810.1,  PEF1, MAGOHB, 
NDUFS1, INPP5F, TTLL5, BACE1, ATCAY, ZDHHC2, ANAPC13, MFSD12, UBR3, NDFIP2, 
JAK1, GDAP1, GPR155, KLHL32, AKT3, IDH3G, EMILIN2, N4BP2L1, SLC23A2, AGPS, YBEY, 
ZDHHC14, GPM6B, DPYSL5, MLLT3, MFSD6, ITSN2, PPT1, SLCO3A1, PDXK, COQ4, GNAI1,  
GTDC1, AK6, TRIP11, MOB3B, ISG20, FAM120A, SNAPC5, ST18, RNF103, ZFP90, GPNMB, 
CAMKMT, NUDT16L1, RAB33A, TNR, PIK3IP1, ZDHHC17, PRPF8, FLNB, SLCO1A2, 
VPS26C, AC009041.2,  NUP98, SPHK2, MIGA1, CTBP1, LPAR1, SYNJ2, MON2, HERC1, 
CLCN4, EPS8, FLYWCH2, POGK, PNPLA2, CLTA, TMEM125, PBDC1, PRKCE, RGL1, 
DCBLD2, OLIG2, LRRC1, WDFY2, CPSF2, GPS1, PTDSS2, NDST1, MPDU1, M PDZ, ARAP2, 
NLGN1, PLA2G4C, AGTPBP1, HBEGF, IRF9, SCAF8, RAD51B, MED27, RTN4, REPS2, 
ASIC1, IP6K1, ATP9A, MAFF, SURF2, FTL, DMAP1, TCF7L2, SEC61A1, NRBP1, NRDE2, 
NKX2-2, C11orf71, HIBCH, LUC7L, GPSM1, IFI16, FIS1, GAB1, NUMA1, MRPS28, ACTR1B, 
UCK1, HACL1, ARL2BP, SLC39A11, WDPCP, PHF19, MBTPS1, GK5, DSTYK, MRPS9, 
PEX19, ATMIN, DLL3, SECISBP2L, EXOC6B, SLC25A46, IPO13, CHST11  
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CD74, HLA-DRA, FTL, HLA-DRB1, APOC1, SPP1, CYBA, HLA-DPB1, C1QB, APOE, AIF1, 
HLA-DPA1, C1QA, TYROBP, MT1G, NPC2, SAT1, NUPR1, HLA-B, B2M, S100A11, CTSD, 
RNASET2, C1QC, HLA-C, LAPTM5, S100A4, CTSB, HLA-E, HSPA1A, DUSP1, SOD2, 
ALOX5AP, RGS1, NFKBIA, PSAP, XBP1, SRGN, TXNIP, CAPG, TSC22D3, FTH1, FCER1G, 
CTSS, ARHGDIB, HMOX1, CD68, FCGRT, VAMP8, MS4A7, SM AP2, GLRX, A2M, CXCR4, 
CD37, C3, TPT1, RPS6, KLF6, GRN, LY96, MAFB, HLA-DMA, S100A9, PLXDC2, TMSB4X, 
CXCL8, HERPUD1, GPNMB, BTG1, RPS12, SAMSN1, CTSC, RGS10, ITGB2, COTL1, 
PYCARD, MYL12A, CD53, SH3BGRL3, CCL3, TMEM176B, CORO1A, ST6GAL1, KLF2, 
MS4A6A, TYMP, RPS24, LIMS1, TMIGD3, PDK4, BIN1, LITAF, SUMO3, CD52, CSTB, 
SLCO2B1, REL, RPL22, LYZ, MS4A4A, FKBP11, GPR34, HCST, C4orf3, IFNGR1, CEBPB, 
CD14, HLA-A, SERPINB1, GYPC, TREM2, RPL12, LGALS1, RPS27, RPLP1, YPEL5, BST2, 
RPL13, DAB2, ARF6, SORL1, RPS3, CLIC1, GLIPR1, RPL26, CEBPD, RPL21, MEF2A, 
PABPC1, TNFRSF14, HLA-DQB1, HCLS1, LILRB4, IRF1, FCGR2A, RHOA, FUCA1, S100A8, 
FXYD5, SKAP2, ARRB2, IGSF6, LCP1, VIM, RPS29, OTUD1, LST1, ARPC1B, CFD, GPR183, 
CREG1, PSME2, GM2A, FKBP5, TMSB10, MGST2, MSR1, TNFAIP3, FAU, LGALS9, LTC4S, 
ANXA2, CHCHD10, RPL27A, TPM3, PSME1, FYB1, SLA, RPS15A, GIMAP4, RPL11, 
TMEM219, BRI3, CPVL, FCGR3A, GIMAP1, CTSH, RPL34, IER3, GIMAP7, ISG20, NCK2, 
ADAP2, PARP14, APBB1IP, RPL37, RPS23, EEF1B2, RCSD1, FCGR1A, HLA -DQA1, IL1B, 
YBX3, SERF2, IL18, RPL23A, RPS7, CD163, SERPINA1, WASF2, CSF1R, ACAA2, RPL39, 
HAVCR2, EIF1, CD83, HEXA, CD4, PDCD4, RPL10, LINC01736, RPL19, THEMIS2, CD164, 
CDKN1A, RPS25, RPS4X, YPEL3, TGFB1, MRPL18, MRPS6, RPL41, LAIR1, PIM3, FCGR1B, 
ARPC3, OLR1, CARD16, RPS18, IKZF1, CD84, RPL14, CYBB, NANS, EMB, CASP8, PARVB, 
RNASE6, NACA, RPS28, PPP1R10, GALM, GAS6, PELI1, SLC11A1, PLAUR, RPS27A, 
CASP1, MERTK, DIAPH2, VSIG4, FMNL1, RPS14, BHLHE41, GMFG, RPL3, RPL28, LGMN, 
NCF2, EVI2B, LCP2, USP53, RAB20, PER2, ARHGAP24, TPST2, GCHFR, CSTA, ACSL4, 
NAAA, ADAM28, RPS8 

(*) Top 100 CAPE selected genes 
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