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Abstract

Lattice QCD simulations strive for higher precision. Here, we study two critical points in the
generation of high precision lattice results.

In the first part, we calibrate the lattice spacings of QCD simulation with 2 + 1 flavors of
dynamical fermions. We incorporate new measurements and use additional models for the chiral
and continuum extrapolations to refine the result obtained in 2017 [1].

The second part focuses on simulation algorithms. We test an algorithm which promises
faster solution of the Dirac equation. We analyze the application of the Finite Element Tear
and Interconnect (FETI) algorithm in the context of lattice QCD simulations and compare it
to other state-of-the-art domain decomposition solvers. We examine various preconditioners and
their effects on the convergence of the solution.
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Zusammenfassung

Gitter QCD strebt nach höherer Präzision. Hier untersuchen wir zwei kritische Punkte, die zur
Genauigkeit von Gitter-Ergebnissen beitragen.

Im ersten Teil kalibrieren wir Gitterabstände von QCD Simulationen mit 2 + 1 Arten (fla-
vor) dynamischer Quarks. Dabei nutzen wir neue Messungen und eine mehrere Modelle für den
chiralen- und Kontinuumslimes, um die Ergebnisse der 2017 durchgeführten Studie [1] zu ver-
bessern.

Der zweite Teil befasst sich mit Simulationsalgorithmen. Wir testen einen Algorithmus,
der eine schnellere Lösung der Dirac-Gleichung verspricht. Wir analysieren die Anwendung des
FETI-Algorithmus (Finite Element Tear and Interconnect) im Zusammenhang mit Gitter-QCD-
Simulationen und vergleichen ihn mit anderen modernen Lösungsverfahren aus der Klasse der
Domänendekompositionslösern. Wir untersuchen verschiedene Präkonditionierer und ihre Aus-
wirkungen auf die Konvergenz der Lösung.

ii



Contents

Introduction 1

1 Lattice QCD 4
1.1 Gauge Action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2 Wilson Fermions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.1 Pseudofermion Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

I Scale Setting 11

2 Introduction 12

3 Simulation 16
3.1 Ensembles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2 Reweighting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3 Observables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3.1 Gradient Flow Scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3.2 Correlators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3.3 Pseudoscalar Mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3.4 PCAC Mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3.5 Pseudoscalar Decay Constant . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.4 Mass Derivatives of Observables . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.5 Finite Volume Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.6 Error Analysis and Autocorrelations . . . . . . . . . . . . . . . . . . . . . . . . . 26

4 Measurements 27
4.1 Flow Scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2 Correlators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.3 Measurement of Pseudoscalar Observables: Plateau and Fit Ranges . . . . . . . . 32

4.3.1 Pseudoscalar Mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.3.2 PCAC Mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.3.3 Pseudoscalar Decay Constant . . . . . . . . . . . . . . . . . . . . . . . . . 37

5 Scale Setting 38
5.1 Dimensionless Observables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.2 Chiral Trajectory and Mistuning . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.2.1 Direction of the Derivative . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.2.2 Modeling the Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

iii



5.3 Extrapolating Lattice Measurements . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.3.1 Chiral Extrapolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.3.2 Continuum Extrapolation . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.3.3 Combined Extrapolation Results . . . . . . . . . . . . . . . . . . . . . . . 47

5.4 Finding the Physical Point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.5 Determination of the Scale and its Uncertainties . . . . . . . . . . . . . . . . . . 53
5.6 Lattice Spacing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6 Conclusion 58

II FETI Algorithm 61

7 Introduction 62

8 Linear Algebra Solvers 63
8.1 Krylov Subspace Solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

8.1.1 Steepest Descend and Conjugate Gradient . . . . . . . . . . . . . . . . . . 64
8.1.2 Minimal Residual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
8.1.3 Generalized Conjugate Residue . . . . . . . . . . . . . . . . . . . . . . . . 66

8.2 Preconditioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
8.2.1 Preconditioned GCR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

8.3 Deflation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

9 Domain Decomposition Solvers 72
9.1 Schwarz Alternating Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

9.1.1 Deflated Schwarz Alternating Procedure . . . . . . . . . . . . . . . . . . . 74
9.1.2 Deflated SAP as a Preconditioner . . . . . . . . . . . . . . . . . . . . . . . 75

9.2 Finite Element Tear Interconnect Algorithm . . . . . . . . . . . . . . . . . . . . . 76
9.2.1 Lattice Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
9.2.2 Continuity Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
9.2.3 An Explicit Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
9.2.4 Block Quantities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
9.2.5 FETI System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
9.2.6 Preconditioners for the FETI Algorithm . . . . . . . . . . . . . . . . . . . 85
9.2.7 Improvements to the FETI Algorithm . . . . . . . . . . . . . . . . . . . . 86

10 FETI in Lattice QCD 88
10.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

10.1.1 Problem Sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
10.1.2 Solvers for the FETI Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 91

10.2 The λ System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
10.2.1 FETI as Direct Solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
10.2.2 FETI as Preconditioner . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

10.3 The Block System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
10.3.1 Explicit Solvers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
10.3.2 Comparing Iterative Solvers . . . . . . . . . . . . . . . . . . . . . . . . . . 99
10.3.3 Weights in the Dirac Operator . . . . . . . . . . . . . . . . . . . . . . . . 101
10.3.4 Diagonal Preconditioners . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
10.3.5 Conditioning of the Block System . . . . . . . . . . . . . . . . . . . . . . 102

iv



10.3.6 Deflation of the Block System . . . . . . . . . . . . . . . . . . . . . . . . . 103

11 Conclusion 106

A Appendix 109

v





Introduction

The standard model of particle physics combines three of the four fundamental forces in one
theoretical framework. It describes the electromagnetic interaction as well as the so called strong
and weak forces. The only interaction not included in the standard model is gravitation, which
is orders of magnitude weaker for all but the most extreme cases. The standard model consists of
three generations of quark pairs, three generations of leptons and their corresponding neutrinos,
four gauge bosons that act as force carriers and the Higgs boson. The model depends on 19
parameters among which are the six quark and three lepton masses and three gauge coupling
strengths. The intrinsic properties of standard model particles are determined by symmetries of
the underlying theory.

Complex interactions between these elementary and composite particles are observed in col-
lider experiments. To further the understanding of these interactions, experimental as well as
theoretical advancements are needed. While experiments rely on measurements, theoretical re-
search works to develop aspects of the interaction from first principles of the underlying theory.
These aspects include the structure and parameters of composite particles and coupling strengths
of the involved interactions. If we derive these quantities from theory they can be used as inputs
rather than results of subsequent experiments. The goal of theoretical as well as experimental
studies is to test the standard model, demonstrate its limits and look for physics beyond the
standard model.

In the standard model, the particles are described by fields ϕ in the four dimensional space-
time. Particle physics phenomena can be expressed in terms of correlation functions or n-point
functions of these fields. Commonly, the n-point functions can not be calculated analytically and
need to be approximated. This is the case for the standard model.

Observables are calculated in the path integral formalism. After the Wick rotation to imag-
inary times the exponent in the integral usually1 becomes real. The integral is now called the
Euclidean path integral.

⟨O⟩ = Z−1

∫︂
D [ϕ] e−S(ϕ)O(ϕ), Z =

∫︂
D [ϕ] e−S(ϕ) (1)

The integral of the desired operator is taken over all involved fields ϕ at all points in space-time.
The operator is weighted by the Boltzmann weight e−S defined in terms of the action S(ϕ) of
the theory. The integral over all fields at all points in space-time is not properly defined. It can
be expanded in powers of the couplings and defined and regularized for each term. Alternatively,
the integral can be defined by restricting the theory to a lattice that is introduced below. These
two approaches separate the phenomena described by the standard model into two categories:
perturbative and non-perturbative phenomena.

In perturbation theory (PT) the path integral is expanded in powers of the coupling constants.
Observables are now expressed as an asymptotic series in powers of the couplings. Clearly

1The exponent in the Euclidean path integral is real for QCD without the θ-term.
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Introduction

such an approximation only holds if the couplings are sufficiently small. This is given for the
electromagnetic and weak interaction, where perturbation theory is very powerful. A multitude of
particles and their parameters have been successfully described by perturbation theory and tested
by experimental results. Arguably most impressively, the theory prediction for the anomalous
magnetic moment of the electron, calculated using PT, matches the experimental value with a
precision of 13 orders of magnitude [2].

QCD exhibits a phenomenon called running coupling. The QCD coupling varies for different
energies. For high energies the coupling is small and hence the interaction between quarks is
weak. This characteristic is called asymptotic freedom and was discovered in 1973 [3]. In this
case the theory can be solved perturbatively. For small energies, on the other hand, the coupling
becomes large and the interaction strong. This leads to the confinement of quarks [4, 5] in
composite structures called hadrons. At low energies, quarks can combine in triplets to create
color neutral Baryons. The most prominent Baryons are the proton and the neutron. They can
also combine in a quark anti-quark bound state to form Mesons such as the Pion or the Kaon.

To study the QCD phenomena and strongly interacting objects, a non-perturbative approach
is required. The only ab-initio approach known to date is lattice QCD. The fundamental idea is
to solve the theory approximately by numerical evaluation of the path integral shown in eq. (1).
In order to numerically evaluate the path integral the theory is modified. The spacetime is
discretized, meaning a four dimensional regular square lattice is defined. Fermion fields are then
restricted to exist only on the lattice sites. Gluon fields are described by gauge fields defined
on the links connecting neighboring lattice sites. The lattice regularizes the theory and reduces
the degrees of freedom of the path integral. The integral over the spacetime is now transformed
into a finite sum over lattice points. The path integral can now be statistically sampled using
a Monte Carlo process [6–8]. In this way, observables like the mass of the proton that can be
expressed in terms of the fields ϕ and correlation functions of the fields are evaluated from first
principles.
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Figure 1: Development of the pre-
cision of lattice QCD measure-
ments over the last decade. We
show the uncertainty of the aver-
aged measurements of the strange
quark mass [9–28]

Lattice QCD methods have been successfully used to
study non-perturbative phenomena such as the quark masses
[12, 15, 29–31], hadron masses, decay constants and form
factors [32–37], CKM matrix elements [38–40], the strong
coupling constant [41–43], and many more. An overview of
recent lattice QCD results is given in [9]. Currently, the
most precise determinations of the strong coupling constant
αs and the fundamental energy scale of QCD ΛQCD stem
from lattice QCD simulations [9, 14, 42].

The precision of lattice QCD measurements is steadily
increasing. Figure 1 shows the development of the relative
errors of the strange quark mass over the past decade. The
values are averaged over a number of lattice QCD determina-
tions. 2021: [9, 18, 25–27], 2019: [18, 25–28], 2016: [10–15],
2013: [11, 12, 16, 17], 2011: [11, 12, 14, 19–24]. Over the last
decade we have seen a fivefold decrease in the uncertainty.

The QCD contributions to the anomalous magnetic mo-
ment of the muon are currently an active field of research
in the lattice community [44–48] because of possible discrep-
ancies between theory and experiment [49–51]. Here, high
precision results from lattice QCD simulations are essential in increasing the overall accuracy
of the theoretical prediction. Additionally, questions about the structure of the proton [52] and
other parton distribution functions [53, 54] are still challenging in the lattice QCD framework.
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Further advancements in the lattice QCD methods and algorithms are needed to make progress
in these fields.

In an effort to further increase the precision of lattice QCD results we consider two aspects
of lattice simulations that are critical for the precision of the measurements.

Scale Setting
One key parameter of lattice theory is the lattice spacing a, i.e. the distance between two neigh-
boring lattice sites. On the lattice all dimensionful quantities are compared to the lattice spacing.
Consequently, the values of these measurements are only known in physical units once the lattice
spacing is known. The process of determining the lattice spacing and thus the reference scale of
the simulation is called setting the scale. This is a critical step for the precision of lattice QCD
simulations as all lattice observables need to be converted to physical units using the reference
scale. During the conversion the lattice observables inherit the uncertainty of the scale. For this
reason it is advantageous to calculate this scale to high precision. A suitable choice of the scale
setting quantity, the gradient flow scale t0, has been established in previous analyses [1, 55–58].
The gradient flow scale t0, defined later, is an artificial quantity that can not be measured but
calculated on the lattice. In part I of this thesis, we focus on the precise determination of the
scale. We update the determination from 2017 in [1], since new measurements and ensembles
have become available. In contrast to the previous analysis, we combine measurements from
different groups [59–63]. These measurements include ensembles with finer lattice spacings than
previously used and one ensemble at the physical point. We also incorporate new measurements
of the quark mass derivatives that are needed to shift the measurements to the correct chiral
trajectory. Additionally, we compare several extrapolation techniques. With these improvements
we are able to increase the precision of the scale by about 20% compared to the determination
in [1]. We also boost the confidence in the value of the scale and its uncertainty.

Solution of the Dirac System
Lattice QCD simulations are often limited by the computational resources that are available.
The simulation of ever finer lattices and more critical ensembles challenges even the most power-
ful computers. The most computationally intensive part of the simulation is the solution of the
fermion system given by the Dirac operator. The Dirac operator is a large, sparse linear oper-
ator whose dimension regularly exceeds 107 to 109 making it challenging to handle even on the
most advanced machines. The problem is further exacerbated by the large condition number of
the system. Even with current state-of-the-art preconditioned domain decomposition algorithms
[64, 65] lattice QCD simulations are often limited by the inversion of the Dirac operator. Any
improvements in the simulation algorithms will not only improve the statistics that we are able
to produce in a given time, but also extend the feasibility of new simulations. For this reason, in
part II of this thesis, we consider the inversion of the fermion system. The Finite Element Tear
and Interconnect (FETI) algorithm has shown success in two- and three-dimensional engineering
applications [66–68]. It is part of a class of domain decomposition solvers that offer improved
scalability compared to global solvers as the size of the system grows. In this work, we test its
applicability to the four-dimensional fermion system. We investigate the FETI algorithm as a
direct solver and as a preconditioner to a global solver. While we were able to compete with
current implementations of the Schwarz Alternating Procedure (SAP), we could not success-
fully incorporate deflation techniques [69, 70] that have proven instrumental for efficient solver
algorithms.

3



1 | Lattice QCD

QCD is the theory of the strong interaction. It describes the interaction between six flavors of
quarks mediated by force carriers called gluons. An overview over Quantum Chromodynamics
and in particular their lattice formulation of found in [71]. The interactions are governed by the
following continuum Lagrangian.

LQCD =

Nf∑︂

f=1

ψ
f
(x)
(︁
γµ (∂µ + iAµ(x)) +mf

)︁
ψf (x) +

1

2g2
tr (Fµν(x)Fµν(x)) (1.1)

The Grassmann valued variables ψ
f
(x), ψf (x) describe the different flavors of quarks. Gluons

are represented by the gluon field Aµ(x) and the field strength tensor

Fµν(x) = ∂µAν(x)− ∂νAµ(x) + i [Aµ(x), Aν(x)] . (1.2)

The Lagrangian and the Euclidean action S =
∫︁
d4xL separate into the fermionic and gluonic

components.

SQCD = SF + SG (1.3)

SF =

∫︂
d4x

Nf∑︂

f=1

ψ
f
(x)
(︁
γµ (∂µ + iAµ(x)) +mf

)︁
ψf (x) (1.4)

SG =

∫︂
d4x

1

2g2
tr (Fµν(x)Fµν(x)) (1.5)

We are interested in the expectation values ⟨X⟩ of a function X of the spinor and gluon
fields. In quantum field theories such expectation values are calculated using the Euclidean path
integral formalism.

⟨X⟩ = 1

Z

∫︂
D [A]D [ψ]D

[︁
ψ
]︁
e−SQCD[A,ψ,ψ]X

[︁
A,ψ, ψ

]︁
(1.6)

The integral spans over all gluon and fermion fields.
In perturbation theory the path integral is expanded in powers of the coupling. Because of

the running coupling of the strong interaction there are regimes where this expansion in powers
of the coupling is not applicable.

Lattice QCD is a perturbation free approach and serves as a way to evaluate the theory in
the strong coupling regime. In lattice QCD the spacetime is discretized. A four-dimensional,
hypercubic lattice is defined on which the field variables reside. Quarks described by the fermion
fields ψ and ψ reside on the lattice sites x. Gluons conveying the interaction between quarks

4
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ν
ψx Aµ(x)

A†
ν(x)

a

Figure 1.1: Schematic of the lattice geometry in the (µ, ν) plane. Fermion fields ψ(x) reside on
the lattice sites, gluon fields Aµ(x) are defined on the links connecting neighboring sites. The
lattice is extended in all directions and continued periodically.

are defined on the links connecting the lattice points. They are indicated by the gluon fields
Aµ(x). The index µ indicates the direction of the link. A two-dimensional cut of the lattice is
shown schematically in fig. 1.1. The interaction of quark fields on the lattice sites is limited to
neighboring sites along the links. The variable x = (x0, x1, x2, x3)

T labels the lattice sites, while
µ = 0, 1, 2, 3 and ν = 0, 1, 2, 3 indicate the directions on the lattice. The temporal and spacial
dimensions are restricted such that 0 ≤ x0 < aT and 0 ≤ x1,2,3 < aL. The volume of the lattice
is V = a4T ×L3. At the boundaries the lattice is either continued (anti)periodically or subjected
to open [72, 73] or Schrödinger functional [74–77] boundary conditions.

The transformation of the continuum theory to a lattice theory serves several purposes. The
lattice spacing a limits the shortest distances and thus acts as a UV regulator. The finite extent
of the lattice defines an infrared cutoff. The finite number of lattice points allows us to simulate
the theory.

To fully transform the continuum theory onto the lattice we need to take the following steps:

1. Introduce discretized lattice fields.

2. Express the actions in terms of these fields.

3. Translate the continuum functions into lattice functions.

4. Evaluate expectation values of operators on field configurations weighted by the Boltzmann
factor exp (−Slat).

In the first step we restrict the fields to the lattice sites and links respectively. For the lattice
representation of the interaction it will be necessary to define the gauge fields Uµ(x) ∈ SU(3)

Uµ(x) = exp (iaAµ(x)) . (1.7)

The spinor fields are represented by Grassmann-valued variables ψ(x) and ψ(x) that reside on
the lattice sites.

In step 2 and 3 we express the actions and other operators in terms of these lattice fields.
Derivatives in the operators are replaced by their finite difference counterparts

∂µψ(x) =
ψ(x+ aµ̂)− ψ(x)

a
+O (a) , (1.8)

5



CHAPTER 1. LATTICE QCD

where µ̂ indicated a unit vector in the direction µ.
It is important to note that the correspondence between the lattice and continuum actions

is not unique. A multitude of lattice actions can result in the same continuum action once the
continuum limit is taken. The choice of lattice actions and their continuum limits are presented
in sections 1.1 and 1.2.

Finally, in item 4, we evaluate the path integral from eq. (1.6). The integral is sampled on a
finite number of configurations of the fields. These configurations are generated using a Markov
process [78]. Using the set of configurations sampled according to the Boltzmann distribution
e−Slat we approximate the expectation value by

⟨X⟩ = 1

Ncnfg

Ncnfg∑︂

i

Xi (1.9)

1.1 Gauge Action

A common formulation of the gauge action that determines the gluonic components of the theory
is the Wilson gauge action [3]. It is defined by the sum of all plaquettes on all lattice points x.

SG =
1

g20

∑︂

x

∑︂

µ,ν

tr (1− Uµ,νP (x)) (1.10)

The orientation of the plaquette is indicated by the directions µ, ν (see fig. 1.1). The plaquette
is calculated from the gauge links according to

Uµ,νP (x) = Uµ(x)Uν(x+ aµ̂)U−µ(x+ aµ̂+ aν̂)U−ν(x+ aν̂)

= Uµ(x)Uν(x+ aµ̂)U†
µ(x+ aν̂)U†

ν (x).
(1.11)

If we insert the definition of the gauge link from eq. (1.7) and apply the Baker-Campbell-Hausdorff
formula we get a relation between the plaquette Uµ,νP (x) and the field strength tensor Fµν(x).

Uµ,νP (x) = exp
(︁
a2Fµν(x) +O

(︁
a3
)︁)︁

(1.12)

= 1 + a2Fµν(x) +
a4

2
F 2
µν(x) +O

(︁
a5
)︁

(1.13)

Inserting and realizing that the field strength tensor is traceless we arrive at

SG =
a4

2g20

∑︂

x

∑︂

µ,ν

tr
(︁
F 2
µν(x)

)︁
+O

(︁
a2
)︁
. (1.14)

If we take the continuum limit a4
∑︁
x →

∫︁
d4x we arrive at the continuum action in eq. (1.5).

1.2 Wilson Fermions

A lattice formulation for fermions is introduced in [3]. The action for Wilson fermions is derived
from the discretization of the derivatives in eq. (1.4). It is defined as

SW = a4
∑︂

x,f

ψ
f
(x)

1

2

[︂
γµ
(︁
∇µ +∇⋆µ

)︁
+ 2mf

0 − a∇⋆µ∇µ
]︂
ψf (x) = a4

∑︂

x,f

ψ
f
(x)Df

Wψ
f (x) (1.15)

6



1.2. WILSON FERMIONS

Here we have introduced the Wilson Dirac operator

Df
W =

1

2

[︂
γµ
(︁
∇µ +∇⋆µ

)︁
+ 2mf

0 − a∇⋆µ∇µ
]︂
. (1.16)

For convenience we have omitted the color and Dirac indices for the fields as well as the Dirac
operator. The flavor f affects the Dirac operator only through the bare quark mass mf

0 .
In order for the Dirac operator to be covariant under gauge transformation we define the

covariant derivatives at the point x1

∇µψ(x) =
1

a
[Uµ(x)ψ(x+ aµ̂)− ψ(x)] (1.17)

∇⋆µψ(x) =
1

a

[︁
ψ(x)− U†

µ(x− aµ̂)ψ(x− aµ̂)
]︁

(1.18)

that include the gauge links Uµ(x) and U†
µ(x− aµ̂).

The first and second terms in the Dirac operator stem directly from the discretization of
the theory. The Wilson term, including the double derivative, is defined only on the lattice. It
vanishes in the naive continuum limit as a → 0. It is included to remove so-called doublers.
Doublers are extra poles in the propagator that correspond to additional, unwanted fermions in
the continuum limit. More information can be found in [71, 79]. The chiral symmetry

ψ → ψ
′
= ψeiαγ5 (1.19)

ψ → ψ′ = eiαγ5ψ (1.20)

ψDψ → ψ
′
Dψ′ = ψ

1

2
γµ
(︁
∇µ +∇⋆µ

)︁
ψ + e2iαγ5ψ

(︂
mf

0 −
a

2
∇⋆µ∇µ

)︂
ψ (1.21)

is broken by the Wilson term, even in the case of zero quark mass mf
0 = 0. The symmetry is

only restored in the continuum limit.
The Wilson term also introduces O (a) lattice artifacts, where without the Wilson term the

artifacts start at O
(︁
a2
)︁
. These artifacts have been studied [80–82] in order to improve the lattice

theory. In [83] Sheikholeslami and Wohlert executed the Symanzik improvement program [80,
81] for the Wilson fermion action and introduced an improvement term.

The improved fermion action SF is made up of the Wilson action SW [3] shown in eq. (1.15)
and the O (a) improvement term SI.

SF = SW + SI (1.22)

SI = cswa
5
∑︂

x

∑︂

µ<ν

ψ(x)
1

2
σµν F̂µνψ(x) (1.23)

The improvement term uses the clover definition of F̂µν [84]:

σµν = [γµ, γν ] /2i (1.24)

F̂µν(x) =
−i
8a2

(Qµν(x)−Qνµ(x)) (1.25)

Qµν(x) = Uµ,νP (x) + Uν,−µP (x) + U−µ,−ν
P (x) + U−ν,µ

P (x) (1.26)

Including the improvement term, the full Dirac operator takes the form

Df = Df
W + csw

a

2

∑︂

µ>ν

σµν F̂µνδx,y (1.27)

1Here the derivative ∇ψ is evaluated at the point x. A more thorough notation would be [∇ψ] (x).
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CHAPTER 1. LATTICE QCD

The Dirac operator is often expressed in terms of the κ parameter

κf =
1

2amf
0 + 8

. (1.28)

Rescaling the fields ψf and ψf by the constant factor
√
aκf we can write the applications of the

Dirac operator as

Dfψf (x) =
(︁
1 + cswa

2κf
)︁
ψf (x)−

κf
∑︂

µ

(γµ − 1)Uµ(x)ψ
f (x+ aµ̂) + (γµ + 1)U†

µ(x− aµ̂)ψf (x− aµ̂). (1.29)

In typical simulations not all fermion flavors are considered and the sum over the flavor index
f in eq. (1.15) is truncated. Details of the simulation employed here are found in chapter 3.

In part II it will be useful to consider the matrix structure of the Dirac operator. The
structure is seen more clearly in the following equivalent definition using the Kronecker Delta to
show the band structure of the matrix

Df (x, y) =
(︁
1 + cswa

2κf
)︁
· δx,y−

κf
∑︂

µ

(γµ − 1)Uµ(x) · δy,x+aµ̂+

κf
∑︂

µ

(γµ + 1)U†
µ(x− aµ̂) · δy,x−aµ̂.

(1.30)

1.2.1 Pseudofermion Method
In the fermion path integral formalism we have to evaluate integrals of the form

ZF =

∫︂
D [ψ]D

[︁
ψ
]︁
exp

(︁
−S[ψ,ψ]

)︁
=

∫︂
D [ψ]D

[︁
ψ
]︁
exp

⎛
⎝−

∑︂

f

ψfDfψf

⎞
⎠ . (1.31)

The fields ψ and ψ are Grassmann-valued. Non commuting Grassmann variables are difficult to
deal with in numerical simulations. We can, however, integrate over the Grassmann variables to
get

ZF =
∏︂

f

det (Df ) . (1.32)

If we simulate two quark flavors with degenerate mass we can simplify the expression

ZF = det (Du) det (Dd) = det (γ5Dγ5) det (D) = det
(︁
D†D

)︁
, (1.33)

since det (γ5) = 1. Note that D†D is positive definite. In the pseudo fermion method devised in
[85] the fermion determinant is evaluated using the integral over complex vectors ϕ.

det
(︁
D†D

)︁
=

1

Zϕ

∫︂
D
[︁
ϕ†
]︁
D [ϕ] exp

(︂
−ϕ†

(︁
D†D

)︁−1
ϕ
)︂

(1.34)

Zϕ =

∫︂
D
[︁
ϕ†
]︁
D [ϕ] exp

(︁
−ϕ†ϕ

)︁
(1.35)

The vector ϕ is made up of four complex spinor components that consist of complex three vectors.
In total each spinor contains 24 degrees of freedom.
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1.2. WILSON FERMIONS

The pseudo fermion action
SPF = ϕ†

(︁
D†D

)︁−1
ϕ (1.36)

can now be added to the gauge action and sampled using Monte Carlo techniques [78]. We have
avoided the necessity to numerically implement Grassmann variables. We do, however, need to
solve the hermitian Dirac system ϕ = D†Dχ for every evaluation of the pseudo fermion action.

In the following we will refer to spinors with the letter ψ, as it is common. Note that instead
of a vector of Grassmann variables ψ is a complex pseudo fermion vector.
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Part I

Scale Setting
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2 | Introduction

Lattice QCD simulations as described in chapter 1 are only able to provide estimates of di-
mensionless quantities. To compare results between different simulations and obtain results in
physical units the scale of the lattice simulation needs to be set using experimental input. A
comprehensive overview of scale setting in lattice QCD simulations can be found in [55]. Several
key points are repeated here.

Combinations of lattice observables with a well-defined continuum limit are the predictions
of the theory. We can for example chose to compare all masses to the mass of the proton and
calculate ratios

Ri =
mi

mproton
(2.1)

on the lattice. In contrast to the mass mi itself, the ratio has a well-behaved continuum limit

Rcont
i = lim

a→0
Ri (2.2)

We can then use an experimental measurement of the proton mass mexp
proton to extract the dimen-

sionful, physical mass mi from the lattice measurement

mphys
i = Rcont

i mexp
proton. (2.3)

In this example the proton mass is used as a reference to set the scale of the lattice simulation.
In the context of lattice simulations this is often considered equivalent to calculating the

lattice spacing a for each considered coupling g0. The lattice spacing is determined using an
experimental measurement mexp

proton of the scale as well as the lattice measurement of amproton

a =
(amproton)

lat

mexp
proton

. (2.4)

Once the lattice spacing is fixed, other observables can be calculated in physical units using

mlat
i =

(ami)
lat

a
. (2.5)

We can now take the continuum limit of mlat
i to get the physical value.

The reference scale itself loses its predictive power. This is most clearly seen in eqs. (2.1)
and (2.3). The ratio Rproton ≡ 1 and eq. (2.3) only yields the experimental result. Once the
scale is set, however, we can extract predictions of other observables from lattice simulations.
Since the reference scale is used for all dimensionful lattice observables, it is very important for
lattice QCD simulations. Additionally, when planning the simulations the quark masses in the
Lagrangian (eq. (1.1)) have to be set. They are tuned to a line of constant physics along which

12



the continuum limit can be taken. The line of constant physics is defined using a number of
dimensionless observables which are fixed to constant values. This ensures that the underlying
physics are not changed as the continuum limit is taken. To define the line of constant physics
one uses a combination of observables that depend strongly on the quark masses and the lattice
scale.

A variety of observables can be used for scale setting. The following requirements, however,
narrow the selection down to a few popular choices. The scale should be easy to calculate on the
lattice allowing its determination with high statistical precision. On the lattice we need to be able
to understand and control the systematic uncertainties. These uncertainties can originate from
finite size effects, contamination by excited states and chiral as well as continuum extrapolations.
It is evidently beneficial to choose a scale setting quantity where these effects are small and well
studied. Additionally, the dependence on the quark masses should be weak. As we will see in
section 5.2, there will be mistunings from the chiral trajectory. If the dependence of the scale
setting quantity on the quark masses is weak, the effect of these mistunings is small. The tuning
can then be done somewhat independent of the scale setting.

In the following we discuss several choices of scale setting observables as well as their ad-
vantages and disadvantages. Many of the arguments are taken from [55]. We will start with
phenomenological scales whose physical value can be determined experimentally before moving
to intermediate scales, where the physical value is not known from the experiment. The physical
value of intermediate scales, sometimes also called theory scales, is determined in conjunction
with one of the phenomenological scales.

Phenomenological Scales

Phenomenological scales are observables that can be measured in the lattice as well as experi-
mentally. They are physical observables. Several common choices are given below.

Baryon Masses mp,mΩ

The masses of baryons such as the Proton or the Omega baryon can, in principle, also be used for
scale setting. The proton mass is favorable from an experimental perspective as the measured
precision is extremely high [86]. However, the lattice determination of baryon masses suffers
from a signal-to-noise problem that makes it hard to determine the baryon masses accurately
[64, 87]. The statistical uncertainties are smaller for the Omega baryon, which has been used to
set the scale of lattice simulations [56, 88–90]. The Omega baryon has a weak dependence on
the light quark mass and a strong dependence on the strange quark mass. This makes it suitable
for trajectories where the strange quark mass is kept constant. On the trajectory defined by a
constant sum of the quark masses the Omega mass is not well suited for scale setting purposes.

Meson Masses mρ,mΥ

The masses for the Pion and Kaon are often used to define the line of constant physics. In this
case they are no longer available to set the scale. In quenched simulations of the past, the ρ mass
has been used to set the scale [91–93]. Using dynamical fermions the ρ meson becomes unstable
and is therefore not used for scale setting. There are groups [94, 95] that use the mass of the
Υ meson to set the scale because of its precise experimental determination. The dependence on
the b quark, however, potentially introduce large discretization effects. For this reason it is not
a popular choice for scale setting observables and is not used here.

Meson Decay Constants fπ, fK
The mesonic decay constants are a popular choice for scale setting [1, 57, 96]. In particular,
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CHAPTER 2. INTRODUCTION

they are used to calculate the physical values of the intermediate scales r0, t0, w0, . . . in physical
units. On the lattice the decay constants can be extracted from correlator measurements. The
measurements exhibit a large plateau which indicates that excited state contributions decay fast
and the values can be calculated precisely. The physical measurements, however, are determined
using a weak process π/K → lν. This leads to a measurement of the product Vudfπ and VusfK ,
which depends on the CKM matrix elements Vud, Vus. The determination of the CKM matrix
elements introduces a new source of uncertainties increasing the error by 1% for the Pion (Vud)
and by 73% for the Kaon (Vus) decay constant measurements [9].

Intermediate Scales

The line of constant physics can be defined using intermediate scales whose value does not need
to be known experimentally. One can, for example, define the line of constant physics by keeping
the dimensionless quantities

√
t0mπ and

√
t0mK constant. Here the flow scale t0 acts as an

intermediate scale. Note that it is not necessary to know the physical value of the scale t0 to
tune the ensembles to a line of constant physics. Only if we want this line to pass though the
physical point we have to determine the physical value of the scale t0. To do that we have to use
one of the phenomenological scales described above. We can then calculate the dimensionless
combination

√
t0Sphen of the intermediate scale t0 and the phenomenological scale Sphen on the

lattice and evaluate the ratio with the experimental value of the phenomenological scale.

√︂
tphys
0 =

(︁√
t0Sphen

)︁lat

Sexp
phen

(2.6)

We can now ensure that the line of constant physics defined by tphys
0 runs through the physical

point.
In the following we list several intermediate scales.

Force scale r0
The scale r0 [97–99] is derived from the static quark antiquark potential. It is the distance r
where the force between two quarks takes a certain value

r2F (r)
⃓⃓
r=rc

= c, r0 ≡ r|c=1.65 . (2.7)

The physical value of the scale is not known experimentally, but as discussed above this is not
necessary, if the scale is used in conjunction with a phenomenological scale. The force F (r) is
derived from the static quark potential which is calculated using the evaluation of Wilson loops.
The static quark potential is studied in [97, 100]. The potential forms a plateau very early [55]
indicating that excited state effects are small.

Flow Scale t0, w0

The gradient flow scale t0 [101, 102] is discussed in detail in sections 3.3.1 and 4.1. The gradient
flow is a smoothing operation on the gauge fields with a mean radius of t. The scale t0 is defined
implicitly using the energy density E(t) and the Wilson flow time t

t2E(t)
⃓⃓
t=tc

= c, t0 ≡ t|c=0.3 . (2.8)

It shares many of the properties of the force scale r0 but is more easily calculated to high precision.
As such, it is a popular choice for scale setting [1, 57, 58, 103]. The systematic uncertainties
are studied in detail [104–106]. The gradient flow scale can be used as an intermediate scale
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comparing different lattice ensembles. To fully set the scale of the lattice simulation, the flow
scale has to be supplemented with a scale whose continuum limit is defined such that it can be
compared to physical measurements. This strategy is elaborated in [1] and chapter 5.

Some groups [56, 57, 103] prefer using the scale w0 that is defined using the slope of t2E(t).
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3 | Simulation

In this section we will briefly describe the lattice QCD simulations. A detailed introduction and
analysis of lattice QCD simulations can be found in [71, 78, 79, 107]. The simulation is carried
out by the generation of gauge ensembles [78] and the subsequent measurement of observables
on these ensembles. Here, we will take the gauge ensembles for granted and focus instead on the
measurement and analysis of lattice observables.

We will start by presenting the parameters of the simulation. We will then give an overview
of the measured observables relevant for this analysis in section 3.3. In sections 3.2 and 3.5 we
will discuss how to correct several algorithmic and finite size artifacts. Finally, we will give a
short introduction on the statistical error analysis in sections 3.5 and 3.6.

3.1 Ensembles

In chapter 1 we briefly introduced gauge configurations that are used to evaluate the expectation
values of lattice operators. Configurations that stem from the same Monte Carlo chain with
fixed parameters are called a gauge ensemble. The generation of these gauge ensembles is very
computationally intensive. For that reason ensembles are often generated once and stored. In
this way many different analyses can be performed on the same gauge configurations.

In this work, we are using the ensembles generated by the CLS group. An overview of
the ensembles and their generation can be found in [78, 108]. The CLS ensembles used here
simulate two degenerate light quarks and a strange quark using non-perturbatively improved
Wilson fermions and a tree level improved gauge action. The ensembles differ in their size, the
lattice spacing mediated by the inverse coupling β = 6

g20
and the simulated bare quark masses

that are set using the κ parameter (see eq. (1.28)). In table 3.1 we give an overview of the
ensembles used in this analysis. We use ensembles with five different lattice spacings represented
by the different values of the inverse coupling β. For each lattice spacing the trajectory has
been attached to the symmetric point where κl = κs. The trajectory with constant sum of the
bare quark masses tr (M) = 2ml +ms = const. extends left towards the point of physical quark
masses. This chiral trajectory will be discussed in section 5.2. The ensemble landscape is shown
in fig. 3.1. Each lattice spacing is represented by a different color. The symmetric ensembles are
to the right of the plot. Using these ensembles we can take the continuum limit towards a → 0
as well as the limit toward physical bare quark masses. Ensembles at different lattice spacings
are tuned in such a way that the quantities t0m2

π and t0(m2
K +m2

π/2) are constant defining the
line of constant physics (LOC) along which the continuum limit is taken as well as the chiral
trajectory that dictates the extrapolation to physical quark masses. Different ensembles with the
same lattice spacing are tuned such that the improved bare coupling g̃20 ∼ 1

β is constant along
the chiral trajectory towards the physical point.

The size of the lattices is chosen such that mπL ≳ 4 and finite volume effects are small. The
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name id runs L T β κl κs mπL MDU

H101 0 0,1 32 96 3.40 0.136760 0.136760 5.9 8064
H102 0 1 32 96 3.40 0.136865 0.136549 4.9 4116
H102 1 2 32 96 3.40 0.136865 0.136549 5.0 4032
H105 0 1,2 32 96 3.40 0.136970 0.136341 3.9 8276
N101 2 3,4,5,6 48 128 3.40 0.136970 0.136341 5.9 5266
C101 1 14 48 96 3.40 0.137030 0.136222 4.6 8000

B450 0 0 32 64 3.46 0.136890 0.136890 5.2 6448
S400 0 0,1 32 128 3.46 0.136984 0.136702 4.3 11492
D450 1 10 64 128 3.46 0.137126 0.136420 5.4 2000
D452 0 2 64 128 3.46 0.137164 0.136346 3.8 4000

N202 0 1,2 48 128 3.55 0.137000 0.137000 6.4 7608
N203 0 0,1 48 128 3.55 0.137080 0.136840 5.4 6172
N200 0 0,1 48 128 3.55 0.137140 0.136721 4.4 6848
D200 0 0 64 128 3.55 0.137200 0.136602 4.1 8004
E250 1 1 96 192 3.55 0.137233 0.136537 4.0 4036

N300 0 1 48 128 3.70 0.137000 0.137000 5.1 2028
N300 1 2 48 128 3.70 0.137000 0.137000 5.1 6162
N302 0 1 48 128 3.70 0.137064 0.136872 4.2 8804
J303 0 3 64 192 3.70 0.137123 0.136755 4.2 8584
E300 1 1 96 192 3.70 0.137163 0.136675 4.2 4556

J500 0 4,5 64 192 3.85 0.136852 0.136852 5.2 6312
J501 0 1,2 64 192 3.85 0.136903 0.136750 4.2 6540

Table 3.1: Information about CLS [78, 108] gauge ensembles. We give the id and the runs that
make up one ensemble followed by the parameters of the specific ensemble: spacial and temporal
extent in lattice units, the inverse coupling β = 6

g20
, the κ parameters for the light and strange

quarks. The column labeled mπL lists the Pion mass times the spacial extent of the lattice as a
reference to the physical size of the lattice. The last column lists the length of the Monte Carlo
chain in molecular dynamics units.

lattice extent in this unit is given in the second to last column of table 3.1. At the boundary in
the spacial directions the lattice is continued periodically. The euclidean time axis uses either
periodic or open boundary conditions. A “5” in the third place of the ensembles name indicates
periodic boundary conditions in time. Open boundary conditions are used because they are able
to move more freely between individual sectors of the configuration space, thus improving the
sampling of the path integral [73]. The size of the ensemble is given in molecular dynamics units
(MDU) in the last column of table 3.1. A configuration is exported every four MDUs. The total
number of configurations of the ensemble is therefore a quarter of the number of MDUs. The
improvement coefficient csw used in eq. (1.23) is calculated non-perturbatively in [109].

Within the CLS group there are replica runs consisting of multiple Monte Carlo Chains with
identical parameters. The size of such replica runs in MDU has been added. For this analysis
we have grouped such runs under a common ID as indicated by the second and third column of
table 3.1.
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Figure 3.1: Parameter landscape of the CLS [78, 108] ensembles. The rightmost ensembles in
each row represent the symmetric points where mπ = mK . Each row represents the trajectory
with constant sum of the quark masses tr (M) = 2ml + ms = const. The inverse coupling
indicated by different colors runs from β = 3.4 for the coarsest lattices on the top to β = 3.85
for the finest lattices on the bottom. The chiral limit towards physical point runs along x axis,
the continuum limit a→ 0 along the y axis.
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3.2. REWEIGHTING

3.2 Reweighting

CLS chose to run the generation of the ensembles at different actions than the ones discussed in
chapter 1. Expectation values ⟨X⟩ in the target theory can then be calculated from expectation
values ⟨· · ·⟩W in the modified theory using reweighting.

⟨X⟩ = ⟨X ·W ⟩W⟨W ⟩W
. (3.1)

We include three types of reweighting factors that have been calculated for previous analyses [1,
110]. The final reweighting factor is the product of the individual factors

W =W0W1W2. (3.2)

Twisted Mass Reweighting

The twisted mass reweighting factor stems from shifting the spectrum of the Dirac operator. The
method was devised in [111] and is summarized in [78]. It is done to overcome the detD = 0
barriers in the configuration space that could otherwise not be crossed by the Hybrid Monte
Carlo algorithm. The reweighting factor is given by

W0 = det

⎛
⎜⎝

(︂
Q̂

2
+ µ2

0

)︂
Q̂

2

(︂
Q̂

2
+ µ2

0

)︂2

⎞
⎟⎠ (3.3)

where Q̂ is the Schur complement

Q̂ = Qee −QeoQ
−1
oo Qoe (3.4)

of the even-odd preconditioned [112] hermitian Dirac operator Q = γ5D.

RHMC Reweighting

During the generation of the ensembles the strange quark is simulated using RHMC algorithm
[113, 114]. In the RHMC algorithm the fermion determinant is approximated using a rational
function. The reweighting factor W1 is used to remedy this approximation. Its definition is given
in [78].

Sign Reweighting

The generation of the ensembles assumed that the sign of the strange quark determinant is always
positive. Recent findings conclude that this is not always the case [110]. Ensembles with a high
number (> 10%) of configurations with negative strange quark determinant have been removed
from this analysis. For the other ensembles we have included a reweighting factor

W2 =
detDs

|detDs|
(3.5)

that corrects this sign.
In the following the expectation value ⟨X⟩ will refer to the fully reweighted observables.
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3.3 Observables

On the CLS ensembles discussed in section 3.1 we can now calculate the observables used to set
the scale. Primary observables that are measured directly on the gauge configurations are the
flow scale t0 and mesonic correlation functions. These observables are subject to reweighting
presented in section 3.2. From the correlation functions we can extract the pseudoscalar masses
and decay constants as well as the PCAC mass. The pseudoscalar observables are corrected
for finite volume effects as shown in section 3.5. In the following sections we will define these
observables and their measurement on the lattice.

3.3.1 Gradient Flow Scale

The gradient flow is a form of controlled smearing of the gauge fields [101, 115]. The original
gauge field U(x, µ) is evolved along the newly introduced flow time t. The evolution is defined
by the following flow equation

∂tVt(x, µ) = −g20 {∂x,µSW (Vt)}Vt(x, µ), Vt(x, µ)|t=0 = U(x, µ) (3.6)

with the Wilson gauge action defined in eq. (1.10).
Numerically integrating the flow equation (3.6) yields the t-dependent gauge fields Vt(x, µ).

The Wilson flow can be considered a smoothing operation with the mean-square radius
√
8t

[101]. Consequently, the flow time has dimension [t] = length2 ∼ 1
MeV2 . It will be used later to

construct dimensionless observables (see section 5.1).
Observables such as the energy density can be expressed as functions of the transformed field

Vt(x, µ). Doing this results in a quantity that is finite and does not need to be renormalized for
positive flow times t > 0. The energy density can be defined using the clover definition of Fµν
given in eqs. (1.25) and (1.26).

E(x, t) = a4
∑︂

µ,ν

tr
(︂
F̂µν(x)F̂µν(x)

)︂
(3.7)

The links in the clover definition of F̂µν(x) are replaced with the smeared links Vt(x, µ) from the
gradient flow. The average energy density

E(t) =
1

V

∑︂

x

E(x, t) (3.8)

depends only on the flow time t.1

The quantity
√︁
t2E(t) is a constant proportional to the renormalized gauge coupling in leading

order perturbation theory. Since it can be easily and precisely calculated on the lattice, it is a
good candidate to set the scale. To this end we define the scale t0 implicitly by

⟨︁
t2E(t)

⟩︁⃓⃓
t=t0

= 0.3 (3.9)

as proposed in [101]. Details on the measurement of the flow scale can be found in [1, 78].

1The sum over the entire volume is only correct for periodic boundary conditions. For open boundary conditions
the average is taken over a plateau region away from the boundary. See section 4.1 for details
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3.3.2 Correlators
The analysis is centered around non-singlet two-point correlation functions between pseudoscalar

P rs(x) = ψ
r
(x)γ5ψ

s(x) (3.10)

and axial
Arsµ (x) = ψ

r
(x)γµγ5ψ

s(x) (3.11)

fermion currents. The correlators relevant here are defined by

frsP (x0, y0) = −
a6

L3

∑︂

x⃗,y⃗

⟨P rs(x0, x⃗)P sr(y0, y⃗)⟩

frsA (x0, y0) = −
a6

L3

∑︂

x⃗,y⃗

⟨Ars0 (x0, x⃗)P
sr(y0, y⃗)⟩ .

(3.12)

After executing the Wick contractions, the two-point functions are expressed as

frsX (x0, y0) = −
a6

L3

∑︂

x⃗,y⃗

⟨tr (ΓXSr(x, y)γ5Ss(y, x))⟩ (3.13)

with the propagators Sf (x, y) and

ΓX =

{︄
γ5 , X = P

γ0γ5 , X = A0.
(3.14)

The axial correlator is O (a) improved by

frsA (x0, y0)→ frsA (x0, y0) + acA∂̃x0
frsP (x0, y0) (3.15)

according to the Symanzik improvement program [80, 81]. The improvement term uses the
symmetric derivative in the time direction

∂̃0 =
1

2
(∂0 + ∂⋆0) . (3.16)

The coefficient cA in eq. (3.15) is determined non-perturbatively in [116].
The measurements are taken at a fixed source time y0 = a, 2a, T − a, T − 2a and evaluated

at all sink times x0. In the following we will often omit the source position from the argument
of the correlators and refer to them as fP (x0). Details on the measurements of the correlators
are presented in section 4.2.

3.3.3 Pseudoscalar Mass
The pseudoscalar mass can be extracted from the pseudoscalar correlation function defined in
section 3.3.2. A detailed analysis of the correlation function is given in [117]. Several key steps
are repeated here.

With the help of the transfer matrix the correlator fX(x0, y0) can be expressed in terms of
the eigenstates of the Hamilton operator

H |α, n⟩ = Eαn |α, n⟩ . (3.17)
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Here n indicates the energy level and α labels all other quantum numbers. Inserting a full set of
Hamiltonian eigenstates and assuming open boundary conditions, the correlation function reads

fX(x0, y0) =
∑︂

α,β

∑︂

n,m

⟨Ω |β,m⟩
⟨Ω | 0, 0⟩ e

−Eβ
m(T−x0) ⟨β,m |X |α, n⟩ e−Eα

n (x0−y0) ⟨α, n |ϕπ(y0)⟩ . (3.18)

We can substitute X = P for the pseudoscalar correlator and X = Aµ for the axial correlator.
The boundary state is indicated by |Ω⟩. The state at the source location y0 is indicated by

|ϕπ(y0)⟩ = L3
∑︂

γ,l

P |γ, l⟩ e−y0Eγ
l
⟨γ, l |Ω⟩
⟨0, 0 |Ω⟩ . (3.19)

For large distances |x0 − y0| → ∞ the only state propagating between X and ϕπ(y0) is
the Pion state |π, 0⟩. Because of the composition of the boundary states only the terms with
β = 0, i.e. states with zero momentum, survive:

∑︁
β,m ⟨Ω |β,m⟩ =

∑︁
m ⟨Ω | 0,m⟩. With these

simplifications the correlation function can be expressed as

fX(x0, y0) =
[︂
1 + ηTXe

−E0
1(T−x0) + · · ·

]︂
⟨0, 0 |X |π, 0⟩ e−mπ(x0−y0) ⟨π, 0 |ϕπ(y0)⟩ (3.20)

with

ηTX =
⟨Ω | 0, 1⟩ ⟨0, 1 |X |π, 0⟩
⟨Ω | 0, 0⟩ ⟨0, 0 |X |π, 0⟩ . (3.21)

The pseudoscalar mass can be extracted from the pseudoscalar correlation function in two
ways. For open boundary conditions the pseudoscalar correlation function takes the form

fobcP (x0, y0) = A1(y0)e
−mPSx0 +A2(y0)e

−m′x0 +B1(y0)e
−(E2PS−mPS)(T−x0) + · · · . (3.22)

For periodic ensembles it assumes the symmetric form

fpbcP (x0, y0) = Ã1(y0)
(︂
e−mPSx0 + e−mPS(T−x0)

)︂
+ Ã2(y0)

(︂
e−m̃

′x0 + e−m̃
′(T−x0)

)︂
+ · · · . (3.23)

The pseudoscalar mass appears in the exponent of the first term. We can therefore extract it
from a fit to the correlation function. This is done for the periodic ensembles. Details can be
found in section 4.3.1.

In some cases it can be difficult to find the optimal fit for the functions above. To avoid
complicated fitting procedures, for ensembles with open boundary conditions, we can define the
effective mass from two neighboring time slices x0 and x0 + a.

ameff(x0) = log

(︃
fP (x0)

fP (x0 + a)

)︃
= amPS

(︂
1 + c1e

−E1x0 + c2e
−E2PS(T−x0) + · · ·

)︂
(3.24)

The exponents of the higher contributions m′, E1 and E2PS are discussed in section 4.3.
We now have a value for the effective mass for each time slice x0 and can average these values

over a plateau region in the center. How to find a suitable plateau region where the excited state
and boundary effects are small is discussed in section 4.3. This approach is more numerically
stable than the direct fit method if the slope of the correlation function is large. For periodic
correlation functions the slope close to x0 ≈ T/2 is very small. In this region uncertainties in
the correlation function get amplified. For this reason we choose the effective mass method only
for ensembles with open boundary conditions.
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3.3.4 PCAC Mass
The bare PCAC mass is defined by the pseudoscalar and axial currents

mrs
PCAC(x0) =

∂̃0f
rs
A (x0)

2frsP (x0)
(3.25)

using the improved axial current from eq. (3.15) and the symmetric derivative in time direction
from eq. (3.16). The bare PCAC mass is calculated in the same way for both open and periodic
boundary conditions.

3.3.5 Pseudoscalar Decay Constant
The pseudoscalar decay constants are extracted from the pseudoscalar and axial correlation
functions. An expansion of the correlation functions around the lowest state is given in eq. (3.20).

To be able to extract the matrix element ⟨0, 0 |X |π, 0⟩ we need to eliminate the state |ϕπ(y0)⟩.
We can do so using the pseudoscalar correlator

L3fP (T − y0, y0) = e−mπ(T−2y0) ⟨ϕπ(y0) |π, 0⟩ ⟨π, 0 |ϕπ(y0)⟩ . (3.26)

We normalize the correlator by

⟨0, 0 |X |π, 0⟩ =
[︃ |fX(x0, y0)fX(x0, T − y0)|

L3fP (T − y0, y0)

]︃1/2
+O

(︂
e−E

0
1(T−x0)

)︂
+O

(︂
e−(Eπ

1 −mπ)x0

)︂
.

(3.27)

For ensembles with open boundary conditions we calculate the ratio RPS on every time slice
x0.

Robc
PS (x0) =

[︃
fA(x0, y0)fA(x0, T − y0)

fP (T − y0, y0)

]︃1/2
(3.28)

We must use the same ratio for ensembles with periodic boundary conditions. This is neces-
sary to get the same behavior as we approach the continuum. Later in the procedure ensembles
with open and periodic boundary conditions are analyzed side by side. The periodic correlators
are fitted with

FP = CP

(︂
e−mPSx0 + e−mPS(T−x0)

)︂
(3.29)

FA = CA

(︂
−e−mPSx0 + e−mPS(T−x0)

)︂
. (3.30)

The pseudoscalar mass is taken from a previous determination and only the linear coefficients
CP and CA are determined by the fit. From these we calculate the ratio

Rpbc
PS =

CA√
CP

. (3.31)

For periodic ensembles we have to specify the fit interval for the correlators. For ensembles
with open boundary conditions we determine a plateau region over which the ratio Robc

PS (x0) is
averaged. These ranges are discussed in section 4.3.

Using the average pseudoscalar ratio RPS we calculate the bare pseudoscalar decay constant
according to

fbare
PS =

√︃
2

mPS
RPS. (3.32)
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β ZA

3.40 0.75642(72)
3.46 0.76169(93)
3.55 0.76979(43)
3.70 0.78378(47)
3.85 0.79667(47)

Table 3.2: Renormalization factor ZA for different values of β. The values are calculated in [118,
tab.7] using the chirally rotated Schrödinger functional, the “l-convention” and subtraction of
the one-loop cutoff effects.

We use the mass measured earlier on the same ensemble.
We renormalize the bare decay constant using the renormalization factor ZA non-pertur-

batively determined in [118] and listed in table 3.2 as well as the perturbative improvement
coefficients b̄A and b̃A from [119].

fPS = ZA(g̃0)
[︂
1 + bAatr (Mq) + b̃Aam

rs
PCAC

]︂
fbare
PS (3.33)

b̃A = 1 + 0.0472g20 +O
(︁
g40
)︁

(3.34)

bA = O
(︁
g40
)︁

(3.35)

3.4 Mass Derivatives of Observables

We also measure the derivatives of the primary observables with respect to the bare quark masses
[1, 59–63]. The derivatives are needed to correct the mistuning of the ensembles. This procedure
is introduced in [1] and discussed in section 5.2.

The quantities introduced in sections 3.3.1 to 3.3.5 are functions of expectation values of
primary observables. As a first step, let us consider the mass derivatives of expectation values
of a primary observable

A = ⟨A⟩ = 1

Z

∫︂
Ae−SdU (3.36)

Z =

∫︂
e−SdU. (3.37)

The derivative of the expectation value can be split in three components

dA

dmf
0

=
1

Z

∫︂
∂A

∂mf
0

e−SdU +
1

Z

∫︂
A
∂
(︁
e−S

)︁

∂mf
0

dU − 1

Z2

∫︂
Ae−SdU

∫︂
∂
(︁
e−S

)︁

∂mf
0

dU

=

⟨︄
∂A

∂mf
0

⟩︄
−
⟨︄
∂S

∂mf
0

A

⟩︄
+

⟨︄
∂S

∂mf
0

⟩︄
⟨A⟩ .

(3.38)

The first term is the partial derivative of the observable itself and the second and third part stem
from the derivative of the action used in the calculation of the expectation value.
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For a function of expectation values f(Ai) the derivative is given by

df(Ai)

dmf
0

=
∑︂

i

∂f

∂Ai

dAi

dmf
0

=
∑︂

i

∂f

∂Ai

[︄⟨︄
∂Ai

∂mf
0

⟩︄
−
⟨︄
∂S

∂mf
0

Ai

⟩︄
+

⟨︄
∂S

∂mf
0

⟩︄
⟨Ai⟩

]︄
.

(3.39)

The Wilson fermion action is given in eq. (1.15). Derivation with respect to the bare quark
mass with flavor f results in

∂S

∂mf
0

= a4
∑︂

x

ψf (x)ψf (x). (3.40)

The explicit mass derivatives of the observables ∂A

∂mf
0

need to be calculated for each individual
observable A using the definitions in section 3.3.

3.5 Finite Volume Effects

Previously we analyzed boundary terms in the direction of the time x0 and assumed an infinite
spacial extent of the lattice. In reality the spacial coordinates of the lattice are repeated peri-
odically at a distance L. The effects of this cutoff are studied in [120, 121]. The authors argue
that the finite size effects for the pseudoscalar masses and decay constants are below 1%, if the
box is bigger than L > 2 fm and mπL > 1. Here, the smallest lattices are L = 2.35 fm and
mπL = 3.9. Accordingly, the average correction for the observables used here is 0.1% with the
biggest correction at 0.6%.

To apply the corrections, the authors of [120, 121] calculate the ratios

RX =
X(L)−X

X
(3.41)

between the finite volume (X(L)) and infinite volume (X) quantities for various observables X.
Here, we use these ratios to correct the finite volume effects in the measurements of the Pion
and Kaon masses and decay constants and their quark mass derivatives. In chiral perturbation
theory the ratios are calculated [120, 121] as follows

Rmπ
=

1

4
ξπ g̃1(λπ)−

1

12
ξη g̃1(λη) (3.42)

RmK
=

1

6
ξη g̃1(λη) (3.43)

Rfπ = −ξπ g̃1(λπ)−
1

2
ξK g̃1(λK) (3.44)

RfK = −3

8
ξπ g̃1(λπ)−

3

4
ξK g̃1(λK)− 3

8
ξη g̃1(λη) (3.45)

with

ξP =
m2
P

(4πfπ)2
(3.46)

λP = mPL (3.47)
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n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
m(n) 6 12 8 6 24 24 0 12 30 24 24 8 24 48 0 6 48 36 24 24

Table 3.3: Multiplicities for eq. (3.48) as given in [120] for n ≤ 20.

and

g̃1(x) =

∞∑︂

n=1

4m(n)√
nx

K1(
√
nx). (3.48)

K1 is a Bessel function of the second kind. The multiplicities m(n) are calculated in [120] and
are replicated in table 3.3.

3.6 Error Analysis and Autocorrelations

Expectation values of observables are calculated using measurements on a number of configura-
tions generated using a Monte Carlo chain. Using a finite number of configurations results in
an approximation of the true expectation value. Furthermore, the configurations are not inde-
pendent of each other if they originate from the same Monte Carlo chain. As a result an error
analysis that takes these autocorrelations into account is in order.

Throughout this part the analysis of the statistical errors is done using the autocorrelation
function and the Γ-method presented in [122]. The autocorrelation function is defined by

Γαβ(n) =
⟨︂(︁
aiα −Aα

)︁ (︂
ai+nβ −Aβ

)︂⟩︂
, (3.49)

where the primary observable α is correlated with the primary observable β after n update steps
of the Monte Carlo Algorithm. The averages of the observables are given by Aα = ⟨aα⟩. The
covariance matrix is given as a sum over the correlation function

Cαβ =
1

N

∞∑︂

t=−∞
Γαβ(t) (3.50)

with N being the length of the Monte Carlo chain.
Derived observables F are functions of primary observables Aα

F = f(Aα) (3.51)

Using the derivatives

fα =
∂f

∂Aα
(3.52)

the statistical error of derived observables is calculated as

σ2
F =

∑︂

αβ

fαfβCαβ . (3.53)

The error analysis hinges on the accurate estimation of the covariance matrix Cαβ and more
specifically the sum in eq. (3.50). In practice the sum is truncated to avoid the summation of
random fluctuations.

The packages obs-tools-alpha and UWerr listed in table A.1 handle the error calculation.
The software manages the ensembles, the (numerical) calculation of the derivatives in eq. (3.52),
the application of the chain rule and works mostly autonomously.
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4 | Measurements

In this section we will focus on the calculation of the observables from section 3.3 that are
measured on the ensembles described in section 3.1. The majority of the measurements were
done prior to this work by colleagues in Mainz [60], Regensburg [61], Wuppertal [63] and Zeuthen
[1]. In some cases the different groups use different measurement parameters. They also analyze
a different subset of the ensembles and the configurations therein. Furthermore, there exist
ensembles with multiple runs that are not replica of each other. They have to be analyzed
individually. For these reasons the measurements are evaluated for each data set and each
replica run according to table 3.1 individually.

In the following sections we will lay out the details of the measurements of the observables
defined in section 3.3. The number of measurements available for each run and each observable
is listed in table 4.1.

4.1 Flow Scale

In section 3.3.1 we introduced the Wilson flow. Here, we describe the measurement of the
resulting scale t0 defined implicitly by

⟨︁
t2E(t)

⟩︁⃓⃓
t=t0

= 0.3. (4.1)

On the lattice we measure the energy density on every discrete lattice site x. We are using the
clover definition of the energy density defined in eq. (3.7). The measurements of the Wilson flow
are taken when generating the ensembles or separately using the ms3 program supplied with the
openQCD package listed in table A.1.

The energy density at the flow time t is calculated in the following way. We numerically
integrate the flow equation given in eq. (3.6) up to the flow time t to get the smoothed gauge
fields Vt(x, µ). We then use the gauge fields at flow time t to calculate the energy density at
every point x using the clover definition (eq. (3.7)). This is done for several steps in the flow
time ti = iε, i = 1, 2, · · · . The size of the steps is ε = 0.1 or ε = 0.05 for some ensembles.
The energy density at each of these steps is then averaged over the region of the lattice where
boundary effects are small.

The boundary effects of the energy density are studied in [41]. The spacial dimensions use
periodic boundary conditions resulting in negligible boundary effects. For the (euclidean) time
direction the authors of [41] find that at a distance of

M =

⌈︃
12 ·

√︂
test0

⌉︃
(4.2)

the effects are negligible. We are using rough estimates test0 for the determination of this margin.
The margins used are listed in third and fourth column of table 4.3.
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id ncorr nE nrew nsign n∂m0f n∂m0S

Z M R W Z M W U W Z

H101r000 0 0 1000 0 1007 1007 1007 0 0 0 0 0 1007
H101r001 1009 1009 1000 0 1009 1009 1009 1009 1009 0 0 0 1009
H102r001 1029 1029 1000 0 1029 997 1029 1029 1029 0 0 0 1029
H102r002 1008 1008 1000 0 1008 1008 1008 1008 1008 0 0 0 1008
H105r001 947 1023 996 0 1027 1023 1023 947 1023 0 0 0 947
H105r002 0 1042 1000 0 1042 1042 1042 0 1042 0 0 0 1042
N101r003 0 403 403 0 404 404 404 0 403 0 0 359 0
N101r004 0 239 239 0 240 240 240 0 239 0 0 215 0
N101r005 0 352 352 0 352 352 352 0 352 0 0 352 0
N101r006 0 320 320 0 320 320 320 0 320 0 0 320 0
C101r014 525 2000 2000 0 525 2000 2000 525 2000 0 0 2000 0

B450r000 0 1612 1612 0 1612 1612 1612 0 1612 0 0 1612 0
S400r000 0 872 872 0 872 872 872 0 872 0 0 872 0
S400r001 0 2001 870 0 2001 2001 2001 0 2001 0 0 2000 0
D450r010 0 500 0 0 500 500 500 0 500 0 0 500 0
D452r002 0 1000 0 0 1000 1000 1000 0 1000 0 0 1000 0

N202r001 899 899 884 0 899 899 899 899 899 0 0 0 899
N202r002 0 0 0 1003 1003 1003 0 0 0 1003 0 1003 0
N203r000 756 756 755 0 756 756 756 756 756 0 0 0 756
N203r001 0 787 787 0 787 787 787 0 787 0 0 0 787
N200r000 856 856 856 0 856 856 856 856 856 0 0 0 856
N200r001 856 856 856 0 856 856 856 856 856 0 0 0 856
D200r000 1192 2001 1000 0 1192 2001 2001 1192 2001 0 0 0 1191
E250r001 0 850 393 0 1009 950 1009 0 850 0 0 1009 0

N300r001 506 507 507 0 507 507 507 0 507 0 507 0 0
N300r002 1540 1540 1540 0 1533 1479 1540 1540 1540 0 0 0 1540
N302r001 0 2201 1383 0 2201 2201 2201 0 2201 0 2201 0 0
J303r003 456 1073 630 0 1073 1073 1073 456 1073 0 0 0 517
E300r001 0 1139 0 0 1139 1137 1139 0 1139 0 0 1139 0

J500r004 751 0 751 0 751 751 0 751 0 0 0 0 751
J500r005 0 0 0 0 655 655 0 0 0 0 0 0 0
J501r001 0 0 1497 0 1635 1579 0 0 0 0 1635 0 0
J501r002 0 0 0 0 1142 1142 0 0 0 0 0 0 0

Table 4.1: Number of available measurements for the correlators, the energy density, the reweight-
ing factors, the sign reweighting factors, the derivatives of the correlators and the derivatives of
the action. Measurements for the correlators, their derivatives and the derivative of the action
exist in different locations: Z: Zeuthen [1, 59], M: Mainz [60], R: Regensburg [61], W: Wuppertal
[63], U: Münster [62].
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Figure 4.1: Measurements for t2E(t) as a function of the flow time t on the ensemble N300. The
errors in the larger plot have been omitted since they are too small to see. The region around
t2E(t) ≈ 0.3, defining t0, is enlarged to visualize the interpolation.

Using E(t) we calculate the dimensionless quantity t2E(t). It is shown for the N300 ensemble
in fig. 4.1. The scale t0 is calculated from the measurements around t2E(t) ≈ 0.3. We are using
a quadratic interpolation with the three points closest to the intersection. With t⋆ being the
point closest to the intersection and t⋆,− and t⋆,+ the points immediately next to it, we can find
the coefficients of the polynomial

y(t) = c1t
2 + c2t+ c3 (4.3)

by solving ⎛
⎜⎝

(t⋆,−)
2

t⋆,− 1

(t⋆,+)
2

t⋆,+ 1

(t⋆)
2

t⋆ 1

⎞
⎟⎠ ·

⎛
⎝

c1
c2
c3

⎞
⎠ =

⎛
⎜⎝

(t⋆,−)
2
E(t⋆,−)

(t⋆,+)
2
E(t⋆,+)

(t⋆)
2
E(t⋆)

⎞
⎟⎠ . (4.4)

With the coefficients we can then get the intersection with t2E(t) = 0.3 using the quadratic
formula

t0 =
−c2 +

√︁
c22 − 4c1 (c3 − 0.3)

2c1
. (4.5)

Through the entire procedure we keep track of the correlations and arrive at the measurements
listed in table 4.2.
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id
t 0
/a

2
a
m
π

a
m
k

a
m

1
2

a
m

1
3

a
f π

a
f K

√
8
t 0
f π
K
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4.2. CORRELATORS

4.2 Correlators

The measurements of the correlation functions were done by several groups. Here we include
measurements from the Mainz (M) [60], Regensburg (R) [61], Wuppertal (W) [63] and Zeuthen
(Z) [59] collaborators. In table 4.1 we can see that to a large degree the measurements of different
groups were executed on the same configurations. The measurements differ in the position of
the source and in the evaluation of the trace described below. Even though the measurements
done by different groups are highly correlated, they are combined to increase statistics, exploit
the configurations fully and increase the precision of the measurements.

In section 3.3.2, eq. (3.13) we have seen that the correlation function is given by the sum over
the spacial volume of the propagators

frsX (x0, y0) = −
a6

L3

∑︂

x⃗,y⃗

⟨tr (ΓXSr(x, y)γ5Ss(y, x))⟩ . (4.6)

The trace is evaluated using the stochastic techniques described in [64] and the references therein.
We get

tr (M(x, y)) =
⟨︁
η†α,a(x)M(x, y)ηα,a(y)

⟩︁
η

(4.7)

where α and a are the Dirac and color indices. The expectation value ⟨·⟩η is calculated as the
average over a number of noise sources ηi,α,a. The noise sources themselves used here adhere to
following conditions

ηi,α,a(x) ∈ U(1)

⟨ηα,a(x)⟩η = 0
⟨︁
η†α,a(x)ηβ,b(y)

⟩︁
η
= δxyδαβδab.

(4.8)

Using a number Nsrc of random sources ηi the trace is evaluated as the expectation value over
the sources and gauge fields

⟨tr (ΓXSr(x, y)γ5Ss(y, x))⟩ =
⟨︃⟨︂

ζ†β,b(y)ξβ,b(y)
⟩︂
η

⟩︃

U

=
⟨︂⟨︂
ζ†β,b(y)ξβ,b(y)

⟩︂
U

⟩︂
η

(4.9)

using the solution of the Dirac equations

Ds
α,a
β,b

(x, y)γ5ξ
s
β,b(y) = ηα,a(x) ↔ ξsβ,b(y) = γ5S

s
α,a
β,b

(y, x)ηα,a(x)

Dr,†
α,a
β,b

(x, y)ζrβ,b(y) = Γ†
Xηα,a(x) ↔ ζrβ,b(y) = Sr,†α,a

β,b
(y, x)Γ†

Xηα,a(x)
(4.10)

The Dirac equation is solved using the solvers supplied in the openQCD package [123]. In
particular, the calculation of the correlators is done with the mesons package written by Tomasz
Korzec. An overview of the software can be found in table A.1.

Concerning the relative and absolute sign of the correlators we adhere to the convention
introduced by the ALPHA collaboration, i.e. fP (x0) > 0 and fA(x0) > 0 for x0 > y0.

There are a range of ways to measure different correlation functions. One can vary the type
and number of noise sources ηi, the source location y and other algorithmic parameters. Here,
most significantly different measurements use different source positions. For that reason it is not
possible to average the correlation functions measured on the same ensemble by different groups.
Therefore, we evaluate each correlation function on each ensemble and for each measurement.
This extends to the pseudoscalar observables we extract from the correlators. The average over
measurements on the same ensemble by different groups is only taken when calculating the scale
setting observables presented in section 5.1.
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CHAPTER 4. MEASUREMENTS

4.3 Measurement of Pseudoscalar Observables: Plateau and
Fit Ranges

The correlators and accordingly the observables extracted from them are contaminated by excited
state and boundary contributions. To avoid these contaminations the temporal extent of the
lattice is chosen large enough that a plateau region develops in the center. In this plateau
region the contaminations are smaller than the statistical uncertainty and can be neglected. The
procedure to extract observables from the correlation functions without the excited state and
boundary contaminations consists of the following steps.

1. Characterize the contributions from higher states to the observable in question.

2. Fit these contributions to determine a region where they are smaller than the statistical
uncertainty of the data.

3. Calculate the observable in this region neglecting higher contributions.

Details for each of the relevant observables are presented in the following sections.
These plateau and fit ranges are used for the determination of the observable without con-

taminations from higher states. The derivatives with respect to the quark mass discussed in
section 3.4 are calculated and averaged in the same range.

4.3.1 Pseudoscalar Mass
For the plateau and fit ranges of the pseudoscalar mass we distinguish between open and periodic
boundary conditions. This is due to the different shape of the correlation functions and different
methods used to extract the pseudoscalar mass from them. The methods used are described in
section 3.3.3.

Open Boundary Conditions

For open boundary conditions we employ mostly the technique used in [1, 117] and denote
explicitly where we deviate from the steps taken therein.

First we characterize the higher contributions to the effective mass. As seen in section 3.3.3,
the pseudoscalar correlator fP exhibits the following asymptotic behavior.

fobcP (x0, y0) = A1(y0)e
−mPSx0 +A2(y0)e

−m′x0 +B2(y0)e
−(E2PS−mPS)(T−x0) + · · · (4.11)

The pseudoscalar mass can be extracted from the pseudoscalar correlator by the following relation
as shown in eq. (3.24).

ameff(x0) = log

(︃
fP (x0)

fP (x0 + a)

)︃
= amPS

(︂
1 + c1e

−E1x0 + c2e
−E2PS(T−x0) + · · ·

)︂
(4.12)

A plot of the effective mass for the N300 ensemble is shown in fig. 4.2b. We can see the plateau
region in the center as well as the excited state and boundary contributions to the sides.

We now want to characterize the higher contributions in order to remove them from the
analysis. If we consider the left and right tail of the excited contributions separately and assume
a source close to the boundary, we arrive at

fP (x0) =

⎧
⎨
⎩
A1e

−mPSx0

(︂
1 + Ã2e

−∆x0 + · · ·
)︂
, (T − x0)mπ ≫ 1

A1e
−mPSx0

(︂
1 + B̃2e

−∆′x0 + · · ·
)︂
, x0mπ ≫ 1

(4.13)
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4.3. MEASUREMENT OF PSEUDOSCALAR OBSERVABLES
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(a) Plateau of the energy density E(t) defined in
eq. (3.8) used for the flow scale t0.
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(d) Plateau for the ratio RPS from eq. (3.28) used
to calculate the pseudoscalar decay constant for
the Pion.

Figure 4.2: Plateaus for the observables extracted from the correlator measurements. The mea-
surements for each timeslice are shown alongside the plateau average. The ensemble shown here
uses open boundary conditions in time and the source is located at x0 = 1. The excited state
and boundary contributions can be seen to either side of the plateau. The plateau region is
determined as presented in sections 4.3.1 to 4.3.3.
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Figure 4.3: Plateau and fit ranges for the pseudoscalar observables. Ensembles with open bound-
ary conditions are shown in blue, periodic ensembles in red. We can see that, as expected, bound-
ary effects are much smaller for periodic ensembles. The overall size of the boundary effects is
similar for most ensembles, which raises the confidence in the procedure.

The mass gaps ∆,∆′ are determined from considering the expansion of the correlator (eq. (3.18))
in eq. (4.11). The pseudoscalar current operator in the correlator selects states by their quantum
numbers. The first matrix element in eq. (3.18), ⟨X |P | 0⟩, results in the exponent e−mPS that
is used to extract the pseudoscalar mass. Here X = π,K is the pseudoscalar in question and P
is the pseudoscalar current. The next matrix element ⟨Xππ |P |ππ⟩ determines the mass gap
∆ = ∆′ ≈ 2mπ. If we further assume that the Pion mass is sufficiently small such that these
states are the ones with the smallest energy after the ground state, we conclude that the excited
state contributions are described by an exponential of the form e−2mπt.

Having characterized the higher contributions to the effective mass, we fit the left and right
contributions separately with

F (x0) = A exp (−2mπx0) +B. (4.14)

Once we have parameterized the excited state contributions we determine the plateau as the
region where the excited state contributions are a factor Nσ = 4 smaller than the error of the
plateau average σ(meff)

1.

F (x0) <
1

Nσ
σ(meff) (4.15)

The measurements for the effective mass as well as the plateau region and average are shown
in fig. 4.2b for the N300 ensemble as an example. The plateau limits are shown for all ensembles
in table 4.3 and fig. 4.3. Plateau averages of the pseudoscalar masses are given in table 4.2.

1In contrast to [1], where the plateau is defined using the error of the effective mass on the individual time
slice.
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4.3. MEASUREMENT OF PSEUDOSCALAR OBSERVABLES

id T E mπ mK m12 m13 fπ fK

← → ← → ← → ← → ← → ← → ← →
H101 96 21 74 23 71 24 72 18 78 18 78 19 76 19 76
H102 96 21 74 27 66 27 69 18 78 18 78 21 74 21 74
H105 96 21 74 29 65 33 65 18 78 18 78 22 73 27 68
N101 128 21 106 30 94 31 96 18 110 18 110 33 94 28 99
C101 96 21 74 36 55 36 55 18 78 18 78 33 62 35 60

B450 64 23 40 20 45 20 45 14 50 14 50 11 52 11 52
S400 128 23 104 28 98 28 100 18 110 18 110 33 94 31 96
D450 128 23 104 21 108 25 104 14 114 14 114 13 114 13 114
D452 128 23 104 12 116 19 109 14 114 14 114 8 119 16 111

N202 128 28 99 29 96 30 95 19 109 19 109 22 105 22 105
N203 128 28 99 35 91 36 94 19 109 19 109 28 99 27 100
N200 128 28 99 41 82 41 89 19 109 19 109 35 92 32 95
D200 128 28 99 54 61 60 72 19 109 19 109 45 80 44 81
E250 192 28 163 37 156 59 134 16 176 16 176 37 156 59 134

N300 128 36 91 37 91 37 91 21 107 21 107 29 98 29 98
N302 128 36 91 45 81 47 82 21 107 21 107 32 95 32 95
J303 192 36 155 52 134 52 142 21 171 21 171 40 151 38 153
E300 192 36 155 73 93 73 115 21 171 21 171 93 98 46 145

J500 192 45 146 42 146 43 146 24 168 24 168 40 151 40 151
J501 192 45 146 52 137 52 143 24 168 24 168 64 127 51 140

Table 4.3: Plateau/Fit ranges for different observables. Lower (←) and upper (→) ranges are
given for each observable and ensemble.
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CHAPTER 4. MEASUREMENTS

Periodic Boundary Conditions

For periodic boundary conditions the calculation of the effective mass is not suitable. This is
due to the correlator shape

fpbcP (x0, y0) = Ã1(y0)
(︂
e−mPSx0 + e−mPS(T−x0)

)︂
+ Ã2(y0)

(︂
e−m̃

′x0 + e−m̃
′(T−x0)

)︂
+ · · · (4.16)

m̃′ ≈ mPS + 2mπ (4.17)

seen in section 3.3.3. The effective mass can only be approximated where one of the exponential
terms dominates the other. In this way we lose valuable information in the center of the lattice.
For that reason we extract the pseudoscalar mass for periodic ensembles using a direct fit to the
correlator.

Similar to the technique for open boundary conditions presented in the previous section we
determine the pseudoscalar mass in two steps. Previously, the higher contributions m′ were
explicitly set. Here they are characterized by the fit parameter M2. The pseudoscalar mass mPS
is described by the parameter M . We first execute a two state fit

F (x0) = A
(︂
e−Mx0 + e−M(T−x0)

)︂
+B

(︂
e−(M+M2)x0 + e−(M+M2)(T−x0)

)︂
(4.18)

to get the parameters A,B,M and M2. We then require the second term describing the higher
contributions to be a factor Nσ = 4 smaller than the error of the correlator.

B
(︂
e−(M+M2)x0 + e−(M+M2)(T−x0)

)︂
<

1

Nσ
σ(fP (x0)) (4.19)

Since the correlator is symmetric around the center, the upper and lower boundaries are the
same distance from the source. The fit ranges for the periodic ensembles are found alongside the
plateau regions in table 4.3 and visualized in fig. 4.3.

Having found the region where higher corrections can be neglected we perform a second fit
with

F = A
(︂
e−Mx0 + e−M(T−x0)

)︂
(4.20)

to extract the pseudoscalar mass from the fit parameterM .2 The pseudoscalar masses determined
from this second fit are listed in table 4.2.

4.3.2 PCAC Mass
The bare PCAC mass is defined in eq. (3.25). Here, the PCAC mass is only used on the improve-
ment of the pseudoscalar decay constants in eq. (3.33) and the visualization of the mistunings in
eq. (5.10). It is not as sensitive to excited state contributions as the pseudoscalar observables.
We therefore use an empirical formula to define the margins from the boundaries that determine
the plateau region. Similar considerations as in the case of the pseudoscalar masses lead to the
following fit ranges which work well for all ensembles.

M =

{︄⌈︁
7
√
t0/a

⌉︁
, periodic⌈︁

12 + 3
√
t0/a

⌉︁
, open

(4.21)

The plateau is then calculated as
P = [M,T −M ] (4.22)

2We could have extracted the pseudoscalar mass from the fit in eq. (4.18). For stability reasons of the first fit
we decided to perform a second, simpler fit only in the region not contaminated by higher corrections.
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4.3. MEASUREMENT OF PSEUDOSCALAR OBSERVABLES

and listed in table 4.3. A plateau of the PCAC mass can be seen in fig. 4.2c. Inside the plateau
range the individual measurements for the PCAC mass are averaged using their uncertainties as
weights. We arrive at the values listed in table 4.2.

4.3.3 Pseudoscalar Decay Constant
The determination of the pseudoscalar decay constant uses different approaches for open and
periodic boundary conditions. The methods are described in section 3.3.5. Here we will focus
on the determination of the plateau and fit region needed to extract the decay constants. The
plateau region is found similarly to the pseudoscalar masses, described in section 4.3.1.

Open Boundary Conditions

In section 3.3.5, eq. (3.28) we have defined the ratio RPS(x0). A plot of this ratio for the
N300 ensemble can be found in fig. 4.2d. Similar to the pseudoscalar masses we fit the higher
contributions with eq. (4.14). The mass gap 2mπ is used for the Pion as well as for the Kaon
decay constants. We then apply a similar criterion to eq. (4.15)

F (x0) <
1

Nσ
σ
(︁
RPS

)︁
(4.23)

to determine the plateau boundaries. Here σ
(︁
RPS

)︁
is the error of the plateau average of RPS and

Nσ = 4. We apply the fits as well as the criterion in eq. (4.23) to the left and right contributions
separately and arrive at the values listed in table 4.3 and shown in fig. 4.3.

Periodic Boundary Conditions

The procedure to extract the pseudoscalar decay constant from the correlators on periodic en-
sembles is presented in section 3.3.5. Similar to the determination of the pseudoscalar mass for
periodic ensembles, the decay constant is extracted from a direct fit to the correlators. We have
already calculated the range where higher contributions to the correlators can be neglected in
section 4.3.1. We use the same values for the fit range of the pseudoscalar and axial correlators
needed to calculate the pseudoscalar decay constant.
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5 | Scale Setting

Scale setting involves the precise calculation of one observable, the scale, to act as a reference.
Additional lattice measurements are compared to this reference scale to determine their value in
physical units. In the lattice community setting the scale is often considered equivalent to the
determination of the lattice spacing a.

In chapter 2 we listed a number of different reference scales along with their benefits and
disadvantages. Here, we will use the flow scale t0 introduced in [101, 115] and discussed in
sections 3.3.1 and 4.1. The value of the flow scale at the physical point is determined using a
combination of the Pion and Kaon decay constants. To set the scale we measure these observables
on the ensembles introduced in section 3.1. These ensembles are simulated at finite lattice spacing
and (mostly) unphysical quark masses. For this reason, they have to be extrapolated to the
continuum and the physical point.

The chiral extrapolation to the physical point runs along the chiral trajectory. This trajectory
in the space of the quark masses is chosen such that the improved coupling is constant. Chiral
perturbation theory (χPT) is the effective field theory [124] of particles composed of several
quarks, in this case Pions and Kaons. It is used here to extrapolate the measurements to the
physical point. The chiral trajectory, the mistuning of the ensembles from the trajectory and
the correction of the mistuning are discussed in section 5.2. The chiral extrapolation is covered
in detail in section 5.3.1.

The continuum limit is executed along the line of constant physics. As the lattice spacing
is decreased and the continuum limit is approached, we have to ensure that the underlying
physics described by the ensembles does not change. Otherwise, we would end up with an
invalid continuum limit. In particular, the dimensionless quantities ϕ2 and ϕ4 defined in the
next section define the line of constant physics and are kept constant as the lattice spacing
is decreased. All relevant lattice observables are O (a) improved. We therefore expect lattice
artifacts to start at O

(︁
a2
)︁

and model the behavior toward the continuum accordingly. The
continuum limit is presented in section 5.3.2. In practice and to take advantage of the full
statistics these extrapolations are executed at the same time. Their individual quality is discussed
in section 5.3.3.

Once the chiral and continuum extrapolations are under control, we can determine the scale
t0. For technical reasons the observables used in the extrapolation depend on the scale t0. We
therefore have to find a self consistent solution where the scale that enters the analysis matches
the one retrieved at the end. The rough location of this fixed point is known from previous
studies [1] and the dependence on the input scale is weak. As a result, the fixed point is easily
found. The fixed point procedure is topic of section 5.4.

After the determination of the scale at the physical point, we consider uncertainties of the
analysis in section 5.5. The statistical uncertainties are calculated using the fully correlated error
analysis presented in [122] and section 3.6. Systematic uncertainties can arise from higher terms
in the chiral and continuum extrapolations and uncertainties in the determination of the plateau
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5.1. DIMENSIONLESS OBSERVABLES

values. To estimate them we employ a number of different extrapolation techniques. Each
extrapolation leads to a slightly different determination of the scale. The systematic uncertainty
is estimated from the distribution of these values in section 5.5.

Finally, once the scale is determined, we calculate the lattice spacing of the ensembles used
in this analysis in section 5.6.

5.1 Dimensionless Observables

We analyze ensembles at different lattice spacings and quark masses. The inverse coupling β
mediates the lattice spacing while the κ parameters determine the bare quark masses. For each
inverse coupling β the chiral trajectory starts at the symmetric point where ml = ms and extends
towards physical quark masses. The trajectory is defined by keeping the sum of quark masses
mu +md +ms constant resulting in a constant inverse coupling β along the chiral trajectory.
Details on the chiral trajectory are given in the following section. To study this trajectory
systematically it is useful to define the following dimensionless quantities.

ϕ2 = 8t0m
2
π ∝ mu +md = 2ml (5.1)

ϕ4 = 8t0

(︃
m2
K +

1

2
m2
π

)︃
∝ mu +md +ms = 2ml +ms (5.2)

The proportionality to the quark masses is derived from leading order chiral perturbation theory
[125–127]. These quantities will be used to tune the ensembles to the desired physical parameters
and chiral trajectory.

To compute the intermediate scale t0 we use the following combination of Pion and Kaon
decay constants, see sections 3.3.1 and 3.3.5.

√
t0fπK =

√
t0
2

3

(︃
fK +

1

2
fπ

)︃
(5.3)

The flow scale t0 can be used to calculate the lattice spacing for each ensemble. The specific
combination of Pion and Kaon decay constants is used because of its improved chiral behavior
[1, 125, 126]. The chiral extrapolation is discussed in section 5.3.1.

5.2 Chiral Trajectory and Mistuning

In the previous sections we already mentioned the chiral trajectory. It is the path in the space
of the quark masses along which we extrapolate towards the point of physical quark masses.
Here, we will properly define and illustrate one particular chiral trajectory that has been used
in previous studies [1, 128]. It is chosen such that the improved coupling

g̃20 = g20(1 + abgtr (M)) (5.4)

along this extrapolation remains constant. The ensembles residing on or close to this chiral
trajectory are visualized in fig. 3.1. Their parameters are given in table 3.1. For each inverse
coupling β = 6

g20
we start from the symmetric point where the strange and light quark masses

are equal. At this point the Pion and Kaon observables are the same. From here we decrease
the mass of the light quark and increase the mass of the strange quark while keeping the sum of
the quark masses, tr (M), constant. The masses at the symmetric point are tuned such that the
chiral trajectory runs roughly through the point of physical quark masses.
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CHAPTER 5. SCALE SETTING

In practice there are multiple ways to define the tr (M) = const. trajectory. In leading order
chiral perturbation theory the following quantities are all proportional to the sum of the quark
masses.

tr
(︁
Mbare

)︁
=
∑︁
f

(︂
1

2κi
− 1

2κcrit

)︂

tr
(︁
MR

)︁

ϕ4 = 8t0
(︁
m2
K + 1

2m
2
π

)︁

⎫
⎪⎪⎪⎬
⎪⎪⎪⎭
∝ mu +md +ms (5.5)

Since the renormalized quark masses tr
(︁
MR

)︁
and ϕ4 stem from measurements, during the gen-

eration of the ensembles only the bare quark masses are available. Accordingly, the parameters
κi are used to ensure that the ensembles are located on the tr (M) = const. line. Once the
ensembles are generated the chiral trajectory can be defined using lattice measurements of ϕ4.
The dimensionless quantity ϕ4 is a combination of hadronic observables that does not need to
be renormalized and is proportional to the sum of quark masses in leading order perturbation
theory. It is therefore used to define the chiral trajectory.

The generated ensembles are mistuned from the chiral trajectory for two reasons. The target
value of ϕ4 is not known during the generation of the ensembles. The chiral trajectory used
during the generation of the ensembles deviates from the real chiral trajectory due to higher
terms in the chiral perturbation theory expansion of ϕ4. Additionally, the precise value of the
physical point is only known once the analysis is finished. This means that the chiral trajectory
can miss the physical point. The dependence of ϕ4 and thus the chiral trajectory on the scale t0
leads to the fixed point procedure discussed in section 5.4.

These mistunings can be seen in the measurements of ϕ4 shown in fig. 5.1a and need to be
addressed in order to get on the line of constant physics. The observable ϕ2 ∝ ml gives a sense of
the decreasing mass of the light quarks, while ϕ4 ∝ 2ml+ms is a proxy for the sum of the quark
masses. The dashed line indicates the physical value of ϕ4 which is the target for the correct
trajectory. The measured values for ϕ4 show the mistuning of the ensembles.

To correct this mistuning we measure the derivatives of all observables with respect to the
bare quark masses. Details of these measurements are found in section 3.4. If we assume that
the mistuning is small, we can shift an observable X to the correct trajectory using a first order
Taylor expansion in the bare quark masses.

X(m′
u,m

′
d,m

′
s) = X(mu,md,ms) + δm

∑︂

i

ni
∂

∂mi
X(mu,md,ms) +O

(︁
δm2

)︁
(5.6)

We have separated the quark mass shift into the magnitude δm = m′
i −mi and the normalized

direction n⃗ = (nu, nd, ns). The optimal direction for this shift is subject of section 5.2.1. If we
have set a target direction n⃗, we can calculate the magnitude of the shift from the mistuning of
ϕ4.

δm =
ϕphys
4 − ϕ4∑︁
i ni

d
dmi

ϕ4
(5.7)

We can now shift the scale setting observable
√
t0fπK to the chosen trajectory.

Since in the end the shift is determined by the difference δϕ4 = ϕphys
4 −ϕ4, it is convenient to

express the derivatives with respect to ϕ4 as well. This can easily be done using the quark mass
derivative of ϕ4 calculated earlier.

dX

dϕ4
=

∑︁
i ni

∂
∂mi

X
∑︁
i ni

∂
∂mi

ϕ4
(5.8)
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(a) Measurements of ϕ4 for the considered ensembles illustrate the mistuning. The physical
value of ϕ4 is shown as a dashed line.
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(b) Measurements for
√
t0fπK and the corresponding values shifted to ϕ4 = const. along the

n⃗ = (0, 0, 1)T direction.

Figure 5.1: Effects of the mistuning and the quark mass shifts. The left plot illustrates how the
measured sum of quark masses ϕ4 fluctuates. The right plot shows the original measurements
for fπK as well as the measurements shifted to the correct trajectory.
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(a) Original tr
(︁
Mbare)︁ = const. trajectory used dur-

ing the ensemble generation.
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(b) Trajectory defined by ϕ4 = const..

Figure 5.2: Measurements of the deviation from the tr (M) = const. trajectory. The two trajec-
tories shown differ in the higher terms of the expansion. The relative deviation as well as the
discretization effects are smaller for the ϕ4 = const. trajectory.

The shifts are then calculated according to

X(ϕ′4) = X(ϕ4) + δϕ4
∂X

∂ϕ4
+O

(︄(︃
δϕ4
ϕ4

)︃2
)︄

(5.9)

To study the effects of the shift to the correct chiral trajectory we consider measurements of
the quark masses. Using measurements of the PCAC masses m12 and m13 defined in section 3.3.4
and discussed in section 4.3.2 we calculate the sum of the quark masses

tr
(︁
Mbare)︁ = 1

2
mbare

12 +mbare
13 . (5.10)

The sum of the quark masses

tr (M)

tr (M sym)
= 1 +

1

3
bRa tr (M

sym)

(︃
3m12

tr (M sym)
− 1

)︃2

+O
(︁
a2
)︁

(5.11)

is constant up discretization effects [117]. It is precisely these discretization effects that can be
seen in fig. 5.2a as a systematic deviation from zero. As expected these discretization effects
decrease as the lattice spacing gets smaller.

When tuning to ϕ4 = const. the situation changes. In addition to discretization effects we
now get mistunings from χPT since ϕ4 ∝ tr (M) +O

(︁
m2
)︁

only matches up to higher orders in
the quark masses. In fig. 5.2b we show the mistunings after the measurements have been shifted
to the ϕ4 = const. trajectory. We notice that these mistunings are not systematic and largely
independent of the lattice spacing and conclude that they originate predominantly from χPT
and discretization effects play a minor role in this tuning.

5.2.1 Direction of the Derivative
In the previous section we discussed how to shift the measurements to any chiral trajectory close
to the simulated points. Both for the shift in the quark mass shown in eq. (5.6) and in the
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5.2. CHIRAL TRAJECTORY AND MISTUNING
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Figure 5.3: Normalized cumulative error defined in eq. (5.13) for different directions according
to eq. (5.12). The minimum is located at z = 1 corresponding to the direction n⃗ = (0, 0, 1)T , i.e.
shifts only in δms.

definition of the derivatives with respect to ϕ4 we have left the direction n⃗ unspecified. The
vector n⃗ is a three vector in the space of the quark masses (mu,md,ms), that is assumed to
be normalized. Several shift directions stand out. The direction n⃗ = (1, 1, 1)/

√
3 preserves the

symmetry. This is especially important for the ensembles at the symmetric point. Additionally,
we want to keep degenerate light quark masses mu = md = ml. This leads us to the general
direction

n⃗ =

(︄√︃
1− z2

2
,

√︃
1− z2

2
, z

)︄T
. (5.12)

Due to the uncertainties in the determination of the quark mass derivatives, on average shift-
ing the observables increases their error.1 This can be seen for example in fig. 5.1b. The goal is
to find a shift direction with the restriction given in eq. (5.12) that results in the smallest increase
of the error of the scale setting quantity

√
t0fπK . For that reason we define the cumulative error

Σ(n⃗), i.e. the sum of the errors σi on all ensembles, as a function of the shift direction n⃗.

Σ(n⃗) =
∑︂

i

σi

(︂√
t0fπK

⃓⃓
m⃗=m⃗0+δmn⃗

)︂
(5.13)

We can now optimize the direction with the cumulative error as a cost function. Figure 5.3 shows
that the error depends drastically on the shift direction. We found the optimal direction to be
n⃗min = (0, 0, 1)T . We therefore shift the symmetric ensembles in the n⃗ = (1, 1, 1)T direction
to preserve the symmetry between the light and strange quarks and the other ensembles in the
n⃗ = (0, 0, 1)T direction to minimize the uncertainties.

5.2.2 Modeling the Derivatives
Using the derivatives with respect to ϕ4 introduced in eqs. (5.8) and (5.9), we can get a combined
description of the ensembles. This way, ensembles with large uncertainties for the measurements
of the quark mass derivatives can benefit from precise measurements on other ensembles. Model-
ing the derivatives also allows us to extrapolate the measurements to ensembles where measure-
ments of the quark mass derivatives are not available. As a result we can include the ensemble
J501 in the analysis that is important for the stability of the continuum limit.

1For observables that are strongly correlated to ϕ4, such as the Pion and Kaon masses, the uncertainty can be
decreased by the shift to a given, fixed value of ϕphys

4 . This is not the case for the scale setting quantity
√
t0fπK .
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A B C χ2/dof

∂t0
∂ϕ4

−0.48(8) −0.06(9) 0.0(3) 0.9
∂ϕ2

∂ϕ4
0.02(3) −0.07(6) 1.15(10) 0.6

∂
√
t0fπ
∂ϕ4

0.008(5) −0.008(7) 0.005(14) 0.6
∂
√
t0fK
∂ϕ4

0.016(4) 0.006(5) −0.024(12) 0.7
∂
√
t0fπK

∂ϕ4
0.010(5) −0.002(6) −0.005(13) 0.6

Table 5.1: Fit parameters of the quark mass derivatives according to eq. (5.14).
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Figure 5.4: Measurements and fits of the derivatives of various observables with respect to ϕ4.
The parameters of these fits is given in table 5.1.

We fit the following ansatz to the measurements of the different derivatives to get a function
of the lattice spacing and ϕ2.

F (ϕ2) = A+Bϕ2 + C
a2

tsym0

(5.14)

Here A,B and C are parameters determined by the fit. Their values are found in table 5.1.
Figure 5.4 shows measurements of the derivatives along with the fits. We present fits for the
scale setting quantity

√
t0fπK as well as ϕ2. In both cases the dependence on ϕ2 is weak.

Additionally, ∂
√
t0fπK

∂ϕ4
does not significantly depend on the lattice spacing a.

The fit for ∂ϕ2

∂ϕ4
uses only the non-symmetric ensembles. At the symmetric point we have

the exact relation ϕsym2 = 2
3ϕ

sym
4 . The derivative is therefore fixed to ∂ϕsym

2

∂ϕsym
4

= 2
3 . This point

can also be seen in fig. 5.4b. To preserve this relation we shift the symmetric ensembles in the
n⃗ = (1, 1, 1)T /

√
3 direction.

For the same symmetry reasons the measurements of
√
t0fπK at the symmetric point are also

shifted in the n⃗ = (1, 1, 1)T /
√
3 direction. For the symmetric ensembles we use the individual
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measurements of the derivatives ∂
√
t0fπK

∂ϕ4
. For the remaining ensembles the derivatives are de-

termined using the fit shown in fig. 5.4a. In this fit we also include the symmetric ensembles
shifted in the n⃗ = (0, 0, 1)T direction.

In the following we will always use the derivatives from the fits for the non-symmetric en-
sembles and individual measurements for the symmetric ensembles.

5.3 Extrapolating Lattice Measurements

In order to set the scale we want to compare lattice measurements to physical measurements.
Lattice measurements are, however, subject to artifacts caused by the lattice spacing a. Ad-
ditionally, the measurements are done on unphysical quark masses as discussed in section 3.1.
To match the lattice measurements to the physical ones we have to attend and eliminate these
artifacts. In practice this means extrapolating the measurements towards the physical point
and the continuum. The extrapolation towards the physical point is called chiral extrapolation
and is mediated by ϕ2 → ϕphys

2 . It is discussed in section 5.3.1. The continuum extrapolation
a → 0 is topic of section 5.3.2. Each extrapolation works by characterizing and modeling the
respective behavior and fitting the corresponding ansatz to the measurements. In this case the
two extrapolation are executed at the same time using a combined fit. In the following sections
we will consider the two extrapolations individually before showing results of the combined fit.

5.3.1 Chiral Extrapolation

The chiral extrapolation is the extrapolation from ensembles with unphysical bare quark masses
to the physical point. An overview of the ensembles and their trajectory towards the physical
point is shown in fig. 3.1. The physical point is defined by the physical masses of the Pion and
Kaon masses. The physical masses can be directly2 translated into the dimensionless variables
(ϕphys

2 , ϕphys
4 ). The shifting of the measurements discussed in section 5.2 ensures that the chiral

trajectory resides on the physical value ϕphys
4 . The chiral extrapolation works to characterize the

behavior of the scale setting quantity
√
t0fπK(ϕ2) as ϕ2 → ϕphys

2 approaches its physical value.
We use three different techniques to extrapolate to the physical point. This is done to estimate

the systematic errors in section 5.5. The extrapolations shown here correspond to the continuum
behavior. Lattice effects are discussed in section 5.3.2.

Taylor Expansion

The first and most basic technique is not based on chiral perturbation theory, but instead consists
of a Taylor expansion around the symmetric point at ϕsym2 . As shown in [129] the linear (and
cubic) term does not contribute. The Taylor expansion and fit formula is given by

F cont
Taylor(ϕ2, P1, P2) = P1 + P2(ϕ2 − ϕsym2 )2. (5.15)

The parameters P1 and P2 are determined by the fit. The symmetric ϕ2 is calculated from
ϕsym2 = 2

3ϕ
sym
4 ≡ 2

3ϕ4.
In addition to the quadratic Taylor expansion given in eq. (5.15) we also use the 4th order

Taylor expansion.

F cont
Taylor(4)(ϕ2, P1, P2, P3) = P1 + P2(ϕ2 − ϕsym2 )2 + P3 (ϕ2 − ϕsym2 )

4 (5.16)
2To translate the pseudoscalar masses into the dimensionless variables ϕ2, ϕ4 one would need to know the scale

t0 beforehand. How to choose this scale at this stage is discussed later in section 5.4.
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SU(3) Chiral Perturbation Theory

Chiral perturbation theory (χPT) relates hadronic quantities such as the pseudoscalar masses
and decay constants to quark masses which are parameters of the lattice theory. The theory uses
a number of low energy constants B0, Lx. In next to leading order (NLO) χPT the flow scale t0
is constant [130]. The leading order (masses) and next-to-leading order (decay constants) SU(3)
χPT expansion of the hadronic observables are given in [125, 126].

m2
π = B0 (mu +md) (5.17)

m2
K = B0 (mu +ms) (5.18)

fπ = f

[︃
1 +

16B0L5

f2
ml +

8B0L4

f2
(2ml +ms)− 2L

(︁
m2
π

)︁
− L

(︁
m2
K

)︁]︃
(5.19)

fK = f

[︃
1 +

8B0L5

f2
(ml +ms) +

16B0L4

f2
(2ml +ms)−

3

4
L
(︁
m2
π

)︁
− 3

2
L
(︁
m2
K

)︁
− 3

4
L
(︁
m2
η

)︁]︃

(5.20)

The logarithms L
(︁
m2
)︁

are defined as

L
(︁
m2
)︁
=

m2

4πf2
log

m2

4πf2
. (5.21)

Combining eqs. (5.19) and (5.20) according to fπK defined in eq. (5.3) we arrive at the fit
formula

F cont
SU(3)χPT(ϕ2, P4, P5) = P4

[︃
1− 7

6
Lπ(ϕ2, P4)−

4

3
LK(ϕ2, P4)−

1

2
Lη(ϕ2, P4) + P5

]︃
. (5.22)

We introduced the fit parameters P4 and P5 that are defined in terms of the SU(3) χPT low
energy constants f,B0, L4 and L5

P4 =
√
t0f

P5 =
8B0tr (M)

3f2
(2L5 + 5L4) .

(5.23)

The function in eq. (5.22) is fitted to the measurements of
√
t0fπK . The logarithms from eq. (5.21)

can be expressed in terms of ϕ2 and ϕ4 using their respective definitions

Lπ(ϕ2,
√
t0f) =

ϕ2
(4π)28 t0 f2

log

(︃
ϕ2

(4π)28 t0 f2

)︃
(5.24)

LK(ϕ2,
√
t0f) =

ϕ4 − 1
2ϕ2

(4π)28 t0 f2
log

(︃
ϕ4 − 1

2ϕ2

(4π)28 t0 f2

)︃
(5.25)

Lη(ϕ2,
√
t0f) =

ϕ4 − 3
4ϕ2

(4π)26 t0 f2
log

(︃
ϕ4 − 3

4ϕ2

(4π)26 t0 f2

)︃
. (5.26)

The last logarithm is transformed using the η mass

m2
η =

1

6t0

(︃
ϕ4 −

3

4
ϕ2

)︃
. (5.27)

In [1] the chiral extrapolation was done using the ratio FSU(3)χPT(ϕ2)/FSU(3)χPT(ϕ
sym
2 ). Nor-

malizing by the symmetric ensembles eliminates the fit parameter P5. However, it also emphasizes
the symmetric ensembles. For that reason we chose to implement the additional fit parameter
P5 and treat the symmetric ensembles in line with the others.
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SU(2) Chiral Perturbation Theory

Exact SU(3) symmetry is only present in the limit of vanishing quark masses. The heavier strange
quark breaks strongly this symmetry. It is therefore worthwhile to consider the remaining SU(2)
symmetry between the light quarks. Chiral perturbation theory in SU(2) is discussed in [131].
The pseudoscalar decay constants are given in terms of the low energy constants P6 to P9 and
the logarithm in eq. (5.24).

Fπ,contSU(2)χPT(ϕ2, P6, P7) = P6ϕ2 + P7 [1 + 2Lπ(ϕ2, P7)] (5.28)

FK,contSU(2)χPT(ϕ2, P7, P8, P9) = P8ϕ2 + P9

[︃
1 +

3

4
Lπ(ϕ2, P7)

]︃
(5.29)

The parameters P6 to P9 are related to the SU(2) χPT low energy constants defined in [131].
Note that the Pion parameter P7 also occurs in the logarithm for the Kaon decay constant. For
that reason we fit the two observables at the same time with eqs. (5.28) and (5.29) respectively.
From the two individual fits we can then reconstruct fπK to set the scale.

5.3.2 Continuum Extrapolation

So far we have discussed how to extrapolate the measurements of
√
t0fπK to the physical point

given by (ϕphys
2 , ϕphys

4 ). We have yet to characterize the lattice artifacts to extrapolate the
measurements to the continuum along the line of constant physics defined by ϕ2 = const.. All
observables considered here have been improved such that orderO (a) effects vanish (see chapter 1
for details). The leading term is therefore of order O

(︁
a2
)︁
. The degree to which higher terms

can be neglected is discussed in sections 5.3.3 and 5.5. To account for the effects of the lattice
spacing a, we multiply the chiral extrapolation function by an a2 term.

Fχ(ϕ2, · · · , P10) = F cont
χ (ϕ2, · · · ) ·

(︃
1 + P10

a2

t0

)︃
(5.30)

Here F cont
χ (ϕ2, . . .) is any of the chiral extrapolations presented in section 5.3.1. The ellipsis

corresponds to the parameters of the respective chiral extrapolation. The parameter P10 along
with the parameters of the chiral extrapolation are determined by the combined fit.

Additionally, we also added a term proportional to a2m2
π to model the dependence on the

lattice spacing a.

Fχ(ϕ2, · · · , P10, P11) = F cont
χ (ϕ2, · · · ) ·

(︃
1 + P10

a2

t0
+ P11a

2m2
π

)︃
(5.31)

This term provides a ϕ2 dependence of the continuum extrapolation but adds another parameter
to the fit. The different extrapolation methods will be discussed in sections 5.3.3 and 5.5.

5.3.3 Combined Extrapolation Results
In this section we will discuss the combined chiral and continuum extrapolation introduced in
sections 5.3.1 and 5.3.2. Because the physical point depends on the results of these fits we
use a reference point at (ϕ2, ϕ4) = (0.075, 1.12) to compare the different extrapolations. First
the measurements are shifted to ϕ4 = 1.12 using the method described in section 5.2.2. This
value is chosen as it is close to the average of all ϕ4 measurements (see fig. 5.1a). Then the
combined chiral and continuum extrapolation is executed. As an example, the SU(3) chiral
perturbation theory extrapolation defined in eq. (5.22) together with the term describing the
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Figure 5.5: Measurements for the scale setting quantity
√
t0fπK alongside the combined chiral

and continuum extrapolation. Different lattice spacings are shown in different colors with the
continuum curve shown in gray. Shown here is the SU(3) chiral perturbation theory extrapo-
lation defined in eqs. (5.22) and (5.30). During the fit we omitted the coarsest lattice spacing
corresponding to a β > 3.4 cut.
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(a) Ratio Rchiral defined in eq. (5.32) illustrating
the chiral extrapolation.
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(b) Ratio Rcont defined in eq. (5.33) illustrating
the continuum extrapolation.

Figure 5.6: Ratios of the combined fit function presented in fig. 5.5. The two ratios defined in
eqs. (5.32) and (5.33) isolate the chiral and continuum components of the extrapolation. Here
they are shown together with the normalized measurements for the scale setting quantity

√
t0fπK .

The method shown here consists of the SU(3) χPT extrapolation and a β > 3.4 cut to the data.

lattice artifacts in eq. (5.30) is shown in fig. 5.5. Different lattice spacings are indicated by
different colors. The continuum limit extends upwards towards the gray line which represents the
chiral extrapolation in the continuum. The chiral extrapolation in ϕ2 runs toward the reference
point ϕ2 = 0.075. The value of the continuum line at the reference point is then compared
between different extrapolation techniques described in section 5.3.1. In the extrapolation shown
in fig. 5.5 we applied the cut β > 3.4, discarding the coarsest lattices with a = 0.085 fm. The
remaining data points are well described by the fit. This is reflected by the value of the residue
χ2/dof. = 1.62 (see table 5.2).

To better judge the quality of the individual components of the fit we have isolated the chi-
ral and continuum parts in fig. 5.6. First the measurements are divided by their respective fit
function evaluated at the symmetric point ϕsym2 . This isolates the chiral component of the extrap-
olation function since the parts describing the lattice artifacts cancel. We use the extrapolations
discussed in sections 5.3.1 and 5.3.2 to define the ratio

Rchiral =
Fχ(ϕ2, · · · )
Fχ(ϕ

sym
2 , · · · ) =

F cont
χ (ϕ2, · · · )

F cont
χ (ϕsym2 , · · · ) . (5.32)

The ellipsis corresponds to the parameters of the respective chiral extrapolation. The chiral ratio
is shown in fig. 5.6a together with the measurements. Similarly, the ratio

Rcont =
Fχ(ϕ2, · · · )
F cont
χ (ϕ2, · · · )

= 1 + P10
a2

t0
(5.33)

isolates the term that describes the continuum extrapolation. This second ratio is shown in
fig. 5.6b alongside the measurements. Note that the lines in fig. 5.6 do not indicate a separate
fit of the ratios but is instead an evaluation of the global fit shown in fig. 5.5.

For the chiral ratio shown in fig. 5.6a we can see the data points fluctuating around the lines.
No systematic deviation is visible. We conclude that the chiral behavior is well described by
the SU(3) ansatz presented in section 5.3.1. The isolated continuum behavior in fig. 5.6b is well
described by the a2 term defined in section 5.3.2 and eq. (5.30). Only the coarsest lattice spacing
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indicated by the dark blue points to the right show a slight deviation from the a2 line. Rather
than implementing an additional continuum term we choose to omit the coarsest lattices from
the analysis by employing a β > 3.4 cut to the data points.

To compare different chiral extrapolations we evaluate the extrapolation function at the
reference point ϕ2 = 0.075. The results of the extrapolation techniques described in section 5.3.1
are shown in table 5.2. We present the type of extrapolation as well as the cut used. To compare
the quality of the fit we list the value of χ2/dof. and the value of the scale setting quantity

√
t0f

at the reference point and in the continuum. For the Taylor and SU(3) extrapolations f = fπK
is used. The SU(2) extrapolations uses f = fπ to set the scale t0.

The different extrapolation techniques and cuts are very stable. The scale setting quantity√
t0f fluctuates from

√
t0f = 0.1074 to

√
t0f = 0.1090 across all methods and cuts. This change

is ±1% of the average value and of the same magnitude as the average statistical uncertainty.
This small fluctuation is due to the precise measurements close to the physical point.

The quality of the fit is indicated by the χ2/dof. The values lie between roughly 1 and 2.6.
Omitting the symmetric ensembles the farthest away from the reference point results in a better
fit. The quality of the fits will be more closely examined in section 5.5 after the physical point
is determined.

The quality of the 4th order Taylor expansion fit is only slightly better than that of the
quadratic expansion. Using the SU(3) chiral perturbation function fit we model two different
continuum functions listed in eqs. (5.30) and (5.31). With the addition of the a2m2

π term the
value for

√
t0f stays mostly within one standard deviation while the quality of the fit is not

improved in all cases. The results for the SU(3) and SU(2) χPT functions are very similar. The
fit quality is better for the SU(2) χPT function.

The different extrapolations are used in section 5.5 to estimate the systematic error at the
physical point.

5.4 Finding the Physical Point

In the previous section we have shifted the measurements to the target value for ϕ4, extrapolated
the scale setting quantity

√
t0f to the continuum and evaluated the function at the target ϕ2.

We can now extract the flow scale t0 by comparing the lattice determination of
√
t0f to physical

measurements of the decay constants. We use the measurements reported in [9] where the effects
of QCD and the degenerate light quarks have been compensated. The resulting isometric QCD
values with QED corrections are

f isoQCD
π = 130.56(13)MeV

f isoQCD
K = 157.2(5)MeV.

(5.34)

Using the experimental values in conjunction with the extrapolated lattice measurements we can
extract the scale t0 at the physical point.

√︂
tphys
0 =

F cont
χ (ϕphys

2 , · · · )
f isoQCD
πK

(5.35)

The physical point is defined by the meson masses, in this case the Pion and Kaon masses.
Here we are using the masses reported in [86].

mphys
π = 134.9768(5)MeV

mphys
K = 497.611(13)MeV

(5.36)
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type cut χ2/dof.
√
t0fπ

√
t0fπK

Taylor - 2.05 0.1083(3)
Taylor β > 3.4 2.07 0.1088(4)
Taylor β > 3.5 2.68 0.1084(5)
Taylor ϕ2 < 0.6 1.77 0.1086(3)
Taylor ϕ2 < 0.4 2.16 0.1086(4)
Taylor β > 3.4, ϕ2 < 0.6 2.03 0.1090(5)

Taylor(4) - 1.98 0.1081(3)
Taylor(4) β > 3.4 1.69 0.1083(4)
Taylor(4) β > 3.5 2.26 0.1078(5)
Taylor(4) ϕ2 < 0.6 1.64 0.1084(4)
Taylor(4) ϕ2 < 0.4 2.03 0.1083(4)
Taylor(4) β > 3.4, ϕ2 < 0.6 1.43 0.1086(5)

SU(3) χPT - 1.84 0.1081(3)
SU(3) χPT β > 3.4 1.63 0.1085(4)
SU(3) χPT β > 3.5 2.09 0.1081(5)
SU(3) χPT ϕ2 < 0.6 1.50 0.1084(3)
SU(3) χPT ϕ2 < 0.4 1.86 0.1084(4)
SU(3) χPT β > 3.4, ϕ2 < 0.6 1.48 0.1088(5)

SU(3) χPT + a2m2
π - 1.82 0.1085(4)

SU(3) χPT + a2m2
π β > 3.4 1.77 0.1084(6)

SU(3) χPT + a2m2
π β > 3.5 2.39 0.1080(8)

SU(3) χPT + a2m2
π ϕ2 < 0.6 1.63 0.1085(5)

SU(3) χPT + a2m2
π ϕ2 < 0.4 2.16 0.1086(7)

SU(3) χPT + a2m2
π β > 3.4, ϕ2 < 0.6 1.18 0.1078(7)

SU(2) χPT - 1.82 0.0933(4) 0.1074(3)
SU(2) χPT β > 3.4 1.58 0.0937(4) 0.1079(4)
SU(2) χPT β > 3.5 1.94 0.0933(6) 0.1075(5)
SU(2) χPT ϕ2 < 0.6 1.26 0.0941(4) 0.1078(3)
SU(2) χPT ϕ2 < 0.4 1.30 0.0945(5) 0.1079(4)
SU(2) χPT β > 3.4, ϕ2 < 0.6 0.96 0.0947(6) 0.1085(5)

Table 5.2: Comparison of different chiral extrapolations at the reference point (ϕ2, ϕ4) =
(0.075, 1.12). A series of cuts are applied to the data before fitting. The quality of the fit is
indicated by the value of the residue χ2/dof.. The value for

√
t0fπK (

√
t0fπ) at the reference

point is given.
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Figure 5.7: Dependence of the final scale
√︁
tout0 on the parameter used to define the physical

point (ϕphys
2 , ϕphys

4 ). The scale tout0 is determined from the evaluation of the extrapolations in
the continuum and at the physical point. The parameter tin0 is used to define the physical point
in the space of (ϕ2, ϕ4). The fixed point where tout0 = tin0 is indicated by a vertical line.

In section 5.1 we transformed these masses into the dimensionless observables ϕ2 and ϕ4 using
the flow scale t0. The value of the physical point in the (ϕ2, ϕ4) space now depends on the flow
scale t0 that we want to extract in order to set the scale. The physical value for the flow scale t0 is
not known a priori and depends on the initial choice used in the determination of (ϕphys

2 , ϕphys
4 ).

The dependence of the scale tout0 resulting from the fit on the scale tin0 used in the definition of
the physical point is shown in fig. 5.7. The fixed point where tin0 = tout0 is indicated by the dotted
line and marks the physical point. After setting initial values for the flow scale t00 the fixed point
is found using the following procedure.

1. Calculate the physical point in (ϕphys
2 , ϕphys

4 ) space using the current approximation of the
flow scale ti0

(ϕphys
2 , ϕphys

4 ) = 8ti0

(︃
m2
π,m

2
K +

1

2
m2
π

)︃
. (5.37)

2. Shift the measurements to ϕphys
4 as described in section 5.2.

3. Apply cuts to the data points.

4. Fit the shifted measurements for the scale setting quantity
√
t0f with the extrapolation

functions Fχ(ϕ2, · · · ) presented in section 5.3.

5. Evaluate the fit function in the continuum and at ϕphys
2 .

6. Compare F cont
χ (ϕphys

2 , · · · ) to measurements of the decay constants using eq. (5.35) to get
the scale ti+1

0 .

7. Repeat until convergence.

The fixed point in t0 to a relative precision of
⃓⃓
⃓⃓√︁ti0 −

√︂
ti−1
0

⃓⃓
⃓⃓ < 10−4σ

(︃√︂
ti−1
0

)︃
is usually found
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in roughly 10 iterations. The correlated error analysis presented in section 3.6 is applied at every
step of this process to obtain the final statistical error listed in table 5.3.

5.5 Determination of the Scale and its Uncertainties

Systematic uncertainties arise from the approximation of the chiral and continuum extrapo-
lations. To estimate the magnitude of the systematic uncertainty we compare the different
extrapolation techniques discussed in section 5.3. We use the quadratic and 4th Taylor expan-
sion (Taylor, Taylor(4)), SU(3) chiral perturbation theory extrapolation (χPT) with an optional
additional continuum term and the SU(2) chiral perturbation theory function (SU(2) χPT). All
of these extrapolation functions are subjected to the fixed point iteration described in section 5.4
to determine the scale t0. The results of the fixed point iteration are shown in table 5.3. Dif-
ferent cuts are applied to the data points before the chiral and continuum extrapolations are
fitted. We successively remove the coarsest lattices and those furthest away from the physi-
cal point from the analysis. The cut ϕ2 < 0.6 (0.4) corresponds to restricting the Pion mass
mπ ≲ 400MeV (300MeV).

In table 5.3 we present the physical point in (ϕ2, ϕ4)-space as well as the flow scale t0 at that
physical point. We also list characteristics of the shift and fits at the fixed point. The column
labeled Σ(n⃗)

Σ(0⃗)
indicates the increase in the error due to the shift to the physical ϕ4. This procedure

is described in section 5.2. The statistical error is increased by 5% to 25% by the shifts. The fit
is characterized by the χ2/dof. as well as by the ‘goodness of fit’ (gof). The goodness of fit is the
probability of measuring a χ2 value that is greater than the one reported in the previous column.
A probability close to 0.5 indicates that the measured χ2 is in the center of the distribution.

We can see that on average the quality of the fit increases as we apply the cuts. The most
notable improvement in the quality of the fit is obtained from the omission of the coarsest lattice
and the symmetric ensembles. These are the ensembles the farthest away from their respective
chiral and continuum extrapolations. One has to keep in mind that as more ensembles are
removed from the analysis, the statistical error as well as the quality of the fit suffer. This can
be seen when comparing the two cuts in ϕ2. For all extrapolation techniques by far the best
result is obtained by combining the cuts β < 3.4 and ϕ2 < 0.6.

The systematic error is estimated from the fluctuation of different extrapolations. We are
only considering fits where the goodness of the fit is greater than 0.1. They are indicated by a
star (⋆) in table 5.3. The remaining fits fluctuate from

√︁
tmin
0 = 0.1435 fm to

√︁
tmax
0 = 0.1450 fm

resulting in a systematic uncertainty of

σsyst

(︃√︂
tphys
0

)︃
= 0.0008 fm (5.38)

The final value for the flow scale as well as its statistical error are taken from the two best
fits. The SU(2) and SU(2) χPT fits with the strictest cut β > 3.4 & ϕ2 < 0.6 show a χ2/dof < 1
and a goodness close to 0.5. The statistical uncertainty of these measurements is

σstat

(︃√︂
tphys
0

)︃
= 0.0010 fm. (5.39)

A weighted average of the best fits indicated by a diamond (♢) in table 5.3 yields the scale
√︂
tphys
0 = 0.1441(10)(8) fm. (5.40)

The fits included in this determination of the intermediate scale are shown in fig. 5.8.
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fit cuts Σ(n⃗)

Σ(0⃗)

χ2

dof gof ϕphys
2 ϕphys

4

√︂
tphys
0 [fm]

Taylor
(eq. (5.15))

- 1.11 1.79 0.02 0.0777(5) 1.095(8) 0.1441(6)
β > 3.4 1.12 1.84 0.04 0.0784(7) 1.105(10) 0.1447(7)
β > 3.5 1.25 1.99 0.04 0.0775(11) 1.092(15) 0.1439(10)
ϕ2 < 0.6 1.05 1.55 0.10 0.0780(6) 1.099(9) 0.1443(6)
ϕ2 < 0.4 1.06 1.81 0.08 0.0780(7) 1.099(10) 0.1444(7)
β > 3.4 &
ϕ2 < 0.6

1.08 1.64 0.11 0.0787(8) 1.108(12) 0.1450(8) ⋆

Taylor(4)
(eq. (5.16))

- 1.11 1.75 0.03 0.0775(5) 1.091(8) 0.1438(6)
β > 3.4 1.12 1.70 0.07 0.0779(7) 1.097(10) 0.1442(7)
β > 3.5 1.23 2.09 0.04 0.0768(10) 1.083(15) 0.1433(10)
ϕ2 < 0.6 1.05 1.48 0.13 0.0777(6) 1.095(9) 0.1441(6) ⋆
ϕ2 < 0.4 1.06 1.87 0.08 0.0778(7) 1.096(10) 0.1442(7)
β > 3.4 &
ϕ2 < 0.6

1.08 1.20 0.30 0.0783(8) 1.103(12) 0.1446(8) ⋆

χPT
(eq. (5.22))

- 1.11 1.62 0.05 0.0774(5) 1.091(8) 0.1438(6)
β > 3.4 1.13 1.53 0.10 0.0780(7) 1.099(10) 0.1443(7)
β > 3.5 1.25 1.68 0.10 0.0769(11) 1.083(15) 0.1433(10)
ϕ2 < 0.6 1.05 1.33 0.19 0.0777(6) 1.095(8) 0.1441(6) ⋆
ϕ2 < 0.4 1.06 1.61 0.13 0.0778(7) 1.097(10) 0.1442(7) ⋆
β > 3.4 &
ϕ2 < 0.6

1.08 1.19 0.30 0.0784(8) 1.105(12) 0.1447(8) ⋆

χPT + a2m2
π

(eq. (5.31))

- 1.10 1.60 0.06 0.0780(7) 1.099(10) 0.1444(7)
β > 3.4 1.14 1.57 0.10 0.0779(9) 1.098(14) 0.1443(9)
β > 3.5 1.20 2.04 0.05 0.0779(12) 1.098(18) 0.1442(12)
ϕ2 < 0.6 1.07 1.40 0.17 0.0781(9) 1.101(13) 0.1445(9) ⋆
ϕ2 < 0.4 1.10 1.73 0.11 0.0785(12) 1.107(17) 0.1449(11) ⋆
β > 3.4 &
ϕ2 < 0.6

1.12 0.83 0.56 0.0770(11) 1.086(16) 0.1435(11) ⋆ ♢

SU(2) χPT
(eq. (5.28))

- 1.15 1.63 0.01 0.0768(6) 1.082(8) 0.1432(6)
β > 3.4 1.18 1.66 0.02 0.0775(7) 1.091(11) 0.1438(7)
β > 3.5 1.40 1.61 0.06 0.0760(12) 1.071(18) 0.1425(12)
ϕ2 < 0.6 1.09 1.09 0.34 0.0772(6) 1.088(9) 0.1436(6) ⋆
ϕ2 < 0.4 1.09 1.11 0.34 0.0774(7) 1.091(11) 0.1438(7) ⋆
β > 3.4 &
ϕ2 < 0.6

1.13 0.77 0.72 0.0783(8) 1.104(12) 0.1447(8) ⋆ ♢

Table 5.3: Overview of different chiral and continuum models discussed in section 5.3. We
also present different cuts to the data. The results shown here are located at the physical point
defined using the fixed point procedure described in section 5.4. Each method results in a slightly
different physical point defined by (ϕphys

2 , ϕphys
4 ). The relative amplification of the statistical error

as a result of the shift to the physical point is listed in the third column. To check the quality of
the fit we report the χ2/dof. as well as the goodness of the fit. Finally we give the flow scale

√
t0

at the physical point for each of the extrapolations. Measurements indicated with a star (⋆) are
included in the estimation of the systematic error. Those indicated with a diamond (♢) make
up the average and statistical error.
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Figure 5.8: Combined chiral and continuum extrapolations at the physical point for the mea-
surements that constitute the result given in eq. (5.40). We apply the strictest cuts to the data,
i.e. β > 3.4 & ϕ2 > 0.6. Figure (a) shows measurements for

√
t0fπK as well as the fit labeled

SU(3) χPT+ a2m2
π defined by eqs. (5.22) and (5.31). In figures (b) and (c) we present measure-

ments of
√
t0fπ and

√
t0fK respectively. We also show the SU(2) χPT fits given by eqs. (5.28)

and (5.29). The quality of the fit is indicated by the χ2 values.
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Figure 5.9: Flow scale
√
t0 as a function of ϕ2. The measurements are normalized by the values

at the symmetric point to eliminate effects of the lattice spacing a and allow for a combined fit.
A fit with eq. (5.41) is shown in the background. Measurements indicated with circles are not
included in the fit.

5.6 Lattice Spacing

In the previous section we have calculated the intermediate flow scale t0 at the physical point.
We can now use this scale to extract the lattice spacing a in physical units. To do that we extract
measurements of

√︂
t0
a2 to the physical point. In order to extrapolate all measurements at the

same time, we normalize by the values at the symmetric point for each lattice spacing. These
normalized values are shown in fig. 5.9. These normalized measurements are then modeled with

F (ϕ2, P ) =
√︂

1 + P (ϕ2 − ϕsym2 ). (5.41)

The parameter P is determined from a fit to the data. The measurements of the coarsest lattice
spacing (a = 0.085 fm) lie systematically above the others. The other values agree within their
statistical fluctuation. For that reason the measurements on the coarsest lattice spacing are
omitted from the fit.

Using the fit function evaluated at the physical point ϕphys
2 and removing the normalization

by multiplying the symmetric measurements we obtain the value for
√︂

t0
a2 at the physical point

(︄√︃
t0
a2

)︄phys

=

√︃
tsym0

a2
· F (ϕphys

2 , P ). (5.42)

We now have the value of
√︂

t0
a2 at the physical point for each of the inverse couplings β. Together

with the determination of the scale tphys
0 in eq. (5.40) we can extract the lattice spacing

a =

√︂
tphys
0

(︂√︂
t0
a2

)︂phys . (5.43)

The lattice spacing for each of the inverse couplings is given in table 5.4. The errors consist of
the statistical, correlated error analysis laid out in section 3.6 as well as the systematic error
calculated in section 5.5.
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β
tsym0

a2 a [fm]

3.40 2.876(10) 0.0848(6)(4)
3.46 3.688(13) 0.0748(5)(4)
3.55 5.16(2) 0.0632(4)(3)
3.70 8.59(3) 0.0490(3)(3)
3.85 13.96(7) 0.0384(3)(2)

Table 5.4: The lattice spacing a is given in physical units for each inverse coupling β considered
in this analysis. The lattice spacing is calculated from the intermediate scale given in eq. (5.40),
the fit shown in fig. 5.9 and measurements of t0

a2 at the symmetric point. These measurements
are given in the second column. The lattice spacing is given in the last column. Its statistical
and systematic uncertainties are given in parenthesis and originate from the uncertainties of the
scale t0 given in eq. (5.40).
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6 | Conclusion

In the first part we computed the scale for simulations of QCD with 2+1 flavors of NP improved
fermions as used by the CLS group [108]. Compared to an earlier determination [1] we are using

• ensembles with five different lattice spacings including one that is smaller than the lattice
spacings previously used,

• ensembles that are closer to the physical point,

• a combination of measurements from different groups [59, 61–63] to maximize statistics
using measurements that are already available,

• measurements of the quark mass derivatives on most ensembles and subsequent modeling
of the derivatives for all values of ϕ2,

• a number of models for the chiral and continuum extrapolations to estimate and constrain
the systematic uncertainty.

Compared to the 2017 analysis [1], this allowed us to significantly improve the control of the
systematic uncertainties for the chiral and continuum extrapolations. The inclusion of finer lat-
tices and ensembles close to the physical point is effective at reducing the uncertainty. Ensembles
like J500 and J501 reduce the distance the continuum extrapolation has to cover. Likewise, the
ensembles E250, E300 and D452 close to the physical point help to stabilize the chiral extrap-
olation. Using these ensembles allows us to apply cuts to the measurements. In table 5.3 we
can see that removing ensembles far away from the physical point and the continuum does not
lead to a declining quality of the fit. Additionally, using a wider range of different extrapolation
techniques we are more confident in the correct estimation of the systematic uncertainty.

Another difference between the determination in 2017 and this analysis is the calculation of
the quark mass derivatives. In the previous analysis [1] the quark mass derivatives are calculated
using two ensembles with varying quark masses. These measurements are then extrapolated
to the other ensembles using chiral perturbation theory. Here, we use measurements of the
derivatives on the majority (19/20) of the ensembles and a model to fit the derivatives. This
combined description of the derivatives results in an average relative error of about 35% compared
to 50% in [1]. Measurements of the derivatives on ensembles close to the physical point, where
the simulation is computationally expensive, often have larger statistical uncertainties than the
measurements at the symmetric point. These measurements, in particular, benefit from the
combined description, as the uncertainty of the fit is smaller than the uncertainty of these
individual measurements (see fig. 5.4). Additionally, we are able to extrapolate the quark mass
derivatives to ensembles where they have not been measured.

As a result of these improvements, the statistical uncertainty given in eq. (5.40) is reduced
by about 29% compared to the previous determination in [1]. However, using a larger set of
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CLS 16 [1]

QCDSF/UKQCD 15B [137]

RBC/UKQCD 14B [15]

BMW 12A [56]

ETM 21 [138]

CalLat 20A [88]

MILC 15 [103]

HPQCD 13A [139]

Nf = 2+1+1

Nf = 2+1

√
t0 [fm]

Figure 6.1: Comparison of the intermediate flow scale calculated by different groups. The values
are taken from [9] and the references therein. Empty symbols indicate unpublished results.

chiral and continuum extrapolations the estimation of the systematic uncertainty is increased by
13%. The resulting relative precision is 0.89%, where the statistical and systematic uncertainty
contribute roughly equal parts.

To increase the precision even further one would need to simulate ensembles with a fine lattice
spacing close to the physical point. In particular, an extension of the β = 3.85 trajectory towards
the physical point would help to stabilize the extrapolations. Advances in the simulation algo-
rithms would improve the feasibility of simulations with smaller lattice spacings. See part II for
our efforts in this regard. Apart from additional simulations, there are theoretical improvements.
A more precise understanding of the behavior along the continuum and chiral extrapolations re-
sults in a more precise determination of the scale at the physical point. One could for example
include higher terms such as the ones determined in [132, 133] in the continuum extrapolation.
Currently, the analysis reaches around 1% accuracy. Going further, QED effects become relevant
and lattice simulations including QED [32, 134–136] are needed.

To further increase the precision, one could consider different phenomenological scales to
determine the intermediate scale t0. If, for instance, one can measure

√
t0mp precisely on the

lattice, one can benefit from the exceptional precision of the experimental determination of the
proton mass.

In fig. 6.1 we show how our result compares to previous determinations of the scale. The
updated value is in agreement with other (published) results. In particular, the most precise
determinations by the ETM collaboration [138] and the RBC/UKQCD collaboration [15] are
matched very closely.
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7 | Introduction

In lattice QCD simulations the inversion of the Dirac operator is the most computationally
expensive part. Lattice QCD strives towards larger lattice sizes and lighter quark masses. Recent
developments have in particular called for very large lattice sizes [140, 141]. The CLS group
also generated ensembles at physical Pion masses (see fig. 3.1 and [107, 142]). Both of these
requirements increase the difficulty of the solution of the Dirac equation. Increasing the lattice
size directly increases the size of the system. Lowering the bare quark mass decreases its condition
number. For these reasons, the inversion of the Fermion matrix given by the Dirac operator in
eq. (1.16) is a bottleneck of the simulation. Algorithmic advancements in the solution of the
Dirac equation greatly influence the quality and feasibility of lattice QCD simulations.

Because of the size of the Dirac operator, explicit matrix inversion techniques are unrealis-
tic. While the Dirac operator itself is sparsely populated, its inverse is not. Hence, explicitly
calculating and saving the inverse Dirac operator exceeds the memory available today. For this
reason we resort to iterative techniques that will be introduced in chapter 8. These techniques
approximate the application of the inverse Dirac operator each time it is needed. Each time
the Dirac equation must be solved, the iteration is started from the beginning. This process
is very computationally intensive even on the most advanced parallel computers. Algorithmic
improvements go a long way in increasing the statistics and feasibility of lattice QCD simulations.

One way to tackle such complicated matrix inversion problems are domain decomposition
methods. Here the problem is divided into several sub-problems and distributed among a num-
ber of computation nodes. This limits the workload of each individual node and can, if done
efficiently, drastically speed up the computation. An overview of domain decomposition methods
is given in [65]. When using domain decomposition methods one has to consider the overhead
introduced by these methods and their scaling behavior. Another key distinction between dif-
ferent domain decomposition solvers is the condition number of the decomposed system. If the
decomposed system is very ill-conditioned, it can be more difficult to solve than the original
system. The communication between different computation nodes also plays an important role
when analyzing these methods. It is in these key points where different domain decomposition
algorithms vary.

Two such algorithms will be introduced in chapter 9. The first one, which we will consider as
a reference point, is the Schwarz Alternating Procedure. It is implemented as part of the openQCD
package listed in table A.1 and has been successfully employed in lattice QCD applications [143,
144]. The second one is called Finite Element Tear and Interconnect (FETI) algorithm [65, 145]
and is the main focus of part II of this work. We implemented the algorithm on top of the openQCD
package [123]. The FETI algorithm has been used successfully in engineering applications such
as linear elasticity [66, 67].

In chapter 10 we will have an detailed look at the FETI algorithm in a lattice QCD application.
We will analyze its convergence as well as the behavior of the subsystems. Several preconditioning
techniques and the comparison to current state-of-the-art methods are considered.
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8 | Linear Algebra Solvers

As we have seen in the previous section, it is of great importance to be able to efficiently solve
linear systems of the form

Ax̂ = f. (8.1)

In linear algebra there exist numerous methods to calculate the inverse of an operator A. An
overview of several such methods is given in [64, 146, 147].

The matrices we are interested in here are prohibitively large. The dimension can reach up to
109 at which point it would take millions of Terabytes to fully store the operator matrix. Methods
that make use of the explicit form of the matrix are ruled out in this case. This includes all
factorization (QR, SVD, LU, etc.) and elimination (Gauss, etc.) methods that are very common
in linear algebra.

The operator used in this application is the Dirac operator. The definition is given in sec-
tion 1.2 eq. (1.16). It is sparsely populated. It has entries only on the diagonal and for the two
neighbors in each direction. This means that it consists of only O (m) entries as opposed to
O
(︁
m2
)︁
, if m is the dimension of the matrix.

Given the huge dimension of the operator and its sparse population we can only efficiently
implement the application of the operator on a vector. For this reason we need to find a solver
that only utilizes the application of the operator rather than its explicit structure. These solvers
are called Krylov subspace solvers and are a subclass of the iterative solvers.

An introduction to selected iterative solvers and preconditioning techniques used here is given
in sections 8.1 and 8.2.

Krylov solvers are iterative solvers that repeat some process

xk+1 = P (A, f, xk, xk−1, · · · ) (8.2)

to update the current approximation to the exact solution

x̂ = A−1f. (8.3)

This update process is constructed such that upon repeated application the solution converges
to the exact solution.

xk
k→∞−−−−→ x̂ (8.4)

There exist a variety of different iterative solvers [147], each characterized by its update process
P that determines the step xk → xk+1. To measure the accuracy of an approximate solution xk
we use the residue

ρ = f −Axk. (8.5)

If the residue gets small, in the sense that

∥ρ∥ < ϵ ∥f∥ (8.6)

63



CHAPTER 8. LINEAR ALGEBRA SOLVERS

for some small ϵ, the difference of the approximate solution xk to the exact solution is bounded
by

∥xk − x̂∥ < ϵκ(D) ∥x̂∥ , (8.7)

with the condition number
κ(D) = ∥D∥

⃦⃦
D−1

⃦⃦
. (8.8)

For the types of solvers used here (Krylov solvers) the condition number measures how easily
the matrix can be inverted and how fast the iterative algorithms converge. For the unit matrix,
which is its own inverse, the condition number is one, while for a singular matrix the condition
number is infinite. The matrices discussed here lie somewhere in between and can be compared
using their condition number. Preconditioners are operations that transform the original linear
system in order to decrease its condition number. The preconditioned system can then be solved
and the original solution recovered. Preconditioning techniques are very important when dealing
with matrices that are close to singular, i.e. matrices with a large condition number.

8.1 Krylov Subspace Solver

Krylov solvers are suited for large, sparse linear systems, because only the application of the
operator is required. They approximate the solution x̂ = A−1f by some polynomial x̂ ≈ p (A) f .
The approximate solution xk is an element of the Krylov space

Kk =
{︁
f,Af,A2f, · · · , Ak−1f

}︁
(8.9)

spanned by repeated application of the operator on the vector f . Iterative Krylov solvers such
as the ones described in sections 8.1.1 to 8.1.3 construct an approximate solution vector in this
space. They differ in the construction procedure, convergence properties and computational
requirements. The algorithms listed below are described in [64, 147, 148]. Further improvements
such as restarting and single precision acceleration are discussed in [64].

8.1.1 Steepest Descend and Conjugate Gradient

The steepest descend and conjugate gradient (CG) algorithms [147–149] work for hermitian
matrices A = A†. If the system in question is not symmetric, we solve the system A†Ax = A†f .
Therefore, without loss of generality we assume that A is symmetric here. The central idea
behind these algorithms is minimizing the quantity

ϕ(x) =
1

2
(x,Ax)− (x, f) (8.10)

with respect to x. Here (a, b) is the scalar product of the vectors a and b. Minimizing ϕ(x) is
equivalent to solving the system Ax = f since xmin = A−1f . At some point xk we calculate the
steepest descent and use that as a direction for the next iteration. The gradient is

−∇ϕ(xk) = f −Axk = ρk, (8.11)

which is exactly the residue ρk of the current solution. There is then a point xk + αρk where
ϕ (xk + αρk) < ϕ (xk) We can now minimize

ϕ (xk + αρk) = ϕ (xk)− α (ρk, ρk) +
1

2
α2 (ρk, Aρk) (8.12)
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8.1. KRYLOV SUBSPACE SOLVER

with respect to α to get the optimal distance

α =
(ρk, ρk)

(ρk, Aρk)
(8.13)

to shift the current solution
xk+1 = xk + αρk. (8.14)

The steepest descend algorithm consists of the following steps that are repeated until conver-
gence.

1. Calculate the residue ρk.

2. Calculate the shift distance α according to eq. (8.13).

3. Shift the current solution in the ρk direction using eq. (8.14).

The optimal value for ϕ(x) is ϕopt(x) = − 1
2

(︁
f,A−1f

)︁
. The distance from this optimal value

is reduced by the CG iteration according to
(︃
ϕ(xk) +

1

2

(︁
f,A−1f

)︁)︃
≤
(︃
1− 1

κ(A)

)︃(︃
ϕ(xk−1) +

1

2

(︁
f,A−1f

)︁)︃
. (8.15)

In that way the convergence is guaranteed if κ(A) > 0. The iterative improvement is mediated
by the condition number κ(A). The convergence is bound by

∥ρk∥
∥ρ0∥

≤
(︃
1− 1

κ(A)

)︃k
. (8.16)

Note that the optimum in eq. (8.12) is found in the direction of ρk. Choosing a different search
direction for this optimization can improve convergence and leads to the conjugate gradient (CG)
algorithm [147, 149]. Here, ϕ(x) is minimized along some search direction pk resulting in the
following conjugate gradient procedure.

Starting with the search direction p0 = ρ0

1. Calculate the shift distance
α =

(ρk, ρk)

(pk, Apk)
. (8.17)

2. Update the current solution and the residue

xk+1 = xk + αpk

ρk+1 = ρk − αApk.
(8.18)

3. Calculate the new search direction using

pk+1 = ρk+1 +
(ρk+1, ρk+1)

(ρk, ρk)
pk. (8.19)

The convergence of the CG algorithm is given by [148]

∥ρk∥
∥ρ0∥

≤
(︄√︁

κ(A)− 1√︁
κ(A) + 1

)︄k
(8.20)

again using the condition number κ(A).
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8.1.2 Minimal Residual
The Minimal Residual (MRES) algorithm [150] is very similar to the CG algorithm. However,
it can deal with non-hermitian matrices. The cost function ϕ(xk) that is minimized is set to the
norm of the residual

ϕ(xk) = ∥f −Axk∥2 = ∥ρk∥2 . (8.21)

Minimizing
ϕ (xk + αρk) = ϕ (xk)− 2α (ρk, Aρk) + α2 (Aρk, Aρk) (8.22)

with respect to α we get

α =
(ρk, Aρk)

(Aρk, Aρk)
(8.23)

From this point on the algorithm works in exactly the same way as the CG algorithm presented
in the previous section. If µ is the smallest eigenvalue of the hermitian matrix 1

2

(︁
A+A†)︁ and

σ = ∥A∥2 then the MRES algorithm converges as

∥ρk+1∥ ≤
(︃
1− µ2

σ2

)︃ 1
2

∥ρk∥ . (8.24)

8.1.3 Generalized Conjugate Residue
The generalized conjugate residue (GCR) algorithm [151–153] works for arbitrary matrices A.
The requirement that A must be hermitian, that existed for the CG algorithm, is no longer
needed. The presentation of the GCR algorithm is taken from [144].

The GCR generates approximate solutions xk ∈ Kk, k = 1, 2, 3, . . . in the Krylov space. We
will call the basis of the Krylov space vl. It will be useful to define the conjugate space Lk.

Kk = {v0, v1, · · · , vk−1} =
{︁
f,Af, · · · , Ak−1f

}︁
(8.25)

Lk = {χ0, χ1, · · · , χk−1} = AKk (8.26)

Since the solution is in the Krylov space K, we can express is using the basis vectors vl

xk =

k−1∑︂

i=0

civi (8.27)

For the associated residue ρk we get

ρk = f −Axk = f −
k−1∑︂

i=0

ciAvi. (8.28)

The GCR algorithm minimizes the norm of the residue

∥ρk∥2 = ∥f∥2 − 2

k−1∑︂

i=0

ci (f,Avi) +

k−1∑︂

i,j=0

cicj (Avi, Avj) . (8.29)

when shifting the current solution vector xk in the direction vk−1. Minimizing with respect to
cl we get

0 =
∂ ∥ρk∥2
∂cl

= −2 (f,Avl) + 2

k−1∑︂

i=0

ci (Avi, Avl)

= −2 (f,Avl) + 2 (Axk, Avl) .

(8.30)
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Using the definition of the basis vectors in eqs. (8.25) and (8.26), i.e. χl = Avl, we arrive at the
condition

(Axk, χl) = (f, χl) . (8.31)

that implicitly defines the vector xk that minimizes the residue ∥ρk∥2 in the search direction
vk−1. The condition is solved for

Axk =

k−1∑︂

i=0

(f, χi)⏞ ⏟⏟ ⏞
αi

χi =

k−1∑︂

i=0

αiχi. (8.32)

Insert into eq. (8.28) can express the residue in terms of the right-hand side f and the basis
vectors χl

ρk = f −
k−1∑︂

i=0

(f, χi)χi. (8.33)

The residue is the projection of the right-hand side f onto the orthogonal complement of Lk.
The GCR algorithm calculates this residue before the approximate solution for this step xk is
known. We then use the residue ρk to calculate the next basis vector to the conjugate space Lk.

χi =

l∑︂

j=0

βijAρj , i = 0, 1, 2, · · · (8.34)

The coefficients βij are defined through the orthonormality conditions with the previous basis
vectors.

(χl, χj) = δij . (8.35)

Inserting eq. (8.34) into eq. (8.32) and applying A−1 to both sides leads to an explicit equation
for the current approximate solution

xn =

n−1∑︂

i=0

l∑︂

j=0

αiβljρj . (8.36)

The GCR algorithm consists of the following steps.

1. Calculate the coefficients αi = (f, χi) , i = 0, 1, · · · , k−1 from the basis vectors calculated
in previous steps.

2. Calculate the residue ρk and the new approximation xk.

3. Calculate the coefficients βij and the new search direction vk using ρk, the previous basis
vectors and eq. (8.34).

Because the GCR algorithm is used extensively in this application we also give it in algorithmic
form in algorithm 1.

It is shown in [64] that the GCR algorithm converges with

∥ρk∥2 ≤ κ(V )
(︂
1 +

m

M

)︂−k
∥f∥2 (8.37)

where V is an invertible matrix according to the diagonalization A = V ΛV −1 and M and m
define a disc with radiusm and centered atM that contains all eigenvalues of A. The convergence
rate m

M ∼ 2
κ(A) is linked to the condition number κ(A) of the operator.
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Algorithm 1 GCR
ρ0 = f −Ax0, v0 = ρ0
for i = 0, 1, · · · , until convergence do
αi =

(ρi,Avi)
(Avi,Avi)

xi+1 = xi + αivi
ρi+1 = ρi − αiAvi
vi+1 = ρi+1

for j = 0, 1, · · · , l do
βij = − (Aρj+1,Avl)

(Avl,Avl)

vi+1 = vi+1 + βijvj
end for

end for

We can further improve the quality of the solver by periodically restarting the algorithm.
Restarting means that after a fixed number of iterations nrestart we forget about the search
directions vi, i < nrestart used so far and starting the algorithm from the current solution. In this
way we avoid the accumulation of errors caused by limited floating point precision. This also
decreases the memory requirements of the algorithm as fewer Krylov vectors vi need to be saved.

The convergence properties of the different Krylov solvers depend on the characteristics of
the linear system to be solved and the resulting optimization landscape. An analysis for the
linear systems relevant for this application is presented in section 10.3.2. There we find that the
GCR solver is superior to the others in terms of stability and convergence rate.

8.2 Preconditioning

Preconditioning is the explicit or implicit transformation of a system of equations designed to
improve the convergence of iterative solvers. There exist a wide variety of such techniques,
some of which are presented in [147]. Almost universally choosing a suitable preconditioner
is far more important than choosing the right solver. In this section we will give a general,
theoretical introduction using a generic preconditioning operator M and discuss how the iterative
solvers introduced in section 8.1 can be extended to cover preconditioned systems. Several
preconditioners for the system used in this application are discussed in sections 9.2.6, 10.2.2
and 10.3.4

One type of explicit preconditioner is to scale all rows and/or columns of A such that the di-
agonal entries are one or close to one. This transformation may lead to a faster convergence using
a Krylov space solver. However, this is not guaranteed. A brief analysis of this preconditioner is
given in section 10.3.4.

More complicated, implicit preconditioners are of the form

M−1
L AM−1

R u =M−1
L f, u =MRx. (8.38)

The left and right preconditioning operators ML and MR can be complicated transformations.
They may involve iterative procedures, integral calculations and other forms of transformations.
In this case no linear matrix M can be defined. Instead, the preconditioner is given by a
non-linear function M−1(u). The notation will be abused in a way that M−1u refers to the
application of the preconditioner M−1 either being a linear matrix or a non-linear function. By
design any solution to the preconditioned system (8.38) is also a solution to the original system.
However, if we chose suitable preconditioning operators, we can design the preconditioned system
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to be advantageous to the original system. In particular this means the condition number of the
preconditioned system is smaller: κ

(︁
M−1
L AM−1

R

)︁
≤ κ (A).

In the following we will focus on left preconditioners. This amounts to setting MR = 1. The
left preconditioner can be understood as selecting a search direction in which to minimize the
residue. We are interested in preconditioners that approximate the inverse operator M ≈ A−1.
A good preconditioner finds a balance between the cost of the application and the quality of the
approximation of A−1. A suitable measure of how close the preconditioner matches the inverse
operator is the Frobenius norm of the residual matrix

F (M) = ∥1−AM∥2F . (8.39)

Since, in general, the preconditioning matrix M is dense, it is computationally intensive to
compute this norm. For that reason we compare different preconditioners by the convergence
behavior of the preconditioned iterative solvers. To that end we extend the solvers to work on
preconditioned systems. In section 8.2.1 we focus on the preconditioned version of the GCR
algorithm introduced in section 8.1.3. A comparison of different preconditioners in a QCD
application is given in section 10.2.2.

8.2.1 Preconditioned GCR
In each step of the algorithm presented in section 8.1.3 we minimize the residue when shifting
the current solution vector xk in the search direction vk calculated from the residue ρk. In the
preconditioned version we now calculate the search direction v̄k from the vector M−1ρk. We get
the preconditioned algorithm by making the following substitutions

A→ AM−1

xk →Mxk.

We can then define the new search direction v̄k = M−1vk, which leads to the preconditioned
GCR algorithm listed in algorithm 2.

Algorithm 2 Preconditioned GCR.

ρ0 = f −Ax0, v̄0 =M−1ρ0
for i = 0, 1, · · · , until convergence do
αi =

(ρi,Av̄i)
(Av̄i,Av̄i)

xi+1 = xi + αiv̄i
ρi+1 = ρi − αiAv̄i
v̄i+1 =M−1ρi+1

for j = 0, 1, · · · , l do

βij = − (AM−1ρj+1,Av̄l)
(Av̄l,Av̄l)

v̄i+1 = v̄i+1 + βij v̄j
end for

end for

8.3 Deflation

Deflation is a technique to drastically speed up the inversion of linear systems. It is used in
lattice QCD applications and described in [64, 69, 70]. It works by separating a part of the
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solution, where the inverse can be explicitly calculated. The space in which the explicit solution
resides is called the deflation subspace S. If this space is chosen appropriately the condition
number of the remaining system is smaller than the original. The deflation subspace is spanned
by the orthonormal basis vectors ϕk

S = span (ϕ1, ϕ2, · · · , ϕN ) (8.40)

For this general overview of the technique we will not further specify the deflation subspace.
Explicit examples of the construction of the deflation subspace are presented in sections 9.1.1
and 9.2.6.

We begin by defining the projector onto the deflation subspace

Px =

N∑︂

k=1

ϕk (ϕk, x) . (8.41)

The application of the linear operator A onto the basis vectors of the deflation subspace can be
expressed by the matrix

Ekl = (ϕk, Aϕl) . (8.42)

This matrix is sometimes referred to as the “little operator”. It is assumed that E is invertible
and explicitly known. For normalized vectors ϕ, its inverse can be calculated as follows

(︁
E−1

)︁
kl

=
(︁
ϕk, A

−1ϕl
)︁
. (8.43)

The linear operators

PLx = x−
N∑︂

k,l=1

Aϕk
(︁
E−1

)︁
kl
(ϕl, x) (8.44)

PRx = x−
N∑︂

k,l=1

ϕk
(︁
E−1

)︁
kl
(ϕl, Ax) (8.45)

(8.46)

are oblique projectors onto the orthogonal complement S⊥ of deflation subspace. In particular
this means

P 2
X = PX , X = L,R (8.47)

PPL = PRP = 0 (8.48)
PL (1− P ) = (1− P )PR = 1− P. (8.49)

We now consider the component of Dirac equation in the deflation subspace S by multiplying
the linear system from eq. (8.1) by the projector P .

PAx = P (1− PL)Ax

= PAx− PAx+

N∑︂

k,l=1

PAϕk
(︁
E−1

)︁
kl

(︂
ϕl, Ax⏞⏟⏟⏞

b

)︂

=

N∑︂

k,l=1

PAϕk
(︁
E−1

)︁
kl

(︂
ϕl, b

)︂
(8.50)
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We arrive at the explicit solution of the system in the deflation subspace

xdfl =

N∑︂

k,l=1

ϕk
(︁
E−1

)︁
kl

(︂
ϕl, b

)︂
(8.51)

The solution in the orthogonal complement S⊥ is given implicitly by

PLAxcompl = PLb. (8.52)

We combine the solutions in the two spaces to get

x = PRxcompl + xdfl. (8.53)

Here the component xdfl(x) in the deflation subspace can be explicitly calculated using the
matrix E−1

kl . The component in the complement xcompl(x) is the solution to the deflated system
in eq. (8.52). The inverse of the deflated operator Ê = PLA is

Ê
−1

= (1− P )E−1 (1− P ) . (8.54)

If the projector 1 − P suppresses the low modes of A, the deflated block system is significantly
better conditioned and thus faster to invert using the iterative solvers presented in section 8.1.

How to choose and construct the basis vectors of the deflation subspace and accordingly the
projectors P and PL is subject of sections 9.1.1 and 9.2.6. An application of deflated solvers is
presented in sections 10.2.2 and 10.3.6.
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The iterative techniques we have seen in the previous chapter are well suited for problems where
the Krylov subspace quickly spans a significant part of the overall problem space. If the dimension
of the linear system is exceedingly large, very many iterations are needed to span a significant
Krylov subspace. After initial rapid convergence, the convergence stagnates. In this case it is
useful to divide the original problem into a number of smaller sub problems. Here these sub
problems consist of multiple local domains on the lattice. There exist numerous techniques
to structure these domains. They differ in the size and shape of the domains and how the
equivalence to the original problem is ensured. An overview of several substructuring and domain
decomposition techniques is given in [65, 147].

The substructuring into domains serves two main purposes. The control over the subdomain
size and resulting dimension of the block problem opens up a wide variety of solver algorithms
that are unsuitable for the global problem. In particular, it is possible to use the comparatively
simple iterative algorithms presented in chapter 8. In some cases it may even be possible to
employ direct, explicit inversion algorithms such as the Gauss elimination. Additionally, the
separation into multiple smaller block problems is useful for parallel computer architectures
such as computer clusters or graphical processing units (GPU). Acceleration of lattice QCD
simulations using GPU architectures is already an active topic [154] and will continue to be
relevant in the future. With these parallel architectures in mind, it is beneficial to shift the
majority of the workload to the system on the subdomain blocks. This is especially important
considering the large local computational power of individual nodes and comparatively slow
communication between them.

Here we will introduce two domain decomposition methods. The Schwarz Alternating Pro-
cedure (SAP) will serve as a reference point. It is implemented in the openQCD package listed
in table A.1 and is used in current lattice QCD simulations [72, 73]. The Finite Element Tear
and Interconnect algorithm (FETI) is the main focus of this work. It is first introduced in
[145] and has been refined in [67, 68, 155–159]. Both of these techniques employ rectangular
subdomains called blocks. This is a natural choice given the square geometry of the underlying
lattice. Although this restriction is not necessary, we consider square blocks of equal size. It is
assumed that these blocks evenly divide the global lattice.

In the following we will rephrase the original, global problem in terms of the smaller problems
on the subdomains. This is done in several key steps. First we define the block geometry and
formulate the individual problems on the blocks. We also define the interaction between different
blocks and impose a set of boundary conditions on the blocks. We then establish equivalence
between the original problem and the collection of block problems. Finally, we check if the
collection of block problems is easier to solve than the original, global problem.
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Figure 9.1: Decomposition of global 2d lattice (left) into SAP blocks of side length sb = 4 (right).
The individual SAP blocks do not share any points and evenly divide the entire global lattice.

9.1 Schwarz Alternating Procedure

The Schwarz Alternating Procedure (SAP) is used in current QCD applications [72, 73]. It is
discussed in this context in [143, 144] and will be used as a reference. A more general overview
of the procedure can be found in [147]. The deflation improvement (DFLSAP), which is also
part of the openQCD package, is presented in [69, 70] and discussed in the next sections.

In the SAP algorithm the lattice is divided into non-overlapping blocks that fill the entire
lattice. A 2d schematic of this decomposition is shown in fig. 9.1.

On a given block Λ the operator can be rearranged into

AΛ =

(︃
AΛΛ AΛΛ∗

AΛ∗Λ AΛ∗Λ∗

)︃
, (9.1)

where points not in the block Λ are denoted by Λ∗. We have separated the contributions from the
block to the block (ΛΛ), the contributions from the outside to the block (ΛΛ∗), the contributions
from the block to the outside (Λ∗Λ) and the contributions from the outside to the outside (Λ∗Λ∗).
The operator AΛΛ is the same as the A except for all terms that involve the boundary fields.
These terms are set to zero which is equivalent to imposing Dirichlet conditions on the block
boundary.

The SAP algorithm now loops over the blocks sequentially and solves the current block
equation. The new approximation to the global solution x′ is calculated by solving the following
equations

Ax′ = f, x ∈ Λ (9.2)
x′ = x, x /∈ Λ. (9.3)

Combining these two equations the update is given by

x′ = x+A−1
ΛΛ (f −Ax) (9.4)

While this iteration is numerically stable, we can improve it further. If we consider the residue
of the new solution

ρ′ = b−Ax′ = ρ−AA−1
ΛΛρ (9.5)

and assume that the operator A only includes nearest neighbor interactions, we can see that it
only differs from ρ on the block Λ itself and all neighboring blocks. This means that every other
block can be updated at the same time. If we color the blocks black and white in alternating
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checkerboard fashion, we can express the update in terms of these two domains only. Black
blocks will be labeled Ω and white blocks Ω∗. We can then decompose the operator similarly
to eq. (9.1) into the components AΩΩ, AΩΩ∗ , AΩ∗Ω and AΩ∗Ω∗ . A Schwarz cycle, consists of an
update on all black blocks followed by an update on all white blocks and is defined by

x→ (1−KA)x+Kb (9.6)

K = A−1
ΩΩ +A−1

Ω∗Ω∗ −A−1
Ω∗Ω∗AΩ∗ΩA

−1
ΩΩ. (9.7)

After ncy cycles starting from x = 0 the solution is

x = K

ncy∑︂

ν=0

(1−AK)
ν
b. (9.8)

If the SAP algorithm is used as a preconditioner to a global solver, the associated precondi-
tioning operator is

MSAP = K

ncy∑︂

ν=0

(1−AK)
ν (9.9)

In this case both the number of cycles and the number of iterations for the inversion of the block
operators in the definition of K is truncated. In this way we get an approximate to the inverse
operator A−1 and the preconditioned system is better conditioned.

9.1.1 Deflated Schwarz Alternating Procedure
An overview of the general idea behind deflation techniques was given in section 8.3. Here we
will work out how to calculate the deflation subspace S and define the deflated SAP algorithm
as a reference.

In section 8.3 we argued that the basis vectors should be constructed in such a way that
1 − P restricts the low modes of the operator. We could therefore choose the global fields
ϕk, k = 1, · · · , Ns to be exactly these low eigenmodes of the operator. However, calculating
eigenmodes of the global operator is very computationally expensive. Furthermore, it has been
shown in [69] that the knowledge of the exact modes is not needed for efficient deflation of the
global system. It is enough to start from a random vector ηk and apply some approximation M
of the inverse operator a number (Ndistillation) of times

ϕk =MNdistillationηk. (9.10)

This process is sometimes called distillation and captures the low modes of the system. The
approximate versions of the inverse operator can be any preconditioner to the global system. In
this case we use the SAP preconditioner introduced in the previous section. While this is a valid
deflation scheme, there are further improvements.

We can define a local deflation subspace on blocks ΛDFL similar to the blocks used for the
SAP algorithm. It is not necessary to use identical blocks for the SAP and the deflation. The
subspace is given by

SΛDFL =
{︂
χΛDFL

1 , χΛDFL

2 , · · · , χΛDFL

Ns

}︂
. (9.11)

The global deflation vectors are the sum of the basis vectors over all blocks.

χk =
∑︂

ΛDFL

χΛDFL

k (9.12)
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The construction of these local fields begins with a set of Ns global fields ϕk, k = 1, · · · , Ns.
We can choose the approximate low modes of the global operator calculated using the update
process in eq. (9.10). These fields are then projected onto the block ΛDFL using the restriction

ϕΛ
DFL

k (x) =

{︄
ϕk(x), x ∈ ΛDFL

0, otherwise
(9.13)

The resulting block fields are then normalized and orthogonalized using the Gram-Schmidt pro-
cedure. (︂

χΛDFL

1 , χΛDFL

2 , · · · , χΛDFL

Ns

)︂
= orthonorm

(︂
ϕΛ

DFL

1 , ϕΛ
DFL

2 , · · · , ϕΛDFL

Ns

)︂
(9.14)

This has two major benefits. The application of the projector

Px =
∑︂

ΛDFL

Ns∑︂

k=1

ϕΛ
DFL

k

(︂
ϕΛ

DFL

k , x
)︂

(9.15)

can be executed in parallel on all blocks. More importantly the full deflation subspace is the
direct product of all local subspaces. Its dimension is therefore N = NbNs, where Nb is the
number of blocks and Ns is the number of basis vectors on each block. Because of the splitting
of the sum in eq. (9.15) the computational cost of the projector is small even for a very high
dimensional deflation subspace.

Using the deflation subspace spanned by the basis vectors χk one can follow the steps laid
out in section 8.3 and solve the deflated system. It is, however, possible to construct a more
efficient algorithm, by using the SAP and deflation techniques as a preconditioner to the global
GCR algorithm [64, 69, 70].

9.1.2 Deflated SAP as a Preconditioner
The deflated SAP (DFLSAP) preconditioner [64, 69, 70] consists of two steps. In the first step
we use the deflation subspace to construct a preconditioner that approximates the low modes of
the global operator A. We then employ a small number of steps of the SAP algorithm to estimate
the smaller details. To combine the two preconditioners we first approximate the solution using
the deflation subspace

x1 =MDFLf = (PAP )
−1
f, (9.16)

The deflation preconditioner MDFL is an approximation to the inverse of the little operator PAP .
The little system is much easier to solve given its smaller size and better condition. The full
solution is now given by the approximation x1 and the remainder x2

A(x1 + x2) = f. (9.17)

The remainder x2 is implicitly defined by

Ax2 = f −MDFLf. (9.18)

We can now iteratively improve the solution x1 by approximating the solution to this second
residual system. For the second approximation we use the SAP preconditioner defined in eq. (9.9)
to get

x2 ≈MSAP (f −MDFLf) . (9.19)

Combining the two components we get

x = x1 + x2 ≈ (MDFL +MSAP −MSAPAMDFL) f. (9.20)
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This defines the preconditioner

MDFLSAP =MDFL +MSAP −MSAPAMDFL (9.21)

combining the SAP and deflation techniques.

9.2 Finite Element Tear Interconnect Algorithm

In the Finite Element Tear and Interconnect algorithm [65, 145] the global lattice is also split
into blocks. In contrast to the SAP, the points on the interfaces of the blocks are duplicated
and attributed to every connected block. While this increases the size of the overall problem,
the individual blocks are now “more independent” of each other. Since the interaction decays
exponentially in the distance, points far away from block boundaries can be accurately solved
without the need for information from the neighboring blocks. This is an advantage for parallel
computer architectures, where a large amount of computational power is available, but the
communication between different processors is comparatively slow. Of course the individual
blocks are not completely independent of each other. For this reason we have to enforce additional
constraints that govern the interaction between blocks. This step extends the overall problem
size again. However, the possibility to parallelize in a more efficient way may outweigh these
additional costs.

We will now examine the FETI algorithm. The geometry of the algorithm and its blocking
will be defined in section 9.2.1. In section 9.2.2 we consider the interaction between different
blocks and the continuity of the solution across block boundaries. We will then use the definitions
of the previous sections in section 9.2.4 to define block versions of the involved operators and
relate them back to their counterparts on the global lattice. Different preconditioning techniques
and improvements to the FETI algorithm are presented in sections 9.2.6 and 9.2.7.

9.2.1 Lattice Geometry

To illustrate the lattice geometry we are using a 2d schematic of the lattice. Wherever the
generalization to higher dimensions is not straight forward, we will go into detail explicitly. The
left side of fig. 9.2 shows the global lattice. A spinor resides on each site of the lattice and gauge
links connect neighboring sites, i.e. sites that are one lattice spacing apart. The global vector
containing the spinors on all sites of the global lattice is called xg. In the example shown we also
see a division into 4 subdomains or blocks. The lattice points on the interior or bulk of the blocks
are shown as points, while points on the boundary are shown as triangles or squares for edges
and corners respectively. When we formulate the problem in terms of block quantities, it will be
useful to divide the lattice into the space of interior (bulk) variables xI and boundary variables
x∆. The block sizes are chosen such that the domains overlap by exactly one lattice unit on the
edge. As a consequence the variables on the boundary are duplicated and exist separately on
each connected block.

It will be helpful to define a vector that more closely resembles this sublattice structure. The
vector x{b} is a collection of all the block vectors xαb . Each block vector is arranged such that
the bulk variables are followed by the boundary variables.

x{b} =
(︁
x1b , x

2
b , · · · , xNb

)︁T

=
(︂(︁
x1I , x

1
∆

)︁T
,
(︁
x2I , x

2
∆

)︁T
, · · · ,

(︁
xNI , x

N
∆

)︁T)︂T (9.22)
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B+

B

λ

Figure 9.2: Domain decomposition of a 2d global lattice (left) into FETI blocks (right). The
operators B and B+ relate between the two representations. Lattice points on the interior of the
blocks are shown as points. The boundaries are shown as triangles on the edges and as squares
on the corners. Note that the boundary points are duplicated on neighboring blocks. Boundary
points that correspond to the same point on the global lattice are connected by dotted lines
indicating the Lagrange multipliers.

To relate block representation and the global representations, we use an operator Bα that projects
the global vector xg onto the block α.

xαb =

(︃
xαI
xα∆

)︃
=

(︃
BαI
Bα∆

)︃
xg = Bαxg (9.23)

The operators BaI and Ba∆ project into the bulk and boundary subspace on the block α respec-
tively. The collection of all block projectors Bα is called B and acts as

x{b} =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

B1

B2

...
BN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

x1
x2
x3
...
xV

⎞
⎟⎟⎟⎟⎟⎠

= Bxg. (9.24)

The operator B has dimension (NBVB) × Vg, with NB and VB being the number of blocks and
their volume and Vg the volume of the global lattice. It transports the lattice points from the
global lattice onto the individual blocks. It consists purely of (positive) ones and zeros in the
appropriate places. An explicit example of these block operators for a very small lattice is given
in section 9.2.3.

We also define operators for the inverse step - collecting variables from the blocks onto the
global lattice.

xg = B+x{b} (9.25)

Since B is singular we can only define the pseudo-inverse B+. To find one possible pseudo-inverse,
we follow different lattice points as they are projected to the block representation and back. Let
us first consider a point in the bulk of a block. There is a one to one correspondence of points
in the interior of a block and points on the global lattice. The block projector for bulk points is
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therefore similar to the unit matrix with possible rows and columns rearranged (See eq. (9.35)
for an explicit example). Accordingly, the inverse is the transposed matrix

B+
I = B−1

I = BTI . (9.26)

Points on the boundary are transferred to multiple blocks. The transposed of the block projector
sums the contributions from the different block boundaries that correspond to the same global
lattice point. The pseudo-inverse needs to correct this double counting with a weight matrix
W∆.

B+
∆ = BT∆W∆ (9.27)

When choosing this weight matrix there is some freedom. We need to ensure that the sum of the
weights of boundary points that correspond to the same global lattice point is one. This means

B+B = BTWB = 1 (9.28)

implicitly defining the weight matrix W . There is some freedom in choosing the weight matrix
that will be discussed briefly in section 9.2.7. Here we use equal weights for each boundary type.
Points on block edges are transferred to exactly two connected blocks. Hence, they receive a
weight of 1

2 . Points on corners contribute to 4, 8 and 16 blocks and are weighted with 1
4 , 1

8 and
1
16 respectively. A concrete example of the weight matrix is given in section 9.2.3.

9.2.2 Continuity Conditions
Through the application of the B operator we have transferred the original problem

Ax = f (9.29)

into a system of overlapping, independent block equations

A{b}Bx = Bf ⇔ (9.30)
⎛
⎜⎜⎜⎝

A1
b 0 · · · 0
0 A2

b · · · 0
...

...
. . .

...
0 0 · · · ANb

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

x1b
x2b
...
xNb

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

f1b
f2b
...
fNb

⎞
⎟⎟⎟⎠ . (9.31)

Ultimately we want to solve the block system because its shape is beneficial to parallel archi-
tecture. The block operators Aαb and their relation to the original operator A will be properly
defined in section 9.2.4. Note that since we doubled the points on block boundaries the system
is not (yet) equivalent to the original system. We need to fix the additional degrees of freedom
introduced by the doubling of the boundaries. To do this we require block points that correspond
to the same global lattice point to be equal. The condition reads

xα∆ − xβ∆ = 0 (9.32)

for points on the boundary of neighboring blocks α and β that correspond to the same global lat-
tice point. The solution is then continuous across block boundaries. These additional constraints
are added to the system using a set of Lagrange multipliers λ. The continuity constraints are
visualized in figs. 9.2 and 9.3 as dotted lines between the blocks that link connected boundary
points. There is some ambiguity in the distribution of the sign. We choose a checkerboard pat-
tern such that the boundaries on even blocks receive a negative sign while boundaries on odd
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1d 2d 3d 4d

no. points 2 4 8 16
no. constraints 1 4 12 32

rank (C∆) 1 3 7 15

Table 9.1: Constrains used for the four corner types. We give the number of points involved in a
corner and the number of constraints or Lagrange multipliers λ used. To show the redundancy
of the constraints we also list the rank of the matrix used to encode the constraints.

blocks stay positive. On corner points more than two blocks are connected. There are multiple
ways to connect these points, some of which lead to redundant constraints. For a 2d corner the
pattern is enough to constrain all four corner points. As in fig. 9.2 dotted line represent La-
grange multipliers. To keep the symmetry and for convenience in the implementation we choose
to constrain all next neighbors, i.e. the pattern , including the redundant constraint at the
bottom. Note that no diagonal constraints are used. For higher dimensional corners we also use
the redundant constraints that connect all next neighbors.

The conditions of the form in eq. (9.32) are encoded in the matrix C that act on the boundaries
of blocks. The matrix C has dimension (NBVB) × Vλ, where Vλ is the number of Lagrange
multipliers. It is a collection of block matrices.

C =

⎛
⎜⎜⎜⎝

C1

C2

...
CN

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(︃
0
C1

∆

)︃

(︃
0
C2

∆

)︃

...(︃
0
CN∆

)︃

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(9.33)

Note that the block matrices Cα only act on the boundary part. The matrices consist of mostly
0 and ±1 for points on different blocks that correspond to the same global lattice point. In
table 9.1 we list some characteristics of the constraints. We list the number of points involved in
this boundary and the number of constraints used to tie them together. These numbers govern
the size of the matrix C∆. To illustrate the redundant constraints, we also list the rank of C∆,
which is the minimum number of constraints needed. An example of the continuity matrices is
given in section 9.2.3.

Only by adding these constraints to the block system in eq. (9.31) it becomes equivalent to
the original system in eq. (9.29). We extend the block system to encompass the original solution
x as well as the Lagrange multipliers λ.

⎛
⎜⎜⎜⎜⎜⎜⎝

A1
b 0 · · · 0

(︁
C1
)︁T

0 A2
b · · · 0

(︁
C2
)︁T

...
...

. . .
...

...
0 0 · · · ANb

(︁
CN
)︁T

C1 C2 · · · CN 0

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

x1b
x2b
...
xNb
λ

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

f1b
f2b
...
fNb
0

⎞
⎟⎟⎟⎟⎟⎠
. (9.34)

This system will be discussed in detail in section 9.2.5.
In the following section we want to broaden the understanding of the lattice geometry and

the projection and continuity operators by writing them out in explicit form.
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1 2 3

4 5 6

7 8 9

(a) Global representation.

λ1 λ2 λ3 λ4

λ5

λ6

λ7

λ8

B1
1 2

3 4

B2
2 1

3 4

B3
2 3

1 4

B4
2 3

4 1

(b) Block representation.

Figure 9.3: Schematic of the global (left) and block (right) representation of the lattice. The
numbers show the ordering of lattice points. The right hand side shows the four blocks labeled
B1 to B4. The Lagrange multipliers are shown as dotted lines connecting neighboring points.
Their ordering is also defined. The operator B is used to transfer points from the global lattice
to the blocks. The (pseudo)inverse operator B+ transfers points from the block representation
to the global lattice, averaging block points that correspond to the same global point.

9.2.3 An Explicit Example

The operators described in the sections above are large for any meaningful lattice sizes. For this
reason they are rarely given explicitly. To illustrate the global and block representations we will
consider a tiny 2d 3× 3 lattice divided into four blocks. The left side in fig. 9.3 shows the global
representation of the lattice. The right side shows the decomposition into four blocks labelled B1
to B4 containing four lattice points each.1 Note that the edges (2, 4, 6, 8) drawn as triangles are
shared between two blocks each and the corner (5) drawn as a square is part of all four blocks.
The block projection operator B has the form

B =

⎛
⎜⎜⎝

B1

B2

B3

B4

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (9.35)

The transposed of this matrix sums over 2 points for edges (columns 2,4,6 and 8) and over 4
points for the corner point 5. The weight matrix must correct this double counting. It is applied

1Note that later the actual shape of the blocks will be different. The simple example here is only used to
illustrate the block projection operators.
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in the space of the block variables and has the form

W = diag
(︁
1 1

2
1
2

1
4 1 1

2
1
4

1
2 1 1

2
1
4

1
2 1 1

4
1
2

1
2

)︁
. (9.36)

The weight matrix is used in the definition of B+ that collects points from the individual blocks
back to the global lattice.

B+ = BTW =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1

2 0 0 0 1
2 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 1

2 0 0 0 0 0 0 1
2 0 0 0 0 0 0

0 0 0 1
4 0 0 1

4 0 0 0 1
4 0 0 1

4 0 0
0 0 0 0 0 0 0 1

2 0 0 0 0 0 0 1
2 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1

2 0 0 0 1
2

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (9.37)

We can confirm that transferring the points from the global lattice to the blocks using B and
back using B+ restores the original configuration (B+B = 1). The weight matrix W cancels the
summation of points that are transferred to multiple block boundaries.

The continuity matrix relates pairs of points on the boundary of neighboring blocks to the
Lagrange multipliers λ. The sign is distributed in a checkerboard pattern. Even blocks receive
a negative sign. The continuity matrix C is a collection of block continuity matrices and reads
as follows.

C =
(︁
C1 C2 C3 C4

)︁

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 0 0 0 0 0 0 −1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 −1 0 0 0 0 0
0 0 0 0 0 0 −1 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 −1 0 0 0 0 0 0 1 0
0 1 0 0 0 −1 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 −1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 −1 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(9.38)

Each row connects boundary points in two blocks with a relative sign. Columns corresponding
to the interior of the blocks (1,4,8,12) are empty. The corner point is connected through the
Lagrange multipliers λ2, λ3, λ6 and λ7. One of the multipliers is redundant. This can be seen
from the matrix since each of the rows 2,3,6 and 7 is a linear combination of the others.

9.2.4 Block Quantities
So far we have seen how to project the original system onto the individual FETI blocks. We
also defined how these blocks are tied together using the continuity constraints and the Lagrange
multipliers λ. In this section we will establish how we have to treat the block operators such
that the FETI system is equivalent to the original system. For clarity, we will focus on the
two-dimensional operator first and then generalize to the four-dimensional version.

In two dimensions the next neighbor operator connects each point to itself as well as the four
neighboring points. We can write it as

Axy = Sxδx,y + Lx,N (x)δN (x),y (9.39)
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(a) One dimensional interface (edge) with one
lattice point represented on two blocks.
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(b) Two dimensional interface (corner) with one
point represented on four blocks.

Figure 9.4: Interface points for FETI blocks. One point on the global lattice is duplicated onto
the boundary of multiple blocks. We give the weights WSx

on the site x next to the points as
well as the weights WLx,N(x)

on the links.

where we have split the operator into the part Sx attributed to the site at x and the part Lx,N (x)

attributed to the link connecting the site x to its neighbors N (x). We require that the block
system is equivalent to the global system once it is transformed back using to the global space
using the operator B defined in section 9.2.1.

BTAb = Ag (9.40)

If a point is in the interior of a block (I), all of its neighbors are also on the same block. The
definition of the block operator is thus the same as for the global operator.

(︁
AbIX

)︁
xy

= Agxy, X = I,∆ (9.41)

If a point is on the block boundary (∆), however, the definition must change since not all
neighboring sites can be reached. Additionally, when transforming the block system back to the
global lattice, the contributions from block boundaries get summed, according to the definition
of BT in section 9.2.1. Because of this summation of boundary points we have to apply weights
inside the operator to avoid double counting. We will have weights WSx

for the contribution Sx
coming from the site x and weights WLx,N(x)

for the contribution Lx,N (x) that stems from the
link connecting the site x to its neighbors. For boundary points we therefore get

(︁
Ab∆X

)︁
xy

=WSx
Sxδx,y +WLx,N(x)

Lx,N (x)δN (x),y, X = I,∆ (9.42)

The weightsWSx andWLx,N(x)
depend on the type of boundary the points x andN (x) are located

on. The weight of a link that sticks outside the block is zero. We will work out the weights for
the other cases in the following for each boundary type individually. First we consider two
connected points on neighboring blocks. Figure 9.4a depicts a schematic of such a 2d boundary
point pair and the two blocks is it attributed to. We also show the links that connect it to the
neighboring sites. The contributions from the left (right) link only appear in block 0 (block 1).
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The contributions from the top and bottom links are counted on each block. They receive a
weight such that they are only counted once when transferred back to the global lattice. We are
free to choose the weights arbitrarily as long as their sum is one. We decided on a scheme, where
the weights are equal. As a result we apply a weight of WLx,N(x)

= 1
2 to the top and bottom links

on the two blocks. The contribution from the site itself also gets a weight of W 1d
Sx

= 1
2 . These

weights are also represented in fig. 9.4a.
Next we consider a 2d corner. A schematic of this corner type is shown in fig. 9.4b. Here the

point gets duplicated onto four blocks. Accordingly, the weight on the sites must be W 2d
Sx

= 1
4 .

All neighboring points are on the edge and get copied to two blocks each. It follows that the
links connecting these points exist on two blocks each as well. The link weight is WLx,N(x)

= 1
2

for all involved links.
For three and four dimensional corners the site weight is W 3d

Sx
= 1

8 and W 4d
Sx

= 1
16 respectively.

The weight of the link depends on the number of blocks where this contribution is counted, i.e.
the number of blocks the neighboring point appears in. It can therefore be related to the site
weight two points connected by the link. For any link the weight is

WLx,N(x)
= max

(︁
WSx ,WSN(x)

)︁
. (9.43)

These weights add factors of 1
2 ,

1
4 ,

1
8 and 1

16 to some diagonal entries of the original operator
and factors 1

2 ,
1
4 and 1

8 to the off diagonal entries that correspond to boundary terms. This
affects the condition number of the block operators, which will in turn affect the convergence
of iterative solvers. Compared with the unweighted block operator the condition number is
increased. Whether this problem can be overcome by the benefits of the FETI algorithm will be
topic of section 10.3, where we give an analysis on the convergence of the block system. There
we will discuss preconditioning and deflation techniques for the block system.

9.2.5 FETI System

Sections 9.2.1 and 9.2.2 lead to the FETI system in eq. (9.34). In section 9.2.4 we have defined
the block operators and established the equivalence of the FETI system and the original system.
We will repeat the system here using the explicit division into interior (I) and boundary (∆)
components.

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A1
II A1

I∆ 0 0 · · · 0 0 0

A1
∆I A1

∆∆ 0 0 · · · 0 0
(︁
C1

∆

)︁T
0 0 A2

II A2
I∆ · · · 0 0 0

0 0 A2
∆I A2

∆∆ · · · 0 0
(︁
C2

∆

)︁T
...

...
...

...
. . .

...
...

...
0 0 0 0 · · · ANII ANI∆ 0

0 0 0 0 · · · AN∆I AN∆∆

(︁
CN∆
)︁T

0 C1
∆ 0 C2

∆ · · · 0 CN∆ 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1b,I
x1b,∆
x2b,I
x2b,∆

...
xNb,I
xNb,∆
λ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f1b,I
f1b,∆
f2b,I
f2b,∆

...
fNb,I
fNb,∆
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(9.44)

The upper left part of the matrix holds the N individual block systems. Each block point has
contributions from other points on the same block. The boundary points also have contributions
from neighboring blocks through the Lagrange multipliers and the matrices (Cα∆)

T . The last line
consists of the continuity constraints Cα∆ that tie neighboring blocks together and fix the degrees
of freedom added when duplicating the block boundaries.
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We will now write the system in a more compact form by using the collection of all block
operators for a specific domain.

⎛
⎝
AII AI∆ 0
A∆I A∆∆ CT∆
0 C∆ 0

⎞
⎠
⎛
⎝

xI
x∆
λ

⎞
⎠ =

⎛
⎝

fI
f∆
0

⎞
⎠ (9.45)

The vectors xX with X = I,∆ include components on all blocks

xX =
(︁
x1X x2X · · · xNX

)︁T
. (9.46)

The operators AXY are defined accordingly as the collection of block operators

AXY =

⎛
⎜⎜⎜⎝

A1
XY 0 · · · 0
0 A2

XY · · · 0
...

...
. . .

...
0 0 · · · ANXY

⎞
⎟⎟⎟⎠ . (9.47)

Using the compact notation from eq. (9.45) we eliminate the variables xI and x∆. Splitting
the first two rows and the last row we get

(︃
xI
x∆

)︃
=

(︃
AII AI∆
A∆I A∆∆

)︃−1 [︃(︃
fI
f∆

)︃
−
(︃

0
CT∆

)︃
λ

]︃
(9.48)

(︁
0 C∆

)︁(︃ xI
x∆

)︃
= 0. (9.49)

Inserting we arrive at an equation for λ

(︁
0 C∆

)︁(︃ AII AI∆
A∆I A∆∆

)︃−1 [︃(︃
fI
f∆

)︃
−
(︃

0
CT∆

)︃
λ

]︃
= 0. (9.50)

Rearranging yields a system of equations for the Lagrange multipliers λ
[︄
(︁
0 C∆

)︁(︃ AII AI∆
A∆I A∆∆

)︃−1(︃
0
CT∆

)︃]︄
λ =

(︁
0 C∆

)︁(︃ AII AI∆
A∆I A∆∆

)︃−1(︃
fI
f∆

)︃
(9.51)

Fλλλ = f̃ . (9.52)

Here we have defined the quantities

Fλλ =
(︁
0 C∆

)︁(︃ AII AI∆
A∆I A∆∆

)︃−1(︃
0
CT∆

)︃
(9.53)

f̃ =
(︁
0 C∆

)︁(︃ AII AI∆
A∆I A∆∆

)︃−1(︃
fI
f∆

)︃
. (9.54)

In eq. (9.45) we have a global system of equations for the Lagrange multipliers λ. Once these
values are known, the solution x can be recovered on each block independently using eq. (9.48).

Summarizing, the FETI algorithm consists of the following steps

1. Preparation of the right-hand side f̃ using eq. (9.54)

2. Solution of the FETI-system of the Lagrange multipliers given in eq. (9.52)

3. Resubstitution using the Lagrange multipliers and eq. (9.48).
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9.2.6 Preconditioners for the FETI Algorithm
General preconditioning techniques were discussed in section 8.2. In this section we will work on
step 2 of the FETI algorithm listed above. We will present two commonly used preconditioners
for the FETI system [65, 155] that approximate the inverse of the FETI system F−1

λλ . How these
preconditioners compare in our QCD application is discussed in sections 10.2.1 and 10.2.2.

Lumped Preconditioner

The Lumped preconditioner [145] works by taking advantage of the inverse in eq. (9.53). We
want to approximate the inverse

F−1
λλ =

(︄
(︁
0 C∆

)︁(︃ AII AI∆
A∆I A∆∆

)︃−1(︃
0
CT∆

)︃)︄−1

. (9.55)

Noting the nested inverse we can approximate the operator by neglecting the inversion of the
continuity matrices C∆. We arrive at the Lumped preconditioner

MLPD =
(︁
0 C∆

)︁(︃ AII AI∆
A∆I A∆∆

)︃(︃
0
CT∆

)︃
. (9.56)

Dirichlet Preconditioner

The Dirichlet preconditioner [145, 160] works similarly to the Lumped preconditioner seen in
the previous section. We also neglect the inversion of the continuity matrices C∆. However, we
express the inverse of the block operator as

(︃
AII AI∆
A∆I A∆∆

)︃−1

=

(︃
S−1
II −S−1

II AI∆A−1
∆∆

−A−1
∆∆A∆IS−1

II S−1
∆∆

)︃
(9.57)

using the Schur complements

SII = AII −AI∆A−1
∆∆A∆I (9.58)

S∆∆ = A∆∆ −A∆IA−1
II AI∆. (9.59)

If we further note, that the continuity constraints only act on the boundary components,
(︃

0
CT∆

)︃
=

(︃
0 0
0 1∆

)︃(︃
0
CT∆

)︃
, (9.60)

we can define the Dirichlet preconditioner as

MDIR =
(︁
0 C∆

)︁(︃ 0 0
0 S∆∆

)︃(︃
0
CT∆

)︃
. (9.61)

Eigenvalue Preconditioner

To deflate the FETI system we adapt the techniques introduced for the deflated SAP in [69,
70] and section 9.1.1. In the deflated SAP the local deflation basis is constructed on the blocks.
The FETI operator Fλλ acts in the space of the Lagrangian multipliers and therefore connects
the boundary faces of neighboring blocks. Accordingly, we define the deflation vectors on the
individual block faces.
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Similar to the deflated SAP algorithm (section 9.1.1), we first calculate global modes using
the repeated application of one of the preconditioners. Here we use the Dirichlet preconditioner
described in the previous section. In this way we approximate the low eigenmodes of the Fλλ
operator. From these global modes ϕk we construct a set of local modes χΛ∆

k . The index Λ∆

labels the individual boundary faces on the block Λ. We construct the local deflation basis by
projecting the global modes onto the individual faces

ϕΛ∆

k =

{︄
ϕk, x ∈ Λ∆

0, otherwise.
(9.62)

We then normalize and orthogonalize using the Gram-Schmidt method
(︂
χΛ∆
1 , χΛ∆

2 , · · · , χΛ∆

Ns

)︂
= orthonorm

(︂
ϕΛ∆
1 , ϕΛ∆

2 , · · · , ϕΛ∆

Ns

)︂
(9.63)

to get the deflation vectors χΛ∆

k . Using these local modes on the block faces we can define the
projector

P =
∑︂

Λ∆

∑︂

k

χΛ∆

k

(︂
χΛ∆

k

)︂†
(9.64)

From here we proceed in the same way as for the deflated SAP preconditioner presented in
section 9.1.2. We solve the little system to get a first approximate solution. This defines the
deflation preconditioner for the FETI system

MλDFL = (PFλλP )
−1
. (9.65)

We then improve the approximation using the Dirichlet preconditioner. The resulting combined
preconditioner is defined by

MDFLFETI =MλDFL +MDIR −MDIRFλλMλDFL. (9.66)

9.2.7 Improvements to the FETI Algorithm
The literature [65, 67, 68, 156, 157, 161] contains a variety of improvements for the FETI
algorithm. Some of them will be briefly mentioned here.

FETI-DP

In section 9.2 we presented the regular FETI algorithm. A common extension to the FETI
algorithm is the dual-primal FETI algorithm (FETI-DP) [65, 67, 156]. The FETI algorithm
used here distinguishes between points in the interior of blocks and points on the boundary. In
the FETI-DP algorithm a new subspace for the corner points is created. The new geometry is
shown in fig. 9.5. This primal subspace is then inverted globally. This is feasible if the primal
subspace is substantially smaller than the global problem. It serves as a way to quickly shape
the global, coarse structure of the solution, while the finer details are solved on the individual
blocks. It also solves the issue of redundant constraints encountered in section 9.2.2 since primal
points are global and therefore not part of the continuity constraints.

In preliminary studies in two dimensions we successfully implemented this algorithm. How-
ever, in four dimensions it is unclear which of the corner types to include in the primary subspace.
If we include all corners, the primary system becomes very large. On top of that including all
corners means that a lot of the primary points are nearest neighbors. The distinction between
the coarse primary and the fine block systems is no longer given. The primary system would
contribute substantially to the solution and the benefits are reduced. For these reasons we chose
not to implement the FETI-DP algorithm in 4d QCD.

86



9.2. FINITE ELEMENT TEAR INTERCONNECT ALGORITHM

Figure 9.5: Domain decomposition of a 2d global lattice (left) into FETI-DP blocks (right).
Interior lattice points are shown as points. Lattice points on the edge are shown as triangles and
duplicated on the blocks. Corner points are represented by squares and are attributed to a new
primal space. They are not part of the blocks.

Scaling

In section 9.2.1 we introduced the geometry of the FETI algorithm. We introduced the operators
that project the lattice points to and from the blocks and the weight matrix that scales boundary
points on the blocks. We require the sum over all weights that correspond to the same global
lattice point to be one. Similarly, in section 9.2.4 we introduced weights in the block operators
to ensure equivalence between the FETI system and the original system. We use a single weight
for each boundary type that corresponds to its inverse multiplicity. There are methods which
alter these weights on order to optimize the condition of the operators [67, 68, 161]. For this
initial consideration of the FETI algorithm in 4d lattice QCD we chose not to implement these
scaling techniques.
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In this section we will consider the application of the FETI algorithm in lattice QCD. The lattice
characteristics and geometry are laid out in chapter 1. In chapter 9, where we introduced the
algorithms, we focused on the more illustrative two-dimensional systems. Here we implement
the four dimensional versions of the algorithms.

We will switch from the notation that is frequently used when discussing iterative solvers to
one that is more common for lattice QCD. So far, the system of equations we want to solve is
defined by the matrix A which was left unspecified. In lattice QCD the equation of interest is
the Dirac equation

Dψ(x) = η(y) (10.1)

given by the Dirac operator defined in eq. (1.30). The right-hand side η(y) and the solution vector
ψ(x) are spinors on lattice points y and x each containing 24 degrees of freedom (see chapter 1).
The points x and y are part of a four dimensional lattice. Spinors on the 8 neighboring lattice
sites are connected through gauge links made up of SU(3) matrices.

Earlier applications of the FETI algorithm are in two dimensions [66, 67, 155, 157, 162]. Only
more recently have there been results in three dimensions [158, 161, 163]. Here we analyze in
what way the FETI algorithm can be generalized to four dimensions. Additionally, we compare
the FETI algorithm to current state of the art deflated SAP solvers used in lattice QCD [69,
70]. Finally, we test whether the FETI algorithms serves as a suitable preconditioner to other
solution strategies.

The effectiveness of different algorithms and setups can be assessed in a number of different
ways. Most apparently the execution time is a suitable measure to compare different setups.
However, the execution time depends on a number of factors apart from the algorithm itself.
The computer architecture, parallelization and implementation of the algorithm influence the
execution time. For that reason it is beneficial to also consider the number of iterations an
algorithm takes to reach a certain precision.

When analyzing the FETI algorithm in the lattice QCD application we will consider the
following aspects. In section 10.1 we start by describing the Dirac system that we want to solve.
We introduce the gauge ensemble and make some general remarks on the FETI system and
various subsystems. Then in the first part of the analysis we consider the system of the Lagrange
multipliers. This is the global FETI system given by eq. (9.52). In section 10.2.1 we employ the
FETI algorithm as a solver and analyze its convergence behavior. Next, in section 10.2.2, we
take inspiration from [144] and use the FETI algorithm as a preconditioner to a global iterative
solver. We define preconditioners by decreasing the precision of the FETI algorithm as well as
by taking certain approximations inside the FETI algorithm itself. At this point we compare the
algorithm with current state-of-the-art solvers used in lattice QCD applications [69, 70] Finally,
in section 10.3, we have a close look at the FETI block system. We analyze its condition and
convergence before reaching a conclusion where we compare this work to other solver algorithms
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L T β κl κs

32 64 3.46 0.1369814 0.136408545

Table 10.1: Parameters of the CLS [78] gauge ensemble B451. We give the spacial and temporal
extent, the coupling β as well as the κ parameters for the light and strange quarks.

in lattice QCD and other applications of the FETI algorithm.

10.1 Setup

The relevant system of equations in lattice QCD is given by the Wilson Dirac operator defined
in eq. (1.30). The Wilson Dirac operator, later only called Dirac operator, includes only next
neighbor interactions. We can separate the diagonal part of the Dirac operator in the so-called
hopping expansion.

D = C(1− κH) (10.2)

The component C is diagonal in the space-time coordinates, depends on the quark mass and
the improvement term defined in section 1.2. It contains the diagonal part of the operator. The
hopping matrix

H =
∑︂

µ

(1− γµ)Uµ(x)δy,x+aµ̂ + (1 + γµ)U
†
µ(x− aµ̂)δy,x−aµ̂ (10.3)

contains the next neighbor interactions and the gauge links Uµ(x) attached to the point x in the
µ direction. The hopping κ parameter

κ =
1

2am0 + 8
(10.4)

depends on the bare quark mass and influences the condition of the Dirac system.
The gauge links Uµ(x) are taken from an ensemble generated by the CLS group [78]. The

internal ensemble ID is B451r000. The lattice has 64 × 323 = 2097152 sites and uses periodic
boundary conditions in time and space. The fermion fields are subject to antiperiodic boundary
conditions in time. The parameters of the lattice are listed in table 10.1. The coupling β = 3.46
corresponds to a lattice spacing of a ≈ 0.07 fm as calculated in chapter 5 and [1]. The parameters
κl and κs correspond to a Pion mass of mπ = 418MeV and a Kaon mass of mK = 572MeV as
calculated in [164]. In the following we will analyze the Dirac operator for the light quark. Since
we are interested in algorithmic quantities, we do not average over several gauge configurations.
All the measurements are taken on one gauge configuration (n1000) of this ensemble. While this
prohibits taking any gauge averages key properties of the solver algorithms can still be observed.

10.1.1 Problem Sizes

Let us now compare the FETI-system in eq. (9.45) to the original system from eq. (9.29). The
volume of the global lattice is V =

∏︁4
i Ni. The resulting linear system has dimension 12V since

a spinor with 12 components resides on each lattice site. The size of the FETI-system depends
on the size of the blocks used. The number of lattice points in each direction of the FETI block
is called sib. Because the FETI blocks overlap by one lattice spacing they are spaced sb−1 lattice
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Figure 10.1: Different volumes normalized by the size of the original system for various block
sizes. The size of the λ-system Vλ is shown in blue and decreases for increasing block size. The
λ-system is only smaller than the original system for block sizes greater than 4. The total number
of lattice points on all blocks V{b} normalized by the global volume is shown in orange.

spacings apart, as shown in fig. 9.2. It is always assumed that the blocks evenly divide the global
lattice. The volume of a FETI block is

V FETI
b =

4∏︂

i

sib. (10.5)

The block boundary in direction i has the volume
∏︁4
j ̸=i sj = Vb/si. Including the boundary in

up and down direction the total number of points on the block boundary is

V b∆ = 2
∑︂

i

Vb
sib
. (10.6)

The number of blocks in direction i is nib = Ni/(s
i
b− 1). Accordingly, the total number of blocks

is

nb =

4∏︂

i

nib =

4∏︂

i

Ni
sib − 1

. (10.7)

Each Lagrange multiplier connects points on two block boundaries. The total number of Lagrange
multipliers needed is therefore

Vλ =
1

2
nbV

b
∆

=

(︄
4∏︂

i

Nis
i
b

sib − 1

)︄(︄
4∑︂

i

1

sib

)︄
.

(10.8)

The relative system size is independent of the size of the original system and only depends on
the block size sib.

Vλ
V

=

(︄
4∏︂

i

sib
sib − 1

)︄(︄
4∑︂

i

1

sib

)︄
(10.9)

This quantity is shown in fig. 10.1 in blue. We can see that the system size is increased if the
blocks are chosen too small. Only for block sizes of sib > 5 the FETI system is smaller than the
original system.
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sb Nb Vb Vλ

2 2097152 16 67108864
3 131072 81 14155776
5 8192 625 4096000
9 512 6561 1492992
17 32 83521 628864
33 2 1185921 287496

Table 10.2: Algorithmic quantities for the FETI algorithm for different block sizes sb. We list
the number of blocks Nb, the block volume Vb and the size of the λ system Vλ. The volume of
the global lattice is V = 64 × 323 = 2097152. Note that the dimension of the respective linear
system is 12V , since a spinor with 12 components is attributed to each point.

Similarly, we consider number of points added by duplicating the boundaries. The ratio

V{b}
Vg

=
nbVb
Vg

=

4∏︂

i

sib
sib − 1

(10.10)

compares the volume of all blocks to the global volume. It is shown in orange in fig. 10.1. We
see that the ratio approaches 1 as the blocks get bigger. That means that the overall increase of
the problem due to the duplication of the boundary points becomes less relevant for larger block
sizes.

This first analysis shows that we can only hope to improve the original system if

(a) the FETI system is significantly better conditioned than the original system

(b) the FETI blocks are chosen large enough such that the workload is shifted from the global
λ system to the block systems which can be solved in parallel.

The conditioning of the FETI system (a) will be discussed in section 10.2.1. The condition (b)
leads to a balancing problem. On one hand, the blocks need to be large enough for the algorithm
to be efficient. On the other hand, if the blocks are too large, one runs into the difficulty of
efficiently finding the block solutions. Additionally, if the blocks are very large, there is fewer of
them, which makes it harder to treat them in parallel.

Table 10.2 lists the number of FETI blocks, the block volume and the size of the FETI system
for various block sizes. We can see that only for block sizes greater than 5 does the FETI system
become smaller than the original system. For a block size of sb = 33 there are only two blocks.
The parallel efficiency is decreased dramatically. In the following we consider block sizes of sb = 9
and sb = 17.

10.1.2 Solvers for the FETI Algorithm
The FETI algorithm requires the solution of linear systems at various stages. On the outermost
level the global system of Lagrange multipliers λ introduced in eq. (9.52) must be solved. This
system is also called FETI-system or λ-system. The global FETI system typically needs to be
solved to high precision if the algorithm is used as a direct solver. The convergence of the λ
system if the FETI algorithm is used as a solver is analyzed in section 10.2.1. When the FETI
algorithm is used as a preconditioner the precision of the solution can be drastically lowered.
This case is discussed in section 10.2.2.
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Inside the Fλλ operator, the block Dirac operator needs to be inverted (see eq. (9.53)). Clearly
the global FETI system can not be solved to a higher precision than that used in the inversion
of the block operator inside Fλλ. Because of the nested inversions, the block system is solved for
each step of the outer solver. For that reason, any improvement to the block system immediately
speeds up the overall calculation. Section 10.3 is dedicated to analyzing different solvers for the
block operator. On the same level the block operator needs to be solved for the preparation of
the right-hand side f̃ in eq. (9.54) and the resubstitution in eq. (9.48). Since it is unclear how the
precision of the solution of the FETI system translates to the precision of the original problem,
it can be beneficial to solve these two steps to a slightly higher precision than the one used for
the Fλλ operator and the global inversion.

Finally, the Dirichlet preconditioner requires an additional solution of the bulk-to-bulk part
of the block operator in the Schur complement (see eqs. (9.59) and (9.61)). Since this inversion
is only used for preconditioning, a much lower precision is required.

10.2 The λ System

In this section we will consider the solution of the FETI system in eq. (9.52). Ultimately we are
interested in the convergence properties of the FETI system. Therefore, at this stage, we will
take the inversion of the block system for granted. It will be discussed in detail in section 10.3.
Once the system is solved, we know the value of the Lagrange multipliers. From those we can
obtain the solution of the original system by resubstituting using eq. (9.48).

In section 10.2.1 we will employ the FETI algorithm as a direct solver and compare it to
the global GCR and the SAP implemented in the openQCD package [123]. We will analyze the
convergence of the different algorithms and setups. Section 10.2.2 is dedicated to analyzing how
we can use the FETI algorithm as a preconditioner to the global solver.

10.2.1 FETI as Direct Solver
In this section we will use the FETI algorithm as a direct solver. We draw a random right-hand
side to the Dirac equation

Dψ = η (10.11)

and prepare the right-hand side for the FETI system f̃ according to eq. (9.54). The Dirac
operator uses the light quark mass, i.e. κ = κl. After the preparation of the source we invert the
Fλλ operator using the GCR algorithm. We try versions without preconditioning and using the
Lumped and Dirichlet preconditioners defined in section 9.2.6. Having found the appropriate
Lagrange multipliers λ we obtain the solution to the original problem by resubstituting using
eq. (9.48). As a reference we also invert the same system using the global GCR algorithm.
Figure 10.2 shows the relative residue as a function of the iteration. In the accompanying Table
10.3 we present the slopes of the lines shown in fig. 10.2. The column niter

dec lists the number of
iterations per decade, i.e. the number of iterations needed to lower the residue by a factor of 10.
The measurements of the slope are taken once the convergence reaches a linear (on the log scale)
behavior.1

The reference inversion using the global GCR algorithm is shown in red in fig. 10.2. We can
see that in the beginning the residue falls off quickly. For higher iterations the progress is much
slower. This is reflected in the high iteration counts in table 10.3. The regular FETI algorithm
suffers from the same problem for both block sizes. Additionally, the regular FETI algorithm

1The global GCR algorithm never reaches this linear shape. Here the measurement is taken at niter = 200
and understood as a lower bound.
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Figure 10.2: Relative residue as a function of the iteration for various solvers, preconditioners
and block sizes. Measurements taken at κ = κl.

Algorithm block size niter

dec
time
dec [s]

GCR - > 431 > 35

SAP 8 64.7 255.1

FETI 17 117.4 4292.5
FETI+LPD 17 34.1 2792.7
FETI+DIR 17 20.4 1650.2
FETI+DIR+DFL24 17 20.5 4013.5

FETI 9 233.0 5648.9
FETI+LPD 9 75.5 3556.6
FETI+DIR 9 48.1 2136.9
FETI+DIR+DFL24 9 41.1 8229.3

Table 10.3: Overview of Algorithm run times and iteration counts for κ = κl. We list the number
of iterations and runtime per decade, i.e. per 10−1 decrease of the residue. The slope of the lines
in fig. 10.2 directly correspond to column 3.
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exhibits slower convergence in the beginning and only surpasses the global GCR late. Only the
addition of the preconditioners ameliorates this problem. The Lumped preconditioner is cheaper
than the Dirichlet preconditioner, but the convergence is faster for the Dirichlet. In the end the
Dirichlet preconditioner leads to a faster convergence than the Lumped preconditioner as can be
seen from table 10.3. The addition of the deflation preconditioner with 24 deflation vectors yields
next to no improvement over the Dirichlet preconditioner alone. The inclusion of the deflation
preconditioner, however, adds computational intensity to the algorithm. It is for that reason
that, in the following, we refrain from using the deflation preconditioner for the FETI algorithm.

For all preconditioners the larger blocks with block size 17 work better than block with size
9. This is in line with the analysis in section 10.1.1 where we compared the sizes of the FETI
system for different block sizes.

The last column in table 10.3 lists the time needed to decrease the residue by a factor of 10.
The execution times are of course subjective to the hardware the tests are performed on, the
level of parallelization and the implementation. They are not meant as absolute measurements,
but only as guidelines to compare the different algorithms roughly. Still we can see that the
execution times for the FETI algorithms pose a serious problem. The run times for the FETI
algorithm are upwards of 22 times larger than for the global GCR. This outweighs all the savings
made by the lower iteration counts. These high execution times stem from the nested inversions.
In eq. (9.53) we can see that for each application of the Fλλ operator, i.e. in every iteration of
the outer solver, the set of block operators needs to be inverted. This leads to a considerable
computational workload in each individual step of the inversion of the Fλλ operator. If there is
no way to speed up the solution of the block system, we can not hope to use the FETI algorithm
as a competitive solver. The block system will be analyzed in section 10.3.

The SAP algorithm suffers from a similar complication. Here, when employing the SAP as
a solver, we solve the block system with 100 iterations of the MRES algorithm. The residue for
each cycle of the SAP is shown in fig. 10.2. In the last column of table 10.3 we can see that the
execution time for the SAP algorithm is about a factor 7 larger than for the global GCR. In the
first few iterations of the SAP algorithm the residue is reduced dramatically. Because of this low
precision behavior the SAP algorithm is used as a preconditioner to the global GCR algorithm
in [143, 144]. In the following section we will analyze how and in what way the FETI algorithm
can be salvaged to define a preconditioner for the global system.

10.2.2 FETI as Preconditioner

As we have seen in the previous section, neither the FETI algorithm nor the SAP algorithm are
suited as a direct solver in this application. While the number of iterations is low, the execution
time is exceedingly long. This is due to the very expensive application of the Fλλ operator and the
inversion of the block system within. In this section we follow the approach by Lüscher [70, 144]
and utilize the domain decomposition solver algorithm as a preconditioner to the global solver.
First we use the FETI algorithm to a very low precision to precondition the global GCR solver.
In fig. 10.2 we can see that the convergence in the beginning is very steep. The FETI algorithm
is efficient only in this regime. In a second approach we build a preconditioner to the global
GCR algorithm out of the preconditioners for the FETI algorithm introduced in section 9.2.6.
We have seen the effect of these preconditioners on the FETI algorithm in the previous section
(see table 10.3). Here, we analyze if and how we can adapt these preconditioners to work for the
global system.
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Figure 10.3: Convergence of the global GCR with various preconditioners. We specify the number
of iterations as niter = nouteriter , nblockiter . The measurements are done for κ = κl.

Low Precision FETI

Taking inspiration from the way the SAP is used as a preconditioner to the GCR algorithm in
[144], we use the FETI algorithm to a very low precision as a preconditioner to the global GCR
solver. Rather than specifying the relative precision of the solver, we truncate the solver by
specifying the number of iterations. We set the number of iterations of the outer solver (SAP
or FETI) as well as the block solver. Typically, the SAP preconditioner is used with 5 outer
iterations and 4 iterations for the block solver. If we want to use the same number of iterations
for the FETI algorithm, we are left with 3 iterations for the outer solver, since there is one
inversion of the block system in each of the preparation and resubstitution steps. Figure 10.2
gives a sense of the precision reached after the respective number of iterations.

For the SAP algorithm it is advantageous to use smaller blocks, because the block system
converges faster. In section 10.2.1 we have seen that the FETI algorithm prefers larger blocks. For
that reason we compare the different algorithms with block sizes that are best for the individual
algorithm. In this case we use sFETI

b = 17 for the FETI preconditioner and sSAP
b = 8 for the

SAP preconditioner.
In sections 8.3 and 9.1.1 we presented deflation techniques and the deflated SAP (DFLSAP)

solver that is implemented in openQCD [69, 70, 123]. Similar to the FETI and SAP algorithms
we use it here as a preconditioner to the global GCR solver. We are using Ns = 20 deflation
modes to span the deflation subspace. These modes are calculated on blocks with side length
sdfl
b = 4. The SAP algorithm that is used for the remaining deflated system uses the SAP block

size sSAP
b = 8 described above.

Figure 10.3 shows the convergence for different preconditioners to the global GCR algorithm.
In table 10.4 we give the number of iterations and execution time per decade of the relative
residue. These values correspond to the slope of the lines in fig. 10.3 and are used to compare
the preconditioners. The inversions were executed for the light quark mass. As a baseline we give
the convergence behavior for the global GCR algorithm, the SAP preconditioner with 5 outer
and 4 block iterations and the deflated SAP (DFLSAP) preconditioner with 5 outer and 4 block
iterations. The deflation subspace is spanned by 24 vectors calculated from repeated application
of the SAP preconditioner and orthogonalization. The SAP preconditioner is applied 10 times
to suppress higher modes. Details on the procedure are supplied in [69].

Comparing with the previous section we note that using the low precision FETI algorithm as
a preconditioner to the global GCR solver leads to an improved convergence in all cases. This is
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Algorithm block size niter
ng
iter

dec
time
dec [s]

global block

GCR - - - > 124 > 10

GCR+SAP 8 5 4 40.1 35.9

GCR+DFLSAP 4 5 4 3.9 4.7

GCR+FETI 17 3 4 164.7 650.7
GCR+FETI 17 3 19 38.5 569.5
GCR+FETI 17 6 100 4.0 347.9

GCR+LPD 17 - - 36.6 190.4

GCR+DIR 17 - 20 32.5 168.0
GCR+DIR 17 - 40 18.6 160.9
GCR+DIR 17 - 60 15.1 183.5

Table 10.4: Overview of convergence results for different preconditioners to the global GCR
algorithm. We list the number of iterations and runtime per decade, i.e. per 10−1 decrease of
the residue. The colors correspond to the lines in figs. 10.3 and 10.5.

true for the number of iterations as well as for the execution time. The convergence is improved
because in every step of the outer GCR solver we benefit from the rapid convergence of the first
few FETI iterations (see fig. 10.2).

We now compare different preconditioners to the global GCR solver. The SAP precondi-
tioner uses 5 outer and 4 inner iterations. Because of the two inversions in the preparation and
resubstitution in the FETI algorithm, this corresponds to the FETI algorithm with 3 outer and
4 inner iterations. This setup performs significantly worse than the SAP preconditioner. The
convergence behavior is similar to the global GCR algorithm. To get a convergence similar to the
SAP preconditioner we have to increase the block iterations to 19 for the FETI algorithm. This
means increasing the overall number of applications of the block operator by a factor of 4.75.
This behavior is due to the increased condition number of the block system (see sections 9.2.4
and 10.3). To match the deflated SAP preconditioner (DFLSAP) we have to increase the number
applications of the block operator by a factor of 40. Clearly without a way to efficiently invert
the block system, the low precision FETI algorithm is not an effective preconditioner.

FETI Preconditioners

In this section we construct a preconditioner to the global GCR using the FETI geometry and
structure. The three steps of the FETI algorithm presented in section 9.2 are the preparation
of the right-hand side f̃ , the solution of the FETI system Fλλ and the resubstitution to obtain
the solution to the original problem. Here we replace the expensive computation of F−1

λλ by the
application of the preconditioners FLPD

λλ and FDIR
λλ presented in section 9.2.6. To get a sense of

how well these preconditioners approximate the inverse F−1
λλ we calculate the correlator

C(t) = |Mψ(t0)|2 (t) (10.12)

where ψ(t0) is a point source on the time slice t0. The operator M is set to various precon-
ditioners. The correlator C(t) is shown in fig. 10.4. The source ψ(t0) is positioned at t0 = 0.
As a reference in red we show the correlator with M = D−1. Next we set M to the different
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Figure 10.4: Correlator C(t) for various preconditioners. The source is located at t0 = 0. The
red line labeled ‘ref’ is the reference correlator with M = D−1. The FETI block boundaries are
indicated as vertical lines. We can see in which regions of the lattice the individual preconditioners
perform well.

preconditioners and compare how closely they match the reference line. In order to compare
the SAP and FETI-type preconditioners, we use a block size of 8 and 9 respectively. For the
SAP preconditioner defined in eq. (9.9) a steep drop already inside the block that the source
is located can be seen. This is due to the low precision that the block system is solved for the
SAP preconditioner. Using 4 outer iterations for the SAP algorithm means that the boundaries
are only communicated back and forth 4 times and the contribution from the source can only
reach a distance of 3 blocks. For any points a distance of 3 blocks away from the source, the
correlator is C(t) = 0. The Lumped preconditioner communicates the boundaries once in the
preparation of the source f̃ and once in the resubstitution. Accordingly, the contribution only
reaches 2 blocks. The Dirichlet preconditioner reaches one block further because of the additional
inversion of the internal-to-internal block operator. We also show the full FETI algorithm with
the same number of outer iterations as the SAP and DFLSAP algorithms. This setup was used
in the previous section. It can overcome the gap in the center of the lattice and benefits greatly
from the more precise block solutions. However, as discussed before, the full FETI algorithm is
prohibitively expensive. Lastly we show the deflated SAP algorithm. With only a very small
number of 5 outer iterations and rather inaccurate block solutions (4 iterations of the MRES) it
matches the reference correlators most precisely. The deflation subspace is spanned by 10 vectors
that are computed beforehand. As presented in sections 9.1.1 and 9.1.2 these vectors consist of
the approximate low modes of the Dirac operator. They are calculated using distillation, i.e. the
repeated application of the SAP preconditioner and subsequent orthogonalization. Applying the
SAP preconditioner with 5 cycles and 4 inner iterations 5 times sufficiently suppresses the higher
modes of the Dirac operator.

The correlator only gives an inaccurate picture of the preconditioners, as the computational
cost for the different preconditioners is not considered. For this reason we will also analyze the
convergence behavior of the preconditioners made from the FETI algorithm. Figure 10.5 shows
the convergence of the global GCR algorithm with the FETI type preconditioners. We can see
that in terms of iterations the FETI type preconditioners can not significantly improve over the
SAP preconditioner. Table 10.4 lists the slopes of the convergence for various solvers and precon-
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Figure 10.5: Convergence of the global GCR with various preconditioners. We specify the number
of iterations as niter = nglobaliter , nblockiter . The measurements are done for κ = κl.

ditioners. We can see that the preconditioners presented in this section are an improvement over
using the full FETI algorithm as a preconditioner. The Lumped and Dirichlet preconditioners
are significantly cheaper to compute compared to the full inversion of the Fλλ operator. For
that reason the time to decrease the residue by a factor of 10 is smaller compared to the full
FETI preconditioner even if the number of iterations is higher. However, already the preparation
and resubstitution steps in the FETI algorithm are more computationally expensive than the
application of the SAP and DFLSAP preconditioners. Similar to the previous section this is due
to the slow convergence of the transformed FETI block system. For the FETI algorithm to be a
viable alternative to the SAP and DFLSAP algorithms we must control the block system.

10.3 The Block System

In this section we will analyze the block system. It plays a central role in the FETI algorithm.
On one hand we want to shift the main workload to the block system, because the blocks can
be solved independently of each other. On the other hand the block system directly affects
the overall performance of the FETI algorithm. Since it appears in the definition of the global
operator Fλλ in eq. (9.53) it needs to be solved for every application of the operator. We already
encountered difficulties with the performance of the block system in sections 10.2.1 and 10.2.2
where we concluded that many of the problems with the FETI algorithm originate from the slow
convergence of the block system. It is therefore worthwhile to closely study the block system.

10.3.1 Explicit Solvers

The block solver needs to solve relatively small problems. It needs to be as fast as possible, while
retaining stability. An ideal match for the requirements to the block solver are explicit solvers.
They are inherently stable and once the inverse matrix is calculated, its application is vastly more
efficient than iterative solvers. However, the memory required to store the inverse operators is
prohibitively large for four dimensional applications. Table 10.5 gives an overview of the memory
requirements for different block sizes. We assume that the operators are stored in single precision.
Small blocks use less total memory, since the block size enters to the fourth power. Using the
smallest block size of sb = 2, which lead to a very inefficient FETI algorithm (see section 10.1.1),

98



10.3. THE BLOCK SYSTEM

Memory
sb Nb one block all blocks

2 2097152 576.0Kb 1.1Tb
3 131072 14.4Mb 1.8Tb
5 8192 858.3Mb 6.7Tb
9 512 92.4Gb 46.2Tb
17 32 14.6Tb 467.8Tb
33 2 2.9Pb 5.8Pb

Table 10.5: Memory requirements for storing the inverted block operators in single precision.
This example assumes a 64× 323 global lattice.

solver system niter

dec
time
dec [s]

CG FETI blocks 291.42 2.21
MRES FETI blocks 165.91 0.65
GCR FETI blocks 80.92 0.49
GCR SAP blocks 28.36 0.17
GCR FETI blocks preconditioned with W∆ 75.66 0.46
GCR FETI blocks preconditioned with 1 deflation vector 75.24 0.74
GCR FETI blocks preconditioned with 4 deflation vectors 67.10 1.72
GCR FETI blocks preconditioned with 24 deflation vectors 49.66 14.94

Table 10.6: Slopes of the convergence of various block systems and solvers. Out of the solvers
for the FETI blocks, the GCR performs best. Preconditioning the GCR is able to decrease the
number of iterations but not the execution time. This is in part due to implementation.

still requires 1.1 Terabytes of memory to store the operators for all blocks. With bigger blocks
that have proven beneficial for the global FETI system the memory requirements rise to levels
that are currently unrealistic. With explicit solvers out of the question we have to resort to
iterative methods again.

10.3.2 Comparing Iterative Solvers

In this section we compare the CG, GCR and MRES solvers presented in section 8.1. In figs. 10.6a
to 10.6c we see the residue of the solution plotted as a function of the number of steps for the
three solvers. The Dirac operator uses the mass of the light quark. This is the most difficult
of the cases we consider here. Below, we analyze how the situation changes if heavier quarks
are used. We consider blocks of size Vb = 84. Accordingly, there is a total of 512 blocks on the
lattice. Out of these the one that reaches the desired precision in the fewest iterations is plotted
in green. The block that converges the slowest is shown in red. The average over all blocks
is shown in black. The slopes of the average lines are given in table 10.6 in units of number
of iterations and execution time per decade. From the first three rows we see that the GCR
algorithm has the lowest average number of iterations. It is worthwhile to not only consider the
average behavior of the solvers. In figs. 10.6a to 10.6c we see that up to a relative tolerance
of 10−2 all solvers perform well and do not stray far from the average. Going beyond there
are differences between the solvers. The MRES and CG solvers develop instabilities, where the
residue does not decrease monotonically. This behavior can be caused by insufficient numerical
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(a) Inversion of the FETI block Dirac operator us-
ing the CG algorithm.
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(b) Inversion of the FETI block Dirac operator us-
ing the MRES algorithm.
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(c) Inversion of the FETI block Dirac operator us-
ing the GCR algorithm.
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(d) Inversion of the unweighted block Dirac oper-
ator using the GCR algorithm. This operator is
similar to the one used in the SAP algorithm.
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(e) Inversion of the FETI block Dirac operator
using the GCR algorithm and the inverse of the
weight matrix W∆ as an explicit preconditioner.
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(f) Inversion of the FETI block Dirac operator us-
ing the GCR algorithm and the deflation precondi-
tioner presented in section 10.3.6. Here 24 deflation
modes are used.

Figure 10.6: Comparison between different solvers for the weighted block Dirac operator at
κ = κl. Average values are taken over all blocks on the lattice (512). Figures (a), (b) and
(c) show the convergence of the FETI block Dirac operator using the algorithms presented in
section 8.1. In figure (d) we show the convergence of the block Dirac operator without the weights
introduced in section 9.2.4. The solver used is the GCR. This Dirac operator without the weights
is the one used in the SAP algorithm. Figure (e) depicts the convergence of the FETI block Dirac
operator, i.e. with the weights. Here we use the GCR algorithm that is preconditioned with the
diagonal weight matrix introduced at the end of section 9.2.1.
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precision as the block solvers are only executed using single precision floating point arithmetic.
In practice the instabilities of the MRES solver are not critical it is only used with a very limited
number of iterations (< 100) inside the SAP. Only the GCR solver is able to reach the desired
accuracy for all blocks. The GCR solver also has the lowest average number of iterations among
the three. However, the spread between the best and worst solutions is large. Since we require all
block solutions, the overall performance is impacted by these slow blocks. The average number
of iterations is close to the lowest. This suggests that the majority of the blocks are well-behaved
with only a small number of badly conditioned blocks. We will analyze this theory in more depth
in section 10.3.5.

10.3.3 Weights in the Dirac Operator

In section 9.2.4 we introduced the weights in the block Dirac operator. They are needed for the
block system to be equivalent to the original global system. These weights consist of factors
1
2 ,

1
4 ,

1
8 and 1

16 in the boundary sites. These factors increase the condition number of the block
operators. In this section we analyze the impact of these weights on the solver performance.

In fig. 10.6 we show the residue of the solution as a function of the number of iterations.
As in the previous section we consider 512 blocks of size Vb = 84. We consider the GCR solver
for the block system as it was deemed most suitable in the previous section. We show the
curves for the fastest and slowest converging blocks as well as the average over all blocks. In
fig. 10.6d we show the regular block Dirac operator as a baseline. Here we set w = 1, effectively
disregarding the weights introduced in section 9.2.4. The corresponding line in table 10.6 is
labeled with SAP blocks. The number of iterations per decade of the residue drops significantly.
In fig. 10.6c and row three of table 10.6 we show the convergence for the weighted block Dirac
operator as it is used in the FETI algorithm. The weights are w = 1, 12 ,

1
4 ,

1
8 ,

1
16 as described in

section 9.2.4. The introduction of the weights increased the number of iterations for the best
and average convergence lines in roughly the same way. The number of iterations is increased
roughly threefold compared with the SAP Dirac operator. This in itself is a problem that is very
hard to overcome. The convergence of the FETI system would have to be three times faster just
to break even with the increased workload on the blocks. On top of that the introduction of
the weights exacerbates the already slow convergence of the most ill-conditioned blocks. While
the average number of iterations is increased by a factor of 3, the number of iterations for the
slowest blocks (red line) is increased by more than a factor of 6.

10.3.4 Diagonal Preconditioners

We now try to find a solution to the slower convergence of the block system caused by the weights
in the FETI block Dirac operator. In section 8.2 we discussed explicit preconditioners. They
can be used to negate a part of the effect of the weights on the operator. In section 9.2.4 we
introduced weights on the sites and the links connecting neighboring sites. Here we will focus
on the weights of the sites. They are conceptually easier because they only modify the diagonal
of the Dirac operator. Additionally, they go down to 1

16 whereas the smallest link weights are
1
8 . The diagonal matrix W∆ contains the factors that scale the diagonal entries of the FETI
block Dirac operator. We can use the inverse W−1

∆ as a preconditioner. This amounts to scaling
all columns of the weighted Dirac operator such that its diagonal entries coincide with those of
the original operator. This works very well if large quark masses are chosen. In this case the
Dirac operator is dominated by its diagonal. For more realistic quark masses the operator is no
longer dominated by its diagonal. Therefore, this preconditioning technique is not as effective.
In fig. 10.6e we show the convergence behavior of the preconditioned system. Comparing with
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Figure 10.7: Comparison of smallest block Eigenvalues and iteration counts for the GCR algo-
rithm. The block size is sb = 84, which results in 512 blocks. On the left, in figure (a), we see
the smallest eigenvalues of the block Dirac operator without the weights introduced in the FETI
algorithm. On the right, in figure (b), the weights are included in the block Dirac operator. The
colored points indicate the blocks with the largest iteration count for the block Dirac operator
that includes the weights.

fig. 10.6c, where we show the setup without the diagonal preconditioner, we see that there is very
little to be gained for the average number of iterations. Only a very small number of iterations
can be saved on average. This can also be seen from rows three and five in table 10.6. However
the preconditioner somewhat improves the slow convergence of the most ill-conditioned blocks.
The spread between the fastest and slowest convergence is halved compared to the solver with
no preconditioning in fig. 10.6c.

In conclusion the diagonal preconditioner is not sophisticated enough to capture the structure
of the weights in the operator and ameliorate their effects.

10.3.5 Conditioning of the Block System

We have seen that the block system plays a critical role in the performance of the FETI algorithm.
In this section we analyze the block system not by its convergence properties as in the previous
sections but by its spectrum and condition. The condition of the block system is mediated by the
smallest eigenvalues λmin of the block operator. The absolute value of the smallest eigenvalue
of the block Dirac operator is shown in fig. 10.7. We plot the eigenvalues of the individual
block operators against the number of iterations needed to invert the same block operator using
the GCR algorithm. In fig. 10.7a we see the values for the block Dirac operator without the
weights introduced in section 9.2.4. The eigenvalues as well as the iteration counts relatively
close together. Figure 10.7b, on the right, shows the eigenvalues and iteration counts for the
block Dirac operator as it appears in the FETI algorithm. The average eigenvalue is about a
factor three smaller, while the average iteration count is a factor 3 bigger. Furthermore, we can
see that for a few blocks the eigenvalues drop significantly to values of around λmin = 0.01. We
indicated these points with colors in fig. 10.7b. These are the blocks that require a very large
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number of iterations of the GCR algorithm. The increase in the iteration count far exceeds the
average factor three. The colors of these blocks match those in fig. 10.7a. We can see that before
the introduction of the weights most of these blocks did not require a large number of iterations.
This means that it is not, for example, the structure of the gauge fields that is responsible for
the bad conditioning of the block operators, but the introduction of the weights for the FETI
algorithm.

10.3.6 Deflation of the Block System

In section 8.3 we discussed the general deflation framework. Here we will work out how to use the
deflation technique on the FETI block system. In the previous section we argued that exception-
ally low modes of the FETI block Dirac operator correlate with large iteration numbers of the
solver. In the following we consider the block with the smallest eigenvalue and correspondingly
the largest number of iterations. This block is colored red in fig. 10.7 and corresponds to the red
line in fig. 10.6c. The 24 lowest eigenvalues of this block are shown in fig. 10.8a. We can clearly
make out one exceptionally small, real eigenvalue and a gap to the next smallest pair. This is a
situation where deflation techniques are expected to work best.

In section 8.3 we argued that the projector

P =
∑︂

k

ϕkϕ
†
k (10.13)

should encompass the low modes of the operator. It is therefore useful to build the basis vectors
ϕk from the low modes of the operator itself. Given the N smallest eigenvectors of the FETI
block Dirac operator

Dblkvk = λkvk (10.14)

we calculate the basis vectors ϕk using a Gram-Schmidt orthogonalization process2

ϕk =

N∑︂

l=1

Uklvl. (10.15)

The matrix Ukl is a triangular matrix defining the orthogonalization and normalization process.
The little Dirac operator E is then given by

Ekl = ϕ†kDϕl =
N∑︂

j=1

ϕ†kUljλjvj . (10.16)

Its inverse is efficiently calculated as

E−1
kl = ϕ†kD

−1ϕl =

N∑︂

j=1

ϕ†kUlj
1

λj
vj . (10.17)

This operator is used in the definition of PL and PR and is small enough to be saved explicitly,
if the number of eigenmodes is not exceedingly large.

2One could alternatively define the deflation basis vectors ϕ̃k using the hermitian system Qϕ̃k = γ5Dϕ̃k =

λ̃kϕ̃k. In this case the little Dirac operator is given by Ekl = ϕ̃kγ5λ̃lϕ̃l and its inverse E−1
kl = ϕ̃k

1
λ̃k
γ5ϕ̃l. In

practice either choice results in similar convergence behavior of the block system.
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Using these definitions and the ones in section 8.3, the solution is given as the sum over the
components in the deflation subspace xdfl which can be solved explicitly and the components in
the complement xcompl that require the iterative solution of the deflated system.

x = PRxcompl + xdfl. (10.18)

This technique requires the eigenmodes vk of the Dirac operator to be known to substantial
precision. Otherwise, the modes are not sufficiently removed from the deflated system which
impedes the iterative solution of the system. One way to circumvent the necessity to calcu-
late these modes to high precision is to use the deflation techniques as a preconditioner. One
may, for example, apply the inverse Dirac operator only to the deflation subspace and use no
preconditioning in the complement. This leads to the preconditioning operator

Mdfl = D−1P + PL =
∑︂

kl

ϕkE
−1
kl ϕ

†
l + PL. (10.19)

Since the inverse operator E−1 is explicitly saved, the application of the preconditioner amounts
only to a relatively small number of spinor products.

The effect of this preconditioner can be seen in fig. 10.6f. Compared to the case without
any preconditioning shown in fig. 10.6c, the average number of iterations is reduced by about
35%. Additionally, the blocks with the worst convergence behavior are improved considerably
and the inversion becomes much more stable. This observation is in line with the results from the
previous section. A small number of very small eigenmodes spoil the convergence of the solution
of the block system. Figure 10.8a shows the lower end of the spectrum of such a block with bad
convergence behavior. Note the large gap between the smallest eigenvalue and the next pair. On
the right, in fig. 10.8b, we show the convergence behavior of the regular GCR algorithm and the
GCR algorithm with the deflation preconditioner given in eq. (10.19). The separation of the low
modes seen on the left has a dramatic effect on the convergence of the iterative block solver. A
large gap exists between the smallest and the other eigenvalues. For this reason deflation with a
single deflation vector already has a big effect on these blocks. The inclusion of more than one
deflation vector has a small effect on the convergence behavior and adds computational cost.

In figs. 10.8c and 10.8d we show the same spectrum and convergence plots for a block without
a considerable gap in the eigenvalues. This situation corresponds to the majority of the blocks
as seen in figs. 10.6c and 10.7b. Here the separation of the low modes does not have a large effect
on the condition of the block system. Accordingly, the convergence is improved less dramatically.

Given that the dense, second spectrum shown in fig. 10.8c is more characteristic for most of
the blocks, the average number of iterations per decade reduces by 44% as indicated by the last
row of table 10.6. This improvement, however, is still not enough to counteract the increase in
the condition number of the block system. Additionally, the additional computational cost of
the preconditioner outweighs the benefits from the reduction in the number of iterations. This
is in part due to suboptimal implementation.
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Figure 10.8: Comparison of the spectrum (figures (a) and (c)) and convergence behavior on two
different FETI blocks. Figures (b) and (d) show the relative residue for each step of the GCR
solver. The lines indicate a different number of deflation vectors. The top row shows a block
with an exceptionally small eigenvalue. The resulting improvement of the conversion is large if
the corresponding mode is separated using the deflation technique. The bottom row shows the
more common case, where the eigenvalues are larger but the spectrum is dense. The deflation is
not very efficient in this case.
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11 | Conclusion

The FETI algorithm is one of many in the class of domain decomposition algorithms. Domain
decomposition algorithms such as the SAP have been essential in accelerating lattice QCD sim-
ulations [69, 144].

The FETI algorithm was chosen because of the prospect of improved long range convergence
behavior. With the system of interface constraints, we hoped to quickly capture the coarse
structure of the solution. We also anticipated improved convergence of the block system. Since
the interface constraints are only enforced as the global solution converges, we expected fewer
disruptions of the block system due to the contributions from neighboring blocks. Additionally,
the FETI algorithm has shown competitive results in linear elasticity problems [66, 68, 157].

Despite these circumstances, in this application, we were not able to get results that compete
with the current state-of-the-art solvers [70] used in lattice QCD applications. In the following,
we summarize the most important differences between the FETI and the SAP algorithms and
also highlight the differences in the underlying physics systems which lead to FETI’s success in
other applications.

FETI vs. SAP

When comparing the FETI algorithm to the SAP in lattice QCD, several key differences stand
out. A first obvious remark is that the duplication of the block boundaries increases the overall
problem size. This phenomenon was considered in section 10.1.1. We concluded that the in-
creased problem size could be outweighed by the structure and conditioning of the FETI system.
This leads us to additional and more severe differences.

In section 9.2.4 we discussed the FETI block operators. For the FETI system to be equivalent
to the original system, we had to include weights in the block operators. In section 10.3.5 we
saw that the resulting condition number of the block operators increased by an average factor
of 3. We were not able to remedy this increased condition number by choosing an appropriate
preconditioner for the FETI block system.

On top of that, deflation techniques that are essential to the success of the deflated SAP, did
not work in the same way for the FETI algorithm. While the deflation of the FETI block system
was able to enhance the convergence of the most ill-conditioned blocks, the deflation of the more
important global FETI system did not have a significant effect. In section 10.2.1 we saw that the
inclusion of the deflation preconditioner greatly increased the computational cost while having
almost no effect on the convergence. A further study of the spectrum of the FETI operator Fλλ
would be needed to assess if a different deflation technique is successful here.
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Linear Elasticity vs. Lattice QCD

We will now compare the application of the FETI algorithm in lattice QCD to competitive
applications such as the ones in [66, 68, 157]. An crucial distinction is that most competitive
applications of the FETI algorithm are in two dimensions. Some extended and improved FETI
type algorithms have been shown to work for three-dimensional problems [158, 161, 163]. Lattice
QCD, however, is fundamentally four dimensional. With higher dimension the ratio of boundary
points to the total volume scales unfavorably. Accordingly, the increase in the size of the FETI
system compared to the original system is exacerbated. Additionally, the boundary is in itself
a complicated, three-dimensional system. On top of that the condition number of the block
system is further amplified by the smaller weights of the four dimensional system. As seen in
section 9.2.4 the weights inside the block operator go down to 1

2d
with the dimension d of the

system. This directly affects the condition number of the block operator.
Another important and related difference is the treatment of the block system. In two di-

mensions and for sufficiently small blocks it is possible to explicitly solve the block system. This
can be done by using explicit methods such as the Gaussian Elimination or by storing the in-
verse block system acting on basis vectors. For both of these methods the condition of the block
system is of secondary importance. Using explicit methods the application of the inverse block
system is extremely fast and efficient. Without the computationally intensive and slow iterative
solution of the block system, we could benefit from the improved convergence behavior of the
FETI system seen in section 10.2.1. For four dimensional problems, however, the size of the
block system is too large for explicit techniques to be realistic. In section 10.3.1 we presented
the memory requirements of explicit solvers for several block sizes. Highly parallel computer
architectures such as GPUs could ameliorate the computational intensity of the block system.
Given the independence of individual blocks, the block system is well suited for GPUs. Further
investigation that is beyond the scope of this work is needed to evaluate if the FETI algorithm
is competitive on these architectures.
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A | Appendix

Package Version/Commit Author

openQCD [123] 1.6 Lüscher, Schaefer, Bulava, Campos, and
Rago

UWerr [122] Version6 Wolff
mesons 8b97ab Korzec
bdio [165] 1.0/68e915 Korzec, Simma
mesons-tools fd8e38 with changes Bruno
wflow-tools 512e48 with minor changes Bruno
obs-tools-alpha 90beae with minor changes Sommer
db-tools-alpha 7c45b7 Sommer
xml-tools-alpha b11c9d Virotta, Sommer, Lottini, Bernardoni

Table A.1: List of software packages used in this thesis.
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