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Abstract

We present a new procedure for enhanced variable selection for component-wise gradient boosting. Statistical boosting is
a computational approach that emerged from machine learning, which allows to fit regression models in the presence of
high-dimensional data. Furthermore, the algorithm can lead to data-driven variable selection. In practice, however, the
final models typically tend to include too many variables in some situations. This occurs particularly for low-dimensional
data (p < n), where we observe a slow overfitting behavior of boosting. As a result, more variables get included into the
final model without altering the prediction accuracy. Many of these false positives are incorporated with a small coefficient
and therefore have a small impact, but lead to a larger model. We try to overcome this issue by giving the algorithm the
chance to deselect base-learners with minor importance. We analyze the impact of the new approach on variable selec-
tion and prediction performance in comparison to alternative methods including boosting with earlier stopping as well as
twin boosting. We illustrate our approach with data of an ongoing cohort study for chronic kidney disease patients, where
the most influential predictors for the health-related quality of life measure are selected in a distributional regression
approach based on beta regression.

Keywords
Beta regression, generalized additive models for location, scale, and shape, model-based boosting, variable selection,
earlier stopping

Introduction

In modern biostatistics, model building and variable selection have become increasingly important, particularly in the
context of applications in high-dimensional data settings, where the number of potential predictors p is larger compared
to the sample size (p > n).! Important examples include genetic or molecular data (e.g. Chen et al.%; Choi et al.?), but
also in more classical clinical studies one often aims to obtain a relatively sparse model with good prediction accuracy
including only the most relevant variables (e.g. Steyerberg and Vergouwe*; Sauerbrei et al.”).

Component-wise gradient boosting ° provides a framework to handle this, with the key features of variable selection and
the possibility to manage high-dimensional data problems. In combination with regression-type base-learners,’ it is able to
maintain the usual interpretability of statistical regression models—equivalent to the ones that were estimated using clas-
sical penalized likelihood or Bayesian inference. Statistical boosting provides a large flexibility due to the modular nature
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Figure |. Coefficient paths along the number of boosting iterations for a simulated data set with n = 500 observations and p = 50
variables which were simulated from a multivariate normal distribution with Toeplitz covariance structure and a correlation of 0.9. Only
variables X, ..., X¢ are informative with true coefficients f;; = (— 3, — 2.5, —2,2,2.5, 3)T. The coefficient paths for the

non-informative variables are colored red. The optimal stopping iteration mstop,,,, = 1004 was determined by [0-fold cross-validation.

of the approach: any type of base-learner (linear models, splines, spatial models) can be combined with any type of convex
loss function.®

Despite these advantages, in some applications the algorithm tends to select too many variables. This often occurs for
rather low-dimensional settings with relatively large sample sizes (p < n), where irrelevant base-learners often get selected
with a very small effect size. This is associated with slow overfitting and thus with a higher number of boosting iterations
Mmgop Which lead to a larger set of selected variables. For example, in a recent beta-regression analysis on the health-related
quality of life (QoL) in n = 3522 chronic kidney disease patients, statistical boosting selected 33 out of p = 54 potential
variables.”

As an illustration, Figure 1 displays the coefficient paths of component-wise boosting with the squared error loss in the
context of linear regression for a simulated data set in which only the first six variables X, ..., X5 are informative. One can
observe that the estimated coefficients of the six informative variables are the largest in absolute values, while several non-
informative variables are incorporated with small coefficient sizes around zero. Therefore, the selected non-relevant vari-
ables have only a minor impact on the predictive performance but lead to a larger model with difficult interpretation.

Bithimann and Hothorn'® tried to overcome this issue and extended the classical boosting approach to a two-stage
design called twin boosting, which was inspired by the adaptive lasso (see Zou '!). The first stage consists of a classical
boosting algorithm. The second stage is similar to the first, with the difference that variables that have not been selected are
excluded; furthermore, variables that have been selected in the first stage receive weights based on the size of their coeffi-
cients, making it more likely that the important variables will be selected again in the second stage. Other approaches
aiming to increase the sparsity of statistical boosting focus on reducing the number of iterations mgp: for example, the
one standard-error rule was originally considered by Breiman et al.'® in the context of random forests and does not
select the optimal tuning parameter regarding prediction accuracy, but in case of boosting the smallest g, that is still
in the margin of one standard error from the minimum risk. Ellenbach et al.'® further extended this approach (RobustC)
to obtain a less complex prediction rule that is less affected by the characteristics of the resampling scheme compared
to the one standard-error rule. A potential disadvantage of approaches that lead to earlier stopping is that they suffer
from the side-effect of inducing also a higher amount of shrinkage. This additional shrinkage of selected effect estimates
might not necessarily lead to a better performance (cf. Van Calster et al. '%).

Here we propose a general procedure to enhance the sparsity of statistical boosting models, where the final selection of
variables is based on the risk reduction resulting from the individual updates of the corresponding base-learners. With this
approach, we exclude those base-learners (and their corresponding variables) from the prediction model which attributed
only slightly to the total risk reduction. As an alternative to earlier stopping of the boosting algorithm—that is moving
“horizontally” on the regularization paths—we consider the individual contributions of different variables after a particular
number of boosting iterations. The benefits of this “vertical” view on regularization paths have also recently been discussed
in the context of other regularization methods such as the thresholded Lasso'* ' including the possibility of deselecting
noise variables which are included “early” on the regularization paths. Furthermore, we directly enforce the sparsity of the



Stromer et al. 209

final models without unnecessarily increasing the amount of shrinkage on effect estimates. We illustrate the proposed
method with the selection of predictors for the health-related QoL data of the German Chronic Kidney Disease Study
(GCKD). We compare our results to a previous analysis of these data’ which partly motivated the new methodological
development. With the new deselection approach, we are able to select much sparser models while still yielding a
similar prediction performance.

The remainder of the paper is structured as follows. In Section ‘Methods’, we introduce the new approach for an
improved variable selection and consider alternative methods for achieving sparser models. In Section ‘Simulation
study’, we compare these methods via simulated data under various conditions for different models. Finally, we apply
our new approach to the QoL data and present the results in Section ‘Quality of life of chronic kidney disease patients’.
Conclusively, Section ‘Discussion and conclusion” summarizes our findings and discusses future research questions.

Methods
Model-based boosting

17; 18 19; 20

Boosting was first established in the context of machine learning and was later extended to fit statistical models.
Statistical boosting algorithms?'* * can be used to analyze high-dimensional data problems, in which classical inferential
methods are no longer applicable (e.g. least squares method for linear regression models). Furthermore, boosting yields
data-driven variable selection and shrinkage of effect estimates. ©

The model fitting is carried out by iteratively minimizing the empirical risk of an appropriate loss function. This loss
defines the regression problem and needs to be specified in advance. In generalized linear models (GLMs) and generalized
additive models (GAMs), the loss function corresponds to the negative log-likelihood of the outcome distribution. For clas-
sical linear regression models, for example, we minimize the squared error (L, loss), which corresponds to maximizing the
likelihood of a Gaussian distribution. Different effect types can be determined for each covariate (e.g. linear or smooth
effects), which reflect the type of influence the variable has in the model. These underlying functions are called base-
learners; in the simplest case they are univariate linear models representing linear effects. In each iteration, the negative
gradient of the loss function is determined and every base-learner is separately fitted to the negative gradient.
Afterwards, only the best performing base-learner is selected (i.e. the base-learner that best fits the negative gradient)
and the corresponding estimated effect is multiplied by a small fixed step size (default is v = 0.1) before it is included
in the model. Due to the selection of single base-learners in each iteration, the algorithm carries out variable selection.
This process is repeated until the number of boosting iterations gy is reached, whereby every base-learner can be selected
several times. In the classical boosting algorithm, every base-learner that was once included in the model cannot be dese-
lected. **

The number of boosting iterations is the main tuning parameter and can be selected, for example, by cross-validation or
other resampling techniques. The optimization of the stopping iteration—also referred to as early stopping—is crucial to
prevent overfitting and to favor the sparsity of the resulting model. The smaller g, the fewer variables are included in the
final model as only one base-learner is updated in each iteration. Additionally, early stopping typically improves the pre-
diction accuracy and leads to shrinkage of effect estimates. **

Earlier stopping strategies

Due to the influence of the number of boosting iterations g, on the variables finally selected by the algorithm, one
approach to achieve sparser models is to enforce earlier stopping of the algorithm, that is, selecting a smaller mgop.
With this approach it is assumed that variables that are updated in early iterations of the algorithm have a greater influence
on the prediction of the model than variables that are added later to the model. Typically, classical early stopping selects the
stopping iteration mgop_opt that leads to the smallest (optimal) cross-validated prediction risk (CV).

The one standard error rule (0SE) is one approach to enforce earlier stopping and has already been used in context of
penalized regression and regression trees.'* 2> With this approach, the tuning parameter Mgop 1s chosen as the smallest
iteration for which the CV is within one standard error of the minimal CV (cf. Friedman et al.?>; Hastie et al.>®)

Cv(mstop) < CV(mstop_opt) + Se(CV(mstop_opt))'

The minimal cross-validated predictive risk CV(mgiop_opt) corresponds to the CV of the optimal stopping iteration.
Furthermore, se(CV(msop_opt)) represents the standard error of the minimum over the CV folds. Consequently, this
method has dependencies on the number of CV folds and the sample size.
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Figure 2. Application of the oSE and RobustC on the cross-validated estimation of the empirical risk with 10-fold cross-validation. The
vertical solid black line reflects the optimal stopping iteration via cross-validation (mso, = 1004), the red dashed one displays the oSE
(Mstop = 372) and the blue dotted one RobustC (mgo, = 339) with ¢c = I.1.

Based on the idea of the 0SE approach, Ellenbach et al.'* proposed an alternative more robust approach, called RobustC.
Here the smallest mgy, is chosen, whose CV is still within a range of a fixed additional tuning parameter c,c multiplied with
the minimum CV

Cv(mstop) <¢eX Cv(mstop_opt)~

Ellenbach et al.'? suggested the values c,c € {1, 1.1, 1.3, 1.5, 2} for the case of a binary outcome. The authors aimed for a
less complex predictive rule and for choosing a robust tuning parameter, which is essential in cross-study predictions.'?

Considering the example from the introduction, Figure 2 shows the CV-risk for 10-fold cross-validation with 2000
boosting iterations. The vertical solid black line shows the optimal stopping iteration and corresponds to the minimum
average risk over the 10-fold cross-validation samples. The vertical dashed red line is the stopping iteration which
yields the oSE, while the blue dotted line corresponds to the optimal iteration according to RobustC. One can observe
that the stopping iterations of the earlier stopping strategies are less than half as large as the original miqp.

A further alternative approach to obtain sparser models is probing. The idea is to extend the data set by random noise
variables, the so-called probes, which are randomly shuffled versions of the originally observed variables. The algorithm
stops when the first probe is selected. For more details on this approach see Thomas et al.*’

Deselection of base-learners with a small risk reduction

Several other approaches have been developed to enhance the sparsity of boosting models (e.g. Hofner et al.?®; Thomas
et al.?”). Most of them focus on the selection step in the algorithm, or on the tuning of the stopping iteration mgp
(section ‘Earlier stopping strategies’). Our new procedure is based on actively deselecting variables that have been selected
by the algorithm, but result in only minor importance regarding the predictions of the model.

We address this issue with an approach that aims at eliminating variables with a small impact and directly enforce the
sparsity of the model. The general idea is to first apply a standard boosting algorithm with early stopping via cross-
validation or resampling techniques; then, we determine the variables selected by boosting with a minor importance for
the model and deselect those components. Afterwards, we boost again incorporating only the selected variables that sur-
vived as candidate variables. In this context, our procedure shows analogies to the twin boosting approach.'® In our
deselection procedure, we consider the risk reduction as a measure for variable importance and deselect those variables
that only represent a small percentage of the total risk reduction.

The risk reduction by base-learner j after ms, boosting iterations can be defined as the attributable risk reduction R;

Mistop

Ry= 3 1G =/t =, =1, ., )

m=1

where 7 denotes the indicator function and j*["! is the selected base-learner in iteration m. Furthermore, "1 — 7"l repre-
sents the risk reduction in iteration , for risks 71 and #"~!1 at iterations m and m — 1. For a given threshold z € (0, 1), we
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deselect base-learner j if
R; <7 (1 — plmson]y, )

where 701 — pl"sor] represents the total risk reduction and R; denotes the attributable risk reduction of base-learner j.

A schematic overview of the proposed procedure can be found in Box 1. Step 1 of the procedure consists of the initial
boosting for which the coefficient paths are shown in Figure 3 (left), corresponding to the simulation example discussed
earlier (see Figures 1 and 2). Overall, 23 variables (of the 50 variables) were selected (shown as horizontal red and black
paths) after m, = 1004 boosting iterations which were tuned by 10-fold cross-validation (indicated by the vertical black
line). For the deselection in Step 2, the attributable risk reduction along the iterations is shown for each individual base-
learner in the central plot of Figure 3). To illustrate the effect of the deselection step of the proposed method, consider the
thresholds z = 0.01 (horizontal dashed line) and = = 0.1 (horizontal dotted line). Here, it can be observed that our deselec-
tion procedure is fundamentally different to earlier stopping approaches discussed in section ‘Earlier stopping strategies’,
as the choice of the threshold for the deselection corresponds to a vertical view on the individual risk reductions after a
given number of boosting iterations (see central plot of Figure 3; on the other hand, earlier stopping simply corresponds
to a horizontal shift on the usual regularization paths of boosting (see Figure 2).

In the following, we consider a threshold value of z = 0.01 and accordingly deselect those variables which contribute
less than 1% to the total risk reduction. The black paths correspond to the variables included in the model after applying the
deselection approach, while the red paths do not cross the 1% line and the corresponding variables are deselected from the
model. We can observe that these variables contribute only slightly to the risk reduction and are incorporated with a coef-
ficient size around zero in the initial boosting model (as shown in Figure 3, left). In this example, the deselection approach
with threshold 7 = 0.01 deselects all noise variables from the model, but not the signal variables X, ..., Xs. Variables
X1, Xz, X5, and X have by far the greatest individual contributions to the total risk reduction; however, variables X3
and X; also exceed the 1% threshold (but not the 10% threshold). After the deselection step, we boost again (Step 3)
with only the remaining variables and receive the final model (see Figure 3, right) which contains here exclusively the
six informative variables.

Box I: Deselection procedure

I. Initial boosting:

* Early stopping: Tuning of my, based on cros-validation or

resampling.
2. Deselection:

* Identify the base-learners with the smallest impact on the risk
reduction according to R; < T - (r — rImsrl) (2) and remove
them from the model.

3. Final boosting:

* Boost again with the remaining variables and the my,, of

stepl.

Deselection of base-learners for distributional regression

In classical statistical models, the relationship between a response variable and covariates is most often modeled only based
on the expected value. For example, a generalized additive model (GAM)* in which the conditional mean u = E(y|x)
relates to an additive predictor # via a link-function g, is given by

)4
gw) =n() =y + Y _f(x)
j=1

with the intercept f, and the additive effects f; for the covariates X; with j = 1, ..., p (including linear, smooth or random
effects). Consider, for example, a Gaussian distribution, which has two parameters: the expected value y and the scale para-
meter . In a classical GAM, we assume that ¢ is fixed and only model the mean parameter y in terms of the covariates.
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Figure 3. Simulation example for the deselection procedure (see Box ). The left plot shows the coefficient paths of the initial
boosting. The central plot displays the attributable risk reduction for the individual variables, together with the 1% threshold (dashed
line) and 10% threshold (dotted line) of the total risk reduction. The coefficient paths of the right plot correspond to the final boosting.

In some cases, this may lead to an overly restrictive point of view, for example, in the presence of heteroscedasticity. In
addition, skewness and kurtosis may be large so that more complex non-symmetric distributions are required where poten-
tially skewness or higher order moments could be modeled through covariates to obtain a more accurate model. Following
this idea, GAMs have been extended to generalized additive models for location, scale and shape (GAMLSS) by Rigby and
Stasinopoulos, ** where a general parametric density P(y|6), ..., 0x) with distributional parameters 6 can be employed.
Here, each distribution parameter 6;, with k = 1, ..., K, can be modeled by an additive predictor #, depending on cov-
ariates. Furthermore, for each parameter ), we have parameter-specific link-functions g (.) as well as parameter-specific cov-
ariates iy, ..., Xg,,. In general, the linear predictors in a GAMLSS for K distributional parameters can be written as follows:

Pk
8k(Ox) = n = Por + ijk(xkj), k=1, ...,K,
=1

where 3, are the intercepts for the distributional parameters 6 and fj; denote the functions of the effect of variable X; on the
parameter 0.

GAMLSS can also be fitted via statistical boosting with the package gamboostLSS.>' As in the classical setting of
boosting GAMs, the main tuning parameter is the stopping iteration mg, which controls shrinkage of effect estimates
and variable selection. Here, we focus on a non-cyclical boosting approach,®? which performs in every iteration only
the overall best-performing update among the available candidate variables (base-learners) and distribution parameters.
So the term component-wise boosting in this context does not only refer to the components of X, but also to the components
of the parameter space 6, ..., Ok of the corresponding likelihood. To receive the overall best performing base-learner, the
empirical risk (the negative log-likelihood) of the best fitted base-learner is determined for each distribution parameter and
then compared across the different dimensions.

The updates are independent for the parameters and each additive predictor may depend on different variables
with the guarantee of data-driven variable selection in every submodel: Figure 4 displays the estimated coefficient
paths in a linear Gaussian location-scale model with distributional parameters u (left) and o (center). The data set consists
of n = 500 observations and p = 20 variables, where the first three variables X, X, X3 are informative for the mean para-
meter u with g, = (-2, 1.25, )Y, while variables Xi, X5, Xs are informative for the scale parameter & with
B, = (0.5, = 0.5, 0.5)". All other variables are non-informative with B, =0 and B, = 0. The explanatory variables
were simulated from a multivariate normal distribution with Toeplitz covariance structure and a correlation of p = 0.5.
The optimal number of boosting iterations is mg,, = 6479, optimized via 10-fold cross-validation. Note that in every itera-
tion only a single component is updated for one parameter.
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Figure 4. Simulation example for gamboostLSS with three informative variables for u (X|, Xz, X3) and three for ¢ (X4, Xs, X¢). The
first two plots display the coefficient paths (for u (left) and o (center)) and the third plot shows the attributable risk reductions for the
individual variables for both distributional parameters together with the 1% (dashed) and 10% line (dotted) of the total risk reduction.
The variables corresponding to the black coefficient path are still in the model after deselection with 7 = 0.01.

We notice that in the first iterations, components of parameter ¢ were more often updated, which can be observed by the
increase of the coefficient sizes for the variables X4, X5, X in the first iterations. In total, the boosting model contains 18 of
the 50 variables, with 11 variables selected for 4 and 14 variables selected for o (where seven variables were selected for
both x and ). Hence, additional variable selection can be advantageous to obtain sparser and thus more interpretable
models, which only include the informative variables.

Using equation (1 and consideringj = 1, ..., Y_ px, the risk reduction in a GAMLSS for component j can be defined
similar as before. For the deselection of variables with a low impact on the risk reduction for distributional regression, we
consider the distributional parameters together, where each parameter can depend on different variables. Analogous to
equation (2, we deselect component j if

Ri<t- (r[o] — r[’”“‘“’])

with fraction 7 € (0, 1) and total risk reduction % — yI"ser] Note that the deselected components may arise from different
distributional parameters and that with this definition, GAMs are included as a special case in the general formulation for a
GAMLSS with py =p and k£ = 1.

For the simulation example, the risk reduction of the variables for 4 and o is shown in the right plot (Figure 4). As shown
in Figure 3, the threshold value is chosen as 7 = 0.01 (horizontal dashed line) and = = 0.1 (horizontal dotted line). The
black paths correspond to the variables remaining in the model after applying the deselection procedure (with 7 = 0.01)
for distributional regression and have by far the highest impact on the risk reduction. The deselection results in a model
including only the six informative variables (instead of the 18 initially selected variables). For the choice of an appropriate
value for the threshold parameter 7, we examined different potential values observing the attributable risk reduction of the
base-learner as shown in Figure 3 (second plot) and Figure 4 (third plot).

Considering Figure 3, the variables X|, X, X5, and Xg have the largest impact on the risk reduction. All of those vari-
ables remain in the model with a deselection threshold of 1% as well as the other two informative variables X3 and Xj. For
the 10% boundary, X3 and X4 would not enter the model because of a smaller risk reduction. Even for the data example in
Figure 4, 10% is not an appropriate choice, since the variables X, ..., Xs have a noticeable impact on the risk reduction,
but X5 would fall out at this limit. A threshold of 1% appears to be reasonable in the considered situation. However, in
non-sparse situations, when many base-learners contribute only with a small risk reduction to the model, multiple
signal variables may be deselected with a threshold of z = 0.01. This extreme scenario should be rare, and in such non-
sparse data situations, enforcing variable selection might not be favorable in general.

An implementation of the enhanced variable selection approach is available at GitHub (https://github.com/AnnikaStr/
DeselectBoost).
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Simulation study

To evaluate the performance of our new approach for different data settings, we conduct a simulation study focusing on the
variable selection properties as well as the prediction accuracy in comparison with the methods for earlier stopping,
described in Section ‘Earlier stopping strategies’.

Specifically, the questions to be investigated in the simulation study are as follows:

1. Isthe direct deselection approach able to identify the truly informative variables (decreasing the number of false positive
variables selected by classical boosting)?

2. How does the reduction in selected variables affect the prediction accuracy?

How does the new procedure perform in comparison to the earlier stopping strategies, e.g. oSE and RobustC?

4. What is an appropriate value for 7 in the proposed deselection approach?

[98)

Settings

To examine those questions, different settings are considered: First, we start with classical mean regression models (linear,
non-linear, and logistic regression) and afterwards, we consider the deselection approach in the context of distributional
regression models.

For all simulations, the explanatory variables Xi, ..., X, were simulated from a multivariate normal distribution
N(0, X) with a Toeplitz covariance structure X; = Pl for 1 < i, j < p, where p € (0, 1) is the correlation between con-
secutive variables X; and X;, ;. For an alternative block-wise covariance structure, see the corresponding results in
Supplemental Material A.1. Overall, we considered two different dimensions of the data problem: (i) a low-dimensional
setting (p < n) with n = 500 observations and p = 20 variables and (ii) a high-dimensional setting (p > n) with n = 500
observations and p = 1000 variables. In total, six of the included variables were informative (for the distributional regression,
three for each parameter). Furthermore, a low-correlated scenario with p = 0.2 and a high-correlated scenario with p = 0.8 was
considered for each setting. Additionally, we consider a variation of signal-to-noise ratios (SNRs) and the corresponding effect of
different threshold values = with SNR € {0.15, 6, 14.64} and = € {0.005, 0.0075, 0.01, 0.025, 0.05, 0.075, 0.1, 0.125}.

For evaluation, we generated test data sets with 1000 observations from the same distribution as the training data sets.
As in the illustrative examples, the number of boosting iterations was tuned via 10-fold cross-validation. The fixed step size
is set to v = 0.1 and was not varied in the simulation, considering that it does not largely affect the risk reduction as long as
the step size is chosen reasonably small.>* We additionally compared the deselection approach (with 7 = 0.01) with the
earlier stopping strategies, oSE and RobustC (additional comparison with probing is given in Supplemental Material
A.2). The parameter value for RobustC is chosen as ¢, = 1.05 for a continuous outcome variable and ¢,c = 1.1 for a
binary response, following the recommendation of Ellenbach et al.'®

For each setting, 100 simulation runs were conducted and the data sets were generated from the following models:

Scenario A (linear regression): The true linear model for the continuous outcome variable Y is given by
y=—2x; — L.5x) —x3 + x4 + 1.5x5 + 2x5 + €,

with € ~ N(0, 1). The base-learners correspond to simple linear models and the performance was assessed using the mean
squared error of prediction (MSEP).

Scenario B (non-linear regression): The outcome variable ¥ was generated from the model
y=15sin(x;) +x; — 0.25x§ —0.25x4 — x5 — 1.5x¢ + ¢,
with € ~ N(0, 1). Smooth P-splines were used as base-learners and the MSEP was used for evaluation.

Scenario C (logistic regression): The logistic regression model for covariates with only linear effects on the response was
simulated according to

Py =1
10g<[|3>((ny():g> = —5x1 + —2.5xp — x3 + x4 + 2.5x5 + Sx¢.

As evaluation criteria, the Brier score and the area under the curve (AUC) were analyzed on test data.
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Figure 5. Low-dimensional setting: Comparison of the oSE, RobustC, the deselection approach with z = 0.01 (1%) and the classical
boosted model with mo,_op: regarding the true positives, false positives and the prediction performance for (A) linear regression, (B)
non-linear regression, (C) logistic regression, and (D) distributional regression. Additional comparisons with twin boosting (twin) for
the linear and logistic regression scenarios.

Scenario D (distributional regression): For the distributional regression model, we consider a Gaussian regression with
expected value p and scale parameter . Both parameters depend on three different covariates

u=—=2x; + 1.25x + x3,
log (6) = 0.5x4 — 0.5x5 + 0.5x6.

The boosting model was configured with simple linear models as base-learners and the performance was evaluated via the
negative log-likelihood.

All simulations were conducted in the statistical computing environment R ** using the add-on package mboost > for
model-based boosting. The algorithm for fitting GAMLSS models via component-wise gradient boosting is implemented
in gamboostLSS.*' Twin boosting is implemented in the package bst. *° The R code to reproduce the following simulation
results can be found online at GitHub (https://github.com/AnnikaStr/DeselectBoost).


https://github.com/AnnikaStr/DeselectBoost
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Results

Figure 5 shows the results of the low-dimensional simulations regarding the four previously described models for the low-
as well as the high-correlated settings, respectively. For each setting, the true positives, false positives, and the predictive
performance for the respective model are shown for the earlier stopping strategies, the deselection procedure with z = 0.01
and the classical boosted model.

In general, the two main strategies (earlier stopping and deselection) resulted in a reduction of false positives. In each of
the four models, the fewest false positives were obtained with the proposed deselection procedure; more precisely, almost
all false positives were deselected. For some models, one can observe that the selection of informative variables was
slightly influenced by the earlier stopping and deselection approach, particularly for the high-correlated settings.

In comparison with classical boosting, the deselection procedure yielded comparable or slightly better predictive per-
formances for simulated data based on Scenario A, Scenario B, and Scenario C. Furthermore, the earlier stopping strategies
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Figure 6. High-dimensional setting: Comparison of the oSE, RobustC, the deselection approach with 7 = 0.01 (1%) and the classical
boosted model with mgp_ope regarding the true positives, false positives and the prediction performance for (A) linear regression, (B)
non-linear regression, (C) logistic regression, and (D) distributional regression. Additional comparisons with twin boosting (twin) for
the linear and logistic regression scenarios.
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usually performed not as well as our approach. Only the AUC in Scenario B is very similar. For distributional regression
(Scenario D), the classical approach yielded the best results concerning the negative log-likelihood but contained a lot of
non-informative variables for both distributional parameters. The deselection approach reduced the false positives almost
completely and had only a slightly worse prediction performance.

Figure 6 presents the results of the high-dimensional setting. As in Figure 5, the true positives, false positives, and pre-
dictive performances are shown. For the high-correlated cases of Scenario B, Scenario C, and Scenario D, the classical
boosting model had already difficulties to select all informative variables. Concerning Scenario C only four of the six
true positives were selected on average. In comparison with the classical approaches, the earlier stopping and deselection
approaches resulted in an average lower number of true positives. For the false positives, we can observe a noticeable
reduction with the earlier stopping strategies, but the number of false positives reduced even more with the deselection
procedure and the final models contained almost only informative variables. The greatest reduction can be observed for
Scenario D where the classical approach contains 100 false positives on average for parameter u. After applying the
deselection approach, the number of false positives decreased to almost zero with all informative variables still present.
Due to the strong reduction of non-informative variables, in most cases, the deselection procedure showed a better predic-
tive performance in comparison to earlier stopping and the classical boosting. Although in most of the simulation runs of
Scenario C, not all informative variables were selected by the proposed deselection approach, it yielded a significantly
lower Brier score and a better discriminatory power.

Furthermore, we compared the new deselection approach as well as earlier stopping strategies to twin boosting in the
context of linear and logistic regression models (see Figures 5 and 6). Considering the results for twin boosting of Scenario A,
the number of false positives was reduced (as for oSE, RobustC, and the new deselection procedure), but it shows larger varia-
bility, particularly in the high-dimensional setting. In one bootstrap sample, the model contained about 450 false positives (for
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to bottom with SNR = 14.64) for Scenario A.
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low correlation). That is much more than we observed with the classical boosting approach, which had the maximum at about
100 selected non-informative variables. However, it should be noted that these different results for twin boosting are related to
a different implementation. The highest decrease in false positives was observed for the deselection approach. The prediction
accuracy was influenced by the outliers and also showed some higher MSEP values for twin boosting. We obtained the best
model for the deselection approach regarding the number of false positives as well as predictive performance. The results for
logistic regression showed a slight reduction of the selected informative variables for each approach.

On average, twin boosting contained fewer false positives and had a better prediction accuracy than the earlier stopping
strategies. Compared with the new deselection procedure, twin boosting tended to include more false positives, but was
similar in terms of predictive performance. Here, twin boosting showed favorable properties in comparison to the linear
regression model.

Finally, we investigate how the SNR affects the choice of the threshold parameter z. Figure 7 shows the results for
Scenario A concerning different SNRs with SNR € {0.15, 6, 14.64}. In this case, we consider the low-dimensional
setting (for illustrative purposes) with a correlation of 0.8, where SNR = 14.64 corresponds to the simulation setting pre-
sented before (results for a correlation of 0.2 and the high-dimensional settings are given in Supplemental Material A.3).
On the left side, the relative risk reduction (in %) is depicted for each base-learner for the three different SNRs. The red
horizontal line represents a threshold 7 of 1%. The right side shows the corresponding results of the true positives and false
positives as well as the predictive performance for various = values. Overall, the relative risk reduction for all SNR values
was very similar and the highest values always referred to informative variables, of which X3 and X4 showed the lowest risk
reduction. The risk reduction for a SNR of 0.15 varied more and the non-informative variables showed a higher contribu-
tion to the risk reduction.

Considering the variable selection and predictive performance for various 7 thresholds, the true positives and false posi-
tives for a SNR of 6 and 14.64 were very similar over the different 7 values. For a SNR of 0.15, the classical boosting model
had larger difficulties to identify all informative variables. Hence, it is also more challenging to deselect the non-
informative variables without a further reduction in the true positives. Therefore, smaller 7 values are more appropriate,
causing less deselection and more noise variables, but the signal variables still remain in the model. For the other
SNRs, only variable X7 contributes to the risk reduction for small threshold values (0.5%, 0.75%, and 1%). Here, the rela-
tive risk reduction showed that a small 7 value is sufficient to remove almost all false positives (red horizontal line for 1%).
Furthermore, a higher 7 value can lead not only to a reduction in informative variables included in the model but also to a
worse MSEP. Due to the noise, the predictive performance for the SNR of 0.15 was very poor and showed no discernible
differences between the threshold values. However, = values above 2.5% lead to a decrease in performance for larger SNRs.
Furthermore, the previous simulation results have shown that a low value for 7 (in this case 1%) reduces the number of false
positives and additionally leads to a comparable predictive performance to classical boosting.

Overall, the number of false positives in the resulting models could be significantly reduced by earlier stopping or
deselection as well as twin boosting compared to classical boosting. However, in most cases, the reduction of false posi-
tives for oSE and RobustC resulted in worse prediction performance. A comparison with probing for Scenario A, Scenario
B, and Scenario C showed similar behavior (given in Supplemental Material A.2). Probing also led to a reduction in the
number of false positives, but resulted in worse prediction performance, particularly for Scenario B. Furthermore, the
earlier stopping strategies removed a few informative variables from the model in some settings.

The new procedure also deselected some informative variables from time to time, but removed the non-informative vari-
ables almost completely and resulted in favorable prediction performance. In some settings, the new approach even resulted
in better predictive performance than the classical boosting model. Additional simulation results for the high-dimensional
setting with a block structure for the covariance matrix are provided in Supplemental Material A.1 and showed very similar
results compared with the Toeplitz covariance structure.

From the consideration of different SNRs, we conclude that the relative risk reduction attributed to a base-learner does
not depend much on the overall SNR but on the distribution of the signal among the base-learners. To ensure that not too
many informative variables are de-selected and to achieve a favorable predictive performance, our results suggest that the
threshold value should be chosen rather small (e.g. 1%). For larger SNR values (6 and 14.64), almost all noise variables
were eliminated even for small 7. Higher threshold values resulted in worse performance and a significant reduction of the
informative variables. The choice of 1% for the threshold 7 resulted in a reasonable tradeoff between sparsity and prediction
performance in all considered settings. The best threshold, however, will always depend on the actual goal of the analysis
and the general data situation.

Additionally, our approach also performed well compared to twin boosting, particularly for the linear regression model.
An advantage of our method is the possibility to enhance variable selection for non-linear and distributional regression,
which to the best of our knowledge is currently not available for twin boosting.
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Table I. Results for GCKD data in terms of the mean (sd) number of selected variables for the parameters i and ¢ as well as the
negative log-likelihood representing the prediction performance on the 1000 bootstrap replicates.

Model u ¢ —log-likelihood

classical boosted model 26.43 (7.10) 14.55 (6.00) —1457.08 (40.24)
deselected (r = 0.01) 12.58 (1.39) 7.87 (1.61) —1441.73 (39.41)
oSE 8.06 (2.68) 2.92 (1.63) —1295.34 (37.88)
RobustC 7.63 (2.31) 2.70 (1.34) —1290.14 (32.88)

Quality of life of chronic kidney disease patients

The following analysis aims to identify the most important predictors for the QoL of stage III chronic kidney disease
patients based on an ongoing German cohort study (German Chronic Kidney Disease Study, GCKD). A similar analysis
has already been published (cf. Mayr et al.”) and led to the selection of rather large models which partly motivated the
current new methodological developments.

The analysis is based on beta regression,®’ which is a very flexible approach to model bounded outcome variables like
proportions. It is also a well-known tool in the analysis of health-related QoL scores, > ** which typically range from 0
(lowest possible value) to 100 (highest possible value). The density function of a beta distribution with expected value
u and precision parameter ¢ is given by

: _ I'(¢) $=101 _ y(1-p—1
F03 1 = gom =gy AT 0<r<,
where I'(.) denotes the gamma function. In context of distributional beta regression, which refers to a generalized additive
model for location, scale and shape (GAMLSS), we model i and additionally ¢ in terms of several explanatory variables.
The GCKD study *° is an ongoing cohort study for patients with stage IIT chronic kidney disease. We analyzed part of the
cross-sectional baseline-data with » = 3522 observations and 54 explanatory variables. We aimed to select the most informa-
tive variables for the QoL of chronic kidney disease patients ? using the R add-on package betaboost. The effects of the pre-
dictors on the quality of life are represented by base-learners. For continuous covariates we incorporated spline effects as
base-learners. For factor variables (e.g. education and exercise) we used linear base-learners providing joint updates of the
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Figure 8. The selection rates of the explanatory variables for u and ¢ of the classical boosting algorithm in 1000 bootstrap samples.
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effects for the different categories in the boosting iterations. Therefore, our approach yields potential deselection (sparsity) on
the full factor level and not on the level of different categories of a factor. Alternatively, multi-categorical factors may also be
re-coded as several binary dummy variables, so that categories could be selected (and deselected) independently.

We drew 1000 bootstrap replicates and fitted a beta regression model without and with the new deselection procedure
using 7 = 1% for each bootstrap sample (results for different 7 values are given in Supplemental Material A.4). To evaluate
the predictive performance of the resulting models, the negative log-likelihood was computed on the out-of-bag
bootstrap samples. The optimal number of boosting iterations were selected via 10-fold cross-validation. For comparison,
we additionally considered the oSE and RobustC methods.

Results

Table 1 displays the mean number (with standard deviations) of selected variables for 4 and ¢ as well as the average nega-
tive log-likelihood for the different models on the 1000 bootstrap replicates. One can observe that more variables are
included for the expected value than for the precision parameter. The earlier stopping strategies contain fewer variables
than the proposed deselection approach for boosting.

In addition to Table 1, we consider the selection rates for each variable (for u and ¢) on the 1000 bootstrap replicates.
Figure 8 displays the selection rates of the classical boosting approach. As described in Mayr et al.,” the highest selection
rates for parameter y were obtained for age, body mass index (BMI), exercise, and variables related to pain such as arthritis,
cramps, and muscle pain. Furthermore, variables that are indicators of kidney failure and inflammation also had higher
rates, for example, cystatin C. For the precision parameter ¢, 15 variables were included on average, with the highest
rates for the variables exercise, employment in a full-time job and hospital stay.

The selection rates after additionally applying the deselection approach in Figure 9 show that the new procedure
achieved a significant reduction in the number of included variables; some variables that were rarely selected by classical
boosting were never included with the new approach (e.g. alcohol, gender). On the other hand, the variables with the
highest selection rates from the classical model were still present at the highest selection rates.

To evaluate the predictive performance of the resulting models, we considered the negative log-likelihood on test data as
a scoring rule. The results in Figure 10 suggest that the new deselection procedure outperforms the earlier stopping stra-
tegies oSE and RobustC. The smallest negative log-likelihood was obtained with the classical boosting model with an
average value of 1457.08 (see Table 1), whereby we achieved a comparable performance for deselecting with z = 0.01.
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Figure 9. The selection rates of the explanatory variables for ;i and ¢ after applying the new deselection approach with 7 = 0.0l in
1000 bootstrap samples.
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Figure 10. Negative log-likelihood of the oSE, RobustC, the deselection procedure with a threshold value of 1% and the classical
boosted model on out-of-bag bootstrap samples.

Overall, the deselection approach based on 1% of the total risk reduction was able to enhance the sparsity of boosting
models by selecting less predictors for the health-related QoL in chronic kidney disease patients (on average 12.6 for the
expected value and 7.9 for the precision parameter from 54 candidate variables) in comparison to the classical boosting
approach. However, many predictors contribute to the overall risk reduction to a small extent (see Supplemental
Material, Figure A7). That indicates that the “true” underlying model is not as sparse as in the simulations. Earlier stopping
strategies can further increase the sparsity, however leading to much poorer predictive performance on out-of-bag data
(Figure 10). In comparison, the deselection approach leads to a slightly worse predictive performance in comparison to
classical boosting, but yields much smaller and more interpretable models.

In practice, we have to deal with the tradeoff between sparsity and predictive performance, which is regulated by the
threshold parameter 7. Therefore, higher variable deselection (i.e. larger values of 7) leads to smaller models but, at
least in this considered application, also to poorer predictive performance.

Discussion and conclusion

The presented approach to deselect base-learners for enhanced variable selection in statistical boosting is a new technique
to obtain sparser models with simpler interpretation via the removal of irrelevant predictors with negligible impact. As the
deselection is based on the risk reduction, this approach is suitable for any type of base-learners, for example, linear
models, splines, and spatial effects. Furthermore, the deselection approach can also be combined with a wide range of
regression settings, including multi-dimensional optimization problems like distributional regression.

Compared to the similar twin-boosting, 19 our approach actively deselects base-learners via a threshold value. This is
somehow an analogy to stability selection *'* ** but our method focuses on providing a sparse prediction model instead of a
set of stable predictors. *** ** Furthermore, it does not include additional resampling steps. Other approaches for enhanced
variable selection in the context of boosting focused on strategies for earlier stopping >’ '* which typically also increases
the amount of shrinkage on effect estimates which might not be necessarily favorable. Our approach hence focuses on a
vertical view on the regularization paths (in contrast to the horizontal view with earlier stopping) which has already been
discussed in the literature on the lasso. '>* !¢

The new approach is particularly suitable for high-dimensional data (with more potential predictors than observations)
as one can obtain a simplified model with the most relevant variables yielding in many cases almost the same prediction
accuracy as the classical boosting approach without deselection. Consequently, the interpretability of resulting prediction
models improves, which makes their application in practice more likely. *°

The results of the simulation study suggest that our procedure can yield much sparser models by deselecting wrongly
selected variables; in many cases deselection was associated with an almost complete elimination of false positives. In prac-
tice, one could assume that this might often lead also to a decreased prediction accuracy: the standard boosting approach
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already selects the optimal prediction model by optimizing the stopping iteration. However, at least in some of the simula-
tion settings, the deselection of false positives led even to a slightly improved prediction performance.

To select the most informative predictors for the health-related QoL of chronic kidney disease patients (GCKD study),
the deselection procedure resulted in a drastically reduced set of variables compared to a recent analysis,” which partly
motivated the new methodological development. However, we did also observe a slight worsening of the model perfor-
mance (w.r.t. the likelihood on test data).

The deselection procedure is controlled via a threshold value 7: it represents the minimum amount of total risk reduction
which should be attributed to a corresponding base-learner in order to avoid deselection. In the simulation study, a thresh-
old of = 0.01 (i.e. 1% of total risk reduction) was considered to be appropriate overall. However, the general tradeoff
between a more complex model with the highest possible prediction accuracy and a sparser, more interpretable model
(higher descriptive accuracy *® with potentially reduced prediction accuracy) should be guided by the researcher, depend-
ing on the research question and the context of the problem. As an alternative, the threshold parameter could also be chosen
via resampling techniques or cross-validation which might further increase the performance but leads also to higher com-
putational burden, particularly for high-dimensional data.

A limitation of our procedure is the assumption of sparsity. In cases where this is not fulfilled, it might deselect too many
variables: If, for example, many predictors affect the model with minor impact (e.g. 200 variables with equal importance),
our approach with = 0.01 may deselect all variables. This is due to the dependency of our approach on the distribution of
risk reduction across the base-learners. In theory, it would be beneficial to select 7 based on the minimal signal strength, for
example, the minimal risk reduction attributed to an informative predictor. As the truly informative variables, however, are
unknown—this choice remains challenging in practical applications. An alternative technique, particular for non-sparse
settings, could be to consider the cumulative risk reduction. Instead of considering only the risk reduction attributed to
the corresponding base-learner, the cumulative risk considers the risk reduction of all base-learners that are to be deselected
from the model. Thus, this procedure accounts for the complete tail of the base-learners with low importance. This variant
would typically yield larger models when used with the same threshold. We investigated also the deselection via the cumu-
lative risk reduction (results for the simulation and the application are given in Supplemental Material B). This alternative
version is also implemented and available together with the corresponding code to reproduce the simulations and can be
applied by specifying method = "cumulative".

The favorable performance of our new approach motivates research in this direction in the future, in particular for dis-
tributional regression,*’ where sparse and interpretable models are of particular importance. For instance, deselection could
be also extended to the level of distribution parameters in order to deselect a complete model-dimension (e.g. decreasing a
GAMLSS to a GAM) when the contribution to the overall risk reduction is limited. Another line of potential research could
focus on the combination of earlier stopping with deselection to avoid the disadvantage of exaggerated shrinkage.'*

Altogether, we conclude that in our simulation and application the new deselection approach was able to outperform
existing methods for earlier stopping, concerning the number of selected variables and the predictive performance.
However, it should be noted that these approaches pursue various different goals like variable selection, prediction perfor-
mance and/or interpretability. Fitting one model, that is able to achieve the best solution for all potential goals, simply
might often not be feasible (cf. Hothorn*®).
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