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Abstract

The path integral quantization of semi-classical gravity is one of the most promising ap-
proaches to unify quantum mechanics and general relativity. In this thesis, we investigate
the consequences of applying this path integral approach to the cosmology of the very
early universe, for which this unification is crucial. In the first part, we focus on the no-
boundary proposal, which constructs a non-singular beginning of the universe by relying
on the gravitational path integral of general relativity. We prove that the no-boundary
solution survives the addition of higher-order corrections to the gravity action. These cor-
rection terms usually arise in high-energy completions of general relativity such as string
theory, so our analysis indicates that semi-classical results may still hold at the perturba-
tive level of full quantum gravity. We then include a scalar field in the new no-boundary
proposal, defined in the Lorentzian formalism as a sum over geometries with fixed initial
momentum. Our results are key to confirming the viability of the proposal, as scalar fields
are the simplest example of matter fields, which must be included in a realistic theory
of the early universe. They also highlight the non-causality puzzle of the no-boundary
proposal in the presence of matter fields, for which we offer new perspectives. The second
part of the thesis deals with the path integral treatment of more general early universe
models. First we test the validity of the semi-classical limit of these models with the finite
amplitude criterion, which severely constrains for instance higher-order theories of gravity
and favors the no-boundary proposal and emergent universes. At last, we apply Kont-
sevich and Segal’s complex metric criterion to cosmological backgrounds. This criterion
tests the path integral convergence of any quantum field theory on a given metric back-
ground. Applied in the context of quantum cosmology, it leads to a new understanding
of the gravitational path integral in the no-boundary proposal, rules out generic quantum
bounces, and stresses the limitation of the minisuperspace ansatz for classical transitions
in de Sitter spacetime.
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Zusammenfassung

Die Pfadintegral-Quantisierung der semi-klassischen Gravitation ist einer der vielver-
sprechendsten Ansätze zur Vereinheitlichung von Quantenmechanik und allgemeiner Rela-
tivitätstheorie. In dieser Arbeit untersuchen wir die Konsequenzen der Anwendung dieses
Pfadintegralansatzes auf die Kosmologie des sehr frühen Universums, für die diese Vere-
inheitlichung entscheidend ist. Im ersten Teil konzentrieren wir uns auf den no-boundary
proposal, der einen nicht-singulären Anfang des Universums konstruiert, indem er sich
auf das gravitative Pfadintegral der allgemeinen Relativitätstheorie stützt. Wir beweisen,
dass die no-boundary Lösung das Hinzufügen von Korrekturen höherer Ordnung zur
Gravitationswirkung überlebt. Diese Korrekturterme treten normalerweise in hochener-
getischen Ergänzungen der allgemeinen Relativitätstheorie auf, wie z.B. in der Stringth-
eorie. Unsere Analyse deutet also darauf hin, dass semi-klassische Ergebnisse auch in
der perturbative Störungstheorie der vollständigen Quantengravitation gültig sind. An-
schließend beziehen wir ein Skalarfeld in den neuen no-boundary proposal ein, der im
Lorentz-Formalismus als Summe über Geometrien mit festem Anfangsimpuls definiert
ist. Unsere Ergebnisse sind der Schlüssel zur Bestätigung der Gültigkeit des neuen no-
boundary proposals, denn Skalarfelder sind das einfachste Beispiel für Materiefelder, die
in einer realistischen Theorie des frühen Universums enthalten sein müssen. Außerdem
verdeutlichen sie das Nichtkausalitätsrätsel des no-boundary proposals in Gegenwart von
Materiefeldern, für das wir neue Perspektiven aufzeigen. Der zweite Teil der Arbeit be-
fasst sich mit der Pfadintegralansatz für allgemeineren Modellen des frühen Universums.
Zunächst testen wir die Gültigkeit des semi-klassischen Limits dieser Modelle mit dem
Kriterium der endlichen Amplitude, das z.B. Theorien höherer Ordnung der Gravitation
stark einschränkt und den no-boundary proposal sowie emergente Universen begünstigt.
Schließlich wenden wir das Kriterium der komplexen Metrik von Kontsevich und Segal auf
kosmologische Hintergründe an. Dieses Kriterium prüft die Pfadintegralkonvergenz einer
beliebigen Quantenfeldtheorie auf einem gegebenen metrischen Hintergrund. Im Kontext
der Quantenkosmologie angewandt, führt es zu einem neuen Verständnis des gravitativen
Pfadintegrals im no-boundary proposal, schließt generische quantum bounces aus und un-
terstreicht die Limitierung des Minisuperspace-Ansatzes für klassische Übergänge in der
de-Sitter-Raumzeit.
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Introduction

The twentieth century saw the occurrence of two total paradigm shifts concerning the
understanding of the laws governing physics, on the one hand at the microscopic level
with the development of quantum mechanics, and on the other hand at very large scales
with general relativity. Quantum theory challenges our daily experience of the world,
yet its predictions at the scale of the atoms and even up to molecular size, have been
experimentally checked to such an extreme level of accuracy that it would be absurd
to dispute it. Nevertheless, even though our classical world can be shown to emerge
from the quantum description through the phenomenon of decoherence [5, 6], there is no
experimental proof that the quantum theory will continue to be valid when we consider
inaccessible regimes of extreme density of matter, such as those we expect to have existed
in the very early universe.

Throughout this thesis, we will assume that quantum theory is indeed universal: it
must be valid for any scales and regimes of matter. Given this initial assumption, the core
purpose of this work is to understand what is the quantum state of the very early
universe, and what are the tools we can use to probe the quantumness of this epoch.

So far, we have only been able to observe1 the universe back to the cosmic microwave
background state [7], about 380 000 years after the ”big bang”. In the future, it is possi-
ble that we gain experimental access to even earlier states, for example through neutri-
nos cosmic background, or even through the detection of primordial gravitational waves.
Nevertheless, the cosmic microwave background is already telling us something about the
quantum nature of the early universe, as we have good reason to think that its tempera-
ture variations are the direct offspring of quantum density fluctuations. In this work we
push this question further and ask: how can we assess the quantum nature not only of
fluctuations but also of the background geometry itself?

To investigate this, we mainly resort to the gravitational path integral and its semi-
classical limit, when ℏ → 0. This tool allows to define one instance of truly quantum
background for the early universe, the no-boundary state. It further permits to construct
theoretical criteria that can check the consistency of early universe models at the semi-
classical level, based on the convergence of the path integral for matter fields and for
gravity. Interestingly, we find a connection between these semi-classical consistency cri-

1Here observe means ”measure with light signals”. We will see later on that we have evidence for the
validity of the universe model from much early times.
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teria and the swampland program [8, 9]. This program aims to identify which low energy
effective models cannot possibly emanate from the full UV-complete theory of quantum
gravity. We find in this work intriguing resemblances between some of the swampland
conditions and the conditions arising from our semi-classical criteria, possibly indicating
that swampland constraints are not only features of the full quantum gravity, but already
of its semi-classical limit. This may also hint toward possible first principles underlying
those semi-classical criteria, such as unitarity, causality, etc.

This thesis is organized as follow: the first two chapters are introductory and present
the general framework and state-of-the-art of quantum cosmology. In chapter 1 we expose
the salient features of general relativity and the ensuing hot big bang evolution model and
then present the simplest inflationary model, based on a massive scalar field. Then in
chapter 2, we review the state-of-the-art of quantum cosmology, and in particular of the
no-boundary proposal which will play a key role in our work. In the third and fourth
chapters, we present new results on the no-boundary proposal developed in the course
of this thesis. Specifically, chapter 3 studies the viability of no-boundary solutions for
general relativity supplemented by higher-order terms (based on the results published
in [1]), while chapter 4 investigates the inclusion of a scalar field in the no-boundary
solution, using the new no-boundary prescription as a sum over regular metrics (results
published in [3]). Finally, in the two last chapters, we take a step back with respect
to the no-boundary proposal, and investigate criteria for the consistent definition of the
gravitational wavefunction, from a semi-classical perspective. In chapter 5, we show how
the requirement of obtaining convergent cosmological amplitudes from the gravitational
path integral imposes strict conditions on possible early universe models. We find that the
scenarios best suited to this criterion are the no-boundary proposal and loitering universes
(results published in [2]). At last, chapter 6 considers the implications of the complex
metric criterion, devised by Kontsevich and Segal as a convergence criterion on matter
field’s path integrals in quantum field theory, on theories of the early universe involving
complex geometries (results published in [4]).

Unless otherwise stated, we use the following conventions in this thesis: partial deriva-
tives are generally written as: f,x ≡ ∂f

∂x
. An upper dot refers specifically to a partial

derivative with respect to the coordinate time t. We work in four-dimensional spacetime
and utilize the mostly positive signature of the metric.
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Chapter 1

The standard model of cosmology

In this thesis we will study various models describing the evolution of our universe, with
an emphasis on its beginning. For a very long time, the universe was believed to be in a
stationary state. This view was challenged by the advent of general relativity in the early
twentieth century. The initial purpose of general relativity was to reconcile the theory of
gravitation with the principle of relativity, which restricts the propagation of interactions
to a finite speed. Though this theory still admitted some static solutions (Einstein’s
static solution originally motivated him to introduce the cosmological constant Λ), it was
gradually understood that general relativity, together with the assumptions of isotropy
and homogeneity of the universe, led to what we call the standard hot big bang evolution.
In this chapter, we first review this construction and then, we describe the flatness and
horizon problem which arise from the initial conditions required by this model. We then
describe the most popular solution to these problems, namely the inflationary scenario,
while stressing its weaknesses and the puzzles it leaves unsolved.

1.1 General relativity and the hot big bang evolution

General relativity (GR) describes gravity as the curvature of spacetime sourced by mat-
ter. It departs from Newton’s preceding theory of gravitation, that viewed gravity as an
attractive force between any two masses. The latter assumed that time was an absolute
quantity, but this premise got contradicted when Maxwell discovered that the electromag-
netic waves propagate at a finite speed, the speed of light c, which led Einstein in 1905 to
the theory of special relativity. In special relativity, space and time are coordinates on a
four-dimensional manifold, and the structure of spacetime is determined by the Minkowski
metric, which is a non dynamical quantity that determines the proper distance between
any two events, ds2 = −c2dt2 + dx⃗2. By allowing the metric of spacetime to become a
dynamical object, Einstein then obtained in 1915 the theory of general relativity, where
spacetime gets curved by the matter and energy it contains.

A key observation at the center of general relativity is the equivalence principle.
First formulated by Galilei, it states that in pure vacuum, the speed of a free falling object
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does not depend on its mass, meaning that gravity and acceleration are in fact equivalent.
Locally, gravity can therefore always be removed by selecting the appropriate accelerated
frame: it can be entirely described by a local change of frames (i.e., transformation
of spacetime coordinates), x′α → xµ = xµ(x′α). In other words, gravity is completely
determined by the dynamical metric gµν(x) depending on arbitrary spacetime coordinates
{xµ}:

ds2 ≡ ηαβdx′αdx′β = gµν(x)dxµdxν ⇒ gµν(x) = ηαβ
∂x′α

∂xµ

∂x′β

∂xν
. (1.1.1)

The equivalence principle is then formally equivalent to the requirement that dynamical
equations are invariant under the change of frames: x′α → xµ. This transformation is
called a diffeomorphism in differential geometry, so the equations describing gravity must
be diffeomorphism invariant. From the Newtonian limit, we know that the equations
for gravity must contain second-order differential operators. The simplest non-trivial
second-order operator that is diffeomorphism invariant is the Riemann tensor:

Rλ
µρν ≡ ∂νΓλ

µρ − ∂ρΓλ
µν + Γα

µρΓλ
αν − Γα

µνΓλ
αρ , (1.1.2)

where the Christoffel symbols Γµ
νρ are defined by:

Γµ
νρ = 1

2g
µα (∂νgαρ + ∂ρgνα − ∂αgνρ) . (1.1.3)

We can also obtain the so-called Ricci two-indices tensor and Ricci scalar, constructed
from one Riemann tensor and the metric as:

Rµν ≡ Rλ
µλν (Ricci tensor) ; (1.1.4)

R ≡ gµνRµν (Ricci scalar) . (1.1.5)

The action for gravity must be a scalar quantity constructed only from the metric gµν

and the Riemann tensor Rλ
µνρ, as these fully encapsulate the geometry and curvature of

spacetime. We hence write an ansatz of the form:

S =
∫

d4x
√

−g [a+ bR + cRµνR
µν + dRµνρσR

µνρσ + eR,νR
,ν + · · · ] , (1.1.6)

where g ≡ det(gµν) is the determinant of the metric, and the factor √
−g serves to render

the four-volume element d4x diffeomorphism invariant. By dimensional analysis, we find
that b has the dimension of an energy squared, [b] ∼ [energy]2. At this point, we take a
step back to ask ourselves, what is the range of energy for which we expect this theory
to be valid? We are constructing a purely classical field theory. We know from quantum
mechanics and the quantization of other classical field theories such as electromagnetism,
that quantum effects appear when we consider very small length scales, or equivalently
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very large energy scales. In this context, we usually express all quantities in GeV by using
the natural system of units where c = ℏ = kB = 1. When considering gravity, we have one
additional fundamental constant, the Newtonian constant G. This means that a theory
treating gravity at a quantum level would be best described by a system of units where
c = ℏ = kB = 8πG = 1. This system of units defines a mass scale, the (reduced) Planck
mass MPl ≡

√
ℏc

8πG
= 4.341 · 10−9kg, corresponding to a length ℓPl ∼ 10−33cm and an

energy scale of about 1018 GeV. This defines the typical scale for which quantum effects
are expected in gravitation. Back to equation (1.1.6), the coupling constant b must be of
order: [b] ∼ [energy]2 ⇒ b ∼ G−1 ∼ M2

Pl, but then for any scale larger than the Planck
scale ℓ ≫ ℓPl (i.e., for the classical regime we want to describe), the Ricci scalar scales as
R ∼ 1/ℓ2 so that

bR ∼ M2
Pl · 1

ℓ2 ≪ constant ·R2 ∼ constant · 1
ℓ4 . (1.1.7)

At the classical level, we can neglect all terms of order larger than 1 in the Riemann tensor,
unless we assume unnaturally large dimensionless coupling constants ∼ 10100. Later in
this thesis, we will consider theories which extend the action (1.1.6) and include higher
orders of the Riemann tensor, precisely in order to describe the quantum corrections to
general relativity.

The action for general relativity (1.1.6) eventually reduces to the Einstein-Hilbert
action:

SE-H = 1
16πG

∫
d4x

√
−g (R − 2Λ) , (1.1.8)

where Λ is the cosmological constant. The associated equations of motion are called the
Einstein field equations, and they can be derived from the action (1.1.8) supplemented
by a matter action SMatter, by using the variational principle:

Rµν − 1
2gµνR − Λgµν = 8πGTµν . (1.1.9)

T µν is the stress energy tensor which derives from the matter action,

T µν ≡ 2√
−g

δSMatter

δgµν
. (1.1.10)

The above sets the formalism of general relativity. On top of recovering the Newtonian
theory in the appropriate limit (nearly flat spacetime gµν ≃ ηµν , non-relativistic matter
v ≪ 1 and without cosmological constant Λ = 0), general relativity made new predictions
departing from Newtonian gravity which have been tested to an exquisite level of accuracy.
In particular, it predicted the deflection angle of light due to the gravitational field of a
massive object (experimentally tested during the 1919 solar eclipse), and precession of
the perihelion of Mercury. The linear approximation of the field equations led to the
prediction in 1918 of gravitational waves, whose first evidence was given by the energy loss
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of the Hulse-Taylor binary [10], and that are now extensively studied by the LIGO/Virgo
collaboration [11]. Finally, general relativity also predicted the existence of black holes,
whose first confirmed instance was the X-ray source Cygnus X-1 observed in 1971 [12].

Having recalled the key features of general relativity, we focus on its application to
the evolution of our whole universe. Friedmann found in 19241 that the Einstein field
equations possessed a solution for a spatially homogeneous and isotropic universe, yet
expanding in time. The assumption of spatial homogeneity and isotropy is known as
the cosmological principle, and it was since then found to be valid in our universe to a
very good approximation on large scales, most spectacularly by the cosmic microwave
background (CMB), whose latest measurement by the Planck satellite [7] is reproduced
in figure 1.1. Friedmann’s spatially homogeneous and isotropic solution is given by the

Figure 1.1: All-sky map of the fluctuations of temperature observed in the cosmic mi-
crowave background by the Planck’s satellite. The average temperature is TCMB =
2.72548 ± 0.00057K, and the fluctuations range from −300µK to +300µK, thus rep-
resenting a ratio of variation of about δT/T ∼ 10−4. Picture taken from [7].

FLRW metric:
ds2 = −N(t)2dt2 + a(t)2

(
dr2

1 − kr2 + r2dΩ2
2

)
. (1.1.11)

Locally, this is the unique spatially homogeneous and isotropic metric in four dimensions,
but globally there might be different spacetimes associated with different topologies. The
FLRW metric only depends on two functions of time, the lapse N(t) and the scale factor
a(t). This represents a drastic reduction of the number of degrees of freedom: instead of
a metric whose evolution varies at every single point in spacetime, we find an evolution
only in time: our system is described by two functions, instead of infinitely many. k is
the spatial curvature, that can take values 0, 1 and −1, corresponding respectively to a
spatially flat, closed and open universe. Plugging this metric into Einstein’s field equations
(1.1.9), and assuming a stress-energy tensor accounting for a perfect fluid matter with

1This solution was also found by Lemâıtre in 1927, and then by Robertson and Walker in 1935, hence
the name Friedmann-Lemâıtre-Robertson-Walker (FLRW).
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equation of state p(t) = wρ(t),

T µν = p(t)gµν + (ρ(t) + p(t)) uµuν , (1.1.12)

where ρ(t) is the energy density, p(t) the pressure and uµ the four-velocity, we obtain the
Friedmann constraint and equations of motion of the homogeneous and isotropic universe:



3ȧ2

a2N2 + 3k
a2 = Λ + 8πGρ (Friedmann constraint) ,

2ä
aN2 + ȧ2

a2N2 + k

a2 = Λ − 8πGp (acceleration equation) ,

aρ̇+ 3ȧ(ρ+ p) = 0 (continuity equation) .

(1.1.13)

The Hubble rate is defined by H(t) ≡ ȧ(t)/a(t) and represents an important quantity in
observational cosmology. The measured quantity nowadays is of about H(t0) ≡ H0 ≃
70 km s−1Mpc−1 2.

Depending on the matter content of the universe and its equation of state, the FLRW
equations (1.1.13) yield different regimes of evolution for the scale factor. We distinguish
three types of matter content in the universe:

1. Radiation (photons): radiation is characterized by the equation of state: pγ =
ργ/3. By using the continuity equation in (1.1.13), we find that

ργ(t) = ργ(t0) · a(t0)4

a(t)4 .

2. Non-relativistic matter (ordinary and cold dark matter): ordinary matter is
characterized by pM = 0, ρM ̸= 0. Thus the continuity equation yields the time
dependence:

ρM = ρM(t0) · a(t0)3

a(t)3 .

3. Vacuum energy (cosmological constant): In equations (1.1.13), the cosmologi-
cal constant terms can be understood as an additional type of matter with energy
density ρΛ ≡ Λ/(8πG) and pressure pΛ ≡ −Λ/(8πG). This energy density is thus
time-independent. Note that if we only have a cosmological constant in an oth-
erwise empty universe, the solution to the Einstein fields’ equations (1.1.9) is the
de Sitter (Λ > 0) or Anti-de Sitter (Λ < 0) spacetime. In these cases the scalar
curvature R is proportional to the cosmological constant. The de Sitter spacetime
plays an important role because it gives an approximate solution when the universe
is dominated by the vacuum energy, as in the late universe.

2The Planck’s measurement gives H0 = 66.88 ± 0.92 km s−1Mpc−1 [7], while the local measure-
ment based on the distance-redshift velocity relation for Cepheids and type Ia supernovae yields
H0 = 73.00 ± 1.75 km s−1Mpc−1 [13]. The tension between these values is still unexplained and it
provoked a reconsideration in recent years of the standard model of cosmology.
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With the above matter content, the Friedmann equation in (1.1.13) becomes:

H2 + k

a2 = 8πG
3 (ργ + ρM + ρΛ) , (1.1.14)

⇒ at t = t0 : 1 + k

a(t0)2H2
0

= 8πG
3H2

0
(ργ(t0) + ρM(t0) + ρΛ) . (1.1.15)

The quantity ρc ≡ 3H2
0/(8πG) is called the critical density3. The equation (1.1.15)

provides the abundances ratio of each matter content at present time t = t0. Ωγ ≡
ργ(t0)/ρc is the radiation abundance, ΩM ≡ ρM(t0)/ρc is the matter abundance and ΩΛ ≡
ρΛ/ρc is the cosmological constant abundance. By similarly defining the spatial curvature
abundance as Ωk ≡ −k/(a(t0)2H2

0 ), we can rewrite equation (1.1.15) as 1 = Ωγ + ΩM +
ΩΛ +Ωk. Using the time dependencies of the energy density for the different matter types,
we can express the Friedmann equation in term of the energy density abundances:

H(t)2 = H2
0

[
ΩΛ + ΩM

a(t0)3

a(t)3 + Ωγ
a(t0)4

a(t)4 + Ωk
a(t0)2

a(t)2

]
. (1.1.16)

This equation yields three different regimes of evolution depending on which term dom-
inates the energy content (1.1.16) in time. From experimental data (Planck 2018), we
measure that ΩΛ = 0.6847 ± 0.0073, ΩM = 0.315 ± 0.007, Ωk = 0.0007 ± 0.0019 4 [7]
and Ωγ = 5.38 · 10−5 [14]. Therefore at present time, the term ρΛ dominates the equation
(1.1.16) and leads to a cosmological constant dominated epoch with an approximate
exponential evolution for the scale factor (approximate de Sitter spacetime):

a(t) ≃ a(t0) exp
√Λ

3 (t− t0)
, H(t) =

√
Λ
3 . (1.1.17)

When going backward in time, the scale factor a(t) shrinks, and the matter and radiation
terms ΩM/a(t)3 and Ωγ/a(t)4 grow until they turn by turn dominate the equation (1.1.16).
First we reach a time t1 where ρM(t1) = ρΛ(t1) and we enter a matter dominated epoch
where the scale factor approximately evolves as:

a(t) ≃ a(t1)
(
t

t1

)2/3
, H(t) = 2

3t and ρM(t) = 1
6πGt2 . (1.1.18)

Going further back in time, we reach a second time t2 where ργ(t2) = ρM(t2) and we reach
a radiation dominated epoch where

a(t) ≃ a(t2)
(
t

t2

)1/2
, H(t) = 1

2t and ργ(t) = 3
32πGt2 . (1.1.19)

3It is called critical density because depending whether its ratio with the present total energy density
(ρ0

γ + ρ0
M + ρΛ) is smaller, equal or larger to 1, the spatial curvature of our present universe will be open,

flat or closed.
4This explains why our late-universe model is named the ΛCDM model, since the two largest compo-

nents of the energy content nowadays are due to the vacuum energy and to cold dark matter.
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Figure 1.2: Approximated regimes of evolution of the scale factor in time following the
hot big bang model. Present time t0 is represented by a red dot, and is estimated to
be 13.8 billion years. The transition from radiation to matter dominated epoch takes
place about 50 000 years after the big bang. The transition from matter dominated to
cosmological constant dominated phase takes place about 10 billion years after the big
bang, very recently compared to the total age of the universe.

These three regimes of evolution are depicted in Figure 1.2. Note that these scaling
solutions are obtained because we have approximated the spatial curvature term Ωk to be
0, as is expected from the Planck data currently.

The radiation and matter dominated equations (1.1.18) and (1.1.19) both imply that
at some point in time, a → 0 and ρ → +∞. This corresponds to the so-called big bang or
cosmological singularity. The above analysis does not include quantum effects, but these
cannot be neglected anymore when ρ → +∞. The model breaks down when ρ ∼ M4

Pl,
which corresponds to a time scale of t ∼ 1/MPl ∼ 10−43 s. The evolution described above
is theoretically valid up to that point, which enables to get to states with very large
densities, larger even than the density inside atomic nuclei.

This model was first proposed by Gamow et al. in 1948 and postulated that the
state of the early universe was in a thermal equilibrium at a certain temperature and
density. Going back in time, we reach hotter and denser states, and this led to two
predictions. First, the transition from a fully ionized plasma (opaque to radiation) into a
gas of neutral atoms (transparent to radiation) when the temperature reaches the binding
energy of electrons in hydrogen atoms (13.6 eV), leaves a black body radiation remnant,
the CMB, which was observed for the very first time in 1965 by Penzias and Wilson.
The CMB is in a sense the first picture of our universe, dated back to 380 000 years after
the big bang. Similarly, from the transition at the nuclear binding energy (∼ 1 MeV),
Gamow et al. predicted the primordial abundance of helium in the universe to be one
quarter of the original neutrons and protons [15]. The abundance of other light elements
such as deuterium and lithium can also be predicted this way, and these predictions agree
well with the abundances found in very early stars, for which the abundances due to the
star nucleosynthesis did not yet supplant the former. This transition happened about
1 second after the big bang, and is the earliest experimental evidence of the hot big
bang evolution. We however continue to have a good understanding of earlier times and

17



matter states until the so called electroweak scale at energy ∼ 1 TeV, equivalent to about
t ∼ 10−14 − 10−12s, because we can probe those energies and study the equivalent state
of matter with experiments on Earth such as the Large Hadron Collider at CERN.

Overall, the hot big bang model is a very good approximation of our early universe,
despite its apparent simplicity. However as we will discuss in the next section, in addition
to the fact that this theory cannot be trusted above the Planck scale, it requires initial
conditions that are problematic and lead to worrying puzzles, preventing us to obtain a
consistent picture of the early universe.

1.2 Puzzles of the hot big bang model and the infla-
tionary paradigm

The hot big bang evolution necessitates to start from an initial state with very special
conditions: it must be extremely spatially homogeneous, isotropic and flat. Assuming that
the universe started in such a fine-tuned state is very unnatural, and instead it appeals
to search for an explanation of these initial conditions, which is in particular the aim of
the no-boundary proposal we will present in chapter 2. But even if we take for granted
that the initial state5 of our universe was highly spatially homogeneous, isotropic and flat,
by assuming only the hot big bang evolution we encounter nonsensical puzzles. Though
these puzzles could be relegated to the quantum gravity phase before the Planck time, the
mechanism of inflation [16, 17] enables to get rid of them through a mechanism taking
place well after the Planck time. Inflation relies on a quantum field theory on curved
background approach, which implies that it treats the background as a classical quantity,
on top of which quantum fluctuations are considered. This way, the inflationary model
can also generate the density perturbations that are observed in the CMB and that seed
the large structures in our universe, from primordial quantum fluctuations.

1.2.1 The horizon problem

The horizon problem results from the very high spatial homogeneity and isotropy observed
in the CMB spectrum. For a static universe described by a Minkowski spacetime as in
special relativity, the finite bound on the speed of propagation c implies that any two
events whose spatial separation ℓ is larger than c · ∆t, where ∆t is their time separation,
cannot be causally connected.

In an expanding universe, the size of the causal horizon ℓ(t) is deformed by the Hubble
rate of expansion H(t) = ȧ(t)/a(t):

dℓ
dt = c+ ȧ(t)

a(t) · ℓ , ⇔ ℓ(t) = c · a(t)
∫ t

tini

dt′
a(t′) = c · tα

∫ t

tini

dt′
t′ α

for a(t) ∝ tα . (1.2.1)

5As defined by Guth in [16], the initial state of the hot big bang model can be taken as a state of the
universe colder than the Planck scale, e.g. for T ∼ 1017GeV, to avoid quantum effects.
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When the initial time tini → 0, the above integral converges for α < 1 and yields
ℓ(t)|tini=0 = t

1 − α
. Therefore, at the time of recombination of electrons, which approx-

imately corresponds to the CMB time, the size of the causal horizon is ℓCMB ∼ 3 tCMB,
because we are in the matter dominated epoch for which α = 2/3. After the expansion
of the universe, we observe this causal region at present time as a region of size:

ℓ(t0) ≡ ℓCMB · a(t0)
a(tCMB) ∼ 3 t1/3

CMBt
2/3
0 . (1.2.2)

The angular region we observe in the sky now and that should have been causally con-
nected at the time of the CMB has a size of θ ≃ ℓ(t0)/(3t0) = (tCMB/t0)1/3 = 2 ◦, since
tCMB ∼ 5 ·105 years and t0 ∼ 15 ·109 years. Following this argument, we should not expect
correlations in the CMB between regions separated by more than 2 degrees. Nevertheless,
we observe that the temperature of the universe at the time of the CMB is the same with
fluctuations of the order δT/T ∼ 10−4 in the whole sky. This absurd over-homogeneity
of the CMB compared to expectations from the hot big bang evolution is the horizon
problem, and would require that the setting of the initial conditions violates causality.

1.2.2 The flatness problem

The flatness problem follows from the very small spatial curvature that is measured today.
The Friedmann equation (1.1.14) provides a measuring tool of the spatial curvature of
the universe:

k

a2H2 = Ω − 1 , where Ω ≡ 8πG ργ + ρM + ρΛ

3H2 . (1.2.3)

For the spatially flat case k = 0, we find that the quantity Ω = 1 is time-independent.
Otherwise, Ω is time dependent and in particular, for a scale factor a ∼ tα with α < 1, we
find that H ∼ 1/t, so that Ω − 1 ∼ k · t2−2α. At present time we measure Ω − 1 ∼ 10−2,
so evolving this quantity backward in time until for example the big bang nucleosynthesis
time where T ≃ 1 MeV, we find that the spatial curvature was Ω − 1 ∼ 10−15. The other
way around, it looks as if the initial value for the Hubble rate had been hugely fine-tuned
so that the present universe was nearly spatially flat6.

1.2.3 The inflationary mechanism

We have identified the two above puzzles by assuming that the hot big bang evolution
was valid down to t = 0 with a ∼ tα and α < 1. However, we have seen that we do not
have experimental evidence for the hot big bang model before t ∼ 1 s. We could thus
assume that there was a period of time, starting after the initial singularity (ti > 0) and

6The flatness problem can also been seen without using any particular solution by simply considering
the Friedmann equation (1.1.16). When the scale factor grows, the curvature term should naturally
dominate at some point, but instead we observe it to be very small at present, meaning it must have
started from an unnaturally small value in the past.
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ending before this experimentally reachable time (tcritical < texp), during which the scale
factor followed a different evolution.

What kind of evolution would enable to solve the horizon and flatness puzzles? In both
cases, the problem boils down to the fact that for radiation and matter dominated phases,
the quantity 1/(aH) ∼ ȧ−1 (which is called the comoving Hubble radius) is growing
monotonically and in a very large manner on the time period we are considering. Indeed
for the flatness problem, the puzzle comes from the excessive growth of Ω − 1 ∝ 1/(aH)2,
and for the horizon problem, the puzzle ensues from the divergence of the horizon size:
ℓ(t) = c a(t)

∫ dt′
a(t′) = c a(t)

∫ amax

aini

da
aȧ

diverges when we integrate on amax → ∞ because

ȧ−1 grows largely with a. The divergence of the horizon size implies that we see regions in
the CMB which should be causally disconnected, and despite this they all look extremely
similar to one another.

Therefore, if instead the comoving Hubble radius ȧ−1 was shrinking during a suffi-
ciently long period before the start of the hot big bang evolution, we could solve these
two problems simultaneously: the horizon size would converge and restrict to one causally
connected region, while the Ω − 1 quantity could start from a large value (say Ω − 1 ∼ 1)
and shrink very much in order to reach a very small value at the beginning of the hot
big bang evolution, which would be consistent with present observations despite its sub-
sequent large growth.

In terms of equations, if the comoving Hubble radius has to shrink, then it means:

d
dt

(1
ȧ

)
< 0 ⇔ ä

ȧ2 > 0 . (1.2.4)

Therefore, we need a phase of accelerated expansion. This is the phase usual referred to
as the inflationary phase. By combining the acceleration equation and the Friedmann
equation (1.1.13) we get that for a perfect fluid p = wρ,

2ä
a

= −8πGρ
(
w + 1

3

)
. (1.2.5)

This means that we will have an inflationary phase only for w < −1/3. Note that, for a
perfect fluid, the equations (1.1.13) yield the approximate scaling solution: a ∼ t2/(3+3w),
which is expanding (H > 0) only if w > −1. Therefore, the inflationary phase can be
generated by a perfect fluid whose equation of state has −1 < w < −1/3. We can estimate
the time period necessary for inflation to solve the problems. In practice, it turns out that
the period of time needed to solve the puzzles is very short, in simple inflation models it
would last only 10−36 − 10−34 s [18], so we see that this inflationary period can easily take
place even before the electroweak time (tEW ∼ 10−12 s) and stay consistent with the hot
big bang evolution.

We now turn to a practical implementation of this scenario based on quantum field
theory on curved backgrounds, whose simplest instance is the scalar field inflation (see
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Figure 1.3: Sketch of the inflationary slow-roll mechanism. The inflaton field (in orange)
starts from a value ϕ0 > MPl and rolls down the potential in the slow-roll regime, produc-
ing an accelerated expansion. When it exits this regime, it reaches an oscillatory phase,
where reheating [19] takes place, leading to the creation of the standard model’s particles
and the advent of a thermodynamical state from which the hot big bang evolution follows.

for example [18]). We consider a theory of gravity minimally coupled to a scalar field
(generically called the inflaton) with scalar potential V (ϕ), whose action reads:

S =
∫

d4x
√

−g
(

R

16πG − 1
2g

µν∂µϕ∂νϕ− V (ϕ)
)
. (1.2.6)

We consider an homogeneous scalar field, ϕ(t), and discuss this assumption later. We
also choose a simple massive term for the potential7: V (ϕ) = m2

ϕϕ
2/2. The equations of

motion associated with this action, again for an FLRW metric (1.1.11), are:

H2 + k

a2 = 8πG
3

(
ϕ̇2

2 +
m2

ϕϕ
2

2

)
;

ϕ̈+ 3Hϕ̇+m2
ϕϕ = 0 .

(1.2.7)

The ”3Hϕ̇” in the scalar field equation is a friction term due to the expansion of the
universe. If H = 0, the scalar field oscillates indefinitely in the potential, but when H

becomes larger and larger, this oscillation gets more and more damped. We focus on a
specific regime for which the oscillations are overdamped, characterized by: ϕ̈ ≪ 3Hϕ̇
and ϕ̇2 ≪ m2

ϕϕ
2. This is called the slow-roll regime, and in this regime the equations

(1.2.7) become:

3Hϕ̇+m2
ϕϕ ≃ 0 , H2 ≃ 8πG

3
m2

ϕϕ
2

2 , (1.2.8)

and their solution reads:
ϕ(t) ≃ ϕi − mϕ√

12πG
(t− ti) . (1.2.9)

From the slow-roll condition
∣∣∣ϕ̇∣∣∣ ≪ |mϕϕ|, we deduce that this solution is valid only for

ϕ(t) ≫ 1√
12πG

≡
√

2
3MPl. Assuming that the initial scalar field value ϕi satisfies this

7This model for inflation has been ruled out by observations, but is one of the simplest model to
present and understand the key features of the inflationary solution. Models that are more favored by
current observations include for example the Higgs inflation [20] or the Starobinsky R2 inflation [21].
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condition, we find the solution for the scale factor as:

a(t) ≃ ai exp
(

mϕ√
6MPl

(
ϕi(t− ti) − MPlmϕ(t− ti)2

√
6

))
. (1.2.10)

We obtain the sought-after accelerated expansion, valid as long as t−ti ≲
√

3
2 ϕi/(MPl mϕ).

When we reach ϕcritical =
√

2
3MPl, i.e., at tcritical − ti =

√
3
2 ϕi/(MPl mϕ), the slow roll ap-

proximation breaks down and the accelerated expansion stops. The ϕ̈ term in (1.2.7) can-
not be neglected anymore, and we obtain an oscillatory behavior for the scalar field where
reheating [19] takes place, giving rise in principle to all the standard model elementary
particles. From then on the universe start following the hot big bang evolution described
in the previous section (see figure 1.3 for an illustration). The total amount of expansion
produced by the inflationary phase is of about acritical/ai ≃ exp

(
ϕ2

i

4M2
Pl

)
: the exponent

ϕ2
i /(4M2

Pl) is called the e-fold number and must be of order 60 for the flatness and horizon
problem to be solved [16]. This means that for this model of inflation, we find that infla-
tion must last for a period of time ∆t ≡ tcritical − ti =

√
3
2

ϕi

MPl mϕ
≃ 10−12 GeV−1 ≃ 10−36 s

for mϕ ≃ 1013 GeV, which is the typical mass of the inflaton needed to explain density
fluctuations in the CMB [18].

We now reflect on the assumptions entering this scenario. In addition to the assump-
tion of spatial homogeneity and isotropy (FLRW metric), we have assumed that the scalar
field was initially homogeneous and that it was varying slowly (ϕ̇2 ≪ m2

ϕϕ
2) implying an

initial value ϕi ≫ MPl. Inflation renders the setting of the initial conditions consistent
with causality, but it still requires the initial state to be an homogeneous and isotropic
space, and adds an homogeneous scalar field. The scalar potential must also comply with
specific requirements for obtaining the slow roll regime. These assumptions are not ex-
plained by inflation. Besides our focus on the no-boundary proposal as a theory of initial
conditions, in this thesis we will also show that some higher-order theories of gravity,
such as quadratic gravity, may force (through the semi-classical criteria we develop) the
universe to indeed start from such a very specific initial state. Inflation does not explain
why the initial conditions for our universe have to be those specific ones, but it shows
that at least these conditions are consistent and reasonable8.

Another largely praised benefit of the inflationary scenario is that it can explain why
on small scales, our present universe is so clumped, by taking into consideration quantum
fluctuations of the scalar field. When distances inflate, these quantum perturbations get
amplified and become classical, yielding a spectrum of density perturbations visible in
the CMB. These small density perturbations then later lead to the formation of large
structures such as galaxies, by the collapse of matter overdensities. However, this does

8The further assumption on the scalar field, ϕi ≫ MPl, is also reasonable: the scalar field value is not
an observable, but we can measure its energy density, ϕ̇2 +m2

ϕϕ2. In the classical regime, and as explained
earlier, this energy density must be much smaller than the Planck density energy ρ ∼ M4

Pl, while the
mass of the scalar field must be much smaller than the Planck mass: m2

ϕ · ϕ2 ≪ M4
Pl and mϕ ≪ MPl.

Given the huge ratio between the Planck mass and the mass of standard particles, it is thus completely
reasonable to assume that ϕi ≫ MPl.
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not represent a prediction, because different inflationary models, using different inflaton
fields for instance (Higgs inflation [20], R2 inflation [21], etc.) can lead to different values
for the tensor-to-scalar ratio r of perturbations in the CMB (i.e., the ratio between the
amplitudes of gravitational waves perturbations and of scalar temperature fluctuations).

Finally, we should mention that alternatives theories to inflation have been developed,
in particular in the perspective of solving the Trans-Planckian problem of fluctuations [22],
such as bouncing models and genesis scenarios, which can also solve the initial condition
puzzles and provide the correct spectrum of scalar fluctuations observed in the CMB.
They also generically lead to very different values for the tensor-to-scalar ratio r. We will
come back to these alternatives in more detail in the fifth chapter of this thesis (see in
particular section 5.3 for bounces and section 5.6 for genesis scenarios).
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Chapter 2

Path integral and quantum
cosmology

2.1 Why quantum cosmology?

In the previous chapter, we have reviewed the standard take on the early universe evolu-
tion, largely derived from applying general relativity to the whole, spatially homogeneous
and isotropic universe. We have glanced at its many predictions and evidences, and intro-
duced the mechanism of inflation for solving the initial condition’s puzzles we encountered.
However, we have already pointed out that this evolution breaks down when we reach the
Planck scale, because there quantum effects cannot be ignored.

Since this evolution is based on GR, the straightforward method to describe the pre-
Planck scale epoch would be to quantize gravity by quantizing GR, in a similar fash-
ion to the quantization of electromagnetism in quantum electrodynamic, and to that of
the weak and strong nuclear interactions in the Glashow-Weinberg-Salam theory and in
quantum chromodynamic respectively. It is nonetheless now well known that GR is a
non-renormalizable theory [23, 24, 25], i.e., it cannot be quantized by using the ordinary
perturbative approach. Instead, other quantization approaches have been attempted.
We will review some of them here below, though up to now, none of them proposed a
completely satisfactory answer.

As the early universe cosmology can be very well approximated by the FLRW metric,
the study of quantum cosmology presents a considerable advantage in that it requires dras-
tically less degrees of freedom compared to the full quantum gravity theory. In practice,
we say that we restrict to minisuperspace: instead of quantizing ten fields depending
each on space and time coordinates, we restrict to only the scale factor and the lapse
function, and most importantly they only depend on time. The number of degrees of
freedom narrows down from an infinite number of evolution functions (several for each
space coordinate) to only a few global functions. This implies a strict symmetry reduction
whose validity must be checked a posteriori. In particular, we will encounter cases in this
thesis where this symmetry reduction is too strong and removes some key elements of the
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solutions. Nevertheless, the minisuperspace ansatz is generally very powerful, because it
renders many otherwise too intricate calculations feasible, and thus represents a first step
in our understanding of quantum gravity.

A first approach which appears very well suited to the study of the early universe,
is the canonical quantization of gravity [26]. It relies on the Hamiltonian formulation of
gravity, and on the Arnowitt-Deser-Misner (ADM) [27] foliation of spacetime in equal
time hypersurfaces:

ds2 = −N2(dx0)2 + γij(dxi +N idx0)(dxj +N jdx0) , (2.1.1)

where N is the lapse and Ni the shift vector, and they parametrize the evolution from
one hypersurface to the next, while the 3-metric γij describes the geometry on the hyper-
surfaces. This formulation is completely general and preserves the 10 degrees of freedom
of GR (1 for the lapse, 3 for the shift vector and 9 for the three-dimensional metric). The
FLRW metric (1.1.11) corresponds to the specific case where the shift vector is null and
the lapse and three-dimensional metric are spatially homogeneous and isotropic. Using
the ADM metric (2.1.1), it is easier to perform the appropriate Legendre transformation
from the Lagrangian to the Hamiltonian action formulation (see e.g., [28, 29])

S =
∫

dtL =
∫

dt d3x
[
Πijγij,t −NH −N iHi

]
, (2.1.2)

where Πij is the conjugate momentum of the spatial metric γij, (3)R is the intrinsic
three-dimensional Ricci scalar based on that metric, and H, Hi are the Hamiltonian and
diffeomorphism constraints, that appear in the action with their associated Lagrange
multipliers N and N i. Those constraints explicitly read (γ is the determinant of the
spatial metric and Di is the covariant derivative based on it):


H = 16πG

√
γ

(
ΠijΠij − (Π l

l )2

2

)
−

√
γ

16πG
(3)R ;

Hi = −16πGDjΠ j
i ;

(2.1.3)

and they give rise to the general constraint equations of canonical quantum gravity: H = 0
and Hi = 0. The three latter generate coordinate transformations in three-dimensional
spacetime, similarly to the Gauß law in electrodynamic, while the first actually generates
the dynamic of the system. By quantizing this theory (i.e., by transforming Poisson brack-
ets into commutators), these constraints transform into conditions on the quantum state
Ψ, representing the state of the whole universe, HΨ = 0 and HiΨ = 0. The dynamical
equation following from the first condition is called the Wheeler-de Witt equation. For
instance in the case of an FLRW metric with a minimally coupled scalar field such as in
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(1.2.6), the Wheeler-de Witt equation reads [29]:
[

2πG
3a

∂

∂a

(
a
∂

∂a

)
− 1

2a2
∂2

∂ϕ2 + a4V (ϕ)
]

Ψ(a, ϕ) = 0 . (2.1.4)

We make two remarks about this equation:

1. to obtain the expression (2.1.4), it is necessary to choose a certain factor ordering
when transforming the momenta in functional differential operators, Πij → 1

i
∂

∂γij
.

It is common to choose the Laplace-Beltrami factor ordering as we did in (2.1.4)
because it ensures the invariance of the kinetic term under configuration space’s
transformations [28]. This is however merely an arbitrary choice.

2. this dynamical equation contains second order derivatives, and therefore if we want
to interpret it as an evolution equation similarly to the Schrödinger equations of
quantum mechanics, we obtain negative probabilities: this theory doesn’t respect
unitarity1.

The lack of unitarity causes a big hurdle in interpreting the Wheeler-de Witt equation
and prevents the canonical quantization from generating a complete quantum cosmology
theory. We thus move on to other quantization methods of gravity. In any case, the
idea of a wavefunction of the universe obeying the Wheeler-de Witt equation is central
to quantum cosmology and we will refer to it throughout this thesis.

Another approach to the quantization of gravity starts from string theory, which is a
candidate for a full quantum gravity theory. In the chapters 3 and 5 of this thesis, we will
review some aspects of string theory applied to the early universe cosmology.

We finally turn to the quantization procedure which we will mostly adopt in this
work, the path integral quantization. It was originally proposed by Feynman as
an alternative formulation of non-relativistic quantum theory [31], which constructs the
wavefunction describing a quantum state as an integral summing over all the possible
paths in configuration space linking an initial to a final coordinates position, and weighted
by an exponential of the classical action multiplied by a factor i and divided by ℏ:

Ψ(xi, ti;xf , tf ) =
∫ {xf ,tf }

{xi,ti}
Dx eiS[x]/ℏ , (2.1.5)

where Dx is a measure on the configuration space, while S[x] is the action evaluated
on the coordinates position x. This wavefunction was shown to satisfy the Schrödinger
equation, proving the equivalence of this formulation with the more familiar Schrödinger’s
and Heisenberg’s pictures of quantum mechanics. The path integral picture also allows
for a straightforward semi-classical limit when ℏ → 0: using the WKB approximation2,

1It was recently shown in [30] that, for minisuperspace, unitarity can be recovered at the next-to-
leading order in a Born-Oppenheimer approximation which makes a semi-classical time emerge.

2Developed in 1926 by Wentzel, Kramer and Brillouin, the WKB approximation is a method for
approximating solutions to linear differential equations such as the Schrödinger’s equation, valid when
the amplitude of the wavefunction varies slowly compared to its phase.
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the wavefunction (2.1.5) reduces to a sum over the classical, saddle point solutions:

Ψ(xi, ti;xf , tf ) ≃ N
∑

saddle
points

eiSon-shell[S.P.]/ℏ . (2.1.6)

This formulation has been successfully adapted to field theory, where it provided one
of the most efficient way of quantizing fields such as Yang-Mills. In this case we write the
generating functional of Green’s function as the path integral:

Z[J ] =
∫

DΦ ei(S[Φ]+JAΦA)/ℏ , (2.1.7)

with DΦ the measure on the fields Φ, and S[Φ] the action on those fields. Z[J ] thus
provides correlation functions and propagators for the field theory in the presence of the
source J .

The path integral idea was first generalized to include gravity by Hawking in [32]. The
amplitude of probability to go from a state with metric g1 and matter field ϕ1 at time t1,
to a second state with metric g2 and matter fields ϕ2 at time t2 is then given by:

⟨g1, ϕ1, t1|g2, ϕ2, t2⟩ =
∫

DgDϕ eiS[g,ϕ]/ℏ , (2.1.8)

where the path integral sums over all field configurations, including the metric, with the
appropriate initial and final values.

This provides another way to construct the wavefunction of the universe which must
be a solution to the Wheeler-de Witt equation above (2.1.4), and sets the context for the
construction of the no-boundary proposal we now turn to.

2.2 The no-boundary proposal

In the first chapter, we have reviewed the initial condition’s puzzles of the hot big bang
evolution, and showed how inflation could relieve these tensions. However, the inflationary
phase still requires some initial conditions. A possible way out of this never-ending search
for initial conditions, is to postulate that the universe originally started in a compact and
regular geometry, so no initial condition would have to be initially imposed [33]. Such
a no-boundary geometry replaces the big bang singularity, and provides a definite
prescription for the initial condition of the universe. In this sense, it gives a theory
of initial conditions, which also yields different amplitudes for different final boundary
conditions, given a certain model of the early universe3.

In practice, the no-boundary proposal builds on the path integral approach for the
quantization of gravity. It was formulated by Hartle and Hawking [33, 38] as an attempt

3Examples of early universe dynamical models which have been studied in this context are the slow-
roll inflation and the ekpyrotic bouncing model. For both, no-boundary solutions were found as well as
the emergence of late-time classicality, see [34, 35, 36, 37].
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to define a quantum theory of initial conditions for the universe. The original
proposal goes as follow: the quantum state of a spatially closed universe (k = 1) can be
described by a wavefunction calculated using the Euclidean path integral of the Einstein-
Hilbert action (1.1.8). The use of the Euclidean path integral, instead of the Lorentzian
one as in the original Feynman’s path integral [31], intends to make the oscillatory integral
better defined and is equivalent to the latter by a Wick rotation to imaginary time. This
path integral sums over all compact and regular four-geometries whose only boundary is
a final three-geometry. The wavefunction is proven to be a solution of the Wheeler-de
Witt equation [26]:

Ψ[hij] =
∫

M
Dg e−IE[g] , (2.2.1)

where the manifold M, on which the path integral is summing, contains all compact
and regular four-geometries having the Riemannian three-geometry hij as only boundary.
This definition of the wavefunction can then be completed by including matter fields, in
particular scalar fields, which can then lead to an inflationary phase [39, 40].

It is obvious that such compact and regular four-geometries cannot be Lorentzian,
as it would otherwise contradict Penrose’s singularity theorem [41], which states that
Lorentzian manifolds generically possess an initial singularity in their past. The manifold
M therefore consists of complex geometries. In particular, we expect these complex
geometries to start in the Euclidean direction.

Having constructed a formal definition of the no-boundary wavefunction (2.2.1), the
question is now whether we can actually use it to calculate anything. As already empha-
sized, the interest of quantum cosmology is that we can restrict to minisuperspace, and
retain only one or two degrees of freedom for the gravitational sector such as the scale
factor a(t) and the lapse function N(t). The practical implementation of the original no-
boundary proposal hence restricts geometries to an FLRW type of metrics, in spatially
closed space k = 1:

ds2 = N2dτ 2 + a(τ)2dΩ2
3 , (2.2.2)

where τ is the Euclidean time running from 0 to 1 by convention. The Euclidean action
for gravity with a cosmological constant is given by

IE[gµν ] = −1
2

∫
d4x

√
g (R − 2Λ) ∝

∫ 1

0
dτ aN

[
−a′ 2

N2 + a2Λ
3 − 1

]
, (2.2.3)

where the prime denotes a derivative with respect to the Euclidean time τ . The equations
of motion then read: 

− a′ 2 +N2 = Λ
3 a

2N2 ,

2aa′′ + a′ 2 +N2(a2Λ − 1) = 0 .
(2.2.4)

The solutions to these classical equations of motion are the saddle point solutions
of the Euclidean path integral, that are also sometimes called instantons. One typical
instance of such an instanton is depicted in figure 2.1. It consists of a four-dimensional
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Lorentzian time t=-iτ

Euclidean time τ

Figure 2.1: Left: Pictorial representation of an instanton: no-boundary geometry consist-
ing in the gluing of a lower-half four-sphere (Euclidean solution, in red (2.2.5a)) onto the
waist of the hyperboloid of a four-dimensional de Sitter (dS) space (Lorentzian solution,
in green (2.2.5b)). This does not represent an evolution in time but instead one instan-
ton geometry. Only the final upper hypersurface (in blue) is classical and has real field
values. The real time evolution is given by a succession of such geometries, with larger
and larger final hypersurfaces. Right: Contour in the complex time plane associated with
the instanton geometry depicted to the left. We start from a purely Euclidean space at
the South Pole of the instanton, and end in the purely Lorentzian direction on the final
real hypersurface. Fuzzy instantons corresponding to more realistic geometries avoid the
origin of the plot and describe a fully complex geometry as the light orange line suggests.

de Sitter hyperboloid (dS4) glued at its waist onto the equator of a lower-half four-sphere
(S4). The metrics are given by the line elements

ds2
S4 = dτ 2 + sin2(Hτ)

H2 dΩ2
(3) , (2.2.5a)

ds2
dS4 = −dt2 + cosh2(Ht)

H2 dΩ2
(3) , (2.2.5b)

where dΩ2
(3) is the metric on a three-sphere of constant radius 1/H, and the two metrics

are related to each other through the following Wick rotation:

t = −i
(
τ − π

2H

)
. (2.2.6)

Of course, realistic instantons have a completely regular geometry and do not present such
a sharp change of signature from Euclidean to Lorentzian, which would otherwise induce
a discontinuity. These are then fully complex and sometimes called fuzzy instantons [35],
as shown by the light orange line on the right of figure 2.1.

In the semi-classical limit, the path integral is evaluated by summing over all saddle
point solutions, leading to a definite expression for the wavefunction of a closed universe
at the semi-classical level:

Ψ[af, τf] ∼ N
∑

relevant
saddle points

e−I[saddle point]. (2.2.7)

From this wavefunction, one can then extract the probabilities of different histories for
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the universe.
This first original implementation of the no-boundary proposal faced several issues.

The first and most notorious is the conformal mode problem. It appears whenever
one considers the Euclidean action for gravity (2.2.3), because it is not positive definite.
By performing a conformal transformation g̃µν = Ω2(x)gµν , the Ricci scalar transforms as
R̃ = Ω−2R − 6Ω−3□Ω [42], so that the Euclidean action,

I[g̃] = − 1
16πG

∫
d4x

√
det g

(
Ω2R + 6Ω,µΩ,µ

)
, (2.2.8)

can be rendered as negative as desired by choosing a rapidly varying conformal factor Ω(x).
The Euclidean action is then unbounded by below, and this means that the Euclidean
path integral is not uniquely defined by the boundary conditions [42]: we need a precise
prescription on how to integrate on Euclidean metrics.

The second obstacle encountered by the original implementation of the no-boundary
proposal, is that requiring the quantum state to be defined by the sum over compact
geometries (i.e., the scale factor is initially zero) that are also regular (i.e., the scale
factor function and its derivatives must be continuous), appears to be in contradiction
with the Heisenberg uncertainty principle of quantum mechanics. Indeed if one assumes
that the geometries must have a(τ → 0) = 0 and must also satisfy the constraint equation
(2.2.4), then we see that this implies a′2(τ → 0) = −N2. Therefore the quantum state
is defined by a sum over geometries which have both their position and momentum fixed
in τ → 0, challenging the uncertainty principle. The way out of this issue, is to instead
sum only on geometries that are either compact, or regular initially. Of course the saddle
point solutions, which are classical solutions to the equations of motion, will always be
both compact and regular. But this will not be the case for other off-shell geometries over
which the path integral is summing. In practice, we end up with two different choices4

on how to define the no-boundary wavefunction:

• by summing over compact geometries, in the spirit of the original no-boundary
proposal, this is the field space definition; or

• by summing over regular geometries, as in a more recent formulation we will
describe later in this section, this is the momentum space definition.

Finally, the last difficulty with the original implementation of the no-boundary pro-
posal, is that there is no prescription on how the sum over saddle points must be taken.
By considering tensor perturbations on top of the background, the no-boundary wavefunc-
tion with final scale factor af and tensor perturbations amplitude φ in the pure gravity
case with cosmological constant Λ ≡ 3H2, is given in term of a sum over saddle points by

4Actually, in-between choices are also possible, such as Robin boundary conditions, see [43].
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[44, 45]:

Ψ[af, φ] ≈
∑

relevant
saddle
points

exp
[
i

ℏ
S[Nσ(af, φ)]

]
=
∑
S.P.

exp
±

(
4π2

ℏH2 − ℓ(ℓ+ 1)(ℓ+ 2)
6ℏH2 φ2

)
(2.2.9)

± i

(
4π2H

ℏ

√
a2

f −H−2
3

+
√

3ℓ(ℓ+ 2)ā
2ℏH φ2

).
ℓ is the principal quantum number on the 3-sphere, and for tensor perturbations it must
be larger than 2. There are four different saddle points Nσ, related by time reversal and
complex conjugation. Saddle point values of the lapse are found as the solutions to the
equation ∂Son-shell/∂N = 0, where Son-shell is the Einstein-Hilbert action evaluated on the
classical solutions to the equations of motion. At background level for the pure gravity
case, they read:

Nσ = ∓H−2
(
i±

√
H2a2

f − 1
)
. (2.2.10)

Neglecting the perturbations φ, the wavefunction (2.2.9) is weighted by exp[±4π2/(ℏH2)].
If we had also included a scalar field, then we would get the replacement H2 = Λ/3 →
V (ϕf)/3: we get different weightings depending on the final scalar field value, ϕf. We
also find that the phase grows with a3

f for large values of the final scale factor (af ≫
H−1): this means that this wavefunction predicts the emergence of a classical spacetime.
Considering the perturbations, we find that they reproduce the expected Bunch-Davies
vacuum [46] (quantum state which possess no quanta in the asymptotic past on a de
Sitter background), only with the ”+” sign in front of the amplitude part in (2.2.9). This
”+” sign corresponds to the so-called Hartle-Hawking saddle points, which have a negative
imaginary part (”-” sign in front in (2.2.10)), and so the tensor perturbations around these
saddle points follow a Gaußian distribution: those saddle point geometries are stable. On
the contrary, the Vilenkin saddle points [47], with a positive imaginary part of the lapse,
have an inverse Gaußian distribution for their perturbations: the perturbations around
the Vilenkin saddle points blow up, these are unstable geometries. From this calculation,
it appears that in order to construct a stable wavefunction, the relevant saddle points on
which we must sum are the Hartle-Hawking saddle points. This formed the basis of the
Hartle-Hawking proposal constructed from the Euclidean Path Integral (2.2.1). But as
we have seen above, this formulation carries along the problem of the conformal mode
problem.

To evade the various limitations of the original no-boundary implementation, different
approaches have been suggested in the last fifteen years. One [48] for instance uses
holography, by constructing a dual formulation of the no-boundary dS wavefunction
using the Euclidean anti-de Sitter/Conformal Field Theory (AdS/CFT) correspondence
[49, 50]. AdS/CFT is a duality construction between a quantum gravity theory (e.g.,
string theories) defined on the bulk of an AdS spacetime and a quantum field theory
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with conformal symmetry defined on the boundary of that spacetime. In this case one
constructs an AdS geometric representation of the dS saddle points. The no-boundary
amplitude is then computed from the partition function of the dual field theory, forming
a dS/CFT correspondence.

Another approach [51], which we will rely upon in this work, suggests to consider
rather the Lorentzian path integral formulation, and proposes a new tool to enable the
evaluation of oscillating path integrals, namely the Picard-Leschetz theory. Working
in the minisuperspace setting and rescaling the lapse function N conveniently, one can
define a scale factor q whose kinetic term in the Einstein-Hilbert action is canonically
normalized, such that the metric reads (for t the Lorentzian time):

ds2 = −N2(t)
q(t) dt2 + q(t)dΩ2

3 . (2.2.11)

In these new variables, the Einstein-Hilbert action (1.1.8) of a closed space (k = 1) and
its equations of motion transform into:

SE-H = 2π2
∫ 1

0
dt
[

−3q̇2

4N +N(3 − Λq)
]

⇒


q̈ = 2Λ

3 N2 ;

q̇2

4N2 + 1 = Λ
3 q .

(2.2.12)

The classical solution with fixed Dirichlet boundary conditions in t = 0 and in t = 1 then
reads:

q̄(t) = ΛN2

3 t(t− 1) + (q1 − q0)t+ q0 . (2.2.13)

Therefore, the full solution q(t) is given by this classical solution q̄(t), plus some arbitrary
fluctuation Q(t) satisfying the boundary conditions: Q(0) = Q(1) = 0 for the sum over
compact metrics (Dirichlet-Dirichlet boundary conditions). This turns the path integral
over the scale factor into a Gaußian integral that can be evaluated exactly:

Ψ[q0, q1] =
∫ ∞

0
dN exp

[
i

ℏ
SE-H[q̄(t)]

] ∫ Q(1)=1

Q(0)=0
DQ exp

[
−2π2i

ℏ

∫ 1

0
dt3Q̇2

4N

]
(2.2.14)

=
∫ ∞

0
dN

√
3πi
2Nℏ

exp
[
i

ℏ
SE-H[q̄(t)]

]
. (2.2.15)

We are then left with a simple integral on the lapse N , a highly oscillating integral
which does not converge when evaluated on the real axis. To evaluate it and give it
meaning, we must deform the contour of integration into the complex plane. Using
complex analysis, one can show that in the absence of singularities in the way, the contour
of integration can be deformed, by following the steepest ascent path which intersect the
original contour, into the steepest descent path, which interesect the steepest ascent path
at the saddle point. The steepest ascent and descent paths are defined as the paths
along which the amplitude of the integrand, exp(− Im(SE-H[q̄(t)])) grows (respectively
decreases) with the faster rate when starting from the saddle point. The integral is then
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Figure 2.2: Regions of convergence/divergence of the path integral (the integrand tends
to converge (diverge) the bluer (the redder)), steepest ascent and descent paths in red
solid lines, and saddle points as black dots for the no-boundary solutions with Dirichlet
boundary conditions (sum over compact metrics, with q(0) = 0 and q(1) = 10H−2)
on the left, and for Neumann boundary conditions (sum over regular metrics, with
q(1) = 10H−2) on the right. On the left, the real axis can be deformed following the
steepest ascent into the steepest descent lines intersecting it at the saddle points in the
upper half plane. These upper saddle points are unstable and correspond to the Vilenkin
wavefunction. On the right, the sum over regular metrics automatically restricts to the
stable lower saddle points that are then selected by the Picard-Lefschetz theory and yields
to correct Hartle-Hawking result.

made convergent because by definition, the amplitude of the integrand rapidly goes to
zero along the steepest descent path. A visual explanation is also provided in the caption
of Figure 2.2. The result of this integral is given in the semi-classical approximation by the
saddle point ”selected” by this method. Applying this method, it was found in [51, 44]
that the no-boundary proposal defined as a sum over compact geometries selects the
Vilenkin, unstable saddle points (i.e., those on the upper half-plane on the left of figure
2.2). In fact, even by choosing a different initial contour of integrations, the unstable
Vilenkin’s saddle points are linked to the stable Hartle-Hawking ones through steepest
descent contours, so that a contour of integration passing through the stable, lower-
half plane saddle points will necessarily also sum over the unstable upper-half saddle
points. This is the inconsistency of the no-boundary proposal defined as a over compact
metrics. To remedy that, Ref. [52] suggested to sum rather on regular metrics, i.e., metrics
starting with an initial zero momentum flow. This means that the boundary conditions
are Neumann-Dirichlet boundary conditions: q̇(0) = 2Ni , q(1) = q1 , so the classical
solution transforms into

q̄N(t) = ΛN2

3 (t2 − 1) + 2Ni(t− 1) + q1 . (2.2.16)

The scale factor integral over fluctuations also changes (see the Appendix of [53] for an
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explicit calculation) and we find:

ΨN[q1] =
∫ ∞

0
dN exp

[
i

ℏ
SE-H[q̄N(t)]

] ∫ Q(1)=0

Q̇(0)=0
DQ exp

[
−2π2i

ℏ

∫ 1

0
dt3Q̇2

4N

]
(2.2.17)

=
∫ ∞

0
dN

√
3πi
ℏ

exp
[
i

ℏ
SE-H[q̄N(t)]

]
. (2.2.18)

With Neumann-Dirichlet boundary conditions, there are only two saddle points, which
are the Hartle-Hawking saddle points (because we have already fixed the sign in the
initial momentum, q̇(0) = +2Ni). The Picard-Lefschetz theory applied in this case
therefore automatically selects the stable saddle points (see right panel of figure 2.2),
and we recover the Hartle-Hawking wavefunction, which at the background level gives
Ψ ∼ e4π2/(H2ℏ) · phase, and which with tensor perturbations φ and final scale factor af

yields the wavefunction:

ΨN(af, φ) ≈ exp
[

4π2

ℏH2 − ℓ(ℓ+ 1)(ℓ+ 2)
6ℏH2 φ2

]

×
{

exp
[
i

(
4π2

ℏ
H
√
a2

f −H−2
3

+
√

3 ℓ(ℓ+ 2)ā
2ℏH φ2

)]
+ c.c.

}
. (2.2.19)

This Picard-Lefschetz method was also applied for AdS black hole solutions, and it was
found in [53] that Neumann initial boundary conditions are required to recover the thermo-
dynamical results of black holes that can independently be calculated using the AdS/CFT
correspondence.

This concludes our review of the state-of-the-art on the no-boundary proposal prior
to this thesis. The next two chapters will present new results which develop further this
set-up, and in particular the sum over regular metric formulation to which we include a
scalar field minimally coupled to general relativity.
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Part I

Progress in the no-boundary
proposal
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Chapter 3

Higher-order corrections to the
no-boundary proposal

As emphasized in the introductory section on the no-boundary proposal, we consider the
wavefunction of the universe defined as the Lorentzian path integral summing over all
possible matter fields ϕ and geometries gµν with a specific initial condition, either a zero-
size compact geometry, or a zero-momentum flow regular geometry. The wavefunction
calculated on the final hypersurface hij with a final field content ϕ̃ is therefore given by:

Ψ[hij, ϕ̃] ≡
∫ hij ,ϕ̃

DϕDgµν e
i
ℏS , (3.0.1)

where the action S is given by the usual Einstein-Hilbert action of general relativity, sup-
plemented by a cosmological constant Λ and a Gibbons-Hawking-York (GHY) boundary
term1:

S = 1
8πG

∫
d4x

√
−g

[
R

2 − Λ + · · ·
]

+ 1
8πG

∫
hij

d3y
√
hK . (3.0.2)

The ellipsis stands for additional matter fields and higher-order corrections, stemming
from UV-complete theories of gravity, such as string theories. The no-boundary proposal
does not usually consider these corrections, and this is justified by the semi-classical
treatment it is adopting.

The aim of this chapter is specifically to study the effect of these corrections on the exis-
tence of the no-boundary proposal. The fact that no-boundary solutions are robust to the
addition of higher-order corrections is central in proving the validity of the no-boundary
proposal as an early universe model. It implies that the no-boundary wavefunction, ob-
tained in the semi-classical limit of gravity, will also hold for UV-complete theories of
quantum gravity, without radical modifications.

The robustness of no-boundary solutions is actually highly non-trivial, because higher-
1The GHY boundary term must be added to the action in order to obtain a well-defined variational

principle when we consider Dirichlet boundary conditions on a certain hypersurface [54, 55]. See chapter
5 of this thesis, equation (5.1.9) for a detailed definition.

39



General
relativity

Quadratic
gravity
3.3.1

Pure
quadratic
gravity

Coupled
to GR

f(R)
theories

3.2.2

Effective
field

theories
3.3.3

String
theories

Heterotic
3.3.2

Type II
3.3.4 and

3.4.4

Figure 3.1: Theories containing higher-order corrections studied in this chapter.

order corrections typically consists of higher power of the Riemann tensor or even covariant
derivatives thereof 2. In a universe with scale factor a(t), the Riemann tensor contains
terms of the form:

Riemann tensor ∼ 1
a2 ,

ȧ2

a2 ,
ä

a
. (3.0.3)

Therefore, it is not guaranteed that regular solutions will continue to exist when a → 0
in the presence of higher-order corrections. In this chapter we will show that thanks to
the specific symmetry of the FLRW geometry, it is nevertheless the case. A regular no-
boundary solution, modified by the higher-order corrections, continues to exist for a large
class of higher-order theories, including all the known corrections stemming from string
theory.

The plan of this chapter is as follow: in section 3.1 we set up the framework that will
enable us to study the existence of regular no-boundary solutions in theories including
higher-order corrections, by relying on specificities of the FLRW background. We also
prove that restricting to homogeneous and isotropic backgrounds is sufficient for studying
those solutions. In section 3.2, we derive conditions that must be fulfilled by an action
composed of Riemann tensors in order to admit a regular no-boundary solution. We then
study several theories containing higher-order corrections in section 3.3 and find they all
fulfill this condition. Finally, we study the conditions stemming from covariant derivatives
of the Riemann tensors in section 3.4, as these appear in the low energy effective action
of type II string theory. The following four sections follow and present the results first
published in [1].

2Higher-derivative theories have been little studied so far in the no-boundary context. We can cite
for example Hawking and Luttrell [56] and Vilenkin [34] for quadratic gravity, and van Elst et al. for GR
plus a cubic Ricci scalar term [57].
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3.1 No-boundary ansatz

We consider the FLRW closed (k = 1) metric in the presence of a perfect fluid matter.
Conversely to other parts of this thesis that deal with the no-boundary proposal, we use
the usual FLRW metric with scale factor a(t) and lapse function N(t) only depending on
time, such that:

ds2 = −N(t)2dt2 + a(t)2
[
dψ2 + sin2 ψ

(
dθ2 + sin2 θdϕ2

)]
. (3.1.1)

ψ and θ range from 0 to π and ϕ ranges from 0 to 2π. For the fluid, we assume a stress-
energy tensor of the perfect fluid form (1.1.12) and thus obtain again the FLRW equations
of motion (1.1.13): 

ȧ2

N2 + 1 = a2

3 (Λ + 8πGρ) ,

2ä
aN2 + ȧ2

a2N2 + 1
a2 − Λ = −8πGp ,

aρ̇+ 3ȧ(ρ+ p) = 0 .

(3.1.2)

We are looking for a regular solution as a(t) → 0 (we will choose the origin of the time
coordinate such that this coincides with t → 0). The equations (3.1.2) above imply that
this can only be achieved if

ȧ2(t → 0) = −N2 ; ä(t → 0) = 0 ; (ρ+ p)(t → 0) = 0 . (3.1.3)

These conditions (3.1.3) precisely define the no-boundary solution. The condition on ȧ

immediately implies that the metric is Euclidean near t = 0. The condition on the energy
density and pressure implies that near t = 0, the only allowed form of matter must have
the equation of state of a cosmological constant there, e.g., a scalar field that approaches
a constant value at t = 0, i.e., for which ϕ̇(t = 0) = 0. No other form of matter is allowed
near the “big bang” (also sometimes called the South Pole of the instanton), as this would
destroy the regularity of the solution. This means that for our purposes we can ignore
matter contributions and focus only on gravitational terms.

Additionally, we show that we can safely ignore anisotropies and inhomogeneities near
the South Pole, so that the study of a FLRW background is sufficient to proof the existence
of regular no-boundary solutions.

Consider a Bianchi IX metric,

ds2
IX = −N2dt2 + a2

4

[
eβ++

√
3β−(sinψdθ − cosψ sin θdϕ)2 + eβ+−

√
3β−(cosψdθ + sinψ sin θdϕ)2

+ e−2β+(dψ + cos θdϕ)2
]

; (3.1.4)

in (t, ψ, θ, ϕ) coordinates, with θ ∈ [0, π], ϕ ∈ [0, 2π] and ψ ∈ [0, 4π]. The anisotropies are
specified by the functions β±(t). If we neglect matter fields, the constraint and equations
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of motion for the Einstein-Hilbert action are
3ȧ2

a2 − 3
4(β̇2

+ + β̇2
−) − N2

a2 U(β+, β−) −N2Λ = 0 ;

ȧ2

a2N2 + 2ä
aN2 + 3

4N2 (β̇2
+ + β̇2

−) − 1
3a2U(β+, β−) − Λ = 0 ;

(3.1.5)

where the functional U is defined by:

U(β+, β−) = e−4β+ +e2β+−2
√

3β− +e2β++2
√

3β− −2e2β+ −2e−β+−
√

3β− −2e−β++
√

3β− . (3.1.6)

Close to t = 0, the no-boundary ansatz (3.1.3) leads to a regular solution if the conditions:
(β̇2

+ + β̇2
−)(t → 0) = 0 and U(β+, β−)(t → 0) = −3 are satisfied. In this case, the

anisotropies β+ and β− are necessarily going to zero when t → 0. Similar arguments
apply to inhomogeneities.

Therefore, as long as a homogeneous and isotropic solution exists, other solutions
may exist that develop inhomogeneities and anisotropies away from the South Pole, while
approaching the most symmetric solution at the South Pole. This remains true when
considering more involved theories of gravity.

Close to the no-boundary point, it is sufficient to focus on the isotropic and ho-
mogeneous part of the metric, i.e., on the scale factor. To determine the existence of
no-boundary solutions we use a Taylor series ansatz of the form:


a(t) = a1t+ a3

6 t
3 + a4

24t
4 + a5

120t
5 + O(t6) ;

a2
1 = −N2 .

(3.1.7)

We will examine whether such a series solution continues to exist in the presence
of quantum gravity corrections.

We conclude this section by pointing out three important remarks on the no-boundary
solution:

1. The regularity condition ȧ2(0) = −N2 leads to two complex conjugated solutions,
ȧ(0) = a1 = ±iN . These correspond to the Vilenkin [47] and Hartle-Hawking [38]
choices. In this chapter we do not distinguish between the two.

2. On its own, the coefficient a1 = ±iN describes simple flat space. So the function
a(t) = a1 ·t will always be a solution of any action constructed purely from Riemann
tensors. What is unclear and that we will explore in the next sections, is whether
for arbitrary actions composed of Riemann tensors, there exists non-vanishing ai

coefficients for some i > 1, which define a no-boundary solution regular in time.

3. The coefficient a3 is related to the expansion rate of the universe. For general
relativity in the presence of a cosmological constant Λ ≡ 3H2, the no-boundary
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solution in Euclidean time (τ = −iNt) is given by:

a(τ) = 1
H

sin(Hτ) = τ − 1
6H

2τ 3 + · · · , (3.1.8)

so that a2
1 = −N2, independently of H, and a3 ∝ H2: the expansion rate is fixed.

For generic theories that allow solutions with different expansion rates, we expect a3

to remain a free parameter, labeling the different solutions. Solutions with different
expansion rates will yield different actions, i.e., different probabilities.

3.2 Robustness to the addition of Riemann terms

We start by investigating the impact of adding terms of higher order in the Riemann
tensor, without including covariant derivatives. As explained in the previous section, we
can reduce our investigation to that of the scale factor in a closed FLRW universe, with
metric (3.1.1). In this spacetime, the only non-vanishing components of the Riemann
tensor Rµν

ρσ are of the form Rab
ab and Rab

ba with a, b = 0, . . . , 3, a ̸= b and no summation
on a and b implied. In the FLRW background, all scalar contractions composed of n
Riemann tensors Rµνρσ and 2n inverse metrics gµν can therefore be written as contractions
of n Rab

ab or Rab
ba (where n can be any integer). Moreover, these 24 non-zero components

have simple expressions in terms of the lapse and scale-factor functions: ∀ i, j = 1, 2, 3
with i ̸= j and no summation on the indices implied,

Rij
ij = ȧ2 +N2

a2N2 ≡ A1 and R0i
0i = äN − ȧṄ

aN3 ≡ A2 . (3.2.1)

We define a Riemann term to be any scalar combination of Riemann tensors and metric
factors. Because of (3.2.1), any Riemann term can be written as a polynomial in A1 and
A2 on a closed FLRW background. Basic examples are:

• the Ricci scalar: R = 6(A1 + A2),

• the Ricci tensor squared: RµνRµν = 12(A2
1 + A1A2 + A2

2),

• the Riemann tensor squared: RµνρσRµνρσ = 12(A2
1 + A2

2).

3.2.1 General action and constraint

Since all Riemann terms are polynomials in A1 and A2, the most general action containing
only such terms is

S =
∫

d4x
√

−g · f
(
Rµνρσ, g

αβ
)

= 2π2
∫

dt a3N
∑

p1,p2∈N2

cp1,p2A
p1
1 A

p2
2 , (3.2.2)

where cp1,p2 is a constant depending on the precise form of the function f for each couple
{p1, p2}.
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We can slightly manipulate this action to ease the calculation of the equations of
motions later on. The lapse N is a non-dynamical variable whose equation of motion is
a constraint on the system. Therefore, since we work in a gauge where N is constant,
any term containing more than one power of Ṅ will drop from the equations of motion.
Decomposing Ap2

2 with the Newton formula,

Ap2
2 =

(
ä

aN2 − ȧṄ

aN3

)p2

=
p2∑

l=0

(
p2

l

)(
− ȧṄ

aN3

)l (
ä

aN2

)p2−l

, (3.2.3)

we see that only the terms l = 0 and l = 1 will survive, so we can replace:
(
äN − ȧṄ

aN3

)p2

→
(

ä

aN2

)p2−1 ( ä

aN2 − p2
ȧṄ

aN3

)
. (3.2.4)

We also rewrite
Ap1

1 =
(
ȧ2 +N2

a2N2

)p1

= 1
a2p1

p1∑
j=0

(
p1

j

)
ȧ2j

N2j
. (3.2.5)

The action (3.2.2) then reduces to

S = 2π2 ∑
p1,p2∈N2

cp1,p2

p1∑
j=0

(
p1

j

)∫
dt
[

1
N2p2−1+2j

ȧ2j äp2

a2p1+p2−3 − p2
Ṅ

N2p2+2j

ȧ2j+1äp2−1

a2p1+p2−3

]
.

(3.2.6)
We then calculate the constraint equation by varying this action (3.2.6) with respect to
N . Using

Ṅ

N2p2+2j
= d

dt

(
− 1

2p2 + 2j − 1 · 1
N2p2+2j−1

)
, (3.2.7)

we rewrite (3.2.6) as

S = 2π2 ∑
p1,p2

cp1,p2

p1∑
j=0

(
p1

j

)∫ dt
N2p2+2j−1

[
ȧ2j äp2

a2p1+p2−3 − p2

2p2 + 2j − 1

{
(2j + 1) ȧ2j äp2

a2p1+p2−3

+ (p2 − 1) ȧ
2j+1äp2−2 ...

a

a2p1+p2−3 − (2p1 + p2 − 3) ȧ
2j+2äp2−1

a2p1+p2−2

}]
(3.2.8)

≡ 2π2 ∑
p1,p2

cp1,p2

p1∑
j=0

(
p1

j

)∫ dt
N2p2+2j−1 · Lp1,p2,j(a, ȧ, ä,

...
a ) . (3.2.9)

Varying with respect to the lapse then yields

δNS = 2π2 ∑
p1,p2

cp1,p2

p1∑
j=0

(
p1

j

)∫
dt
(

−(2p2 + 2j − 1)δN
N2p2+2k

)
· Lp1,p2,j ; (3.2.10)

from which we read the constraint equation:

0 = δS

δN
= −2π2 ∑

p1,p2

cp1,p2

p1∑
j=0

(
p1

j

)
2p2 + 2j − 1
N2p2+2j

· Lp1,p2,j ; (3.2.11)
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⇔ 0 = δS

δN
= −2π2 ∑

p1,p2

cp1,p2

N2p2

äp2−1

a2p1+p2−2

p1∑
j=0

(
p1

j

)
ȧ2j

N2j

[
(2j − 1)(1 − p2)aä (3.2.12)

− p2(p2 − 1)aȧa
(3)

ä
+ p2(2p1 + p2 − 3)ȧ2

]
.

Using Newton’s binomial formula, we can resum:


p1∑
j=0

(
p1

j

)
ȧ2j

N2j
=
(
ȧ2

N2 + 1
)p1

= a2p1Ap1
1 ;

p1∑
j=0

(
p1

j

)
j
ȧ2j

N2j
= p1

ȧ2

N2

(
ȧ2

N2 + 1
)p1−1

= p1
ȧ2

a2N2a
2p1Ap1

1 ;
(3.2.13)

so the constraint equation (3.2.12) finally reduces to:

0 = δS

δN
= 2π2 ∑

p1,p2

cp1,p2

[
2p1(p2 − 1)aȧ

2

N2 A
p2
2 A

p1−1
1 + (1 − p2)a3Ap2

2 A
p1
1

+ p2(p2 − 1)aȧa
(3)

N4 Ap2−2
2 Ap1

1 − p2(2p1 + p2 − 3)aȧ
2

N2 A
p2−1
2 Ap1

1

]
.

(3.2.14)

Since the equation of motion for the scale factor, obtained by varying the action with
respect to a, is implied by the constraint equation (i.e., it can be obtained by deriving the
constraint with respect to time), it is sufficient to restrict our analysis to the constraint
equation (3.2.14).

3.2.2 Order by order equations with the no-boundary ansatz

We now insert the no-boundary ansatz into the Friedmann constraint equation (3.2.14)
for the general action (3.2.6). We will then analyze the resulting equations order by
order in t. This will provide conditions the action must obey in order to admit a regular
no-boundary solution.

First, note that the constraint equation (3.2.14) (hence also the equation of motion),
and the no-boundary conditions (3.1.3), are all invariant under the time reversal trans-
formation 

t → −t,

a → −a,
⇒ a(−t) = −a(t) ; (3.2.15)

so the function a must be odd in t. Thus all coefficients of even powers of t in the Taylor
expansion are zero, and the no-boundary ansatz (3.1.7) can be simplified into


a(t) = a1t+ a3

6 t
3 + a5

120t
5 + O(t7) ;

a2
1 = −N2 .

(3.2.16)

The fact that a is an odd function of t implies that for any solution a(t), there will always
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exist a time-reversed solution, but both will have the same signature as the metric only
depends on a(t)2. For this second solution, the proper time runs in the opposite coordinate
time direction t. Since there is also always a complex conjugate solution for each solution
(see 1), this makes for four solutions in total.

We start by plugging (3.2.16) into the expressions for A1 and A2, obtaining the ex-
pansions


A1 = ȧ2(t) +N2

a2(t)N2 = −a3

a3
1

+

(
a2

3 − a1a5
)

12a4
1

t2 +

(
a3a5 − a1a7

)
360a4

1
t4 + O(t6) ;

A2 = ä(t)
a(t)N2 = −a3

a3
1

+

(
a2

3 − a1a5
)

6a4
1

t2 −

(
10a3

3 − 13a1a3a5 + 3a2
1a7
)

360a5
1

t4 + O(t6) .

(3.2.17)
The fact that these expansions start at order t0 is non-trivial since A1 and A2 both contain
powers of a(t) in their denominators, so they could in principle have been singular as t → 0.
This is precisely what the no-boundary solution prevents. Moreover, the combination
A2 − A1 only starts at order t2.

Then we plug the no-boundary ansatz (3.2.16) into the Friedmann constraint equation
(3.2.14) (see appendix A.1). Interestingly, even though we allow terms of arbitrary order
in the Riemann tensor, all coefficients of negative powers of t vanish automatically
and the first non-trivial condition arises at order t. From the two lowest non-trivial
orders (t and t3) we obtain two conditions on the coefficients cp1,p2 :

Order t :
∑

p1,p2

cp1,p2

N2P
a4−P

1 aP −1
3

(
p2 − p1

)
= 0 ; (3.2.18)

Order t3 :
∑

p1,p2

cp1,p2

N2P
a3−P

1 aP −2
3

(
a2

3 ·G3[p1, p2] + a1a5 ·G5[p1, p2]
)

= 0 ; (3.2.19)

where P ≡ p1 + p2 and

G3[p1, p2] = 1
6
(
p2

1 − 15p1 + 6 − 4p2
2 + 12p2

)
; G5[p1, p2] = p1(1 − p1)

6 − 2p2(1 − p2)
3 .

(3.2.20)

A sufficient condition for satisfying (3.2.18) is to require:

∀{p1, p2} ∈ N2 , cp1,p2 = cp2,p1 . (3.2.21)

It turns out that this special case covers most known examples:

• any term of the form Rn, ∀n ∈ N, satisfies (3.2.21) since R = 6(A1 + A2). In
particular this implies that f(R) theory, and hence gravity plus a scalar field, will
admit a regular no-boundary solution.

• quadratic terms and all their powers satisfy (3.2.21) since RµνρσR
µνρσ = 6 (A2

1 + A2
2)

and RµνR
µν = 12 (A2

1 + A1A2 + A2
2). In particular, quadratic gravity possesses a
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no-boundary solution.

Next we consider the condition (3.2.19). Provided the expression factoring a5 is not
zero, this condition determines the value of a5 in terms of a1 and a3:

a5 ·
∑

p1,p2

cp1,p2

N2P
a3−P

1 aP −2
3 G5[p1, p2] = −a2

3
a1

·
∑

p1,p2

cp1,p2

N2P
a3−P

1 aP −2
3 G3[p1, p2] . (3.2.22)

When we are in the special case where (3.2.21) is satisfied, we can simplify (3.2.22) by
symmetrizing the expressions G3 and G5 in the exchange of p1 and p2, and we find

a5 = −a2
3
a1

·

∑
p1,p2

cp1,p2
N2P a

3−P
1 aP −2

3

[
4 − p1(p1 + 1) − p2(p2 + 1)

]
∑

p1,p2
cp1,p2
N2P a

3−P
1 aP −2

3

[
p1(p1 − 1) + p2(p2 − 1)

] . (3.2.23)

At higher orders in t the additionally appearing coefficients a7, a9, . . . are fixed in terms
of the lower ones. Thus all theories of this form admit no-boundary solutions as a → 0,
with a3 remaining a free parameter effectively corresponding to solutions with different
expansion rates.

The single exception to this statement is the case where the left-hand side of (3.2.22)
vanishes, in which case a3 is fixed in terms of a1. This corresponds to ordinary gen-
eral relativity in the presence of a cosmological constant. Expanding the Friedmann
constraint (first line of (3.1.2)) in this case, we find

a3 = −a3
1Λ
3 ; a5 = −5a2

3
a1

− 2a2
1a3Λ = a5

1Λ2

9 ; etc. (3.2.24)

For this theory the no-boundary solution corresponds to complexified de Sitter space with
a fixed expansion rate determined by the cosmological constant.

In this section, we derived general conditions that the action must satisfy in order to
possess a no-boundary solution. In the next section we will study specific examples of
theories with higher-order corrections, and see that they fulfill those conditions.

Before that, we illustrate the non-triviality of the no-boundary regularity condition,
by studying what goes wrong if the condition (3.2.18) is not satisfied. Even though these
do not have a covariant expression, we consider the actions:

∫
dt a3NA1 ; or

∫
dt a3NA1A

2
2 ; etc, (3.2.25)

which violate the order t condition (3.2.18). The constraint equation for the action∫
dta3NA1 gives

(a2
1 −N2)t+ a1a3t

3 + O(t5) = 0 ; (3.2.26)

so even in the presence of matter (only appearing at order t3), this would imply a1 = ±N,
corresponding to Minkowski spacetime rather than Euclidean space near a = 0. This
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is inconsistent with the no-boundary ansatz, and stresses that it is not enough for an
approximately flat solution to exist near a = 0, it must also be Euclidean. Even that is
not enough, as the next example shows: considering the action

∫
dt a3NA1A

2
2 for instance,

its constraint equation reads

2a1a
2
3

N6 t+
(4a1a3a5

3N6 − 2a3
1Λ
)
t3 + O(t5) = 0 ; (3.2.27)

where we have included a cosmological constant Λ and assumed the no-boundary relation
a2

1 = −N2. The order t sets a3 = 0, but then at the next order the constraint equation
cannot be satisfied. Hence this action does not admit a no-boundary solution.

We now will apply these conditions to explicit examples of actions containing higher-
order corrections, from quadratic gravity to string-theory corrections.

3.3 Application of the constraint to higher-order cor-
rection examples

3.3.1 Quadratic gravity

The most straightforward extension of Einstein gravity is quadratic gravity, analyzed
in the no-boundary context in [56, 34]. Quadratic gravity is a renormalizable theory of
gravity [58], but it suffers from the presence of a ghost, whose interpretation has been very
much studied, but isn’t yet fully understood [59, 60]. Besides, quadratic theory forms the
building block of the inflationary model preferred by experimental data [61].

We first consider pure quadratic gravity, where the action only contains R2 terms.
This theory is scale invariant and its action reads

Spure quad =
∫

d4x
√

−g
(
αR2 + βRµνR

µν + γRµνρσR
µνρσ

)
. (3.3.1)

On closed FLRW background, we recall that

R2 = 36 (A1 + A2)2 ; RµνR
µν = 12

(
A2

1 + A1A2 + A2
2

)
and RµνρσR

µνρσ = 12
(
A2

1 + A2
2

)
.

In four dimensions, the Gauß-Bonnet term
∫

d4x
√

−g G is a topological invariant and
does not contribute to the dynamics. On this background it reads

G ≡ RαβγδRαβγδ − 4RαβRαβ +R2 = 24A1A2 ; (3.3.2)

and the associated constraint equation obtained by inserting {p1 = 1, p2 = 1} in (3.2.14) is
automatically null. To study the dynamics the action can therefore effectively be reduced
to

Sreduced
pure quad = 2π2

∫
dt a3N ϵ(A2

1 + A2
2) ; with ϵ = 36α + 12β + 12γ . (3.3.3)
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At first order in t, the constraint equation is automatically satisfied because the action
(3.3.3) is symmetric in A1 and A2, and therefore satisfies the condition (3.2.21). At the
next order, the constraint equation yields

(a1a
2
3 − a2

1a5)
N4 · t3 + O

(
t5
)

= 0 ⇒ a5 = a2
3/a1. (3.3.4)

The coefficient a3 is left undetermined, as expected from the scale invariance of the theory.
Next we consider quadratic gravity coupled to ordinary GR,

Squad =
∫

d4x
√

−g
(

R

16πG − Λ
8πG + ω

3σR
2 − 1

2σC
2 + ϵG

)
, (3.3.5)

where we wrote the action in terms of the Weyl tensor C, which vanishes for a FLRW
metric:

CµνρσC
µνρσ =RµνρσR

µνρσ − 2RµνR
µν + 1

3R
2 = 0 ;

and the topological Gauß-Bonnet combination G. Then the relevant part of the quadratic
action for computing the dynamics on a FLRW background is

Sreduced
quad = 2π2

∫
dta3N

[ 1
8πG (3A1 + 3A2 − Λ) + 12ω

σ
(A2

1 + A2
2)
]
. (3.3.6)

The constraint equation for this action is
(
αa3

1Λ + a2
3β

a3
1

− a5β

a2
1

+ 3αa3

)
· t3 + O

(
t5
)

= 0 ; (3.3.7)

where α = 1
8πG and β = 12ω

σ
. The no-boundary solution is

a5 = a2
3
a1

+ α

β

(
a5

1Λ + 3a2
1a3
)

; (3.3.8)

valid when α ∼ β or α ≪ β. a3 is again left undetermined.
When α ≫ β, the solution is instead

a3 =
−3a3

1 ±
√

9a6
1 − 4β

α
a6

1Λ + 4β2

α2a1a5

2β/α
α≫β−−−→


− a3

1Λ
3 + O

(
β/α

)
;

− 3a3
1
α

β
+ a3

1Λ
3 + O

(
β/α

)
.

(3.3.9)

The first branch corresponds to the Einstein-Hilbert solution, while the second branch
is not physical as it gives a solution with curvature a3 bigger than the Planck scale (α),
and a non smooth limit β → 0. The second branch arises due to the presence of higher
derivatives in the action, and is associated with the new scalar degree of freedom.
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3.3.2 Heterotic string theory

The low-energy effective theory of heterotic string theory is the Einstein – Maxwell
– axion – dilaton gravity, that contains a dilaton field ϕ, gauge fields F (Maxwell) and a
3-form H (the axion), see e.g., [62, 63]. At first order in the squared string length α′ ∼ ℓ2

s ,
an S-matrix calculation in heterotic string theory leads to the effective Einstein frame
action [63]:

Sheterotic = 1
2κ2

D

∫
dDx

√
−g
(
R− 1

2(∂ϕ)2+α′

8 e
−ϕ/2

(
G+ 3

16(∂ϕ)4
)

−V (ϕ)+· · ·
)

; (3.3.10)

where the compactification leads to a potential V (ϕ) for the dilaton (in general we should
expect additional terms). As discussed in section 3.1, the axion H and the gauge fields
F are consistently set to zero. Additional scalar fields arising from the compactification
will behave analogously to the dilaton, so we use the dilaton as a stand-in for all scalar
fields. In the gravitational sector, the first correction in α′ is given by the Gauß-Bonnet
combination. It is not a topological term this time because it is multiplied by the dilaton
e−ϕ/2, so we must include its effects. The constraint reads

δ

δN

(
Lheterotic

)
= δ

δN

(
6a3N(A1 + A2)

)
− a3

[
ϕ̇2

2 − α′

128e
−ϕ/2ϕ̇4 + V (ϕ)

]
+ 3α′e−ϕ/2 δ

δN

(
a3NA1A2

)
− 3α′

2 ϕ̇ e−ϕ/2 ȧa
2

N2 A1 = 0 , (3.3.11)

where the second line follows from

δ

δN

(
a3N A(N, Ṅ, t)B(t)

)
= B

δ
(
a3NA

)
δN

− Ḃ
∂
(
a3NA

)
∂Ṅ

for A ≡ G and B ≡ e−ϕ/2 .

(3.3.12)
Equation (3.3.11) is odd under the transformation t → −t, a → −a and ϕ → ϕ. The equa-
tion of motion for the scalar ϕ on the closed FLRW background and for a homogeneous
field ϕ(t) is:

∇2ϕ− α′

16e
−ϕ/2

(
G + 3(∇µϕ)(∇νϕ)(∇µ∇νϕ) + 3

2∇2ϕ(∂ϕ)2 − 9
16
(
∂ϕ
)4
)

− V,ϕ = 0 ,

⇔ ϕ̈− 3α′

16 e
−ϕ/2

(
8A1A2 + 3

2 ϕ̇
2ϕ̈− 3

16 ϕ̇
4
)

− V,ϕ = 0 . (3.3.13)

This equation is even under the time reversal t → −t, a → −a and ϕ → ϕ.
Do these equations ((3.3.11) and (3.3.13)) possess a no-boundary solution around

t = 0? From the transformation rules of these equations under time reversal, a solution
must have a(t) odd and ϕ(t) even with respect to time:


a = a1t+ a3

6 t
3 + a5

120t
5 + . . .

ϕ(t) = ϕ0 + ϕ2

2 t
2 + ϕ4

24t
4 + . . .

(3.3.14)
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This implies that ϕ must be constant at first order in time close to the South Pole in
t → 0. When plugging (3.3.14) in the constraint equation (3.3.11) and expanding in
orders of t, the leading order reads

−3a1e
−ϕ0/2α′

2N4 (a2
1 +N2)ϕ2t+ O(t3) = 0 ; (3.3.15)

solved by the usual no-boundary solution a2
1 = −N2. The ϕ equation (3.3.13) at leading

order yields
ϕ2 − 3a2

3
2a6

1
α′e−ϕ0/2 − V,ϕ(ϕ0) + O(t2) = 0 . (3.3.16)

This equation fixes ϕ2 as a function of ϕ0, a1 and a3. Implementing this solution for ϕ2,
the next order of the constraint equation gives us a cubic equation for a3 in terms of a1

and ϕ0:[
− 9a3

3
4a8

1
α′ 2e−ϕ0 + 6a3

(
1 − e−ϕ0/2α

′V,ϕ(ϕ0)
4a2

1

)
− a3

1V (ϕ0)
]
t3 + O(t5) = 0 . (3.3.17)

We conclude that the heterotic string action (3.3.10) possesses a family of no-boundary
solutions, labeled by ϕ0, the dilaton value at the South Pole.

3.3.3 General relativity as an Effective Field Theory

We just saw that the leading correction stemming from the heterotic string is a com-
bination of quadratic terms in the Riemann tensor. More generally, when considering
an effective field theory treatment of general relativity, we expect new couplings
between matter fields and gravitational terms, in addition to the pure gravitational sector
[64]. In our case we are particularly interested in couplings between scalar fields and
gravity. We cannot treat them exhaustively, but we consider the first non-trivial cou-
plings, and find no obstruction to the existence of no-boundary solutions. Specifically, we
consider the effective theory of gravity and a scalar field up to fourth order in derivatives,

Seff =
∫

d4x
√

−g
[ 1
16πG(R − 2Λ) + 1

2g
µν∂µϕ∂νϕ− V (ϕ) + c1R

2 + c2RµνR
µν

+ (d1R
µν + d2Rg

µν)∂µϕ∂νϕ+ d3RV (ϕ) + · · ·
]
, (3.3.18)

for arbitrary coefficients c1, c2, d1, d2, d3. Again on closed FLRW background with a ho-
mogeneous scalar field and up to total derivatives, this action reduces to

Seff = 2π2
∫

dt a3N

[
1

8πG
(
3A1 + 3A2 − Λ

)
− ϕ̇2

2N2 − V (ϕ) + 12(3c1 + c2)(A2
1 + A2

2)

−
(
3d1A2 + 6d2(A1 + A2)

) ϕ̇2

2N2 + 6d3(A1 + A2)V (ϕ)
]
. (3.3.19)
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The full equations of motion for ϕ and N are:

a3

N

[
ϕ̈+ 3Hϕ̇−N2V,ϕ + 6d1

(
A2(ϕ̈+ 2Hϕ̇) + a(3)

aN2 ϕ̇
)

+ 6d3(A1 + A2)N2V,ϕ

+ 12d2

(
ϕ̈(A1 + A2) +Hϕ̇(A1 + 4A2) + a(3)

aN2 ϕ̇
)]

= 0 (equation for ϕ) ; (3.3.20)

a3
[

3A1 − Λ
8πG + ϕ̇2

2N2 − V (ϕ) − 12(3c1 + c2)
( 2ȧ2

a2N2A1 − 2ȧa(3)

a2N4 +
( ä

aN2 − ȧ2

a2N2

)2
)

+ 6d1

(
ϕ̇2

N2

( ä

aN2 − ȧ2

a2N2

)
− ȧ

aN

ϕ̇ϕ̈

N3

)
+ 6d2

(
ϕ̇2

N2A1 + 2ä
aN2

ȧ2

N2 − 2ȧ
aN

ϕ̇ϕ̈

N3

)
+ 6d3

(
A1V (ϕ) + ȧ

aN

ϕ̇

N
V,ϕ

)]
= 0 (equation for N) . (3.3.21)

These equations are also odd under the time reversal t → −t, a → −a and ϕ → ϕ, so the
ansatz (3.3.14) is appropriate. The equations of motion (3.3.20) and (3.3.21) then reduce
to:

6a1

N3

(
a2

1 +N2
) (

4d2ϕ2 + d3N
2V,ϕ(ϕ0)

)
· t+ O

(
t3
)

= 0 , (3.3.22)

− 12
a1N4 · (3c1 + c2)

(
3a4

1 + 2a2
1N

2 −N4
)

· 1
t

+ (a2
1 +N2)
a2

1N
4

(
3a3

1N
2

8πG − 18a2
1a3(3c1 + c2)

− 2a3(3c1 + c2)N2 + 6a3
1d3N

2V (ϕ0)
)

· t+ O
(
t3
)

= 0 , (3.3.23)

consistent with a2
1 = −N2. Higher orders in t fix higher coefficients a3, a5, ϕ2, . . . in terms

of ϕ0 and a1. For instance the next order of the ϕ equation gives

t3

N
·
(

4ϕ2(a3
1 − 6a3(d1 + 4d2)) + a2

1(a3
1 + 12a3d3)V,ϕ(ϕ0)

)
+ O(t5) = 0 , (3.3.24)

fixing the value of ϕ2. This proves that even with higher derivative couplings, the scalar
field does not diverge near the South Pole, but approaches a constant, just as for minimal
coupling. Even if we cannot explicitly check all possible higher derivative couplings, we
can assume that they will not yield any divergences, and focus on the gravitational sector
only.

As a side remark, an effective treatment of general relativity leads to the appearance
of non-local terms such as:

∫ √
−gR 1

□
R [64]. Those can have interesting implications in

cosmology, see for example [65, 66, 67]. Expanding such terms around a specific back-
ground, we obtain an infinite series of terms containing more and more derivatives. In
the section 3.4 below, we consider specific correction terms containing derivatives, but we
are technically limited to a small, finite number of derivatives, so the study of non-local
terms goes beyond the reach of our analysis.
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3.3.4 Type II string theory in D=10 spacetime dimensions

The low-energy effective action, obtained by looking at quantum corrected amplitudes
for four-graviton scattering in type II string theory in D = 10 dimensions order by
order in α′, reads [68, 69]:

S =
∫

dDx
√

−G
(
R + (α′)3E (D)

(0,0)R
4 + (α′)5E (D)

(1,0)∇
4R4 + (α′)6E (D)

(0,1)∇
6R4 + . . .

)
;

(3.3.25)
where G is the determinant of the D-dimensional metric, and E (D)

(p,q) are coefficient functions
stemming from the compactification. In this subsection we focus on the α′3 type II
correction to Einstein gravity within (3.3.25). It is given by the R4 term which is a
special combination of four Riemann tensors defined as:

R4 = tijklmnpq
8 tabcdefgh

8 RijabRklcdRmnefRpqgh . (3.3.26)

The eight-rank special tensor t8 is given by (see chapter 9, appendix A of [70]):

tijklmnpq = −1
2ϵ

ijklmnpq

−1
2

[ (
δikδjl − δilδjk

)
(δmpδnq − δmqδnp) +

(
δkmδln − δknδlm

) (
δpiδqj − δpjδqi

)
+
(
δimδjn − δinδjm

) (
δkpδlq − δkqδlp

) ]
+1

2

[
δjkδlmδnpδqi + δjmδnkδlpδqi + δjmδnpδqkδli + 45 more terms obtained

by anti-symmetrizing on the pairs ij, kl, mn and pq
]
. (3.3.27)

The quantity R4 is therefore a Riemann term, so we can determine if it will admit a
no-boundary solution by simply looking at its structure in terms of A1 and A2 and see
if it meets the condition (3.2.18). We compute3 the explicit structure of R4 in terms of
Riemann tensors:

R4 = 12(RabcdR
abcd)2 + 6RabcdR ij

ab (4R kl
ij Rcdkl −R kl

ic Rjdkl) − 12RabijRcdklR
abciRdjkl

+ 3
2RabijR

acidRjl
ckR

bk
dl + 3

4RabijR
acidRckdlR

bkjl

+ϵijklmnpqR ab
ij

[
2RklefR

ef
mn Rpqab − 1

2R
ef

kl RmnaeRpqbf − 1
2RklaeR

fe
mn Rpqbf

+2R ef
kl RmnabRpqef − 1

2RklaeRmnbfR
ef

pq + 2RklabR
ef

mn Rpqef

]
+1

4ϵ
ijklmnpqϵefghabcdRijabRklcdRefmnRghpq. (3.3.28)

All the above expressions are originally valid only in 10 dimensions (an analogous struc-
ture is also expected in 11-dimensional supergravity, since the low-energy type II theories
are related to 11-dimensional supergravity via circle compactifications [72]). The com-

3For this calculation we acknowledge the use of the xAct package of Mathematica [71].
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pactification to four dimensions produces new fields (and different associated terms), when
indices point in the internal dimensions. These new gauge and scalar fields depend on
the details of the compactification, but as discussed in section 3.1, we expect gauge fields
to be zero and scalar fields to be constant at the no-boundary point. Therefore, we can
restrict to the part of (3.3.28) for which all indices point in the (four) external spacetime
dimensions. In that case, all the terms containing an eight-rank tensor ϵ are set to zero,
and we are left with:

R4
∣∣∣
4d truncated

= 12(R ρσ
µν Rµν

ρσ)2 + 6Rµν
ρσR

ξη
µν (4R κλ

ξη Rρσ
κλ −R ρκ

ξ λR
σ λ

η κ )

− 12R ξη
µν Rρσ

κλR
µν

ρξR
κλ

ση + 3
2R

µν
ξηR

ξσ
µρ Rη ρ

λ κR
κ λ

ν σ

+ 3
4R

ξη
µν Rµρ

ξσR
σλ

ρκ Rνκ
ηλ ; (3.3.29)

where µ, ν, ρ, σ, ξ, η, κ, λ are spacetime indices running from 0 to 3. All the terms in
expression (3.3.29) can be rewritten in terms of A1 and A2 through two quantities that
we denote R1 and R2:

12(R ρσ
µν Rµν

ρσ)2 = 123
(
A4

1 + 2A2
1A

2
2 + A4

2

)
≡ 12R1 ; (3.3.30)

24Rµν
ρσR

ξη
µν R κλ

ξη Rρσ
κλ = 8 · 122

(
A4

1 + A4
2

)
≡ 24R2 ; (3.3.31)

−6Rµν
ρσR

ξη
µν R ρκ

ξ λR
σ λ

η κ = −122(A4
1 + A4

2) = −3R2 ; (3.3.32)

−12R ξη
µν Rρσ

κλR
µν

ρξR
κλ

ση = −122 · 4
(
A4

1 + A2
1A

2
1 + A4

2

)
= −2R1 − 6R2 ; (3.3.33)

3
2R

µν
ξηR

ξσ
µρ Rη ρ

λ κR
κ λ

ν σ = 9
(
3A4

1 + 2A2
1A

2
2 + 3A4

2

)
= 1

16R1 + 3
8R2 ; (3.3.34)

3
4R

ξη
µν Rµρ

ξσR
σλ

ρκ Rνκ
ηλ = 18

(
A4

1 + 2A2
1A

2
2 + A4

2

)
= 1

8R1 . (3.3.35)

The truncated R4 term in four-dimensions (3.3.29) then reads

R4
∣∣∣
4d truncated

=163
16 R1 + 123

8 R2 = 1467(A2
1 + A2

2)2 + 738(A4
1 + A4

2) . (3.3.36)

Because the quantities R1 and R2 are both symmetric under the exchange of A1 and A2,
they satisfy the condition (3.2.21), so the R4 term satisfies the leading order condition
(3.2.18) and admits a no-boundary solution.

It can be surprising that this complicated scalar combination of four Riemann tensors
possess such a simple expression in terms of A1 and A2, that is moreover symmetric in
the exchange of A1 and A2. To prove that this is however not a general property of any
scalar combination of Riemann tensors, we consider the terms:

R ρσ
µν Rµξ

ρσR
νλ

ξκ Rακ
αλ = 48A4

1 + 36A4
2 + 48A1A

3
2 + 24A3

1A2 + 60A2
1A

2
2 ; (3.3.37)

and

Rµν
ξηR

ξσ
µρ Rρκ

νλR
ηλ

σκ = 12(A4
1 + A2

1A
2
2 + A4

2) + 12A1(A3
1 + A1A

2
2 + 2A3

2) . (3.3.38)
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These are both not symmetric under the exchange of A1 and A2. Still, they satisfy the
leading order condition (3.2.18), and therefore admit a no-boundary solution.

In conclusion, known Riemann terms stemming from string theory have a structure
allowing for the existence of no-boundary solutions. All covariant Riemann terms that we
have studied actually allow for no-boundary solutions, and it would be very interesting if
one could prove a general result in this line.

The next orders in α′ of the type II string theory (3.3.25) are not Riemann terms
anymore: they involve covariant derivatives acting on Riemann tensors. We cannot treat
covariant derivative terms as systematically as we treated Riemann terms, because they
depend on higher and higher time derivatives of the scale factor a. Instead, we study
them on a case by case basis, starting with the easiest expressions and ending with the
first string theory covariant derivative term, written schematically as ∇4R4 in (3.3.25).

3.4 Addition of covariant derivatives

When we start considering covariant derivatives as well, it is even less trivial that their
contributions to the constraint equation still admit consistent and regular solutions. Rie-
mann terms are linear combinations of A1 and A2, and these quantities only start at
order t0. Acting on them with time derivatives cannot lead to negative powers of t, that
could bring singularities. But the covariant derivative is also composed of the Christoffel’s
symbol part: ∇· ∼ ∂ · + Γ·. For the FLRW closed metric, the time dependence of non
zero Christoffel’s symbols is:

gkiΓ0
ij ∼ ȧ

aN2 ; Γi
j0 ∼ ȧ

a
and Γi

jk ∼ 1 . (3.4.1)

The quantity ȧ/a ∼ t−1 is singular, so covariant derivatives could introduce singularities
into the constraint equation. Therefore we need to check term by term the existence of
regular solutions in the presence of the specific covariant derivative terms we are interested
in.

Consider again the time reversal transformation: t → −t, a → −a. On the closed
FLRW background, for a generic action:

S =
∫

dt a3N L , (3.4.2)

the constraint equation reads

δ

δN

(
a3NL

)
≡
∂
(
a3NL

)
∂N

− d
dt

[
∂
(
a3NL

)
∂Ṅ

]
+ . . . = 0 . (3.4.3)

This constraint equation is odd under time reversal only if L is even under it. Because
the terms A1 and A2 are even under time reversal, so are all Riemann terms. Since
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the FLRW metric doesn’t contain any mixed term g0i, time derivatives always come in
pairs. The Christoffel’s symbols (3.4.1) with one zero index are odd under time reversal
and they also always come in pairs or together with one time derivative. Therefore
all covariant derivatives of Riemann terms are even under the time reversal, and their
constraint equation is odd. We can thus once more use the reduced no-boundary ansatz
(3.2.16) instead of the full ansatz (3.1.7).

In this section we study terms with up to four covariant derivatives acting on Riemann
terms. We will therefore encounter expressions with up to four derivatives acting on the
scale factor a. To ease upcoming expressions, we define

A3 ≡ a(3)

aN3 − ȧN̈

aN4 −
(3Ṅ
N2 + ȧ

aN

)
A2 ; (3.4.4)

A4 ≡ a(4)

aN4 − ȧN (3)

aN5 − 6Ṅ
N2A3 −

(6ȧṄ
aN3 + 3Ṅ2

N4 + 4N̈
N3

)
A2 − A2

2 . (3.4.5)

The calculations involving covariant derivatives are rather cluttered and won’t be dis-
played here at full length. Instead, we explicitly investigate here the simplest example,
arising when two covariant derivatives act on one Riemann tensor (∇2R), and delay the
results of lengthier calculations to the appendices A.2 and A.3. Our final goal is to cal-
culate the constraint equation and solution for terms of the form ∇4R4, which appear at
the next-to-next-to-leading order (NNLO) in the type II low energy string theory effective
action (3.3.25).

3.4.1 An explicit example: two covariant derivatives acting on
one Riemann tensor

In this first subsection, we explicitly calculate the constraint equation of an action com-
posed of a covariant derivative term. We focus on the simplest covariant derivative term
possible,

A ≡ ∇2R = −6
(
A4 + 3ȧ

aN
A3 + 2A2(A2 − A1)

)
. (3.4.6)

A is a scalar term composed of two covariant derivatives acting on one Riemann tensor. It
is a total derivative so its constraint equation is necessarily null. We derive this explicitly
here for the sake of illustration.

To compute the constraint equation of A we need to compute those of the terms A4

and ȧ

aN
A3, or more precisely, of the actions:

SA4 =
∫

dt a3NA4 and SȧA3 =
∫

dt a3N
ȧ

aN
A3 . (3.4.7)

The constraint equation for the action SA4 is

0 = ∂(a3NA4)
∂N

− d
dt

[
∂(a3NA4)

∂Ṅ

]
+ d2

dt2

[
∂(a3NA4)

∂N̈

]
− d3

dt3

[
∂(a3N A4)
∂N (3)

]
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≡ δ

δN

[
a3NA4

]
. (3.4.8)

Calculating the time derivatives one by one, we find:4

a3N A4 = a2a(4)

N3 − aä2

N3 − 6a2a(3)Ṅ

N4 + 2aȧäṄ
N4 − 4a2äN̈

N4 − a2ȧN (3)

N4 ; (3.4.9)

⇒



∂(a3N A4)
∂N

= − 3
N4

(
a2a(4) − aä2

)
;

d
dt

[
∂(a3N A4)

∂Ṅ

]
= 1
N4

(
− 6a2a(4) + 2ȧ2ä+ 2aä2 − 10aȧa(3)

)
;

d2

dt2

[
∂(a3N A4)

∂N̈

]
= 1
N4

(
− 4a2a(4) − 8ȧ2ä− 8aä2 − 16aȧa(3)

)
;

d3

dt3

[
∂(a3N A4)
∂N (3)

]
= 1
N4

(
− a2a(4) − 12ȧ2ä− 6aä2 − 8aȧa(3)

)
.

(3.4.10)

We can then plug these derivatives into (3.4.8), and find the constraint equation for the
action SA4 :

δ

δN

[
a3NA4

]
= 1
N4

(
2ȧ2ä− aä2 + 2aȧa(3)

)
. (3.4.11)

This is the procedure that is implicitly used for all further action terms. For SȧA3 , the
constraint equation is found to be

δ

δN

[
a3N

ȧ

aN
A3

]
= 1
N4

(
− 2aȧa(3) + aä2 − 2ȧ2ä

)
. (3.4.12)

In order to find the constraint equation for the full ∇2R (3.4.6), we only miss the term
A2(A2 − A1). That is a simple Ap1

1 A
p2
2 term whose contribution reads from (3.2.14):

δ

δN

[
a3NA2

(
A2 − A1

)]
= 1
N4

(
2aȧa(3) − aä2 + 2ȧ2ä

)
. (3.4.13)

The constraint equation for A is therefore 0 as expected:

δA ≡ δ

δN

[
a3NA

]
= −6

[
δ

δN

[
a3NA4

]
+ 3 δ

δN

[
a3N

ȧ

aN
A3

]
+ 2 δ

δN

[
a3NA2

(
A2 − A1

)]]

= 0 . (3.4.14)

3.4.2 General procedure

The method presented in the previous subsection enable us in theory to compute the
constraint equation for any covariant derivatives term. The calculation is made even
easier by using the following decomposition.

4All following expressions in this chapter are evaluated at constant lapse N , so we drop all terms
containing more than one power of a derivative of N .
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Suppose we know the constraint equations for the two actions:

SA =
∫

dt a3N A and SB =
∫

dt a3N B , (3.4.15)

where A and B are functions of a, N and their time derivatives. Then the constraint
equation for the action

SA·B =
∫

dt a3N A · B , (3.4.16)

will be given by

δ

δN

[
a3N A · B

]
= A · δ

δN

[
a3N B

]
+B · δ

δN

[
a3N A

]
− a3A · B

− Ȧ ·
[
∂(a3N B)

∂Ṅ
− 2 d

dt

(
∂(a3N B)

∂N̈

)
+ 3 d2

dt2
(
∂(a3NB)
∂N (3)

)]

+ Ä

[
∂(a3N B)

∂N̈
− 3 d

dt

(
∂(a3NB)
∂N (3)

)]
− A(3)∂(a3NB)

∂N (3)

− Ḃ ·
[
∂(a3N A)

∂Ṅ
− 2 d

dt

(
∂(a3N A)

∂N̈

)
+ 3 d2

dt2
(
∂(a3NA)
∂N (3)

)]

+ B̈

[
∂(a3N A)

∂N̈
− 3 d

dt

(
∂(a3NA)
∂N (3)

)]
− B(3)∂(a3NA)

∂N (3) . (3.4.17)

This assumes that A and B depend on the third derivative of N at most, as will be the
case in this chapter. It would be trivial to extend (3.4.17) to include higher orders. Using
this decomposition, we can construct the constraint equations of more and more involved
expressions of A1, A2, A3 and A4. For instance, we may consider the four following
covariant expressions:

B1 ≡ (∇µRαβγδ)(∇µRαβγδ) ; B2 ≡ (∇µRαβ)(∇µRαβ) ;

B3 ≡ (∇µR)(∇µR) and B4 ≡ (∇µR
µ

αβγ)(∇νR
ναβγ) .

(3.4.18)

They are expressed in terms of the quantities A1, A2 and A3 as

−B1

12 =A2
3 + 8ȧ2

a2N2 (A2 − A1)2 ; −B2

12 = A2
3 + 2ȧ

aN
(A2 − A1)A3 + 6ȧ2

a2N2 (A2 − A1)2 ;

(3.4.19)

−B3

36 =A2
3 + 4ȧ

aN
(A2 − A1)A3 + 4ȧ2

a2N2 (A2 − A1)2 ; −B4

6 =
[
2(A2 − A1)

ȧ

aN
+ A3

]2
.

(3.4.20)

The constraint equation of these four expressions (3.4.18) thus only requires to calculate
that of the actions:

SA3 =
∫

dt a3NA3 and Sȧ(A2−A1) =
∫

dt a3N
ȧ

aN

(
A2 − A1

)
; (3.4.21)
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and combine these using (3.4.17).5

To summarize, the constraint equation of any covariant derivative terms can be cal-
culated by following the four subsequent steps:

1. Decompose the expression in terms of A1, A2, A3 and A4.6

2. Find the basic blocks needed to build each terms in this expression ( in the previous
example those were (3.4.21)), and compute their constraint equation.

3. Use the formula (3.4.17) (iteratively if needed) to combine the basic blocks and get
the complete constraint equation for the initial covariant expression.

4. Plug in the no-boundary ansatz (3.2.16). This step is commutative with the previous
one.

In the appendix A.2, we present the results of this method applied for the B terms
(3.4.18) and for the following terms where four covariant derivatives act on two Riemann
tensors:

C1 ≡ ∇2Rαβγδ ∇2Rαβγδ ; C2 ≡ ∇2Rαβ ∇2Rαβ ; C3 ≡ ∇2R∇2R ;

C4 ≡ ∇µ∇νRαβγδ∇µ∇νRαβγδ ; C5 ≡ ∇µ∇νRαβ∇µ∇νRαβ ; C6 ≡ ∇µ∇νR∇µ∇νR .

(3.4.22)
It is essential for the existence of the no-boundary solution that the constraint equations
of all these expressions always start at order t3 and are regular in t → 0, although in
principle they could have started at order t−1 and be singular. This particularity will
continue to hold for the cases of four derivatives acting on four Riemann tensor, to which
we now turn.

3.4.3 Four covariant derivatives acting on four Riemann tensors

We can now evaluate the contributions to the constraint equation stemming from the
∇4R4 terms (these terms are discussed in more detail in [73], see also [74]). We focus on
the truncated part of R4 (3.3.29):

R4
∣∣∣
4d truncated

=163
16 R1 + 123

8 R2 ; (3.4.23)

where we recall that R1 = (RαβγδR
αβγδ)2 and R2 = Rαβ

γδR
ϵζ

αβ R ηθ
ϵζ Rγδ

ηθ. When four co-
variant derivatives act on four Riemann tensors, we find three types of terms inequivalent
up to integrations by part7

(∇R)4 ; (∇2R)2R2 and (∇2R)(∇R)2R . (3.4.24)
5Note also that other terms like Rµν(∇2Rµν) or R(∇2R) can be obtained from these B terms (3.4.18)

by integrating by parts, since two terms differing by a total derivative lead to the same constraint equation.
6This is only valid for terms where at most four covariant derivatives are acting on Riemann tensors.
7The R here does not refer to the Ricci scalar but is a schematic way of writing the Riemann tensor

without bothering about the indices.
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For these three types, we now construct all possible independent terms where the four
Riemann tensors are either R1 or R2.

Type 1: (∇R)4 terms.

These terms can all be written as linear combinations of the four following terms:

D1 ≡
(

∇µRαβγδ ∇µRαβγδ
)2

; D2 ≡
(

∇µRαβγδ∇νR
αβγδ∇µRϵζηθ∇νRϵζηθ

)
;

D3 ≡
(

∇µR
αβ

γδ∇µR ϵζ
αβ ∇νR

ηθ
ϵζ ∇νR γδ

ηθ

)
; D4 ≡

(
∇µR

αβ
γδ∇νR

ϵζ
αβ ∇µR ηθ

ϵζ ∇νR γδ
ηθ

)
.

(3.4.25)
They are expressed in terms of A1, A2 and A3 in the appendix A.3. Computing their con-
tributions to the constraint equation requires the computation of the following constraint
equations:

∆1 ≡ δ

δN

[
a3N A4

3

]
= 32(a2

3 − a1a5)3

9a15
1

t3 + O
(
t5
)

; (3.4.26)

∆2 ≡ δ

δN

[
a3N

ȧ4

a4N4 (A2 − A1)4
]

= (a1a5 − a2
3)3

72a15
1

· t3 + O
(
t5
)

; (3.4.27)

∆3 ≡ δ

δN

[
a3N

ȧ2

a2N2A
2
3(A2 − A1)2

]
= O

(
t5
)

; (3.4.28)

∆4 ≡ δ

δN

[
a3N

ȧ3

a3N3A3
(
A2 − A1

)3
]

= (a1a5 − a2
3)3

36a15
1

· t3 + O
(
t5
)
. (3.4.29)

Combining these, we find the contributions to the constraint coming from the four D
terms displayed in Appendix A.3. We stress here that up to order t3, these four terms
have the same structure involving the combination a2

3 − a1a5 (αi are specific numerical
factors):

δDi = αi
(a2

3 − a1a5)3

a15
1

t3 + O(t5) . (3.4.30)

Type 2: (∇2R)2R2 terms

In this case we can construct eight different independent expressions (also expressed in
terms of A1, A2, A3, A4 in appendix A.3):

E1 ≡ ∇2Rαβγδ

(
∇2Rαβγδ

)
RϵζηθR

ϵζηθ ; E2 ≡ ∇µ∇ν(Rαβγδ)∇µ∇ν(Rαβγδ)RϵζηθR
ϵζηθ ;

E3 ≡
(
(∇2Rαβγδ)Rαβγδ

)2
; E4 ≡ ∇µ∇ν(Rαβγδ)∇µ∇ν(Rϵζηθ)RαβγδRϵζηθ ;

E5 ≡ ∇2Rαβ
γδ

(
∇2R ϵζ

αβ

)
R ηθ

ϵζ Rγδ
ηθ ; E6 ≡ ∇µ∇ν(Rαβ

γδ)∇µ∇ν(R ϵζ
αβ )R ηθ

ϵζ Rγδ
ηθ ;

E7 ≡ ∇2Rαβ
γδ

(
∇2R ηθ

ϵζ

)
R ϵζ

αβ Rγδ
ηθ ; E8 ≡ ∇µ∇ν(Rαβ

γδ)∇µ∇ν(R ηθ
ϵζ )R ϵζ

αβ Rγδ
ηθ .
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Type 3: (∇2R)(∇R)2R terms

The possible terms constructed from R1 and R2 are (see again appendix A.3)

F1 ≡(∇2Rαβγδ)Rαβγδ∇µRϵζηθ∇µRϵζηθ ; F2 ≡ (∇µ∇νRαβγδ)Rαβγδ∇µRϵζηθ∇νRϵζηθ ;

F3 ≡(∇2Rαβγδ)Rϵζηθ∇µR
αβγδ∇µRϵζηθ ; F4 ≡ (∇µ∇νRαβγδ)Rϵζηθ∇µRαβγδ∇νRϵζηθ ;

F5 ≡
(
∇2Rαβ

γδ

)
R ϵζ

αβ ∇µR
ηθ

ϵζ ∇µRγδ
ηθ ; F6 ≡ ∇µ∇ν(Rαβ

γδ)R
ϵζ

αβ ∇µR ηθ
ϵζ ∇νRγδ

ηθ ;

F7 ≡
(
∇2Rαβ

γδ

)
R ηθ

ϵζ ∇µR
ϵζ

αβ ∇µRγδ
ηθ ; F8 ≡ ∇µ∇ν(Rαβ

γδ)R
ηθ

ϵζ ∇µR ϵζ
αβ ∇νRγδ

ηθ .

To compute the contribution to the constraint equation stemming from the E and F
terms, we must compute those of the 31 following building blocks:

γ1 = A2
1A

2
2(A2 − A1)2 ; γ2 = A4

2(A2 − A1)2 ; γ3 = A1A
3
2(A2 − A1)2 ;

γ4 = A2
1A

2
4 ; γ5 = A2

2A
2
4 ; γ6 = A1A

2
2(A2 − A1)A4 ;

γ7 = A2A
2
3A4 ; γ8 = A1A2(A2 − A1)A2

3 ; γ9 = ȧ

aN
A2

1A2(A2 − A1)A3 ;

γ10 = ȧ

aN
A3

2(A2 − A1)A3 ; γ11 = ȧ

aN
A1A

2
2(A2 − A1)A3 ; γ12 = ȧ

aN
A2

1A3A4 ;

γ13 = ȧ

aN
A1A2A3A4 ; γ14 = ȧ

aN
A2

2A3A4 ; γ15 = ȧ

aN
A1A

3
3 ;

γ16 = ȧ

aN
A2A

3
3 ; γ17 = ȧ2

a2N2A
2
1A2(A2 − A1)2 ; γ18 = ȧ2

a2N2A1A
2
2(A2 − A1)2 ;

γ19 = ȧ2

a2N2A
3
2(A2 − A1)2 ; γ20 = ȧ2

a2N2A
2
1A

2
3 ; γ21 = ȧ2

a2N2A1A2A
2
3 ;

γ22 = ȧ2

a2N2A
2
2A

2
3 ; γ23 = ȧ2

a2N2A
2
1(A2 − A1)A4 ; γ24 = ȧ2

a2N2A1A2(A2 − A1)A4 ;

γ25 = ȧ2

a2N2A
2
2(A2 − A1)A4 ; γ26 = ȧ3

a3N3A
2
1(A2 − A1)A3 ; γ27 = ȧ3

a3N3A1A2(A2 − A1)A3 ;

γ28 = ȧ3

a3N3A
2
2(A2 − A1)A3 ; γ29 = ȧ4

a4N4A
2
1(A2 − A1)2 ; γ30 = ȧ4

a4N4A1A2(A2 − A1)2 ;

γ31 = ȧ4

a4N4A
2
2(A2 − A1)2 .

We denote Γi ≡ δ

δN

[
a3N γi

]
, the constraint contributions from these basic expressions.

All E and F terms are linear combinations of the γ terms, so their constraint equations
will be equal to the same linear combination of the corresponding Γ.

First we compute the contributions from all the γ terms, and plug them in the no-
boundary ansatz (3.2.16). Then we expand all Γ’s to order t3. Only nine out of these 31
terms actually start at order t−1 (as generically expected of terms where four covariant
derivatives act on Riemann terms). They are, to leading order,8

Γ23 = Γ24 = Γ25 = −
2a2

3

(
a2

3 − a1a5
)

a13
1 t

; Γ26 = Γ27 = Γ28 = −
2a2

3

(
a2

3 − a1a5
)

3a13
1 t

;

(3.4.31)
8These equalities are only valid at order t−1.
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and Γ29 = Γ30 = Γ31 = −
a2

3

(
a2

3 − a1a5
)

3a13
1 t

. (3.4.32)

In the E and F terms, these nine terms appear in the eleven following combinations that
start at least at order t:

δ

δN

[
ȧ2

a2N2 (A2 − A1)3A4

]
≡ Γ23 − 2Γ24 + Γ25 = O(t3) ;

δ

δN

[
ȧ2

a2N2A1(A2 − A1)2A4

]
≡ Γ24 − Γ23 = O(t) ;

δ

δN

[
ȧ2

a2N2A2(A2 − A1)2A4

]
≡ Γ25 − Γ24 = O(t) ;

δ

δN

[
ȧ3

a3N3A3(A2 − A1)3
]

= ∆4 ≡ Γ26 − 2Γ27 + Γ28 = O(t3) ;

δ

δN

[
ȧ3

a3N3A3A1(A2 − A1)2
]

≡ Γ27 − Γ26 = O(t) ;

δ

δN

[
ȧ3

a3N3A3A2(A2 − A1)2
]

≡ Γ28 − Γ27 = O(t) ;

δ

δN

[
ȧ4

a4N4 (A2 − A1)4
]

= ∆2 ≡ Γ29 − 2Γ30 + Γ31 = O(t3) ;

δ

δN

[
ȧ4

a4N4A1(A2 − A1)3
]

≡ Γ30 − Γ29 = O(t) ;

δ

δN

[
ȧ4

a4N4A2(A2 − A1)3
]

≡ Γ31 − Γ30 = O(t) ;

δ

δN

[
ȧ3

a3N3A
2
1(A2 − A1)

(
A3 − ȧ

aN
(A2 − A1)

)]
≡ Γ26 − 2Γ29 = O(t) ;

δ

δN

[
ȧ2

a2N2A
2
1(A2 − A1)

(
A4 − ȧ

aN
A3 − 4ȧ2

a2N2 (A2 − A1)
)]

≡ Γ23 − Γ26 − 4Γ29 = O(t).

Interestingly, the cancellations go even further and the contributions at order t also vanish
identically. The full expressions, which start at order t3, are listed in the appendix A.3.
Schematically, the order t3 contribution of all δF terms can be written as

δF =

(
a2

3 − a1a5
)
t3

a15
1

[
λ1
(
a2

3 − a1a5
)2

+ λ2a1a5
(
a2

3 − a1a5
)

+ λ3a1a3
(
a3a5 − a1a7

)]
+ O(t5) ;

(3.4.33)
where λ1, λ2 and λ3 take different numerical values for each combination of derivatives.
As for the E terms, their contribution to the constraint is of the form

δE = t3

a15
1

[
µ1
(
a2

3 − a1a5
)3

+ µ2 a1a5
(
a2

3 − a1a5
)2

+ a1a3
(
µ3 a5a3 + µ4 a1a7

)(
a2

3 − a1a5
)

+ µ5 a
2
1a3a5

(
a3a5 − a1a7

)
+ µ6 a

2
1a

2
3

(
a1a9 − a3a7

)]
+ O(t5) ; (3.4.34)

where µi are numerical factors varying for each case.
All pieces are eventually in place to compute the constraint equation of the type II
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string theory effective action up to fifth order in α′ (3.3.25), and assess the existence of a
no-boundary solution for this action.

3.4.4 Constraint equation for type II string theory

The type II effective string action (3.3.25), compactified to four dimension, reads:

S4D
type II = 1

2κ2

∫
d4x

√
−g
[
R − (∂ϕ)2 − 2V (ϕ) + (α′)3E(0,0)R4 + (α′)5E(1,0)∇4R4 + O(α′ 6)

+ · · ·
]
.

We have included a single scalar field with a potential V (ϕ), but the ellipsis stands for
many additional scalars and gauge fields. The precise form of the action depends on
the details of the compactification, but once again we can restrict to a constant scalar
field and null gauge field since we focus on the no-boundary point 3.1. Similarly, the
contributions in higher powers of α′ must be thought of as containing compactification-
dependent coefficient functions θ, δi, ϵi and ηi, in front of the specific combinations D, E ,F
that we introduced in section 3.4.3:

E(0,0)R4 = θ
(

R1 + 246
163R2

)
and E(1,0)∇4R4 =

4∑
i=1

δiDi +
8∑

i=1
ϵiEi +

8∑
i=1

ηiFi . (3.4.35)

Does this theory admit no-boundary solutions? As demonstrated in the previous sec-
tion, the constraint equation, that provides the litmus test for the existence of regular
solutions, does not receive α′ corrections at order t−1 nor at order t when the no-boundary
ansatz (3.2.16) is plugged in, due to the specific form of the D, E ,F terms. This rather
astonishing result may have an underlying explanation in the fact that no-boundary so-
lutions approach Euclidean flat space smoothly near the South Pole, so that covariant
derivatives acting on the corresponding Riemann tensors are suppressed. In fact, the first
non-trivial contributions to the constraint equation arise at order t3, where the constraint
takes the form:

− 6a3t
3 − 2V (ϕ0)a3

1t
3 + (α′)3E(0,0)

[
2205 · 2a2

3
a9

1

(
3a1a5 − 4a2

3

)
t3 − 2934 · a

2
3
a9

1

(
2a2

3 − a1a5
)
t3
]

+ (α′)5E(0,1)

[
#1 ·

(
a2

3 − a1a5
)3

a15
1

t3 + #2 ·
a5
(
a2

3 − a1a5
)2

a14
1

+
[
#3 · a2

3a5 + #4 · a1a3a7
]a2

3 − a1a5

a14
1

+ #5 ·
a3a5

(
a3a5 − a1a7

)
a13

1

+ #6 ·
a2

3

(
a1a9 − a3a7

)
a13

1

]
= 0 . (3.4.36)

Here we denoted the South Pole dilaton value as ϕ(0) = ϕ0 and the numerical coefficients
at order α′5 by #i. In the absence of higher order corrections we would have learned that
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a3 = −V (ϕ0)
3 a3

1, i.e., that the initial expansion rate depends on the location of the scalar
field on the potential. Once the higher order terms are added, new families of solutions
arise, and depending on the coefficient functions, a5, a7 and even a9 can enter the order t3

of the constraint equation. At higher orders in t, higher order terms in the series expansion
for a also appear, and in this manner higher coefficients continue to be given in terms of
the lower order ones. Also, for terms with more derivatives, such as terms of the form
∇6R4, we expect higher Taylor series coefficients of the scale factor a to arise, similarly to
the results for C terms (see appendix A.2). For perturbative solutions, a self-consistency
check will be that the solutions should have a smooth limit as α′ → 0 (similarly to the
limit β → 0 for quadratic gravity 3.3.1). Overall, given the current knowledge about α′

corrections, perturbative no-boundary solutions do exist in type II string theory.

3.5 Discussion

In this chapter, we have assessed the ability of the no-boundary proposal to survive the
addition to GR of perturbative quantum corrections, that are generically expected to arise
in cosmology when we approach the big bang singularity (see chapter 1), which is precisely
the context in which the no-boundary proposal is useful. From known theories, we expect
these corrections to contain Riemann tensors and covariant derivatives thereof. We have
derived generic conditions that correction terms consisting only of Riemann tensors must
satisfy for no-boundary solutions to exist. We have then showed that these conditions are
in particular satisfied by f(R) gravity, quadratic gravity, Gauß-Bonnet gravity, heterotic
string theory and type II string theory at the order (α′)3. Moreover, we have proved that
(at least certain) terms containing covariant derivatives of the Riemann tensor can also
allow for a no-boundary solution. In particular we showed it was the case for the type II
string theory up to order α′ 5. This opens the question of whether string theory in general
has a structure that allows for the existence of no-boundary solutions, but also of whether
one could generically prove that all covariant (derivative) Riemann terms lead to actions
admitting a no-boundary solution.

The results presented in this chapter furnish a crucial consistency check of the no-
boundary proposal, and they also suggest that results found at the semi-classical level
from the gravitational path integral can continue to hold in perturbative quantum gravity.
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Chapter 4

Inclusion of matter fields in the
no-boundary description

As explained in the introductory chapter 2.2, the recent development of the no-boundary
proposal suggests that a definition of the wavefunction of the universe based on the field
space, i.e., summing over initially compact metrics in the path integral, cannot be made
consistent [44]. Instead, a momentum space definition, where the path integral sums over
initially regular metrics, has been advocated in [52]. Further support to this new no-
boundary proposal came from the study of the gravitational path integral in the presence
of a negative cosmological constant [53]. There, boundary conditions equivalent to those
of the momentum space definition of the no-boundary are needed in order to recover the
result expected for the wavefunction from the AdS/CFT correspondence [75]. The stan-
dard no-boundary proposal is then obtained by analytically continuing the cosmological
constant from negative to positive values [76]. In the third chapter of this thesis, we have
shown that no-boundary on-shell solutions, which are both compact and regular at the
South Pole, continue to exist when we extend the Einstein-Hilbert action for gravity, and
include higher-order corrections stemming for example from string theory. This impor-
tant result attests of the no-boundary solution consistency at the level of (perturbative)
quantum gravity. In that chapter, we also showed that within the no-boundary proposal,
the only matter field allowed must have an equation of state that approaches that of a
cosmological constant at the South Pole. This is in particular the case of a scalar field ϕ

which tends to a constant value close to t = 0, i.e., such that ϕ̇(t = 0) = 0. Therefore, a
necessary step in proving the consistency of the no-boundary proposal is to show that it
is also robust to the inclusion of such a scalar matter field. This was already studied at
great length in the past [39, 40], for the field space no-boundary definition.

In the present chapter we study the inclusion of a scalar matter field into the momen-
tum space definition of the no-boundary proposal. The results of our study, presented in
[3], are that:

• similarly to the pure gravity case, the regularity condition implies that the wave-
function of the universe has no momentum flow at the the South Pole;
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• the regularity condition is not unique in this case, but leads to a family of initial
conditions parameterized by γ (that can in some specific cases be interpreted as the
initial scalar field value);

• saddle point geometries are always regular, but are compact only for certain values
of γ. These compact geometries are generically paired up with a non-compact
geometry;

• non-compact saddle point geometries appearing alongside compact ones are always
subdominant to them in the path integral defining the no-boundary wavefunction;

• dominant saddle point geometries lead to a WKB wavefunction (and hence predict
a classical spacetime) only for inflationary regions of the scalar field potential.

In our analysis, we focus on four different scalar field potentials, all presenting different
physical features, but that can be parameterized in a common manner. In particular, we
study one inflationary potential containing a slow-roll region (see section 4.2), one
negative AdS-like potential extending the AdS gravitational path integral case [53]
(see section 4.3), one exponential potential which also allows for inflationary scaling
solutions at the classical level (see section 4.4), and finally an unrealistic hyperbolic sine
potential (see 4.5). Those different potentials are presented in more details in next section
4.1 and displayed in figure 4.1.

The results found in this chapter and summarized here above lead to some puzzling
conclusions concerning the no-boundary wavefunction definition. In contrast with the
field space no-boundary definition, here the regularity condition does not uniquely fix
the initial conditions for the scale factor and the scalar field. Additional conditions must
be met in order to define the wavefunction consistently, for example here we request the
existence of compact saddle points. These additional requirements may imply a non-
causal behavior of the solution, in the sense that the initial scalar field value depends on
the final values of the scale factor and scalar field. We discuss this unphysical consequence
at a larger extent in the discussion section 4.6 of this chapter. We also come back to it in
chapter 6, where we discuss a new criterion filtering complex metrics in quantum gravity,
that brings new lights on the question of scalar fields.

4.1 Set-up and models

In this chapter we consider once more the no-boundary wavefunction of the universe,
Ψ[hij,Φf], as a functional of a three-dimensional hypersurface hij and of a scalar field
final configuration Φf living on the hypersurface. The arguments [hij,Φf] represent a late,
classical state of the universe (for example a post-inflationary state), and the wavefunction
yields probabilities for different consistent histories of the universe [35]. As recalled in 2.2,
the no-boundary wavefunction is defined by a Lorentzian path integral summing over a
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subset M of four-manifolds with metric gµν , and over matter field configurations Φ:

Ψ[hij,Φf] ≡
∫

M
Dgµν DΦ eiS[gµν ,Φ]/ℏ . (4.1.1)

Evaluating this path integral exactly is a longstanding goal of quantum cosmology but
presently out of reach. Instead one usually resorts to a minisuperspace ansatz of the
FLRW form for the metric. Here in addition, we restrict the matter configuration to a
homogeneous scalar field.

4.1.1 Classical action and equations of motion

The action consists of the Einstein-Hilbert action for GR, minimally coupled to a scalar
field:

SΦ =
∫

d4x
√

−g
(

R

16πG − 1
2g

µν∂µΦ∂νΦ − Ṽ (Φ)
)

− 1
8πG

∫
d3x

√
hK. (4.1.2)

The second term we recall is the GHY term evaluated on the final hypersurface, necessary
when imposing Dirichlet boundary conditions to make the variational principle consistent.
Ṽ (Φ) is the scalar field potential. For normalization reasons and later convenience, we
write the minisuperspace metric as:

ds2 = 2G
3π

(
− N2

a2(t)dt2 + a2(t)dΩ2
3

)
. (4.1.3)

As stated earlier, we restrict to a homogeneous scalar field: Φ(xµ) ≡ Φ(t). Then, we can
rescale the scalar potential and field and get rid of all numerical factors in the action:


ϕ(t) ≡

√
4πG

3 Φ(τ) ,

V (ϕ) ≡ 16G2

9 Ṽ (Φ) ,
⇒ SΦ = 1

2

∫
Ndτ

(
1 − a2ȧ2

N2 + a4ϕ̇2

N2 − a2V (ϕ)
)

−
[
a3ȧ

2N

]0

.

(4.1.4)
The last term in the action is a surface term on the initial boundary t = 0.

The class of scalar potential we explore here both offer a rich variety of physically
interesting features, and render the path integral analytically feasible. These models were
first studied by Garay et al. when including scalar fields in the original (field space defined)
no-boundary proposal in [39]:

V (ϕ) = α cosh(2ϕ) + β sinh(2ϕ) , with α, β ∈ R . (4.1.5)

The equations of motion obtained from the action (4.1.4) are analytically solvable for any
parameters α and β, but this becomes apparent after performing the change of variables
(a, ϕ) → (x, y):

x ≡ a2 cosh(2ϕ) ; y ≡ a2 sinh(2ϕ) . (4.1.6)
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The action (4.1.4) in these new variables reads:

SΦ[x, y] = 1
2

∫
Ndt

(
ẏ2 − ẋ2

4N2 + 1 − αx− βy

)
−
[
xẋ− yẏ

4N

]0
, (4.1.7)

and the associated equations of motions are:

ẋ2 − ẏ2

4N2 + 1 = αx+ βy , (4.1.8)

ẍ = 2N2α , ÿ = −2N2β . (4.1.9)

The solution to these equations is straightforward, but to express it we first need to fix
boundary conditions on x and y.

4.1.2 Boundary conditions for x and y

From the action (4.1.7), it is natural to define the conjugated momenta to the variable x
and y as

Πx(t) ≡ ẋ

2N ; Πy(t) = ẏ

2N . (4.1.10)

The boundary conditions are fixed by requiring the variational problem to be well-defined1,
in particular, its surface terms must vanish:

δSΦ ⊃ 1
2
[
y δΠy − x δΠx

]0
+ 1

2
[
Πy δy − Πx δx

]1
= 0 . (4.1.13)

We thus have to impose a condition on the momenta at the initial boundary: Πx(t =
0) ≡ Π0

x and Πy(t = 0) ≡ Π0
y. The constraint equation (4.1.8) when x, y → 0 imposes the

following regularity condition:

(Π0
x)2 − (Π0

y)2 = −1 . (4.1.14)

Therefore we can parameterize the initial momenta as Π0
x ≡ i cosh(2γ) and Π0

y ≡ i sinh(2γ),
making explicit the fact that there remains one free parameter γ, which specifies
the initial conditions. At the final boundary we impose the usual Dirichlet conditions:
x(t = 1) ≡ xf and y(t = 1) ≡ yf.

1Alternatively, the boundary conditions can be determined by examining the Wheeler-de Witt equa-
tion, i.e., the operator version of the constraint (4.1.8) obtained in momentum space by replacing
x, y → i d

dΠx,y
: (

Π2
x − Π2

y + 1 − iα
d

dΠx
− iβ

d
dΠy

)
Ψ = 0 . (4.1.11)

Requiring the wavefunction to have no momentum flow initially (regularity condition [76]) implies

dΨ
dΠx,y

∣∣∣∣
0

= 0 ⇒ (Π0
x)2 − (Π0

y)2 = −1 , (4.1.12)

that is the same boundary condition we obtain from the first method (4.1.14). The other way around,
this proves that the regularity condition yields the no momentum flow requirement for the wavefunction.
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One main difficulty we will discuss in the next sections concerns the determination
and interpretation of the value of γ. Studies of the stability against perturbations in pure
gravity [43, 52, 53] impose a further condition on the conjugate momenta, namely that the
sign of the imaginary part of Π0

x must be chosen positive: Im (Π0
x) > 0. This condition is

equivalent to choosing the Hartle-Hawking wavefunction [38] over the tunneling Vilenkin
wavefunction [47].

4.1.3 Performing the path integrals

Boundary conditions being fixed, we can now write the classical solutions to the equations
of motion (4.1.9): 

x̄(t) = αN2(t2 − 1) + 2NΠ0
x(t− 1) + xf ,

ȳ(t) = −βN2(t2 − 1) + 2NΠ0
y(t− 1) + yf .

(4.1.15)

Similarly to the case without scalar field 2.2, the path integrals on x and y are carried out
by expanding around these classical background: x(t) = x̄(t) + X (t) , y(t) = ȳ(t) + Y(t)
where X (t) and Y(t) are arbitrary fluctuations satisfying the boundary conditions: Ẋ (0) =
Ẏ(0) = 0 and X (1) = Y(1) = 0. Expanding the action (4.1.7) in these fluctuations, we
find:

SΦ[x, y] = SΦ[x̄(t), ȳ(t)] + 1
2

∫
Ndt

(Ẏ2 − Ẋ 2

4N2

)
+
[ ˙̄yY − ˙̄xX

4N

]1
−
[
xẊ − yẎ

4N

]0
. (4.1.16)

The first term is the on-shell action, independent of the fluctuations. From the integrand,
the term linear in the fluctuations X and Y has vanished thanks to the equations of
motion (4.1.9), and we are left only with the quadratic terms. The two surface terms
in t = 0 and t = 1 displayed here also vanish thanks to the boundary conditions on the
fluctuations. The no-boundary wavefunction is then:

Ψ[xf, yf, γ] =
∫

dN eiSΦ[x̄(t),ȳ(t)]/ℏ ·
∫ X (1)=0

Ẋ (0)=0
DX

∫ Y(1)=0

Ẏ(0)=0
DY e

i
2ℏ

∫
dτ Ẏ2−Ẋ 2

4N . (4.1.17)

The fluctuations integrals are Gaußian but with mixed Neumann-Dirichlet boundary con-
ditions. Such path integrals were calculated explicitly in the appendix of [53] and simply
yield a numerical factor:

Ψ[xf, yf, γ] = 8ℏ
π

∫
dNeiSΦ[x̄(t),ȳ(t)]/ℏ . (4.1.18)

The result of these fluctuation integrals can be verified indirectly by using the Wheeler-de
Witt equation, see appendix B.1. The numerical factor obtained from this calculation is
an overall constant that changes the measure but doesn’t affect relative probabilities. We
drop it in subsequent calculations.
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4.1.4 Defining the lapse integral

The no-boundary wavefunction at this stage is simply given by an ordinary integral over
the lapse N , (4.1.18). The integrand consists in the exponential of the on-shell action:

Son-shell[xf, yf, γ] ≡ SΦ[x̄(t), ȳ(t)] = 1
2

[
N3

3 (α2 − β2) +N2(αΠ0
x + βΠ0

y) −N(αxf + βyf)

+ yfΠ0
y − xfΠ0

x

]
. (4.1.19)

We can use the WKB semi-classical approximation to evaluate the lapse integral, and
then apply Picard-Lefshetz theory (see section 2.2). For this we need to calculate the
saddle point geometries, which are specified by the lapse value solving the saddle equation:

δ

δN
Son-shell[xf, yf, γ]

∣∣∣∣∣
Nsaddle

= 0 , (saddle equation). (4.1.20)

⇒


N±

saddle =
−(αΠ0

x + βΠ0
y) ±

√
(αΠ0

x + βΠ0
y)2 + (α2 − β2)(αxf + βyf)

α2 − β2 , (α ̸= β) ;

N0
saddle = 1

2
xf + yf

Π0
x + Π0

y

, (α = β) .

(4.1.21)

For any set of boundary conditions {xf, yf, γ}, the scalar potentials (4.1.5) with α ̸= β

possess two saddle point geometries specified by N±
saddle, while the exponential potential

(α = β) has one saddle point geometry determined by N0
saddle. The parameter γ fixes the

initial momenta values Π0
x and Π0

y, ensuring the regularity of the saddle point geometries
in t = 0. However, the initial field values are not fixed in this setting, so saddle point
geometries are not necessarily compact there. In fact, compactness only occurs for specific
values of γ.

By prescription, we define the no-boundary wavefunction for a final set of boundary
conditions, {xf, yf}, as a sum over the γ values which lead to at least one compact saddle
point (SP) geometry, i.e.,

Ψ[xf, yf] ≡
∑

γ s.t.
one SP is
compact

Ψ[xf, yf, γ] . (4.1.22)

This prescription gives a generalization of the path integral that includes a sum on specific
boundary conditions. In the spirit of the path integral, each history is weighted by the
exponential of the on-shell action only, which is why in equation (4.1.22), we give an equal
weight to the wavefunctions with different γ values. In fact, this prescription is very sim-
ilar to that used implicitly in earlier implementations of the no-boundary proposal such
as [35]. With the difference that these used Dirichlet initial boundary conditions for the
scale factor and scalar field, compact saddle point geometry were selected by adjusting
the initial scalar field boundary condition depending on the final fields values. This sort
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V(ϕ)

Figure 4.1: Prototypical scalar field potentials, V (ϕ) = α cosh(2ϕ) + β sinh(2ϕ), studied
in this chapter. Blue curve: hyperbolic cosine α = 1, β = 0 (slow-roll potential 4.2). Red
curve: negative hyperbolic cosine α = −1, β = 0 (AdS-like potential 4.3). Green curve:
exponential potential α = β = 1/2 (see 4.4). And finally orange curve: hyperbolic sine
α = 0, β = 1.

of non-causal definition of the wavefunction appears ubiquitous when considering the no-
boundary wavefunction including scalar fields, and forms the main puzzle mentioned in
the introduction to this chapter. We will discuss this issue again in section 4.6. Note that
another prescription could be equally valid, and remove the non-causality puzzle: by inte-
grating over any value of γ, and then arguing that only compact saddle points dominate
the path integral, for example by using the complex metric criterion of chapter 6. Indeed,
we will see in the upcoming sections that non-compact geometries are characterized by
V (ϕ0) = 0: this implies that their initial scalar field value is very complex, which would
be ruled out by the complex metric criterion [77].

The plan for the next sections is to study in detail the definition (4.1.22) for some
prototypical scalar potentials, depicted in figure 4.1.

4.2 Slow-roll potential

The hyperbolic cosine potential (in blue in figure 4.1) is the most relevant example to
study: it is inflationary and exhibits a slow-roll region for small absolute values of
the scalar field. Moreover, this model reduces to gravity with a cosmological constant
(though with the addition of scalar fluctuations) when the scalar field vanishes. We
therefore expect to recover the known no-boundary wave function in this limit. In fact, it
turns out that this potential is the only one (of those we will study here) where a classical
spacetime is predicted for large values of the scale factor2.

2This result was already discussed in [39].
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4.2.1 Compactness condition for the saddle point geometries

There are two saddle point geometries specified by the lapse values (4.1.21):

N±
saddle = −i cosh(2γ) ±

√
a2

f cosh(2ϕf) − cosh2(2γ) . (4.2.1)

The constraint equation (4.1.8), (ẋ2 − ẏ2)/(4N2) + 1 = x, must be satisfied and together
with the regularity condition (4.1.14), it implies that x(t = 0) = 0. Since the scale factor
is given by a(t)2 =

√
x(t)2 − y(t)2, the saddle point geometries (4.2.1) will be initially

compact if and only if:

y(t = 0) = 0 (compactness condition). (4.2.2)

By using the equations of motion together with the classical solution, we find that this
condition is satisfied only when the lapse value specifying the geometry is equal to:

Ncompact = yf

2Π0
y

= a2
f sinh(2ϕf)

2i sinh(2γ) . (4.2.3)

Therefore, saddle point geometries are compact if and only if: Nsaddle = Ncompact, which
in this case leads to the equation:

a2
f sinh2(2ϕf) + 4 sinh(2γ) sinh(2γ − 2ϕf) = 0 . (4.2.4)

Solving this equation (4.2.4) for γ ∈ C yields three solutions, each valid in a different
region of the phase space of final field values, (af, ϕf):

γI
∓ = ϕf

2 ∓ i

2 arcsin
(

|sinh(ϕf)|
√
a2

f cosh2(ϕf) − 1
)

;

γII
∓ = 1

2 cosh−1
(√

1 + sinh2(2ϕf)
4

(
2 − a2

f cosh(2ϕf) ∓
√

(2 − a2
f cosh(2ϕf))2 − a4

f

))
;

γIII
∓ = ∓ 1

2 cosh−1
(

1
2 sinh(2ϕf)

√
a2

f cosh(2ϕf) − 2 ∓
√

(a2
f cosh(2ϕf) − 2)2 − a4

f

)

+ i
(
π

4 + n
π

2

)
with n ∈ {−1, 0}.

(4.2.5)
To avoid clutterness, we postpone the derivation of the above formulae to the appendix
B.2. The three regions of validity in the phase space (af, ϕf), represented in figure 4.2,
are: 

region I: a2
f cosh2(ϕf) > 1 & a2

f sinh2(ϕf) < 1 ;

region II: a2
f cosh2(ϕf) < 1 ;

region III: a2
f sinh2(ϕf) > 1 .

(4.2.6)

Now that we have expressed the values of γ entering the no-boundary wavefunction
definition (4.1.22), we can apply the Picard-Lefschetz method for evaluating the lapse
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integral in (4.1.18). This yields the steepest descent contours emanating from the saddle
point lapse values, on which the lapse integral can be defined by a sum of convergent
integrals. In the semi-classical approximation (to leading order in ℏ), the integral is given
by the corresponding sum on the saddle point lapse values.

4.2.2 Region I: complex saddle points.

For each of the two values γI
∓, equation (4.2.1) gives two complex saddle point lapse

values. Out of these four saddle point geometries, only two are compact. This is because,
for a given γ value, only one choice of sign in (4.2.1) can match with the required value
(4.2.3) for a compact geometry, so the other choice of sign leads to a non-compact saddle
point geometry. The regularity condition (4.1.14) is nevertheless satisfied on these non-
compact saddles, because the scalar potential V (ϕ) vanishes at t = 0. The reason is that,
by extending the fields to the complex plane, the potential becomes a holomorphic (in
fact entire) function. From Picard’s little theorem (see appendix B.3), entire functions
generically vanish at certain field value(s). The appearance of non-compact but regular
saddle point geometries is therefore a generic property when considering complex field
values.

Numerical example
We illustrate this case by one numerical example for af = 1 and ϕf = 0.5. In figure 4.3,

we show the evolution of the complex field values a and ϕ for the lapse values corresponding
to the four saddle point geometries. The lapse values come in pair with opposite real parts.
They correspond to complex conjugate scale factor and scalar field. From the figure, it is
evident that two saddle point geometries are initially compact (Re[a(0)] = Im[a(0)] = 0),

5 10 15 20
af

-2

-1

0

1

2
ϕ f

Figure 4.2: Phase space regions (4.2.6). Region I is in blue, region II is in green and region III
is in red. The purple curve is the condition a2

f cosh2(ϕf) = 1, and the blue curve is the condition
a2

f sinh2(ϕf) = 1.
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(a) Complex fields at N+[γ−].

0.2 0.4 0.6 0.8 1.0
t

-0.2

0.2

0.4

0.6

0.8

1.0

Re[a] , Im[a]

0.2 0.4 0.6 0.8 1.0
t

0.1

0.2

0.3

0.4

0.5

Re[ϕ], Im[ϕ]

(b) Complex fields at N−[γ+].

0.2 0.4 0.6 0.8 1.0
t

0.5

1.0

Re[a] , Im[a]

0.2 0.4 0.6 0.8 1.0
t

0.2

0.4

0.6

0.8

Re[ϕ], Im[ϕ]

(c) Complex fields at N−[γ−].
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(d) Complex fields at N+[γ+].

Figure 4.3: Numerical evolution for fields in region I. Parameters: α = 1, β = 0 and af = 1, ϕf = 0.5
(complex N). γ∓ = 0.25 ∓ 0.137i and the saddle point lapse values are N+[γ−] = 0.521 − 0.853i,
N−[γ+] = −0.521 − 0.853i, N−[γ−] = −0.804 − 1.317i, N+[γ+] = 0.804 − 1.317i. N+[γ−] and N−[γ+]
are the compact saddle points. The graphs show the time evolution of the scale factor a and the scalar
field ϕ for the four saddle point lapse values. Real parts in green for compact and in red for non-compact
saddle points. Imaginary parts in purple for compact and in blue for non-compact saddles.

while the two other aren’t. In all cases, the initial scalar field value is fully complex:

ϕ(t = 0) = ±iπ4 , (non-compact SP);

ϕ(t = 0) = lim
t→0

1
2arctanh

(
ȳ(t)
x̄(t)

)
= 1

2arctanh
(

Π0
y

Π0
x

)
≡ γ , (compact SP).

(4.2.7)

This implies that for compact saddle point geometries, the value of γ can be
interpreted as the initial scalar field value: ϕ(t = 0) = γ. Finally, all field values of
a and ϕ become real on the final hypersurface t = 1. In figure 4.4, we draw the steepest

-4 -2 0 2 4
-4

-2

0

2

4

Re(N)

Im(N)

(a) N+[γ−] (green dot) and N−[γ−] (red
dot).

-4 -2 0 2 4
-4

-2

0

2

4

Re(N)

Im(N)

(b) N−[γ+] (green dot) and N+[γ+] (red
dot).

Figure 4.4: α = 1, β = 0 and af = 1, ϕf = 0.5 (complex N). Density plot of the weighting
Re[iSon-shell

saddle ] and flow lines in the complex N plane. Steepest descent (resp. ascent) contours are
those lines emanating from the saddle points and plunging into blue (resp. red) regions. The
path integral is defined by integrating along the steepest descent contours.

descent and ascent contours associated with each saddle point geometry. We draw one
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graph for each value of γ. Each graph contains one compact and one non-compact saddle
point.

If we choose as original integration contour the Lorentzian metric line (i.e., the real
N line), as was done for the no-boundary without scalar field 2.2, we can deform it
into the steepest descent contours of the two saddle points for each graph. From the
perspective that the standard big bang evolution and our late universe are both described
by Lorentzian metrics, this integration contour sounds the most natural. This naturalness
idea is nevertheless challenged by the complex metric criterion (see chapter 6), from which
it appears that the integration contour would preferably follow the Euclidean axis instead.

Evaluation of the no-boundary wavefunction
Following our prescription for the no-boundary wavefunction (4.1.22), we must sum

over the two relevant values of the initial conditions parameter γ. This yields, to leading
order in ℏ,

Ψ[xf, yf] = e
i
ℏS(N+[γ−]) + e

i
ℏS(N−[γ+]) + e

i
ℏS(N+[γ+]) + e

i
ℏS(N−[γ−]) . (4.2.8)

The saddle point geometries are pairwise complex conjugates of each other, so this wave-
function is real. The next step of our analysis consists in determining which saddle
point(s) actually dominate this wavefunction, i.e., which have the highest weight-
ing3. The saddle point lapse values (4.2.1) are in this case: N± = −Π0

x ±
√
xf + (Π0

x)2, so
the on-shell action (4.1.19) evaluated on them gives:

Son-shell[N±] = N3
±

6 + N2
±Π0

x

2 − N±xf

2 +
yfΠ0

y − xfΠ0
x

2 (4.2.9)

= ∓

√
xf + (Π0

x)2
3

3 + (Π0
x)3

3 +
yfΠ0

y

2 . (4.2.10)

What are the values of Π0
x and Π0

y for the different saddle points? The two possible
solutions for γ are given from equation (4.2.5) by

γ∓ = ϕf

2 ∓ i

2 arcsin
(

| sinh(ϕf)|
√
a2

f cosh2(ϕf) − 1
)
. (4.2.11)

Compact saddle point geometries correspond to the lapse values N+[γ−] and N−[γ+]. The
initial momenta evaluated in these γ values give:

Π0
x(γ∓) ≡ i cosh(2γ∓) = ± sinh2(ϕf)

√
a2

f cosh2(ϕf) − 1 + i cosh2(ϕf)
√

1 − a2
f sinh2(ϕf) ,

(4.2.12)

3On this point our prescription (4.1.22) is debatable, because it could be that other values of γ lead to
higher weightings and dominate the wavefunction, even if they don’t correspond to compact geometries.
As mentioned before, it may in this case be necessary to consider the complex metric criterion for ruling
out initial values of the scalar field that are ”too complex” and recover the results presented here.
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Π0
y(γ∓) ≡ i sinh(2γ∓) = ±sinh(2ϕf)

2

√
a2

f cosh2(ϕf) − 1 + i sinh(2ϕf)
2

√
1 − a2

f sinh2(ϕf).

(4.2.13)

We have assumed ϕf > 0, and we restrict solutions to the region I of the phase space,
where a2

f cosh2(ϕf) > 1 and a2
f sinh2(ϕf) < 1. In the expressions (4.2.12) and (4.2.13),

the imaginary parts of the initial momenta do not depend on the choice of saddle point,
while the real parts only differ by a sign. Therefore, since the weighting is determined
by the imaginary part of the on-shell action, e− Im(S), the comparison of the weighting
for the different saddle points will only depend on the first term, ∓1

3

√
xf + (Π0

x)2
3
, in the

expression (4.2.10). We examine this term in more detail for the four saddle points:

√
xf + (Π0

x(γ∓))2
3

= (A± iB)3/2 ≡ ρ3/2e±3iθ/2 , where A, B, ρ, θ ∈ R ; (4.2.14)

and


A = a2

f cosh(2ϕf) + sinh4(ϕf)
(
a2

f cosh2(ϕf) − 1
)

− cosh4(ϕf)
(
1 − a2

f sinh2(ϕf)
)

;

B = 2 sinh2(ϕf) cosh2(ϕf)
√
a2

f cosh2(ϕf) − 1
√

1 − a2
f sinh2(ϕf) .

(4.2.15)

From its expression, the quantity B is always positive (and real in the region I), therefore
the angle θ, defined in (4.2.14), is comprised between 0 and π. On the other hand, A is
real but its sign depends on the final set of conditions, {af, ϕf}. With this rewriting, we
can express the imaginary part of the on-shell action for each saddle point geometry:


Im(Scompact
on-shell [N−[γ+]]) = Im

(1
3
√
xf + (Π0

x(γ+))2
3)

= −1
3ρ

3/2 sin(3θ/2) ;

Im(Snon-compact
on-shell [N−[γ−]]) = Im

(1
3
√
xf + (Π0

x(γ−))2
3)

= +1
3ρ

3/2 sin(3θ/2) ;

Im(Snon-compact
on-shell [N+[γ+]]) = Im

(
− 1

3
√
xf + (Π0

x(γ+))2
3)

= +1
3ρ

3/2 sin(3θ/2) ;

Im(Scompact
on-shell [N+[γ−]]) = Im

(
− 1

3
√
xf + (Π0

x(γ−))2
3)

= −1
3ρ

3/2 sin(3θ/2) .

(4.2.16)

Therefore, the compact saddle point geometries will dominate over the non-compact ones
if and only if

sin
(

3θ
2

)
> 0 , ⇔ 0 < θ <

2π
3 , ⇔ A

B
= cot(θ) > − 1√

3
. (4.2.17)

In figure 4.5, we plot the region of the phase space {af, ϕf} where the condition (4.2.17) is
satisfied, and find it entirely covers the region I where complex saddle point geometries are
defined. Therefore, the non-compact saddle point geometries are exponentially suppressed
compared to compact geometries within region I. We conclude that, also in the presence of
a complex scalar field, we recover the usual result that the no-boundary wavefunction
is dominated by initially compact and regular geometries.

One subtelty remains in interpreting the wavefunction (4.2.8), because it is dominated
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Figure 4.5: The region where the compact saddle points dominate over the non-compact ones
is entirely covering the region I where complex saddle points are defined. Our analysis assumed
that we were outside the green and red regions, so from this picture nothing can be inferred
about these regions.

by two saddle point geometries of equal weight:

Ψ[af, ϕf] ≈ exp
(
i

ℏ
Scompact

on-shell (N+[γ−])
)

+ exp
(
i

ℏ
Scompact

on-shell (N−[γ+])
)
. (4.2.18)

This would predict a strong interference between two universes, but as shown in [6],
the addition of perturbations leads to an efficient decoherence effect for growing scale
factor. Therefore, for sufficiently large value af ≫ 1, the wavefunction is given by a single
dominant saddle point geometry, for example N+[γ−]. Since af must be large and that the
existence of complex saddle point is conditioned by a2

f sinh(ϕf)2 < 1, the final scalar field
value ϕf must be small. We can then Taylor-expand the on-shell action of the dominant
saddle point around ϕf = 0 and find:

Scompact
on-shell (N+[γ−]) = −1

3

[√
a2

f − 1
3

+ i
]

− 1
2

[√
a2

f − 1 − i
]
a2

f ϕ
2
f + O(ϕ4

f ) , (4.2.19)

so to quadratic order in ϕf, the weighting of the dominant saddle point geometry is:

|Ψ[af, ϕf]| ≈
∣∣∣e i

ℏScompact
on-shell (N+[γ−])

∣∣∣ = e− Im(Scompact
on-shell (N+[γ−]))/ℏ = e

1
3ℏ(1− 3

2 a2
f ϕ2

f ) for af ϕf ≪ 1 .
(4.2.20)

This result (4.2.20) shows that the probability is higher when ϕf is smaller. This is a
generic result of the no-boundary wavefunction. Then the highest probability occurs for
the limit where the scalar sits at the minimum of the cosh(2ϕ) potential. In this limit, γ
tends to zero and the non-compact saddles disappear. This limit corresponds to the pure
gravity case with a cosmological constant, but also including fluctuations of the scalar
field, that provide a sub-dominant contribution to the wavefunction.

The classicality of the final spacetime obtained can be proven by considering the
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leading order changing rates of the imaginary and real parts of the on-shell action (4.2.19):
∣∣∣∣∣∂ Im(S)

∂af

/
∂ Re(S)
∂af

∣∣∣∣∣ ∼ ϕ2
f
af

≪ 1 ,
∣∣∣∣∣∂ Im(S)

∂ϕf

/
∂ Re(S)
∂ϕf

∣∣∣∣∣ ∼ 1
af

≪ 1 . (4.2.21)

This means that at large scale factor, the wavefunction’s amplitude varies slowly compared
to its phase. This branch of the wavefunction is thus of WKB form and therefore, in the
region I of phase space, we predict a classical spacetime with a classical background
evolution.

4.2.3 Region II: imaginary saddle points.

Region II corresponds to a very small size of the universe: a2
f cosh(2ϕf) < 1. There, the

solutions for γ (4.2.5) are purely real. Therefore the saddle point lapse values (4.2.1) are
purely imaginary, as well as the initial momenta Π0

x (4.2.12) and Π0
y (4.2.13), and so the

classical solutions x̄ and ȳ given in (4.1.15) are purely real. It follows that the on-shell
action evaluated on the saddle points (4.1.19) is purely imaginary. Therefore the wave
function of each saddle point geometry is a pure amplitude:

ψ ∝ ereal number . (4.2.22)

Such a wavefunction doesn’t lead to a WKB evolution. We conclude that in the region
II of phase space, the universe is still in its nucleation phase (analogous to the tunneling
phase of a particle in a barrier potential, where time is purely Euclidean).

Analysis of the saddle point solutions
Similarly to the previous case, we illustrate this case by a numerical example with

af = 0.2, ϕf = 1. In figure 4.6 we present the time evolution of the imaginary and
real parts of the scale factor and scalar field, for each saddle point geometry. Then in
figure 4.7 we show, for each value of γ, the density plot of the no-boundary wavefunction
weighting (− Im[S]), the associated compact and non-compact saddle points and their
steepest descent and ascent paths in the complexified lapse plane.

We can analyze the saddle point solutions generically. For the compact saddle point
solutions, the classical solutions (4.1.15) x̄ and ȳ both start from 0 when t = 0. x̄ describes
a downward-facing parabola (since N2 is negative), while ȳ forms a straight line (β = 0).
Also, the gradient of x̄ in t = 0 is always bigger than that of ȳ, because in region II, γ is
real so |tanh(2γ)| < 1: ∣∣∣∣∣ ˙̄y(t)

˙̄x(t)

∣∣∣∣∣
t=0

= Π0
x

Π0
y

= |tanh(2γII)| < 1 . (4.2.23)

Finally, at the end point of the trajectory t = 1, we find that x̄(1) > ȳ(1) because
cosh(2ϕf) > sinh(2ϕf). Therefore, we can conclude that

∀ t ∈ (0, 1) : x̄(t) > ȳ(t) ⇒ ā(t) = (x̄(t)2 − ȳ(t)2)1/4 ∈ R . (4.2.24)
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(a) Compact Euclidean geometry N−[γ−].
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(b) Compact Euclidean geometry N+[γ+].
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(c) Non-compact Euclidean geometry N+[γ−].
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(d) Non-compact Euclidean geometry N−[γ+].

Figure 4.6: Numerical evolution of fields in region II. The parameters are α = 1, β = 0, af =
0.2, ϕf = 1. The γ values are then: γ− = 0.0189, γ+ = 0.981, and the corresponding saddle point
lapse values: N−[γ−] = −1.92i, N+[γ−] = −0.0782i, N+[γ+] = −0.0208i and N−[γ+] = −7.24i.
We find two compact saddle point geometries – N+[γ+] and N−[γ−] – and two non-compact ones
– N+[γ−] and N−[γ+]. Same color conventions as in figure 4.3. Note that the imaginary part of
the scalar typically jumps when the scale factor passes through zero, as the imaginary part of
the scalar itself changes there, given that it is obtained by taking a fourth root a = (x2 − y2)1/4.

This proves that in region II, compact saddle point geometries are purely Eu-
clidean.

Consider non-compact saddle points now. From the regularity condition, x̄(0) = 0.
But since the compactness condition is not satisfied, ȳ(0) = yf − 2NΠ0

y takes an arbitrary
non zero real value, so that the combination x̄(0)2 − ȳ(0)2 is real and negative. At the end
point of the trajectory, we still have that x̄(1) > ȳ(1), so that x̄(1)2 − ȳ(1)2 is real and
positive. We can then apply the mean value principle to the function ā(t)4 = x̄(t)2−ȳ(t)2 :
there must exist a point in the trajectory t0 ∈ (0, 1) where ā(t0)4 = 0. This argument
shows that in region II, non-compact saddle point geometries always exhibit a
singular bounce in the course of their evolution. The solutions described by these
geometries are then non-physical, since perturbations would blow up at the singularity
and make the associated action infinite.

Evaluation of the wavefunction
We evaluate the wavefunction obtained in region II by using the Picard-Lefschetz

theory for selecting the saddle points contributing to the path integral. Observing the
example depicted in 4.7, where compact saddle point geometries are represented in green
and non-compact ones in red, we find that if we take as contour of integration a parallel to
the real lapse axis as we did for region I, we get a contribution from one compact (N+[γ+])
and one non-compact (N+[γ−]) saddle point. This is due to the fact, true for any point
in region II, that the location of the compact and non-compact saddle points is reversed
with respect to the real axis for the two values of γ. The no-boundary wavefunction found
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Figure 4.7: Parameters: α = 1, β = 0, af = 0.2, ϕf = 1 (N is purely imaginary). Density plot
of the weighting Re[iSon-shell

saddle ] and flow lines in the complex N plane.

from Picard-Leschetz theory is then at semi-classical level:

Ψ[xf, yf] ≈ e
i
ℏSon-shell(N+[γ−]) + e

i
ℏSon-shell(N+[γ+]) . (4.2.25)

In the previous paragraph, we found that non-compact saddle point geometries in region
II always contain a singular bounce, which makes their action diverge in the presence of
perturbations. These saddle points therefore do not contribute to the wavefunction.

In the original study of the no-boundary wavefunction including a scalar field [39],
where the field space definition of the no-boundary proposal was used, it was advocated
that saddle point geometries containing a singular bounce should be part of the path
integral, because the singular bounce can always be avoided by deforming the time path in
the complex plane. The fields evolution along such a time path would then be regular. By
Cauchy’s theorem, such deformation of the time path are allowed as long as no singularity
is crossed. However here this is not the case: as can be seen from figure 4.6c, the scalar field
becomes singular on the bounce in the original time path, so a singularity is necessarily
crossed in the deformation.

We point out that such bouncing geometries, made regular by deforming the time path
into the complex plane, have been studied as possible alternatives to the beginning of the
universe [78, 79]. In the chapter 6 of this thesis, we will study a criterion on complex
metrics coming from quantum field theory, which precisely rules out those bounces.

Let us make two more remarks on this question. First, we are evaluating the path
integral in the constant lapse gauge [80], and therefore we consider the saddle point
geometry with constant lapse as the fundamental one. This specific choice of gauge
in defining the gravitational path integral is debatable and may be the subject of future
studies. Second, in the non-compact saddle point geometries, the variables x and y possess
a perfectly regular evolution in time. Singularities appear only when transforming back
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to the original field variables a and ϕ, and the transformation itself is ill-defined at the
singularity. Nevertheless, the variables a and ϕ are those with a physical meaning, so we
view them as more fundamental. Non-compact saddle point solutions are thus discarded
despite the regularity of the x and y field variables.

The wavefunction finally remains with one relevant saddle point:

Ψ[af, ϕf] ≈ e
i
ℏScompact

on-shell (N+[γ+]), (4.2.26)

with the on-shell action on the compact saddle point geometry given at quadratic order
in ϕf by:

S(N+[γ+]) = − i

3

(
1 −

√
1 − a2

f
3)

+ i

2

(
1 −

√
1 − a2

f

)
a2

f ϕ
2
f + O(ϕ4

f ) . (4.2.27)

This purely imaginary action leads to a pure amplitude for the wavefunction: it grows
from zero at af = 0 until the boundary of the region II, a2

f cosh(2ϕf) < 1, is reached. A
phase develops only when the universe grows beyond this boundary into the region I.

As in the pure gravity case [76], the compact geometry selected by the Picard-Lefschetz
theory, N+[γ+], corresponds to less than a half-sphere. In contrast, the other compact
geometry, N−[γ−], corresponds to more than a half-sphere, as can be seen in figure 4.6.
This ensures that in the limit where the final scale factor af goes to 0, the geometry
dominating the wavefunction is the vanishing geometry, rather than the full-sphere. The
opposite would have been the sign that a non-trivial topology dominates the path integral.

4.2.4 Region III: real saddle points.

This last region is defined by a2
f sinh2(2ϕf) > 1. The imaginary part of γ is there given by

Im(γ) = π/4 + n · π/2 with n ∈ {−1, 0}. Therefore,

cosh(2γ) = i(−1)n sinh(2 Re[γ]) , and sinh(2γ) = i(−1)n cosh(2 Re[γ]) , (4.2.28)

are purely imaginary, implying that the initial momenta Π0
x, Π0

y and the classical solutions
x̄(t), ȳ(t) are purely real (for all t ∈ (0, 1)). This makes the saddle point lapse values (4.2.1)
and the on-shell action evaluated on those geometries (4.1.7) also purely real. Whatever
saddle points dominate the wavefunction, it will take the form:

Ψ[xf, yf] =
∑

ei·real number, (4.2.29)

meaning that all the relevant saddle points get the same amplitude. This wavefunction
does not describe a true quantum state, and instead furnishes a collection of classical
evolutions. Furthermore, we will now prove that the classical solutions found in
region III are non-physical, as they always encounter a singular bounce.

The classical solution x̄(t) describes in this case an upward facing parabola, because
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N2 > 0. The classical solution ȳ(t) still forms a straight line. Consider first the compact
saddle points. There we start from x̄(0) = ȳ(0) = 0, with the initial gradient of ȳ larger
than that of x̄: ∣∣∣∣∣ ˙̄y(t)

˙̄x(t)

∣∣∣∣∣
t=0

= |coth(Re[γ])| > 1 . (4.2.30)

Since at the end point we get x̄(1) > ȳ(1), we conclude that there must exist a time point
t⋆ ∈ (0, 1) where the two curves x̄(t) and ȳ(t) intersect, so that ā(t⋆) = 0. This shows that
compact saddle point geometries contain a singular bounce where perturbations blow up.
Following the line of arguments develop for the region II, these saddle points are then
excluded from the path integral. Turning to non-compact saddle points, we initially find
x̄(0)2 − ȳ(0)2 < 0 and at the end point, x̄(1)2 − ȳ(1)2 > 0. As for the non-compact saddle
point of region II, by the mean value principle there must be a point t⋆ ∈ (0, 1) where the
geometry vanishes, ā(t⋆) = 0, giving us another singular bounce.

We conclude that in region III, there are no physically acceptable solutions. This is
not a problem because this region is not continuously connected to the pure gravity case
ϕf → 0. This result simply means that there is a maximal bound on ϕf that lead to
classical spacetime, and this bound is a2

f sinh2(ϕf) < 1.

4.3 AdS potential

We now turn to the negative hyperbolic cosine potential (α = −1, β = 0), represented
in red in figure 4.1. This potential is prototypical of those appearing in string compact-
ifications, at least for small values of the scalar field4. The interest of this potential is
also that at its maximum in ϕ = 0, we recover the pure Anti-de Sitter case, studied in
[53, 76]. There it was found that the AdS path integral is formally completely analogous
to a no-boundary path integral, including the requirement for a regularity condition in
the interior of the geometry.

4.3.1 Compactness condition

The saddle point geometries for the AdS potential are given by:

N saddle
± = i cosh(2γ) ±

√
− cosh2(2γ) − a2

f cosh(2ϕf) . (4.3.1)

As for the positive hyperbolic cosine potential 4.2, the constraint equation together
with the regularity condition implies that x̄(t = 0) = 0 is always satisfied. There-
fore, the compactness condition, ā(t = 0) = 0, only requires that ȳ(t = 0) = 0. This
condition on the classical solution (4.1.15) is satisfied for the lapse value Ncompact =
a2

f sinh(2ϕf)/(2i sinh(2γ)). Equating this expression with the saddle point lapse expres-
4The typical string compactification potential would in addition be bounded by below and thus turn

upward for large ϕ).
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sions (4.3.1), we obtain an equation for γ:

a2
f sinh2(2ϕf) − 4 sinh(2γ) sinh(2γ − 2ϕf) = 0 , (4.3.2)

whose solution in the complex plane are given by:


2γI

∓ = ∓ cosh−1

√1 + sinh2(2ϕf)
4

(
2 + a2

f cosh(2ϕf) −
√

(2 + a2
f cosh(2ϕf))2 − a4

f

);

2γII
∓ = ∓ cosh−1

√1 + sinh2(2ϕf)
4

(
2 + a2

f cosh(2ϕf) +
√

(2 + a2
f cosh(2ϕf))2 − a4

f

).
(4.3.3)

The solutions γI
− and γII

+ are defined for ϕf > 0, while γI
+ and γII

− are defined for ϕf < 0.
For the explicit derivation of this result, see the appendix B.2.

For each choice of final boundary conditions (af, ϕf), we find four saddle point solutions,
two compact (N+[γI] and N−[γII]), and two non-compact (N+[γII] and N−[γI]). All those
γ values are real, so the saddle point lapse values (4.3.1) are purely imaginary. This
implies that the on-shell action evaluated on these saddle points (4.1.7) is also purely
imaginary. Therefore, eiS is a pure amplitude and the no-boundary wavefunction will not
contain any phase, i.e., it doesn’t lead to classical spacetime.

4.3.2 Saddle point geometries and lapse integration

We illustrate again the fields evolution for the four different saddle points (see figure 4.8),
and the structure of flow lines (see figure 4.9) with the numerical example af = 2, ϕf = 0.1.
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(c) Non-compact Euclidean geometry N−[γI
−].
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(d) Non-compact Euclidean geometry N+[γII
+].

Figure 4.8: Fields evolution in time, for the four saddle point geometries. Parameters are:
α = −1, β = 0, af = 2, ϕf = 0.1, (N is purely imaginary). The relevant numerical values are
γI

− = −0.0615 , N+[γI
−] = 3.26i , N−[γI

−] = −1.25i ; γII
+ = 0.162 , N−[γII

+] = −1.23i , N+[γII
+] =

3.33i . Same conventions as in Fig. 4.3.
.

For this example, we find a singular bounce within the evolution of the two non-
compact saddle point geometries, N+[γII], N−[γI], as well as for the compact saddle point
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geometry N+[γI]. Using the argument developed in 4.2.2, the contribution of these geome-
tries to the wavefunction is suppressed by the blowing-up of fluctuations at the singularity.
Moreover, as in section 4.2, one can show analytically that these singular bounces occur
for any final boundary conditions (af, ϕf).
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Figure 4.9: Case α = −1, β = 0, af = 2, ϕf = 1. Density plot of the weighting Re[iSon-shell
saddle ]

and flow lines in the complex N plane. Same conventions as in Fig. 4.4.

The only saddle point geometry left is N−[γII]. From the lapse integration given by
Picard-Lefschetz theory, this saddle point (lower half plane in 4.9b) will be selected only
if the integration contour runs along the lower imaginary axis in the lapse complexified
plane (in order to obtain a real valued wavefunction, we can define the path integral as a
sum of two contours, one running from −i∞ up to the upper saddle point, and then along
the steepest descent contour on the left, and the second mirroring the first with respect
to the imaginary axis: this provides two complex conjugate contributions as in the pure
gravity case [53, 76]).

The no-boundary wavefunction is then approximated by

Ψ[af, ϕf] ≈ e
i
ℏScompact

on-shell (N−[γII
+ ]) , with (4.3.4)

Scompact
on-shell (N−[γII

+]) = − i

3
(
(a2

f + 1)3/2 − 1
)

− i

2
(
(a2

f + 1)1/2 − 1
)
a2

f ϕ
2
f + O(ϕ4

f ) . (4.3.5)

To conclude, we have shown that in approximately AdS space, the prescription to
define the path integral with a momentum condition instead of a Dirichlet condition on
the interior also works once a scalar field is included.

4.4 Exponential potential

We now consider the simple exponential potential, V (ϕ) ∝ e2ϕ, described in our model by
parameters α = β, and drawn in green in figure 4.1. Classically, this potential possesses
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inflationary scaling solutions with a constant equation of state, see [39]. Nevertheless, it
is nowhere flat, and therefore it doesn’t contain any de Sitter limit, in contrast with the
hyperbolic cosine potential.

The scaling symmetry present in this model allows for some simplifications, in partic-
ular there is a unique expression for the saddle point lapse value (4.1.21),

N0
saddle = − ia2

f
2 exp(2ϕf − 2γ) . (4.4.1)

The regularity condition together with the constraint equation ensures in this case that
x̄(0) = −ȳ(0). Therefore, the initial scale factor is always compact: ā(0) = 4

√
x̄(0)2 − ȳ(0)2.

However, it turns out that if x̄(0) and ȳ(0) do not also vanish independently, then the
momentum of the scale factor, aȧ

N
, blows up as t → 0. To avoid this divergence, we must

impose that:

x̄(t = 0) = xf − αN2 − 2Ni cosh(2γ) = 0 . (4.4.2)

That condition (4.4.2) applied on the saddle point geometry, N0
saddle, leads to the equation:

a2
f cosh(2ϕf) + αa4

f
4 e4ϕf−4γ − a2

f cosh(2γ)e2ϕf−2γ = 0 , (4.4.3)

which can be solved for γ ∈ C and yields the solutions:


γI

(n) = 1
4 ln

(
1 − a2

f
α
2 e

2ϕf

e−4ϕf

)
+ in · π2 for n ∈ {0, 1} ;

γII
(n) = 1

4 ln
(
a2

f
α
2 e

2ϕf − 1
e−4ϕf

)
+ i

(
π

4 + n · π2

)
for n ∈ {−1, 0} ;

(4.4.4)

whose respective regions of validity, represented in figure 4.10 for α = 1/2, are

region I: a2
f
α

2 e
2ϕf < 1 ; region II: a2

f
α

2 e
2ϕf > 1 . (4.4.5)

The stability condition Im(Π0
x) > 0 will not be satisfied for γI

(1), so this solution can be
ruled out immediately.

For this case, we find one compact saddle point for each value of γ. We look closer
to their geometry. In region I, the imaginary part of γ implies that the momenta Π0

x, Π0
y

and the saddle point lapse values (4.4.1) are purely imaginary. Therefore, once again the
wavefunction constructed from these geometries is a pure amplitude and we do not obtain
a classical spacetime. In region II on the contrary, the imaginary part of γ leads to purely
real momenta, real saddle point lapse values and real on-shell action evaluated on these
saddle points. The wavefunction should then describe a collection of classical solutions
that all have the same weighting. Nevertheless, all geometries of region II contain a
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Figure 4.10: Phase space regions delimited by the condition a2
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α
2 e2ϕf = 1 (red curve), with

α = 1/2. In the red region, the saddle point value for the lapse is purely real. In the green
region, the saddle point value for the lapse is purely imaginary.

singular bounce in their evolution5. The proof is straightforward and similar to that of
subsection 4.2.3. As also discussed in there, singular geometries are excluded from the
path integral, as they lead to the blowing-up of perturbations.

Therefore, for the pure exponential potential, we don’t find any regular no-boundary
solutions that could predict a classical evolution of the fields.

4.5 An unrealistic potential

The last model we consider is a hyperbolic sine potential (α = 0, β = 1), represented in
orange in figure 4.1. This is a special case, because this potential is not prototypical of
any known physical situation. It is unbounded from below and steep for negative values,
though not enough to possess ekpyrotic solutions [81], it doesn’t possess a slow-roll region
or a de Sitter like minimum, and it resembles the hyperbolic cosine potential only at large
values of the scalar field ϕf ≪ 1, where we haven’t found any classical spacetime. Indeed
our analysis will confirm that this potential does not allow for any no-boundary solutions.

4.5.1 Compactness condition

The saddle point lapse values are:

N±
saddle = i sinh(2γ) ±

√
− sinh2(2γ) − a2

f sinh(2ϕf) . (4.5.1)

In this case, the regularity condition and constraint equation imply that ȳ(0) = 0.
The compactness condition reads x̄(0) = 0, which translates into the requirement that
Ncompact = a2

f cosh(2ϕf)/(2i cosh(2γ)). Equating this expression to the saddle point values
5This fact was already noted in [39].
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(4.5.1), we find two equations for γ ∈ C, which are solved by:


γI
(n) = −1

2 cosh−1
(

cosh(2ϕ)
2

√
2 − a2

f sinh(2ϕf) +
√
a4

f + (2 − a2
f sinh(2ϕf))2

)

+ i
n · π

2 with n ∈ {0, 1} ;

γII
(n) = 1

2 cosh−1
(√

1 − cosh2(2ϕf)
4

(
2 − a2

f sinh(2ϕf) −
√
a4

f + (2 − a2
f sinh(2ϕf))2

))

+ i
(
π

4 + n · π
2

)
, n ∈ {−1, 0} .

(4.5.2)
These expressions are both valid for any final boundary conditions (af, ϕf). Again, the
solution γI

(1) violates the stability condition Im(Π0
x) > 0 so it is immediately ruled out.

4.5.2 Analysis of the saddle point geometries

The geometries with γII have Im[2γII] = π/2 + n · π, n ∈ {−1, 0}, so that the initial
momenta Π0

x, Π0
y and the saddle point lapse values are purely real. Analogously to similar

cases in the previous sections, those saddle point geometries are found to contain a singular
bounce and are therefore discarded from the path integral.

We can then focus on geometries with γI
0. The imaginary part is Im(2γI

0) = 0, so that
the initial momenta Π0

x, Π0
y and the saddle point lapse values are purely imaginary. We

get two saddle point geometries, one compact (N−[γI
(0)]) and one non-compact (N+[γI

(0)]).
These two geometries are Euclidean, because they correspond to real field values a and
ϕ throughout their time evolution, and their lapse value is purely imaginary. Their field
evolution are represented in figure 4.11, and their steepest descent and ascent contours in
the complexified lapse plane are depicted in figure 4.12, for the numerical values af = 2
and ϕf = 1.
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(a) Non-compact Euclidean geometry N+[γI
(0)].
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Figure 4.11: Case α = 0, β = 1, af = 2, ϕf = 1, with N imaginary. The relevant numerical
values are γI

(0) = −0.475 , N+[γI
(0)] = 2.87i , N−[γI

(0)] = −5.06i . Geometry associated to the
different saddle points. Same conventions as in figure 4.3.

From this numerical example, we see that if we choose the Lorentzian axis as contour
of integration, it can be deformed into the steepest descent contour of the compact saddle
point (in green). The wavefunction defined by this path integral can be semi-classically
approximated by:

Ψ[af, ϕf] ≈ e
i
ℏScompact

saddle (N−[γI
(0)])

, with at linear order in ϕf: (4.5.3)
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Scompact
saddle (N−[γI

(0)]) = − i

2

(
3a2

f

√√
a4

f + 4 + 2 −
√√

a4
f + 4 − 2

3)
+ i

2

√√
a4

f + 4 − 2 a2
f ϕf

+ O(ϕ2
f ) .

This wavefunction is a pure amplitude. It could describe the nucleation of the universe
at small scale factor, as in the region II of the hyperbolic cosine. The difference is that
here, this solution is valid for any af value, so this nucleation is not followed by a classical
evolution. Therefore, these saddle point geometries do not predict the emergence of
classical spacetime. The wavefunction actually resembles the quasi-AdS case of section
4.3, except that we used a different contour of integration in the path integral’s definition.

Overall, we find that for the hyperbolic sine potential, the no-boundary wave-
function does not lead to the emergence of classical spacetime. This illustrates
the predictive power of the no-boundary wavefunction: within this proposal, only a few
scalar potentials can actually lead to our classical early universe, such as flat-enough pos-
itive regions of the potential (inflationary regions [35, 37]), or steep-enough and negative
regions of the potential (ekpyrotic no-boundary instantons [82, 36]).

4.6 Discussion

In this chapter, we have built an important step in the understanding of the no-boundary
proposal, in particular its implementation in terms of a sum over regular metrics, i.e.,
the no-boundary proposal defined with a momentum condition. We have studied how
this implementation can be generalized to include the description of a scalar field in the
early universe, for various prototypes of the scalar potential. The consistent inclusion of
a scalar field is a necessary step in the perspective of constructing a more realistic version
of the no-boundary wavefunction, which encapsulates matter fields, and can lead to the
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standard hot big bang evolution.
We have shown that, in the presence of a scalar field, classical spacetime can only

emerge if the scalar potential is of slow-roll type, and in this case, we find that the scalar
field goes to 0 at large values of the scale factor. If the final scalar field value is too large,
no physical classical evolution can reach this configuration. For AdS-like potentials, we
recover pure amplitude wavefunctions giving rise to Euclidean spacetime, similarly to the
case without a scalar field. Those Euclidean pure amplitude wavefunctions are also found
in the slow-roll type of potential, when considering very small scale factor values. For
an exponential potential, we find either a Euclidean spacetime, or a region without any
classical evolution, depending on the final configuration of scalar field and scale factor.

One peculiarity of the saddle point geometries in the presence of a scalar field, is that
they always (except for the exponential potential) come in pairs, one being regular and
compact initially at the no-boundary point, the other being only regular but non-compact.
Nevertheless these non-compact geometries are always sub-dominant in the path integral.

Another key feature of our solutions is that the initial value of the scalar field at the
no-boundary point always depends on the final boundary conditions. This actually poses
a strong non-causality puzzle, which questions the validity of our prescription for the no-
boundary wavefunction. This puzzle can be resolved either by assuming that quantum
gravity is inherently non-causal, or by considering that the scalar field must take real
(or not too complex) values and then construct a different prescription, e.g., summing
on all γ values. Such a restriction could in particular follow from the application of
the KS criterion for complex metrics (which will be the subject of chapter 6), because
this criterion necessitates scalar fields to be real (generalization of the KS criterion, in
particular considering effects of dimensional compactifications [77], still allow a certain
range of complex values for the scalar field). Note that for Euclidean spacetimes, there
is no notion of causality anyway. Restricting the scalar field to lie on the extrema of the
potential can have interesting implications for the observations. Since the no-boundary
wavefunction scales as e1/(ℏV (ϕ)), low values of the potential are preferred. For a theory
containing many scalar fields, as is expected for instance in string heterotic models, the
most probable configuration consists of having all scalar fields lying on the lowest minimum
of their potential. This feature would explain why all the coupling constants in our
universe are observed to be time-independent. But this configuration would also leave an
empty universe, so it is preferable that at least one of these scalar fields stands on a local
maximum of the potential. This scalar field could then lead to an inflationary phase and
generate density perturbations. Making such a scenario viable requires a better knowledge
of the precise structure of the potential, which should possess a local maximum where large
perturbations can be generated and next to a stable minimum where inflation can end.
This is an open problem, but we have shown here that for a suitable dynamical theory,
the no-boundary proposal still provides a consistent theory for the initial conditions of
the universe.
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Before moving on to the next part of this thesis, we make two last remarks. First, we
have encountered many singular bouncing solutions in the geometries, both for compact
and non-compact saddle points. On this point, we stress that our implementation of the
no-boundary proposal relies on a minisuperspace ansatz. This ansatz is equivalent to
making a strong symmetry reduction, and implies we are throwing away many degrees
of freedom (by only considering homogeneous fields). Therefore, it is always necessary to
verify a posteriori that the symmetry reduction was indeed consistent, i.e., that we didn’t
get rid of important contributions. In particular, the solutions containing a singular
bouncing imply a blowing up of the perturbations at the singularity: these solutions are
thus inconsistent with the minisuperspace ansatz. Finally, the prescription of the no-
boundary proposal implies a choice of both boundary conditions and of the contours of
integration. These choices are however connected, and in this chapter we have found that
negative potentials require near-Euclidean geometries, while positive potentials require
near-Lorentzian geometries. This question will also be reconsidered with the KS criterion
for complex metrics in chapter 6.
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Part II

Semi-classical constraints on the
early universe
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Chapter 5

Finite amplitude criterion

In this final part of the thesis, we depart from our previous focus on the no-boundary
proposal and enlarge our perspective to other early universe models. The main ambition
of this thesis is to study the gravitational path integral. In this third part, we investigate
in particular the consequences of considering the path integral quantization at the semi-
classical level, on a plethora of models for the early universe. First, in this chapter we
construct a criterion based on the consistency of probability amplitudes defined through
the path integral. Then in the next chapter, we apply a criterion for complex metrics,
stemming from the consistency of matter fields path integrals in quantum field theory, to
the case of early universe models.

In the context of the path integral quantization, cosmological amplitudes give the
probability amplitudes for transitioning between two cosmological configurations, Φi and
Φf:

A[Φi → Φf] ≡
∫ Φf

Φi
DΦ eiS[Φ]/ℏ ≈

∑
saddles

N eiSclassical
saddle [Φ]/ℏ . (5.0.1)

The cosmological configurations typically consist of a spacetime hypersurface, on which
all field values or their momenta are specified. Our definition of cosmological amplitudes
(5.0.1) makes use of the Lorentzian path integral, which weights every path by a phase
proportional to the Lorentzian action of all the fields (including the metric field), S[Φ].
A minimal requirement for the path integral quantization to be consistent is then that
the cosmological amplitude gives a finite contribution for any pair of field configurations
”in the past”, or up to current configurations. We call this the finite amplitude criterion.
From the semi-classical approximation, which estimates the path integral by its leading
(classical) order in the expansion in Planck’s constant1, as spelled out in (5.0.1), we
find that a necessary requirement for obtaining a finite amplitude, is that the classical
action evaluated on the saddle point configurations2 is itself finite. We will show that
this simple criterion already leads to stringent constraints on the cosmological models.

1The normalization factor N , present in the semi-classical expression for the amplitude, will be unim-
portant for our considerations in this chapter.

2We recall that saddle points of an action are (generically complex) classical solutions to the equations
of motion of this action.
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We point out that the action is required to be finite only on-shell (e.g., evaluated on the
saddle points). Off-shell actions are generically infinite, and this feature can be viewed
as causing the uncertainty principle in quantum mechanics. Requiring a finite classical
action is nevertheless not sufficient to ensure a finite amplitude, and in particular quantum
interferences between several saddle point solutions can sometimes lead to instabilities.
The stability of the configurations described by the cosmological amplitudes is therefore
also a necessary requirement, which we will probe when possible. In this sense, the finite
amplitude criterion goes beyond classical considerations and enables us to scrutinize some
quantum aspects.
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Figure 5.1: Theories studied in this chapter against the finite amplitude criterion. Dashed
(respectively plain) nodes represent theories where the criterion is necessarily violated
(respectively satisfied under certain conditions). These conditions, and more details on
the characteristics of each model, are given in the table 5.1 and in the main text.
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Scenario Specifics Sec. Results and conclusions

5.1.1
Yes if ∀ϕ, |V (ϕ)| < ∞, four-volume < ∞.

+ scalar field
In FLRW/B9: Yes if a3V

t→0∼ tp, p > −1.
+ perfect fluid p = wρ 5.1.2 In FLRW: Yes if −1 < w < +1.

Standard
cosmological
models

Black holes 5.1.3 Yes: singularity always in the future.

5.2.1
No: S

(classical)
on-shell < ∞ but interferencesFirst phase of

evolution ⇒ unstable semi-classical amplitudes.
Eternal inflation 5.2.2 No: Son-shell → ∞.

Inflation

Transient & non-eternal 5.2 Yes.

Bounce
contracting phase
with p = wρ

5.3.1
Yes if and only if w > 1 ⇔ pure ekpyrotic
phase.

Exactly cyclic: ∃ P s.t.
5.3.2

No: Son-shell → ∞, and moreover, it
∀t : a(t) = a(t + P ) violates the second law of thermodynamic.

Cyclic
universe
(EH action
in FLRW)

a larger at each cycle, but
cyclic in local quantities,
e.g., H

5.3.2
Yes: a reaches 0 in finite proper time,
but universe becomes geodesically
incomplete.

No-boundary
proposal

Defined with initial mo-
mentum/regularity con-
dition

5.4
Yes: Son-shell < ∞ and stable
semi-classical amplitudes.

Quadratic gravity
(n = 2)

5.5.4
Yes: Son-shell < ∞ only for accelerating
(possibly anisotropic) backgrounds.

n ≥ 3 on Lorentzian
FLRW bckg

5.5.3
k = 0: Yes if n is bounded and ∃ sufficiently
accelerated expansion.
k ̸= 0: No, Son-shell → ∞.

(Riem)n

higher-
curvature
theories

All n included 5.5.3 No for all FLRW solutions.
k-essence theory (e.g.
ghost condensate)

5.6.1
Yes, but other issues (e.g., unitarity viola-
tion of fluctuations).

(beyond-)Horndeski 5.6.1 Yes for some models, at least at bckg level.
Loitering phase
in EH action

5.6
Yes, also with a scalar field and a perfect
fluid action.

Emergent
and loitering
universes

Loitering phase in
string cosmology

5.6.2
Dilaton gravity: No, Son-shell → ∞.
Non-pert. curvature corr. in α′ [83]: Yes.

Table 5.1: Summary of the results of this work. In the last column, “yes” and “no” refer
to whether the finite amplitudes criterion is satisfied or not. The fact that these theories
satisfy the finite amplitude criterion doesn’t mean that they are exempt of any other
inconsistencies.

Before we embark on the task of studying early universe models against this criterion,
we must make several remarks. First, we insist on the fact that in the definition of the
amplitudes (5.0.1), because we are performing the path integral also on the gravitational
sector, the spacetime geometry is not fixed from the onset. Therefore, the total time
elapsed between the initial and final configuration will not necessarily be specified. Since
we will in particular focus on early universe models, we will sometimes consider a initial
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configuration in the infinite past, and sometimes some finite time ago. Our second remark
concerns the type of models that can be constrained by this criterion. Obviously, we
can only restrict models possessing an action description. In particular, if the degrees
of freedom drastically change in the early universe, e.g., by reaching a non-geometric
phase such as in [84], then the amplitude definition we have given here will not apply
anymore. Then, our third remark aims to underline the strong potential of our criterion,
by illustrating it with the example of quadratic gravity studied in [85]. There it was found
that demanding the finiteness of the classical action restricts possible backgrounds near
the big-bang to accelerating scale factors (in this chapter we will see how this result can
be improved). Therefore, quadratic gravity imposes strict initial conditions which are
favorable to inflation. Independently of whether or not quadratic gravity turns out to be
a viable theory for the early universe, this highlights how a semi-classical criterion can
form a strong selection principle for the initial conditions of the early universe. Finally,
we must note that already more than forty years ago, a finite action criterion was put
forward by Barrow and Tipler (BT) [86], and was also recently updated in [87]. Although
this criterion is very similar to the one we develop in this chapter, its motivation is deeply
different and leads to remarkably contrasting consequences. BT’s finite action principle
requires the classical action, evaluated over the entire history of the universe3 to be finite.
This stems from the consideration that the action is a fundamental physical quantity,
from which all the dynamic of the system is derived, and it should therefore be finite.
This represents a (too) strong requirement, as it implies that the far future can affect the
past history of the universe. This criterion is thus more constraining than ours at the
classical level, but it nevertheless lacks the sensitivity to quantum aspects that we can
achieve.

The results we will present in this chapter were published in [2]. In figure 5.1, we have
represented schematically all the cosmological models that we will study against our finite
amplitude criterion in this chapter. Then in table 5.1 we summarize the same results in
more detail, and refer to specific sections of the chapter where those results are derived.
These results will then be discussed in detail in the discussion section of this chapter 5.7.
The next sections of this chapter rely and present the results of [2].

5.1 Standard cosmological models

We first confront the finite amplitude criterion with the standard cosmological model
presented in the introductory chapter 1. This describes a universe obeying the basic
action of general relativity. We will consider two simple types of matter fields, first a
canonical scalar field 5.1.1, and then some perfect fluid matter fields 5.1.2, as appeared
in the hot big bang model 1. We will also say a word about boundary terms and black
hole solutions in the context of this criterion 5.1.3.

3By entire, we mean the whole four-manifold describing the universe’s geometry.
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5.1.1 Canonical scalar field

Scalar fields are the simplest matter fields we can add to general relativity, and we have
seen (see chap. 3) that for a homogeneous and isotropic early universe, a scalar field is
generically enough to describe the effects of matter close to the beginning of spacetime,
and can generate an inflationary mechanism 1.2.

The action for general relativity minimally coupled to a canonical scalar field is:

Sscalar =
∫

d4x
√

−g
(
M2

Pl
2 R − 1

2∂µϕ∂
µϕ− V (ϕ)

)
. (5.1.1)

The equations of motion for this action are the Einstein field’s equations (1.1.9), Rµν −
1
2Rgµν = 1

M2
Pl
Tµν , where Tµν is the energy-momentum tensor of the scalar field,

Tµν = ∂µϕ∂νϕ+ gµν

(
−1

2∂αϕ∂
αϕ− V (ϕ)

)
. (5.1.2)

The finite amplitude criterion can be satisfied only if the on-shell action, evaluated on
classical solutions of the equations of motion, is finite. To probe this, we substitute the
field equations into the action4. We take the trace of the equations of motion (1.1.9),
M2

PlR = −T = ∂µϕ∂
µϕ+ 4V (ϕ) , and use it to replace the first term in the action (5.1.1),

yielding the simple on-shell action,

Son-shell
scalar =

∫
d4x

√
−g V (ϕ) . (5.1.3)

The expression (5.1.3) leads to key consequences concerning the finite amplitude criterion.
We consider a final configuration at time t = t0: ϕ(t0) = ϕf ∈ R and gij(t0) = hij. Then
the on-shell action (5.1.3) will be finite if:

1. the scalar potential is bounded everywhere: ∀ϕ, |V (ϕ)| < ∞, and the four-
volume up to the final configuration in t = t0 is finite: V =

(∫
d3x

∫ t0
dt

√
−g
)
<

∞ ;

2. in the past, the scalar potential V (ϕ) decreases sufficiently fast as to render the
on-shell action finite when integrating back to infinite past (genesis scenario, see
section 5.6).

In this section we concentrate on the first possibility where the four-volume V must
be finite to ensure the finiteness of the on-shell action. In this case, the actual behavior
of the scalar field and the exact shape of the geometry are of no importance to the finite
amplitude criterion. The finiteness of the four-volume has two immediate consequences:

4By doing so, we allow for cancellations between gravity and matter terms. This is justified by the fact
that in quantum gravity, we do not expect a strong distinction between gravity and matter, and indeed in
supersymmetry for example, all fields are described in the same multiplet, while in string theory, gravity
as well as matter is described by strings.

97



1. the universe must have had a beginning in time, t = 0 ;

2. the spatial volume of the universe must be finite. This is automatic for a closed
universe and can be achieved with adequate non-trivial topology for flat and open
universes. From now on we thus set the spatial volume to unity for clarity.

We point out that the four-volume can stay perfectly finite although the curvature
blows up in the approach of the beginning of time, as is the case in the presence of
Bianchi IX anisotropies. We recall that in Euler’s angles ψ, θ ∈ [0, π] and ϕ ∈ [0, 2π], the
Bianchi IX metric reads (3.1.4):

ds2
BIX

= −dt2 + a2
[
e−4β+(dψ + cos θ dϕ)2 + e2(β++

√
3β−)(sinψ dθ − cosψ sin θ dϕ)2

+ e2(β+−
√

3β−)(cosψ dθ + sinψ sin θ dϕ)2
]
,

(5.1.4)

for the scale factor a(t) and the anisotropies β±(t). Even though it is well-known that
a generic approach to the initial singularity is governed by the mixmaster equations [88]
where the anisotropies blow up, the overall volume is nevertheless given by √

−g = a3 ∼ t,
so that the four-volume stays finite.

This feature enables to soften the condition that the scalar potential must be bounded
everywhere for certain homogeneous backgrounds such as FLRW or Bianchi IX, whose
metric can be generically written as: ds2 = −dt2 + a(t)2dx2 . Then their on-shell action
(5.1.3) gives

Son-shell
scalar ∝

∫ t0

0
dt a3V (ϕ) , (5.1.5)

which remains finite as long as the rate of divergence of a3V (ϕ) is strictly slower than
that of t−1 as t → 0, and that this quantity is bounded everywhere else. For instance, for
the following exact solution in FLRW5:

V (ϕ) = V0 exp
√2

s
ϕ

, with s > 1/3 ⇒


a(t) = ts ,

ϕ(t) = −
√

2s ln
(
t

√
V0

s(3s− 1)

)
,

(5.1.6)

we find that a3V (ϕ) ∝ t3s−2 so that even though the scalar potential diverges as V (ϕ) ∝
t−2, the on-shell action remains finite. However, the argument developed here requires
us we trust the scalar potential over an infinite field range. This is a strong assumption
which generically fails for example in string compactifications [9].

Finally, we point out that in the case of vacuum, or if the potential vanishes identically,
V (ϕ) = 0, e.g., in the case of a massless scalar field, then the on-shell action (5.1.3) also

5The requirement s > 1/3 constrains the pressure-to-energy density ratio, w, to lie in the range (−1, 1).
In this range, the anisotropies will typically dominate the approach to the big bang, so the exact FLRW
solution presented here is not generic, but it serves an illustrative purpose. The argument presented here
is also valid in the presence of anisotropies even though there are no simple exact solutions known in that
case.
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vanishes. This would imply that the finite amplitude criterion is satisfied regardless of the
four-volume of the universe. However, if the only matter field is such a massless scalar (or
in vacuum), no measurement of transition amplitudes can be made, since the propagation
speed of matter equal that of light. Any physical apparatus would be massive and would
alter the matter content, and render the on-shell action non zero.

5.1.2 Perfect fluid matter fields

As we have seen in chapter 1, many matter types of cosmological relevance are well
approximated by perfect fluids of energy density ρ and pressure p. The equation of state
relating pressure and energy density reads: p = wρ. Then the trace of the energy-
momentum tensor is T = ρ(3w−1) in four-dimensions, and as in the previous subsection,
the on-shell action of gravity with a perfect fluid [89, 90] can be simplified by replacing
its first term using the trace of Einstein’s equations: M2

PlR = −T , so that:

Son-shell
fluid =

∫
d4x

√
−g M

2
Pl

2 R +
∫

d4x
√

−g p = 1
2

∫
d4x

√
−g (1 − w)ρ . (5.1.7)

This on-shell action vanishes when ρ = 0 (vacuum) and when w = 1 (stiff fluid). For the
same reasons as established in the last paragraph of the previous subsection, these cases
are not realistic.

We restrict to FLRW flat universes, ds2 = −dt2 + a(t)2(dx2 + dy2 + dz2). Assuming
that the equation of state is w > −1, the equations of motions stemming from the gravity
with perfect fluid action lead to the solution:

a ∝ t
2

3(1+w) , ρ ∝ a−3(1+w) ∝ t−2 , Son-shell
fluid ∝

∫ t0

0
t−

2w
1+w dt ∝ t

1−w
1+w

0 − lim
t→0

t
1−w
1+w . (5.1.8)

The time integral giving the on-shell action in (5.1.8) is convergent only if −1 < w ≤
1. w = 1 gives the stiff fluid just discussed above, while w = −1 gives an effective
cosmological constant. The background solution is then given by a flat de Sitter spacetime,
which we analyze in detail in the section devoted to inflationary models 5.2.

For now, we conclude that the finite amplitude criterion is satisfied by any perfect
fluid with equation of state −1 < w < 1 (if we assume a finite spatial volume of the
universe), despite the generic presence of a curvature singularity and the blowing up of
the energy density at the beginning of time.

5.1.3 Boundary terms and black holes

Before moving on to more speculative models for the early universe, we address here two
questions related to the general relativity action.

The first concerns boundary terms that must be included in the gravity action in order
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to make the variational principle well-posed,

±
∫

∂M
d3x

√
hK . (5.1.9)

This is the Gibbons-Hawking-York term, constructed from the determinant of the three-
dimensional metric h on the boundary surface ∂M and from the trace of the extrinsic
curvature on this same surface, K. The cosmological amplitudes we defined in (5.0.1)
possess two boundaries (hypersurfaces corresponding to the initial and final configurations
ϕi and ϕf). Let us assume for now that those hypersurfaces are spacelike and correspond
to some initial and final time which bound the time integration of the action, ti and tf.
Evaluated on the final boundary, the term (5.1.9) will always give a finite contribution to
the on-shell action, because there all field values and their derivatives are finite. On the
initial boundary, we first remark that a boundary term is only needed if we fix Dirichlet
boundary conditions, e.g., if we fix the field space values. For cases where we fix the
momentum values instead, such as in the no-boundary proposal defined with a regularity
condition (see sections 2.2, 4 and 5.4), and for some emergent scenarios (see section 5.6),
we do not require a GHY boundary term. When we have initial Dirichlet boundary
conditions, we must study the finiteness of the boundary term (5.1.9). For example, on
the perfect fluid solution with FLRW background we found in the previous subsection
(5.1.8), the boundary term reads:

K ∝ ȧ

a
,

√
h ∝ a3 ⇒

(
±
∫

∂M
d3x

√
hK

)
∝ a2ȧ ∝ t

1−w
1+w . (5.1.10)

In that case, the conditions for satisfying the finite amplitude criterion are unaltered by
the boundary term. For the general relativity with a canonical scalar field case we studied
in 5.1.1, we must also make sure that the variational principle with respect to the scalar
field is well-posed. For the action (5.1.1), we find:

0 = δϕS =
∫ tf

ti
dt
∫

∂M
d3x

√
−g (□ϕ− V,ϕ) · δϕ−

[∫
∂M

d3x
√
hnµ∇µϕ · δϕ

]tf

ti

, (5.1.11)

with ∇µ∇µ the d’Alembertian and nµ the unit vector normal to the hypersurface ∂M .
The variation principle is well-posed only if the term ”

√
hnµ ∇µϕ” does not diverge on

the boundary ∂M . In FLRW for instance, we typically have a ∝ t1/3 and ϕ ∝ ln(t) in the
approach to the big bang, so that

√
hnµ ∇µϕ ∼ a3ϕ̇ ∝ t0 and the variational principle is

well-posed. We emphasize with this example that even if the classical solution diverges
on the initial boundary, it is perfectly fine to fix the functional variation δϕ(ti = 0) = 0.

The second point of concern within the general relativity action is whether the finite
amplitude criterion is in adequation with the existence of black holes. Black holes are
vacuum solutions to the Einstein’s equations possessing enclosed spacetime singularity
where the classical action blows up. However, these singularities always classically reside
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in the future, because space and time are swapped at the event horizon6. Since we
have defined cosmological amplitudes only up to current time configurations, black hole
spacetimes satisfy the criterion. We mention that on this point, the finite action criterion
of Barrow and Tippler gives different results, since there the action is evaluated on the
entire spacetime, hence including the future singularity in the black hole interior. This is
also the viewpoint adopted in the recent paper [92], where the authors suggest that since
we expect quantum gravity theories to resolve singularities, the divergence of the black
hole entire action could be used as a criterion for viable quantum gravity theories.

5.2 Inflationary phases

Here we start our study of models going beyond the standard hot big bang cosmological
model, against the finite amplitude criterion. One of the most prominent and studied
theory, proposed in order to explain some of the puzzling features arising in the standard
cosmological model due to the initial conditions required, is the theory of inflation. In
addition, inflation also provides a mechanism for explaining how quantum fluctuations
amplify and turn into the density perturbations observed in the CMB. We have already
reviewed the salient characteristics of this theory and explained how it resolves the afore-
mentioned puzzles in section 5.2. Here we will confront several models of inflation against
the finite amplitude criterion. In particular we will consider models where inflation de-
scribes the first phase of evolution of the universe 5.2.1, and then we will study a generic
type of inflationary models possessing a so-called eternal phase 5.2.2.

5.2.1 Inflation as the first phase of evolution

In this subsection, we consider an inflationary phase preceding the radiation-dominated
phase of evolution in the standard hot big-bang model, and reaching all the way back to
an initial singularity. We neglect for now all effects related to eternal inflation, that will
be treated in the next subsection.

As developed in the introductory chapter in section 1.2.3, inflation can be modeled
by a simple scalar field evolving in a sufficiently flat potential, V (ϕ). In order for the
inflationary phase to resolve the flatness and horizon problems, we have seen that it must
have an equation of state p = wϕρ, with −1 < wϕ < −1/3. Using the equations developed
in the previous section on perfect fluids, in a FLRW background the scale factor evolves
close to the beginning of time as a(t) ∝ t

2
3(1+wϕ) . Moreover, the Friedmann equation

implies that V (ϕ) ≃ 3M2
PlH

2 ∝ t−2, and hence we can evaluate the on-shell action back
to a vanishing scale factor a(t = 0) = 0 as (5.1.3):

Son-shell =
∫

d4x
√

−g V (ϕ) =
∫ tf

0
dt a3V (ϕ) ∝

∫ tf

0
dt t

2
1+wϕ

−2
. (5.2.1)

6When rotation and/or charge are included, the singularities reside near the Cauchy horizon, which
represents future infinity inside the black hole [91].
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Because of the inflationary range for wϕ recalled above, this on-shell action yields a finite
result close to the initial singularity. This argument is valid for the FLRW background
metric, which is a very symmetric ansatz. The past incompleteness of inflation [93]
however ensures that the action for inflation will generically be finite when going back to
the beginning of time.

As we emphasized at the beginning of this chapter, the finiteness of the classical action
is a necessary but not sufficient condition, in order for the cosmological amplitude (5.0.1)
to be finite. In [94], it was shown that the quantum amplitude of inflation contains two
saddle point solutions, whose interference leads to instabilities. Explicitly, we consider
the cosmological amplitude to grow from an initial scale factor ai to a final, larger value
of the scale factor af in an inflationary phase with a slow-roll potential. For simplicity we
approximate the scalar field to a constant value. This approximation is legitimated by the
slow-roll regime. There are two classical solutions respecting these boundary conditions.
The first grows monotonically from ai to af (expanding solution), and the second first
contract from ai to zero size and then bounces back to af (bouncing solution). They are
represented in figure 5.2. These two saddle points contribute to the cosmological ampli-

ai

af

t
0 1

a(t)

Figure 5.2: When specifying the boundary conditions that the universe evolves from
an initial size ai to a final size af , the semi-classical amplitude for inflation involves an
interference between two background solutions. One solutions expands (red), while the
other bounces before reaching the desired final size (blue). The interference between the
two solutions causes an instability in the fluctuations. The time coordinate in the above
plot has been rescaled to run over the fixed range 0 ≤ t ≤ 1.

tude with an equal weight. In the limit when the initial scale factor goes to zero, those
two classical solutions merge. Consider now perturbations around these background solu-
tions. Using the standard Bunch-Davies vacuum, the perturbations around the expanding
solution obey a Gaußian distribution, but around the bouncing solution, they obey an
inverse Gaußian distribution (this is due to the fact that the bouncing solution is the
time reverse of the expanding solution. Therefore, perturbations around the bouncing
solution start in the unstable Bunch-Davies mode, which is the time reverse of the stable
mode). Unfortunately, in the limit where the initial scale factor a goes to 0, it turns out
that the unstable perturbations are dominant (see [94] for details). We conclude that
the cosmological amplitude for inflation, when the phase of inflation reaches back to the
initial singularity ai → 0, is unstable and therefore this amplitude is not well defined.
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To bypass this problem, we can either assume that:

• inflation did not occur. In that case, another mechanism is required to solve the
flatness and horizons problems of the standard hot big-bang model, and also gen-
erate the primordial density fluctuations. Standard alternatives to inflation include
bouncing and emergent cosmologies, both discussed later on in this chapter;

• inflation did occur, but was not the first phase of evolution. This leaves open the
question of what happened before, and what are the initial conditions required
for inflation to start. In this case, if the initial scale factor ai is large enough,
the bouncing solution get suppressed in the path integral [94]. The cosmological
amplitude is therefore finite and stable at the beginning of inflation. Nevertheless,
such a transient inflationary phase can still cause a blowing up amplitude if one
reaches an eternal inflation regime. This will be discussed in the next subsection;

• inflation is the first phase of evolution, but the boundary conditions at the big
bang exclude the unstable, bouncing solution which then doesn’t contribute to the
amplitude. This requires quantum boundary conditions and cannot be realized
within classical gravity. The no-boundary wavefunction, which we have already
studied at length in the previous chapters, is one example of such quantum initial
conditions. We will confront it to the finite amplitude criterion in section 5.4.

5.2.2 Eternal inflation

Eternal inflation is a regime of evolution that is reached when the scalar potential is very
flat, as is generically the case during a slow-roll inflationary phase. The inflaton (scalar
field generating inflation) evolution can be decomposed into a classical evolution rolling
down the potential, and stochastic jumps accounting for the quantum fluctuations of the
field (see figure 5.4). The amplitude of the stochastic jumps depends on the height of
the potential, while the classical slow-roll depends on the slope of the potential. If the
potential is very flat, quantum jumps can become significant and prevent the universe
from exiting the inflationary phase, by constantly creating new inflationary regions of
spacetime. This is the regime of eternal inflation, schematically depicted in figure 5.3.

In this subsection, we show that the cosmological amplitude associated with an eternal
inflation regime necessarily diverges. In cosmology, we cannot directly measure the scale
factor a of our universe. Rather, we can measure the Hubble rate H = ȧ/a. Because
of the Friedmann equation, the Hubble rate gives us the energy density of the universe.
For inflation, the energy density is well approximated by the inflaton potential, V (ϕ) ≃
3M2

PlH
2. Therefore, the scalar field value ϕ is a useful substitute to the energy density

(and the expansion rate), and we will thus calculate transition amplitudes from an initial
field value ϕinitial, lying in the inflationary region of the potential, up to a final field
value ϕcritical, which corresponds to the end of the inflation regime, where the reheating
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ϕinitial

ϕcritical

(a) No eternal inflation

ϕcritical

ϕcritical

ϕcritical

ϕcritical

ϕcritical

ϕcritical

(b) Eternal inflation

Figure 5.3: The inflaton field evolves via a combination of classical rolling down the
potential combined with random quantum jumps. When the classical rolling dominates,
nearly the entire inflationary region ends inflation approximately simultaneously and then
undergoes reheating followed by the ordinary hot big bang evolution. This is depicted
in the left panel above, with orange denoting inflation and green the regions that have
reheated. By contrast, if the quantum jumps are sufficiently important, then some regions
will perpetuate inflation, as drawn in the right panel. The dashed ellipses indicate sample
regions where inflation has just ended, and which (in our calculation) act as a proxy for
our current state of the universe. We cannot possibly distinguish these sample regions at
the end of inflation so we must include all of them.

mechanism occurs (we assume that whenever inflation ends, a radiation-dominated phase
of the standard cosmological model starts).

We perform the explicit calculation by restricting to a linear potential,

V (ϕ) = V0 − α(ϕ− ϕinitial) , (5.2.2)

for some parameters V0 ∈ R and α > 0. The argument will hold for any positive potential
such that V (ϕinitial) > V (ϕcritical) (see figure 5.4). A similar construction (also generalizing
to other types of potential) can be found in [95]. The evolution of the inflaton field in
this potential can be described by Starobinsky’s stochastic formalism [61]: at the semi-
classical level, the probability P [ϕ, t] that the inflaton takes the value ϕ at time t is given
by the Fokker-Planck equation:

∂tP [ϕ, t] = 1
2

(
H3

4π2

)
∂2

ϕP [ϕ, t] + 1
3H∂ϕ [(∂ϕV )P [ϕ, t]] . (5.2.3)

For a very flat potential, we can approximate the expansion rate H by a constant and
define a time coordinate everywhere and shift it such that ϕ(0) = ϕinitial. The solution to
the Fokker-Planck equation (5.2.3) is a Gaußian probability distribution:

P [ϕ, t] = 1√
2π σ(t)

exp
[
−(ϕ− µ(t))2

2σ(t)2

]
, (5.2.4)

where the mean µ(t) describes the classical rolling evolution, while the standard deviation
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V(ϕ)

ϕinitial ϕcritical

classical rolling

quantum jumps

ϕ

Figure 5.4: Representation of the stochastic formalism for inflation, for the potential
(5.2.2). The inflaton field (in orange) rolls down the potential classically, but also un-
dergoes quantum jumps up or down the potential. When the inflaton reaches the value
ϕcritical, it exits the inflationary regime. Depending on the slope α and on the expansion
rate H (i.e., the potential value), either the classical evolution will dominate, and inflation
will end (figure 5.3a), or the quantum jumps will prevail, and lead to an eternal inflation
regime (figure 5.3b).

σ(t) describes the Brownian motion due to the stochastic jumps of the inflaton:

µ(t) = ϕi + α

3H t , σ2(t) = H3

4π2 t . (5.2.5)

Our aim is to calculate the action associated with the regions of spacetime transitioning
from ϕinitial to ϕcritical, i.e., the region of spacetime that stays inside the inflationary regime.
By definition, ϕcritical is the value for which the slow-roll parameter ϵ(ϕ) reaches unity:

ϵ(ϕcritical) ≡ M2
Pl

2V (ϕ)2 (∂ϕV (ϕ))2
∣∣∣∣∣
ϕ=ϕcritical

= 1 ⇔ ϕcritical ≡ ϕinitial + V0/α −MPl/
√

2 .

(5.2.6)
Interpreting the probability P [ϕ, t] as the fraction of the universe where the scalar field
value is ϕ at time t, the action over the region which is in the inflationary region of the
potential ϕ < ϕcritical is thus:

Sinflation =
∫ t=tf

t=0
dt a3 P [ϕ < ϕcritical, t] · V (ϕ) . (5.2.7)

The lower and upper time limit of integration correspond to the beginning and end of
inflation. The volume factor a3 stems from the metric determinant, √

−g, and has been
normalized by the probability P [ϕ < ϕcritical, t] =

∫ ϕcritical

−∞
P [ϕ, t]dϕ, which gives the frac-

tion of spacetime where the scalar field value is smaller than ϕcritical. This way we restrict
to regions of spacetime that are inside the inflationary phase. We insist on the fact that
the volume factor results from the covariance of the action and does not represent a mea-
sure of some sort (in contrast to the argument used in [95]). Crucially, the upper limit
of integration tf must be extended to +∞ in the case of eternal inflation, because all
regions where inflation came to an end are indistinguishable (all dashed ellipses regions
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in figure 5.3). This does not mean that we consider the infinite future evolution of the
universe, since this only restricts to regions of spacetime that are inside the inflationary
phase. We can calculate the probability of being inside the inflationary phase using the
linear potential (5.2.2):

P [ϕ < ϕcritical, t] =
∫ ϕcritical

−∞
P [ϕ, t] dϕ =

∫ ϕcritical

−∞
dϕ

√
2π

H3/2
√
t
e− 2π2

H3t
(ϕ−ϕinitial− α

3H
t)2

= 1
2erfc

[
ϕinitial − ϕcritical + α

3H
t

H
2π

√
2Ht

]

≃ 3H5/2

2π3/2α
√

2t
exp

[
−2π2α2

9H5 t

]
, (t ≫ H5/α2) .

(5.2.8)

We then obtain a lower bound on the action (5.2.7) by using the relation valid during
inflation: 3M2

PlH
2 ≈ V (ϕ) ≳ V (ϕcritical), as well as the scale factor evolution: a(t) ≃

a0 exp(H t). Plugging these relations and the result (5.2.8) in the expression for the
action (5.2.7), we get:

Sinflation ≳
a3

0V (ϕcritical)9/4

31/4(2π)3/2αM
5/2
Pl

∫ t=+∞

t=0

exp
(
3Ht− 2π2α2

9H5 t
)

√
t

dt . (5.2.9)

In t = 0, this integral converges. The interesting limit is the late time limit when t → +∞.
There the convergence of the integral depends on the sign of the exponential’s argument:

If (3H2)3 > 2π2α2 , then the action diverges as t → ∞. (5.2.10)

The condition (3H2)3 > 2π2α2 is the exact condition that defines the regime of eternal
inflation,

|V,ϕ|
V 3/2 <

1√
2 πM3

Pl
. (5.2.11)

This proof translates to other types of potential (see [95]): when the potential satisfies
the eternal inflation criterion (5.2.11), then the action of the full inflationary spacetime
region diverges. Therefore, the cosmological amplitude of eternal inflation is ill-defined.
Conversely, potentials which violate the eternal inflation criterion, lead to a convergent
action of the full inflationary region and to meaningful cosmological amplitudes (5.0.1).

We raise two remarks on the above calculation:

1. The same result can be obtained by considering a more local point of view, i.e., by
following individual worldlines, and showing that the expectation value for the time
spent in the inflationary phase diverges under the same conditions as the action
(5.2.9). This expectation value can be calculated as:

⟨tf⟩ =
∫ +∞

0
dt a(t)3P [ϕ < ϕcritical, t] · t , (5.2.12)
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where the probability P [ϕ < ϕcritical, t] accounts for the splitting of worldlines that
happens each time a quantum jump occurs. When the potential does not lead to
eternal inflation, the time (5.2.12) tends toward the classical rolling time, i.e., the
classical time it takes for the scalar field to roll down from ϕinitial to ϕcritical;

2. We stress that the stochastic approach we have developed in this subsection is
an effective description, which is particularly efficient for flat potentials [96], such
as those we are confronted to in the context of slow-roll inflation. Indeed, when
calculating the probability (5.2.4), we have approximated the quantum fluctuations
of the inflaton field by random jumps, effectively treating the fields classically. Using
this effective description, the only relevant quantity to compute is the action of the
expectation values of the scalar fields, S(⟨ϕ⟩). If we want to go beyond this effective
approach, we could calculate the amplitude of probability of reaching the scalar
field value ϕ from a pure path integral approach. Here we present a short outline
of such a calculation but do not make it precise: because inflation is very efficient
in decohering the universe [97], it is reasonable to assume a classical evolution in
between quantum jumps. Then the amplitude is given by a sum over all field
configurations which have undergone a specific number n of jumps:

A ≈
∑

n

∫
DgµνDϕ e

i
ℏS ≈

∑
n

V (n)
infl e

A(n) e
i
ℏSphase(n) . (5.2.13)

The amplitude A(n) gives the likelihood of undergoing n jumps upward on the
potential, and the volume factor V (n)

infl accounts for the volume produced by the
inflationary expansion for each up-jump. The total time of integration in the action
Sphase(n) depends on n, so that the factor V (n)

infl e
A(n) ∼ a3P [ϕ < ϕcritical, tf(n)] will

diverge at large n similarly to what occurred in the stochastic framework.

Before concluding, we point out that in the paper [95], it was shown that the eternal
inflation requirements on the potential (5.2.11) are exactly equivalent to the requirements
coming from the de Sitter swampland conjectures [98, 99, 100]. The very same require-
ments imply a violation of the finite amplitude criterion, suggesting that Swampland
conjectures could already be implied by semi-classical physics alone, and would not re-
quire input from quantum gravity. Said differently, this suggests that in order to find
presumed de Sitter vacua in string theory, it is necessary to go beyond the semi-classical
approximation.

Our general conclusion from this section on inflation, is that the semi-classical, cos-
mological amplitude (5.0.1) is ill-defined whenever the inflationary phase reaches back all
the way to the initial singularity, or if the inflaton potential satisfies the eternal inflation
criterion. Otherwise, a transient and non-eternal inflationary phase can satisfy the finite
amplitude criterion, and play a key role in solving the puzzles of the early universe.
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5.3 Bouncing and cyclic universes

In this section we explore one of the main alternative to inflation for describing the early
universe and solving the paradoxes that arise in the standard hot big bang evolution:
bouncing models. The flatness problem, which we used to advocate for inflation in
1.2, requires that the spatial curvature term in Friedmann equation, k/(aH)2, shrinks
sufficiently before the radiation-dominated epoch, in order to explain its extremely small
value measured from the CMB. Inflation realizes this shrinking by assuming an accelerated
expanding phase, but in fact other types of evolution can achieve the same aim, for
instance if we are in a contracting instead of expanding universe. Sticking to a perfect
fluid description with equation of state p = wρ, this spatial curvature term gives:

k

(aH)2 ∼ t
2
3

1+3w
1+w . (5.3.1)

In a contracting universe, this term will shrink for any ratio w > −1/3. The flatness
problem can thus also be solved by a long contracting phase, followed by a bounce leading
to the standard hot big bang evolution. Many such models have been proposed, see for
instance [101] for a review.

In addition to solving the hot big bang puzzles, inflation also generates the nearly
scale-invariant power spectrum observed for the scalar fluctuations in the CMB. This is
also achievable through certain contracting phases, like matter dominated w = 0 phases,
or phases driven by an ekpyrotic field w > 1 and such models represent testable alterna-
tives to inflation. We point out however, that in matter-dominated contracting phases,
anisotropies are typically unstable, while ekpyrotic contracting phase violate the null en-
ergy condition (NEC)7, and hence require a new, beyond the standard model, type of
matter.

That being said, we now study the finite amplitude criterion in the two main scenarios
preceding a bounce: in the first, the universe is contracting forever in the past (single
bounce scenario), and in the second, it undergoes a series of contracting and expanding
phases in a cyclic manner (cyclic universe). In these two scenarios, the physical time
runs all the way back to negative infinity.

5.3.1 Single bounce

Using the equations derived for perfect fluids, we can calculate the classical on-shell action
for a contracting phase running from t = −∞ to t = −tb as:

Son-shell
bounce = 1

2

∫ −tb

−∞
dt a3(1 − w)ρ ∝

∫ −tb

−∞
(1 − w)t

−2w
1+w dt

7The null energy condition states that for any future-pointing null vector kµ, the stress-energy tensor
must be such that the quantity Tµνkµkν ≥ 0. For the case of a perfect fluid, it translates into the
requirement that ρ + p ≥ 0. The role of the NEC and of the other energy conditions is not totally
understood, but for example all the known matter composing the standard model satisfies the NEC.
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∝
[
(1 − w)(−tb)

1−w
1+w − (1 − w) lim

t→−∞
t

1−w
1+w

]
, (5.3.2)

This on-shell action is finite if and only if w > 1, i.e., if the only matter field present
in the asymptotic past is an ekpyrotic scalar. Matter and radiation would then only be
produced later on, during the reheating phase [19]. Similarly to the case of a scalar field in
5.1.1, the well-definiteness of the amplitude in this case implies that we trust the effective
description in terms of a perfect fluid over a infinite range of ϕ, in order to reach t = −∞.
This assumption is questionable, especially in view if the distance conjecture stemming
from string compactification [100]. This is nevertheless allowed at the semi-classical level.

The additional contributions coming from the bouncing phase, and from the following
standard hot big bang phase, are non-singular and hence, at least at the background level,
yield a finite on-shell action. We insist on the fact that this holds at the background level,
because the perturbed action could bring instabilities and divergences and thus violates
the finite amplitude criterion. We study in more details the effect of perturbed actions in
the section 5.5.

5.3.2 Cyclic universes

In this case we focus on the on-shell action deriving from the Einstein-Hilbert term in
FLRW (so we leave aside possible cancellations between gravity and matter terms):

SEH ∝
∫ t0

−∞
a3(Ḣ + 2H2)dt =

∞∑
n=0

∫ t−n

t−n−1
a3(Ḣ + 2H2)dt , (5.3.3)

where we have subdivided the integration on each cycle {t−n−1, t−n}, for n ∈ N, with
−∞ = t−∞ < · · · < t−2 < t−1 < t0, and each tn correspond to a bouncing time (and t0 is
the present time).

We distinguish two different types of cyclic behavior for a universe experiencing such
an infinite series of bounces in the limit t → −∞:

1. the universe is exactly cyclic: there exist a time period, P , such that the scale
factor a(t) = a(t + P ) for any t ∈ (−∞, t0). In this case, the integrand of (5.3.3)
is non zero for each cycle, and therefore the infinite sum generically diverges. In
any case, this type of cyclic behavior contradicts the second law of thermodynamics,
according to which the maximal scale factor should grow from one cycle to the next,
as time evolves. This brings us to a second type of cyclic behavior:

2. the maximal scale factor gets smaller at each cycle when evolving back in time, and
is asymptotically zero. Nevertheless, some physical quantities such as the expansion
rate H are periodic: H(t) = H(t + P ). In this case, the integrand in (5.3.3) is
asymptotically zero when n → ∞, and the sum may converge. Examples of this
behavior are found in [102, 103, 104, 105, 106, 107, 108], where the average Hubble
parameter H is approximately constant, so the average volume of each cycle grows

109



exponentially. The universe is then de Sitter-like when averaging over cycles, and
we recover the result that, classically, the action is finite.8

Overall, bouncing and cyclic universes are highly constrained by the finite amplitude
criterion. We will come back to non-singular universes, which represent another alterna-
tive to inflation, in the section concerning loitering and emergent cosmologies 5.6, and
we will find that it is easier to construct a model compatible with the finite amplitude
criterion in that case. But for now, we go back again to the no-boundary proposal, this
time confronted against the finite amplitude criterion.

5.4 No-boundary proposal

The no-boundary proposal is evidently very well suited to the finite amplitude criterion,
since it precisely gives a prescription for obtaining a well-defined transition amplitude
given a dynamical model of the universe. We recalled in the introductory chapter 2.2 that
the no-boundary wavefunction was originally defined as the path integral summing over
initially compact and regular four-manifolds, having as only boundary a certain final hy-
persurface. This definition naturally leads to well-defined, finite cosmological amplitudes.
It simultaneously avoids singularities in spacetime and in the on-shell, saddle point action.
It thus represents the archetypal semi-classical solution for the early universe. Further-
more, we have shown in chapter 3 that no-boundary solutions would still exist when the
dynamical models considered possess higher-order terms stemming from loop corrections
to general relativity [1]. This is a first indication that no-boundary solutions might even
persist in the full quantum gravity framework, and not only at the semi-classical level.

Therefore, the no-boundary solution by definition satisfies the finite amplitude cri-
terion. The only difficulty lies in implementing practically this ”pure” definition of the
no-boundary proposal for specific dynamical models. We have elaborated on this issue in
the introductory chapter 2.2, where we have seen that, previously to this thesis, the state-
of-the-art understanding was that such a practical implementation of the no-boundary
proposal was possible only when summing over initially regular metrics (i.e., the mo-
mentum condition). Indeed the adverse implementation of the no-boundary proposal,
summing over initially compact geometries (i.e., field condition) leads to unstable per-
turbations when applying the Picard-Lefschetz theory for evaluating the Lorentzian path
integral. In the next chapter 6, we will challenge this view, and show that in the context of
the complex metric criterion we will develop there, the field definition of the no-boundary
proposal may also lead to a well-defined and consistent definition of the path integral,
and hence lead to finite cosmological amplitudes.

8Whether or not a quantum instability arises – as discussed in section 5.2.1 for inflation – is not
obvious. Also, in the case where ⟨H⟩P > 0 and ⟨a⟩P → 0 as t → −∞, where ⟨⟩P means the time average
over the cycle period P , the spacetime is necessarily geodesically incomplete [93].
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5.5 Higher-curvature term theories

All previous sections of this chapter have focused on dynamical models of the early uni-
verse based on general relativity, with an action given by the Einstein-Hilbert term:

SEH = M2
Pl

2

∫
d4x

√
−g R , (5.5.1)

sometimes supplemented by a cosmological constant and/or boundary terms. General
relativity is nevertheless known to be non-renormalizable [23, 24, 25], and hence loop
corrections at order ℏn induce terms involving the Riemann tensor to the power n + 1.
These terms may become relevant when approaching the initial spacetime singularity. As
we did for the no-boundary solution in chapter 3, we are now going to consider higher
curvature actions in the context of the cosmological amplitude. This analysis has been
initiated in [85], where quadratic gravity in particular was found to restrict the early
universe evolution to homogeneous, isotropic and accelerating backgrounds, thus setting
the ideal conditions for an inflationary phase to begin. We will review and improve this
analysis in the present chapter.

Generically, we here consider theories of the form:

S = 1
2

∫
d4x

√
−g f(Rµνρσ) , (5.5.2)

where f(Rµνρσ) is an arbitrary scalar polynomial of the Riemann tensor. This action is
the same that we studied in chapter 3 in the particular case of a closed FLRW background
(3.2.2).

5.5.1 Specificities of quadratic gravity

Within higher curvature theories of the form (5.5.2), quadratic gravity occupies a special
place, as it forms a renormalizable theory of gravity [109, 110], and is used in the favored
inflationary mechanism [61] to explain the latest observations of the 2018 Planck survey
[111]. We have already introduced quadratic gravity and some of its features in chapter
3. In particular, we recall that the action of quadratic gravity when coupled to general
relativity reads:

Squad =
∫

d4x
√

−g
(
M2

Pl
2 R + ω

3σR
2 − 1

2σC
2 + θ G

)
, (5.5.3)

with


C2 ≡ CµνρσC

µνρσ = RµνρσR
µνρσ − 2RµνR

µν + 1
3R

2 (Weyl tensor),

G = RµνρσR
µνρσ − 4RµνR

µν +R2 (Gauß-Bonnet term) .

The coefficient ω, σ and θ are coupling constants. The Gauß-Bonnet combination G yields
a total derivative and doesn’t participate in the dynamics. The relevance of quadratic
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gravity stems from the fact that it can both be treated as a complete gravity theory as
it stands, or as the easiest example of adding higher-curvature terms to general relativity
in an effective field theory approach, and for that reason we use it as a leading example
throughout this section. As we recalled in 3.3.1, the main blemish of quadratic gravity is
the debated presence of ghosts violating unitarity. In that case, the finite amplitude crite-
rion is necessarily violated as soon as we consider perturbations, at least when considering
quadratic gravity as a complete theory. However in the effective field theory approach,
the ghost issue can be resolved thanks to higher-order quantum corrections, or can simply
be discarded as outside of the regime of validity of the EFT. In any case, here we again
ignore the ghost problem and concentrate our analysis on background solutions.

Note that also in more general f(Rµνρσ) theories, a ghost appears if the theory stops
at a given order in the curvature tensor. It can be re-summed and disappear only for an
infinite series of higher-curvature terms. Low-energy expansions of string theory are of
this type and additionally contain terms with derivatives acting on the Riemann tensor
(see [62, 68] and the sections 3.3.4 and 3.4.3 where we have studied the no-boundary
solutions for such actions).

5.5.2 Boundary term for higher curvature theories

When calculating cosmological amplitudes, as already emphasized in the case of general
relativity in section 5.1.3, we must also study the impact of the surface term, especially
when fixing the metric on the initial boundary in the path integral. For f(Rµνρσ) theories,
the surface term has been studied in [112]. There, the authors found that using the ADM
decomposition of the metric (2.1.1), ds2 = −N2dt2 + hij(dxi + N idt)(dxj + N jdt), the
generalization of the GHY boundary term is given by

Sboundary[f ] = −
∫

∂M
d3x

√
hΨij[f ]Kij , with δΨij

∣∣∣
∂M

= 0 , (5.5.4)

where Kij is the extrinsic curvature on the boundary hypersurface ∂M and

Ψij[f ] ≡ −1
2h

ikhjlnµnν ∂f

∂Rµkνl
, (5.5.5)

with nµ = (1/N,−N i/N) denoting the unit normal vector to ∂M . Adding the boundary
term (5.5.4) to the bulk action (5.5.2) trades the boundary condition on the extrinsic
curvature Kij for a boundary condition on Ψij. This generically involves new degrees of
freedom: fixing Ψij may not only fix the metric, but also restricts additional scalar or
tensor degrees of freedom.

We consider a few f(Rµνρσ) theories as examples to illustrate the impact of such a
boundary term:

1. First we check that the boundary term of the Ricci scalar recovers the expected
GHY result of the Einstein-Hilbert action. In the ADM metric and using the sym-
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metries of the Riemann tensor, we decompose:

R = gµρgνσRµνρσ = hikhjlRijkl − 2nµnρhijRµiρj , (5.5.6)

from which we calculate the expression Ψij[R] as:

Ψij[R] ≡ −1
2h

ikhjlnµnν ∂R

∂Rµiνj

= hij . (5.5.7)

Therefore, the integrand of the boundary action (5.5.4) is ΨijKij = hijKij ≡ K and
we indeed recover the GHY result (5.1.9). In this case, fixing the quantity Ψij[R] is
strictly equivalent to fixing the three-metric hij on the boundary hypersurface.

2. From the above, we can directly treat the theories based solely on the Ricci scalar
f = f(R). By making use of the Taylor-expansion of the f function, it is sufficient
to consider the functions fn(R) = Rn. For these the quantity Ψij is: Ψij[Rn] =
nhijRn−1 ,9 hence fixing Ψij requires both to fix the three-metric hij and to set the
Ricci scalar R on the boundary hypersurface. Therefore, in this case fixing the
boundary condition additionally restricts a new scalar degree of freedom. This is
consistent with the fact that f(R) theories are known to be equivalent to GR plus
a scalar field [114].

3. Finally we consider terms of second order in curvature appearing in quadratic
gravity. First for the Ricci tensor squared RµνRµν , whose ADM decomposition
reads:

RµνRµν = RijR
ij − 2nµnνhijRµiRνj + nµnνnαnβRµνRαβ

= (Rk
ikj − nµnνRµiνj)Rij − 2nµnνhij(Rk

µki − nαnβRαµβi)Rνj

+ nµnνnαnβ(Rk
µkν − nρnσRρµσν)Rαβ , (5.5.8)

we calculate the Ψij quantity as:

Ψij[RµνR
µν ] = −nαnβ(gαβRij + hijRαβ) . (5.5.9)

Similarly, for the Riemann tensor:

RµνρσRµνρσ = RijklRijkl + nµnνnαnβ
(
4RµiνjRα

i
β

j + 2RijµνR
ij

αβ

)
+ 4nµnνnρnαnβnγRµνρiRαβγ

i + 4nµnαRµijkRα
ijk , (5.5.10)

we find:
Ψij[RµνρσR

µνρσ] = −4nαnβR
αiβj . (5.5.11)

9More generally for f = f(R), one recovers the known result (e.g., [113]): Ψij [f(R)] = hijf,R.
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From these two results and the previous points implying Ψij[R2] = 2hijR, we cal-
culate the boundary term of the Weyl tensor squared:

Ψij[C2] = −nαnβ

(
4Rαiβj − 2(gαβRij + hijRαβ) − 2

3Rh
ijgαβ

)
= −4nαnβC

αiβj .

(5.5.12)

This result indeed matches with the boundary term for C2 found in [115]. In con-
trast, the boundary term for the Gauß-Bonnet combination G cannot be obtained
through the method exposed in [112], as it is a degenerate topological term in four-
dimensional spacetime. Instead, the correct surface term for G (i.e., enabling the
imposition of Dirichlet boundary conditions δgµν |∂M = 0) is given by the Myers
action [116, 117]:

Ψij[G] = 2
(
JKij − 2Gij

b

)
, (5.5.13)

where Gb
ij is the Einstein tensor constructed from the boundary-induced metric hij

and

J ≡ −hij
(

−2
3KilK

lpKpj + 2
3KKilK

l
j + 1

3Kij(KlpK
lp −K2)

)
. (5.5.14)

5.5.3 Higher-curvature terms on FLRW backgrounds

We can now investigate the finiteness of cosmological amplitudes of interest. We start with
the simplest backgrounds, namely, FLRW metrics with spatial curvature k = −1, 0,+1
for open, flat, or closed spatial slices. On such backgrounds, we have seen in chapter 3
that the action of a f(Rµνρσ) theory is greatly simplified [1]:

S =
∫

dt a3N
∑

p1,p2∈N
cp1,p2

(
A

(k)
1

)p1
Ap2

2 , (5.5.15)

for some real coefficients cp1,p2 and with

A
(k)
1 = ȧ2 + kN2

a2N2 and A2 = äN − ȧṄ

aN3 . (5.5.16)

The order in the Riemann tensor of the expression f(Rµνρσ) is P = p1+p2. The Friedmann
constraint equation for the action (5.5.15) is given by (3.2.14) (working again in the
constant lapse gauge Ṅ = 0):

∑
p1,p2

cp1,p2

[
2p1(p2 − 1)aȧ

2

N2 A
p2
2

(
A

(k)
1

)p1−1
+ (1 − p2)a3Ap2

2

(
A

(k)
1

)p1

+ p2(p2 − 1)aȧ
...
a

N4 Ap2−2
2

(
A

(k)
1

)p1 − p2(2p1 + p2 − 3)aȧ
2

N2 A
p2−1
2

(
A

(k)
1

)p1
]

= 0 .

(5.5.17)
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This constraint equation can be used to simplify the action (5.5.15) on-shell, as we
did for general relativity in section 5.1.2. We illustrate this with quadratic gravity.

Finite amplitude criterion for quadratic gravity on FLRW

The Weyl tensor vanishes on FLRW backgrounds, so the action of quadratic gravity
coupled to GR (5.5.3) simplifies to:

Squad =
∫

d4x
√

−g
(
M2

Pl
2 R + ω

3σR
2 + θ G

)
(5.5.18)

=
∫

dt
[
3M2

Pl

(
aȧ2

N
+ aNk + a2ä

N

)
+ 12ω

σ

(
ȧ4

aN3 + 2kȧ2

aN
+ Nk2

a
+ 2ȧ2ä

N3 + 2kä
N

+ aä2

N3

)

+ 24θ
(
ȧ2ä

N3 + kä

N

)]
.

The Friedmann constraint (5.5.17) then reads

0 = 3M2
Pl

(
aȧ2

N2 + ak
)

+ 12ω
σ

[
− 3ȧ4

aN4 − 2kȧ2

aN2 + k2

a
− aä2

N4 + 2ȧ2ä

N4 + 2aȧa(3)

N4

]
. (5.5.19)

We use this equation to replace the term proportional to k2/a in the action, leading to:

Son-shell
quad =

∫
dt
[
3M2

Pl
a2ä

N
+ 24ω

σ

(
2ȧ2

aN

(
ȧ2

N2 + k

)
+ aä2

N3 − aȧa(3)

N3 + kä

N

)

+24θ ä
N

(
ȧ2

N2 + k

)]
. (5.5.20)

Considering the ansatz10 a(t) ∼ ts for the approach to the initial singularity in t → 0, we
find that the terms making up this on-shell action (5.5.20) all scale as:

t3s−1, t3s−3 or ts−1 . (5.5.21)

Therefore, the on-shell action of quadratic gravity converges as long as s > 1. This means
that the background solution must expand in an accelerated manner close to the initial
singularity.

We must also make sure that the boundary terms are well behaved. For the action
(5.5.18), they read

Squad
boundary = −

∫
d3x

√
h
[
M2

Pl K + 2ω
3σ RK + 4θ

(
J − 2Gb

ijK
ij
)]
. (5.5.22)

10This ansatz is generic in the presence of standard matter, to the exception of a pure cosmological
constant. In that case, the Riemann tensor is finite and constant everywhere and will not diverge in the
approach to the big bang. However we then encounter the ”incompleteness” problem described in section
5.2, namely that the two classical background solutions interfere and fail to reproduce a stable ground
state for the perturbations when t → 0 [94].
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On a FLRW background, we have

K = Kijh
ij = ȧ

aN
hijh

ij = ȧ

aN
, J = 2ȧ3

N3a3 , Gb
ijK

ij = − 3kȧ
Na3 , (5.5.23)

so using again the ansatz a(t) ∼ ts, we find that the boundary terms also yield the
exponents t3s−1 (GHY term), t3s−3, and ts−1. Thus we recover the result that in an
inflationary background (which may arise directly as a solution of pure quadratic gravity
or from a coupling to a scalar field with a sufficiently flat potential), quadratic gravity
leads to a finite action in the approach to the big bang [85].

Finite amplitude criterion for generic higher-curvature action on FLRW

Now we can extend this method to the general action (5.5.15). Using the ansatz a ∼ ts,
we find that in the approach to the big bang,

A
(k)
1 ∼ t−2 + k · t−2s , A2 ∼ t−2 , (5.5.24)

so the behavior will be very different depending on the spatial curvature k.

• In the spatially flat case k = 0, the lowest time dependence of the action (5.5.15)
is t1+3s−2P . Therefore this action is finite for s > (2Pmax − 1)/3, where Pmax is the
highest order of P = p1 +p2 that appears in the action (Pmax ≥ 3 for a theory that is
at least cubic in curvature). All the terms of the constraint equation go like t3s−2P ,
so on the on-shell action, we can in general get rid of the highest order in t and keep
as condition for finiteness, s > (2Pmax − 3)/3 ≥ 1. This leads to a divergence in the
action, unless the quantity Pmax is bounded. Thus, on flat FLRW, generic f(Rµνρσ)
theories have finite on-shell action only if they have a bounded order in the Riemann
tensor, and if the scale factor undergoes sufficiently accelerated expansion11.

• When the spatial sections are not flat, k ̸= 0, it becomes impossible to keep the
action finite. The action (5.5.15) contains terms with p1 + 1 different dependences
in t:

t1+3s−2P +2(1−s)·j with j ∈ {0, . . . , p1} . (5.5.25)

The j = 1 and j = 2 terms yield the conditions

s > 2P − 3 and s < 5 − 2P , (5.5.26)

which are mutually exclusive since P = p1 + p2 ≥ 2. If we try to ease this tension
by using the constraint equation (5.5.17), we find that its time dependence when

11Note that here we haven’t assumed any symmetry-induced cancellations between different on-shell
terms in the action, as our emphasis was on generic theories. An outstanding exception are f(R) theories,
for which the higher-curvature terms are in fact spurious and can be replaced by a scalar field.
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a ∼ ts goes as
t3s−2P +2(1−s)·j with j ∈ {0, . . . , p1} . (5.5.27)

Therefore, the constraint equation enable us to replace the order t3s−2P +2(1−s)p1 by
a combination of the p1 other orders in t in the on-shell action, but for p1 > 2 this
does not suffice to resolve the contradiction (5.5.26). We conclude that generically
(i.e., not in special cases as f(R) theory as explained in the previous footnote), the
on-shell action blows up whenever the Riemann tensor order is larger than 2 for
non-spatially flat FLRW backgrounds.

Overall, these results teach us that the finite amplitude criterion is highly constraining
for higher-curvature theories of gravity. If the highest power in the Riemann tensor, Pmax,
is larger than 2, the criterion eliminates all Lorentzian FLRW backgrounds with non-zero
spatial curvature. When the spatial curvature is zero instead, it retains only highly
accelerating backgrounds with s > (2Pmax − 3)/3 for a ∼ ts. This implies that for the
infinitely-many higher-curvature terms expected in string theory from loop corrections,
all Lorentzian FLRW backgrounds with standard matter contributions are ruled out by
the finite amplitude criterion. A Lorentzian big bang thus become impossible, and the
only way out is to depart from Lorentzian metrics as in the no-boundary proposal (see
5.4). In this case we find a finite cosmological amplitude even for an action containing an
infinite sum of higher-curvature terms.

Our results also underline once again the special role played by quadratic gravity: it
allows for Lorentzian non-spatially flat FLRW backgrounds, but only if they are acceler-
ating (i.e., inflation-like solutions). Next we carry further the study of quadratic gravity,
by including anisotropies.

5.5.4 Quadratic gravity on anisotropic backgrounds

The generic Belinskii-Khalatnikov-Lifshitz (BKL) approach to spacetime singularities in
ordinary general relativity was found in the 70’s as the Kasner solution [88]. This solution
is strongly anisotropic, and even though the mean scale factor scales as a ∼ t1/3 when
t → 0, the anisotropies themselves blow up. Such highly anisotropic backgrounds continue
to form the generic solution for the approach of spacetime singularities when higher-order
curvature terms are added to the gravity action.

Besides, we have shown in the previous subsection that the on-shell action of quadratic
gravity remains finite when t → 0 only if the background is accelerating, that is if a ∼ ts

with s > 1 when t → 0. Therefore, the generic Kasner solutions are ruled out by the
finite amplitude criterion for quadratic gravity. It implies that if accelerating background
solutions to quadratic gravity do exist, they become the relevant saddle point solutions,
even if they are non-generic. Our aim for this subsection is to study such accelerating,
anisotropic solutions to quadratic gravity.
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R +R2 + matter action

We consider the action: R + R2 + matter. It is equivalent to the action: R+inflationary
scalar field+matter in the Einstein frame. We analyze anisotropies by considering a
Bianchi-I type of metrics:

ds2
BI = −dt2 + a2

(
e2(β++

√
3β−)dx2 + e2(β+−

√
3β−)dy2 + e−4β+dz2

)
, (5.5.28)

where the functions β±(t) characterize the time dependent anisotropies. The Friedmann
constraint equation of this system reads:

3M2
PlH

2 = 3(β̇2
+ + β̇2

−) + ρinfl + ρw, (5.5.29)

where the matter is taken to be a perfect fluid p = wρ so that we find from the continuity
equation ρw ∝ a−3(1+w). We can also integrate the equation of motion for the anisotropies,
β̈± + 3Hβ̇± = 0, to obtain the scaling of their derivatives: β̇± ∝ a−3. The Friedmann
equation (5.5.29) therefore becomes:

3M2
PlH

2 = 3σ2
0

a6 + ρinfl + ρ0

a3(1+w) , (5.5.30)

where we have defined the energy densities for anisotropies and matter at the reference
scale a = 1 as respectively: σ2

0 ≡ (β̇2
+ + β̇2

−)|a=1 and ρ0 ≡ ρw(a = 1). Our solution must
be accelerating, a ∝ ts with s > 1, so that H ∝ t−2 and the inflationary scalar field has
a constant energy density ρinfl. Therefore, we find that in the approach to the spacetime
singularity t → 0, the anisotropic energy density, 3σ2

0/a
6, dominates the dynamic and

leads to a Kasner solution. There exists no dynamical solution to the R + R2 action
which is accelerating all the way back to the big bang.

Full quadratic gravity action

We now add the Weyl squared term to the previous action, and recover the full quadratic
gravity coupled to GR, (5.5.3)12. In this case, exact anisotropic inflationary solutions
do exist [118], and for a Bianchi-I metric with a(t) = eHt, β±(t) = σ± · t and ρinfl = Λ,
they are given by:


H2 = 4

27
Λ
M2

Pl
(2 − ω) − M2

Pl
36 σ ,

Σ2 ≡ β̇2
+ + β̇2

− = σ2
+ + σ2

− = 2
27

Λ
M2

Pl
(1 + 4ω) + M2

Pl
18 σ .

(5.5.31)

These solutions exist if the coupling constants ω and σ of quadratic gravity (5.5.3) are
such that the constant quantities H2 and Σ2 defined above are positive. These solutions

12The Gauß-Bonnet term is irrelevant from the dynamical perspective, but will be considered again
when we study the finiteness of the on-shell action
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are non-generic, and are really intrinsic to quadratic gravity because they do not have a
well-defined limit for 1/σ → 0 (where we recover GR). They are also non-singular (the
four-curvature is bounded for t ∈ [−∞, t0]). Note that similar solutions also exist for
other types of Bianchi metrics (II, IV, VIh and VIIh, see [119, 118, 120, 121]).

Now that we have some accelerating, anisotropic solutions for quadratic gravity, we
verify that they indeed satisfy the finite amplitude criterion. Their on-shell bulk action
(5.5.3) reads:

Squad = SE-H + SR2 + SC2 + SG , (5.5.32)

with

SE-H ≡ M2
Pl

2

∫
d4x

√
−g R

= 3M2
Pl

∫ t0

−∞
dt a3

[
H2 + ä

a
+ (β̇2

+ + β̇2
−)
]

= M2
Ple

3Ht0

H

(
2H2 + Σ2

)
; (5.5.33)

SR2 ≡ ω

3σ

∫
d4x

√
−g R2

= 12ω
σ

∫ t0

−∞
dt a3

[
H2 + ä

a
+ (β̇2

+ + β̇2
−)
]2

= 4ω
σ

e3Ht0

H

(
2H2 + Σ2

)2
; (5.5.34)

SC2 ≡ − 1
2σ

∫
d4x

√
−g C2

= − 6
σ

∫ t0

−∞
dt a3

[
(β̈2

+ + β̈2
−) + 2H(β̇−β̈− + β̇+β̈+ − 2β̇3

+ + 6β̇2
−β̇+)

+H2(β̇2
+ + β̇2

−) + 4(β̇2
+ + β̇2

−)2 + 4(β̇2
−β̈+ − β̇2

+β̈+ + 2β̇−β̈−β̇+)
]

= − 2
σ

e3Ht0

H

(
4Hσ+(3σ2

− − σ2
+) +H2Σ2 + 4Σ4

)
; (5.5.35)

SG ≡ θ
∫

d4x
√

−g G

= 24 θ
∫ t0

−∞
dt a3

[
H2

(
ä

a
− 2(β̇2

+ + β̇2
−)
)

+ 2
(
β̇2

−β̈+ + 2β̇−β̈−β̇+ − β̇2
+β̈+

)
− ä

a

(
β̇2

− + β̇2
+

)
+H

(
6β̇2

−β̇+ − 2(β̇−β̈− + β̇+β̈+ + β̇3
+)
)]

= 8 θe
3Ht0

H

(
H4 − 3H2Σ2 + 2Hσ+(3σ2

− − σ2
+)
)
. (5.5.36)

The associated boundary terms are (the factor 2 in front comes from the 1/2 in the
definition of (5.5.2)):

Sboundary
E-H = −2 · M

2
Pl

3

∫
d3x

√
hhijKij = −2M2

Pl
3

[
a3H

]t0

−∞
= −2M2

Pl
3 e3Ht0H; (5.5.37)

Sboundary
R2 = −2 · ω3σ

∫
d3x

√
hΨij[R2]Kij = −4ω

3σ
[
a3RhijKij

]t0

−∞

= −24ω
σ

[
a3H

(
ä

a
+H2 + (β̇2

+ + β̇2
−)
)]t0

−∞
= −24ω

σ
e3Ht0H

(
2H2 + Σ2

)
;

(5.5.38)

Sboundary
C2 = −2 ·

(
− 1

2σ

) ∫
d3x

√
hΨij[C2]Kij = − 4

σ

[
a3n0n0C

0i0jKij

]t0

−∞
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= 12
σ

[
a3H

(
β̇2

− + β̇2
+

)
+ a3

(
6β̇2

−β̇+ − 2β̇3
+ + β̇−β̈− + β̇+β̈+

)]t0

−∞

= 12
σ
e3Ht0

(
HΣ2 + 2σ+(3σ2

− − σ2
+)
)

; (5.5.39)

Sboundary
G = −2 · θ

∫
d3x

√
hΨij[G]Kij = −4θ

[
J − 2Gb

ijK
ij
]t0

−∞

= −8θ
[
a3
(
H − 2β̇+

) (
2Hβ̇+ +H2 + (β̇2

+ − 3β̇2
−)
)]t0

−∞

= −8θe3Ht0
(
H3 − 3HΣ2 − 2σ+(σ2

+ − 3σ2
−)
)
. (5.5.40)

All these bulk and boundary contributions to the on-shell action are finite (and the Gauß-
Bonnet contributions even sum to zero). This proves that the solution (5.5.31) satisfies
the finite amplitude criterion at least at the background level. Nevertheless, we
find that this solution is unstable under perturbations. We expect quantum fluctuations
to naturally occur in the anisotropies, and therefore we must study the time evolution in
the addition of small perturbations. The results of our numerical analysis are displayed
in figure 5.5. We have initialized the exact anisotropic and inflating solution (constant Σ2
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Figure 5.5: Time evolution of the anisotropies Σ2 ≡ β̇2
+ + β̇2

− and of the Hubble expan-
sion rate H in quadratic gravity with a cosmological constant Λ, starting from the exact
anisotropically inflating solution (5.5.31) at tini = −1000 tPl and adding small perturba-
tions about β̈± = 0 and Ḣ = 0. We have used the values Λ = 10−4M4

Pl, σ = 10−3

and ω = 1/10. Without loss of generality, we set β̇− ≡ 0, so Σ2 is fully determined by
β̇2

+. Small perturbations in the initial conditions are implemented in this example with
β̈+(tini) = ±10−5σ+MPl, and Ḣ(tini) is set such that the constraint equation is satisfied
initially.

and H) at t = −1000 tPl. Toward the future, either the anisotropies grow and the universe
re-collapses (orange curves), or the anisotropies shrink to zero and the universe reaches an
isotropic de Sitter expansion phase (red curves). To the past, either the anisotropies blow
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up and the universe collapses with a Kasner-type metric (green curves), or it bounces from
a contracting de Sitter phase, while anisotropies are small (blue curves). Therefore, this
solution is not a past-attractor,13 but if it is the only one allowed by the finite amplitude
criterion, and that this criterion acts as a selection rule for the initial conditions of the
universe, then this solution can evolve into an isotropic inflationary phase.

We conclude that for quadratic gravity, the finite amplitude criterion is very restrictive
and only allows accelerated expansion near the big bang singularity, though we have found
that anisotropies are also allowed14. Nevertheless, such anisotropic beginnings are allowed
only under the most favorable conditions, because accelerated expansion is efficient in
suppressing anisotropies dynamically.

If the finite amplitude criterion indeed acts as a selection rule for actions of the early
universe, then quadratic gravity naturally leads to initial conditions favorable for inflation.
One last caveat to this scenario, which we leave for future work, concerns whether the
incompleteness problem of inflation discussed in section 5.2 also applies to quadratic
gravity.

5.6 Emergent and loitering universes

Loitering or Quasi-static universes are another class of non-singular cosmological models
that differ from the bouncing and cyclic universes we studied previously in section 5.3,
but also offer an alternative scenario to inflation in the very early universe.

In these models, the universe reaches an asymptotically Minkowski phase in the infinite
past, meaning that a → constant and H, Ḣ → 0 when t → −∞. Such scenarios can
naturally satisfy the finite amplitude criterion in ordinary general relativity, because the
integrand of the Einstein-Hilbert action (5.3.3) vanishes in the limit t → −∞. The on-
shell action also remains finite in the presence of a scalar field or perfect fluid matter field,
because from the Einstein field’s equations, the loitering limit is equivalent to ρ → 0 or
V (ϕ) → 0, while a → constant and t → −∞.

Loitering phase can however not be dynamically generated within the ordinary general
relativity framework, or using usual matter fields. Instead, it requires to turn to modified
gravity theories or to a full quantum theory such as string theory. In this section we
explore these two possibilities and see how the loitering phase can emerge, and whether
it can indeed lead to finite cosmological amplitudes in these contexts.

13The only known past attractors in quadratic gravity are in fact a Kasner-like anisotropic solution
and a radiation-like isotropic solution [118, 122]. They are both non-accelerating and so are ruled out by
the finite amplitude criterion.

14This refines the analysis of [85], where it was shown that the finite amplitude criterion only allows
for isotropic and homogeneous beginnings in the context of quadratic gravity. However, the arguments
were making use of the divergence of the off-shell action, which by itself does not imply an ill-defined
amplitude. Here we have rectified this analysis by using the on-shell action. In any case the result we
get is very similar to the one obtained previously, so the conclusions are overall preserved.
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5.6.1 Emergent universe from the EFT approach and modified
gravity

The first type of cosmological models enabling the emergence of a loitering phase is
based on modified gravity theories, e.g., Horndeski and beyond-Horndeski. We adopt
an effective field theory approach, without presuming any UV-complete theory. We will
look for solutions within the modified gravity theories for which a(t → −∞) → constant.
The universe must then exit the loitering phase in order to attain a subsequent hot big
bang evolution, and this is only possible if Ḣ > 0 during a certain period, i.e., the null
energy condition must be violated15. This exiting step justifies the name of ”emergent”
or ”genesis” scenario. This approach for constructing loitering phases has been applied
to a plethora of modified gravity models [123, 124, 125, 126, 127, 128, 129, 130, 131, 132].
Here we will focus in particular on Horndeski, beyond-Horndeski and related theories.

Example in k-essence theory

The theory of k-essence [133, 134] is one of the simplest extension of general relativity,
and simply introduces a scalar field, ϕ, that enters the action as a generic function of itself
and of its kinetic term, X ≡ −∂µϕ ∂

µϕ/2:

Sk-essence =
∫

d4x
√

−g
(
M2

Pl
2 R + P (X,ϕ)

)
. (5.6.1)

The equations of motion are the Einstein field equations (1.1.9) with stress-energy tensor:

T k-essence
µν = Pgµν + P,X∂µϕ∂νϕ . (5.6.2)

Taking the trace of the Einstein field equation (1.1.9) then gives the relation: −M2
PlR =

T k-essence = 4P − 2XP,X , which can then be used to simplify the on-shell action (5.6.1)
into:

Son-shell
k-essence =

∫
d4x

√
−g (XP,X − P ) . (5.6.3)

Exiting the loitering phase requires a period of the evolution where the NEC is violated.
The interest of the k-essence theory is precisely that a cosmological background violating
the NEC for a certain time period naturally emerges from the ghost condensation of the
scalar field [135]. We display this mechanism here by following [136]. We assume the
function P can be split into a kinetic and potential part: P (X,ϕ) = K(X) − V (ϕ). For a
ghost condensate, the kinetic function is given by K(X) = (2X − M4)2/(8Λ), where we
have introduced two new mass scales, Λ1/4 and M . The ghost condensate forms at the
kinetic energy X = M4/2.

The trace of the stress-energy tensor is T = 3p − ρ, therefore on FLRW background,
15The violation of the null energy condition is a necessary requirement for obtaining a non-singular

cosmology.
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the energy density and its sum with the pressure are:

ρ = 3P − T k-essence = 2XP,X − P = X(2X −M4)
Λ − (2X −M4)2

8Λ + V (ϕ) , (5.6.4)

ρ+ p = 2XP,X = X(2X −M4)
Λ . (5.6.5)

At the ghost condensate X = M4/2, we find that ρ = V (ϕ) and ρ + p = 0. Therefore, a
loitering phase will be reached if V (ϕ) → 0 when t → −∞.

The simplest form of the scalar field that satisfy the ghost condensation condition is:
ϕ(t) = M2t. By adding small fluctuations around it, ϕ(t) = M2t + δϕ(t), we find the
Einstein field’s equations at second order in the fluctuation’s derivative as:

3M2
PlH

2 = ρ = M6

Λ δϕ̇+ V (ϕ) + O(M4δϕ̇2/Λ) , (5.6.6)

−2M2
PlḢ = ρ+ p = M6

Λ δϕ̇+ O(M4δϕ̇2/Λ) . (5.6.7)

As for the equation of motion for the scalar field, (P,X + 2XP,XX)ϕ̈+ 3HP,X ϕ̇+P,Xϕϕ̇
2 −

P,ϕ = 0, it becomes at second order in the fluctuation’s derivative:

M4

Λ (δϕ̈+ 3Hδϕ̇) + O(M2δϕ̇2/Λ) = −V,ϕ . (5.6.8)

Using the ansatz V (ϕ) ∝ ϕ−2α for α ∈ N, we get V (ϕ), V,ϕ(ϕ) → 0 when ϕ → −∞, so
the equation of motion (5.6.8) implies that δϕ̇ → 0 when t → −∞. Therefore from the
Einstein field’s equations (5.6.6) and (5.6.7), we find that H, Ḣ → 0 when t → −∞: we
indeed reach a loitering phase asymptotically in the past.

Next we show that this loitering phase is followed by a NEC violating time period.
Specifying for example to V (ϕ) = V0 Λ1/2ϕ−2, and considering the limit t → −∞ where
H → 0 and |δϕ| ≪ |M2t|, the equation (5.6.8) can be integrated to yield

δϕ̇ ≃ −V0Λ3/2

M10t2
, (5.6.9)

with the initial condition δϕ̇(t → −∞) = 0. This implies that δϕ̇ < 0 and from equation
(5.6.7), Ḣ ∝ −δϕ̇ < 0: the NEC is violated. This NEC violating period will then come
to an end when the universe reaches a certain energy level where a reheating mecha-
nism occurs, and the newly produced particles would lead to the standard hot big bang
evolution.

Now that we have explicitly demonstrated how a loitering phase can occur within the
k-essence theory, we can confront it with the finite amplitude criterion. Considering the
on-shell action (5.6.3), we find that for the FLRW background solution described above,
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it yields to leading order when t → −∞:

Son-shell
k-essence =

∫
d4x

√
−g

[
4X2 −M8

8Λ + V (ϕ)
]

≃
∫

−∞
dt a3

0

[
M6

2Λ δϕ̇+ V (ϕ)
]
, (5.6.10)

where a0 is the constant scale factor reached during the loitering phase when H → 0. From
the construction of the ghost condensate, we have that V (ϕ), δϕ̇ → 0 when t → −∞.
The overall on-shell action thus vanishes in the limit t → −∞, and so the finite amplitude
criterion is satisfied at background level.

However, such a simple ghost condensate as presented here usually suffers from issues
as gradient instabilities, strong coupling or unitarity violation [137]. Moreover, once again
this construction requires the effective scalar potential to be valid on an infinite range of
the scalar field. More involved models such as Horndeski and beyond-Horndeski theories
can be constructed, that behaves better under certain aspects, but so far it has been
impossible to construct a NEC-violating model that avoids any inconsistency, especially
when considering large perturbations around the background.

Horndeski theory and beyond

Many genesis scenarios studied within Horndeski theory and beyond have been claimed
to be stable against linear perturbations. For each of them, we could study the finiteness
of their on-shell action evaluated on the background solution when t → −∞, and then
check that no instability (e.g., ghost, gradient instabilities) arises when considering linear
perturbations. If it is the case, then a fixed-wavelength perturbation evolved back to t →
−∞ must reached a Minkowski vacuum, so that the on-shell action of such a perturbation
is finite. For example, for the beyond-Horndeski models presented in [129, 138], the
background solution and on-shell action in the asymptotic past reduce to the early model
of [123], which satisfies the finite amplitude criterion.

However, all those theories are only effective field theories that describe physics only
up to a certain cutoff scale. They are assumed to arise from the integration out of heavy
degrees of freedom in a more-complete UV theory. Therefore, these theories only make
sense if the background energy remains below this cutoff, otherwise one enters a strongly
coupled regime where the EFT breaks down. Even if this is satisfied, as in [139, 131, 140],
the strong coupling scale shrinks as we look far back in time, making the regime over
which the EFT is valid smaller and smaller.

We conclude that effective models of loitering cosmology in the very early universe
using Horndeski theory and beyond do not indicate an immediate violation of the finite
amplitudes criterion (it can certainly be satisfied at the background level), but those
models have their limitations (by virtue of being EFTs), and more analysis is needed to
demonstrate their proper robustness.
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5.6.2 Loitering phase in string cosmology

Going beyond the EFT framework, loitering phases very naturally arise when string theory
is applied to early universe cosmology. The theory of string gas cosmology [141] uses new
degrees of freedom coming from strings to describe the very early universe. More precisely,
it is based on the thermodynamics of a gas of closed strings in a (d + 1)−dimensional
compact space (such as a torus Td of radius R, d = 9 for the usual superstring model),
with three different types of string modes obeying three different equations of states:
momentum modes having p = ρ/d (where p, ρ are as usual the fluid pressure and energy
density), winding modes with p = −ρ/d, and oscillating pressureless modes p = 0. There
is a T-duality symmetry transforming winding modes into momentum ones and vice-versa,
when the radius R transforms into its inverse 1/R. In this model, the universe would start
in a quasi-static phase where the winding modes dominate at the Hagedorn temperature
(the maximal temperature for a gas of strings). This is the loitering phase where H → 0.
It would then transition into a radiation-dominated phase driven by momentum modes
in three external dimensions, while the six remaining internal dimensions stay compact,
with a radius R of about the string length ℓs, and do not evolve any more. This can
be explained by the fact that one-dimensional strings tend to annihilate preferentially
in three spatial directions [141]. In practice however, it is difficult to find an existing
string cosmology background solution recovering such a loitering phase a → constant
when t → −∞. In this subsection, we consider two attempts of implementation of this
scenario into specific string theories. The first considers only the low-energy, tree-level
interactions, while the second also encapsulates non-perturbative curvature corrections.

Example in dilaton gravity

As a first example, we consider the low-energy, tree-level effective theory of string theory
known as dilaton gravity in d+ 1 spacetime dimensions,

Sdilaton = 1
2ℓd−1

s

∫
dd+1x

√
−g e−2ϕ (R + 4∂µϕ∂

µϕ) + Sm , (5.6.11)

where ℓs is the string length, ϕ is the dilaton field, and Sm represents the action of
additional matter content. This action ignores any possible potential for the dilaton
field and sets the string theory Neveu-Schwarz–Neveu-Schwarz (NS-NS) two-form to zero.
We restrict our analysis to an FLRW background for simplicity. Introducing the shifted
dilaton Φ = 2ϕ− d · ln a and writing the scale factor as a = eλ, we can integrate by part
and find:

Sdilaton = 1
2ℓd−1

s

∫
dt e−Φ

(
d · λ̇2 − Φ̇2

)
+ Sm. (5.6.12)

For the matter action, we assume a gas of strings with momentum and winding modes
contributing equally, with respective equation of state p = ρ/d and p = −ρ/d, so that
the total pressure vanishes. With this matter content, the equations of motion stemming

125



from the action (5.6.12) admit a loitering solution of the form:

λ̇ ∼ 1
t2
, Φ ∼ −2 ln(−t) , (t → −∞). (5.6.13)

For this solution, the kinetic energy of the shifted dilaton, Φ̇2 ∼ 4/t2, and the Hubble
parameter H ∝ λ̇, both tend to zero in the asymptotic past, so that we reach a loitering
phase with a → constant. Moreover, the energy density also tends to a constant, since
ρ ∝ a−d. By substituting this solution into the action (5.6.12), we find the on-shell action
to leading order in t → −∞ to be:

Son-shell ∼
∫

−∞
dt (−4 + ρ) . (5.6.14)

Despite the vanishing of the Hubble parameter and the kinetic term, this on-shell action
diverges when t → −∞. This divergence is due to the non-minimal coupling to the
dilaton, e−Φ ∼ t2, which blows up when we integrate back to the infinite past. We
conclude that the dilaton gravity model of string cosmology does not satisfy the finite
amplitude criterion.

Example with non-perturbative curvature corrections

With dilaton gravity, we have restricted ourselves to tree-level interaction and the first
order in curvature corrections. Going beyond that gets very complicated, especially in
string theory. Nevertheless, recent developments indicate that curvature corrections to
all orders in α′ ∼ ℓ2

s can be expressed in a simple form when restricted to homogeneous
backgrounds [142], thanks to O(d, d) symmetry [143, 144]. The FLRW action with no
NS-NS two-form field would then read:

S = 1
2ℓd−1

s

∫
dt ade−2ϕ

[
−4ϕ̇2 + 4dϕ̇H − d2H2 − F (H)

]
+ Sm , (5.6.15)

where the function F (H) contains the α′ corrections,

F (H) = 2d
∞∑

k=1
(−α′)k−1ck22kH2k . (5.6.16)

The coefficients ck must be determined from full string theory calculations, order by order.
To zeroth order, it is known that c1 = −1/8, but determining c2 to first order in α′ is
already a very difficult task. So instead we keep the ck coefficients arbitrary and only
assume that the infinite sum in F (H) is convergent. In this case, it has been shown
that in the string frame, de Sitter-like solutions with H = constant can exist in vacuum
[142, 145] and in the presence of matter [146, 147].

Recently, this theory was applied to a very early universe loitering phase in string gas
cosmology [83]. In the regime where the string gas is dominated by the winding modes
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p = −ρ/d, one finds a non-perturbative solution in α′:

ϕ(t) = d− 1
2 Ht , H = const. , a(t) ∝ eHt . (5.6.17)

The on-shell action (5.6.15) (neglecting the matter action) evaluated on this solution then
yields:

Son-shell
SF ∝

∫
−∞

ade−2ϕdt =
∫

−∞
eHtdt < +∞ . (5.6.18)

This integral converges in the string frame (SF) and therefore, the on-shell action is finite
when t → −∞.

However, the loitering phase only appears when making the conformal transformation
to the Einstein frame (EF):

aE = e−2ϕ/(d−1)a , dtE = e−2ϕ/(d−1)dt , ϕE = 2
κ

1√
d− 1

ϕ , (5.6.19)

for κ2 ≡ M1−d
Pl . The Einstein frame is the physical frame, in the sense that all additional

matter must be coupled in this frame. Therefore the tools we can use to measure the
amplitudes are made of this matter, so the finiteness of the on-shell action must be
satisfied in this frame. We can translate the SF solution (5.6.17) into the EF as:

aE = a0 , tE = −e−Ht

H
, ϕE(tE) = −

√
d− 1
κ

ln(H(−tE)) , (5.6.20)

where we used a(t) ≡ a0e
Ht. This confirms that the theory admits a loitering phase in

the EF where HE ≡ daE/dtE = 0. The dilaton evolution (5.6.20) implies that

dϕE

dtE
=

√
d− 1

κ(−tE) → 0 when tE → −∞ . (5.6.21)

Therefore, the on-shell action in the Einstein frame, neglecting the matter contributions,
reads:

S(EF) =
∫

−∞
dtE ad

E

 3
κ2

(
2H2

E + dHE

dtE

)
+ 1

2

(
dϕE

dtE

)2

+ O(α′)
 ∝

∫
−∞

dtE ad
E O(α′) .

(5.6.22)
Let us now prove that the α′ correction terms also vanish on-shell in the limit t → −∞.
In the string frame, these terms enter the action (5.6.15) as:

S(α′) ∝
∫

dt ade−2ϕA(H) , with A(H) = 2d
∞∑

k=2
(−α′)k−1ck(2H)2k , (5.6.23)

which transforms in the Einstein frame into:
∫

dt ade−2ϕA(H) =
∫

dtE ad
Ee

2κϕE/
√

d−1A(H) . (5.6.24)
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The SF Hubble rate H can be expressed in terms of EF quantities as:

H = 1
a

da
dt = e−κϕE/

√
d−1

aE
·

d
(
aEe

κϕE/
√

d−1
)

dt = κ√
d− 1

dϕE

dt = κ√
d− 1

dϕE

dtE
e−κϕE/

√
d−1 .

(5.6.25)
In the asymptotic past, H is still a constant and ϕE → −∞ in the Einstein frame, and
therefore the α′ correction terms in the action (5.6.24) vanish on-shell.

This model thus provides an example of loitering phase in the Einstein frame within
string cosmology, which satisfies the finite amplitude criterion.

5.7 Discussion

In this chapter, we have confronted a new criterion, based on the consistency of the
path integral amplitudes for gravitational theories, with a large panel of early universe
cosmological models. This criterion bares resemblance to the finite action criterion studied
by Barrow and Tipler earlier on [86, 87], in particular both criteria require a finite spatial
volume for the universe, and they eliminate histories for which the action diverges when
approaching a cosmological singularity. They also differ on important points, for instance
our criterion has the advantage of not constraining past configurations of the universe
based on its future evolution, and in addition, it is sensitive to some quantum mechanical
aspects beyond the semi-classical level, thanks to its path integral formulation.

In the context of this thesis, where our aim is to improve the understanding of the
gravitational path integral, this criterion is a helpful resource for categorizing the various
early universe models, and we have shown here that it can act as a powerful sieve. We
review here the main conclusions of our work, which are also summarized in the table 5.1.

In ordinary general relativity, the finite amplitude criterion is not very constraining and
overall, it maintains the BKL mixmaster solutions as the typical approach to cosmological
singularities. Specifically, it demands finite four-volume and matter fields behaving in a
usual way (i.e., bounded potential for a scalar field or equation of state w ∈ (−1,+1) for
a perfect fluid). Black holes are also consequent with our criterion.

Besides, the non-renormalizability of GR and the various puzzles arising in the early
phases of the standard hot big-bang evolution compel us to consider alternative theories
of the very early universe. While remaining within the framework of general relativity,
the most popular modification to the standard hot big-bang evolution, which solves its
horizon and flatness puzzles, is the addition of an inflationary phase before the radiation-
dominated epoch. We have found that if inflation is thought of as the very first phase
of evolution, going all the way back to the big bang, then it violates the finite amplitude
criterion because of quantum interference instabilities. Even if it is not the first phase
of evolution, satisfying the criterion also requires to avoid the eternal inflation regime.
Intriguingly, the eternal inflation regime is also conjectured to be part of the Swampland
[95]. This hints toward a link between the Swampland constraints and our criterion,
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suggesting that the Swampland may be a feature already of the semi-classical theory
and not only of the full quantum gravity theory16. Therefore, an inflationary phase is
consequent with the finite amplitude criterion only if it is transient and non-eternal.
This means that either we must consider other explanations to the horizon and flatness
problems, or we must find an alternative early phase which naturally leads to the initial
conditions required for inflation to start. The latter is typically difficult to achieve, but is
the approach of the no-boundary proposal, whose formulation in terms of a gravitational
path integral makes it particularly well suited to the finite amplitude criterion. In fact,
this whole chapter could be summarized by the question: is it possible to find another
early universe model that enables to define semi-classical cosmological amplitudes as well
as the no-boundary proposal? The main difficulty of the no-boundary proposal is to
practically implement the formal definition in a consistent manner, as we reviewed in the
introductory chapter 2.2 and in the first part of this thesis. We also come back to this
point in the last chapter of this thesis (chapter 6).

Alternative explanations of the horizon and flatness puzzles are for example provided
by bouncing and cyclic models. Bounces are allowed by the criterion only if they admit
an ekpyrotic scalar field as their unique matter content, while cyclic models are allowed
only if they are not exactly cyclic, but instead reach a null scale factor in the asymptotic
past while conserving cyclicity in certain local quantities such as the Hubble rate. These
bouncing models always imply a violation of the null energy condition, and hence require
the appearance of new physics.

By further considering theories beyond general relativity, we have found that the finite
amplitude criterion becomes very constraining. Quadratic gravity only allows accelerating
solutions, though they can also be anisotropic. This means that quadratic gravity leads
to the right initial conditions for inflation to start. Whether a quantum interference
instability also arises when a quadratic gravity inflation phase goes all the way back
to the big bang remains an open problem. In this case, the finite amplitude criterion
changes what is typical and special: the generic mixmaster behavior is ruled out by
the criterion, and thus accelerating, inflating backgrounds become the rule and not the
exception anymore. For actions containing cubic or higher-order terms in the Riemann
tensor, the implications of the criterion get even stricter. Lorentzian FLRW backgrounds
are all excluded, except for sufficiently accelerated solutions on a spatially flat background
and with a finite number of higher-order terms. This stands in contrast with the results of
chapter 3, where all higher order actions we examined admitted a no-boundary solution
on closed FLRW background.

Finally, we investigated a last alternative to inflation, that can only be realized within
beyond-GR theories: loitering or emerging universes. We found that loitering phases
based on EFT kind of theories generically satisfy the finite amplitude criterion, but until

16In a parallel manner, the Trans-Planckian censorship conjecture [22] is another semi-classical consis-
tency requirement which is equivalent to certain swampland conditions [148].
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now no such model is entirely free of other inconsistencies such as unitarity violations,
strong coupling problems, etc. Loitering phase also naturally arise within string cosmol-
ogy. There we found that the simplest model based on the tree-level, low energy dilaton
gravity action cannot satisfy the finite amplitude criterion, while the more complete action
containing non-perturbative curvature corrections does satisfy the criterion.

We conclude this chapter by noting that the finite amplitude criterion also connects
to Penrose’s Weyl curvature hypothesis [149]. By noting that the Weyl curvature is
very small for cosmological singularities, while being very large at black hole singularities,
Penrose conjectured that it was related to the gravitational entropy, and thus the increase
of Weyl curvature would be linked to the second law of thermodynamics. Our results
could explain the smallness of the Weyl curvature in initial configurations such as a
cosmological singularity: for the no-boundary solution, the most probable spacetimes are
those which are highly symmetric and isotropic; for quadratic gravity, the criterion restrict
to very symmetric backgrounds; loitering phases for their parts, only satisfy the criterion
if anisotropies are kept small. Overall, we see that the finite amplitude criterion selects
early universe scenarios which have a small Weyl curvature at early times.

In the next chapter, we pursue our study of the semi-classical consistency of early cos-
mological models, by looking at another criterion, stemming this time from the consistency
of matter fields path integrals, and which restricts how complex the metric components
can get.
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Chapter 6

Complex metrics criterion

6.1 Necessity for a complex metric criterion

In physics, complex numbers play a crucial yet intriguing role. What seemed to be
merely a mathematical artifact necessary for solving third order polynomial equations,
turned out to stand at the core of quantum mechanics, describing the very dynamic of
quantum objects through Schrödinger’s equation. In gravitation as well, several cases
of complex metrics appear naturally, for example when considering the thermodynamic
of Kerr black holes [55]. Indeed, Gibbons and Hawking found that, similarly to the
case of Schwarschild black holes, Kerr black holes’ thermodynamic can be recovered by
analytically continuing the Kerr metric to complex time, using a Wick-rotation. Because
of the crossed angular-time term present in the Kerr metric, the Wick-rotation leads in
this case to a fully complex spacetime, and not a mere Euclidean one. Another example
where complex metrics play an essential role is in the no-boundary proposal (2.2). There
the path integral sums over complex metrics, hence replacing the cosmological singularity
of Lorentzian spacetime by a regular geometry.

Nevertheless, as various examples demonstrate, we cannot simply complexify any real
metric, and expect to obtain physical results. For instance, Witten showed that an-
alytically continued flat four-dimensional spacetime gives rise to zero action wormhole
solutions [150]. If physical, those solutions should be included in a gravitational path in-
tegral with the same weighting than classical solutions. This would clearly contradicts our
(lack of) observations, and we therefore expect such wormhole solutions to be non physi-
cal, and excluded from the path integral in some way. Witten also discusses another type
of pathological complex solutions, that we will here call the n four-sphere no boundary
solutions1. These solutions are constructed starting from the simplest instanton geometry
for the no-boundary proposal, described explicitly in section 2.2 and depicted in figure
2.1. By gluing below the lower-half four-sphere of the original no-boundary instanton
a new full four-sphere, we obtain a different instanton solution. This procedure can be

1These many-sphere configurations were first described in [151], where it was found that by considering
the Vilenkin saddle points (n < 0), the integral could be made convergent. However here we discard those
saddle points, as we have seen in section 2.2 that they are associated with blowing-up fluctuations.
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repeated as many time as desired, hence creating n different instanton solutions. The 2
four-sphere no-boundary solution is depicted in figure 6.1, along a graphical representation
of a possible time path it corresponds to. Assuming these newly constructed instantons

Figure 6.1: Left: Spacetime depiction of the no-boundary solution with two additional
spheres glued onto the original South Pole. ‘Time’ evolves forwards from bottom to
top: it is Euclidean when the geometries are spheres and Lorentzian when it becomes
the hyperboloid. Right: Graphical representation of the time path (orange curve) in the
complex time plane. The horizontal axis represents Lorentzian time (real t, imaginary τ)
and the vertical axis Euclidean time (imaginary t, real τ). The curve changes direction at
the moment of the Wick rotation (of 90◦ in the complex plane). The blue dots indicate the
south poles of the Euclidean spheres, and the black dot indicates the late-time Lorentzian
de Sitter geometry. The dotted orange curves show possible deformations of the time path
such that the zeroes of the scale factor are avoided by going into the Lorentzian direction.

are physical, we can calculate their contribution to the wavefunction of the universe at
the semi-classical level (i.e., by performing a saddle-point approximation), and we find:

Ψ ∼ exp
[
−
(

n + 1
2

) I(S4)
ℏ

+ iφ

]
= exp

[
4π2

ℏH2

(
2n + 1 + i

√
q1H2 − 1

3)]
, (6.1.1)

where I(S4) = 16π2/H2 is the on-shell Euclidean Einstein-Hilbert action of the four-
sphere, φ is the phase given by the de Sitter hyperboloid in spatially flat space, and q1 is
the value of the scale factor squared evaluated on the final hypersurface. The amplitude
of the wavefunction is found by this calculation to grow exponentially with the number
n of four-sphere we glued below the original no-boundary instanton. Therefore, the total
wavefunction summing over all these contributions would blow up as n → ∞. This
blowing up is non-sensical and therefore, as for the vanishing action wormholes, these
geometries must be excluded of the gravitational path integral if we want it to be defined
consistently.

We point out that the time path followed in figure 6.1 is not rigid, as a change in the
complex time path does not modify the on-shell action used in the semi-classical calcu-
lation (at least as long as the boundary conditions are unchanged). This follows from
the fundamental theorem of calculus for analytic complex functions: if the complex time
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path reside in a simply connected open domain ⊂ C where the Lagrangian is holomor-
phic, then Cauchy’s theorem holds. This result is notably not valid in the presence of
large anisotropies, because in this case singularities appear in the complex domain, and
prevent the time path to be deformed at will [152]. In this chapter we restrict to isotropic
backgrounds, so we can deform time path contours without concern.

From the few examples described here, it is clear that certain complex metrics are
needed for a successful description of quantum gravity, while others must be discarded.
This argument calls for some sort of criterion that could distinguish physical from nonsen-
sical complex metrics for quantum gravity. This chapter aims to develop such a criterion
in the specific context of quantum cosmology.

The criterion we will study was devised by Kontsevich and Segal [153] in the prospect
of constructing a new axiomatic description of quantum field theories on fixed curved
backgrounds. In this context, they considered complex metrics to form an allowable
background, if any free matter field theory could be consistently coupled to this back-
ground.

In section 6.2 of this chapter, we rederive this allowability criterion, and we also show
how it in fact extends an earlier result by Louko and Sorkin [154] for two-dimensional
complex scalar fields. We also motivate the application of this criterion to quantum
gravity, that was initiated by Witten [150], by showing that it efficiently separates the
examples described above, allowing physical geometries and discarding nonsensical ones.
The rest of the chapter is then dedicated to the application of the allowability criterion to
several models of the early universe cosmology, significantly extending the results of [150,
155]. First, we explain in section 6.3 the techniques used to assess the (non-)allowability
of off-shell complex metrics. Then we apply the criterion to Lorentzian metrics (section
6.4), to classical transition solutions between two de Sitter geometries (section 6.5), to
quantum bouncing cosmologies that avoid the initial spacetime singularity (section 6.6),
and finally, to off-shell configurations in the no-boundary proposal, defined either by the
sum over compact geometries or by the sum over regular geometries (section 6.7). The
results we obtain are discussed in section 6.8 and are schematically summarized in figure
6.2.

The rest of this chapter follows and presents the results of [4].

6.2 Allowability criterion for complex metrics

In this section we will motivate and rederive the allowability criterion for complex metrics
studied in this chapter. It is based on the work of Louko and Sorkin [154], Kontsevich
and Segal [153] and Witten [150]. We will hence designate this criterion as the LSKSW
criterion, or simply the allowability criterion.
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Figure 6.2: (Non-)Allowability of the different early universe cosmology model studied
in this chapter. Red means that the metric is discarded, gray means that no conclusion
can be reached, and cyan means that an allowed complex metric can be defined. This
simplistic representation does not account for the specificities and subtleties described in
the core of the text and in the discussion (section 6.8).

6.2.1 A first allowability criterion for scalar fields in two dimen-
sions

In 1995, Louko & Sorkin [154] formulated a first allowability criterion for scalar fields in
the context of topology change in 1 + 1 dimensions. The variational principle for deriving
equations of motions from the Einstein-Hilbert action of general relativity requires the use
of smooth and invertible metrics. But sometimes, non-invertible metrics arise in physically
interesting cases, for example in topology changes in two spacetime dimensions. There,
non-invertible metrics are needed to compute the fundamental vertex of string theory (see
figure 6.3). The study of these string theory vertices hence inclined Louko and Sorkin to

Figure 6.3: Trousers (left) and yarmulke (right) geometries: examples of non-invertible
2D metrics possessing a crotch singularity (in red). The trousers geometry is used to
compute the fundamental vertex of string theory.

extend the class of metrics entering the definition of the EH action by relaxing the non-
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invertibility assumption, to make topology changes kinematically possible. In this aim,
they studied two-dimensional Lorentzian analytic metrics vanishing at one single point,
and regularised these spacetimes using a simple +iϵ prescription. They fixed the sign of
the regulator by requiring that the massless scalar field’s action has a positive imaginary
part (assuming that the scalar field ϕ is real valued on the regularized spacetime):

For S[ϕ] = −1
2

∫
d2x

√
−g gµν∂µϕ∂νϕ , where g ≡ det(gµν) : Im(S[ϕ]) > 0 . (6.2.1)

This condition implies that the path integral of this scalar field is convergent on the
regularized spacetime: ∫

Dϕ exp
(
i

ℏ
S[ϕ]

)
< ∞ . (6.2.2)

Louko and Sorkin also noted that, after diagonalization of the metric, gµν = diag(λ(0), λ(1)),
the convergence condition (6.2.1) was equivalent to:

Im[
√

−g] = Im[
√

−λ(0)λ(1)] < 0 . (6.2.3)

They further speculated on the possibility of defining a similar criterion for other types
of matter fields such as an electromagnetic field strength.

6.2.2 Complex metrics in QFT on fixed curved backgrounds

Aiming to replace the axiom sets of quantum field theory, Kontsevich and Segal [153]
recently characterised complex background geometries as allowable if any free p-form
field theory could be coupled to these backgrounds in a consistent manner. The precise
definition (Definition 2.1 of [153]) states that, on a spacetime manifold M of dimension
D ≥ 2, the complex invertible metric g is allowable if the kinetic part of the Euclidean
action for any real non-zero p-form gauge field A with associated q-form field strength
F = dA (q = p+ 1) has a positive real part:

Iq[A] = 1
2q!

∫
M

dDx
√

det(g) gµ1ν1 · · · gµqνqFµ1···µqFν1···νq ;

g is allowable if ∀ q ≤ D , Re (Iq[A]) > 0 . (6.2.4)

In that case, the Euclidean path integral constructed from this action is convergent:
∫

DA exp (−Iq[A]/ℏ) < ∞ . (6.2.5)

Note that for q = 0, we don’t have an interpretation in terms of the field strength
of a gauge field. This case corresponds to a scalar field mass term, already discussed by
Louko and Sorkin [154] in two dimensions. Let us demonstrate that the Louko and Sorkin
criterion (6.2.1) matches this general criterion (6.2.4) in that case. We consider the action
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of a real massive scalar field on a Lorentzian background:

S[ϕ] = −1
2

∫
dt dD−1x

√
−gL

(
gµν

L ∂µϕ∂νϕ+m2ϕ2
)

= + i

2

∫
dτ dD−1x

√
gE
(
gµν

E ∂µϕ∂νϕ+m2ϕ2
)

= iI[ϕ] , (6.2.6)

where we used the Wick rotation t = −iτ for the second equality to transform the
Lorentzian background metric into the Euclidean one, as this leads to the correct re-
lation between the Lorentzian and Euclidean actions, iS[ϕ] = −I[ϕ]. The convergence of
the Lorentzian path integral requires:

Im (S[ϕ]) > 0 ⇔ Im
[√

−gL
]
< 0 , (6.2.7)

while the convergence of the Euclidean path integral requires:

Im (iI[ϕ]) = Re (I[ϕ]) > 0 ⇔ Re [√gE] > 0 . (6.2.8)

Equations (6.2.7) and (6.2.8) are completely equivalent if the requirements Re[√g] > 0
and Im[√−g] < 0 are. This happens only if the following sign choice: √

−gL = −i√gE ,

is taken when calculating the square root of the Lorentzian determinant. This choice is
consistent with the + sign usually taken when evaluating the square root of the determi-
nant of a Lorentzian metric. This shows that the allowability criterion really applies to
any complex metric, be it Euclidean, Lorentzian, or any linear combination of the two.
For convenience and to avoid ambiguity, we will focus on the Euclidean version of the
criterion (6.2.4) for the rest of this chapter.

Kontsevich and Segal proved that their definition of allowable metrics possesses a
simple pointwise formulation (see Theorem 2.2 of [153] and its proof). This formulation
will be very handy to apply directly the criterion to many early universe metrics.

Consider a specific spacetime point of the manifold, x ∈ M. The allowability definition
is exactly equivalent to the pointwise condition:

Re
[√

det(g(x)) gµ1ν1(x) · · · gµqνq(x)Fµ1···µq(x)Fν1···νq(x)
]
> 0 , (6.2.9)

for any real and non-zero q-form F , q ∈ {0, · · · , D}. We analyze this condition for suc-
cessive values of q.

1. First, for q = 0, we recover the Louko-Sorkin condition (6.2.1), which implies, as we
explained in the paragraph above, that Re

[√
det(g)

]
> 0 .

2. From q = 1, we obtain that the real part of the matrix G ≡
√

det(g(x)) g(x)
is positive-definite. This means that the real and imaginary parts of this matrix
can be simultaneously diagonalized using a real basis. Then, the inverse matrix
G−1 = g(x)√

det(g(x))
is also diagonal in this basis. Because

√
det(g(x)) is a scalar value,
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g(x) itself is then diagonal, and we can write:

gµν(x) = λ(µ)(x)δµν , (6.2.10)

where no summation on the µ index is implied. We therefore obtain that:

√
det(g(x)) =

D∏
µ=1

√
λ(µ)(x) , (6.2.11)

and the condition found from q = 0 (1) translates into

Re
 D∏

µ=0

√
λ(µ)(x)

 > 0 ⇔
D∑

µ=1

Arg[λ(µ)(x)]
2 <

π

2 . (6.2.12)

3. Considering now all subsequent q > 1, the condition (6.2.9) implies that for any
subset S ⊂ {1, 2, · · · , D},

Re
√det(g(x))

∏
µ∈S

(λ(µ)(x))−1

 > 0 , (6.2.13)

⇔
∑
µ∈S̄

Arg[λ(µ)(x)]
2 −

∑
µ∈S

Arg[λ(µ)(x)]
2 <

π

2 , (6.2.14)

where S̄ = {1, 2, ·, D} \ S. Since this must be true for any subset S, it implies that
the metric g is allowable if and only if, for all x ∈ M,

Σ(x) ≡
D−1∑
µ=0

∣∣∣Arg
[
λ(µ)(x)

]∣∣∣ < π. (6.2.15)

This is the pointwise formulation of the allowability criterion, which we will use in the
rest of this chapter. We call Σ(x) the LSKSW or allowability function, and the inequality,
Σ(x) < π, the LSKSW or allowability bound.

Before applying the allowability bound to early universe cosmologies, let us comment
on the different working assumptions used in [153] to formulate this criterion.

1. Why is it sufficient to consider p-form gauge fields?
The restriction of the condition (6.2.4) to the case of p-form gauge fields is due to
the fact that these are the only bosonic fields which possess a gauge-invariant stress
energy tensor (F ), that is necessary for coupling the theory to gravity in a curved
spacetime. Additionally, we only consider non-interacting field theories, because
even in flat spacetime, we do not know any interacting UV complete theories of
massless fields except for p-forms.

2. Why do we restrict to real gauge fields?
In [153], the goal is ultimately to give an Hilbert space interpretation of the path
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integral, in order to obtain unitary quantum field theories. A Euclidean transition
amplitude can be written in the Schrödinger picture as a bra and a ket sandwiching
an evolution operator, Ψ[1 → 2] = ⟨2| e−τĤ/ℏ |1⟩ (with Ĥ the Hamiltonian operator).
This transition amplitude also corresponds to a path integral fixed at its two ends.
Therefore, a quantum state composed of an evolved ket, |ψ1⟩ = e−τĤ/ℏ |1⟩, can be
viewed as a path integral fixed at only one of its ends. When the path integral sums
over real matter fields, it can be carried out along the real line, and the integration
contour is defined locally in field space. But if the matter fields are allowed to take
complex values, then the path integral is defined via analytic continuation, and the
thimbles in the complexified field space define the contour of integration, but depend
on the two ends of integration. With only one end given, the thimbles cannot be
specified, so the definition of quantum states using the path integral is not possible.

There is yet another argument for why real matter fields are sufficient, when p ≥ 1
(i.e., not for scalar fields). In these cases, the field configurations contains certain
integer variables (e.g., the monopole numbers, the instanton numbers, or the fluxes),
and integers cannot be analytically continued. This would, however, only lead to a
weaker global, and not a local, restriction [150]. See [156] for a study of no-boundary
proposal with internal fluxes.

Given the results found in the chapter 4 of this thesis, it may be desirable that
scalar fields, in particular, remain real-valued (or have a small complex component)
and at an extremum of their potential. This would avoid the strong non-localities
stemming from the dependence of the South-Pole values of the scalar field on the
final size of the universe 4.6. This was recently studied in [77] by applying the
LSKSW criterion to higher-dimensional spacetimes, and inspecting its consequences
on e.g., the volume moduli scalar field coming from the compactification to lower
dimensions.

6.2.3 Allowability criterion for quantum gravity

In [150], Witten speculated on the validity of the allowability criterion, not only for QFTs
on fixed curved backgrounds, but also in the context of quantum gravity. Of course,
due to our present lack of knowledge about quantum gravity, no formal proof can be
given. But as argued in the introduction of this chapter 6.1, we expect some criterion
for complex metrics to exist, and Witten showed that, at the semi-classical level, the
present allowability criterion is very well suited to quantum gravity. In particular, he
demonstrated that the Hartle-Hawking saddle points used in the no-boundary proposal
and the Kerr metric describing rotating black holes are both allowed. Conversely, he
proved that the analytically continued flat 4D spacetime leading to zero-action wormholes
is not allowed by the criterion. The simple Lorentzian metric ds2 = −dt2+∑D−1

i=1 dx2
i is also

not allowed, but lies on the boundary of the allowable metrics’ space. We will develop
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this example further, in particular by studying deformation of time path contours, in
section 6.4. The pathological n four sphere no boundary solution described in the previous
subsection is also found not to be allowed, and we will come back to this in more details
in 6.6.

In the rest of this chapter, we apply the allowability criterion to quantum cosmology,
including off-shell configurations, extending what was initiated in [150, 155]. The reason
why we also consider off-shell geometries is because the overall aim of this criterion is
to define quantum gravity using the path integral approach consistently. However, as is
evident from the no-boundary proposal case detailed in 2.2, the full gravitational path
integral also sums over off-shell geometries. In the next section 6.3, we will explain
why this fact, together with the deformation of time path contours allowed by Cauchy’s
integral theorem, renders the determination of allowability more subtle. We will then
present three analytical techniques, that will be used afterward to assess the allowability
of on- and off-shell metrics.

6.3 Methodology

The condition (6.2.15) characterizes allowable complex metrics in a simple and straightfor-
ward manner. But in practice, determining whether a given metric satisfies this condition
or not can turn into an involved task, because of the possibility to deform time contours
continuously without altering observable variables. So it is sometimes possible to find
a specific time contour for which the metric becomes allowable, even if it was not ini-
tially. In the first subsection we will describe how to optimize this time contour. We
will then present two analytical methods that allow to determine the allowability of a
specific metric. All the methods described in this section are particularly appropriate to
study minisuperspace models, with a metric parameterized by several functions of time
only. For the rest of this chapter, we actually only consider homogeneous metrics, so that
the allowability function, Σ(x), only depends on time and not on space. The first two
methods we describe are conceptually simple, but not always conclusive, while the last
one, presented in section 6.3.3, is more intricate, but always conclusive.

6.3.1 Optimizing deformations of the time contour

References [150, 155] found that the on-shell metric of the no-boundary solution is allowed
by deforming the time contour in the complex plane, in order to find a time path where
the allowability bound is satisfied everywhere. Similarly, we consider a metric to be
allowable if there exists a continuous and differentiable deformation of the time contour
that keeps the boundary points fixed, and such that the allowability bound is satisfied at
all time. This is justified by the fact that, as long as there is no hole in the domain, such
a change does not alter the value of the action nor of any observable quantities such as
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the transition amplitude calculated from the path integral.
Allowability of a complex metric can therefore be proven by finding one time path

that satisfies the allowability bound. This can be done in a time-consuming and not
very efficient manner, by running an optimization algorithm on the value of the LSKSW
function. The optimization parameters characterize the time path in a judicious way, and
the algorithm runs until it finds a set of parameters for which Σ(t) < π , ∀ t.

We work with a normalized time variable such that the boundary conditions of a
particular solution are set at an initial time t = 0 and a final time t = 1. We then promote
the real, straight path from t = 0 to t = 1 to a complex path t(u) : [0, 1] 7→ C such that
t(0) = 0 and t(1) = 1. The time path function further depends on n real parameters,
c⃗ = (c1, c2, · · · , cn) ∈ Rn, so we write it as t(u, c⃗). The optimization procedure finds the
parameters (restricted to some compact domain A ⊂ Rn) minimizing the maximal value
in time of the Σ(t) function, and assesses whether this minimum satisfies the allowability
bound:

min
c⃗ ∈A

max
u∈[0,1]

Σ(t(u; c⃗ )) < π .2 (6.3.1)

This method is not very efficient because it requires two nested optimizations which are
quite time-consuming, and in the case of a negative result, it is not conclusive: the
parametrization might not be appropriate, or the domain A not extended enough. We
present more conclusive techniques in the next subsections, but this numerical optimiza-
tion is useful to develop intuition about allowable metrics.

For this purpose, we have used the following parametrization (with a 5-dimensional
parameter space). It consists of a linear combination of the straight path, with the
addition of the first three terms of a Fourier series in the complex time direction, and a
power-law function (inspired by the path that worked in [155]) that starts by following the
Euclidean-time direction and then smoothly interpolates to the Lorentzian-time direction:

t(u; c1, . . . , c5) = c5
[
u+ ic1 sin(πu) + ic2 sin(2πu) + ic3 sin(3πu)

]
+ (1 − c5)ei(ϑ−π/2)

[
(1 − (1 − u)c4) sin(ϑ) + iuc4 cos(ϑ)

]
. (6.3.2)

The angle ϑ ≡ Arg(−N) is used to rotate the power-law part of the path as a function of
the fixed lapse N , for a given (on- or off-shell) solution. We explored several numerical
ranges for the parameters c1, · · · , c5. We found many successful paths with the Fourier
coefficients c1, c2, c3 ∈ [−1/2, 1/2], the power-law coefficient c4 ∈ [1, 10], and the linear
weighting coefficient c5 ∈ [0, 1]. In the figures 6.11, 6.17 and 6.18, this numerical opti-

2The numerical implementation of this optimization problem was carried out using the basin-hopping
algorithm [157] of the SciPy Python package [158]. We performed two nested basin-hopping optimiza-
tions: at every point c⃗ in the parameter space A explored by the outer minimization, an inner maxi-
mization is called over u ∈ [0, 1] to find the global maximum of Σ. If this maximum is below π, the
algorithm is stopped; otherwise, the optimization over A is continued until a certain number of iterations
has been reached. This cannot guarantee that the value on the left-hand side of (6.3.1) is truly a global
minimum, but it is often sufficient to find local minima. When performing an optimization for many
different metrics, we took advantage of parallelization using the multiprocessing package.
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mization (when successful) was used in conjunction with the more analytic techniques
described below.

6.3.2 Checking for uncrossable ridges

Sometimes, it is possible to immediately check whether a certain solution violates the
allowability bound for any time paths. Let us split the diagonalized homogeneous metric
into its temporal and spatial parts:

ds2 = −f(t)dt2 +
D−1∑
j=1

q(j)(t)(σj)2 = −f(t(u))t′(u)2du2 +
D−1∑
j=1

q(j)(t(u))(σj)2 , (6.3.3)

where the σjs are differential 1-forms on the spatial hypersurface. The allowability func-
tion then reads

Σ(t(u)) ≡ Σtemporal(t(u)) + Σspatial(t(u)) =
∣∣∣Arg

[
−f(t(u))t′(u)2

]∣∣∣+ D−1∑
j=1

∣∣∣Arg
[
q(j)(t(u))

]∣∣∣ .
(6.3.4)

Because of the absolute values, both the temporal and the spatial parts of the allowability
function are always positive: Σtemporal(t(u)) ≥ 0 and Σspatial(t(u)) ≥ 0, and therefore

Σ(t(u)) ≥ max {Σtemporal(t(u)),Σspatial(t(u))} . (6.3.5)

Therefore, it is sufficient to prove that the spatial allowability bound:

Σspatial(t(u)) < π , ∀ u ∈ [0, 1] , (6.3.6)

is always violated for any connected path between t(0) = 0 and t(1) = 1, in order for
the full allowability bound to be violated (or at best saturated if Σ = π) for this metric.

This condition is very useful because it only depends on the position t(u) of the time
paths in the complex plane and not on the tangent t′(u) of the paths, which makes its
verification easier.

Checking if the spatial allowability bound (6.3.6) is always violated: In practice,
we restrict ourselves to a bounded, closed domain of the complex plane, B ⊂ C. If the real
part of the time path grows monotonically (so that Lorentzian time never stops or turns
around), then this sets the restriction Re(t) ∈ [0, 1]. Similarly, we can set some bound
on how far in the imaginary direction a time path can go, e.g., Im(t) ∈ [−1, 1] (in this
case, B is rectangular). We need to check whether there exists a simply connected subset,
S ⊆ B, containing the points t = 0 and t = 1, and such that Σspatial(t) < π ∀ t ∈ S. If
there is no such region S, then the time paths within B inevitably have to cross a region
where Σspatial(t) ≥ π in order to connect the starting and ending points, hence violating
the full allowability bound. In many cases, even if B is compact, it can be enough to
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Figure 6.4: An example of the ridge obstruction picture in the complexified t plane. The
seas (cyan regions) are where Σspatial(t) < π, and the ridges (red regions) are where
Σspatial(t) ≥ π. On the left, one has an example where the ridges do not present an
obstruction and where we can find a simply connected smooth path between t = 0 and
t = 1 (represented in both pictures by the black dots) along which Σspatial(t) < π. Whether
the LSKSW bound can actually be satisfied along such a path is however not guaranteed
and must be decided based on other methods. On the right, one has an example where
there is a ridge obstructing the way between t = 0 and t = 1. This implies that the
LSKSW bound is necessarily violated.

convince oneself that the result in fact holds true for B extending to positive and negative
imaginary infinity.

Pictorially, the obstruction resembles a ridge exceeding the sea of Σspatial < π points
and blocking the way between t = 0 and t = 1; as an example see figure 6.4. This no-
ridge condition is very useful when studying specific early universe cosmological models.
There, we will focus on homogeneous and isotropic metrics, which are solutions to general
relativity with a cosmological constant for various boundary conditions. In particular,
we will study classical transitions (see 6.5), as well as the no-boundary proposal with
Neumann-Dirichlet and Dirichlet-Dirichlet boundary conditions. The path integral for all
those scale factor solutions will involve summing over geometries in the complex plane for
the lapse N . Thus, for any fixed value of N , we have a metric for which we can write down
the allowability function Σ(t) and apply the no-ridge condition3. We display the results
obtained by assessing the no-ridge criterion in figure 6.5. These results are already very
informative: the no-ridge criterion renders non-allowable large portions of the geometries,
especially at large |N |. This is a new indication of the potential power of the allowability
criterion to constrain complex metrics that should be non-allowable in path integrals.

3In practice, we assess this criterion by using a ‘walking algorithm’: upon discretizing the region
B, one starts from t = 0 and explores the complex time plane by trying to go forwards in Re(t) in
small increments and reach t = 1, while always staying ‘in the water’, i.e., keeping Σspatial(t) < π. If
it is impossible, we declare the metric non-allowable. While this is approximate in the sense that the
numerical procedure has limited precision (given by the inverse lattice spacing) and in the sense that it
is restricted to a bounded region of the complex plane, we have found the method to be perfectly robust.
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Figure 6.5: Results of the walking algorithm for different models studied later in this
chapter. Red dots correspond to geometries for which a ridge was found (the allowability
bound is violated). Grey dots represent geometries for which no obstruction is found
and further investigation is needed. Saddle point geometries (i.e., classical solutions) are
represented by blue dots.

6.3.3 Allowable time domains

In this subsection, we describe our best analytic method for assessing the allowability of a
minisuperspace metric. We focus on a particular homogeneous and isotropic metric of the
form of equation (6.3.3), which is very often used in minisuperspace quantum cosmology
[159] and especially for the no-boundary proposal:

ds2 = − N2

q(t)dt2 + q(t)dΩ2
(D−1) = − N2

q(t(u))t
′(u)2du2 + q(t(u))dΩ2

(D−1) . (6.3.7)

This metric is a D-dimensional extension of the no-boundary metric we used in the in-
troductory part on the no-boundary proposal 2.2 and in the chapter 4 on the inclusion of
scalar fields in the no boundary picture. For this metric (6.3.7), the allowability criterion
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reads:

Σ(t(u)) =
∣∣∣∣∣Arg

[
− N2

q(t(u))t
′(u)2

]∣∣∣∣∣+ (D − 1)
∣∣∣Arg

[
q(t(u))

]∣∣∣ < π , ∀ u ∈ [0, 1] . (6.3.8)

For a geometry that passed the no-ridge condition, i.e., for which there exist time paths
t(u) that satisfy the spatial allowability condition on all time, we find that

π − Σspatial(t(u)) = π − (D − 1)|Arg[q(t(u))]| > 0 , ∀ u ∈ [0, 1], (6.3.9)

and therefore we can rewrite the allowability criterion (6.3.8) as:

−π+(D−1)
∣∣∣Arg

[
q(t(u))

]∣∣∣ < Arg
[
− N2

q(t(u))t
′(u)2

]
< π−(D−1)

∣∣∣Arg
[
q(t(u))

]∣∣∣ . (6.3.10)

We want to isolate t′(u) from the temporal part of the allowability function, Σtemporal(t(u)) =
Arg

[
− N2

q(t(u))t
′(u)2

]
. This gives us an ordinary differential inequality. At each point in the

complexified time plane, we thus obtain a range of directions t′(u) for which the full allowa-
bility bound remains satisfied. Using properties of the complex argument, the inequalities
(6.3.10) can be rewritten as

Fmin(t(u)) < Arg [t′(u)] < Fmax(t(u)), (6.3.11)

with

Fmin(t(u)) ≡ −(n+ 1)π + D − 1
2

∣∣∣Arg
[
q(t(u))

]∣∣∣− 1
2Arg

[
N2

q(t(u))

]
,

Fmax(t(u)) ≡ −nπ − D − 1
2

∣∣∣Arg
[
q(t(u))

]∣∣∣− 1
2Arg

[
N2

q(t(u))

]
, (6.3.12)

and where n ∈ {−2,−1, 0, 1} appears due to the fact that the principal value of the
argument of a complex number has to remain within the range (−π, π].

The inequalities (6.3.11) imply that, at any point t(u) ∈ C, the slope of a time path
t′(u) passing through that point, has to lie within some interval delimited by Fmin(t(u))
and Fmax(t(u)), in order to respect the full allowability bound at that point. This provides
lower and upper bounds on the allowable time paths: since the paths all start at t(0) = 0,
one can solve the corresponding initial value problems (IVPs) for the ordinary differential
equations4:

Arg[t′min(u)] = Fmin(tmin(u)) , (6.3.13a)

Arg[t′max(u)] = Fmax(tmax(u)) . (6.3.13b)

4Since Fmin and Fmax can take four different values each in order to have the correct principal value
for the complex argument, one actually has to solve four IVPs for tmin(u) and four for tmax(u). It is
nevertheless straightforward to then verify which solutions correspond to the correct lower and upper
bounds.
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From Petrovitch’s inequality [160], the time paths t(u) respecting the inequalities (6.3.11)
have to lie within the curves tmin(u) and tmax(u) for all values of u > 0. The full allowability
bound is satisfied if and only if the region within the curves tmin(u) and tmax(u) contains
the required end point, t = 1.

Using this method, we can conclusively determine whether or not for a given metric,
there exist time paths respecting the allowability bound, without having to find an actual
allowable path5. This method is described pictorially in figures 6.9 and 6.10, and it was
used in conjunction with the two previous ones described in this section, to obtain the
figures 6.11, 6.17 and 6.18.

6.4 Lorentzian metrics

We start our investigation of the allowability of complex metrics in early universe cos-
mology by the simplest example, which is extensively used in standard cosmology: the
Lorentzian metric. It was already proven in [150] that Lorentzian metrics are non-
allowable, and always reside on the edge of the allowability domain. In this section,
we further show that no smooth complex deformation of the time path can ever render
any homogeneous Lorentzian metric allowable. In fact, we show that these metrics at
best saturate the allowability bound.

We consider a homogeneous metric ansatz of the form (in particular, it could be a
Bianchi spacetime of any type):

ds2 = −N2dt2 +
D−1∑
j=1

a2
(j)(t)(σj)2 , (6.4.1)

whose allowability function reads

Σ(t) =
∣∣∣Arg

[
−N2

]∣∣∣+ D−1∑
j=1

∣∣∣Arg
[
a2

(j)(t)
]∣∣∣ . (6.4.2)

If the metric (6.4.1) is real and Lorentzian for some solutions a(j)(t) ∈ [a0, a1] ∀ t ∈
[t0, t1], then the lapse N and the scale factors squared a2

(j)(t) are real valued everywhere.
Therefore, the allowability bound is saturated with Σ(t) = π , ∀ t ∈ [t0, t1].

Consider now some smooth complex time path t(u) with the same starting and ending
points: t(0) = t0 ∈ R and t(1) = t1 ∈ R. Then the metric (6.4.1) and its allowability
function (6.4.2) respectively become:

ds2 = −N2t′(u)2du2 +
D−1∑
j=1

a2
(j)(t(u))(σj)2 , (6.4.3a)

5In practice, the method of the maximal and minimal curves involves solving a few initial value
problems using numerical algorithms. This implies a certain level of numerical imprecision, but it has
proven to be robust.
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Figure 6.6: Example of a smooth deformation of the time path between t0 = 0 and t1 = 1
in the complex plane. The point t(u⋆) is plotted in red, where the tangent of the complex
path is parallel to the real axis, and thus where Arg[t′(u⋆)] = 0.

Σ(t(u)) =
∣∣∣Arg

[
−N2t′(u)2

]∣∣∣+ D−1∑
j=1

∣∣∣Arg
[
a2

(j)(t(u))
]∣∣∣ . (6.4.3b)

Then for t(u) ∈ C , ∀ u ∈ (0, 1), the scale factor becomes complex, and the spatial part
of the allowability function may become non-zero. To reduce Σ(t(u)) below π, we need a
time path such that Σtemporal < π − Σspatial. But since the time path must start and end
on the real-t axis, at t0 and t1 respectively, the time trajectory must ‘turn around’ in the
imaginary direction. Then there is at least one point u⋆ ∈ (0, 1) along the trajectory, for
which Im[t′(u⋆)] = 0 and where t′(u⋆) is purely real and positive (assuming again the real
part of time always grows monotonically). At that point, we then have Arg[t′(u⋆)] = 0
(see figure 6.6 for a graphical representation) and

Σtemporal(t(u⋆)) = π , so that Σ(t(u⋆)) ≥ π . (6.4.4)

Therefore, the allowability bound is violated (or again, at best saturated6) at that point.
The way to regularize all these metrics, described in [150] (see also [161]), is to add

a factor (1 ∓ iϵ), 0 < ϵ ≪ 1, to the time-time component of the metric. This is not a
smooth deformation, because the two choices of sign (∓) are not smoothly related. The
regularization implies a change in the value of the action, so it is a true deformation of
the metric and not just a rewriting.

Before ending this section, we comment on the meaning of metrics that saturate the
allowability bound (i.e., such that Σ = π everywhere, as in the case of real Lorentzian
metrics described in this section). Saturation is synonym of conditionally convergent
path integrals, which may or may not be problematic. Reasonable quantum field theo-
ries cannot be properly defined on backgrounds violating the allowability bound (Σ > π),
since they lead to divergent path integrals, but this is not necessarily true for metrics

6Saturation is generally not even realized with a complex time path here since it could only occur if
a2

(j)(t(u⋆)) had a phase of 2nπ, n ∈ {1, 2, · · · }, in every spatial direction j (a phase of 0 is excluded since
t(u⋆) itself would have a non-zero phase). However, since the phases of the a2

(j)s vary continuously from
0 at the start of the path, one would necessarily cross another location where at least one of the phases
is π, and hence where the allowability bound is violated.

146



saturating the bound. Conditionally convergent integrals are more subtle to treat than
traditional Gaußian-like integrals, and as path integrals they dependent on the order of
integration. Therefore, absolute convergence is favorable, and that is why the allowa-
bility bound (Re(I) > 0 or Σ < π) does not allow for equality. But let us note that
Picard-Lefschetz theory, described in detail in section 2.2, is exactly the right tool to de-
fine conditionally convergent integrals, re-writing them as sums of absolutely convergent
integrals. In this sense, Picard-Lefschetz theory enables to define conditionally conver-
gent integral without ambiguities. Applying this procedure to gravity hence seems the
obvious thing to do [51]. However, as we will observe in all the specific examples we study
next [150, 155], it turns out that the integration contours selected by the Picard-Lefschetz
method, run into regions that do not satisfy the allowability bound: in all cases we have
studied, the steepest descent integration contours provided by Picard-Lefschetz
theory are cut off by the allowability regions. This is one of the most important
results of this chapter [4], and we will elaborate on it in more details in the discussion
section 6.8.

6.5 Classical transitions

In this section, we study transition amplitudes between two classical solutions of general
relativity in a closed (k = 1) four-dimensional spacetime, in the presence of a positive
cosmological constant Λ and without matter fields. The classical solution in this case is
given by the de Sitter cosmology, and is a good approximation of the inflationary period of
the standard model of cosmology we described in 1.2 (assuming the inflaton is constant).

More generically, we can use the ADM decomposition of the metric [27]:

ds2 = −N2dt2 + βidtdxi + hijdxidxj , (6.5.1)

where N is the lapse, β is the shift, and h is the metric on the spatial hypersurfaces.
Then the transition amplitude between two three-dimensional hypersurfaces Σ0,Σ1 ⊂ M
is defined as the gravitational path integral:

Ψ[Σ0 → Σ1] =
Σ1∫

Σ0

DN Dβ Dh exp

 iℏ
∫

M

d4x
√

−g
(
R

2 − Λ
)

+
∑

n=0,1
bn

∫
Σn

d3x
√

det(h)K

 ,
(6.5.2)

where R is the four-dimensional Ricci scalar and K is the trace of the three-dimensional
extrinsic curvature tensor on the hypersurfaces Σ0,1 bounding the four-manifold M. The
coefficients bn ∈ {−1, 0, 1} in front of the GHY surface terms determine the type of
boundary conditions we impose. For example, when considering the transition amplitude
between two large, classical values of the scale factor, we have b0 = −1 and b1 = 1.

In this section we study transition amplitudes between two large, classical de Sitter
geometries. We study the allowability bound on the saddle points corresponding to these
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transitions (already considered in [77]), but also on the off-shell geometries that we sum
over in the gravitational path integral (6.5.2).

Because we are considering the early universe cosmology, as we have established in
the introductory chapter 1, we can use a FLRW type of metric to good approximation,
and hence restrict to minisuperspace. We thus use the same simplified ansatz as for the
no-boundary metric (see 2.2):

ds2 = − N2

q(t)dt2 + q(t)dΩ2
(3) , (6.5.3)

where q(t) is the squared-scale factor and N is the lapse function. This enables us to per-
form calculations analytically. We recall that for Dirichlet-Dirichlet boundary conditions
q(0) = q0 and q(1) = q1 (q0 ≤ q1), the classical solutions to the Einstein-Hilbert action
read (see equation (2.2.13)):

q̄(t) = Λ
3N

2t(t− 1) + (q1 − q0) t+ q0 . (6.5.4)

The on-shell (in the scale factor, but not in the lapse) action is then given by

Son-shell(N) = 2π2
[

Λ2

36N
3 +

(
3 − Λ(q0 + q1)

2

)
N − 3(q1 − q0)2

4N

]
. (6.5.5)

The gravitational path integral then reduces to a simple integral over the lapse:

Ψ ∼
∫

C
dN e

i
ℏSon-shell(N) , (6.5.6)

along some contour C in the complex plane. This integral can be performed in the saddle
point approximation. Saddle point geometries correspond to the values of the lapse N
that minimize the on-shell action (6.5.5):

NSP = 3
Λ

±
√

Λq1

3 − 1 ±
√

Λq0

3 − 1
 . (6.5.7)

These four saddle point lapse values are real valued as long as the scale factor is never
smaller than the waist of the de Sitter hyperboloid (i.e., 3/Λ ≤ q0 ≤ q1). The geometries
they described are Lorentzian homogeneous metrics, as those discussed in section 6.4.
They hence reside on the boundary of the domain of allowable complex metrics. The two
inner saddle point geometries (which are time reversals of one another) describe expanding
de Sitter solutions, where the scale factor monotonically increases from q0 to q1. The outer
saddle point geometries (again, time reversals of one another) describe classical de Sitter
bouncing solutions, where the scale factor first decreases from q0 to the waist of the de
Sitter hyperboloid (q = 3/Λ) and from there increases again up to q1 (see figure 6.7). In
the rest of this section, we study the structure of the lapse integral (6.5.6). We analyze the
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Figure 6.7: Classical de Sitter solutions between q0 and q1. Expanding solution in red,
and bouncing solution in brown.

(non-)allowability of all the metrics entering this integral. These metrics all satisfy the
scale-factor equation of motion, but they can be off-shell regarding the lapse constraint.

6.5.1 Analytical arguments for the (non-)allowability of off-shell
metrics entering the gravitational path integral

First, we consider large absolute values of the lapse, |N | ≫ 1. Writing N = |N |eiArg(N),
the classical solution is in that case well approximated by

q̄(t)
|N |→∞

≃ Λ
3 |N |2e2iArg(N)t(t− 1) , for t ̸= 0, 1 . (6.5.8)

Any simply connected complex time path t(u) must necessarily cross the line Re[t(u∗)] =
1/2 if it evolves continuously from t = 0 to t = 1. On this location we write t(u∗) = 1/2+iρ
for some ρ ∈ R. Then t(u∗)(t(u∗) − 1) = −1/4 −ρ2 is a negative real number. The spatial
part of the allowability function then reads at t(u∗) = 1/2 + iρ:

Σspatial [t(u∗) = 1/2 + iρ] = 3|Arg [q̄(1/2 + iρ)]|
|N |→∞

≃ 3
∣∣∣∣∣Arg

[(
−1

4 − ρ2
) Λ

3 |N |2e2iArg(N)
]∣∣∣∣∣ ,

= 3|±π + 2Arg(N)| . (6.5.9)

The spatial allowability bound therefore implies that when |N | → ∞ , if

|±π + 2Arg(N)| ≥ π

3 , (6.5.10)

then the full allowability bound is violated and the metric is not allowable. We conclude
that, asymptotically, off-shell metrics in the lapse integral (6.5.6) are not allowable when:

Arg(N) ∈ ]−π,−2π/3] ∪ [−π/3, π/3] ∪ [2π/3, π] , (6.5.11)
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leaving only two wedges centered on the Euclidean axis. This regions of non-allowability
are depicted in figure 6.8. This implies that metrics with a large real part of the lapse are
not allowable.

This is an important result of our work [4]. It can be understood from the fact that
when the real part of the lapse gets very large, the squared-scale factor starts diving into
negative values for some interval of time (because the first, negative term in (6.5.4) will
dominate for values of t not near 0, 1), so that the signature of the metric changes.

How large must |N | be for the approximation (6.5.8) to hold? To estimate this,
we use (6.5.4) to compute:

q̄(t(u∗)) = q̄(1/2 + iρ) = Λ|N |2e2iArg(N)

3

(
−1

4 − ρ2
)

+ q1 + q0

2 + iρ(q1 − q0) ,

= −Λ|N |2 (1/4 + ρ2)
3 e2iArg(N) + (q1 + q0)

2

√√√√1 + 4ρ2

(
q1 − q0

q1 + q0

)2

eiφ , (6.5.12)

where φ ≡ Arg[(q1 + q0)/2 + iρ(q1 − q0)]. The large |N | approximation is valid when the
norm of the first complex number in (6.5.12) is much larger than the norm of the second
one, i.e., when

|N |2 ≫ 6(q1 + q0)
Λ (1 + 4ρ2)

√√√√1 + 4ρ2

(
q1 − q0

q1 + q0

)2

. (6.5.13)

The combination of factors,
√

1 + 4ρ2(q1 − q0)2/(q1 + q0)2/(1 + 4ρ2), is always contained
between 0 and 1. The strongest constraint on |N | then arises when it is equal to 1.
Therefore, the approximation is always valid when

|N |2 ≫ 6
Λ(q1 + q0) . (6.5.14)

For the numerical example presented in figure 6.11, we took Λ = 3, q0 = 2 and q1 = 10.
Then the approximation is valid when |N |2 ≫ 24 (so if, e.g., |N | ≳ 15.5, then (6.5.14) is
respected by at least one order of magnitude).

Second, we study the metrics lying on the Euclidean axis: N = iNE, NE ∈ R. In this
case, the classical solution for the scale factor squared is:

q̄(t) = −Λ
3N

2
Et(t− 1) + (q1 − q0) t+ q0 . (6.5.15)

This solution is real (and positive) when time is real, i.e., when the time path goes straight
from 0 to 1 on the real-time axis: Arg[q̄(t)] = 0. Moreover, the time-time component of
the metric for this solution is positive definite: Arg[−N2/q̄(t)] = Arg[+N2

E/q̄(t)] = 0.
This implies that the allowability function, Σ(t), is constantly null on the real-time axis
when the lapse is purely imaginary. The allowability bound is therefore trivially satisfied
on the whole Euclidean axis. This result is also depicted on figure 6.8.

Note that for large values of the Euclidean lapse NE, the classical solution behaves
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Figure 6.8: Analytical results for the classical transition from q0 = 2 to q1 = 10. The
red regions represent the asymptotic region of non-allowability (6.5.11) (starting at |N | =
15.5) and the Lorentzian axis (shown to saturate the allowability bound in section 6.4).
The Euclidean axis, highlighted in cyan, is allowable. The saddle point lapse values (6.5.7)
are not shown, but they are located at NSP = ±2,±4, so the region of particular interest
for the path integral (N ≲ 6) remains unconstrained at this point.

like q̄(t) ≈ −Λ
3N

2
Et(t− 1), so that the metric becomes

ds2 = N2
E

q̄(t)dt2 + q̄(t)dΩ2
(3) ≈ 3

Λt(1 − t)dt2 + Λ
3N

2
Et(1 − t)dΩ2

(3) ,

= 3
ΛdT 2 + Λ

12N
2
E cos2(T )dΩ2

(3) . (6.5.16)

We defined here a new time coordinate T according to 2t− 1 ≡ sinT , with −π/2 ≤ T ≤
π/2. At very large lapse value NE, the metric approximately corresponds to a full (huge)
four-sphere. It describes a Euclidean geometry starting out near zero (at q0), expanding
to a huge size and then shrinking again to almost zero (in fact to q1).

6.5.2 Numerical assessment of the (non-)allowability of off-shell
metrics

To assess the allowability of (off-shell) metrics everywhere else in the complex lapse plane,
in particular around the saddle points and along the steepest descent contours, we need
to apply the numerical methods described in section 6.3.

We allow deformations of the time path from t = 0 to t = 1 into any simply connected
smooth path in the complexified time plane that leaves the end points fixed. We assess
whether at least one path exists, such that the resulting metric is allowable. In particular,
we here describe in details, and with a specific example, how the minimum and maximum
curves method introduced in section 6.3.3 functions. This method relies on the fact
that, at each point in the complex t plane, there is a range of directions for which the
allowability bound is satisfied. We start from t = 0 and we follow both the path defined
by choosing at each point the maximal angle allowed (the maximal curve), and the path
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Figure 6.9: Left: Complexified time plane for a solution with classical boundary conditions
slightly off-shell of the expanding saddle point: N = 2 − i/10. The numerical values are:
q0 = 2, q1 = 10, and Λ = 3. Black dots in t = 0 and t = 1 indicate the end points of
the time path specifying the metric. The blue directed line is the maximal curve, and
the red directed line is the minimal curve. An allowable path, e.g., the dashed black line,
must reside in between these two lines under forward time evolution (Re(t) must grow
monotonically from 0 to 1). Right: Plot of the full Σ(t(u)) along the dashed line, and of
the violated region where Σ > π (in orange). This verifies that the dashed path t(u) is
allowable.

defined by choosing at each point the minimal angle allowed (the minimal curve). Any
allowable paths must reside between these two lines. In figure 6.9, the minimal curve is
represented in red, and the maximal curve in blue. So the allowed region contains the
point t = 1, which means it can be reached via an allowable path, such as the dashed line
drawn on this figure. This example corresponds to a lapse value slightly off-shell of
the expanding saddle point. In the right panel we plot Σ(t(u)) and explicitly verify
that the geometry defined by the dashed time path is indeed allowable.
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Figure 6.10: Complexified time plane of a solution with classical boundary condition,
this time slightly off-shell of the bouncing saddle point: N = 4 − i/10. We have again
q0 = 2, q1 = 10 and Λ = 3. The orange shaded regions represent regions where the spatial
allowability bound (6.3.6) is violated. An allowable time path should link the t = 0 and
t = 1 dots while remaining below the blue curve and avoiding the orange regions. This is
not possible in this example, hence the metric is not allowable.

152



Now turning to a lapse value slightly off-shell of the bouncing saddle point,
we find a different result, as illustrated in figure 6.10. There, it is impossible to draw
a simply connected time path from t = 0 to t = 1 that remains below the blue curve
and above the red one, and that also avoids the regions where the no-ridge condition is
violated (see subsection 6.3.2). This is a first hint that bouncing saddle points will not
always be approachable along minisuperspace allowable metrics.

6.5.3 Summary of results

Using all the tools explained in section 6.3, we determine the allowability of every point
in the complexified lapse plane and display our results in figure 6.11. Our findings are
summarized as follow [4]:

1. inner (expanding) saddle points are always reachable by allowable complex metrics,
i.e., they are surrounded by the domain of allowability;

2. outer (bouncing) saddle points are not reachable through the minisuperspace metrics
considered in our ansatz, for large enough final scale factor (q1 ≳ 2). They are
however reachable through a continuous integration contour in the space of allowable
off-shell metrics but that do not follow the steepest-descent contour, i.e., departing
from the minisuperspace ansatz 6.5.3.

3. small bouncing classical transition solution (with q1 ≤ 2) are reachable via allowable
complex metrics in minisuperspace.

The result 2 points out the over-restrictive power of the minisuperspace setting. Outer
bouncing saddle point geometries can in fact be reached through allowable metrics, but
only when departing from the minisuperspace steepest descent contours. The following
family of metrics:

ds2 = −(1 − iε)2 N
2

q̄(t)dt2 + q̄(t)dΩ2
(3) , (6.5.17)

defined for ε ∈ ]0, 1[ and evaluated on the outer saddle point solution (NSP, q̄(t)), forms a
continuous path in the space of allowable7 off-shell metrics, whose limit when ε → 0+ is
the bouncing saddle point metric. The weighting of those metrics depends on ε, and they
can be linked to an integration contour that asymptotically (i.e., at large lapse values)
reaches the Euclidean axis.

The result 3 leads to an apparent paradox with respect to the previous result 2.
Imagine a classical transition solution with only two saddle points, time reversals of each
other. The initial and final scale factor values are chosen as: q0 = 1 and q1 ≫ 1. By

7We quickly show that this family of solution is always allowable: the lapse N = NSP is real, so along
the real time path, the classical solution for q̄(t) (6.5.4) is also real, and we find:

Σ(t) =
∣∣Arg[−(1 − iε)2]

∣∣ =
∣∣∣∣π − arctan

(
2ε

1 − ε2

)∣∣∣∣ < π , ∀ ε ∈ ]0, 1[ . (6.5.18)
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Figure 6.11: Complex lapse plane for two different classical transition solutions which both
have Λ = 3. Blue dots indicate the lapse value at the saddle point geometries and black
lines show the steepest descent and ascent contours found using Picard-Lefschetz theory.
(Red) Cyan dots denote lapse values corresponding to a (non-)allowable metric. Left:
Classical transition from a small scale factor, q0 = 2, to a larger scale factor, q1 = 10. The
inner saddle point geometries NSP = ±2 (expanding solutions) are reachable via allowable
complex metrics (see 1). The outer saddle point geometries NSP = ±4 (classical bouncing
solutions) are not reachable via allowable metrics within this restricted minisuperspace
(see 2). Right: Classical transition with q0 = q1 = 1.81. The saddle point geometries
(classical bouncing solutions) are reachable by allowable metrics along the steepest descent
contours (see 3).

gluing the contracting saddle with the expanding one (both reachable within the space of
allowable metrics in minisuperspace), we would obtain exactly the same classical solution
as a large bouncing saddle with q0 = q1 ≫ 1 (which is apparently not reachable via the
same space of allowable metrics in minisuperspace). This apparent paradox is resolved
by realizing that:

1. the transitions amplitude of the two scenarios differ: in the first case, a measurement
is made when the universe is small (at q0 = 1), providing a prior knowledge that
conditions the amplitude. This prior knowledge does not exist in the second case of
a large bounce.

2. assuming we approach the two saddle points through off-shell metrics with a non-
zero imaginary part of the lapse, then the two classical solutions are not equal
anymore (q(t) possesses an imaginary part and the two allowability functions Σ(t)
differ).

Our results on the allowability criterion for de Sitter classical transitions clearly high-
light the difficulty in properly defining contours of integration for the gravitational path
integral. Convergence of the pure gravitational part of the path integral designates the
steepest-descent paths as the right contours of integration. Those paths are however
sometimes conflicting with the convergence of the matter fields path integral, given by
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the allowability criterion. When this happens, it is necessary to elucidate whether some
other integration contours, departing from the minisuperspace steepest-descent path (such
as (6.5.17)), exist and can render the saddle point geometries reachable. We come back
to this crucial point later on in section 6.7, when analyzing the allowability criterion for
no-boundary solutions.

6.6 Quantum bouncing cosmologies

So far we have applied the allowability criterion to classical solutions of the Einstein
equations, namely to Lorentzian geometries and to classical de Sitter geometries. The
main interest of the path integral approach to cosmology, is that it enables us to also
study quantum solutions to the Einstein equations, such as the no-boundary solution
which will be the focus of next section. Here we concentrate on another type of quantum
solutions: quantum bounces.

The dynamical evolution of particles given by quantum mechanic is richer than that
of classical mechanic. Classically forbidden transitions, such as the tunneling across a
potential barrier, are possible in quantum mechanics (though unlikely). They can also be
suitably described by an evolution in complex time [162, 163, 164]. In the case of a barrier
of potential V (ϕ), the particle wave e−it ϕ is partly reflected at the barrier as in the classical
case, but also acquires an exponentially decreasing part transmitted through the barrier
in complex time: τ = it → e−it ϕ = e−τ ϕ (see figure 6.12). In the gravitational context,

V(ϕ)

ϕ

e-itϕ+Reitϕ T e-itϕAe
-τϕ 

Figure 6.12: Quantum tunneling of a particle through a potential barrier V (ϕ), drawn in
red. The particle is described by an incoming wave in blue, partially reflected at the left
wall of the barrier potential, and partially tunneling through the barrier (green decreasing
exponential). It is then transmitted with a damped amplitude on the right of the potential
barrier.

one can similarly describe certain classically-forbidden, quantum solutions using complex
metrics. This is the case e.g., for Coleman-de Luccia instantons. These are solutions to
the Einstein-Hilbert equations, which describe the nucleation of a bubble of true vacuum,
inside a region of false vacuum in the universe [165]. The complex metrics corresponding
to Coleman-de Luccia instantons are purely Euclidean, and therefore they are allowed by
the criterion. Yet another kind of quantum solution is the tunneling of (a part of) the
universe from a contracting to an expanding phase. This tunneling bypasses the big bang
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Figure 6.13: Quantum bouncing solutions studied in this section. Left: Back-to-back
gluing of two no-boundary solutions, prototypical of the quantum bounces described in
[166]. Right: Mirrored conical four-geometries representing the solution studied in [79,
167].

singularity by getting around it in the complexified metric space (see [166, 79, 167] for
specific examples that use genuine complex metrics). Do such quantum solutions satisfy
the allowability criterion?

Setting aside the complex nature of the scalar field (generalization of the allowability
criterion to include complex scalar fields, notably from adopting a higher-dimensional
point of view, are developed in [77]), the quantum bounces described in [166] can be
modeled by a back-to-back gluing of no-boundary geometries, pictured on the left of
figure 6.13. On the other hand, the quantum bouncing models presented in [79, 167],
named two-sheeted or CPT symmetric universes, can be schematically represented by
two conical four-universes mirrored at their tip, as illustrated on the right of figure 6.13.
Here we study these two models against the allowability criterion.

Assuming a fixed cosmological constant Λ, which is equivalent to a real constant scalar
field sitting at the extremum of its potential, the no-boundary solution in D dimensions
is given by (2.2.5b):

a(t) = 1
H

cosh(Ht) , with H =
√

2Λ
(D − 1)(D − 2) (6.6.1)

For real time t ∈ (−∞,+∞), this hyperboloid describes a classical bounce from a con-
tracting to an expanding universe, evading the big bang singularity without requiring a
quantum transition. However, such a bounce requires extremely fine-tuned initial con-
ditions and the presence of the smallest anisotropies would make this classical solution
deviates in the contracting phase (t < 0). The anisotropies grow faster than the homo-
geneous curvature term and hence lead to a big crunch instead of the bounce (see [166]).
This crunch can be circumvented by linking the contracting to the expanding hyperboloid
via a path in the complexified time plane. The prototype shown in figure 6.13 correspond
to two simple Wick rotations τ = it − π

2H from the contracting phase t < 0, and then
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contracting
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-π/(2H)

π/(2H)

0

Figure 6.14: Lines of real (in blue) and pure imaginary (in orange) scale factor values
in the complexified time plane, for a(t) = cosh(t). In this figure, real Lorentzian time is
horizontal and Euclidean time vertical. One can model a quantum bounce (dashed black
line) by linking a contracting universe to an expanding one at a different, parallel line
of real field values, but such a path necessarily passes through a line on which the scale
factor is imaginary (orange line).

t = −i
(
τ − π

2H

)
into the expanding phase t > 0. This prototype is not realistic because

it crosses the no-boundary point (0, 0) where the manifold degenerates to a point. This can
be easily regularized by deforming it slightly away from Re(t) = 0. A generic path in the
complexified plane will be any continuous path linking the contracting universe (negative
part of a horizontal line where a(t) takes real values, e.g. τ = − π

2H ) to the expanding uni-

verse (positive part of another horizontal line where a(t) takes real values, e.g. τ = π

2H ).
This continuous path therefore necessarily crosses the horizontal line τ = 0 in some point
τ̃ = ix with x ∈ R0. There the scale factor is a(τ̃) = − 1

H
sin(Hτ̃) = i

H
sinh(Hx) so that

a2(τ̃) < 0, and hence the allowability function gives:

Σ(τ̃) > Σpartial(τ̃) ≥ (D − 1)π , (6.6.2)

for a D–dimensional FLRW spacetime. Therefore, any quantum bounce defined in this
way violates the allowability criterion.

From this argument, we can also prove that the many-sphere no-boundary solution,
described in the introduction of this chapter 6.1 as a motivation for a complex metric
criterion, violates the allowability criterion. At the anchor point of each additional sphere,
the regularized time path that passes around the zeroes of the scale factor (i.e., following
the dotted lines in figure 6.1) crosses a line where the scale factor is purely imaginary and
where equation (6.6.2) is valid and thus the allowability bound is violated.

With hindsight, it is reassuring that those quantum bounces built out of approximate
de Sitter solutions are excluded from the path integral, as they are always unstable,
either at the perturbative, or at the background level. Indeed, no-boundary geometries,
that forms the two halves of the prototype quantum bouncing solution depicted in figure
6.13, are known (see e.g., [168]) to come in pairs related by complex conjugation (i.e.,
corresponding to whether the contracting solution is linked to an expanding solution at
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either positive or negative imaginary time values). One of these solutions exhibits a
negative weighting, and thus occurs with exponentially suppressed probability (of order
e−|I(S4)|/ℏ, where I(S4) is the action of the four-sphere with radius 1/H). But in that case,
fluctuations around the solution get a positive weighting proportional to the size of the
fluctuations squared: fluctuations thus follow an inverse Gaußian probability distribution,
so this solution is perturbatively unstable. The complex conjugate solution has stable
perturbations, that obeys a Gaußian probability distribution, but it possesses a positive
weighting (of order e+|I(S4)|/ℏ). This means that such a solution should occur with higher
probability than classical evolution, contradicting our actual experience: this solution is
thus unstable at the background level. The exclusion of these unstable quantum bounces
brings support to the validity of the allowability criterion.

We turn to the CPT symmetric universe described in [79, 167]. In this model, the
universe doesn’t undergo any inflationary phase, and instead it stays dominated by radi-
ation all the way to the big bang. For a flat spatial section and in conformal time η, close
to the big bang the metric approaches the form:

ds2 = η2(−dη2 + dx2 + dy2 + dz2). (6.6.3)

For η ∈ R, this geometry describes two cones, one for η > 0 and one for η < 0, joined at
their tips where η vanishes (see figure 6.13). The idea of [79] is to pass around the big
bang at η = 0 by taking a continuous path in the complexified time plane.

If we take this path to be a simple semi-circle at a small radius, i.e., η = reiθ with θ

spanning [0, π] and r > 0 kept constant, then at θ = π/2 we have η = ir, so that η2 = −r.
From the spatial part of (6.6.3), we thus find that Σ(η) ≥ (D − 1)π, so this specific path
violates the allowability bound ∀D > 2.

More generally, the locus of negative values of η2 emanates radially from η = 0, so it is
necessarily crossed by any continuous path passing from η > 0 to η < 0 while avoiding the
singularity at η = 0. From this simple argument, it seems that the allowability criterion
excludes the CPT symmetric universe altogether. One important caveat to this result
is that in this model, the conformal symmetry might become manifest in the approach
to the big bang [169, 170]. This would modify some of the assumptions that go into
the derivation of the allowability bound, as the matter contributions would also have to
obey the symmetry in question (i.e., we would deal only with CFT and not QFT). The
possible matter types that must have convergent actions are then restricted, enlarging the
space of allowed complex metrics. In particular, for exact conformal symmetry, the scale
factor of the universe is not restricted at all. The precise implications of different types of
symmetries and matter fields on the allowability criterion is an interesting open avenue
to be explored in the future.

In this section we found that two specific, homogeneous quantum bouncing models
relying on complex metrics, are ruled out by the allowability criterion. This does not
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imply that no quantum bouncing model can satisfies the allowability criterion, but it
suggests that generically, the criterion strongly constrains these models. In the future it
would be interesting to study other quantum bounce models, to see whether we can find
one which satisfies the allowability criterion, or whether we can find an argument to rule
them all out.

6.7 No boundary solutions

The overarching aim of this thesis is to deepen our understanding of the gravitational
path integral. In this perspective, we have already seen that the no-boundary proposal
plays a key role as one of the only models where an analytical treatment of the four-
dimensional gravitational path integral is feasible and has been carried out (though the
end result is still subject to interpretation, in particular it is not clear what is and if
there is a meaning to probabilities for a whole universe). So far, we have reviewed the
state-of-the art concerning this proposal 2.2, exposing the two contrasted constructions
of the no-boundary solution, based respectively on the sum over compact metrics and on
the sum over regular metrics. We have then explored several features of the no-boundary
solution in chapters 3 and 4. Finally, we have studied its relation to the finite amplitude
criterion in chapter 5, where we found it was one of the few models of the early universe
compatible with this criterion.

The no-boundary solution fully relies on complex metrics, so it is a natural playground
to test the complex metric criterion. Additionally, we will see that the integration contours
defining the path integral get modified when restricting to allowable complex metrics. We
will review the two constructions of the no-boundary solution from the point of view of the
allowability of metrics. For the momentum space, or sum over regular metrics definition,
we prove that on-shell no-boundary geometries are allowable in any spacetime dimension
D. Specifically, the on-shell solutions always reside on the boundary of the allowability
domain and we can find fully allowable and appropriate integration contours for the path
integral. In contrast, for the field space, or sum over compact metrics definition, we
find that the on-shell no boundary solutions in four dimension are allowable, but in this
case they reside in the middle of the allowability domain. Furthermore, the restrictions
imposed by the allowability criterion could enable the definition of the path integral in this
case as well, while avoiding the problems related to perturbative instabilities developed
earlier 2.2.

6.7.1 Sum over regular metrics

We consider the minisuperspace ansatz in arbitrary D spacetime dimensions:

ds2 = −N2dt2 + a(t)2dΩ2
(D−1) . (6.7.1)
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The spatial sections of this metric are (D − 1)-spheres. The time coordinate t runs from
t = 0 to t = 1. The Einstein-Hilbert action with a cosmological constant Λ > 0 reads:

S = 1
2

∫
dDx

√
−g (R − 2Λ) . (6.7.2)

Condition for regular metrics

We determine the condition for having regular metrics from the regularity of the Fried-
mann equation (obtained by varying the action (6.7.2) with respect to the lapse N):

q̇2

4N2 + 1 = 2Λ
(D − 1)(D − 2)q . (6.7.3)

This equation is regular at q = 0 if q̇ = ±2Ni. This means that the expansion rate must
be imaginary: the metric must start out Euclidean near q = 0. The choice of sign for q̇
corresponds to the effective choice of Wick rotation. Stability of perturbations demands
to choose the positive sign [44]:

q̇|origin = 2Ni (regularity condition) . (6.7.4)

This regularity condition is imposed on the initial hypersurface t = 0. It corresponds to a
Neumann boundary condition. On the final hypersurface t = 1, we can simply impose a
Dirichlet boundary condition q(t = 1) = q1. The wavefunction given by the no-boundary
proposal is then given by the following path integral:

Ψ(q1) =
∫

DN
q=q1∫

q̇=2Ni

Dq exp
(
i

ℏ
S
)
. (6.7.5)

This has been studied in great details in four dimensions [52, 53, 76] (see section 2.2 for
details). In particular, the integral over q can be performed by writing q(t) = q̄(t) + Q(t),
where q̄ denotes a solution to the equation of motion that follows from the variation with
respect to q,

q̈ = 4ΛN2

(D − 1)(D − 2) , (6.7.6)

while Q(t) is an arbitrary fluctuation satisfying the boundary conditions Q̇(t = 0) =
Q(t = 1) = 0. In four dimensions, the integral over Q is a Gaußian and simply yields a
numerical factor. In general dimensions, this integral cannot be performed so easily, and
we leave a full analysis for future work. We can nevertheless make progress by looking at
solutions to the equation of motion, which for mixed Neumann-Dirichlet (ND) boundary
conditions are given by (in four dimensions see equation (2.2.16)):

q̄ND(t) = 2ΛN2

(D − 1)(D − 2)(t2 − 1) + 2Ni(t− 1) + q1 . (6.7.7)
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The path integral then sums over a subset of these backgrounds, depending on the inte-
gration contour for N . Here we will study the structure of the complexified lapse plane
in terms of allowability of metrics.

The location of the no-boundary saddle points N± is determined by:

q̄ND(t = 0)|N± = 0 ⇒ N± = (D − 1)(D − 2)
2Λ

(
−i±

√
2Λ

(D − 1)(D − 2)q1 − 1
)
. (6.7.8)

Allowability of the saddle point geometries

The first step is to verify the allowability of the saddle points (on-shell no-boundary
solutions), using the methods described in section 6.3.

We consider deformations of the time path between t = 0 and t = 1. Similarly to
what we did in section 6.5 for classical transitions, we start from t = 0 and we calculate
the maximal and minimal curves, which correspond to the path defined by choosing at
each point the maximal (respectively minimal) angle allowed. Any allowable path must
lie in between these two curves. Therefore, the geometry is allowed if the point t = 1
lies between the minimal and the maximal curve. It is the case here for the saddle
point geometries, as depicted in figure 6.15. The dashed line plotted in this figure is one
allowable path, and it can be parameterized as:

t(u) = ei(α−π/2)
[
u(2 − u) sin(α) + iu2 cos(α)

]
, α ≡ −Arg(N+) , 0 ≤ u ≤ 1 . (6.7.9)

This calculation is valid in any dimensions if we choose the length unit such that Λ =
(D− 1)(D− 2)/2. The on-shell no-boundary geometries for the sum over regular metrics
satisfies the allowability criterion in any dimensions D.

Saddle points lie on the boundary of the allowability region

Our second step is to prove that saddle points always lie on the boundary of the allowa-
bility domain. This was shown in four dimensions in [155], here we generalize the proof
to arbitrary spacetime dimensions. We consider the spatial allowability function defined
earlier in (6.3.4)

Σspatial(t) = (D − 1)|Arg(q(t))| , (6.7.10)

and recall that the violation of the spatial allowability bound, Σspatial < π, is sufficient
to prove the violation of the full allowability bound. The strongest constraint occurs at
t = 0. We study values of the lapse close to the saddle points:

N = N± + ζ , for some ζ ∈ C with |ζ| ≪ 1 . (6.7.11)
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Figure 6.15: Left: Complexified t plane for the saddle point solutions with Neumann-
Dirichlet boundary conditions. Here q1 = 10 and Λ = (D − 1)(D − 2)/2. The shaded
orange regions correspond to non-allowed metrics according to the spatial allowability
criterion alone, i.e., in these regions (D − 1)|Arg(q)| ≥ π. Black dots reside at t = 0 and
t = 1, indicating the end points of the time path specifying the metric. The maximal
curve is plotted in blue, while the minimal curve is plotted in red – an allowable path
must reside in between. See 6.3.3 for the derivation of these curves. The point t = 1 is
reachable by an allowable path, such as the black dashed path. Right: Plot of the full
allowability bound Σ along the black dashed path. This explicitly proves that this path
is allowable, since the value of Σ is always below the limiting value π indicated by the
orange regions.

At that lapse value, the no-boundary solution is given at first order in ζ by:

q̄ND(0) = ∓2ζ
√

2Λ
(D − 1)(D − 2)q1 − 1 +O(ζ2) . (6.7.12)

We consider values q1 > (D − 1)(D − 2)/(2Λ), for which the final size of the universe is
larger than the Hubble radius. Then the spatial allowability bound is satisfied only if:

(D − 1)|Arg(q)| < π ⇔


(D − 2)π
D − 1 < Arg(ζ) < Dπ

D − 1 around N+ ,

− π

D − 1 < Arg(ζ) < π

D − 1 around N− .
(6.7.13)

This means that the allowability bound is violated in the surroundings of the saddle
points, except within a narrow wedge pointing toward the other saddle point. This is
illustrated in figure 6.16 for the cases D = 7 and D = 100, where the region of spatial
non-allowability in t = 0 is plotted numerically for the entire complexified lapse plane,
i.e. the region where

(D − 1)|Arg(q(0))| ≥ 0 . (6.7.14)

Therefore, the saddle points reside on the boundary of the allowability region for any
spacetime dimensions.

In very large spacetime dimensions, the only region where the spatial allowability
bound is not violated consists of a narrow cross-shaped domain that includes the Euclidean
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Figure 6.16: Red regions show the domain in the complexified lapse plane where the
spatial allowability bound is violated, in 7 dimensions (left panel) and in 100 dimensions
(right panel). We have used Λ = (D − 1)(D − 2)/2 and q1 = 10. In any dimensions,
the saddles (blue dots) remain on the boundary of the allowability domain. The full
black curves depict the thimbles, and the dashed ones represent an example of T-shaped
allowable integration contour.

axis and the segment joining the two saddle points. Therefore, the steepest descent
contours lie completely inside the non-allowability region, so they cannot be used as
integration contours for the path integral. However, we will prove that other allowable
integration contours can be constructed (dashed lines in figure 6.16) and enable a proper
definition of the path integral.

Numerical analysis of the full allowability regions in 4D

The above analysis only considered the spatial allowability bound. We need to resort
to numerical techniques if we want to study the full allowability bound. For this we
restrict to four dimensions again. Using the optimization techniques and the method of
minimal and maximal curves described in section 6.3, we obtain the figure 6.17, where
the red (respectively cyan) dots correspond to geometries where the full allowability is
violated (respectively satisfied). We observe that the domain of non-allowability is larger
than that obtained with the spatial allowability bound only (shaded orange region in this
plot). However, the segment joining the two saddle points, as well as the lower Euclidean
axis, lie inside the full allowability region. Next we show analytically that this property
is true for arbitrary spacetime dimensions.

Full allowability on the T-shaped contour in arbitrary dimensions

We consider the T-shaped contour running horizontally from the saddle point toward the
Euclidean axis and then from that point down the Euclidean axis. We prove here that
this contour is always allowable and can thus be used as an integration contour for the
path integral. Again we set the length unit such that Λ = (D − 1)(D − 2)/2.
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Figure 6.17: Numerical plot of the allowed (cyan) and disallowed (red) metrics in the
complexified lapse plane satisfying initial Neumann and final Dirichlet conditions, as
appropriate for a momentum space definition of the no-boundary wave function. Here
D = 4, Λ = 3, q̇(t = 0) = +2Ni, and q(t = 1) = 10. The shaded orange regions are
the disallowed regions discussed and plotted in figure 6.16, in four dimensions here. The
saddle points (in blue) reside at the boundary of the allowable domain. The steepest
ascent/descent lines (in black) emanating from the saddle points largely intrude the non-
allowable region. Nevertheless, integration contours residing entirely in the lower half
plane remain allowed.

First we study metrics on the Euclidean axis: N = iNE. The no-boundary geometry
reads:

ds2 = N2
E dt2 + q̄E(t)dΩ2

(D−1) , with q̄E(t) = q1 +N2
E(1 − t2) + 2NE(1 − t) . (6.7.15)

For the real time path t ∈ [0, 1], the temporal part of the allowability function is zero,
because NE ∈ R. Then q̄E(t) is also real so the spatial allowability function will be non-
zero only if q̄E(t) becomes negative. For NE < 0, the lowest value of q̄E(t) is reached when
t = 0:

q̄E(0) = q1 + |NE|2 − 2|NE| , (6.7.16)

which reaches its minimum when |NE| = 1: qmin = q1 − 1 > 0 and this value is positive if
the universe size is larger than the Hubble radius, which is required in order to reach a
classical universe. Therefore, the scale factor is always positive and the full allowability
bound is satisfied on the whole Euclidean axis.

Next we consider the metrics on the segment joining the two saddle points, for which
the lapse values are:

N = N − i , with N ∈ R and |N | <
√
q1 − 1 . (6.7.17)
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The no-boundary geometry is then:

q̄(t) = (N 2 − 1 − 2N i)(t2 − 1) + (2N i+ 2)(t− 1) + q1 . (6.7.18)

Here the scale factor becomes complex along the real time path, but because both q(0)
and q(1) are real, there must exist a path t(u) = v(u) + iw(u) along which q̄(t(u)) stays
real (and positive). On such a path, the spatial allowability function is zero. The full
allowability function is then at most saturated, because the contribution from the temporal
function is at most π. We determine the real path t(u) by requiring the imaginary part
of the scale factor to vanish:

Im
(
q̄(t(u))

)
= 2

(
N v(u) + w(u)

)(
Nw(u) − v(u) + 1

)
= 0 , (6.7.19)

⇔ w(u) = −N v(u) , or v(u) = Nw(u) + 1 . (6.7.20)

Equation (6.7.20) defines two line segments that cross at the point
(

1
N 2+1 ,

−N
N 2+1

)
in the

complex time plane. Our real q time path is thus defined by following the first line where
t(u) = u − iNu from u = 0 to the crossing point u = 1/(N 2 + 1), and then along the
second line where t(u) = u+ i(u− 1)/N from the crossing point until u = 1. By plugging
the expressions of the lines (6.7.20) into the real part of the scale factor,

Re
(
q̄(t(u))

)
= q1 − (v(u) − 1)2 + N 2

(
v(u)2 − w(u)2 − 1

)
+ w(u)

(
2N (2v − 1) + w(u)

)
,

(6.7.21)
we find it is always positive on the range of parameters we consider. Finally, we can
calculate the value of the allowability function along this path by considering the temporal
part,

Σ(t) = Σtemporal(t(u)) = Arg
(−N2t′(u)2

q̄(t(u))

)
= Arg(−N2t′(u)2) (6.7.22)

=


Arg((N 2 + 1)2) = 0 for 0 < u < 1/(N 2 + 1) ,

Arg(−(N 2 + 1)2/N 2) = π for 1/(N 2 + 1) < u < 1 .
(6.7.23)

On the second line segment, the allowability bound is saturated. Slightly smoothing
out the path can render it strictly satisfied. The higher the dimension, the closer this
smoothed path must stay to the real q segment. We have therefore derived that the
T-shaped region described in figure 6.16 is allowable up to arbitrarily high dimensions.
The path integral can therefore be defined along the T-shaped contours, ending on the
saddle points. How the wavefunction is altered by this change of contour is a question
to be pursued in the future, but we expect the semi-classical approximation to remain
substantively unchanged.
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6.7.2 Sum over compact metrics

The previous subsection showed that the no-boundary proposal defined in momentum
space (i.e., as a sum over regular metrics) can be restricted to sum over allowable metrics
only, in any spacetime dimensions. Here we turn to the field space definition of the no-
boundary proposal (i.e., as a sum over compact metrics) and repeat the analysis. We
restrict to the four dimensional case only.

The compactness condition for metrics implies we impose an initial Dirichlet condition
q(t = 0) = 0, in addition to the final Dirichlet condition q(t = 1) = q1. Apart from this,
the construction of the no-boundary solution follows the same steps as in the previous
subsection. The path integral over the scale factor is carried out by expanding around a
classical background solution: q(t) = q̄DD(t) + Q(t), with Q(t) an arbitrary fluctuation
satisfying Q(0) = Q(1) = 0. The background solution to the equations of motions (6.7.6)
and satisfying the Dirichlet boundary condition is (see equation (2.2.13) with q0 = 0):

q̄DD(t) = Λ
3N

2t(t− 1) + q1t . (6.7.24)

Again, the integral over Q is a Gaußian and only changes the measure by a factor 1/
√
N ,

which we ignore at the semi-classical level. We are left with an ordinary integral over the
lapse:

ΨDD(q1) =
∫

dN exp
[

2π2i

ℏ

(
Λ2

36N
3 +

(
3 − Λq1

2

)
N − 3q2

1
4N

)]
. (6.7.25)

The four saddle points of the integrand read:

NSP = 3
Λ

±
√

Λq1

3 − 1 ± i

 . (6.7.26)

As recalled in detail in 2.2, the physical properties of the upper complex half plane and
lower complex half plane saddle points strongly differ. The two saddle points in the lower
half plane have an enhanced weighting exp

(
+ 1

2ℏ |I(S4)|
)

(where again I(S4) is the action
on a four-sphere of radius H−1 =

√
3/Λ), and perturbations around these geometries

are stable. On the other hand, the two saddle points in the upper half plane have a
suppressed weighting exp

(
− 1

2ℏ |I(S4)|
)

and unstable perturbations. We have depicted
again these saddle points and their associated steepest ascent/descent contours in the
left panel of figure 6.18. We recall that in [44], this definition was discarded for being
inconsistent, because lower half plane and upper half plane saddle points are linked by
steepest descent contours, hence any integration contour including the stable (lower)
saddle points, also necessarily includes the unstable (upper) ones. Here we focus on the
structure of the metrics space in the light of the allowability bound, and study its impact
on the definition of the no-boundary wavefunction.
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Figure 6.18: In the left panel, a numerical plot in the complexified lapse plane of the
allowed (cyan) and disallowed (red) metrics satisfying initial and final Dirichlet conditions,
as appropriate for a field space definition of the no-boundary wave function. Here D = 4,
Λ = 3, q(t = 0) = 0, and q(t = 1) = 10. This time the saddle points (in blue) do not
reside at the boundary of the allowable domain, but are surrounded by allowable metrics,
as can be seen more clearly in the zoomed in version in the right panel.

We apply the numerical methods described in section 6.3, and display our results in
figure 6.18. These are grids of geometries in the complexified lapse plane. Saddle points
are represented by blue dots and their steepest descent and ascent contour by solid black
lines. Cyan dots correspond to geometries for which the allowability bound is satisfied,
and red dots to geometries for which it is violated. We raise two interesting features in
these results:

1. the saddle points do no lie on the boundary of the allowability domain, in contrast
with the result obtained for the momentum space definition. Instead, as evident
from the magnified plot on the right of figure 6.18, saddle point geometries are
surrounded by allowable metrics. This could mean that the momentum space and
field space definitions are not Fourier transforms of each other, at least beyond the
semi-classical limit;

2. all geometries on the Lorentzian (real lapse) axis saturate the allowability criterion.
In the minisuperspace ansatz, this line divides the space of metrics into two separate
halves, and cuts any integration contour crossing it. This therefore cuts the steep-
est descent contours linking stable and unstable saddle points, and removes this
obstruction to a consistent definition of the no-boundary wavefunction. Within the
assumptions presented in this section, we can define a no-boundary wavefunction in
the field space definition, by restricting the contour of integration to the steepest
descent contours in the lower complex half plane (coming from −i∞ and passing
through one of the saddle points). A real wave function (as advocated by Hartle
and Hawking [38]) is obtained by summing the left and right contours with an equal
weight.

167



Before ending this section, we emphasize that this analysis is restricted to the min-
isuperspace space of metrics. We cannot conclude from the above result whether the
field space no-boundary wavefunction can be defined in full generality, i.e., whether or
not there exist allowable metrics with zero weighting, satisfying the Dirichlet boundary
conditions q(0) = 0, q(1) = q1, for arbitrary q1 > 3/Λ, and which can continuously link
an integration contour stemming from a saddle in the lower-half plane to an integration
contour stemming from a saddle in the upper-half plane. We can only conjecture that the
full space of metrics will still be separated into two disconnected regions by the domain
of non-allowability, keeping away stable from unstable saddle points. Proving such a con-
jecture would confirm that the original field space definition of the no-boundary proposal
can indeed be made consistent.

6.8 Discussion
In this last chapter, we have investigated a second possible selection criterion for early
universe models, also in the perspective of improving our understanding of the gravita-
tional path integral. Before turning to the general conclusions of this thesis, let us review
and discuss the main results obtained here. We have motivated why a criterion for com-
plex metrics must exist in quantum gravity, and showed that the criterion developed by
Kontsevich and Segal for quantum field theory on curved backgrounds seems a sensible
sieve when applied to known quantum gravity models that make use of complex metrics.
Taking this criterion seriously, we then applied it to several early universe models. To this
aim, we developed an unambiguous methodology for studying the allowability function
of on- and off-shell metrics. Lorentzian metrics always saturate the allowability bound.
Classical transitions between two de Sitter geometries satisfy the bound, but highlight the
limits of the minisuperspace ansatz. All the quantum bounce models we reviewed here
violate the allowability bound. This raises the question of whether all quantum bounces
are ruled out by this criterion. Finally, the no-boundary proposal, defined both in the
momentum and in the field space, is compatible with the allowability criterion, not only
on-shell but also along the off-shell metrics necessary to define the integration contour
for the path integral. This allowability of off-shell metrics is key to a proper definition of
the gravitational path integral beyond the semi-classical approximation. This last point
is an important result, because until then the common understanding was that the field
space definition of the no-boundary proposal could not lead to a consistent definition of
the wavefunction of the universe. Restricting the path integral to the domain of allow-
able metrics not only enables a proper definition of the wavefunction in this case, but
also reconcile the field space no-boundary definition with the momentum space one, as
the integration contours in both cases now run along the negative Euclidean axis before
reaching the lower half plane, stable Hartle-Hawking saddle points. In the conclusion
we will elaborate on the many new avenues this work opens, and its significance in the
construction of a meaningful path integral for quantum gravity.
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Conclusion

Throughout this thesis, our aim was to advance the knowledge on the very early quantum
stage of our universe, in particular through a better understanding of the gravitational
path integral in cosmology. In this conclusion, we reflect on the different lessons we
learned from the results we have obtained, and sketch the new avenues and next possible
steps they opened.

First concerning the no-boundary proposal, we have learned in chapter 3 that despite
being a semi-classical result, the no-boundary solution still exists when the theory of
gravity is supplemented by higher-order corrections. These corrections are typically the
perturbative quantum corrections we expect from known theories aiming to describe the
UV-complete theory of quantum gravity, such as quadratic gravity, effective field theories
of gravity, heterotic and type II string theories. This result is powerful, because it shows
that all the covariant terms consisting of Riemann tensors, of covariant derivatives of
the Riemann tensor, and of the metric (at least those we have analyzed) possess a no-
boundary solution. It is made even stronger by the fact that Lorentzian backgrounds
for their part, have been found in the chapter 5 to be inconsistent at the semi-classical
level for theories including terms that are cubic or of higher-order in the Riemann tensor.
This both indicates that results found at the semi-classical level may very well still hold
at the perturbative level of the full quantum gravity, and that the no-boundary solution
seems a particularly adequate description of the early universe, both semi-classically and
beyond. An open question that remains is whether it is possible to prove a general
result on the existence of no-boundary solutions for any type of higher-order
corrections. This would formalize the statement that no-boundary solutions stay valid
in perturbative quantum gravity.

Still regarding the no-boundary proposal, we have confirmed in chapter 4 the viability
of the no-boundary proposal defined as a sum over regular metrics, by including a scalar
field in its description. In addition to the compact and regular saddle point geometries,
this definition also contains non-compact and regular saddle point geometries which come
in pairs with the compact ones. Fortunately, we have found that these non-compact
saddles are always subdominant in the wavefunction with respect to their compact coun-
terpart. Besides, we have also highlighted a puzzle that was already present in earlier
implementations of the no-boundary with a scalar field [39, 40]: the no-boundary wave-
function selects an initial scalar field value at the South Pole of the instanton (i.e., at the
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big bang) which depends on the values of the scale factor and scalar field evaluated at
the final hypersurface. This is a strong non-causal consequence which must be resolved
before we obtain a completely well-defined implementation of the no-boundary proposal.
One possible solution which can be investigated in the future, is to generalize our pre-
scription for the wavefunction definition by summing over all possible initial values
of the scalar field, and not only on those corresponding to at least one compact sad-
dle point as we did in this work. This would automatically eliminate the non-causality
problem, but would also require to prove that the compact saddle points are still the
dominant contribution to the no-boundary wavefunction if we want to conserve the pre-
sumed Hartle-Hawking result for the no-boundary wavefunction. This does not seem to
be the case from a first naive examination, because the potential of non-compact saddle
points is generically null, so its weighting ∝ e1/(ℏV (ϕ)) would blow up and dominate the
path integral. Nevertheless, we might be saved there by a first principle, which could for
instance imply the complex metric criterion developed in chapter 6: indeed, at least in the
few examples we studied in this thesis, the scalar potential V (ϕ) is null only if the scalar
field ϕ has a large complex value. But the complex metric criterion requires matter fields
to take real values, while a recent extension of this criterion considering it must apply to
the 10 dimensional action of string theory allows for only small imaginary components of
the scalar field [77].

Moving on to the semi-classical constraints on early universe models, we have stud-
ied two criteria following from semi-classical consistency requirements. The motivation
behind this study is akin to the swampland program [8]: instead of searching for an
ever increasing number of new solutions (vacua) of string theory, one looks for condi-
tions ruling out certain candidates for the low-energy effective theory of quantum gravity.
In most interesting and directly applicable cases, the swampland program only formu-
lates conjectures whose formal proofs still lay far out of reach, for instance the de Sitter
conjecture [98, 99] expects that (meta-)stable de Sitter vacua are excluded from string
theory. In this thesis, instead of studying the full quantum gravity consistency, we an-
alyzed the implications of requiring semi-classical consistency for cosmological models.
Semi-classical considerations are obviously more easily tractable than full quantum grav-
ity ones, especially thanks to the path integral. The other way around, semi-classical
limits of cosmological models represent a good playground for testing the gravitational
path integral and question its meaning. The main lesson that we have learned is that
semi-classical physics is already very restricting and in some cases is already equivalent
to some swampland conditions: coming back to the de Sitter conjecture example, this
would mean that stable de Sitter vacua, if they exist, must necessarily be found beyond
the semi-classical approximation. More particularly, we have found that according to the
finite amplitude criterion in chapter 5, quadratic gravity occupies a peculiar situation,
naturally leading to initial conditions favoring inflation, while being the only higher-order
theory of gravity admitting Lorentzian background solutions. Eternal inflation and infla-
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tion as a first phase of evolution are also ruled out, and one open question concerns
whether the latter is still ruled out in the case of quadratic inflation. This
overall suggests that efforts done in order to make sense of the ghost of quadratic gravity
[60, 59] are worth pursuing. The no-boundary proposal is naturally semi-classically con-
sistent, and emergent (or genesis) scenarios, which arise in particular in string cosmology
where they are presently studied in the context of Matrix Models [171, 172, 173], can
also be made semi-classically consistent in accordance with the finite amplitude criterion.
Turning finally to the complex metric criterion studied in chapter 6, the principal lesson
it taught us is that such a criterion can effectively modify the interpretation and even
definition of the gravitational path integral. This last chapter opens many new avenues
and research questions. First, all the quantum bouncing models we analyzed were ruled
out by this criterion. Is this a general feature of all quantum bounces, and can
we prove this? Further, our results on classical transitions in de Sitter spacetime have
underlined the limitations of the minisuperspace ansatz. In the prospect of relaxing this
ansatz, it would be interesting to consider more general cosmological backgrounds
such as the Bianchi IX model, for which a no-boundary solution has also been found
[174]. The scrutiny of the no-boundary proposal in the light of the complex metric cri-
terion changed our view on the gravitational path integral. In this perspective, it would
be interesting to study also the AdS gravitational path integral as initiated in [53],
and to consider the existence of Euclidean wormhole solutions (see [175] for a first
study of Euclidean wormholes in the context of the LSKSW criterion). Finally, a long-run
goal would be to relate the complex metric criterion to an underlying physical
principle in quantum gravity. Since the complex metric criterion is formally valid only
for quantum field theories on fixed curved background, the ultimate criterion stemming
from quantum gravity may well turn out to be less or more restrictive than the present
LSKSW criterion. Nevertheless, our study confirms the previous expectation that the
LSKSW criterion is adequate to the study of quantum gravity.

While waiting for observational probes in the next decades, the development of the-
oretical tests such as these two criteria seems crucial to assert the many early universe
models and enable to focus the research effort on the models that pass these tests, such
as the no-boundary proposal. Additionally, the study of these criteria can help improving
our understanding of key physical principles and better deciphering the nature of quantum
gravity.
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Appendix A

Appendices to the chapter 3

A.1 Constraint equation of Riemann terms in the no-
boundary ansatz

We plug the no-boundary ansatz (3.2.16) into the Friedmann constraint equation (3.2.14), and
expand it at lowest orders in t. From (3.2.17) we know that at lowest order A1 = A2 = a3

a1N2 .
Therefore we get

0 = 2π2 ∑
p1,p2

cp1,p2

[
2p1(p2 − 1)a1t · a2

1
N2

( a3
a1N2

)P −1
+ p2(p2 − 1)a1t · a1 · a3

N4

( a3
a1N2

)P −2

− p2(2p1 + p2 − 3)a1t · a2
1

N2

( a3
a1N2

)P −1]
+ O(t3) ; (A.1.1)

where we defined P = p1 + p2 for simplicity.
This leading order equation can be further simplified to

2π2 ∑
p1,p2

cp1,p2

N2P
a4−P

1 aP −1
3 [2p2 − 2p1] t + O(t3) = 0 . (A.1.2)

Let us now look at the next order. Because a is an odd function of t, and hence A1 and A2

are even functions of t (see (3.2.17)), the t2 order of the Friedmann constraint will vanish. We
directly consider the t3 order of the Friedmann constraint:

2π2
∑

p1,p2

cp1,p2

[
2p1(p2 − 1)

(
a1t + a3t3

6
)(

a1 + a3t2

2
)2

N2

( a3

a1N2 + a2
3 − a1a5

12N4 t2
)p1−1( a3

a1N2 + a2
3 − a1a5

6N4 t2
)p2

+ p2(p2 − 1)
(
a1t + a3t3

6
)(

a1 + a3t2

2
)(

a3 + a5t2

2
)

N4

( a3

a1N2 + a2
3 − a1a5

12N4 t2
)p1( a3

a1N2 + a2
3 − a1a5

6N4 t2
)p2−2

− p2(2p1 + p2 − 3)
(
a1t + a3t3

6
)

·
(
a1 + a3t2

2
)2

N2

( a3

a1N2 + a2
3 − a1a5

12N4 t2
)p1( a3

a1N2 + a2
3 − a1a5

6N4 t2
)p2−1

+ (1 − p2)
(
a1t
)3
( a3

a1N2

)P
]

+ O(t5) = 0 . (A.1.3)

This can then be simplified to

2π2 ∑
p1,p2

cp1,p2

N2P
a3−P

1 aP −2
3

(
a2

3 · G3[p1, p2] + a1a5 · G5[p1, p2]
)
t3 + O(t5) = 0 , (A.1.4)
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with

G3[p1, p2] = 1
6
(
p2

1 − 15p1 + 6 − 4p2
2 + 12p2

)
and G5[p1, p2] = p1(1 − p1)

6 − 2p2(1 − p2)
3 .

(A.1.5)

A.2 Constraint equations for B and C terms

Here we display the constraint equations of B terms where the no-boundary ansatz has been
plugged in. Writing δB ≡ δ

δN

(
a3NB

)
, we find

δB1 = − 12
[ 4

15a6
1

(
25a3

3 − 29a1a3a5 + 4a2
1a7
)

t3
]

+ O(t5) ;

δB2 = − 12
[ 1

15a6
1

(
85a3

3 − 101a1a3a5 + 16a2
1a7
)

t3
]

+ O(t5) ;

δB3 = − 36
[ 2

15a6
1

(
35a3

3 − 43a1a3a5 + 8a2
1a7
)

t3
]

+ O(t5) ;

δB4 = − 4
5a6

1

(
35a3

3 − 43a1a3a5 + 8a2
1a7
)
t3 + O(t5) .

All those ∇2R2 terms possess a no-boundary solution which specifies a7 in terms of a1, a3, and
a5, but where the latter are not specified by the ∇2R2 terms alone.

We now look at the constraint equations for C terms. Their expressions in terms of A1, A2,
A3 and A4 are

C1 = 12
[
4
[
A2(A2 − A1) + 2ȧ2

a2N2 (A2 − A1) + ȧ

aN
A3
]2

+
[
A4 − 4ȧ2

a2N2 (A2 − A1) + ȧ

aN
A3
]2]

;

C2 = 12
[
A2

4 + 4ȧ

aN
A3A4 + 7ȧ2

a2N2 A2
3 + 2A4A2(A2 − A1) + 4A2

2(A2 − A1)2 − 4ȧ2

a2N2 A4(A2 − A1)

+ 16ȧ4

a4N4 (A2 − A1)2 + 8ȧ2

a2N2 A2(A2 − A1)2 + 10ȧ

aN
A3A2(A2 − A1) + 4ȧ3

a3N3 A3(A2 − A1)
]

;

C3 = 36
[ 3ȧ

aN
A3 + 2A2(A2 − A1) + A4

]2
;

C4 = 12
[
A2

4 − 4ȧ

aN
A3A4 + 19ȧ2

a2N2 A2
3 + 16ȧ

aN
A3A2(A2 − A1) − 80ȧ3

a3N3 A3(A2 − A1)

+ 160ȧ4

a4N4 (A2 − A1)2 − 48ȧ2

a2N2 A2(A2 − A1)2 + 8A2
2(A2 − A1)2

]
;

C5 = 12
[
A2

4 − 2ȧ

aN
A3A4 + 11ȧ2

a2N2 A2
3 − 34ȧ3

a3N3 A3
(
A2 − A1

)
+ 8ȧ

aN
A3A2

(
A2 − A1

)
+ 2A4A2

(
A2 − A1

)
− 6ȧ2

a2N2 A4
(
A2 − A1

)
+ 104ȧ4

a4N4
(
A2 − A1

)2 − 36ȧ2

a2N2 A2
(
A2 − A1

)2
+ 6A2

2
(
A2 − A1

)2] ;

C6 = 36
[[

A4 + 2A2(A2 − A1)
]2

− 12ȧ2

a2N2 (A2 − A1)A4 − 24ȧ2

a2N2 A2(A2 − A1)2 + 3ȧ2

a2N2 A2
3

+ 12ȧ3

a3N3 (A2 − A1)A3 + 48ȧ4

a4N4 (A2 − A1)2
]

.
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Writing δC ≡ δ
δN

(
a3NC

)
, we find

δC1 = 8t3 (3262a1a2
3a5 + 60a3

1a9 − 2135a4
3 − a2

1
(
592a3a7 + 595a2

5
))

35a9
1

+ O
(
t5
)

;

δC2 = 4t3 (3528a1a2
3a5 − 5a2

1
(
161a2

5 − 24a1a9
)

− 1995a4
3 − 848a2

1a3a7
)

35a9
1

+ O
(
t5
)

;

δC3 = 48t3 (133a1a2
3a5 − 15a2

1
(
7a2

5 − 2a1a9
)

+ 70a4
3 + 128a3a7N2)

35a9
1

+ O
(
t5
)

;

δC4 = 8t3 (1008a1a2
3a5 + 12a3

1a9 − 735a4
3 − 19a2

1
(
8a3a7 + 7a2

5
))

7a1N8 + O
(
t5
)

;

δC5 = 2t3 (13048a1a2
3a5 − 5a2

1
(
413a2

5 − 48a1a9
)

− 8855a4
3 − 2368a2

1a3a7
)

35a9
1

+ O
(
t5
)

;

δC6 = 12t3 (2968a1a2
3a5 − 15a2

1
(
49a2

5 − 8a1a9
)

− 1505a4
3 − 848a2

1a3a7
)

35a9
1

+ O
(
t5
)

.

These six ∇4R2 terms all admit a regular no-boundary solution, for which the coefficient a9

is fixed in terms of a1, a3, a5 and a7 at order t3 of the constraint. This ensures the existence of
a solution if these ∇4R2 terms are combined with Riemann terms and ∇2R2 terms, since a9 is
a new degree of freedom at order t3.

A.3 Constraint equations from D, E and F terms

Expressions of D terms as functions of A1, A2 and A3:

D1 = 144
[
A4

3 + 16ȧ2

a2N2 A2
3
(
A2 − A1

)2 + 64ȧ4

a4N4
(
A2 − A1

)4] ;

D2 = 48
[
3A4

3 + 24ȧ2

a2N2 A2
3(A2 − A1)2 + 64ȧ4

a4N4
(
A2 − A1)4

]
;

D3 = 48
[
A4

3 + 4ȧ2

a2N2 A2
3(A2 − A1)2 + 40ȧ4

a4N4
(
A2 − A1

)4] ;

D4 = 48
[
A4

3 + 16ȧ3

a3N3 A3
(
A2 − A1

)3 + 20ȧ4

a4N4
(
A2 − A1

)4]
.

Expressions of E terms as functions of A1, A2, A3 and A4:

E1 =144
(
A2

1 + A2
2
)[

4
( ȧ

aN
A3 + 2ȧ2

a2N2 (A2 − A1) + A2(A2 − A1)
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a2N2 (A1 − A2) + ȧ

aN
A3
)2
]

;

E2 =144
(
A2

1 + A2
2
)[

A2
4 − 4ȧ

aN
A4A3 + 19ȧ2

a2N2 A2
3 + 16ȧ

aN
A3A2(A2 − A1) + 80ȧ3

a3N3 A3(A1 − A2)

+ 8A2
2(A2 − A1)2 + 160ȧ4

a4N4 (A2 − A1)2 − 48ȧ2

a2N2 A2(A2 − A1)2
]

;

E3 =144
[
A2A4 + ȧ

aN
A3(A2 + 2A1) − 2A1A2(A1 − A2) − 4ȧ2

a2N2 (A1 − A2)2
]2

;

E4 =48
[
12A2

1A2
2(A2 − A1)2 + 3A2

2A2
4 + 12A1A2

2(A2 − A1)A4
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+ 16ȧ4

a4N4 (A2 − A1)2(A2
2 − 5A1A2 + 13A2

1) − 12ȧ

aN
A3A2(A2 − A1)

(
A4 + 2A1(A2 − A1)

)
− 12ȧ3

a3N3 A3(A2 − A1)
(
2(A2 − A1)2 − 4A1(A2 − A1) − 3A1A2

)
− 12ȧ2

a2N2 (A2 − A1)
(
3A1A2A4 − A2

3(A2 − A1) + 6A2
1A2(A2 − A1)

)
+ 9ȧ2

a2N2 A2
3A2

2

]
;

E5 =48
[
4A2

1

[ ȧ

aN
A3 + 2ȧ2

a2N2 (A2 − A1) + A2(A2 − A1)
]2

+ A2
2

[
A4 + ȧ

aN
A3 + 4ȧ2

a2N2 (A1 − A2)
]2]

;

E6 =48
[
16 ȧ4

a4N4 (A2 − A1)2(7A2
1 + 3A2

2) − 12 ȧ2

a2N2 A2(A2 − A1)2(A2
2 + 3A2

1)

+ 2A2
2(A2 − A1)2(A2

2 + 3A2
1) + ȧ2

a2N2 A2
3(8A2

1 + 11A2
2) − 4 ȧ

aN
A3A2

2A4

+ 4 ȧ

aN
A3A2(A2 − A1)(A2

2 + 3A2
1) + A2

2A2
4 + 16A3

ȧ3

a3N3 (A1 − A2)(2A2
2 + 3A2

1)
]

;

E7 =48
[

16ȧ4

a4N4 (A2 − A1)2(A2
1 + A2

2) + 4A2
1A2

2(A2 − A1)2 − 8ȧ3

a3N3 A3(A2 − A1)(A2
2 − 2A2

1)

+ ȧ2

a2N2 (4A2
1 + A2

2)A2
3 + 8ȧ2

a2N2 A2
2A4(A1 − A2) + 16ȧ2

a2N2 A2
1A2(A2 − A1)2

+ 2ȧ

aN
A2

2A3A4 + 8ȧ

aN
A2

1A2A3(A2 − A1) + A2
2A2

4

]
= E5 ;

E8 =48
[

4ȧ4

a4N4 (A2 − A1)2(3A2
2 + 18A2A1 + 19A2

1) − 8ȧ3

a3N3 A3(A2 − A1)(A2
2 + 6A2A1 + 3A2

1)

+ ȧ2

a2N2 A2
3(8A2A1 + 7A2

2 + 4A2
1) − 24ȧ2

a2N2 A1A2(A2 − A1)2(A2 + A1)

+ 8ȧ

aN
A2A1A3(A2

2 − A2
1) − 4ȧ

aN
A2

2A3A4 + 4A2
2A1(A2 − A1)2(A2 + A1) + A2

2A2
4

]
.

Expressions of F terms through A1, A2, A3 and A4 quantities:

F1 = 144
[ 8ȧ2

a2N2 (A2 − A1)2 + A2
3

][
2A2A1(A2 − A1) − 4ȧ2

a2N2 (A2 − A1)2

+ ȧ

aN
A3(A2 + 2A1) + A2A4

]
;

F2 = 48
[

− 16ȧ4

a4N4 (A2 − A1)3(A2 + 2A1) − 12ȧ3

a3N3 A3(A2 − A1)2(A2 − 2A1)

+ 24ȧ2

a2N2 A1A2(A2 − A1)3 + 18ȧ2

a2N2 A2
3A1(A1 − A2) + 12ȧ2

a2N2 A2A4(A2 − A1)2

+ 6ȧ

aN
A3

3(A1 − A2) + 6A2
3A1A2(A2 − A1) + 3A2A2

3A4

]
;

F3 = 144
[ 2ȧ

aN
A1(A2 − A1) + A2A3

][
ȧ

aN
A2

3 + 4ȧ

aN
A2(A2 − A1)2 + 8ȧ3

a3N3 (A2 − A1)2 + A3A4

]
;

F4 = 144
[ 2ȧ

aN
A1(A2 − A1) + A2A3

][ 4ȧ

aN
(A2 − A1)2(A2 − 6ȧ2

a2N2
)

− 2ȧ

aN
A2

3

+ 8ȧ2

a2N2 A3(A2 − A1) + A3A4

]
;
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F5 = 48
[

− 8ȧ4

a4N4 (A2 − A1)3(A2 − 3A1) + 2ȧ3

a3N3 A3(A2 − A1)2(A2 + 6A1)

− 4ȧ2

a2N2 A2A2
3(A2 − A1) + 2ȧ2

a2N2 A2A4(A2 − A1)2 + 12ȧ2

a2N2 A1A2(A2 − A1)3

+ ȧ

aN
A2A3

3 + A2A2
3A4

]
;

F6 = 48
[

− 2ȧ4

a4N4 (A2 − A1)3(9A2 + 13A1) + 6ȧ3

a3N3 A1A3(A2 − A1)2 + 2ȧ2

a2N2 A2
3(A2

2 − A2
1)

+ 12ȧ2

a2N2 A1A2(A2 − A1)3 + 2ȧ

aN
A2

2A3(A2 − A1)2 − 2ȧ

aN
A2A3

3 + A2A2
3A4

]
;

F7 = 48
[ 8ȧ4

a4N4 (A2 − A1)3(A2 + A1) + 2ȧ3

a3N3 A3(A2 − A1)2(2A2 + 5A1)

+ 2ȧ2

a2N2 A1A4(A2 − A1)2 − 4ȧ2

a2N2 A2A2
3(A2 − A1) + 4ȧ2

a2N2 A2(A2 − A1)3(A2 + 2A1)

+ ȧ

aN
A2A3

3 + A2A2
3A4

]
;

F8 = 48
[ 2ȧ4

a4N4 (A2 − A1)3(5A2 − 27A1) − 6ȧ3

a3N3 A3(A2 − A1)2(2A2 − 3A1)

+ 12ȧ2

a2N2 A1A2(A2 − A1)3 + 4ȧ2

a2N2 A2A2
3(A2 − A1) + 2ȧ

aN
A2

2A3(A2 − A1)2

− 2ȧ

aN
A2A3

3 + A2A2
3A4

]
.

We display here the constraint equations obtained for all D, E and F terms (using again the
notation δD ≡ δ

δN

(
a3ND

)
and similarly for E and F):

δD1 = 144
[
∆1 + 16∆3 + 64∆2

]
= 384(a2

3 − a1a5)3

a15
1

t3 + O
(
t5
)

;

δD2 = 12
[
64∆2 + 12

[
∆1 + 8∆3 + 16∆2

]]
= 1408(a2

3 − a1a5)3

3a15
1

t3 + O
(
t5
)

;

δD3 = 2
[
864∆2 + 24

[
∆1 + 4∆3 + 4∆2

]]
= 144(a2

3 − a1a5)3

a15
1

t3 + O
(
t5
)

;

δD4 = 4
[
240∆2 + 192∆4 + 12∆1

]
= 136(a2

3 − a1a5)3

a15
1

t3 + O
(
t5
)

;

δE1 = 144 · 4t3

105a15
1

[
60a2

1a2
3
(
a1a9 − a3a7

)
+ 532a2

1a3a5(a3a5 − a1a7
)

− 3675
(
a2

3 − a1a5
)3

− 3535a1a5
(
a2

3 − a1a5
)2 − a1a3

(
616a5a3 + 924a1a7

)(
a2

3 − a1a5
)]

+ O
(
t5
)

;

δE2 = 144 · 4t3

63a15
1

[
36a2

1a2
3
(
a1a9 − a3a7

)
+ 420a2

1a3a5(a3a5 − a1a7
)

− 2793
(
a2

3 − a1a5
)3

− 2765a1a5
(
a2

3 − a1a5
)2 − a1a3

(
1246a5a3 + 560a1a7

)(
a2

3 − a1a5
)]

+ O
(
t5
)

;

δE3 = 144 · 2t3

315a15
1

[
180a2

1a2
3
(
a1a9 − a3a7

)
+ 588a2

1a3a5(a3a5 − a1a7
)

− 6860
(
a2

3 − a1a5
)3

− 5915a1a5
(
a2

3 − a1a5
)2 − a1a3

(
− 4046a5a3 + 2996a1a7

)(
a2

3 − a1a5
)]

+ O
(
t5
)

;

δE4 = 48 · 2t3

315a15
1

[
540a2

1a2
3
(
a1a9 − a3a7

)
+ 3276a2

1a3a5(a3a5 − a1a7
)

− 23450
(
a2

3 − a1a5
)3

− 22575a1a5
(
a2

3 − a1a5
)2 − a1a3

(
− 4179a5a3 + 7644a1a7

)(
a2

3 − a1a5
)]

+ O
(
t5
)

;
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δE5 = δE7 = 48 · t3

315a15
1

[
360a2

1a2
3
(
a1a9 − a3a7

)
+ 3192a2

1a3a5(a3a5 − a1a7
)

− 29470
(
a2

3 − a1a5
)3 − 28000a1a5

(
a2

3 − a1a5
)2

− a1a3
(
2240a5a3 + 7000a1a7

)(
a2

3 − a1a5
)]

+ O
(
t5
)

;

δE6 = 48 · t3

315a15
1

[
360a2

1a2
3
(
a1a9 − a3a7

)
+ 4200a2

1a3a5(a3a5 − a1a7
)

− 32795
(
a2

3 − a1a5
)3

− 32305a1a5
(
a2

3 − a1a5
)2 − a1a3

(
11396a5a3 + 6664a1a7

)(
a2

3 − a1a5
)]

+ O
(
t5
)

;

δE8 = 48 · t3

630a15
1

[
720a2

1a2
3
(
a1a9 − a3a7

)
+ 8400a2

1a3a5(a3a5 − a1a7
)

− 65695
(
a2

3 − a1a5
)3

− 64610a1a5
(
a2

3 − a1a5
)2 − a1a3

(
22792a5a3 + 13328a1a7

)(
a2

3 − a1a5
)]

+ O
(
t5
)

;

δF1 = 144 ·
2
(
a2

3 − a1a5
)
t3

45a15
1

[
235a2

3(a2
3 − a1a5) − 64a1a3

(
a3a5 − a1a7

)]
+ O

(
t5
)

;

δF2 = 48 ·
2
(
a2

3 − a1a5
)
t3

45a15
1

[
105a1a5

(
a2

3 − a1a5
)

+ 12a1a3
(
a3a5 − a1a7

)
− 160

(
a2

3 − a1a5
)2]

+ O
(
t5
)

;

δF3 = 144 ·
4
(
a2

3 − a1a5
)
t3

45a15
1

[
60a1a5

(
a2

3 − a1a5
)

− 18a1a3
(
a3a5 − a1a7

)
+ 5

(
a2

3 − a1a5
)2]

+ O
(
t5
)

;

δF4 = 144 ·
2
(
a2

3 − a1a5
)
t3

45a15
1

[
− 155a1a5

(
a2

3 − a1a5
)

+ 32a1a3
(
a3a5 − a1a7

)
− 30

(
a2

3 − a1a5
)2]

+ O
(
t5
)

;

δF5 = 48 ·
(
a2

3 − a1a5
)
t3

90a15
1

[
725a2

3(a2
3 − a1a5) − 128a1a3

(
a3a5 − a1a7

)]
+ O

(
t5
)

;

δF6 = 48 ·
(
a2

3 − a1a5
)
t3

180a15
1

[
− 725a1a5

(
a2

3 − a1a5
)

+ 128a1a3
(
a3a5 − a1a7

)
− 265

(
a2

3 − a1a5
)2]

+ O
(
t5
)

;

δF7 = 48 ·
(
a2

3 − a1a5
)
t3

90a15
1

[
725a1a5

(
a2

3 − a1a5
)

− 128a1a3
(
a3a5 − a1a7

)
+ 10

(
a2

3 − a1a5
)2]

+ O
(
t5
)

;

δF8 = 48 ·
(
a2

3 − a1a5
)
t3

180a15
1

[
− 725a1a5

(
a2

3 − a1a5
)

+ 128a1a3
(
a3a5 − a1a7

)
− 275

(
a2

3 − a1a5
)2]

+ O
(
t5
)

.
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Appendix B

Appendices to the chapter 4

B.1 Fluctuation integrals

The Wheeler-de Witt equation in field position space is obtained from the constraint (4.1.8)[
ℏ2
(
∂2

x − ∂2
y

)
− 1

4 (1 − αx − βy)
]

Ψ = 0 . (B.1.1)

Assuming that the integrations of x and y have already been performed implies that the wave
function can be written as an ordinary integral over the lapse, but with a currently unknown
measure factor m(N),

Ψ[xf, yf] =
∫

dN m(N) eiSon-shell
0 [xf,yf,N ]/ℏ . (B.1.2)

We abbreviate the on-shell (in x and y) action (4.1.19) simply by S, and xf, yf by x, y. Then

ℏ2(∂2
x − ∂2

y)Ψ =
∫

dN m(N)ℏ2
(

iS,xx

ℏ
− (S,x)2

ℏ2 − iS,yy

ℏ
+ (S,y)2

ℏ2

)
eiS/ℏ . (B.1.3)

Starting from (4.1.19), the explicit expressions are given by

S,x = −αN

2 − Πx

2 ; S,xx = 0 ; S,y = −βN

2 − Πy

2 ; S,yy = 0 ; (B.1.4)

⇒ (S,y)2 − (S,x)2 = 1
4
(
N2(α2 − β2) − 2N(αΠx + βΠy) + Π2

y − Π2
x

)
; (B.1.5)

S,N = N2(α2 − β2)
2 + N(αΠx + βΠy) − (αx + βy)

2 ; (B.1.6)

⇒ if Π2
y − Π2

x = 1, (S,y)2 − (S,x)2 = −S,N

2 + (1 − αx − βy)
4 . (B.1.7)

Inserting into the WdW equation we obtain

0 =
∫

dNm(N) ·
[
−S,N

2

]
eiS/ℏ ⇔ 0 =

∫
dN

(
− iℏ

2

)
m,N eiS/ℏ ⇔ m = const. (B.1.8)

which verifies that, with mixed Neumann-Dirichlet boundary conditions, the fluctuation integrals
lead to no additional N dependence in the integrand of the lapse integral.
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B.2 Solving for γ

In this appendix, we will present the details on how to solve for the initial conditions parameter
γ, in order for a compact saddle point geometry to exist. We restrict our analysis to hyperbolic
cosine potentials (α = ±1, β = 0). For other potentials, the analysis is analogous.

B.2.1 α = 1 and β = 0

We need to solve the following equation for γ ∈ C:

a2
f sinh2(2ϕf) + 4 sinh(2γ) sinh(2γ − 2ϕf) = 0 . (B.2.1)

The real and imaginary parts of this equation must both hold separately. The imaginary part
yields:

sin(4 Im[γ]) sinh(4 Re[γ] − 2ϕf) = 0 ; (B.2.2)

so we need either Im[γ] = k · π/4 for k ∈ Z, or Re[γ] = ϕf/2. We now analyze the real part of
equation (B.2.1), Ncompact = a2

f sinh(2ϕf)/(2i sinh(2γ)), for these different cases.

1. Re[γ] = ϕf/2: then the real part of (B.2.1) becomes

sin2(2 Im[γ]) = (a2
f cosh2(ϕf) − 1) sinh2(ϕf) . (B.2.3)

Solutions to this equation only exist if the right hand side is between 0 and 1, which
translates into

a2
f cosh2(ϕf) > 1 and a2

f sinh2(ϕf) < 1 . (B.2.4)

When these conditions are satisfied, equation (B.2.3) possesses four families of solutions


γ1,2(k) = ϕf

2 ∓ i

2

(
arcsin

(
|sinh(ϕf)|

√
a2

f cosh2(ϕf) − 1
)

+ 2π · k

)
;

γ3,4(k) = ϕf
2 ∓ i

2

(
π − arcsin

(
|sinh(ϕf)|

√
a2

f cosh2(ϕf) − 1
)

+ 2π · k

)
;

∀k ∈ Z . (B.2.5)

We still need to make sure that we obtain only saddle points that admit stable fluctuations,
i.e., which imply the correct orientation for the Wick rotation. This means that we must
get rid of spurious solutions for which aȧ|0 → −iN (rather than aȧ|0 → +iN) when
ϕ → 0, i.e. we only keep solutions where

Πx = ẋ

2N

∣∣∣∣
0

= aȧ cosh(2ϕ) + a2ϕ̇ sinh(2ϕ)
N

∣∣∣∣∣
0

ϕ→0−−−→ aȧ

N

∣∣∣∣
0

= +i . (B.2.6)

Writing Πx in terms of γ, we obtain

Πx = i cosh(2γ) = i
(

cosh(ϕf) cos(2 Im[γ]) + i sinh(ϕf) sin(2 Im[γ])
)

. (B.2.7)

Expanding this expression at zeroth order in ϕf, the second term vanishes and we find, by
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plugging in the solutions (B.2.5) for γ:


Π1,2(k)

x = i cos
(

∓ arcsin
(

|sinh(ϕf)|
√

a2
f cosh2(ϕf) − 1

)
+ 2π · k

)
ϕf→0−−−→ +i ;

Π3,4(k)
x = i cos

(
∓π ± arcsin

(
|sinh(ϕf)|

√
a2

f cosh2(ϕf) − 1
)

+ 2π · k

)
ϕf→0−−−→ −i .

(B.2.8)
We therefore exclude the last two families of solutions, γ3,4(k), and keep only the first two,
γ1,2(k). Since γ only enters expressions through its hyperbolic sine or cosine, the value of
k is unimportant and we can simply set it to 0. In the end we only have two values for γ:

2γ∓ = ϕf ∓ i arcsin
(

|sinh ϕf|
√

a2
f cosh2(ϕf) − 1

)
. (B.2.9)

The saddle point for the lapse computed from these γ values will be complex. These values
of γ automatically satisfy the condition Im(Πx

0) > 0.

2. Im[γ] = k · π/2, k ∈ Z: sin(2 Im[γ]) = 0 and cos(2 Im[γ]) = (−1)k. All expressions then
only depend on whether k is odd or even, so we can restrict to k = 0, 1. The real part of
the equation (B.2.1) yields:

a2
f sinh2(2ϕf) = 4 sinh(2 Re[γ]) sinh(2ϕf − 2 Re[γ]) . (B.2.10)

This admits a solution only if

a2
f sinh2(2ϕf) < 4

∣∣∣∣∣max
Re[γ]

(
sinh(2 Re[γ]) sinh(2ϕf − 2 Re[γ])

)∣∣∣∣∣ = 4 sinh2(ϕf) ;

⇔ a2
f cosh2(ϕf) < 1 . (B.2.11)

When this condition is satisfied, we find two solutions for each k value:

γ
(k)
∓ = 1

2 cosh−1
(1

2
[
4 + sinh2(2ϕf)(2 − a2

f cosh(2ϕf)) (B.2.12)

∓ sinh2(2ϕf)
√

(2 − a2
f cosh(2ϕf))2 − a4

f

]1/2)
+ ik · π

2 ;

which implies that

Πx ∓ = i cosh(2γ∓) = i(−1)k

2

[
4 + sinh2(2ϕf)(2 − a2

f cosh(2ϕf)) (B.2.13)

∓ sinh2(2ϕf)
√

(2 − a2
f cosh(2ϕf))2 − a4

f

]1/2
∈ iR ,

Πy ∓ = i sinh(2γ∓) = i(−1)k

2 |sinh(2ϕf)|
√

(2 − a2
f cosh(2ϕf)) ∓

√
(2 − a2

f cosh(2ϕf))2 − a4
f

∈ iR . (B.2.14)

We look at the limit of Πx when ϕf → 0 to exclude spurious solutions, and we find

Πx ∓ → i(−1)k ; (B.2.15)
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thus we only keep k = 0 and we reject k = 1. Finally the γ values are

γ∓ = 1
2 cosh−1

(√
1 + sinh2(2ϕf)

4
(
(2 − a2

f cosh(2ϕf)) ∓
√

(2 − a2
f cosh(2ϕf))2 − a4

f

))
.

Because these γ values are real, the saddle points for the lapse will be purely imaginary.
These values of γ automatically satisfy the condition Im(Πx

0) > 0.

3. Im[γ] = π/4 + k · π/2: sin(2 Im[γ]) = (−1)k and cos(2 Im[γ]) = 0. All expressions will
only depend on whether k is odd or even, so we can restrict to k = 0, 1. The real part of
equation (B.2.1) becomes

a2
f sinh2(2ϕf) − 4 cosh(2 Re[γ]) cosh(2 Re[γ] − 2ϕf) = 0 , (B.2.16)

which admits a solution only if

a2
f sinh2(2ϕf) > 4 min

Re[γ]
(cosh(2 Re[γ]) cosh(2 Re[γ] − 2ϕf)) = 4 cosh2(ϕf) ,

⇔ a2
f sinh2(ϕf) > 1 . (B.2.17)

This condition being fulfilled, we find the four following solutions:

γ
(k)
∓ = ∓ 1

2 cosh−1

1
2 sinh(2ϕf)

√
a2

f cosh(2ϕf) − 2 ∓
√(

a2
f cosh2(2ϕf) − 2

)2
− a4

f


+ i

(
π

4 + k · π

2

)
, k ∈ {−1, 0} . (B.2.18)

For these values of γ, we have a particular case where Im(Π0
x) = 0.

In this case it is not possible to take the limit ϕf → 0, as this would contradict the
condition (B.2.17). The saddle points for the lapse will be purely real.

B.2.2 α = −1 and β = 0

In this case, the equation we must solve for γ ∈ C reads:

a2
f sinh2(2ϕf) − 4 sinh(2γ) sinh(2γ − 2ϕf) = 0 . (B.2.19)

Taking the imaginary part of this expression, we find

2a2
f sin(4 Im[γ]) sinh(4 Re[γ] − 2ϕf) = 0 . (B.2.20)

This is solved by Im[γ] = k · π/4 for k ∈ Z, or Re[γ] = ϕf/2. For each of these cases we examine
the real part of equation (B.2.19):

1. Re[γ] = ϕf/2: then we find

4 sin2(2 Im[γ]) = −a2
f sinh2(2ϕf) − 4 sinh2(ϕf) . (B.2.21)
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This equation does not admit any solution for af > 0 and ϕf ∈ R.

2. Im[γ] = k · π/2, k ∈ Z: then cos(2 Im[γ]) = (−1)k and sin(2 Im[γ]) = 0. Again we only
keep k = {0, 1}. The real part of the equation for γ is

a2
f sinh2(2ϕf) = 4 sinh(2 Re[γ]) sinh(2 Re[γ] − 2ϕf) ; (B.2.22)

which yields the following constraint:

a2
f sinh2(2ϕf) > 4 min

Re[γ]
(sinh(2 Re[γ]) sinh(2 Re[γ] − 2ϕf)) . (B.2.23)

This minimum lies at Re[γ] = ϕf/2 and hence implies a2
f sinh2(2ϕf) > −4 sinh2(ϕf). This

condition is always satisfied, thus the equation (B.2.22) admits solutions for all values
af > 0 and ϕf ∈ R, which are:


Re[γI

∓] = ∓ cosh−1

√1 + sinh2(2ϕf)
4

(
2 + a2

f cosh(2ϕf) −
√(

2 + a2
f cosh(2ϕf)

)2 − a4
f

);

Re[γII
∓] = ∓ cosh−1

√1 + sinh2(2ϕf)
4

(
2 + a2

f cosh(2ϕf) +
√(

2 + a2
f cosh(2ϕf)

)2 − a4
f

).

(B.2.24)
We can further constrain the value of k by looking at the limit of Πx when ϕf → 0. In
that case, (B.2.22) directly implies sinh2(2 Re[γ]) → 0, so γ → 0. Then

Πx = i cosh(2γ) = i(−1)k cosh(2 Re[γ]) −−−→
γ→0

i(−1)k ; (B.2.25)

so we recover the right limit Πx → +i only for k = 0, so Im[γ] = 0.

3. Im[γ] = π/4 + k · π/2, k ∈ Z: here we have cos(2 Im[γ]) = 0 and sin(2 Im[γ]) = (−1)k:

a4
f sinh2(2ϕf) = −4a2

f cosh(2 Re[γ]) cosh(2 Re[γ] − 2ϕf) ;

⇒ a2
f sinh2(2ϕf) < 4 max

Re[γ]
(− cosh(2 Re[γ]) cosh(2 Re[γ] − 2ϕf)) . (B.2.26)

This maximum lies at Re[γ] = ϕf/2 and thus a2
f sinh2(2ϕf) < −4 cosh2(ϕf). This can never

be satisfied for real values of af and ϕf.

B.3 Picard’s little theorem

Picard’s little theorem was formulated and proved in 1879 by Picard and states that [176]:
”Consider an entire [and non-constant] function G(z) which never equals a certain finite value
a. Then there cannot exist another finite value b, different from a, that G(z) cannot equal.” An
entire function is a holomorphic function defined on the whole complex plane. An holomorphic
function G : C → C is a C-differentiable function (the corresponding function F : R2 → R2 :
(Re[z], Im[z]) → (Re[G(z)], Im[G(z)]) is differentiable at all points (Re[z], Im[z]) = (x, y)) such
that the application C → C : z → G′(z) is continuous on C, and which moreover satisfies the
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Cauchy-Riemann relations: for G(x + iy) ≡ u(x, y) + iv(x, y),
∂u

∂x
(x, y) = ∂v

∂y
(x, y) ,

∂u

∂y
(x, y) = −∂v

∂x
(x, y) .

(B.3.1)

Based on this definition, one can show that the function

V : C → C : z → α cosh(z) + β sinh(z) , (B.3.2)

(i.e., our potential) is holomorphic. Generically, for a potential that is an entire function, this
theorem means that the constraint equation at τ = 0, a|20 V (ϕ|0) = 0, is not only satisfied for
closed geometries where a|0 = 0, but also for situations where V (ϕ|0) = 0, which generically
exist. There is one well-known exception given by the exponential potential, V (ϕ) = eϕ, which
only vanishes at infinity when Re[ϕ] < 0. This is precisely the case we study when α = β. That
case put aside, this explains why for every γ, we find two regular saddle points; one compact
and for which ϕ|0 = γ; and one non-compact for which ϕ|0 ̸= γ, but where V (ϕ|0) = 0.

Moreover this is not specific to this potential, but is a generic feature of all entire functions.
The only assumption we are making is that this potential of the scalar field can be extended to
the complex plane. This is however a strong assumption, that can be questioned, in particular
in view of the complex metric criterion (chapter 6).
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