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Abstract: Predicting the chemical stability of yet-to-be-discovered materials is an important aspect
of the discovery and development of virtual materials. The conventional approach for computing
the enthalpy of formation based on ab initio methods is time consuming and computationally
demanding. In this regard, alternative machine learning approaches are proposed to predict the
formation energies of different classes of materials with decent accuracy. In this paper, one such
machine learning approach, a novel two-step method that predicts the formation energy of ternary
compounds, is presented. In the first step, with a classifier, we determine the accuracy of heuristically
calculated formation energies in order to increase the size of the training dataset for the second step.
The second step is a regression model that predicts the formation energy of the ternary compounds.
The first step leads to at least a 100% increase in the size of the dataset with respect to the data
available in the Materials Project database. The results from the regression model match those from
the existing state-of-the-art prediction models. In addition, we propose a slightly modified version
of the Adam optimizer, namely centered Adam, and report the results from testing the centered
Adam optimizer.

Keywords: machine learning; neural network; enthalpy of formation; thermodynamic stability

1. Introduction

A key step in the data-driven materials discovery process is predicting the enthalpy of
formation (the formation energy) for compounds that have not been synthesized yet [1].
Knowledge about the formation energy of a compound helps determine whether the
compound is thermodynamically stable against competing phases. The phase stability
can be determined using convex hull analysis [2]. In a compositional phase diagram,
a convex hull is constructed by connecting the lowest formation energies. Compounds
that lie on the convex hull are thermodynamically stable, and the ones above the hull
are metastable or unstable [3]. In this regard, the computing of formation energies has
an important role in virtual materials discovery. The formation energy of a compound
can be calculated using an existing and popular computational method, namely density
functional theory (DFT). However, assessing the thermodynamic stability of compounds
with DFT-based calculations has two major limitations. First, the atomic structure of a new
compound, which is an essential input for DFT-based calculations, cannot be known a
priori. In addition, computing the formation energy for an entire unknown chemical space
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is computationally very demanding and time consuming [4]. This is particularly true when
compared with alternative approaches based on machine learning (ML) techniques [5–10].

ML methods have already shown the ability to predict many properties of materials,
including the formation energy [11]. For formation energy prediction, different algorithms,
such as kernel-based regression schemes, decision trees, and neural network (NN) models,
have been employed [12]. Meredig et al. predicted the formation energy of ternary
compounds using a heuristic formula and a rotation forest ensemble model [5]. Using
rotation forest as the learning algorithm, they achieved a mean absolute error (MAE) of
0.16 eV/atom. Liu et al. predicted the formation energies of binary compounds using a deep
learning method [6]. The descriptors used are the composition percentages of the elements
contributing to the formation of the binary compounds. This method achieved an MAE
between 0.115 eV/atom and 0.072 eV/atom depending on the number of layers and the
type of initialization used for the weights in the deep learning model. Jha et al. developed
ElemNet, an NN trained on data points from the Open Quantum Materials Database
(OQMD) [13] that can predict formation energies with an MAE of 0.055 eV/atom [7].

Recently, graph-based models for predicting formation energy and other properties of
molecules and crystals have been introduced [14]. Yan et al. [15] compared the performance
of various models in terms of test MAE [8] on a dataset (training–validation–test split of
60,000–5000–4239) [10] from the Materials Project database (MPD) [16]. In predicting the
formation energies, Matformer [15] achieves the best performance (0.021 eV/atom), fol-
lowed by ALIGNN [10] (0.022 eV/atom), MEGNET [17] (0.030 eV/atom), and CGCNN [8]
(0.031 eV/atom).

A major obstacle in training ML models to predict formation energies is the sparse
available data. To partially overcome this issue, in this work, we present a two-step approach
to predict the formation energies of ternary compounds. In the first step, we collect the
knowledge from a heuristic formula and incorporate it into the NN training data used to
predict the formation energies of the ternary compounds in the second step. The first step not
only increases the size of the dataset with respect to the data available in the MPD but also
adds some combinations of elements that are not available in the MPD. The training data for
constructing the attributes were collected from the MPD and retrieved in 2019.

2. Methodology

A simple yet powerful metallurgical heuristic exists by which the formation energy
of a ternary compound can be predicted from the formation energies of its binary con-
stituents [18,19]. For example, the formation energy of ZrIn2Bi can be calculated as the
composition-based weighted average of the formation energies of its constituent binary
compounds, namely Zr3Bi and In3Bi, with formation energies of −0.184 eV/atom and
+0.040 eV/atom, respectively, like so:

1
3
×−0.184 +

2
3
× 0.040 = −0.034. (1)

However, this rule does not always estimate the corresponding values computed with
DFT accurately. Meredig et al. found that the heuristically predicted formation energies
for ternary compounds are systematically underestimated, and they improved the heuris-
tically calculated values using linear regression [5]. We employed the above-mentioned
metallurgical heuristic to increase the number of training data points for predicting the
formation energies of ternary compounds. Our ML system has two units: classification
and regression (see Figure 1). The important goal of the classification unit is to increase the
size of the training dataset for the regressor unit. The regressor unit performs the actual
prediction of the formation energies of ternary compounds.
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Figure 1. Diagram representing the two-step ML approach to predict the formation energies of the
ternary compounds. (a) The classification unit to predict if the heuristically computed formation
energy of a ternary compound is accurate or not. (b) The regression unit to predict the formation
energy of a ternary compound.

The objective of the classification unit is to classify whether the heuristically computed
formation energies are accurate (see Figure 1a). The training dataset for the classifica-
tion unit is created using the formation energies available in the MPD. Data points are
created for ternary compounds for which the metallurgical heuristic rule is applicable,
that is, DFT-computed formation energies for the ternary compound and its constituent
binary compounds are available. We call this dataset ChemClassA. The accuracy of the
heuristically computed formation energies is quantified by defining a threshold (T) against
DFT-computed formation energies such that those heuristic estimates that fall within this
threshold are labeled as accurate.

In addition, we create a dataset comprising all possible charge-neutral ternary com-
pounds of the form AxByCz, where x, y, z < 4, whose formation energies are not available
in the MPD but can be expressed with the heuristic formula. We refer to them as the
ChemClassB dataset. The trained classifier, then, will make predictions about whether the
heuristically predicted formation energies of ChemClassB compounds are classified as accu-
rate. Those ternary compounds from ChemClassB whose heuristically computed formation
energies are classified as accurate are stored for the training of the regression model.

Our regression unit predicts the formation energies of charge-neutral ternary com-
pounds of the form AxByCz, where x, y, z < 4 (see Figure 1b). The dataset used for the
training of the regression unit is generated by combining the formation energies of ternary
compounds available in the MPD with the formation energies of compounds from Chem-
ClassB that are classified as accurate. We call the resulting dataset the ChemRegA dataset.
In this way, we increase the size of the training dataset by at least 100% for the regressor unit.

Adam [20] is a commonly used optimization algorithm to find the optimal parameters
of an artificial NN. It is a first-order optimizer that uses momentum-based learning and
incorporates an adaptive step size. In this paper, we propose a slight variation of the Adam
approach, the so-called “centered Adam” (cAdam) optimizer, in the hope of improving
it (see Section 2.1). We used the well-established MNIST dataset to test and compare the
performance of cAdam with respect to Adam.

2.1. Centered Adam

Adam uses m̂t as an approximation of the expected value (=first moment) of gt and
v̂t as an approximation of the second moment of gt, also called “uncentered variance”.
The update formula scales the steps using the second moment. The reason for this is
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to make larger steps if there is a low variance in the calculated gradients and to make
smaller steps if the variance is large. One has to note that Adam does not actually calculate
the variance E

[
(gt −E[gt])

2
]

but the second moment E
[
g2

t
]

instead. If E[gt] = 0, both
definitions are identical, and fewer operations are required to calculate the second moment.
However, E[gt] = 0 implies that Θt is a critical point of the loss function, and the steps
taken do not actually decrease the loss.

We propose changing the update rule for vt in Adam such that vt approximates the
expected value of the variance instead of the second moment. The updated formula will be

vt ← βvt−1 + (1− β2)(gt −mt)
2. (2)

Note that we use mt as the approximation of gt rather than the bias-corrected m̂t. This
is because preliminary tests have shown that using the bias-corrected m̂t yields much worse
results (on the MNIST dataset using parameters that worked well for Adam and cAdam
with the update rule mentioned in Equation (2)). Using mt without bias correction also
allows for the common runtime optimization of applying the bias corrections to the step
size (float) instead of to mt (a vector) [21]. Algorithm 1 shows a pseudocode of the proposed
cAdam approach.

Algorithm 1 Centered Adam algorithm (cAdam).

Require: β1, β2 ∈ [0, 1], αt, ε ∈ R > 0 . hyperparameters
Require: ∇L : Rd → Rd or L : Rd → R . loss function L
Require: Θ0 ∈ Rd . parameter of loss function

All vector operations are element-wise
m0 :=~0 ∈ Rd

v0 :=~0 ∈ Rd

t := 0 ∈ N0
while t ≤maximum iterations or sufficient convergence of θt do

t← t + 1
gt ← ∇L(Θt−1) . calculate gradient
mt ← β1mt−1 + (1− β1)gt . calculate first moment
vt ← β2vt−1 + (1− β2)(gt −mt)

2 . calculate centered variance
m̂t ← mt/

(
1− βt

1
)

. bias correction for first moment
v̂t ← vt/

(
1− βt

2
)

. bias correction for centered variance
Θt ← Θt−1 − αtm̂t/

(√
v̂t + ε

)
. update parameters θ

end while

Bias Correction for Centered Adam

Here, we will calculate the bias correction term for the new update rule of vt. The bias
correction for mt remains unchanged. First of all, we use an explicit formula for vt given by

vt = (1− β2)
t

∑
i=1

βt−i
2 .(gi −mi)

2 (3)

instead of the recursive formula used in the implementation of the algorithm. The value
vt is supposed to be an approximation of the expected value of (gt −mt)

2. We derive the
expression for the bias correction term for vt here based on inspiration from the proof
provided in Ref. [20]. Therefore, we want the expected value of the term vt to be equal
to the expected value of (gt −mt)

2. The bias correction factor in Adam was derived in
Ref. [20] under the assumption that the term βt−i

2
(
E
[
g2

t
]
−E

[
g2

i
])

is small. Here, we
assume βt−i

2
(
E
[
g2

t −m2
t
]
−E

[
g2

i −m2
i
])

is small instead. This is even more likely to hold
since g2

t − m2
t should already be small because mt is supposed to be an approximation

for E[gt].
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Finally, from the bias-corrected expression for vt, we conclude that the bias correction
for cAdam is the same as that of Adam using the linearity of E, as follows:

E[vt]= E
[
(1− β2)

t

∑
i=1

βt−i
2 .(gi −mi)

2

]

= (1− β2)
t

∑
i=1

βt−i
2 .E

[
(gi −mi)

2
]

= (1− β2)
t

∑
i=1

βt−i
2 .
(
E
[
(gt −mt)

2
]
− ki

)
(

where ki := E
[
(gt −mt)

2
]
−E

[
(gi −mi)

2
])

= (1− β2)
t

∑
i=1

(
βt−i

2 .E
[
(gt −mt)

2
]
− βt−i

2 .ki

)
= E

[
(gt −mt)

2
]
(1− β2)

t

∑
i=1

βt−i
2 − (1− β2)

t

∑
i=1

(
βt−i

2 .ki

)
︸ ︷︷ ︸

=: δt

= E
[
(gt −mt)

2
] t

∑
i=1

(
βt−i

2 − βt−i+1
2

)
+ δt

= E
[
(gt −mt)

2
](

1− βt
2
)
+ δt .

3. Computational Details

The NNs were implemented using Keras [22], a deep learning Python library, configured
to use Tensorflow [23] at the back end. Conventional machine learning classification algo-
rithms were implemented using the Sklearn [24] library. Furthermore, Numpy [25], Scipy [26],
Pandas [27], and Matplotlib [28] were used at multiple instances in the implementation.

There were a total of 49,680 labeled entries within the ChemClassA dataset (accurate
and inaccurate). The number of entries labeled as accurate was 10,160 and 15,830 for
tolerances (T) of 5% and 10%, respectively. We used 117 descriptors for the classification
unit (see Appendix A.1 for more details). The number of charge-neutral ternary compounds
in ChemClassB was 254,287.

A total of 36 descriptors were used for the regression unit as described in Appendix A.2.
The number of training data for regression depended on the T, as discussed in the next
section. To avoid the problem of differently scaled input variables in the optimization
algorithms, the inputs were re-scaled and normalized such that they had an expected value
of 0 and a standard deviation of 1.

Hyperparameters are the configurations to which the NNs are tuned. These configu-
rations play an important role in improving the performance of the network. Due to the
need for classifier and regressor units in our ML system, we worked with two separate
classes of NNs. We also used another NN to benchmark the cAdam optimizer against the
Adam optimizer.

For our classification model, we started with a minimal configuration and applied
incremental changes until we found the best-performing model. As a starting point, we
used a network configuration described in Table 1, which we call bnn-c. We employed
two-stage validation for our classification model. First, the results from the bnn-c model
were compared with the results from some commonly used conventional classification
models. Secondly, the results from the incremental versions of bnn-c were compared against
the results from bnn-c.

In the case of regression, we created NNs based on the parameters listed in Table 2.
Furthermore, to test the cAdam optimizer, we created NNs based on the parameters
mentioned in Table 3. We trained these models to classify the MNIST dataset, thus creating
MNIST classifier models. The metrics of training time and mean absolute error were used
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to evaluate the performance of the regression models, whereas the metrics of training time
and accuracy were used to evaluate the performance of the MNIST classifier models. In the
regression and MNIST classifier models, a portion of the dataset was withheld as test data.
The test data remained the same for every parameter setting and every repetition of model
training. The models were trained five times, and the averages of the metrics, namely the
training time, mean absolute error, and accuracy, were computed for further analysis.

Table 1. Configuration of the baseline NN, bnn-c, for the classification.

Model Parameters

Activation function (Hidden) ReLU
Activation function (Output) Sigmoid
Configuration 117-117-1
Loss function Binary cross-entropy

Training parameters

Batch size 128
Training cycles 512
Validation split 0.1
Test split 0.1

Optimizer parameters

Optimizer Adam
Learning rate 0.001
ε 1/10−7

β1 0.9
β2 0.999

Table 2. NN parameters for the regression task.

Model Parameters

Activation function (Hidden) ReLU/Sigmoid
Activation function (Output) Linear

configuration
(36− 40− 20− 1)/
(36− 50− 10− 1)/
(36− 30− 30− 10− 1)

Loss function Log cosh/Mean squared error

Training parameters

Batch size 100/1000/10,000
Training cycles 500
Validation split 0.2

Optimizer parameters

Optimizer Adam/cAdam
Learning rate 0.01/0.001
ε 10−7

β1 0.9
β2 0.999



Computation 2023, 11, 95 7 of 15

Table 3. NN parameters for MNIST.

Model Parameters

Activation function (Hidden) ReLU/Sigmoid
Activation function (Output) Softmax/Sigmoid

configuration
(784− 32− 10)/
(784− 50− 10− 10)/
(784− 20− 15− 10− 10)

Loss function Categorical cross-entropy/
Mean squared error

Training parameters

Batch size 100/1000/10,000
Training cycles 5/25/50
Validation split 0.2

Optimizer parameters

Optimizer Adam/cAdam
Learning rate 0.1/0.01/0.001
ε 1/10−7

β1 0.9
β2 0.999

4. Results and Discussion
4.1. Classification

The performance of bnn-c is compared with some of the benchmark models listed in
Table 4. We followed a 10-fold cross-validation method, and the means are reported in
Table 4. From the results, we can infer that bnn-c produces a classification accuracy that is
4.88% better than the k-nearest neighbor method, the best among the benchmark models.
The performance metric known as the receiver operating characteristic curve (ROC), which
measures the classification capability of models at different classification thresholds, was
obtained for the models. The area under the receiver operating characteristic curve (AU-
ROC), which grades the classification capability of different models, was also calculated.
From Table 4, it can be observed that the AUROC for bnn-c is 6.89% better than the best
AUROC among the benchmark models. In addition, we tried different network layouts,
and it was observed that the layout (117-117-117-1) improved the classification accuracy of
bnn-c by 1.65%. The results are summarized in Table 5.

Table 4. Performance of bnn-c compared with conventional ML classifiers: logistic regression (LR), linear
discriminant analysis (LDA), random forest (RF), k-nearest neighbors (KNN), and adaboost (AB).

Model Accuracy Precision Recall AUROC

LR 0.79 0.73 0.57 0.85
LDA 0.79 0.72 0.56 0.85
KNN 0.82 0.72 0.68 0.86

RF 0.74 0.74 0.29 0.72
AB 0.81 0.74 0.63 0.87

bnn-c 0.86 0.78 0.77 0.93

Figure 2 shows the loss curves obtained for the network architecture of (117-117-117-1),
the Adam optimizer, and various degrees of dropout. We can observe that adding dropouts
to the hidden layers improves the classification accuracy significantly. The results are
summarized in Table 6. A dropout of 20% implemented on the hidden layers improves
the classification accuracy by 2.9%. We followed a 6-fold cross-validation method with a
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dropout of 20% and an architecture of (117-117-117-1). The network accuracy is 88.28%
with a standard deviation of 0.44%.

Table 5. Performance comparison between bnn-c (first row) and modified NN configurations.

Layout Accuracy (%) Precision Recall AUROC

117-117-1 86.92 0.79 0.78 0.93
117-300-1 87.14 0.78 0.80 0.93
117-55-1 86.25 0.77 0.79 0.93

117-117-117-1 87.42 0.81 0.78 0.93
117-117-117-117-1 87.06 0.80 0.77 0.93

Figure 2. Loss curves obtained for the network architecture of (117-117-117-1), the Adam optimizer,
and various degrees of dropout.

Table 6. Results obtained for the network architecture of (117-117-117-1) with various degrees
of dropouts.

Dropout in % Accuracy (%) Precision Recall AUROC

50 87.82 0.86 0.72 0.93
30 88.24 0.82 0.79 0.94
20 88.29 0.84 0.77 0.94
10 88.51 0.83 0.78 0.94

The classification unit, which was trained by the ChemClassA dataset configured for
T = 10%, predicted 71,030 heuristic formation energies (out of 420,152 formation energies
calculated for ChemClassB compounds) as accurate. It should be noted that these 71,030 for-
mation energies correspond to 56,591 ternary compounds, as there was more than one
formation energy for certain compounds. The classifier unit trained on the ChemClassA
dataset with T = 5% labeled 28,715 formation energies (corresponding to 24,466 ternary
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compounds) as accurate. It is noted that in the first step, some combinations of elements
are added to the ChemClassB dataset that do not exist in the MPD. For example, there
is no ternary compound with H, Ir, and N elements available in the MPD. However, the
heuristic formation energies of ternary compounds with these elements are available in
the ChemClassB dataset. The training dataset used for the regression unit consists of the
formation energies of ChemClassA compounds plus the formation energies of ChemClassB
compounds that were labeled as accurate. By this means, the size of the dataset was in-
creased from 40,049 to 96,640 for T = 10%. This corresponds to an increase of approximately
141% in the size of the data points. For T = 5%, the number of data points was increased by
about 101% (from 24,466 entries to 49,345 entries).

4.2. Regression

The regression unit predicts the formation energies of ternary compounds whose
heuristic formation energies cannot be calculated (240,248 compounds) or whose heuristic
formation energies are not classified as accurate (229,821 and 197,696 ternary compounds
for tolerances of 5% and 10%, respectively). For validation, we used the ternary compounds
whose DFT-calculated formation energies are available but for whom the heuristic formula
does not predict the formation energy accurately (7601 and 6231 compounds for T = 5%
and T = 10%, respectively).

We compare the best five results of the regression unit in Table 7. In Ref. [29], the best
MAE was 0.129 eV/atom, whereas we achieved an MAE of 0.114 eV/atom. Especially
noteworthy is the size of the NNs used to achieve these results. In Ref. [29], several
network layouts were tested, and a layout of (36-512-256-128-64-1), which has almost
200,000 learnable parameters, yielded the best results. Here, the network with the best
results has only 2371 learnable parameters using a layout of (36-50-10-1). Compared to
the training parameters of Ref. [29], our best network uses different activation and loss
functions as well as a constant learning rate. On average, cAdam shows improvement over
Adam, being better in 58% of the tested settings. However, the improvement is minor and
comes at the cost of, on average, 47% longer training time. The Adam variant comparison
in Ref. [21] shows that this longer computing time is due to the implementation through
the Tensorflow API. A recreation of Adam in the same way also runs significantly slower
than the default version in Tensorflow.

Table 7. The best 5 of the 144 parameter combinations and results for the regression task. The units
for the MAE values are eV/atom. Results are sorted by final validation loss.

Parameter Best Values

Final val loss (MAE) 0.1116 0.11208 0.11416 0.11493 0.11534
Test loss (MAE) 0.11389 0.11298 0.11493 0.11445 0.11539
Test loss 0.012971 0.012764 0.0065903 0.0065354 0.0066426
Training time (in s) 44.379 566.85 577.92 80.447 44.17
Neurons per layer (50, 10) (50, 10) (50, 10) (30, 30, 10) (40, 20)
Activation functions Sigmoid Sigmoid Sigmoid Sigmoid Sigmoid
Last activation function Linear Linear Linear Linear Linear
Loss function MSE MSE Log cosh Log cosh Log cosh
Number of epochs 500 500 500 500 500
Batch size 1000 100 100 1000 1000
Optimizer Adam cAdam cAdam cAdam Adam
Learning rate 0.01 0.001 0.001 0.01 0.01
ε 10−7 10−7 10−7 10−7 10−7

4.3. MNIST Classifier

The best five results of the MNIST classifier are summarized in Table 8. Our best-
performing network on the MNIST dataset has a layout of (784-50-1-10), which has about
40,000 learnable parameters. The networks listed in Ref. [30] with a similar setup and
performance have at least 300 hidden neurons, resulting in 200,000 to 500,000 learnable
parameters. This significant difference in the number of learnable parameters can be
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explained by the findings in Ref. [31]. They introduce the intrinsic dimension of a model
for a given problem, which describes the minimum number of parameters needed to reach
a given accuracy. The number of parameters required to reach an accuracy of 90% for
the MNIST dataset is about 750 [31]. The networks discussed here significantly surpass
this number, so we can expect good results even with smaller networks. While [31] also
shows that more parameters do tend to allow for better results, the gained performance
becomes very small quite quickly. The extra computation time required for larger networks
might be better spent on hyperparameter optimization or training for more epochs. In this
experiment, cAdam performs better than Adam on 66% of the parameter settings at a cost
of a 40% increase in training time. The differences in maximum accuracy, however, are
small (see Table 8). Further analysis of results can be found in Ref. [21].

Table 8. The best 5 of the 2592 parameter combinations and results for NNs trained on the MNIST
dataset. Results are sorted by final validation accuracy. Every network was trained five times, and
the average values are listed.

Parameter Best Values

Final validation accuracy 0.97 0.9691 0.96905 0.96885 0.9688
Test accuracy 0.97006 0.96906 0.9681 0.97048 0.97084
Final validation loss 0.01339 0.0066957 0.01449 0.0070507 0.96845
Training time (in s) 46.666 43.602 86.105 86.874 23.122
Neurons per layer (50, 10) (50, 10) (50, 10) (50, 10) (50, 10)
Activation function (Hidden) ReLU ReLU ReLU ReLU ReLU
Activation function (Output) Sigmoid Sigmoid Sigmoid Softmax Softmax
Loss function Cat-cross Cat-cross Cat-cross Cat-cross Cat-cross
Training cycles 50 25 50 50 25
Batch size 100 100 100 100 100
Optimizer Adam cAdam cAdam cAdam Adam
Learning rate 0.001 0.1 0.1 0.1 0.1
ε 10−7 1.0 1.0 1.0 1.0

5. Summary

We proposed a two-step method to predict the formation energy of ternary compounds.
The goal of the first unit, which is a classifier, is to increase the training dataset size for
the second unit, which is a regression model to predict the formation energies. Based
on available data in the MPD, a heuristic calculates the formation energies of ternary
compounds, which are evaluated by the classifier. In this way, we increase the size of
the training dataset for the regressor unit by at least 100%. Using a layout of (36-50-10-1)
with the cAdam optimizer for the regression unit, an MAE of 0.114 eV/atom is achieved.
The introduced optimizer cAdam, when trained on the MNIST dataset, yielded very similar
results to Adam at a slightly higher computational cost.
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Appendix A. Descriptors

Appendix A.1. Classification

We used 117 descriptors for the dataset of the classification model. The descriptors
were created to capture the chemical properties of the binary and ternary compounds.
The units of the descriptor are noted the first time that they are defined. The term “Average”
refers to the composition-based weighted average of a property of the compound across its
constituent elements. For example, for a ternary AxByCz, if x = 0.4 and y = z = 0.3, then
the average Pauling electronegativity of the ternary compound is

χ(A0.4B0.3C0.3)
= 0.4× χA + 0.3× χB + 0.3× χC,

where χA denotes the Pauling electronegativity of element A. The term “Ratio” refers to
the ratio of the property of each constituent element to the average value of the property
of the compound. For example, for A0.4B0.3C0.3, the ratio of Pauling electronegativity for
element A is

χA
χ(A0.4B0.3C0.3)

.

The descriptors representing the ternary compound are as follows:

• Heuristic formation energy: heuristically computed formation energy of the ternary
compound (eV/atom);

• Average Pauling electronegativity: average of the Pauling electronegativity values of
the constituent elements of the ternary compound;

• Average group on the periodic table: average of the group numbers of the elements;
• Average row on the periodic table: average of the row numbers of the elements;
• Average atomic mass: average of the atomic mass values of the constituent elements

of the ternary compound (u);
• Average ionic radius: average of the ionic radius values of the constituent elements of

the ternary compound (Å);
• Average electron affinity: average of the electron affinity values of the constituent

elements of the ternary compound (eV);
• Average first ionization energy: average of the first ionization energy values of the

constituent elements of the ternary compound (eV);
• Average van der Waals radius: average of the van der Waals radius values of the

constituent elements of the ternary compound (Å);
• Ratio of the electronegativity of each element in the compound to the average value of

electronegativity of the ternary compound;
• Ratio of the group number of each constituent element to the average for the

ternary compound;
• Ratio of the row number of each constituent element to the average for the ternary compound;
• Ratio of the atomic mass of each constituent element to the average for the ternary compound;
• Ratio of the ionic radius of each constituent element to the average for the ternary compound;
• Ratio of the electron affinity of each constituent element to the average for the

ternary compound;
• Ratio of the first ionization energy of each constituent element to the average for the

ternary compound;
• Ratio of the van der Waals radius of each constituent element to the average for the

ternary compound;
• Orbital fraction of valence electrons s: ratio of the number of s electrons to the sum of

the average of all electrons (s, p, d, f ) of the ternary compound;
• Orbital fraction of valence electrons p: ratio of the number of p electrons to the sum of

the average of all electrons (s, p, d, f ) of the ternary compound;
• Orbital fraction of valence electrons d: ratio of the number of d electrons to the sum of

the average of all electrons (s, p, d, f ) of the ternary compound;
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• Orbital fraction of valence electrons f : ratio of the number of f electrons to the sum of
the average of all electrons (s, p, d, f ) of the ternary compound.

The descriptors representing a binary compound are:

• Weight: the percentage of a binary compound’s formation energy that contributes to
the formation energy of the ternary compound;

• Formation energy: the formation energy of the binary constituent of the ternary compound;
• Ratio of anions to cations: ratio of the number of anions to the number of cations in a

binary compound;
• Ratio of the cations in a constituent binary compound to its number in the ternary compound;
• Ratio of the anions in a constituent binary compound to its number in the ternary compound;
• Average Pauling electronegativity: average of the Pauling electronegativities of the

constituent elements of the binary compound;
• Average group on the periodic table: average of the group number of constituent elements;
• Average row on the periodic table: average of the row number of constituent elements;
• Average atomic mass: average of the atomic masses of the constituent elements of the

binary compound;
• Average ionic radius: average of the ionic radii of the constituent elements of the

binary compound;
• Average electron affinity: average of the electron affinity values of the constituent

elements of the binary compound;
• Average first ionization energy: average of the first ionization energy values of the

constituent elements;
• Average van der Waals radius: average of the van der Waals radius values of the

constituent elements;
• Absolute difference in the Pauling electronegativity of the constituent elements;
• Absolute difference in the group number of the constituent elements;
• Absolute difference in the row number of the constituent elements;
• Absolute difference in the atomic mass of the constituent elements;
• Absolute difference in the ionic radius of the constituent elements;
• Absolute difference in the electron affinity value of the constituent elements;
• Absolute difference in the first ionization energy of the constituent elements;
• Absolute difference in the van der Waals radius of the constituent elements;
• Difference in the group number of the constituent elements;
• Difference in the row number of the constituent elements;
• Difference in the atomic mass of the constituent elements;
• Difference in the ionic radius of the constituent elements;
• Difference in the electron affinity value of the constituent elements;
• Difference in the first ionization energy of the constituent elements;
• Difference in the van der Waals radius of the constituent elements;
• Ratio of the Pauling electronegativity of the cations to that of the anions;
• Ratio of the group number of the cations to that of the anions;
• Ratio of the row number of the cations to that of the anions;
• Ratio of the atomic mass of the cations to that of the anions;
• Ratio of the ionic radius of the cations to that of the anions;
• Ratio of the electron affinity of the cations to that of the anions;
• Ratio of the first ionization energy of the cations to that of the anions;
• Ratio of the van der Waals radius of the cations to that of the anions;
• Orbital fraction of valence electrons s: ratio of the number of s electrons to the sum of

the average of all electrons (s, p, d, f ) of the binary compound;
• Orbital fraction of valence electrons p: ratio of the number of p electrons to the sum of

the average of all electrons (s, p, d, f ) of the binary compound;
• Orbital fraction of valence electrons d: ratio of the number of d electrons to the sum of

the average of all electrons (s, p, d, f ) of the binary compound;
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• Orbital fraction of valence electrons f : ratio of the number of f electrons to the sum of
the average of all electrons (s, p, d, f ) of the binary compound.

Appendix A.2. Regression

Analogous to the descriptors used in the classification model, the descriptors used for
regression are chosen in such a way that they capture the chemical properties of the ternary
compound. The descriptors are:

• Average Pauling electronegativity: the average of the Pauling electronegativity values
of the constituent elements of the ternary compound;

• Average group on the periodic table: average of the group numbers of the
constituent elements;

• Average row on the periodic table: average of the row numbers of the constituent elements;
• Average atomic mass: average of the atomic masses of the constituent elements;
• Average ionic radius: average of the ionic radii of the constituent elements;
• Average electron affinity: average of the electron affinity values of the constituent elements;
• Average first ionization energy: average of the first ionization energies of the con-

stituent elements;
• Average van der Waals radius: average of the van der Waals radii of the constituent

elements;
• Ratio of the electronegativity of each element in the compound to the average value of

the electronegativity of the ternary compound;
• Ratio of the group number of each element in the compound to the average value of

the group number of the ternary compound;
• Ratio of the row number of each element in the compound to the average value of the

row number of the ternary compound;
• Ratio of the atomic mass of each element in the compound to the average value of the

atomic mass of the ternary compound;
• Ratio of the ionic radius of each element in the compound to the average value of the

ionic radius of the ternary compound;
• Ratio of the electron affinity of each element in the compound to the average value of

the electron affinity of the ternary compound;
• Ratio of the first ionization energy of each element in the compound to the average

value of the first ionization energy of the ternary compound;
• Ratio of the van der Waals radius of each element in the compound to the average

value of the van der Waals radius of the ternary compound;
• Orbital fraction of valence electrons s: the ratio of the number of s electrons to the sum

of the average of all electrons (s, p, d, f ) of the ternary compound;
• Orbital fraction of valence electrons p: the ratio of the number of p electrons to the

sum of the average of all electrons (s, p, d, f ) of the ternary compound;
• Orbital fraction of valence electrons d: the ratio of the number of d electrons to the

sum of the average of all electrons (s, p, d, f ) of the ternary compound;
• Orbital fraction of valence electrons f : the ratio of the number of f electrons to the

sum of the average of all electrons (s, p, d, f ) of the ternary compound.

Appendix B. Dataset and Preprocessing

MNIST

MNIST is a dataset commonly used for comparing neural networks. It contains
grayscale images of handwritten digits from 0 to 9 as well as corresponding integer labels.
Each input is a 28× 28 matrix of integer values in the interval from 0 to 255. The dataset
contains 60,000 training images and 10,000 dedicated test images.

For training, the integer values of the inputs were scaled to the interval [0, 1] ⊂ R by
dividing by 255. The labels of the dataset were integers in the range [0, 9]. Those were
one-hot encoded such that each label was a vector v ∈ {0, 1}10 with |v| = 1. Every integer
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in the original labels corresponds to one position in these vectors.
Examples:
2 7→ (0, 0, 1, 0, 0, 0, 0, 0, 0, 0);
5 7→ (0, 0, 0, 0, 0, 1, 0, 0, 0, 0).

Appendix C. Computational Resources

Experiments were conducted on a Macbook Pro with an Intel Core i5-3210M processor
and a CPU @ 2.50 GHz with 3 GB system memory.

The experiments with cAdam on the ChemRegA dataset were conducted on an ASUS
Flow X13 (2022) laptop with an AMD Ryzen 6800HS CPU and NVIDIA RTX 3050 GPU
with 16 GB system memory. The resulting data for the test of cAdam on the MNIST dataset
were taken from Ref. [21], and the result summary was recalculated.
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