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• There were inconsistent findings regard-
ing the impact of meteorological factors
on SARS-CoV-2 transmission.

• Population immunity is a confounding
factor in the study of the seasonality of
COVID-19.

• Temperature and specific humidity did
not affect transmission of the disease
when the population lacked immunity.

• With enough immunization coverage,
there is a slight decrease in the transmis-
sion of SARS-CoV-2 during warmer pe-
riods
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The relationship between SARS-CoV-2 transmission and environmental factors has been analyzed in numerous studies
since the outbreak of the pandemic, resulting in heterogeneous results and conclusions. This may be due to differences
in methodology, considered variables, confounding factors, studied periods and/or lack of adequate data. Furthermore,
previous works have reported that the lack of population immunity is the fundamental driver in transmission dynamics
and can mask the potential impact of environmental variables. In this study, we aimed to investigate the association be-
tween climate variables and COVID-19 transmission considering the influence of population immunity. We analyzed
two different periods characterized by the absence of vaccination (low population immunity) and a high degree of vacci-
nation (high level of population immunity), respectively. Although this studyhas some limitations, such us the restriction to
a specific climatic zone and the omission of other environmental factors, our results indicate that transmission of SARS-
CoV-2may increase independently of temperature and specific humidity in periodswith low levels of population immunity
while a negative association is found under conditions with higher levels of population immunity in the analyzed regions.
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overnment Response Tracker;
certain degree of population im-
r; RR, Relative Risk; SARS-CoV-2,
c Humidity; SI, Stringency Index.
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1. Introduction

Since the onset of the COVID-19 pandemic, great efforts have focused
on studying the influence of environmental factors on the transmission of
the disease. One key area of research is the seasonal pattern of COVID-19
transmission, which exhibits increased transmission in cold and dry
le under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).
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environments (Martinez, 2018), as observed in other respiratory viruses
such us influenza and human coronaviruses (Baker et al., 2018;
Moriyama et al., 2020).

Despite the extensive research on this topic, many of the studies
were preliminary and showed inconsistent findings (Carlson et al., 2020).
Specifically, regarding the influence of temperature, different works have
reported a negative correlation between temperature and disease transmis-
sion, with some showing a considerable impact on the number of new cases
and on the variation of the effective reproductive number (Re) (D'Amico
et al., 2022; Fontal et al., 2021; Hoogeveen et al., 2022; Ma et al., 2021;
Yamasaki et al., 2021; Yin et al., 2022). However, other studies have re-
ported small effects (Bashir et al., 2020; Briz-Redón and Serrano-Aroca,
2020; Meyer et al., 2020) or no association whatsoever between tempera-
ture and transmission (Kassem, 2020; Liu et al., 2022; O'Reilly et al.,
2020; Pan et al., 2021).

The inconsistency between the different studies may be attributed to
various factors, such as i) the analysis period selected, especially at the
initial stages of the pandemic when a considerable number of cases and
deaths were not reported (Chatterjee, 2020; Pifarré i Arolas et al., 2021);
ii) the use of an inadequate and limited methodology that may have intro-
duced biases in the results obtained (Dong et al., 2021; Nottmeyer et al.,
2023; Villeneuve and Goldberg, 2020; Weaver et al., 2022) and iii) the
omission of relevant variables that may significantly impact transmission,
such as containment measures adopted by governments (Mecenas et al.,
2020; Sera et al., 2021; Smit et al., 2020), among others.

Moreover, initial lack of population immunity is a critical factor in virus
spread (Baker et al., 2020; Carlson et al., 2020) that has not been consid-
ered in previous works. In two previous studies, Baker et al. developed a
climate-dependent epidemic model to simulate the SARS-CoV-2 pandemic
using data from other human coronaviruses (HKU1 and HCoV-OC43)
(Baker et al., 2021; Baker et al., 2020). They found that, while weather
fluctuations may to some extent contribute to transmission, high levels of
susceptibility (low population immunity) is the main driving factor for
the pandemic and will mitigate the effect of environmental variables such
as obstruction of spread of infection by high temperature. A limitation of
these important studies is that they did not directly estimate the sensitivity
of SARS-CoV-2 to climate, despite offering valuable insights into the possi-
ble role of weather in the pandemic. In this context, modeling the impact
of climate factors in the scenario of population immunity could provide
significant clues about the impact of temperature and humidity on virus
transmission.

Nevertheless, after more than three years of pandemic, over 4 billion
people have been vaccinated with at least two doses worldwide, according
to Our World in Data (Mathieu et al., 2021). This available immunity
data, together with larger epidemiological records, is an invaluable
source for evaluating the effect of climate on the evolution of COVID-
19 transmission and obtaining further insights into the potential seasonality
pattern.

In this study, we investigated the association between SARS-CoV-2
transmission, temperature, and specific humidity (SH), considering the
effect of population immunity. We analyzed data from two periods of the
same duration: June to December 2020 (P1) and June to December 2021
(P2). During P1 there was a near absence of population immunity, whereas
in P2, a notable level was achieved due to vaccination (approximately 80%
of the population having received two or more doses at the end of the
period).

In our analyses, we considered temperature and specific humidity as
the environmental variables. In addition, to take into account potential
confounding factors that could have an impact on our results, we also
considered other variables, such as the dominant virus variants and
the Stringency Index (SI), which measures the different government
restrictions. Results from the analysis of data in Spain revealed that
temperature and specific humidity only slightly influence transmission in
the analyzed period with vaccination, which was also validated by model-
ing the meteorological effects in different European countries and Italian
regions.
2

2. Methods

2.1. Data collection

We considered two periods for data collection: the first period (P1) ran
from June 1, 2020 to December 31, 2020, and was characterized by a low
level of population immunity. The second period (P2) ran from June 1,
2021 to December 31, 2021, during which a certain degree of population
immunity was achieved due to vaccination efforts. We selected these spe-
cific time periods due to their equal duration and identical dates across
two different years, making them more affordable. All the code and data
and are available at Github: https://github.com/GENyO-BioInformatics/
Covid19_Seasonality.

2.1.1. Data for Spanish autonomous communities
The study focused on 16 autonomous communities (regions) in

Spain, excluding the Canary Islands due to their subtropical climate and
narrower temperature range, which makes it difficult to compare with
other communities.

Data of the evolution of COVID-19 pandemic from the 16 autonomous
communities of Spain were extracted from the DatAC project (Martorell-
Marugán et al., 2021), a web application that contains data from the na-
tional COVID-19 pandemic that were collected from the Spanish Ministry
of Health (Spanish Ministry of Health [WWW Document], 2023) and the
Datatista repository (Datatista [WWW Document], 2022) from the begin-
ning of the pandemic up to mid-2022, when the health authorities stopped
publishing detailed data. Specifically, the number of daily COVID-19 cases,
the number of daily COVID-19 deaths and the daily percentage of fully
COVID-19 vaccinated individuals from the two different periods were con-
sidered. Moreover, from the daily COVID-19 cases, the effective reproduc-
tive number (Re) was estimated by applying the EpiEstim R package
(Cori et al., 2013), assuming an uncertain serial interval with a mean of
4.7 and a standard deviation of 2.9 days, respectively (Baker et al., 2021).
The effective reproductive number measures the number of secondary
cases generated by a single infected individual. If Re is >1, the disease is
spreading rapidly, but if Re is <1, the spread of the disease is decreasing.

The daily mean of temperature for each region was also extracted from
the DatAC application, which took the data from the Spanish State Meteo-
rological Agency (AEMET, 2023). Subsequently, the variable hourly 2-m
specific humidity (kg/kg) was extracted from the European Centre for
Medium-Range Weather Forecast ERA5 climate reanalysis (Hersbach
et al., 2020). This variable refers to the specific humidity (SH) at twometers
above the surface of the land. This information was then used to calculate
the daily mean of SH for each region.

Finally, to take into account the effects of the different measures
adopted by the governments during the course of the pandemic, the
Stringency Index (SI) for Spain was obtained from the Oxford COVID-19
Government Response Tracker (OxCGRT) (Hale et al., 2021). The SI con-
sists of a composite measure based on nine response indicators: workplace
closures, cancellation of public events, restrictions on public gatherings,
closures of public transport, stay-at-home requirements, public information
campaigns, restrictions on internal movements and international travel
controls.

2.1.2. Data for European countries and Italian regions
The European countries chosen for the study are countries on a similar

latitude to Spain and mainly close to the Mediterranean Sea. Specifically,
those considered were: France, Portugal, Italy, Greece, Slovenia, Croatia,
Serbia and Montenegro. Other countries with similar latitudes to others,
such as Albania and NorthMacedonia, were not chosen due to their inferior
reported data quality. This is exemplified by the presence of daily cases
equal to 0, which does not correspond to the reality of other countries.

The data for Italy were also analyzed in this study, where 19 out of the
20 regions were considered. Valle d'Aosta was excluded due to its signifi-
cantly colder climate compared to the remaining regions, with an average
temperature below 20 °C.

https://github.com/GENyO-BioInformatics/Covid19_Seasonality
https://github.com/GENyO-BioInformatics/Covid19_Seasonality
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COVID-19 pandemic data were extracted from the John Hopkins Uni-
versity Coronavirus Resource Centre (Dong et al., 2020) and Our World
in Data (Hannah Ritchie et al., 2020; Mathieu et al., 2021). As in the case
of the communities of Spain, the number of daily COVID-19 cases, the num-
ber of daily COVID-19 deaths, the daily percentage of fully COVID-19 vac-
cinated individuals and the effective reproductive (Re) from the two
different periods were obtained.

Climatological data were downloaded from the European Centre for
Medium-Range Weather Forecast ERA5 climate reanalysis (Hersbach
et al., 2020). The same meteorological variables were obtained as in the
case of Spanish communities.

Finally, again as in the case of Spanish communities, the SI of Italy and
the different European countries was obtained from the OxCGRT (Hale
et al., 2021).

2.2. Influence of meteorological factor in COVID-19 transmission

The study of the influence of meteorological factors' on COVID-19 trans-
mission involved two distinct stages. Firstly, the potential relationship
Fig. 1. Distribution of COVID-19 Re and temperature (°C). Longitudinal plot representin
2020 and December 31, 2021 in the different Spanish communities The following pe
respectively: a first period with a low level of population immunity (P1) and a seco
Smoothing has been applied to the Re and temperature to facilitate visualization.
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between these factors and the reproduction number (Rₑ) was tested. Sec-
ondly, the significant relationships identified in the first step were quanti-
fied. These analyses were performed on the two different periods, P1
and P2.

2.2.1. Relationship between meteorological factors and evolution of Re

The complex relationship between temperature and Re was estimated
using generalized additive mixed models (GAMs),applied independently
for each Spanish region and European country included in the study.

This GAM model can be represented as:
Re ,i,t ¼ α þ s MVi,tð Þ þ β1 VRi,tð Þ þ β2 SIi,tð Þ þ f Vtð Þwhere:
Rei,t is the effective reproductive number (Re) on a day t in the region i.
MVi,t is the meteorological variable on a day t in the region i.
VTi,t is the vaccination rate on a day t in the region i.
SIi,t is the stringency index on a day t in the region i.
And f(Vt) the dominant variant on a day t.
In this model, the meteorological variable (temperature or specific

humidity) is incorporated as a natural cubic spline (s). To account for
the potential effect of variants on transmission, a factor representing the
g the daily COVID-19 Re in black and the daily temperature in red line from June 1,
riods considered in the study are represented with blue and yellow backgrounds
nd period with a high level of population immunity thanks to vaccination (P2).



Table 1
Results of the GAM models with temperature as meteorological factor for Spanish
communities.

P1 (1 June 2020 to 31 December 2020)

Autonomous
community

Deviance
explained

R2 Corrected p-values

Temperature SI Vaccination
rate

Variants

Andalusia 38.54 0.36 <0.0001 <0.0001 NA 0.0731
Aragon 43.72 0.42 0.0050 <0.0001 NA 0.0413
Cantabria 13.32 0.12 0.0171 0.0002 NA 0.3109
Castilla y Leon 36.98 0.35 <0.0001 0.1917 NA 0.0731
Castille-La Mancha 47.41 0.45 <0.0001 0.7907 NA 0.0614
Catalonia 62.55 0.61 <0.0001 <0.0001 NA 0.1952
Madrid 61.21 0.60 <0.0001 0.3729 NA 0.9196
Navarre 46.07 0.45 0.6030 <0.0001 NA 0.0413
C. Valenciana 29.67 0.28 0.0095 <0.0001 NA 0.2570
Extremadura 23.42 0.21 0.0009 <0.0001 NA 0.0824
Galicia 20.24 0.17 0.0030 <0.0001 NA 0.9196
Balearic Islands 11.44 0.09 0.0046 0.6126 NA 0.0731
La Rioja 38.83 0.37 0.0001 <0.0001 NA 0.0739
Basque Country 35.95 0.35 0.1301 <0.0001 NA 0.9196
Asturias 27.32 0.26 0.5348 <0.0001 NA 0.5804
Murcia 40.01 0.38 0.0001 <0.0001 NA 0.0001
Median 37.76 0.36 0.0019 <0.0001 NA 0.0782

P2 (1 June 2021 to 31 December 2021)

Autonomous
community

Deviance
explained

R2 Corrected p-values

Temperature SI Vaccination
rate

Variants

Andalusia 81.79 0.81 <0.0001 <0.0001 <0.0001 <0.0001
Aragon 56.17 0.55 <0.0001 <0.0001 <0.0001 <0.0001
Cantabria 59.54 0.58 <0.0001 <0.0001 <0.0001 <0.0001
Castilla y Leon 60.01 0.59 <0.0001 <0.0001 <0.0001 0.0007
Castille-La Mancha 85.91 0.85 <0.0001 <0.0001 <0.0001 <0.0001
Catalonia 53.58 0.52 <0.0001 <0.0001 <0.0001 0.7814
Madrid 74.87 0.74 <0.0001 <0.0001 <0.0001 0.0001
Navarre 44.45 0.43 <0.0001 <0.0001 <0.0001 0.0011
C. Valenciana 68.00 0.67 <0.0001 <0.0001 <0.0001 <0.0001
Extremadura 76.66 0.76 <0.0001 <0.0001 <0.0001 0.0011
Galicia 72.83 0.72 <0.0001 <0.0001 <0.0001 0.7813
Balearic Islands 70.69 0.70 <0.0001 <0.0001 <0.0001 0.8998
La Rioja 66.19 0.65 <0.0001 <0.0001 <0.0001 0.0023
Basque Country 69.08 0.68 <0.0001 <0.0001 <0.0001 0.0873
Asturias 49.90 0.48 <0.0001 <0.0001 <0.0001 0.7848
Murcia 65.62 0.65 <0.0001 <0.0001 <0.0001 <0.0001
Median 67.09 0.66 <0.0001 <0.0001 <0.0001 0.0009

Note: Results of the GAMmodelswith temperature asmeteorological variable for the
different Spanish autonomous communities. The first and the second columns repre-
sent the deviance explained and the adjusted R2 of the different models. The remain-
ing the columns represent the corrected p-values for the different variables included
in the models. The values in bold represent themedian of the different communities.

J.A. Villatoro-García et al. Science of the Total Environment 897 (2023) 165487
dominant variant at each time period is also included in the model. The
analysis was performed using the mgcv R package (Wood, 2022; Wood,
2017). The p-values obtainedwere corrected by the Benjamini&Hochberg
method (Benjamini and Hochberg, 1995).

To control for the time interval between infection and detection, a lag
was applied to the independent variables (lagged variables) included in
the model. To account for the distinct characteristics of the two periods
under study, distinct lag days were considered for each period. In P1, the
delay between infection and detection was substantial, as indicated by pre-
vious studies examining the seasonality of COVID-19 that reported a lag
range from 10 to 15 days (Ma et al., 2021; Nottmeyer et al., 2023; Sera
et al., 2021). As a result, a lag of 14 days (corresponding to 2 weeks) was
employed for P1. In contrast, P2 saw a significant improvement in detection
methods, leading to a reduced lag. Thus, a lag of 7 days (equivalent to
1 week) was applied for P2.

2.2.2. Quantification of effect of meteorological factors on risk of contagion
In addition to examining the influence of factors on the evolution of

disease transmission, it is crucial to understand the magnitude of this
influence. To quantify the evolution of the effect of environmental factors
on the risk of infection, a two-stage analysis was conducted, encompassing
individual analyses by region followed by an estimation of the global effect.

The first step involved the implementation of a distributed lag non-
linear model (DLNM) (Gasparrini et al., 2010) for each region during the
two distinct periods (P1 and P2). This models can be represented as:

Re,i,t ¼ CB MV i,tð Þ þ CB SIi,tð Þ þ f Vtð Þ þ Ind Vacð Þ þ intþ NS date, df ¼ 2ð Þ

where:
CB(MVi,t) is the cross-basics term for the meteorological variable on a

day t in the region i. It incorporates a lag ranging from 7 to 14 days,
allowing for consistent considerations comparable to previous (GAMs).

CB(SIi,t) is the cross-basics term for the SI on a day t in the region i.
Similar to CB(MVi,t), it considers a lag between 7 and 14 days to ensure
consistency with the previous GAMs.

f(Vt) is the dominant variant on a day t.
Ind(Vac) is a binary variable that represents the lack or presence of

vaccination.
int is an interaction term for the pre and post vaccination period.
NS(date, df = 2) is a term that modulates the intra-period trend of

COVID-19 evolution. In this case a natural spline function of the date
with 2 degrees of freedom (dfs) is considered, which equals approximately
1 df per three months.

The model was built using the dlnm R package (Gasparrini, 2011) and
the residual variation of the Re,i,twas assumed to follow a quasi-Poisson dis-
tribution. For each region and period, the evolution of the effect of Re was
obtained (association curve), measured by the relative risk (RR) and taking
as reference the mean of the meteorological variable.

Secondly, a meta-analysis of the different association curves was
applied to obtain the evolution of the global effect by using the mvmeta R
package with the estimation method of restricted maximum likelihood
(REML) (Gasparrini et al., 2012). This enabled us to obtain the global asso-
ciation curve for each meteorological factor,

3. Results

3.1. Evolution of Re and meteorological factors in Spain during analyzed periods

Throughout the pandemic, the Spanish government reported epidemio-
logical data for various autonomous communities. Fig. 1 illustrates the evo-
lution of the effective reproduction number (Re) across these communities
from June 1, 2020 to December 31, 2021. This evolution remained consis-
tent across the different communities. Furthermore, this consistency can
also be observed in the distribution of temperature and specific humidity
(SH). (Fig. 1 and Supplementary Fig. S1). Moreover, the distribution of me-
teorological factors remained homogeneous between the two periods under
4

study, exhibiting similar patterns between the first period with low popula-
tion immunity (P1) and the second period with higher population immu-
nity due to vaccination (P2). However, no clear correlation can be
observed between the evolution of these environmental factors and the
evolution of Re.

On the other hand, a certain relationship can be observed between
the distribution of the vaccination rate and the measures adopted by
the government. An increase in the vaccination rates concur with a
decrease in the Stringency Index (SI) (Supplementary Fig. S2). Further-
more, similar to the evolution of Re and meteorological variables, a compa-
rable distribution of vaccination rates can be observed among the different
communities.

3.2. Influence of temperature and specific humidity varies depending on population
immunity

To assess the impact of meteorological factors on the progression of dis-
ease transmission, two types of model were employed.
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Firstly, GAMs were utilized to examine whether meteorological factors
had any influence on the disease's evolution, differentiating between the
two periods. Once the influence of these factors was confirmed based on
the vaccinated population, DLNMs were employed to quantitatively deter-
mine their effect on the risk of contagion.

3.2.1. Relationship between meteorological factors and transmission of disease in
different periods

The relationship between temperature and Re was estimated using non-
generalized additive mixed models (GAMs)., applied for each Spanish re-
gion included in the study in two different time periods: P1, with a low
level of population immunity (1 June 2020 to 31 December 2020) and P2
(1 June 2021 to 31 December 2021), with a substantial level of immuniza-
tion due to the vaccination of the population. The results of the models can
be observed in Table 1.

The results of the models for P1 suggest an association between temper-
ature and transmission inmost communities, with themajority of corrected
p-values below 0.05 (median of p-values 0.002, as shown in Table 1). How-
ever, analyzing the distribution of temperature and transmission for the
Fig. 2. Estimation of evolution Re from influence of temperature (°C) predicted by GAMs
with temperature as meteorological variable and considering the rest of variables remain
without vaccination (P1) and the yellow color represents the period with vaccination (P

5

GAMs. by isolating the influence of other variables, no clear association
was observed before vaccination, with a large increase in Re around
17–20 °C (Fig. 2).

During P2, results the from GAM showed that temperature is also asso-
ciated with transmission in the majority of communities, with a median
of corrected p-values of <0.001 (Table 1). Unlike the previous period, in
most communities, a general decrease in Re was observed with increasing
temperature (Fig. 2). However, some northern regions (Cantabria, Basque
Country, and Galicia) experienced an increase in transmission above
20 °C, likely due to their milder summers. Overall, virus transmission was
lower at warmer temperatures compared to cooler temperatures (Fig. 2).

Furthermore, the adjusted R2 and percentage of explained deviance were
considerably higher for P2 than for P1 in most communities (Table 1). This
was also reflected in the read data estimation of the modes, which showed
a better fit for P2 (Supplementary Fig. S3) than for P1 (Supplementary
Fig. S4). However, for both periods, the percentage of variability explained
wasmoderate, withmost adjusted R2 not exceeding 0.75, indicating the pres-
ence of other factors beyond those included in the models that could affect
virus transmission, such as population behavior. Nevertheless, these findings
insolating rest of variables. Graphic representation of the Re predicted by the GAMs
constant for the different Spanish communities. The blue color represents the period
2).
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suggest thatwhen a significant portion of the population is vaccinated, higher
temperaturesmay lead to a slight reduction in the transmission of COVID-19.

The analysis of specific humidity (SH) revealed that it was a significant
factor for most communities for P1 (Table 2). However, deviance explained
and adjusted R2 values were relatively low for most communities during
this time period, with median deviance explained of 24.807 and a median
adjusted R2 of 0.2335. As a result, the explained variability inmost commu-
nities is<25% in P1, and the Stringency Index (SI) was themost significant
variable among all the communities.

Further investigation into the evolution of Re from SH after eliminating
the influence of other variables revealed no common pattern among com-
munities, as in the case of temperature (Fig. 3). Some communities exhib-
ited greater transmission during dry periods, while others showed the
opposite. Therefore, we did not observe a consistent relationship between
SH and COVID-19 transmission during P1.

During P2, SH was also a significant factor for all communities
(Table 2). Nevertheless, the explained deviance and adjusted R2 showed a
significant increase, with median values of 62.687 and 0.613, respectively.
Table 2
Results of GAMs with SH as meteorological factor for Spanish autonomous
communities.

P1 (1 June 2020 to 31 December 2020)

Autonomous
community

Deviance
explained

R2 Corrected p-values

SH SI Vaccination
rate

Variants

Andalusia 21.84 0.20 0.0502 <0.0001 NA 0.2942
Aragon 39.45 0.39 0.0308 <0.0001 NA 0.0669
Cantabria 14.49 0.13 0.0065 0.0008 NA 0.3418
Castilla y Leon 13.87 0.13 0.0011 0.0022 NA 0.2942
Castille-La Mancha 11.79 0.09 0.0400 0.0039 NA 0.0715
Catalonia 58.92 0.58 0.0001 <0.0001 NA 0.0057
Madrid 5.69 0.04 0.4886 0.0053 NA 0.5953
Navarre 48.54 0.47 0.0502 <0.0001 NA 0.0203
C. Valenciana 34.93 0.33 0.0005 <0.0001 NA 0.2229
Extremadura 11.53 0.10 0.3783 <0.0001 NA 0.0669
Galicia 9.41 0.08 0.3783 0.0003 NA 0.9958
Balearic Islands 13.61 0.11 0.0048 0.6563 NA 0.1716
La Rioja 39.98 0.39 <0.0001 <0.0001 NA 0.0376
Basque Country 38.04 0.37 0.0056 <0.0001 NA 0.8169
Asturias 27.78 0.26 0.4017 <0.0001 NA 0.5953
Murcia 31.64 0.31 0.0502 <0.0001 NA 0.0004
Median 24.81 0.23 0.0354 <0.0001 NA 0.1972

P2 (1 June 2021 to 31 December 2021)

Autonomous
community

Deviance
explained

R2 Corrected p-values

SH SI Vaccination
rate

Variants

Andalusia 67.47 0.66 <0.0001 <0.0001 <0.0001 0.7620
Aragon 49.26 0.48 <0.0001 <0.0001 <0.0001 0.0146
Cantabria 56.28 0.55 <0.0001 <0.0001 <0.0001 <0.0001
Castilla y Leon 55.56 0.54 <0.0001 <0.0001 <0.0001 0.2524
Castille-La Mancha 75.46 0.75 <0.0001 <0.0001 <0.0001 0.0148
Catalonia 51.73 0.50 0.0003 <0.0001 <0.0001 0.2524
Madrid 64.85 0.64 0.02 <0.0001 <0.0001 0.7620
Navarre 41.92 0.40 <0.0001 <0.0001 <0.0001 0.0217
C. Valenciana 64.65 0.64 <0.0001 <0.0001 <0.0001 <0.0001
Extremadura 64.15 0.63 0.0145 <0.0001 <0.0001 0.7620
Galicia 68.56 0.67 <0.0001 <0.0001 <0.0001 0.7620
Balearic Islands 68.70 0.68 <0.0001 <0.0001 <0.0001 0.5464
La Rioja 61.22 0.60 <0.0001 <0.0001 <0.0001 0.3484
Basque Country 69.30 0.68 <0.0001 <0.0001 <0.0001 0.2037
Asturias 43.87 0.42 <0.0001 <0.0001 <0.0001 0.7620
Murcia 53.37 0.52 <0.0001 <0.0001 <0.0001 0.7620
Median 62.69 0.61 <0.0001 <0.0001 <0.0001 0.3004

Note: Results of the GAM models with SH as meteorological variable for the differ-
ent Spanish autonomous communities. The first and the second columns represent
the deviance explained and the adjusted R2 of the different models. The remaining
the columns represent the corrected p-values for the different variables included in
the models. The values in bold represent the median of the different communities.
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This suggested that, for this period, the model is able to explain over 60 %
of the variability for most communities. The predictions of the model also
showed a better fit for this period (as seen in Supplementary Fig. S5) than
for the previous one (as seen in Supplementary Fig. S6).

Furthermore, after removing the influence of other variables, a general
decrease in transmission is observed in most communities as the humidity
level increases. Therefore, when a certain level of population immunity
exists, a slight increase in COVID-19 transmission is observed during drier
periods.

3.2.2. Quantification of effect of environmental factors on risk of contagion in
different periods

In the preceding section, we noted contrasting influences of tempera-
ture and humidity during the period with and without vaccination. None-
theless, the true impact of these variables on the risk of contagion in the
different periods remains uncertain. Therefore, to quantify the evolution
of the effect of the different environmental factors on the risk of contagion,
DLNMswere applied. to each region and period for each of the environmen-
tal factors.

Fig. 4 shows the overall pooled association curve representing the
relative risk (RR) of COVID-19 infection in relation to temperature. This
curve was derived from a meta-analysis of the models across different
regions. The analysis reveals significant disparities between the two periods
examined. During P1, the risk of infection decreases at lower temperatures
and increases as the temperature rises. Conversely, in P2, the opposite
pattern emerges, with a higher risk of contagion at lower temperatures,
which diminishes as temperatures increase. In the case of P2, the probabil-
ity of contagion during lower temperatures, around 5 °C, is approximately
1.75 times higher (RR = 1.75, CI = [1.63,1.87]) than with respect
to the mean global temperature used as a reference, 17.5 °C. Likewise,
at higher temperatures, around 28 °C, during P2, the probability of con-
tagion is 1.61 times lower than with respect to the reference temperature
(RR = 0.62, CI = [0.59,0.66]). This consistent trend is observable in the
specific association curves for each Spanish region (Supplementary
Fig. S7).

In the case of SH, a similar trend is observed as with temperature (Sup-
plementary Fig. S8 and S9). The overall pooled association curve (Supple-
mentary Fig. S8) shows that during P1 the risk of contagion is greater in
more humid environments. However, in accordance with the GAMs, in
the period with vaccination (P2), it is observed that risk of contagion
drops as humidity increases. Specifically, during P2, the probability of con-
tagion during drier environments, around 3.3 g/kg, is approximately 1.72
times higher (RR = 1.72, CI = [1.62, 1.81]) than that in respect to the
mean global SH used as a reference, 8.12 g/kg. Likewise, in humid environ-
ments, around 12 g/kg, during P2, the probability of contagion is 1.54
times lower than that regards to the reference SH (RR = 0.65, CI =
[0.99, 1.31]. This same evolution is observed in the specific association
curves of each autonomous community, in which for P1 the RR increases
or does not vary in P1 as a function of humidity, while in P2, in a general
way, this risk decreases. to higher humidity.

These findings align with the results obtained from our previous GAM
models, affirming that higher temperatures and humid conditions contrib-
ute to a marginal reduction in the risk of contagion when considerable per-
centage of people are immunized.

3.3. Association of temperature and specific humidity with Re in other countries

To validate our findings on the association of temperature and relative
humidity with Re we tested our models on countries with similar latitudes
to Spain (Supplementary Tables S1 and S2, finding significant heterogene-
ity in the results (Supplementary Figs. S10 and S11). When examining the
influence of temperature and SH on Rewhile controlling for other variables,
we observed similar patterns to Spain in some countries, such as France,
Portugal, Greece, and Italy. In contrast, in countries with lower vaccination
rates in P2, such as Macedonia and Serbia, the observed patterns were al-
most the opposite. This difference may be mainly attributed to the much



Fig. 3. Estimation of evolution Re from influence of specific humidity (SH) predicted by GAMs insolating rest of variables. Graphic representation of the Re predicted by the
GAMs with SH as meteorological variable and considering the rest of variables remain constant for the different Spanish communities. The blue color represents the period
without vaccination (P1) and the yellow color represents the period with vaccination (P2).
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lower vaccination rate in P2 in these countries than in Spain, France,
Portugal, Greece, and Italy, where vaccination rates were similar (Supple-
mentary Fig. S12). These trends are also observed whenwe quantify the ef-
fect of the meteorological factors, finding that the specific association
curves (Supplementary S13 and S14) for France, Portugal, Greece and
Italy show similar tendency to the regions of Spain.

As Italy globally shows a similar pattern to that of Spain, to further val-
idate our findings, we applied the samemodels to different regions in Italy,
which have a similar climate and latitude to their Spanish counterpart. For
temperature, we found comparable results in the GAMs between Italian and
Spanish regions (Supplementary Table S3 and Supplementary Fig. S15).
While temperature is significant in the model for P1, we observed an in-
crease in transmission as the temperature rose in several regions, with a rel-
atively low percentage of variability explained during this time. However,
for the period with vaccination, the temperature is significant in almost
all regions, except for Molise. We also observed a decrease in transmission
with increasing temperature for most regions in themodel. In a similar way
to Spain, the explained deviance and adjusted R2 also increased consider-
ably, with over 50 % of the variability being explained for the majority of
the regions. A similar pattern emerges from the DLNMs applied for each
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of the regions of Italy [Supplementary Fig. S16]. Only in P2is a reduction
in the risk of contagion observed as the temperature increases.

Regarding SH, we observed similar patterns compared to temperature
(Supplementary Fig. S17, S18 and Supplementary Table S4). SH is only sig-
nificant for P2, and greater transmission of the disease is observed during
drier periods.

Overall, the results for Italian regions confirmed our findings for Spain.
To observe the potential seasonality of the disease, a certain population
must be vaccinated. In this scenario, more risk of contagion is seen in
cold and dry periods.

4. Discussion and conclusions

The impact of environmental factors on COVID-19 transmission has re-
ceived significant attention among researchers due to its medical, political,
and social implications. However, the findings of various studies exploring
the relationship between the transmission of the virus and different environ-
mental factors have been conflicting. Such changeability in results may stem
fromdifferences inmethodology andvariables considered, thepresenceof con-
founding factors, period studied, or insufficient data (Nottmeyer et al., 2023).



Fig. 4. Global pooled association curve for temperature. Graphic representation of the evolution of Relative Risk (RR) of COVID-19 infection depending on the temperature
obtained by the meta-analysis of the different region's models. The global mean temperature (17.5 °C) is used as a reference. The blue color represents the period without
vaccination (P1) and the yellow color represents the period with vaccination (P2).
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Being a respiratory disease, transmission of COVID-19 may increase in
cool and dry conditions, similar to other respiratory diseases like influenza
(Baker et al., 2018; Lowen et al., 2007; Lowen and Steel, 2014). Previous
studies have suggested that population immunity is a significant confound-
ing factor that may influence the impact of seasonality in SARS-CoV-2
transmission (Baker et al., 2020; Telenti et al., 2021). The initial absence
of population immunity during the start of the pandemicmay have resulted
in unreliable data and findings in non-immunized populations, making it
challenging to determine the seasonal patterns of the virus accurately.
Thus, the time frame selected for studying the effect of environmental fac-
tors on the transmission of SARS-CoV-2 is crucial for the accuracy of results
and the reliability of the conclusions.

To consider the impact of population immunity on the association be-
tween weather and virus transmission we analyzed two separate time pe-
riods. The first period, from June to December 2020, saw a low
proportion of the population being vaccinated and hence, low population
immunity. In contrast, the second period from June to December 2021
had a high proportion of the population vaccinated with two or more
doses, resulting in a high level of population immunity. Additionally, the
two periods were selected to include the samemonths of the year, allowing
8

for a more accurate comparison of the weather conditions. Furthermore, to
control other potential confounding factors that could impact the outcomes,
the models incorporated variables that took into account populationmobil-
ity and severity of measures implemented by governments.

Our analysis revealed that population immunity influences the rela-
tionships between temperature, SH and COVID-19 transmission. During
the period of low population immunity (June–December 2020), our re-
sults indicate that an increase in temperature does not lead to a decrease
in virus transmission and may even be associated with increased trans-
mission. These findings are consistent with previous studies conducted
early in the pandemic, which reported either a lack of correlation or a
positive correlation between temperature and transmission of COVID-19
(Bashir et al., 2020; Briz-Redón and Serrano-Aroca, 2020, p.; Meyer et al.,
2020).

However, during the period when a high proportion of the population
were vaccinated, the results suggest a different trend, indicating that tem-
perature and specific humidity do have an impact on SARS-CoV-2 transmis-
sion in accordance with prior studies (Baker et al., 2020; Telenti et al.,
2021). Specifically, a slight reduction in the risk of contagion was noted
with higher temperatures and less dry environment.
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Wewish to point out some limitations of this study. Firstly, the scope of
our analysis is restricted to individuals who received a minimum of two
doses of the COVID-19 vaccine, thereby disregarding those who may have
acquired immunity from contracting the virus. Additionally, we have not
accounted for the variable duration of vaccine-induced immunity, which
may influence the definition of what constitutes effective immunization
(Lopman et al., 2021). Nevertheless, it is notable that a decline in COVID-
19 immunity has been reported starting from the first month after vaccina-
tion (Addo et al., 2022), with immunity largely diminishing by the sixth
month, a timeframewhich corresponds to the duration of our study periods.

Secondly, another limitation of our study is that it primarily concen-
trates on Spain, Italy, and other Mediterranean European countries, which
are generally known for having warm summers and mild winters. Weather
conditions, however, may have varying impacts on the transmission of the
virus in other regions, such as tropical or colder areas, as occurs with
other viruses such as influenza (Baker et al., 2019; Tamerius et al., 2013).
Therefore, to gain a comprehensive understanding of howdifferent climates
affect the transmission of the disease, it is necessary to conduct a more
extensive analysis in different climatic regions, in which the temperature
and humidity do not follow seasonal patterns.

Thirdly, an additional potential limitation of our study is that it only
considers SH and temperature, while there are other environmental factors
that may affect the seasonality of the virus and that better explain the sea-
sonal patterns in other climatic zones (Tamerius et al., 2013). For instance,
certain factors like allergens or daily sunlight duration have been explored
in previous studies as potential explanations for this seasonal pattern
(Abraham et al., 2021; Hoogeveen et al., 2022; Shah et al., 2021). In future
investigations, it would be valuable to incorporate these variables for a
more comprehensive analysis and to account for other potentially relevant
factors associated with the seasonality of the disease.

Finally, it is important to note that in the case of our study it was not
possible to analyze other variables due to the unavailability of comprehen-
sive pandemic-related information in some countries. For instance, in
Spain, the collection of pandemic-related data was halted in 2022, which
limits the completeness of our analysis. Furthermore, due to the lack of
these data, the periods analyzed do not include complete annual cycles,
which may have influence on our results. To perform a more compressive
analysis of the impact of environmental factors on the disease, it is critical
that countries provide complete and up-to-date information on the progres-
sion of the pandemic.

Our results suggest that meteorological factors might affect COVID-19
transmission, which may be slightly reduced during warmer periods when
there is a substantial proportion of the population immunized. Despite
some limitations, this study represents a novel approach in exploring the
relationship between COVID-19 seasonality and population immunity. Our
results suggest that temperature and specific humidity have a differential ef-
fect on virus transmission, with the effects observed being a result of popula-
tion immunity. Future studies incorporatingmore data and longer periods of
immunity are expected to further clarify the relationship between seasonal-
ity and COVID-19 transmission. The insights gained from this study provide
valuable information for public health and disease management strategies.

Funding sources

This work was funded by grant P20-00335 from Consejería de
Universidad, Investigación e Innovación-Junta de Andalucía and FEDER-
“Una manera de Hacer Europa” and MCIN/AEI/10.13039/501100011033
[grant number PID2020-119032RB-I00]. JAVG is funded by the Teaching
Staff Programme, implemented by the Ministerio de Universidades [grant
number FPU19/01999]. Funding for open access charge: University of
Granada / CBUA

Additional information

Correspondence and requests for materials should be addressed to
Pedro Carmona-Sáez.
9

Code availability

Code for recreating the results is available at: https://github.com/
GENyO-BioInformatics/Covid19_Seasonality.

CRediT authorship contribution statement

Juan Antonio Villatoro-García: Methodology, Formal analysis, Data
Curation, Writing - Review & Editing. Jordi Martorell-Marugán: Valida-
tion, Writing - Review & Editing. Raúl López Domínguez: Data curation,
Writing - Review & Editing. Juan de Dios Luna: Methodology, Writing -
Review & Editing, Jose Antonio Lorente: Results interpretation, Writing -
Review & Editing, Pedro Carmona-Sáez: Conceptualization, Supervision,
Methodology, Funding acquisition, Original Draft, Writing - Review &
Editing.

Data availability

The data employed in this article is available at: https://github.com/
GENyO-BioInformatics/Covid19_Seasonality.

Declaration of competing interest

The authors declare the following financial interests/personal relation-
ships which may be considered as potential competing interests: Pedro
Carmona-Saez reports financial support was provided by Government of
Andalusia.

Acknowledgements

This work is part of the thesis of Juan Antonio Villatoro-García’. Juan
Antonio Villatoro-García is enrolled on the PhD program in Mathematical
and Applied Statistics at the University of Granada, Spain.

Appendix A. Supplementary data

Supplementary data to this article can be found online at doi:https://
doi.org/10.1016/j.scitotenv.2023.165487.

References

Abraham, J., Dowling, K., Florentine, S., 2021. Can optimum solar radiation exposure or sup-
plemented vitamin D intake reduce the severity of COVID-19 symptoms? Int. J. Environ.
Res. Public Health 18, 740. https://doi.org/10.3390/ijerph18020740.

Addo, I.Y., Dadzie, F.A., Okeke, S.R., Boadi, C., Boadu, E.F., 2022. Duration of immunity
following full vaccination against SARS-CoV-2: a systematic review. Arch. Publ. Health
80, 200. https://doi.org/10.1186/s13690-022-00935-x.

AEMET, 2023. AEMET OpenData. [WWW Document]. URL https://opendata.aemet.es/
centrodedescargas/inicio (accessed 2.8.23).

Baker, R.E., Mahmud, A.S., Metcalf, C.J.E., 2018. Dynamic response of airborne infections to
climate change: predictions for varicella. Clim. Chang. 148, 547–560. https://doi.org/10.
1007/s10584-018-2204-4.

Baker, R.E.,Mahmud, A.S.,Wagner, C.E., Yang,W., Pitzer, V.E., Viboud, C., Vecchi, G.A.,Metcalf,
C.J.E., Grenfell, B.T., 2019. Epidemic dynamics of respiratory syncytial virus in current and
future climates. Nat. Commun. 10, 5512. https://doi.org/10.1038/s41467-019-13562-y.

Baker, R.E., Yang, W., Vecchi, G.A., Metcalf, C.J.E., Grenfell, B.T., 2020. Susceptible supply
limits the role of climate in the early SARS-CoV-2 pandemic. Science 369, 315–319.
https://doi.org/10.1126/science.abc2535.

Baker, R.E., Yang, W., Vecchi, G.A., Metcalf, C.J.E., Grenfell, B.T., 2021. Assessing the influ-
ence of climate on wintertime SARS-CoV-2 outbreaks. Nat. Commun. 12, 846. https://
doi.org/10.1038/s41467-021-20991-1.

Bashir, M.F., Ma, B., Bilal, Komal, B., Bashir, M.A., Tan, D., Bashir, M., 2020. Correlation
between climate indicators and COVID-19 pandemic inNewYork,USA. Sci. Total Environ.
728, 138835. https://doi.org/10.1016/j.scitotenv.2020.138835.

Benjamini, Y., Hochberg, Y., 1995. Controlling the false discovery rate: a practical and
powerful approach to multiple testing. J. R. Stat. Soc. Ser. B Methodol. 57, 289–300.
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x.

Briz-Redón, Á., Serrano-Aroca, Á., 2020. A spatio-temporal analysis for exploring the effect
of temperature on COVID-19 early evolution in Spain. Sci. Total Environ. 728, 138811.
https://doi.org/10.1016/j.scitotenv.2020.138811.

Carlson, C.J., Gomez, A.C.R., Bansal, S., Ryan, S.J., 2020. Misconceptions about weather and
seasonality must not misguide COVID-19 response. Nat. Commun. 11, 4312. https://doi.
org/10.1038/s41467-020-18150-z.

http://dx.doi.org/10.13039/501100011033
https://github.com/GENyO-BioInformatics/Covid19_Seasonality
https://github.com/GENyO-BioInformatics/Covid19_Seasonality
https://github.com/GENyO-BioInformatics/Covid19_Seasonality
https://github.com/GENyO-BioInformatics/Covid19_Seasonality
https://doi.org/10.1016/j.scitotenv.2023.165487
https://doi.org/10.1016/j.scitotenv.2023.165487
https://doi.org/10.3390/ijerph18020740
https://doi.org/10.1186/s13690-022-00935-x
https://opendata.aemet.es/centrodedescargas/inicio
https://opendata.aemet.es/centrodedescargas/inicio
https://doi.org/10.1007/s10584-018-2204-4
https://doi.org/10.1007/s10584-018-2204-4
https://doi.org/10.1038/s41467-019-13562-y
https://doi.org/10.1126/science.abc2535
https://doi.org/10.1038/s41467-021-20991-1
https://doi.org/10.1038/s41467-021-20991-1
https://doi.org/10.1016/j.scitotenv.2020.138835
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
https://doi.org/10.1016/j.scitotenv.2020.138811
https://doi.org/10.1038/s41467-020-18150-z
https://doi.org/10.1038/s41467-020-18150-z


J.A. Villatoro-García et al. Science of the Total Environment 897 (2023) 165487
Chatterjee, P., 2020. Is India missing COVID-19 deaths? Lancet 396, 657. https://doi.org/10.
1016/S0140-6736(20)31857-2.

Cori, A., Ferguson, N.M., Fraser, C., Cauchemez, S., 2013. A new framework and software to
estimate time-varying reproduction numbers during epidemics. Am. J. Epidemiol. 178,
1505–1512. https://doi.org/10.1093/aje/kwt133.

D’Amico, F., Marmiere, M., Righetti, B., Scquizzato, T., Zangrillo, A., Puglisi, R., Landoni, G.,
2022. COVID-19 seasonality in temperate countries. Environ. Res. 206, 112614. https://
doi.org/10.1016/j.envres.2021.112614.

Datatista [WWW Document], 2022. GitHub. URL https://github.com/datadista/datasets
(accessed 1.17.23).

Dong, E., Du, H., Gardner, L., 2020. An interactive web-based dashboard to track COVID-19 in
real time. Lancet Infect. Dis. 20, 533–534. https://doi.org/10.1016/S1473-3099(20)
30120-1.

Dong, Z., Fan, X., Wang, J., Mao, Y., Luo, Y., Tang, S., 2021. Data-related and methodological
obstacles to determining associations between temperature and COVID-19 transmission.
Environ. Res. Lett. 16, 034016. https://doi.org/10.1088/1748-9326/abda71.

Fontal, A., Bouma, M.J., San-José, A., López, L., Pascual, M., Rodó, X., 2021. Climatic signa-
tures in the different COVID-19 pandemic waves across both hemispheres. Nat. Comput.
Sci. 1, 655–665. https://doi.org/10.1038/s43588-021-00136-6.

Gasparrini, A., 2011. Distributed lag linear and non-linear models in R: the package dlnm.
J. Stat. Softw. 43, 1–20.

Gasparrini, A., Armstrong, B., Kenward, M.G., 2010. Distributed lag non-linear models. Stat.
Med. 29, 2224–2234. https://doi.org/10.1002/sim.3940.

Gasparrini, A., Armstrong, B., Kenward, M.G., 2012. Multivariate meta-analysis for non-linear
and other multi-parameter associations. Stat. Med. 31, 3821–3839. https://doi.org/10.
1002/sim.5471.

Hale, T., Angrist, N., Goldszmidt, R., Kira, B., Petherick, A., Phillips, T., Webster, S., Cameron-
Blake, E., Hallas, L., Majumdar, S., Tatlow, H., 2021. A global panel database of pandemic
policies (Oxford COVID-19 Government Response Tracker). Nat. Hum. Behav. 5,
529–538. https://doi.org/10.1038/s41562-021-01079-8.

Hannah Ritchie, D.B., Mathieu, Edouard, Rodés-Guirao, Lucas, Appel, Cameron, Giattino,
Charlie, Ortiz-Ospina, Esteban, Hasell, Joe, Macdonald, Bobbie, Roser, M., 2020. Corona-
virus Pandemic (COVID-19). Our World in Data.

Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J.,
Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X.,
Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren,
P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer,
A., Haimberger, L., Healy, S., Hogan, R.J., Hólm, E., Janisková, M., Keeley, S.,
Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F.,
Villaume, S., Thépaut, J.-N., 2020. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc.
146, 1999–2049. https://doi.org/10.1002/qj.3803.

Hoogeveen, M.J., Kroes, A.C.M., Hoogeveen, E.K., 2022. Environmental factors and mobility
predict COVID-19 seasonality in the Netherlands. Environ. Res. 211, 113030. https://doi.
org/10.1016/j.envres.2022.113030.

Kassem, A.Z.E., 2020. Does temperature affect COVID-19 transmission? Front. Public Health 8.
Liu, Mengyang, Li, Z., Liu, Mengmeng, Zhu, Y., Liu, Y., Kuetche, M.W.N., Wang, J., Wang, X.,

Liu, X., Li, X., Wang, W., Guo, X., Tao, L., 2022. Association between temperature and
COVID-19 transmission in 153 countries. Environ. Sci. Pollut. Res. 29, 16017–16027.
https://doi.org/10.1007/s11356-021-16666-5.

Lopman, B.A., Shioda, K., Nguyen, Q., Beckett, S.J., Siegler, A.J., Sullivan, P.S., Weitz, J.S.,
2021. A framework for monitoring population immunity to SARS-CoV-2. Ann. Epidemiol.
63, 75–78. https://doi.org/10.1016/j.annepidem.2021.08.013.

Lowen, A.C., Steel, J., 2014. Roles of humidity and temperature in shaping influenza seasonality.
J. Virol. 88, 7692–7695. https://doi.org/10.1128/JVI.03544-13.

Lowen, A.C., Mubareka, S., Steel, J., Palese, P., 2007. Influenza virus transmission is depen-
dent on relative humidity and temperature. PLoS Pathog. 3, e151. https://doi.org/10.
1371/journal.ppat.0030151.

Ma, Y., Pei, S., Shaman, J., Dubrow, R., Chen, K., 2021. Role of meteorological factors in the
transmission of SARS-CoV-2 in the United States. Nat. Commun. 12, 3602. https://doi.
org/10.1038/s41467-021-23866-7.

Martinez, M.E., 2018. The calendar of epidemics: seasonal cycles of infectious diseases. PLoS
Pathog. 14, e1007327. https://doi.org/10.1371/journal.ppat.1007327.

Martorell-Marugán, J., Villatoro-García, J.A., García-Moreno, A., López-Domínguez, R.,
Requena, F., Merelo, J.J., Lacasaña, M., de Dios Luna, J., Díaz-Mochón, J.J., Lorente,
J.A., Carmona-Sáez, P., 2021. DatAC: a visual analytics platform to explore climate and
air quality indicators associatedwith the COVID-19 pandemic in Spain. Sci. Total Environ.
750, 141424. https://doi.org/10.1016/j.scitotenv.2020.141424.

Mathieu, E., Ritchie, H., Ortiz-Ospina, E., Roser, M., Hasell, J., Appel, C., Giattino, C., Rodés-
Guirao, L., 2021. A global database of COVID-19 vaccinations. Nat. Hum. Behav. 5,
947–953. https://doi.org/10.1038/s41562-021-01122-8.
10
Mecenas, P., Bastos, R.T. da R.M., Vallinoto, A.C.R., Normando, D., 2020. Effects of tempera-
ture and humidity on the spread of COVID-19: a systematic review. PLoS One 15,
e0238339. https://doi.org/10.1371/journal.pone.0238339.

Meyer, A., Sadler, R., Faverjon, C., Cameron, A.R., Bannister-Tyrrell, M., 2020. Evidence that
higher temperatures are associated with a marginally lower incidence of COVID-19 cases.
Front. Public Health 8.

Moriyama, M., Hugentobler, W.J., Iwasaki, A., 2020. Seasonality of respiratory viral infec-
tions. Annu. Rev. Virol. 7, 83–101. https://doi.org/10.1146/annurev-virology-012420-
022445.

Nottmeyer, L., Armstrong, B., Lowe, R., Abbott, S., Meakin, S., O’Reilly, K.M., von Borries, R.,
Schneider, R., Royé, D., Hashizume, M., Pascal, M., Tobias, A., Vicedo-Cabrera, A.M.,
Lavigne, E., Correa, P.M., Ortega, N.V., Kynčl, J., Urban, A., Orru, H., Ryti, N.,
Jaakkola, J., Dallavalle, M., Schneider, A., Honda, Y., Ng, C.F.S., Alahmad, B., Carrasco-
Escobar, G., Holobâc, I.H., Kim, H., Lee, W., Íñiguez, C., Bell, M.L., Zanobetti, A.,
Schwartz, J., Scovronick, N., Coélho, M. de S.Z.S., Saldiva, P.H.N., Diaz, M.H.,
Gasparrini, A., Sera, F., 2023. The association of COVID-19 incidence with temperature,
humidity, and UV radiation – a global multi-city analysis. Sci. Total Environ. 854,
158636. https://doi.org/10.1016/j.scitotenv.2022.158636.

O’Reilly, K.M., Auzenbergs, M., Jafari, Y., Liu, Y., Flasche, S., Lowe, R., 2020. Effective trans-
mission across the globe: the role of climate in COVID-19 mitigation strategies. Lancet
Planet. Health 4, e172. https://doi.org/10.1016/S2542-5196(20)30106-6.

Pan, J., Yao, Y., Liu, Z., Meng, X., Ji, J.S., Qiu, Y., Wang, Weidong, Zhang, L., Wang, Weibing,
Kan, H., 2021. Warmer weather unlikely to reduce the COVID-19 transmission: an eco-
logical study in 202 locations in 8 countries. Sci. Total Environ. 753, 142272. https://
doi.org/10.1016/j.scitotenv.2020.142272.

Pifarré i Arolas, H., Vidal-Alaball, J., Gil, J., López, F., Nicodemo, C., Saez, M., 2021. Missing
diagnoses during the COVID-19 pandemic: a year in review. Int. J. Environ. Res. Public
Health 18, 5335. https://doi.org/10.3390/ijerph18105335.

Sera, F., Armstrong, B., Abbott, S., Meakin, S., O’Reilly, K., von Borries, R., Schneider, R.,
Royé, D., Hashizume, M., Pascal, M., Tobias, A., Vicedo-Cabrera, A.M., Gasparrini, A.,
Lowe, R., 2021. A cross-sectional analysis of meteorological factors and SARS-CoV-2
transmission in 409 cities across 26 countries. Nat. Commun. 12, 5968. https://doi.
org/10.1038/s41467-021-25914-8.

Shah, R.B., Shah, R.D., Retzinger, D.G., Retzinger, A.C., Retzinger, D.A., Retzinger, G.S., 2021.
Competing bioaerosols may influence the seasonality of influenza-like illnesses, includ-
ing COVID-19. The Chicago Experience. Pathogens 10, 1204. https://doi.org/10.3390/
pathogens10091204.

Smit, A.J., Fitchett, J.M., Engelbrecht, F.A., Scholes, R.J., Dzhivhuho, G., Sweijd, N.A., 2020.
Winter is coming: a southern hemisphere perspective of the environmental drivers of
SARS-CoV-2 and the potential seasonality of COVID-19. Int. J. Environ. Res. Public
Health 17, 5634. https://doi.org/10.3390/ijerph17165634.

Spanish Ministry of Health [WWW Document], 2023. . URL https://cnecovid.isciii.es/
covid19/ (accessed 1.17.23).

Tamerius, J.D., Shaman, J., Alonso, W.J., Bloom-Feshbach, K., Uejio, C.K., Comrie, A., Viboud,
C., 2013. Environmental predictors of seasonal influenza epidemics across temperate and
tropical climates. PLoS Pathog. 9, e1003194. https://doi.org/10.1371/journal.ppat.
1003194.

Telenti, A., Arvin, A., Corey, L., Corti, D., Diamond, M.S., García-Sastre, A., Garry, R.F.,
Holmes, E.C., Pang, P.S., Virgin, H.W., 2021. After the pandemic: perspectives on the fu-
ture trajectory of COVID-19. Nature 596, 495–504. https://doi.org/10.1038/s41586-
021-03792-w.

Villeneuve, P.J., Goldberg, M.S., 2020. Methodological considerations for epidemiological
studies of air pollution and the SARS and COVID-19 coronavirus outbreaks. Environ.
Health Perspect. 128, 095001. https://doi.org/10.1289/EHP7411.

Weaver, A.K., Head, J.R., Gould, C.F., Carlton, E.J., Remais, J.V., 2022. Environmental factors
influencing COVID-19 incidence and severity. Annu. Rev. Public Health 43, 271–291.
https://doi.org/10.1146/annurev-publhealth-052120-101420.

Wood, S.N., 2017. Generalized Additive Models: An Introduction with R. 2nd ed. Chapman
and Hall/CRC, New York https://doi.org/10.1201/9781315370279.

Wood, S., 2022.mgcv:MixedGAMComputationVehiclewithAutomatic Smoothness Estimation.
Yamasaki, L., Murayama, H., Hashizume, M., 2021. The impact of temperature on the trans-

missibility and virulence of COVID-19 in Tokyo, Japan. Sci. Rep. 11, 24477. https://doi.
org/10.1038/s41598-021-04242-3.

Yin, C., Zhao, W., Pereira, P., 2022. Meteorological factors’ effects on COVID-19 show season-
ality and spatiality in Brazil. Environ. Res. 208, 112690. https://doi.org/10.1016/j.
envres.2022.112690.

https://doi.org/10.1016/S0140-6736(20)31857-2
https://doi.org/10.1016/S0140-6736(20)31857-2
https://doi.org/10.1093/aje/kwt133
https://doi.org/10.1016/j.envres.2021.112614
https://doi.org/10.1016/j.envres.2021.112614
https://github.com/datadista/datasets
https://doi.org/10.1016/S1473-3099(20)30120-1
https://doi.org/10.1016/S1473-3099(20)30120-1
https://doi.org/10.1088/1748-9326/abda71
https://doi.org/10.1038/s43588-021-00136-6
http://refhub.elsevier.com/S0048-9697(23)04110-4/rf0095
http://refhub.elsevier.com/S0048-9697(23)04110-4/rf0095
https://doi.org/10.1002/sim.3940
https://doi.org/10.1002/sim.5471
https://doi.org/10.1002/sim.5471
https://doi.org/10.1038/s41562-021-01079-8
http://refhub.elsevier.com/S0048-9697(23)04110-4/rf0115
http://refhub.elsevier.com/S0048-9697(23)04110-4/rf0115
https://doi.org/10.1002/qj.3803
https://doi.org/10.1016/j.envres.2022.113030
https://doi.org/10.1016/j.envres.2022.113030
http://refhub.elsevier.com/S0048-9697(23)04110-4/rf0130
https://doi.org/10.1007/s11356-021-16666-5
https://doi.org/10.1016/j.annepidem.2021.08.013
https://doi.org/10.1128/JVI.03544-13
https://doi.org/10.1371/journal.ppat.0030151
https://doi.org/10.1371/journal.ppat.0030151
https://doi.org/10.1038/s41467-021-23866-7
https://doi.org/10.1038/s41467-021-23866-7
https://doi.org/10.1371/journal.ppat.1007327
https://doi.org/10.1016/j.scitotenv.2020.141424
https://doi.org/10.1038/s41562-021-01122-8
https://doi.org/10.1371/journal.pone.0238339
http://refhub.elsevier.com/S0048-9697(23)04110-4/rf0180
http://refhub.elsevier.com/S0048-9697(23)04110-4/rf0180
http://refhub.elsevier.com/S0048-9697(23)04110-4/rf0180
https://doi.org/10.1146/annurev-virology-012420-022445
https://doi.org/10.1146/annurev-virology-012420-022445
https://doi.org/10.1016/j.scitotenv.2022.158636
https://doi.org/10.1016/S2542-5196(20)30106-6
https://doi.org/10.1016/j.scitotenv.2020.142272
https://doi.org/10.1016/j.scitotenv.2020.142272
https://doi.org/10.3390/ijerph18105335
https://doi.org/10.1038/s41467-021-25914-8
https://doi.org/10.1038/s41467-021-25914-8
https://doi.org/10.3390/pathogens10091204
https://doi.org/10.3390/pathogens10091204
https://doi.org/10.3390/ijerph17165634
https://cnecovid.isciii.es/covid19/
https://cnecovid.isciii.es/covid19/
https://doi.org/10.1371/journal.ppat.1003194
https://doi.org/10.1371/journal.ppat.1003194
https://doi.org/10.1038/s41586-021-03792-w
https://doi.org/10.1038/s41586-021-03792-w
https://doi.org/10.1289/EHP7411
https://doi.org/10.1146/annurev-publhealth-052120-101420
https://doi.org/10.1201/9781315370279
http://refhub.elsevier.com/S0048-9697(23)04110-4/rf0255
https://doi.org/10.1038/s41598-021-04242-3
https://doi.org/10.1038/s41598-021-04242-3
https://doi.org/10.1016/j.envres.2022.112690
https://doi.org/10.1016/j.envres.2022.112690

	Exploring the interplay between climate, population immunity and SARS-�CoV-�2 transmission dynamics in Mediterranean countries
	1. Introduction
	2. Methods
	2.1. Data collection
	2.1.1. Data for Spanish autonomous communities
	2.1.2. Data for European countries and Italian regions

	2.2. Influence of meteorological factor in COVID-19 transmission
	2.2.1. Relationship between meteorological factors and evolution of Re
	2.2.2. Quantification of effect of meteorological factors on risk of contagion


	3. Results
	3.1. Evolution of Re and meteorological factors in Spain during analyzed periods
	3.2. Influence of temperature and specific humidity varies depending on population immunity
	3.2.1. Relationship between meteorological factors and transmission of disease in different periods
	3.2.2. Quantification of effect of environmental factors on risk of contagion in different periods

	3.3. Association of temperature and specific humidity with Re in other countries

	4. Discussion and conclusions
	Funding sources
	Additional information
	Code availability
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	Appendix A. Supplementary data
	References




