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Abstract—The modeling of wireless communications chan-
nels is often broken down into two distinct states, defined
according to the optical viewpoints of the transmitter (TX) and
receiver (RX) antennas, namely line-of-sight (LoS) and non-LoS
(NLoS). Movement by the TX, RX, both and/or objects in the
surrounding environment means that channel conditions may
transition between LoS and NLoS leading to a third state of
signal propagation, namely quasi-LoS (QLoS). Unfortunately, this
state is largely ignored in the analysis of signal propagation
in wireless channels. We therefore propose a new statistical
framework that unifies signal propagation for LoS, NLoS, and
QLoS channel conditions, leading to the creation of the Three
State Model (TSM). The TSM has a strong physical motivation,
whereby the signal propagation mechanisms underlying each
state are considered to be similar to those responsible for Rician
fading. However, in the TSM, the dominant signal component, if
present, can be subject to shadowing. To support the use of the
TSM, we develop novel formulations for the probability density
functions of the in-phase and quadrature components of the
complex received signal, the received signal envelope, and the
received signal phase. Additionally, we derive an expression for
the complex autocorrelation function of the TSM, which will be of
particular importance in understanding and simulating its time
correlation properties. Finally, we show that the TSM provides a
good fit to field measurements obtained for two different body-
centric wireless channels operating at 2.45 GHz, which are known
to be subject to the phenomena underlying the TSM.

Index Terms—Body-centric communications, channel charac-
terization, multimodal, non-isotropic, shadowed fading, statistics,
time-series analysis.

I. INTRODUCTION

S IGNAL propagation in wireless channels is often assumed
to take place through one of four physical mechanisms,

namely line-of-sight (LoS) propagation (or free space propa-
gation), reflection, diffraction, and scattering [1]. Determining
how these mechanisms interact and contribute to the overall
signal reception is non-trivial. It depends on a number of fac-
tors including the geometrical configuration of the transmitter
(TX) and receiver (RX) relative to one another, the character-
istics of the operating environment, the presence of blocking
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and scattering objects, and the frequency of operation, to
name but a few. LoS propagation and specular reflection tend
to be the dominant processes in terms of the overall power
contribution [1]. While diffraction and especially scattering
are critical for supporting communications in non-LoS (NLoS)
scenarios where there may be no dominant signal path between
the TX and RX [2]. In many practical wireless applications,
the transition between LoS and NLoS channel conditions is
rarely discrete and involves a third state referred to as quasi-
LoS (QLoS) [3], obstructed LoS [4]–[6] or near LoS [7], [8].
In this transitory phase, there may be a reconstitution of the
weighting of each of the propagation mechanisms listed above
as the channel moves from LoS to NLoS and vice versa. For
example, by moving from LoS, through QLoS to NLoS, a
reduction in the power contributed by the dominant component
can be expected (through shadowing), meaning that the link
will become increasingly reliant on the mechanisms associated
with NLoS propagation. Furthermore, new contributing signal
components and changes in the direction of arrival (DoA) may
emerge as the geometrical propagation paths evolve.

The signal propagation picture described above is a com-
plicated one, even for each of the three states individu-
ally. Acknowledging this, it is therefore unsurprising that
researchers tend to favor the use of statistical models [2],
[9], [10] as opposed to analytical models [11]–[13], which
become difficult to use beyond the simplest scenarios. Chief
among the most commonly adopted models for LoS and
NLoS propagation are the Rician [9] and Rayleigh [2] fading
models, respectively. In a Rician fading channel, the received
signal is composed of a LoS (or dominant) signal component
and a scattered signal contribution [9]. Here, the in-phase
and quadrature components of the complex received signal
are assumed to follow a Gaussian distribution with non-zero
mean and identical variance. In the absence of a dominant
signal component, the Rician fading model becomes equivalent
to the Rayleigh fading model, such that the received signal
is composed only of scattered contributions. Both of these
models have been used extensively throughout the literature
for many years [14]–[21]; nonetheless, for many emergent
applications, this may lead to an oversimplification of the
signal propagation problem. As a consequence, the realistic
evaluation of the performance of wireless communication sys-
tems with stringent quality of service requirements becomes
detrimentally problematic.

It has been observed through field measurements that the
complicated nature of propagation in applications such as in-
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body area networks [22]–[24], device-to-device communica-
tions [24], [25], vehicle-to-vehicle communications [26], [27],
and unmanned aerial vehicle communications [28], [29] can
lead to multimodal behavior in their first-order statistics. Yet,
unfortunately, neither the Rayleigh nor Rician fading models,
in their native form, offer the flexibility to encapsulate the
transitionary behavior of the channel statistics observed in
these use cases. In this context, a recently proposed amplitude
fading model that can encapsulate bimodal behavior in the
statistics of the channel model is the fluctuating two-ray model
[30], which considers two shadowed specular components
and a scattered signal component. Another model which is
bimodal in nature, is the alternate Rician shadowed (ARS)
fading model [31], which uses a mixture of two shadowed
Rician distributions to represent LoS and NLoS propagation
conditions, whereby the shadowing remains constant across
both. Although it was shown to provide a good fit to empirical
data, the assumption that shadowing will be constant across
both LoS and NLoS states, does not seem intuitive for most
practical scenarios. Markov processes have also been utilized
to model wireless communications experiencing transitionary
behavior, such as the Gilbert-Elliott (GE) model [32], [33].
The GE model is comprised of a two-state Markov process and
has been used to characterise burst-noise channels [32], [33].
However, using a two-state Markov process has limitations,
for instance when the received signal experiences dramatic
changes [34], [35]. As an extension, the finite-state Markov
channel (FSMC) model was proposed [34] and later used
to model Rayleigh faded channels [35]. Application of the
FSMC model is non-trivial and is hampered further by the fact
that model only considers Rayleigh faded states. This means
that it will be unsuitable for representing the more intricate
fading conditions that may arise in many emergent wireless
applications, such as those considered here.

Notably, the characteristics of the received signal envelope
reveal only part of the overall channel picture. Of critical
importance are also the statistics of the received signal phase
and those of the in-phase and quadrature components of the
complex received signal. The phase properties of the received
signal are of particular importance. For example, they are
used in the design and synchronization of coherent receivers
[36], and in the detection of M-ary phase shift keying signal
constellations [37]. As a step of convenience some existing
models assume that the phase follows the circular uniform dis-
tribution [31]. However, it has recently been shown that when
the dominant component fluctuates, it can have a significant
impact on the distribution of the signal phase [38], leading
to cases which are far from uniform. It is not only the first-
order characteristics of the received signal that are of interest.
Second-order statistics, such as the complex autocorrelation
function (ACF), which capture the evolution of the channel
relative to time are also of significance. The complex ACF
finds many uses in wireless channel modeling, such as the
simulation of fading [39], [40] and the characterization of non-
isotropic signal transmission and reception [40], [41].

In [42] the authors presented a unified model for short-term

fading1 in LoS, QLoS and NLoS signal propagation scenarios,
referred to as the Three State Model (TSM). Within each state
of this model, the dominant component can be perturbed by
shadowing accompanied by a scattered signal contribution.
As part of the study conducted in [42] the distribution of
the in-phase and quadrature components and the distribution
of the received signal envelope were derived. Building upon
these contributions, in this paper we further develop the
fundamental statistics of the TSM, obtaining expressions for
the probability density functions (PDFs) of the received signal
phase and the joint envelope-phase. We also further adapt
the model to consider anisotropic filtering of the scattered
signal contribution, which is accounted for through the TSM’s
second-order statistics, where the direction of departure (DoD)
and DoA are modeled using the Von Mises distribution [41].
Movement of the TX, RX or both is also accounted for in the
present work, leading to a novel formulation for the complex
ACF of the TSM. It is worth mentioning that although at
first glance, some of the expressions obtained for some of the
fundamental statistics may appear arduous, a key feature of the
TSM is that it is completely defined in terms of underlying
Gaussian random variables (RVs), meaning that unlike many
other comparable models, it has a strong physical motivation,
and its simulation is relatively straightforward. Lastly, we
provide an important demonstration of the utility of the TSM
by fitting its newly developed statistics to data obtained from
some field measurements taken in scenarios where transitions
between channel states are likely to be encountered.

The remainder of this paper is organized as follows: The
physical model underlying the TSM is described in Section
II. In Section III, fundamental statistics of both the individual
states and the TSM are obtained. Section IV firstly details the
measurement setup, environment, and procedure. Afterwards
the model fitting is presented for two example use cases.
Lastly, Section V provides some concluding remarks.

II. PHYSICAL MODEL AND MATHEMATICAL
FORMULATION

The TSM characterizes scenarios where a fading channel
may transition between three states, namely LoS, QLoS, or
NLoS. Each state has an associated probability of occurrence,
pι, such that

∑
ι∈{L,Q,N} pι = 1, where the elements in ι

represent a state according to L = LoS, Q = QLoS, and
N = NLoS. The transitions between the three states within the
TSM can be modeled using a Markov process. The transition
from one state to the next corresponds to a change in the state
of the (direct) optical signal path between the TX and RX.
As depicted in the state-transition-rate diagram of Fig. 1, the
transition rate from the LoS state to the QLoS state and back
again is β0 and ν1, respectively. Likewise, the transition rate
from the QLoS state to the NLoS state and back is β1 and ν2,
respectively. Following from this, we may define the ratios,
A0 = β0/ν1 and A1 = β1/ν2, with both A0 and A1

being positive real numbers. This then allows us to write the
probability of occurrence of each of the three states as [43]

1Or equivalently small-scale fading if considering distance instead of time.
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Fig. 1: The state-transition-rate diagram of the TSM.

pL = [1 +A0 +A0A1]
−1, (1)

pQ = pLA0, (2)
pN = pLA0A1. (3)

In addition to these mathematical relationships between the
transition rates and steady state probabilities, it is convenient
to establish some qualitative links between them. Letting S0,
S1 and S2 represent the LoS, QLoS, and NLoS respectively,
then for Ai = 1, the states Si and Si+1 are equally likely.
For Ai > 1, Si+1 is more likely than Si, and otherwise for
Ai < 1. The QLoS state can be interpreted as a transitionary
state, where the geometry, and hence statistics of the channel
are not fully described by either LoS or NLoS.

Since only one of the three states may occur at a time,
S = Rι exp(jΘι) represents the complex signal envelope at
a particular instance, where Rι is the received signal envelope
and Θι is the phase of an individual state. In many signal
propagation scenarios, especially in short range applications
the geometry of the propagation problem is such that dominant
signal paths may exist even in what would be considered a
NLoS channel (e.g., via a strong specular reflection from a
smooth wall or similar surface). In such scenarios, any domi-
nant component which may be present could be subjected to
shadowing. Any shadowing affecting the dominant component
in each state is described through an independent shadowing
process, causing the dominant component to fluctuate. Letting
Xι and Yι represent the in-phase and quadrature components
of a state respectively, it follows that,

S = Xι + jYι, (4)

R2
ι = X2

ι + Y 2
ι , (5)

Θι = arg(Xι + jYι), (6)
Xι = Rι cos(Θι), (7)
Yι = Rι sin(Θι). (8)

The received signal power of each state, can then be modeled
as
R2

ι = (Csca−i,ι + ζιCdom−i,ι)
2 + (Csca−q,ι + ζιCdom−q,ι)

2,
(9)

where Csca−i,ι and Csca−q,ι are mutually independent Gaus-
sian random processes with E[Csca−i,ι] = E[Csca−q,ι] = 0,
E[C2

sca−i,ι] = E[C2
sca−q,ι] = σ2

ι , where E[·] denotes statis-
tical expectation. Cdom−i,ι and Cdom−q,ι represent the time-
varying amplitudes of the in-phase and quadrature components
of the dominant signal respectively, with the variation related
to the embedded Doppler effect [44], and ζι models the
fluctuations of the dominant component. The Rician k factor
of each state represents the ratio between the total power of
the dominant component, δ2ι = C2

dom−i,ι + C2
dom−q,ι, and

the total power of the scattered components 2σ2
ι , with

2σ2
ι =

r̄2ι
(1 + kι)

, (10)

where r̄ι =
√
E[R2

ι ], that is,

kι =
C2

dom−i,ι + C2
dom−q,ι

2σ2
ι

. (11)

By defining
ϖι = arg(Cdom−i,ι + jCdom−q,ι) (12)

as a phase parameter, we can write

Cdom−i,ι =

√
kι

1 + kι
r̄ι cos(ϖι), (13)

Cdom−q,ι =

√
kι

1 + kι
r̄ι sin(ϖι). (14)

The normalized term, ζι, simultaneously impacts both the
in-phase and quadrature components. It accounts for any
fluctuations of the dominant component in each individual
state caused by shadowing, and follows a normalized Rician
distribution with PDF given by [45, eq. (2.62)] (substituting
Ωp = 1)

fζι(ζι) =
2ζι (1 + kSι) exp (−kSι)

exp (ζ2ι (1 + kSι))
I0

(
2ζι
√
kSι (1 + kSι)

)
,

(15)
where I0(·) denotes the modified Bessel function of the first
kind with order zero [46, eq. (8.447.1)] and E[ζ2ι ] = 1.
The parameter kSι controls the severity of the shadowing of
the dominant component, with kSι → 0, indicating severe
shadowing whereas the shadowing vanishes as kSι → ∞. The
Nakagami-m distribution has been used as an alternative to the
lognormal distribution to model shadowing of the dominant
component [38]. In this work, we use the Rician distribution
to approximate the Nakagami-m distribution [45], although it
is worth highlighting that the Rician distribution has previously
been used in its own right to model shadowing in indoor
scenarios [47].

III. DISTRIBUTION OF THE QUADRATURE COMPONENTS,
RECEIVED SIGNAL ENVELOPE, RECEIVED SIGNAL PHASE

AND THE COMPLEX ACF

Utilizing the physical model defined above, the distribution
of the in-phase and quadrature components of the complex re-
ceived signal, the distribution of the received signal envelope,
the distribution of the received signal phase, and the complex
ACF are now obtained.

A. Distribution of the In-phase and Quadrature Components

Let either
Zι = Xι & λι = Cdom−i,ι (16)

or
Zι = Yι & λι = Cdom−q,ι (17)

as required to represent either the in-phase or quadrature
components of the complex received signal, respectively. For
brevity the derivation for the distribution of the in-phase and
quadrature components is omitted here but it is included in
Appendix A, along with a closed-form solution. The PDF
of the in-phase or quadrature components for each of the
individual states is shown in (19), where
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ηι = r̄2ι (1 + kSι) + λ2
ι (1 + kι), (18)

Γ (·) is the gamma function [48, eq. (06.05.02.0001.01)],
and 1F1(·; ·; ·) is the confluent hypergeometric function [46,
eq. (9.210.1)].

From the physical model of the TSM it is clear that the
associated TSM first-order statistics are a combination of the
three individual state first-order statistics in proportion with
their probability of occurrence (i.e., pL, pQ and pN ). Now
letting r̄g =

√
E[R2], where

r̄g =
∑

ι∈{L,Q,N}

pιr̄ι (20)

and using a transformation of variables (zι = z/r̄g) the PDF
of the in-phase or quadrature components of the TSM can be
found as

fZ(z) = r̄g
∑

ι∈{L,Q,N}

pιfZι(z × r̄g), (21)

where fZι(·) denotes the PDF of the in-phase or quadrature
components for the relevant state as presented in (19). The
PDFs of the in-phase and quadrature component are re-
normalized to r̄g , the overall rms signal level, to ensure Z has
unit power. In order to corroborate our new expressions, Monte
Carlo simulations have been carried out by generating 107

samples of each of the underlying random processes, Csca−i,ι,
Csca−q,ι, and ζι and evaluating (9). Fig. 2 provides plots of the
theoretical PDFs of the in-phase and quadrature components
along with respective results of simulations for an example
TSM fading scenario. It should be noted that for all examples
presented in this section, the transition ratios A0 and A1, have
been conveniently chosen to yield specific values of pL, pQ
and pN . For illustrative purposes, ϖ is considered to be time-
invariant for all examples presented in this section. In this
example the LoS state occurs most often with pL = 0.4, a
strong dominant component exists such that kL = 15, which
suffers from negligible shadowing characterized by kSL = 10,
and ϖL = π/2 rad. The QLoS state occurs between that of
the LoS and NLoS states with a probability of pQ = 0.3,
it has a weaker dominant component compared to the LoS
state with kQ = 5, moderate shadowing with, kSQ = 1, and
ϖQ = −π/2 rad. Lastly the NLoS state has a probability
of occurrence of pN = 0.3, a weak dominant component
exists that suffers severe shadowing resulting in kN = 0.2,
kSN = 0.15, and ϖN = 0 rad. It is also noted that for all
states r̄ι = 1. The figure shows that the PDFs of the in-phase
and quadrature components of the complex received signal of
the TSM can be vastly different even when experiencing the
same fading conditions. For instance, the in-phase component
appears to be unimodal, whilst the quadrature component is
not.

B. Distribution of the Received Signal Envelope
For brevity the derivation of the PDF of the received signal

envelope in each state, Rι, is omitted here, the proof and a
closed-form solution is provided in Appendix B. The PDF of
the received signal envelope in each state, Rι, is found to be

fRι(rι) =

∞∑
i=0

2r1+2i
ι kiι(1 + kι)

1+iµι exp (−kSι)

i!r̄
2(1+i)
ι (1 + kι + kSι)i

× exp

(
−r2ι (1 + kι)

r̄2ι

)
1F1

(
1 + i; 1; kSιµι

)
,

(22)

where
µι = (1 + kSι) / (1 + kι + kSι) . (23)

As kSι → ∞, (i.e., as the impact of shadowing on the domi-
nant components vanishes), the PDF given in (22) approaches
that of the Rician distribution. Secondly, when kSι → 0 or
kι = 0, (22) reduces to the Rayleigh PDF.

Using a transformation of variables (rι = r/r̄g), the PDF
of the received signal envelope of the TSM is shown to be

fR(r) = r̄g
∑

ι∈{L,Q,N}

pιfRι(r × r̄g), (24)

where fRι(·) represents the PDF of the received signal enve-
lope for each of the individual states as given in (22). The
PDF of the received signal envelope is re-normalized to the
overall rms signal level to ensure R has unit power. The effect
pι has on the PDF of the TSM received signal envelope is now
examined in Fig. 3, using the same fading conditions which
provided the results in Fig. 2 with pι now varying. In this
example, the LoS state resembles Rician fading due to the
strong dominant component and the weak shadowing, whilst
the NLoS state resembles Rayleigh fading.

C. Distribution of the Received Signal Phase
It is recalled that in order to determine the distribution of the

received signal phase, the joint distribution of the envelope and
phase must be found. Aside from being an intermediate step
in the determination of the PDF of the signal phase, the joint
distribution of the envelope and phase has independent value,
as it may be used to determine higher order statistics for single
or multi-branch diversity systems [49]. The joint distribution
of the envelope and phase of each state is provided in (25),
where

∆ι(θι, ϖι) =
kι cos

2(θι −ϖι)

1 + kι + kSι

. (27)

The derivation of the joint distribution of the envelope and
phase of each state is presented in Appendix C, along with a
closed-form solution.

By integrating the PDF of the joint envelope-phase in (25)
with respect to the received signal envelope, Rι, the PDF
of the signal phase is obtained as shown in (26), where
2F1(·, ·; ·; ·) denotes the Gauss hypergeometric function [46,
eq. (9.100)]. The accompanying derivation and closed-form
solution is provided in Appendix D. Following from this, the
PDF of the signal phase of the TSM can now be written as

fΘ(θ) =
∑

ι∈{L,Q,N}

pιfΘι(θ), (28)

where fΘι(·) is the PDF of the signal phase for the individual
states as given in (26). Next, the effect ϖι has on the TSM
received signal phase is examined by using the same fading
conditions as the ones in Fig. 2 but with ϖι now varying. From
Fig. 4 it can be observed that the PDF of the signal phase is
multimodal, with different peaks (local maxima) at θι = ϖι

corresponding to the different states, whereas the minima are
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fZι(zι) =

∞∑
i=0

√
1 + kι (1 + kSι)

1+i
kS

i
ιr̄

2i
ι exp (−kSι)

√
πη

3
2+i
ι Γ(1 + i)i! exp

(
z2
ι (1+kι)

r̄2ι

) [
r̄ιΓ (1 + i)

√
ηι1F1

(
1 + i;

1

2
;
(zιλι(1 + kι))

2

r̄2ι ηι

)

+ 2zιλι(1 + kι)Γ

(
3

2
+ i

)
1F1

(
3

2
+ i;

3

2
;
(zιλι(1 + kι))

2

r̄2ι ηι

)]
.

(19)

-2 -1 0 1 2
0

0.5

1

1.5

Quadrature

In-phase

Fig. 2: The in-phase and quadrature PDFs of the TSM (lines)
and corresponding simulation results (shapes).

localized at θι = ϖι + π. However, if ϖι is similar across all
three states, the PDF of the TSM received signal phase will
appear to be unimodal. From Figs. 2, 3 and 4, it is worth
highlighting that the analyzed statistical distributions show
quite distinct behaviors, under the same fading conditions.
While the in-phase, quadrature components, and the signal
phase can clearly be characterized by a multimodal PDF, such
multimodal behavior may not be as distinctive or even occur in
the received signal envelope. This is an important observation
that will have implications for wireless system models that use
extrapolations of so-called ‘amplitude only’ fading to define
in-phase, quadrature and phase characteristics. Importantly,
the above observation is also noticed to occur in one of the
example applications presented in the sequel demonstrating
that it is also a real-world physical phenomena.

D. Complex Autocorrelation Function

Unlike the first-order statistics, the ACF shows how channel
observations change over time. To this effect and since the
TSM is composed of three states that occur individually, we
now examine the ACF of the TSM when the complex received
signal, which is assumed to be wide sense stationary, is in
any one of the described states for any period of time. The
autocorrelation of a wide sense stationary process may be
written as ϕSS(τ) = E [S(t)S∗(t+ τ)], where S is the
complex received signal whilst the TSM is in a particular
state, t is the current time and τ is the time lag [45]. Using
the model given in (9) for the complex received signal of the
individual states and after some mathematical manipulation,
the autocorrelation may be expressed as

ϕSS(τ) =
r̄2ι

1 + kι
E
[
ϱι(t)ϱ

∗
ι (t+ τ) + kιζι(t)ζι(t+ τ)

× δι(t)δ
∗
ι (t+ τ)

]
,

(29)

where ϱι(t) represents the amplitude of the complex received
signal due to the scattered component of the individual state,
δι(t) represents the dominant signal component, and ζι(t) is
the corresponding Rician shadowing process.

1) Autocorrelation of the Dominant Signal Component and
Shadowing: By introducing the concept of relative motion
[50], the dominant signal component in each individual state,
δι(t), is expressed as exp (j (2πfδιt cos (αδι) + φ0ι)), where
fδι is the relative Doppler frequency, and αδι is the DoA of the
dominant component at the receiver [41], [51]. In this model,
φ0ι is the initial phase, uniformly distributed on the interval
[−π, π]. This results in

E[δι(t)δ∗ι (t + τ)] = exp (j2πfδιτ cos (αδι)) . (30)

The shadowing process that causes the dominant signal com-
ponent to fluctuate is represented by a normalized random
process, ζι(t), with PDF given in (15). The ACF of a normal-
ized Rician random process is known as [52, eq. (12)]. Using
this, the ACF of the shadowing in each state, E[ζι(t)ζι(t+τ)],
is obtained as

ϕζιζι(τ) =
π

4
2F1

(
−1

2
,−1

2
; 1;

(
J0(2πfSιτ) + kSι

1 + kSι

)2
)
,

(31)
where J0(·) is the zeroth-order Bessel function of the first
kind [46, eq. (8.441.1)] and fSι represents the maximum
Doppler frequency induced by shadowing. It should be noted
that we have adopted the model given in [53] to successfully
characterize the autocorrelation of the shadowing process.
This is not prescriptive and is one of a number of plausible
autocorrelation functions that could be used to capture the time
correlation properties of the LoS shadowing.

2) Autocorrelation of the Scattered Signal Component:
Using Akki and Haber’s model [54] to represent the scattered
signal components and the notation in [45, p. 82], the ampli-
tude of the scattered component of the normalized flat fading
complex received signal for each of the individual states can
be written as

ϱι(t) =

√
1

Q

Q∑
q=1

exp
(
j2πtfT ι cos

(
αq,T ι

))
× exp

(
j2πtfRι cos

(
αq,Rι

)
+ jφqι

)
,

(32)

where Q is the number of propagation paths, fT ι and fRι

are the maximum Doppler frequencies at the TX and RX
respectively, αq,T ι is the random DoD and αq,Rι is the random
DoA, of the qth propagation path with reference to the TX and
RX velocity vectors respectively. The variable φqι is a random
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fRι,Θι(rι, θι) =

∞∑
i=0

rι(1 + kι)µ
1+i
ι kS

i
ι exp

(
− r2ι (1+kι)

r̄2ι

)
πr̄2ιΓ(1 + i)i! exp (kSι)

[
Γ(1 + i)1F1

(
1 + i,

1

2
;
r2ι (1 + kι)∆ι(θι, ϖι)

r̄2ι

)

+
rι
r̄ι
2
√

1 + kιΓ

(
3

2
+ i

)√
∆ι(θι, ϖι)1F1

(
3

2
+ i,

3

2
;
r2ι (1 + kι)∆ι(θι, ϖι)

r̄2ι

)]
.

(25)

fΘι
(θι) =

∞∑
i=0

µι exp (−kSι) (kSιµι)
i

2πΓ(1 + i)i!

[
Γ(1 + i)2F1

(
1, 1 + i;

1

2
;∆ι(θι, ϖι)

)

+ Γ

(
3

2
+ i

)√
π∆ι(θι, ϖι)2F1

(
3

2
+ i,

3

2
;
3

2
;∆ι(θι, ϖι)

)]
.

(26)
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Fig. 3: The PDF of the TSM received signal envelope (lines)
and corresponding simulation results (shapes) are shown for
pι varying. The Rician PDF (dashed line) is shown for K = 5,
r̄ = 1, and the Rayleigh PDF (dotted line) is shown for r̄ = 1.
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Fig. 4: The PDF of the TSM received signal phase (lines) and
corresponding simulation results (shapes) for varying ϖι (rad).

phase uniformly distributed on [−π, π] and is independent of
αq,T ι and αq,Rι for all q.

The distribution of the DoD or DoA of the scattered signal
component can be modeled using the versatile Von Mises PDF
[41]. This distribution can be used to model realistic fading

scenarios in which DoD or DoA of multipath waves are either
isotropic or non-isotropic. The Von Mises PDF for the DoD
(or DoA) of the scattered signal contribution in each individual
state, fAι(αι), is given by [41]

fAι(αι) =
exp (κι cos (αι − ᾱι))

2πI0(κι)
, (33)

where αι ∈ [−π, π], κι ≥ 0 controls the spread of the DoD
(κT ι) and the DoA (κRι). The mean DoD and DoA are
accounted for by ᾱT ι and ᾱRι, respectively, and each can
have values in the range [−π, π]. When κι = 0, (33) reduces
to the circular uniform distribution and the experienced fading
is described by isotropic scattering. As κι increases, the DoD
or DoA becomes increasingly unidirectional with κι → ∞
describing extremely non-isotropic scattering. As discussed in
[41], a useful estimator of the spread of the DoD or DoA in
polar coordinates for increasing values of κι (i.e., κι > 1)
can be obtained by considering the inflexion points of fAι(αι)
which are approximately equal to ±1/

√
κι. For highly non-

isotropic scattering, e.g., for κι = 3 and 5, the spread of
the DoD or DoA of these contributions can be estimated as
2/
√
κι, giving 66° and 51° respectively.

Now the autocorrelation of the scattered component is
evaluated, i.e., E [ϱι(t)ϱ

∗
ι (t + τ)]. To this end, assuming

the number of propagation paths is infinite, and after some
algebraic manipulations, we obtain

ϕϱιϱι(τ) = lim
Q→∞

√
1

Q

Q∑
q=1

E
[
exp

(
j2πfT ιτ cos

(
αq,T ι

))
× exp

(
j2πfRιτ cos

(
αq,Rι

)) ]
.

(34)

Knowing that αT ι and αRι are independent RVs and using
the PDF in (33) along with [46, eq. (3.338.4)], yields (35).

3) Autocorrelation Function: Using (30), (31) and (35) in
(29), we obtain the ACF for an individual TSM state, given in
(36). The ACF is expressed in closed-form and it is general
for both isotropic (i.e., κT ι = κRι = 0) and non-isotropic
(i.e., κT ι or κRι > 0) fading conditions. For convenience,
the ACF in its normalized form, ϕ̃SS(τ), is found by setting
r̄ι = 1. A summary of the parameters used in the TSM and
their description is given in Table I.

Fig. 5 shows example plots of the normalized complex ACF
(i.e., r̄ι = 1), when the RX is stationary (i.e., fRι = 0 Hz)
and the TX is in motion (i.e., fT ι = 10 Hz). The simulated
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ϕϱιϱι(τ) =

I0

(√
κT

2
ι − 4π2fT

2
ι τ

2 + j4πκT ι cos(ᾱT ι)fT ιτ

)
I0(κT ι)

I0

(√
κR

2
ι − 4π2fR

2
ι τ

2 + j4πκRι cos(ᾱRι)fRιτ

)
I0(κRι)

.
(35)

ϕSS(τ) =
r̄2ι

1 + kι

[I0(√κT
2
ι − 4π2fT

2
ι τ

2 + j4πκT ι cos(ᾱT ι)fT ιτ

)
I0(κT ι)

I0

(√
κR

2
ι − 4π2fR

2
ι τ

2 + j4πκRι cos(ᾱRι)fRιτ

)
I0(κRι)

+
kιπ

4
2F1

(
−1

2
,−1

2
; 1;

(
J0(2πfSιτ) + kSι

1 + kSι

)2
)
exp (j2πfδιτ cos(αδι))

]
.

(36)

results in Fig. 5 were obtained using the autoregressive (AR)
simulation method described in [39] to generate 1 × 106

samples, using a model order of 200, and a bias of 1×10−9 to
condition the Yule-Walker equations. The shadowing process
that causes the dominant signal component to fluctuate and
the other signal components were generated separately using
AR modeling and then combined as detailed in (9).

The real part of the ACF in Fig. 5(a) shows a stronger
correlation in the presence of a strong dominant component,
i.e., Rician fading (kι = 3 and kSι = ∞), as compared
to the case where the dominant component is weak, i.e.,
Rayleigh fading (kι = 0 and kSι = ∞). When shadowing
of the dominant component is present (i.e., kSι = 0.5),
the autocorrelation function is found in the region between
those obtained for the Rayleigh and Rician cases, as expected.
Comparing the real part in Fig. 5(a) to the imaginary part
in Fig. 5(b), which is a measure of the cross-correlation of
the real and imaginary parts of the complex received signal
[45], we observe that shadowing has no effect on the cross-
correlation of the two quadrature components in this particular
example, since fδι = 0 Hz. The effect of increasing fSι upon
the autocorrelation of the signal is also depicted in Fig. 5.
Holding kSι constant (i.e., kSι = 0.5), as fSι increases the
dominant component correlates and decorrelates more rapidly.
This reflects the increased temporal variation in the channel
and results in a more irregular (less smooth) ACF.

IV. TWO EXAMPLE USE CASES

In this section, the TSM is used to fit field measurements for
two realistic wireless communication applications which are
known to be subject to LoS, QLoS and NLoS channel states,
namely off-body communications for a rotating user and off-
body communications with a pedestrian intersecting the direct
signal path between the TX and RX.

A. Experimental setup
The measurements were conducted in the first-floor seminar

room of the ECIT building at Queen’s University Belfast in the
United Kingdom (see [55] for a more detailed description of
the measurement environment). In both experiments, the TX
and RX used the patch antenna described in [56]. The antennas
were connected to a Rhode & Schwarz ZVB-8 vector network
analyzer (VNA) using calibrated low loss coaxial cables. The
VNA was set to record snapshots of the complex S21 every
2 ms at 2.45 GHz using a 10 kHz resolution bandwidth.

The duration of the measurements for the rotating user and
pedestrian crossing the LoS signal path experiments were 30 s
and 10 s respectively. For both example use cases, the TX
antenna was mounted vertically on a nonconductive height
adjustable stand at an elevation of 1.40 m above the floor
level, while the RX antenna was attached with its ground plane
parallel to a phantom representative of human muscle tissue
as used in [57], at the same height as the TX antenna.

To obtain the first-order parameter estimates, the theoretical
PDFs given in equations (21), (24), and (28) were fitted to the
entire complex S21 data set collected for each experiment. The
complex S21 data was normalized to the empirical global rms
signal level, before using a non-linear least squares routine,
programed in MATLAB to fit the equations. Following from
this, the estimated parameters were used to label each of the
individual states (i.e., LoS, QLoS and NLoS) and subsequently
to fit the complex ACF given in equation (36) for each of
the three states. For simplicity during the fitting process and
without loss of generality, we have considered ϖ to be con-
stant. To obtain the parameter estimates for the second-order
statistics, we extracted continuous segments of measurements
of between 1 to 2 seconds in length from the LoS, QLoS and
NLoS phases. The LoS, QLoS or NLoS channel states were
identified from the video footage by interpreting the optical
viewpoints of the TX and RX antennas. It is worth highlighting
that we used the relevant parameter estimates for each state,
obtained from the fitting of the first-order statistics (i.e., kι,
kSι and r̄ι), to also fit the second-order statistics.

B. Rotating User
In this experiment, the RX antenna was attached to a human

body phantom which was positioned on an electric rotating
turntable (Isunking MT320RL32). As shown in Fig. 6(a),
the RX antenna was initially oriented in direct optical LoS
with the TX antenna at a distance of 9 m, and then rotated
180° clockwise such that direct optical LoS was obscured by
the human body phantom. The turntable was programed to
complete half a rotation in 30 s. Clearly, in this experiment,
the channel between the TX and RX antennas was initially in
a LoS state before changing to QLoS as the direct signal path
became shadowed by the human body phantom, before finally
arriving at the NLoS state where the phantom completely
obscured the direct optical LoS path. This progression can be
seen from the normalized received signal time series in Fig. 7,
where the peak signal amplitude occurs at the beginning,
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TABLE I: Summary of parameters in the TSM.

Parameter Description Values Special Cases

kι
Ratio between the total power of the dominant signal component

and the total power of the scattered signal components
kι ∈ [0,∞) Rayleigh fading: kι = 0

kSι Shadowing severity kSι ∈ [0,∞)
No shadowing: kSι → ∞

Severe shadowing (i.e., Rayleigh fading): kSι = 0

ϖι (rad) Phase parameter ϖι ∈ [−π, π]
Cdom−q,ι = 0: ϖι = 0,±π rad

Cdom−i,ι = 0: ϖι = ±π/2 rad

r̄ι The state rms signal level r̄ι ∈ (0, 2.5] Normalized ACF, ϕ̃SS(τ): r̄ι = 1

r̄g The global rms signal level r̄g ∈ (0, 2.5] -

τ (s) Time lag τ ∈ R≥0
1 -

fSι (Hz) Maximum Doppler frequency of the shadowing fSι ∈ [0,∞) No Doppler shift: fSι = 0 Hz

fδι (Hz) Relative Doppler frequency of the dominant signal component fδι ∈ [0,∞) No Doppler shift: fδι = 0 Hz

αδι (rad) DoA of the dominant signal component αδι ∈ [−π, π] -

κT ι Spread of the scattered signal from the transmitter κT ι ∈ [0,∞) Isotropic: κT ι = 0

fT ι (Hz) Maximum Doppler frequency of the TX fT ι ∈ [0,∞) No Doppler shift: fT ι = 0 Hz

ᾱT ι (rad) Mean DoD of the transmitted scattered signal component ᾱT ι ∈ [−π, π] -

κRι Spread of the scattered signal at the receiver κRι ∈ [0,∞) Isotropic: κRι = 0

fRι (Hz) Maximum Doppler frequency of the RX fRι ∈ [0,∞) No Doppler shift: fRι = 0 Hz

ᾱRι (rad) Mean DoA of the received scattered signal component ᾱRι ∈ [−π, π] -

1 The notation R≥0 indicates the set of real numbers including zero.

0 0.05 0.1 0.15 0.2
-1

-0.5

0

0.5

1

(a) Real part.

0 0.05 0.1 0.15 0.2

-0.5

0

0.5

(b) Imaginary part.

Fig. 5: The normalized complex ACF (solid lines) in (36) and AR simulation results (shapes), with kι, kSι and fSι (Hz)
varying using κT ι = κRι = 2, ᾱT ι = ᾱRι = π/4 rad, fδι = 0 Hz, αδι = 0 rad, fT ι = 10 Hz, fRι = 0 Hz.

followed by a transition through a series of lesser ‘peaks’ and
nulls during the QLoS state before reaching the maximum
optical NLoS condition.

In Table II and elsewhere, the ˆ operator is used to
indicate a parameter estimate. Table II provides the parameter
estimates of the first-order statistics for the best fit TSM for
the rotating user measurement. The estimated power of the
dominant and scattered signal components in each of the states
is provided in Table III. From the results, it is apparent that a
dominant signal component was always found to exist, even
in the NLoS state where the direct optical LoS signal path

was obscured by the phantom (i.e., k̂ι > 0 and δ̂2ι > 0).
Nonetheless, it is clear there was a reduction in the power
contributed by the dominant component transitioning from the
LoS state, through QLoS, to the NLoS state. Interestingly, the
power contributed through the scattered multipath remained
consistent across all three states. These observations suggest
that the dominant component became progressively shadowed
and while the perceived DoD and DoA of the scattered signal
contribution may have changed through the state transitions
(see κ̂T ι and κ̂Rι in Table V), the overall power contributed to
the received signal by this component was largely unchanged.
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(a) The rotating user experi-
ment.

(b) The pedestrian crossing the
LoS signal path experiment.

Fig. 6: Plan view of the measurement environment and exper-
imental setups.
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Fig. 7: Normalized received signal time series of the rotating
user experiment.

TABLE II: TSM Parameter estimates for the fitted PDFs.

Experiment ι p̂ι k̂ι k̂Sι ˆ̄rι ϖ̂ι (rad)

Rotating user

L 0.09 17.34 37.75 1.51 −0.226π

Q 0.32 5.85 0.86 0.86 −0.366π

N 0.59 3.41 0.86 0.71 0.939π

Pedestrian
crossing the

LoS signal path

L 0.64 21.75 17.57 1.06 0.331π

Q 0.11 12.69 39.89 0.92 −0.0223π

N 0.25 12.93 2.58 0.76 0.395π

As anticipated the LoS state experienced the least perturbation
caused by shadowing (i.e., k̂SL = 37.75) although as
shown in Table II the LoS state was the least probable to be
encountered as the phantom was rotated (i.e., p̂L = 0.09).
Intuitively, the dominant components in both the QLoS and
NLoS states suffered from shadowing of increased severity
(k̂SQ = 0.86 and k̂SN = 0.86, respectively).

Fig. 8 shows the empirical probability densities of the
measured in-phase and quadrature components, received signal

TABLE III: Estimated power of the dominant and scattered
components.

Experiment ι 2σ̂2
ι δ̂2ι

Rotating User

L 0.12 2.17

Q 0.11 0.63

N 0.11 0.39

Pedestrian crossing
the LoS signal path

L 0.05 1.07

Q 0.06 0.77

N 0.04 0.53

TABLE IV: RMSE (%) of the fitted PDFs.

Experiment In-phase Quadrature Envelope Phase

Rotating user 4.35 2.79 5.60 3.75

Pedestrian crossing

the LoS signal path
2.69 3.39 1.84 3.82

envelope and received signal phase.2 Also shown for compar-
ison in Fig. 8 are the respective theoretical PDFs for each
of the measures listed above. From Fig. 8 it can be seen
that the proposed TSM provides a good fit to the empirical
data. To assist with a numerical evaluation of the fits, the
root mean square error (RMSE) of the theoretical PDF fits to
the empirical data is given Table IV. Although not shown in
Table IV, the RMSE of the Rician PDF (Fig. 8(c)) fitted to
the empirical PDF of the received signal envelope obtained
during the rotating user experiment was 4.65%, compared to
that for the TSM which had an RMSE of 1.84% (Table IV).
More importantly though, it provides a full characterization
of the received signal, from its complex origin through to its
amplitude and phase. From Figs. 8(a) and 8(b) it is clear that
in the rotating user case, the underlying empirical in-phase
and quadrature components have multiple modes caused by
each of the three channel states (i.e., LoS, QLoS, and NLoS).
It is worth mentioning that the modes of the theoretical PDFs
coincide with the mean values of the in-phase and quadrature
components, uι and vι, respectively, for each state, which can
be calculated using the parameter estimates in Table II.

Although providing a good fit to the empirical probability
densities of the in-phase and quadrature components, the TSM
provided a less satisfactory fit to the empirical probability
density of the received signal envelope (see Fig. 8(c)). In
this case, although characterizing the lower and upper tails
adequately, some digression was observed around the mode.
The modality introduced by transitioning between the three
states during the experiment can be seen in Fig. 8(d). Here the
phase is clustered around a number of different phase levels
(i.e., θ = 2.95 rad and θ = −1 rad). As we can see, despite
the scattered signal contribution, the phase is very far from the
uniform case as assumed in other multimodal models [31].

To examine the time correlation properties of the rotating
user channel, two second excerpts of the normalized received

2Note the empirical probability densities of the measured in-phase and
quadrature components and the received signal envelope are normalized to
the global rms signal level (r̄g).
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Fig. 8: The empirical and fitted theoretical TSM PDFs for the person crossing the LoS signal path and rotating user experiments.
Note the empirical/theoretical PDFs for the person crossing the LoS signal path experiment are given by squares/dashed lines
and the rotating user experiment by circles/solid lines, respectively. The Rician PDF fitted to the person crossing the LoS
signal path experiment (dotted line) is also included in (c) for comparison.

signal for each state were examined. For the LoS state this
was the first two seconds of the data. The corresponding
intervals for the QLoS and NLoS channel states were 2 to 4
seconds and 28 to 30 seconds, respectively. All of the relevant
parameter estimates for each state are given in Table V, with
the exception of k̂ι and k̂Sι, which are already provided in
Table II. Fig. 9 depicts the empirical complex autocorrelation
function of the measurement data along side the theoretical
ACF of the TSM model given in equation (36).3 It can be
observed that the TSM provides an excellent fit across all three
states for both the real and imaginary parts of the empirical
complex ACF. Over all three channel states, strong correlation
was observed to persist in the real part of the complex ACF
over the considered time window, with all three remaining
above 0.88 (Fig. 9(a)). In contrast, the imaginary part of the
complex ACF, which is a measure of the cross-correlation
of the in-phase and quadrature components of the complex

3It should be noted that all of the correlation functions in Fig. 9 have been
normalized, i.e., r̄ι = 1.

received signal, remained close to zero for all three states
(Fig. 9(b)), suggesting that the two quadrature components
are largely uncorrelated when considered over this duration.
C. Pedestrian Crossing the LoS Signal Path

The second example use case considered the scenario where
a pedestrian intersected the optical LoS signal path in an off-
body communications channel. For this set of measurements
the TX and RX antennas were positioned in direct LoS as
discussed above and separated from one another with a straight
line distance of 4 m. An adult male of height 1.94 m and mass
110 kg acted as the pedestrian, and initially stood stationary
at the window side of the room. They were then instructed
to follow the trajectory annotated in Fig. 6(b), perpendicular
to the optical LoS signal path between the antennas, such
that they bisected the link. In this experiment, the channel
between the TX and RX antennas was initially in a LoS
state, before changing to QLoS as the pedestrian approached
the off-body link, before entering the NLoS state as they
blocked the direct signal path entirely. Afterwards the channel
returned to the QLoS state and finally the LoS state when the
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TABLE V: Parameter estimate for the fitted complex ACFs of each state.

Experiment ι f̂Sι (Hz) f̂δι (Hz) α̂δι (rad) κ̂T ι f̂T ι (Hz) ˆ̄αT ι (rad) κ̂Rι f̂Rι (Hz) ˆ̄αRι (rad)

Rotating user

L 8.71 0.47 0.507π 20 0.01 −0.997π 0 3.03 0

Q 0.26 1.72 −0.503π 2.95 4.86 −0.994π 3.19 4.72 0

N 0 0.24 −0.57π 3.16 3.68 0 3.12 3.76 π

Pedestrian crossing
the LoS signal path

L 4.44 8.29 −0.497π 20 0.87 π 20 0.87 −π

Q 8.99 7.46 0.5π 2.14 6.64 −0.236π 2.79 3.73 −π

N 3.92 0.14 −0.013π 20 1.07 π 20 1.07 −π
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Fig. 9: Empirical (shapes) and theoretical (lines) normalized complex ACFs for the rotating user experiment.

pedestrian moved far enough from the off-body link such that
their movement no longer impacted the received signal. This
progression can be seen from the normalized received signal
time series in Fig. 10. For the first two seconds, the channel
was in the LoS state with relatively small fluctuations in the
received signal observed. From 2 s onwards, the variations in
the received signal can be seen to increase as the pedestrian
approached the optical LoS signal path between the TX and
RX antennas, indicating that the channel had entered the QLoS
state. At approximately 5.4 s a deep fade begins to occur
corresponding to the NLoS state which was caused by the
pedestrian’s body blocking the direct signal path.

Similar to the rotating user example above, a dominant
component was observed to be present in all three states.
Also similar to the previous example, a reduction in the power
contributed by the dominant component was observed to occur
when transitioning from LoS through QLoS to NLoS chan-
nel conditions. One striking difference in the two scenarios
considered was that the dominant component appeared to be
less impacted by shadowing as shown by the estimates of
kSι (see Table II). Another interesting observation is that
the power contributed by the scattered multipath was much
lower in this experiment compared to when the user was
rotating. A possible reason for this could be that the user
(i.e., the human body phantom) significantly attenuated any
scattered signal contribution arriving from behind the RX
antenna whereas the rotational movement of the user in
the previous example moved the RX antenna through the
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Fig. 10: Normalized received signal time series obtained
during the pedestrian crossing the LoS signal path experiment.

multipath field set up around the user. Contrasting with the
previous example the LoS state occurred most often here.
This was expected since the pedestrian blocked the direct
signal path for a relatively short period within the experiment.
A more striking observation here was that the PDF of the
received signal envelope was unimodal. However unlike the
Rayleigh and Rician fading models which are also unimodal,
the underlying in-phase and quadrature components as well
as the phase depart significantly from the unimodal case.
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Fig. 11: Empirical (shapes) and theoretical (lines) normalized complex ACFs for the pedestrian crossing the LoS signal path
experiment.

The point is made that if this fading channel had been
measured and characterized using only the received signal
envelope, this important behavior may have been missed and
subsequent inferences made about the in-phase, quadrature and
phase components based upon Rayleigh or Rician fading (i.e.,
unimodal i.i.d. Gaussian quadrature components and uniform
phase), could lead to the wrong conclusions and ultimately
suboptimal wireless systems design. This can be seen from
Fig. 8(c) where the best fit Rician PDF is also included
for comparison. Visually, this also provides a satisfactory fit
to the received signal envelope, however it reinforces the
point that where possible, physical channel studies should
include characterizations of the received signal in-phase and
quadrature components as well as the received signal phase.

To fit the normalized state ACFs the first 2 s were used for
the LoS state, the time series between 2 and 4 s for the QLoS
state, whereas between 5.4 and 6.4 s were used for the NLoS
state based on inspection of Fig. 10. All parameter estimates
for each state are given in Table V. Fig. 11 shows the TSM
received signal empirical normalized complex autocorrelation
along with the fitted normalized ACFs (i.e., r̄ι = 1) for the
three states. It can be observed the TSM again provides a good
fit across all three states for both the real and imaginary parts
of the complex ACF. Strong correlation was observed to persist
in the real part of the complex ACF over the considered time
window for both the LoS and QLoS states. The real part of
the complex ACF for the NLoS state showed moderate decay.
However, the imaginary part of the complex ACF, was close
to zero for the LoS and QLoS states, suggesting that the two
quadrature components are largely uncorrelated when consid-
ered over this duration. The imaginary part of the complex
ACF for the NLoS state showed increasing correlation near
the end of the considered time window, indicating slightly
increasing correlation between the in-phase and quadrature
components. Finally, Fig. 11(a) shows that the real part of
the complex ACF for the NLoS state decorrelates at a faster
rate compared to the QLoS and LoS states. The NLoS state

approaches a value of 0.7, whilst the QLoS and LoS states
remain very strongly time correlated, reaching a value of
approximately 0.9 by the end of the observation window.

V. CONCLUSION

In this paper, for the first time, we have unified LoS,
QLoS and NLoS signal propagation under the umbrella of
the proposed Three State Model. To this end, the TSM has
been shown to have a strong physical motivation in relation
to realistic scenarios encountered in practical communication
scenarios. More precisely, within each of its constituent states,
fading is assumed to follow that described by the Rician
fading model, with one significant departure. That is the
optional presence of a dominant component, which may or
may not be shadowed. The shadowing in this case is assumed
to follow a separate Rician distribution, allowing the TSM
to be fully defined in terms of underlying Gaussian random
variables. This has the benefit, that simulation of the TSM is
relatively straightforward, further advocating its adoption as a
comprehensive fading model. We have also derived many of
the important first- and second-order statistics necessary for
a complete characterization of the complex received signal
envelope. This includes the PDFs of the in-phase and quadra-
ture components, the joint envelope-phase, phase and received
signal envelope as well as the complex ACF. A number of
examples have been provided for these statistics alongside
respective simulated results to demonstrate their validity.

Furthermore, two example applications have been provided
for channels which are known to encounter the propagation
phenomena encapsulated by the TSM. Using experimental
data obtained for off-body communications channels which
considered a rotating user and also the case where a pedestrian
intersected the direct LoS signal path between the TX and RX,
we have been able to show the excellent fit that that the TSM
provides across all of the aforementioned statistics. Lastly it is
shown that if only the received signal envelope is considered in
channel measurements, departures from common assumptions
such as unimodal in-phase and quadrature components and
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uniform phase may be missed. This reinforces the use of
the TSM for a richer characterization of fading, especially in
scenarios where channels can be expected to alternate between
LoS, QLoS and NLoS.

APPENDIX A
PROOF AND CLOSED-FORM SOLUTION FOR (19)

The model presented in (9) implies that when Zι

is conditioned on ζι, it follows a Gaussian distribution
[37, eq. (2.3-8)]. To find the PDF of the in-phase or quadra-

ture components for each of the individual states, ζι is aver-
aged over in the conditioned Zι, similar to [38, Appendix A],
such that

fZι(zι) =

√
1 + kι
π r̄2ι

∫ ∞

0

fζι(ζι)

exp
(

(zι−ζιλι)2(1+kι)
r̄2ι

) dζι. (37)

The integral in (37) can be solved by substituting (15) into
(37), along with [46, eq. (8.447.1)], and applying the identities
[46, eq. (3.462.1)] and [46, eq. (9.240)] sequentially to give
(19).

A closed-form solution to (19) is found by taking (19),
then using the primary definition of the confluent hyper-
geometric function [48, eq. (07.20.02.0001.01)], and [48,
eq. (06.10.27.0001.01)], along with the definitions [58,
eq. (1.3.22)], and [58, eq. (1.3.28)] provides

fZι
(zι) =

√
1 + kι (1 + kSι)√

πηι
exp

(
−kSι −

z2ι (1 + kι)

r̄2ι

)
×

[
2zιλι (1 + kι)√

ηι

×Ψ2

(
3

2
;
3

2
, 1;

(zιλι(1 + kι))
2

r̄2ι ηι
, ϵ

)

+ r̄ιF
1:0;0
0:1;0

(
1 : −;−;

− : 1
2 ;−;

(zιλι(1 + kι))
2

r̄2ι ηι
, ϵ

)]
,

(38)

where F ·:·;·
·:·;·

(
· : · ; · ;
· : · ; · ; ·, ·

)
denotes the generalized Kampé de

Fériet function [58, eq. (1.3.28)], Ψ2(·; ·, ·; ·, ·) is the confluent
Appell function [58, eq. (1.3.22)] and ϵ =

r̄2ι kSι(1+kSι)
ηι

.
APPENDIX B

PROOF AND CLOSED-FORM SOLUTION FOR (22)
Following the mathematical model for the individual states

of the TSM given in (9), the PDF of the received signal
envelope, Rι, can be expressed as [59, Appendix A]

fRι(rι) =
rι

σ2
ι exp

(
r2ι
2σ2

ι

) ∫ ∞

0

I0

(
ζιδιrι
σ2
ι

)
exp

(
ζ2
ι δ

2
ι

2σ2
ι

)fζι(ζι) dζι. (39)

The integral in (39) can be solved by substituting (15), and
using [46, eq. (8.447.1)], along with the necessary trans-
formation of variables, and the identities [46, eq. (6.643.2)]
and [46, eq. (9.220.2)]. Based on this and knowing (10) and
δ2ι = 2σ2

ι kι, (22) is obtained.
By using [48, eq. (07.20.02.0001.01)] and the identities [48,

eq. (06.10.27.0001.01)] and [58, eq. (1.3.22)] in (22), a closed-
form solution for the PDF of the received signal envelope in
each state is found to be

fRι(rι) =
2rι(1 + kι)µι

r̄2ι
exp

(
−kSι −

r2ι (1 + kι)

r̄2ι

)
×Ψ2

(
1; 1, 1;

r2ι kι(1 + kι)

r̄2ι (1 + kι + kSι)
, kSιµι

)
.

(40)

APPENDIX C
PROOF AND CLOSED-FORM SOLUTION FOR (25)

From the model definition in (9), it can be seen that, when
conditioned on ζι, Xι and Yι are independent Gaussian RVs.
Following from this, the joint conditional PDF can be written
as,
fXι,Y ι|ζι(xι, yι; ζι) = fXι|ζι(xι; ζι)× fY ι|ζι(yι; ζι). (41)

Now using a Jacobian transformation, |Jι| = rι, the condi-
tional joint envelope-phase distribution is found as,

fRι,Θι|ζι(rι, θι; ζι) = |Jι|fXι,Y ι|ζι(xι, yι; ζι). (42)

Then, expressing xι and yι in terms of rι and θι, using [46,
eq. (8.447.1)], averaging over ζι, using (15), and sequentially
applying the identities [46, eq. (3.462.1)] and [46, eq. (9.240)],
we obtain (25).

Taking the PDF of the joint envelope-phase given in (25)
and applying the definitions [48, eq. (06.10.27.0001.01)] and
[58, eq. (1.3.22)] results in

fRι,Θι(rι, θι) =
rι(1 + kι)µι

πr̄2ι
exp

(
−kSι −

r2ι (1 + kι)

r̄2ι

)
×

[
Ψ2

(
1;

1

2
, 1;

r2ι (1 + kι)∆ι(θι, ϖι)

r̄2ι
, kSιµι

)
+

2rι
√
1 + kι

√
∆ι(θι, ϖι)

r̄ι

×Ψ2

(
3

2
;
3

2
, 1;

(1 + kι)∆ι(θι, ϖι)

r−2
ι r̄2ι

, kSιµι

)]
.

(43)

APPENDIX D
PROOF AND CLOSED-FORM SOLUTION FOR (26)

Integrating the PDF of the joint envelope-phase in (25)
with respect to the received signal envelope, Rι, by first
applying a quadratic transformation and using the identity [46,
eq. (7.621.4)], which results in (26).

By using the PDF of the signal phase given in (26),
the primary definition of the Gauss hypergeometric function
[48, eq. (07.23.02.0001.01)], [48, eq. (06.10.27.0001.01)], [48,
eq. (07.20.02.0001.01)], and [58, eq. (1.3.21)], the PDF of the
signal phase is found to be

fΘι
(θι) =

µι exp (−kSι)

2π

[
Ψ1

(
1, 1;

1

2
, 1;∆ι(θι, ϖι), kSιµι

)

+
π
√

∆ι(θι, ϖι)

2(1−∆ι(θι, ϖι))
3
2
1F1

(
3

2
; 1;

kSιµι

1−∆ι(θι, ϖι)

)]
,

(44)

with Ψ1(·, ·; ·, ·; ·, ·) denoting the confluent Appell function
[58, eq. (1.3.21)].
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