
Vol.:(0123456789)1 3

Hydrogeology Journal 
https://doi.org/10.1007/s10040-023-02644-3

PAPER

Increasing knowledge of the transmissivity field of a detrital aquifer 
by geostatistical merging of different sources of information

Eulogio Pardo‑Igúzquiza1  · Peter A. Dowd2 · Juan A. Luque‑Espinar3 · Mario Chica‑Olmo4

Received: 27 September 2022 / Accepted: 15 May 2023 
© The Author(s) 2023

Abstract
Transmissivity is a significant hydrogeological parameter that affects the reliability of groundwater flow and transport models. 
This study demonstrates the improvement in the estimated transmissivity field of an unconfined detritic aquifer that can be 
obtained by using geostatistical methods to combine three types of data: hard transmissivity data obtained from pumping 
tests, soft transmissivity data obtained from lithological information from boreholes, and water head data. The piezomet-
ric data can be related to transmissivity by solving the hydrogeology inverse problem, i.e., including the observed water 
head to determine the unknown model parameters (log transmissivities). The geostatistical combination of all the available 
information is achieved by using three different geostatistical methodologies: ordinary kriging, ordinary co-kriging and 
inverse problem universal co-kriging. In addition, there are eight methodological cases to be compared according to which 
log-transmissivity data are considered as the primary variable in co-kriging and whether two or three variables are used in 
inverse-problem universal co-kriging. The results are validated by using the performance statistics of the direct modelling of 
the unconfined groundwater flow and comparing observed water heads with the modelled ones. Although the results show 
that the two sets of log-transmissivity data are incompatible, the set of log-transmissivity data from the lithofacies provides 
a good log-transmissivity image that can be improved by inverse modelling. The map provided by inverse-problem universal 
co-kriging provides the best results. Using three variables, rather than two in the inverse problem, gives worse results because 
of the incompatibility of the log-transmissivity data sets.

Keywords Geostatistics · Groundwater flow · Transmissivity · Lithofacies · Universal kriging

Introduction

Unconfined detritic aquifers can be modelled as randomly 
heterogeneous porous media in which hydrogeological 
properties (e.g., transmissivity) vary spatially in a manner 
that is only partially understood (Kitanidis 1997). A rea-
sonably accurate aquifer transmissivity field is essential 
for simulating the flow and transport of solutes (Anderson 
et al. 2015). Pumping tests are the main source of hard 
data for describing the transmissivity field of an aquifer 
(Renard 2005; Demir et al. 2017). However, in general, 
the number of pumping tests in a single aquifer is usually 
small (Christensen 1996; Teramoto et al. 2021); hence, 
transmissivity data have significant uncertainty, as will 
be shown by their spatial variability quantified by a vari-
ogram that shows a high nugget variance due to sampling 
error and/or short scales of spatial variability that is not 
accounted for by the available experimental data loca-
tions. Auxiliary information, however, can be used to 
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increase the accuracy of a transmissivity field estimated 
from only hard transmissivity data. Of the several types 
of secondary information, piezometric data (water head 
data for the unconfined aquifer case) have often been used 
to improve the estimation of the transmissivity field in 
inverse hydrogeology approaches (Dagan 1985; Zimmer-
man et al. 1998; Carrera et al. 2005; among many others). 
When there is a correlation between the water table and 
topographic elevations, a digital elevation model with full 
coverage of elevation data can be introduced as second-
ary information (Renard and Jeannée 2008). Other than 
inverse approaches, transmissivity fields have been esti-
mated by geostatistical co-kriging using secondary vari-
ables such as specific capacity (Ahmed and de Marsily 
1987; Razack and Huntley 1991; Richard et al. 2016), 
connectivity data (Freixas et al. 2017) or any auxiliary 
data correlated with transmissivity (Kupfersberger and 
Blöschol 1995). Correlation and regression analysis have 
also been used to improve transmissivity fields by using 
geophysical data such as magnetic resonance (Boucher 
et al. 2009) or electrical resistivity (Soupios et al. 2007). 
Hydrofacies simulation has also been used to estimate the 
spatial variability of hydraulic conductivity (Zhu et al. 
2016; Xue et al. 2022).

This paper shows that different types of co-kriging 
(the multivariate geostatistical estimator) can be used 
to improve the knowledge of a transmissivity field of a 
detritic aquifer in southern Spain (the Vega de Granada 
aquifer). Different aspects of the geostatistical analysis 
of the Vega de Granada aquifer, such as the estimation 
of the variogram of transmissivities and the estimation 
of groundwater hydraulic gradients, have been reported 
in Pardo-Igúzquiza et al. (2009); Pardo-Igúzquiza and 
Chica-Olmo 2004, 2007 and Kuhlman and Pardo-
Igúzquiza (2010). This paper introduces and demon-
strates several new components of the methodology in a 
case study of the Vega de Granada aquifer. In the meth-
odology three types of information are used: transmis-
sivity data from pumping tests, transmissivity data from 
lithofacies measured in boreholes, and water head data. 
These three types of information are merged in order to 
improve the aquifer parameter field defined by spatially 
variable log-transmissivities. The geostatistical approach 
to the inverse model has been illustrated by applying it 
to the Vega de Granada aquifer and the performances 
of the procedures have been ranked. Rather than using 
cross-validation to rank performance, the paper shows 
the use of the direct solution of the groundwater equation 
which is derived in this paper. In this sense, this paper 
presents novel results and a novel application to the Vega 
de Granada as a case study. The data, the methodology, 
the results, and the discussion are presented in the fol-
lowing sections.

Materials and methods

Study area

The study area is the unconfined Vega de Granada detritic aqui-
fer in southern Spain (Fig. 1a). The aquifer has a surface area 
of around 200  km2 and is composed of Quaternary materials 
of fluvial origin (Castillo 1989; Luque-Espinar 2001; García-
Soldado 2009; Pardo-Igúzquiza et al. 2011) which are part of 
the Granada intramountainous basin (Fig. 1b). The aquifer has 
an elongated shape in the E–W direction with a long axis of 
around 22 km and a perpendicular axis of around 8 km.

The aquifer is composed of various fluvial and collu-
vial detritic materials such as gravel, sand, silt and clay in 
spatially varying proportions. The spatial variations in the 
material proportions imply spatial variations in porosity and 
hence in hydraulic conductivity and transmissivity (taking 
into account the thickness of saturated aquifer). At places 
where gravel and sand dominate, the transmissivity is high, 
and where silt and clay dominate, the transmissivity is low.

The Genil River (Fig. 1c) crosses the elongated central 
section of the aquifer from east to west. However, this river is 
regulated by the Canales Dam and thus the water that it con-
tributes to the aquifer can be considered negligible. For the 
same reason, the Cubillas River in the northwest contributes 
negligible amounts of water as it is regulated by the Cubillas 
Dam. The remaining rivers shown in Fig. 1c (Beiro, Darro, 
Monachil, Dilar and Salado rivers) are ephemeral streams 
that carry water only after significant rainfall events. Thus, 
the water input from rivers has no significant effect on the 
methodology used in the work presented here.

Hard transmissivity data

Figure 2a shows the spatial location of the 41 measurements of 
transmissivity obtained from pumping tests. Most of the meas-
urements are located around the central part of the aquifer and 
this zone has the highest transmissivity. Pumping tests are rare 
in zones that are not water productive, which implies a bias in 
the transmissivity data set towards relatively high transmissiv-
ity values. It should be noted that the transmissivity data are 
not the product of a single acquisition but have been compiled 
from historical records available from the office of the Spanish 
Geological Survey in the city of Granada. The pumping tests 
were conducted by different teams and the details of every test 
are unknown (for example, whether or not a borehole fully 
penetrated the aquifer); thus, these measurements have an 
unknown uncertainty. In addition, they are not point support 
data as is usually assumed, but have a specific support that 
is generally unknown, which implies an additional source of 
uncertainty if they are used as point data. The original experi-
mental data from the pumping test were measured in  m2/day 
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and their natural logarithms (i.e. log-transmissivity data) are 
provided in Table 1. The histogram and the basic statistics are 
shown in Fig. 2b. The mean value of the log-transmissivity 
data is 6.96 ln(m2/day) and the variance is 2.91 ln(m2/day)2. 
The median is 7.29 ln(m2/day), which is close to the mean 
and the 25 percentile is 6.29 ln(m2/day)—that is, 75% of the 
measurements are greater than 6.29 ln(m2/day).

Transmissivity data from lithofacies measured 
along boreholes

The Spanish Geological Survey database contains 167 bore-
holes, in relation to the Vega de Granada aquifer, for which 

the lithofacies intersected by the boreholes were recorded 
during drilling. It should be noted that the boreholes were 
drilled over the years by different teams and, most of the 
time, the lithofacies were recorded by members of the drill-
ing team who used their experience but often lacked a geo-
logical background. Thus, there was no standard terminol-
ogy used for the stratigraphic column and the information 
has a high uncertainty, and for this reason, the categorization 
was performed by the authors of this paper. The lithofacies 
were interpreted and a code was assigned ranging from 0 
(clay) to 6 (clean gravel) covering the full range of the dif-
ferent grain sizes sorted into seven categories (Table 2). Fig-
ure 3a shows a three-dimensional (3D) view of the boreholes 
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Fig. 1  a Physical map with the general geographical location of 
the Vega de Granada Aquifer (VGA), Spain, inside the white square 
located in the southern part of the Iberian Peninsula. The colour 
scheme in the figure depicts topographic relief, with red colours repre-
senting higher elevations. b Image showing terrain shadows where the 
Vega de Granada aquifer can be seen as an intramountain basin. The 

polygon defines the border of the aquifer used in the modelling and the 
geometry of the field used for geostatistical estimation. c Drainage net-
work and towns in the Vega de Granada aquifer. The Genil River flows 
from east to west through the middle of the area, where the highest 
transmissivities are found. The black arrow indicates an area of rela-
tively high transmissivity that is discussed in the main text.
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and Fig. 3b shows the spatial locations of the 167 boreholes 
in plan within the borders of the aquifer. The log-transmis-
sivity values in the boreholes were calculated by assigning 
standard values of the hydraulic conductivity, K, (Freeze and 
Cherry 1979) to each lithofacies and using an average aquifer 
saturated thickness (b) of 100 m that was determined from 
historical borehole and geophysics data:

Next, for each borehole the mean value was calculated 
and 4.6 (i.e., ln100) was added to give the final resulting 
value for the two-dimensional (2D) locations shown in 
Fig. 3b. Obviously, these indirect values of transmissivity 
also have significant uncertainty. The experimental values 
of the log-transmissivity data from the lithofacies are pro-
vided in Table 3. The histogram and the basic statistics are 
shown in Fig. 3c. The mean value of the log-transmissivity 
data is 7.35 ln(m2/day) and the variance is 6.08 ln(m2/day)2. 
The median is 7.61 ln(m2/day) and the 25-percentile is 5.58 
ln(m2/day)—that is, despite similar means and medians of the 
log-transmissivities from the pumping test data and from the 
lithofacies data, there is a much larger dispersion of the log-
transmissivity data from the boreholes and there is a larger 
proportion of relatively high values in the log-transmissivity 
data from the pumping test as shown, for example, by the 
25% percentile. However, because of the higher dispersion of 
the log-transmissivity data from the boreholes, they contain 
more high values in absolute terms, as can be seen by com-
paring the 90% percentiles of both data sets.

Piezometric head measurements

Water head measurements vary in space and time. If water 
head measurements for a particular date can be considered 

(1)ln(T) = ln(K) + ln(b)

steady state, they can be related to hydraulic conductivity and 
transmissivity by solving the inverse problem in hydrogeology 
(Yeh 1986). Among the many procedures proposed for solving 
the inverse problem (Zimmerman et al. 1998), the geostatisti-
cal approach, explained later on, was chosen. Of the numerous 
water head data sets that are available for estimating the trans-
missivity field, the set collected in May 1970 has been chosen 
as it has the most (37) water head measurements (Fig. 4). The 
experimental values of the water head are provided in Table 4.

Co‑kriging

Co-kriging is a geostatistical method for optimal multivariate 
spatial interpolation (Chilès and Delfiner 1999). In geostatis-
tics, a spatial variable Y(u) is modelled as a random variable. 
The set of all random variables Y(u) in a region χ of the space, 
u ∈ χ, is considered a random function or random field Y(u). 
With 𝜒 ⊂ ℜd and d = 2 the problem is two dimensional as is 
the case in the work presented here. It is assumed that Y(u) is 
second-order stationary with constant spatial mean

and the two-point statistics, the covariance and the vari-
ogram functions, depend only on the vector h:

where mY , �
2
Y
, �Y (h) and CY(h) are, respectively, the mean, 

variance, variogram and covariance of the random function 
Y(u) and E{.} is the mathematical expectation operator.

(2)E{Y(u)} = mY

(3)CY (u, u + h) = CY (h) = E{Y(u)Y(u + h)} − m2

Y

(4)�Y (h) = CY (0) − CY (h)

(5)CY (0) = �2
Y
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B A S I C     S T A T I S T I C S

NUMBER OF DATA                  41
MEAN                             6.959
VARIANCE                         2.912
STANDARD DEVIATION               1.706
COEFFICIENT OF VARIATION        24.52 %
RANGE                            7.795
SKEWNESS                        -1.055
KURTOSIS                         3.803
MINIMUM                          1.946
10 PERCENTILE                    4.344
25 PERCENTILE                    6.298
MEDIAN                           7.292
75 PERCENTILE                    8.148
90 PERCENTILE                    8.553
MAXIMUM                          9.741
INTERCUARTILE RANGE              1.850

b

Fig. 2  a The Vega de Granada aquifer border (solid line) and the 41 
locations at which log-transmissivity was measured from pumping 
tests. b Histogram and basic statistics of log-transmissivity data from 

pumping tests. The experimental values are provided in Table 1. The 
units of log-transmissivity are ln(m2/day)
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In the simplest case for co-kriging, a variable of interest, or 
a primary variable (e.g.,log-transmissivity), is estimated from 
experimental values of the variable and experimental values 
of a secondary variable that is correlated with the primary 
variable. Obviously, the number of auxiliary variables can 
be increased.

The co-kriging estimator of the log-transmissivity at a 
given geographical location u0 = {x0, y0}, where {x0, y0} are 
the easting and northing coordinates respectively, can be 
expressed as:

whereY(u) = ln T(u) is the natural logarithm of transmissiv-
ity T(u) andZ(u) is the log-transmissivity measured from 
the lithofacies. Also, as an alternative that will be assessed 
further on, the roles of the primary variable and the second-
ary variable could be swapped between both types of log-
transmissivity data. The secondary variable could also be 
H(u), the variable that represents head data. However, the 
log-transmissivity data and the head data will be merged by 
using inverse problem co-kriging because both variables are 
related by the groundwater flow equations.

n and m are the number of values of the variables Y(u) 
and Z(u) respectively, used in the estimation in Eq. (6). Usu-
ally, these data are inside a neighbourhood centred on the 
estimation location u0.

The optimal weights for the linear estimation in Eq. (6) 
are obtained by solving the corresponding and well-known 
co-kriging system—see for example, Goovaerts (1997) or 
Wackernagel (2003). If only the primary variable is used, 
ordinary co-kriging collapses to ordinary kriging of the pri-
mary variable.

For co-kriging with only the two log-transmissivity 
data sets, the direct variograms of the two variables and 
the cross-variogram (or direct covariances and cross-
covariance) between the two variables must be estimated 
from the experimental data. When the number of experi-
mental data is small, as is the case with transmissivity 

(6)Y∗
(
u0

)
=

n∑
i=1

�0
i
Y
(
ui

)
+

m∑
j=1

�0
j
Z
(
uj

)

Table 1  Experimental data (41 values) of log-transmissivity, with 
units ln(m2/day), measured from pumping tests. A map of their spa-
tial location is shown in Fig. 2

Easting (m) Northing (m) Log-T

4,491 22,618 6.622
6,850 21,843 6.249
9,588 22,128 5.293
9,936 22,587 8.147
9,965 23,050 7.454
10,503 22,521 7.791
10,629 22,859 8.707
11,650 19,000 9.198
13,800 19,050 8.975
14,200 18,200 8.006
16,800 15,915 5.886
21,250 12,050 7.261
21,620 11,060 6.401
21,633 10,880 8.243
22,587 17,006 8.265
22,642 17,806 3.583
23,160 6,862 1.945
23,522 13,054 6.536
23,809 7,968 7.167
24,165 9,445 8.220
24,200 9,820 9.740
24,250 9,375 6.345
 24,900 11,450 6.684
 25,550 9,550 8.058
 28,904 9,733 7.860
 29,043 11,589 4.836
27,814 13,088 7.892
18,832 18,360 7.292
19,741 17,860 6.761
17,998 15,500 6.656
19,541 14,071 8.147
15,063 18,666 8.553
21,673 15,689 8.265
19,470 14,534 7.292
6,657 21,478 4.454
7,252 21,904 2.833
10,367 23,135 4.234
21,980 13,715 8.553
26,193 12,978 8.147
19,093 13,489 6.068
22,109 10,758 6.684

Table 2  Lithofacies codes and lithology, and the range of hydraulic 
conductivity (K) values typically assigned to the lithology, plus the 
same information in natural logarithm form. The last column gives 
the value selected from the interval that was assigned to the lithofa-
cies code. This value was selected in such a way that the final mean 
of log-transmissivities for this data set was similar to the mean of the 
log-transmissivities from pumping tests

Lithofacies 
code

Lithology 
description

K
(m/day)

ln K
(ln(m/day))

Selected ln K
(ln(m/day))

6 Clean gravel >1,000 >6.91 9.1
5 Clean coarse 

sand
1,000–10 6.91–2.3 6.2

4 Heterometric 
sand

10–5 2.3–1.61 1.9

3 Fine sand 5–1 1.61–0 1.3
2 Silty sand 2–0.1 0.69 to –2.3 –1.1
1 Silt 0.5–0.001 –0.69 to –6.9 –3.2
0 Clay <0.001 <–6.9 –6.8
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data from pumping tests, the estimation of the variogram 
parameters by maximum likelihood (Kitanidis 1983, Mar-
dia and Marshall 1984, Pardo-Igúzquiza 1997, 1998) is a 
good choice. A combination of maximum likelihood and 
visual fitting was used in this work to estimate the vari-
ogram model parameters.

The unbiasedness of the co-kriging estimator in Eq. (6) 
implies that the mean estimation error is zero:

This is achieved by including the following conditions in 
the co-kriging system:

and

(7)E
{
Y∗

(
u0

)
− Y

(
u0

)}
= 0

(8)
n∑
i=1

�0
i
= 1

The variance of the estimation error can be written as:

Co-kriging is a form of data merging (Dowd and Pardo-
Igúzquiza 2006, 2012)—that is, co-kriging provides an 
efficient means of combining different types of data to pro-
vide a new layer of information. The co-kriging system is 

(9)
m∑
k=1

�0
k
= 0

(10)
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B A S I C     S T A T I S T I C S

NUMBER OF DATA                 167
MEAN                             7.349
VARIANCE                         6.076
STANDARD DEVIATION               2.465
COEFFICIENT OF VARIATION        33.54 %
RANGE                           12.900
SKEWNESS                        -0.516
KURTOSIS                         2.777
MINIMUM                         -0.848
10 PERCENTILE                    3.832
25 PERCENTILE                    5.577
MEDIAN                           7.612
75 PERCENTILE                    9.272
90 PERCENTILE                   10.147
MAXIMUM                         12.052
INTERCUARTILE RANGE              3.695

c

Fig. 3  a Three-dimensional view of the 167 boreholes for which the 
logarithm of transmissivity (T) was recorded (raw values in  m2/day). 
b The Vega de Granada aquifer border (solid line) and the 167 loca-
tions at which the log-transmissivity was measured from lithofacies 

in the boreholes. These points are the plan projection of the boreholes 
(a). c Histogram and basic statistics of log-transmissivity data from 
hydrofacies. The experimental values are provided in Table  2. The 
units of log-transmissivity are ln(m2/day)
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Table 3  Experimental data (167 values) of log-transmissivity, T, in 
units ln(m2/day), calculated from the lithofacies data. A map of their 
spatial location is shown in Fig. 3b

Easting (m) Northing (m) Log-T

4,581 22,666 5.852
6,159 21,695 6.232
6,689 17,469 6.872
6,748 21,474 5.482
6,787 17,437 4.462
6,850 21,843 6.372
7,287 21,038 5.582
7,343 21,901 3.052
8,411 17,083 5.172
8,563 20,380 9.072
8,786 17,574 6.962
8,951 22,596 1.752
9,360 21,080 5.382
9,588 22,128 5.572
9,936 22,587 -0.847
9,965 23,050 5.312
10,019 17,718 7.732
10,089 17,316 2.562
10,100 17,700 5.602
10,487 17,713 9.122
10,496 21,720 9.722
10,503 22,521 5.932
10,508 23,076 4.572
10,629 22,859 8.392
11,650 19,000 9.282
11,781 22,110 7.712
11,927 15,791 3.312
12,480 22,400 6.932
12,525 16,618 5.822
12,624 16,648 3.862
12,809 18,157 7.342
12,933 18,341 10.452
13,530 15,090 5.412
13,800 19,050 4.552
13,957 16,854 7.412
14,190 18,839 10.512
14,200 18,200 7.532
15,841 17,733 9.872
15,930 16,992 7.372
16,078 20,072 6.152
16,550 18,100 8.282
16,599 20,500 6.402
16,642 16,617 11.952
16,661 19,143 6.542
16,800 15,915 8.542
17,316 17,690 9.832
18,513 19,531 2.952
19,183 13,424 4.922

Table 3  (continued)

Easting (m) Northing (m) Log-T

19,281 16,751 3.892
19,772 16,348 6.162
19,953 17,610 5.562
20,165 12,677 7.262
20,614 16,896 5.302
20,776 11,964 9.442
21,103 16,338 8.982
21,255 12,055 6.962
21,310 21,175 1.622
21,320 12,145 11.312
21,426 16,644 10.122
21,440 11,497 8.792
21,526 13,346 8.622
21,620 11,060 8.192
21,633 10,880 8.752
21,663 11,711 8.102
21,738 15,409 9.392
21,753 17,597 2.982
21,860 18,960 7.712
22,061 8,566 2.382
22,071 13,712 9.522
22,141 16,638 10.282
22,217 9,858 11.752
22,243 17,100 4.492
22,265 9,721 9.652
22,301 11,152 10.512
22,343 17,316 7.162
22,540 15,200 8.302
22,560 8,020 6.522
22,587 17,006 6.992
22,642 17,806 5.982
22,732 9,362 9.782
22,785 17,128 6.732
22,862 17,589 4.312
23,032 17,157 3.802
23,080 17,002 3.052
23,160 6,862 4.992
23170 15,676 7.862
23,194 19,220 3.932
23,237 10,992 10.882
23,382 6,862 5.602
23,383 7,016 5.702
23,459 14,626 7.652
23,522 13,054 10.692
23,561 15,058 9.162
23,585 7,754 9.032
23,603 14,041 9.722
23,610 7,723 9.202
23,614 8,369 9.732
23,714 8,585 8.502
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obtained by minimizing the estimation variance in Eq. (1) 
subject to the unbiasedness conditions and, in matrix form 
(Isaaks and Srivastava 1989), is:

with:

where μ1 and μ2 are Lagrange multipliers or parameters 
that are used to include the constraints given in Eqs. (8) 
and (9).

The solution of the co-kriging system:

(11)C� = B

(12)
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Table 3  (continued)

Easting (m) Northing (m) Log-T

23,760 7,969 8.992
23,783 18,847 5.732
23,809 7,968 9.012
23,850 14,224 9.732
23,902 7,176 5.052
23,959 8,275 9.122
24,001 7,227 5.642
24,007 15,363 10.232
24,086 8,860 8.902
24,165 9,445 10.222
24,172 10,554 9.862
24,250 9,375 10.472
24,267 13,728 9.262
24,282 19,830 3.232
24,284 8,950 7.452
24,302 11,632 9.212
24,451 7,964 9.932
24,455 8,765 8.002
24,506 8,826 6.682
24,570 18,533 2.532
24,586 9,874 8.202
24,718 7,376 4.982
24,725 8,393 9.732
24,735 13,698 9.262
24,750 16,300 8.382
24,760 9,740 8.792
24,762 10,180 8.962
24,841 7,252 6.532
24,894 7,930 7.612
24,900 11,450 9.132
25,041 7,620 8.532
25,067 7,898 6.542
25,139 7,682 9.872
25,233 6,849 8.052
25,240 11,718 9.742
25,249 13,074 11.082
25,453 6,509 8.102
25,536 7,895 5.342
25,555 9,555 7.412
25,663 8,541 4.782
25,692 9,065 7.572
25,732 7,708 3.552
25,778 7,123 9.262
25,855 7,523 7.412
25,859 12,115 10.512
25,888 8,972 8.032
25,916 9,495 6.442
25,964 20,743 2.762
25,979 7,676 2.222
26,035 8,816 7.222

Table 3  (continued)

Easting (m) Northing (m) Log-T

26,073 14,671 10.102
26,073 14,640 9.882
26,193 10,325 7.222
26,311 9,492 7.762
26,508 9,337 4.742
26,550 8,258 6.572
26,619 11,339 9.332
26,664 10,630 11.372
26,927 13,249 9.562
27,000 19,375 4.652
27,000 19,200 4.432
27,300 18,780 7.072
27,534 11,550 8.332
27,600 8,660 7.392
27,612 12,258 9.962
27,676 10,655 12.052
27,814 13,088 9.642
28,904 9,733 9.792
29,720 10,087 10.172
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provides the weights required in the estimator in Eq. (6).
In the geostatistical literature, the form of co-kriging 

summarised previously is known as “ordinary co-kriging” 
to distinguish it from “simple co-kriging” in which the mean 
mY in Eq. (2) is known (Journel and Huijbregts 1978; Goo-
vaerts 1997; Chilès and Delfiner 1999).

Inverse problem co‑kriging

In an aquifer, the head and log-transmissivity data are linked 
by the physical equations that describe the groundwater flow, 
the type of boundary conditions at the border of the aquifer 
and by other inputs (e.g., recharge by rainfall) and outputs 
(e.g., extraction of water by pumping wells or by evapo-
transpiration). For the case of an unconfined aquifer, the 
groundwater flow model with Dupuit assumptions gives the 
Boussinesq equation that can be written as (Cordano and 
Rigon 2013):

where K(u) and H(u) are the hydraulic conductivity and the 
water head respectively, at the spatial location u = {x, y}. 
R(u, t) represents the recharge or extraction term of water 
from the aquifer. S and t are, respectively, the specific yield 
(drainable porosity) and time.

For the steady-state case:

(14)� = C
−1
B

(15)

�

�x

(
K(u)H(u)

�H(u)

�x

)
+

�
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(
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�y

)
= S

�H(u)

�t
− R(u, t)

(16)
�H(u)

�t
= 0

and, in the absence of recharge and extraction (pumping 
wells or evapo-transpiration, for example):

and

and considering the following relationships:

and

After operating with the derivative of a product of func-
tions and some minor calculus operations, the resulting 
partial differential equation is:

where T(u), and Y(u) are transmissivity and log-transmis-
sivity respectively, at the spatial location u = {x, y}. b is 
the mean saturated thickness of the aquifer, which is used 
because it is common practice to consider time-invariant 
“transmissivity” values defined by the hydraulic conductiv-
ity multiplied by a time-invariant representative thickness 
(Pulido-Velazquez et al. 2007).

As there will be given boundary conditions at the bor-
der of the aquifer, it is assumed that any other source of 
recharge or extraction in the aquifer is zero. Given the 
boundary of the aquifer Ω and the unitary vector n normal 
to the boundary, the no-flow boundary condition implies:

In the same way, in the parts of the boundary Ω where the 
boundary condition is a fixed head, the boundary condition is:

Obviously, this steady-state condition is only realistic if 
it is considered for a particular period of time (e.g., a day) 
as groundwater flow and other recharge processes are slow 
and it is assumed that there are no pumping wells running. 
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Fig. 4  The Vega de Granada aquifer border (solid line) and the loca-
tions of the 37 water head measurements surveyed in May 1970. The 
experimental values are provided in Table 3
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Thus, the steady-state conditions can be considered realis-
tic for the day on which the water head data were measured 
but a transient model should be used for longer periods of 
time (e.g., a week, a month, or more).

Ordinary co-kriging could be applied to the log-transmis-
sivity and water head and ignoring Eq. (23) to estimate the 
covariance of log-transmissivity, the covariance of the water 
head and the cross-covariance between log-transmissivity 
and water head. However, there are several inference prob-
lems with this approach.

Firstly, the hypothesis of a constant mean water head, 
such as that in Eq. (2), is not realistic for an aquifer water 
head. Water head generally shows a spatial trend. That trend, 
or drift, is the difference in potential energy (for an uncon-
fined aquifer) that results in the groundwater flowing from 
areas of higher potential to areas of lower potential. Thus, a 
spatially variable mean must be considered:

The trend is usually modelled as a low order polynomial:

where {bi; i = 0, …, p} is a set of coefficients that must be 
estimated and

{fi(u); i = 0, …, p} is a set of known base functions, 
usually monomial, of the co-ordinates—for example, 
{1, x, y, xy, x2, y2} are the six base functions for the case of a 
quadratic polynomial trend on a plane.

A trend requires new unbiasedness conditions for the 
co-kriging estimator—for example, for a linear trend in the 
secondary variable only, the co-kriging system must take 
into account the following unbiased conditions:

Firstly, the ordinary co-kriging system that takes these unbi-
asedness conditions into account is universal co-kriging (Jour-
nel and Huijbregts 1978; Goovaerts 1997; Chilès and Delfiner 
1999). Secondly, it can be shown (Hoeksema and Kitanidis 
1984; Dagan 1985; Ahmed and de Marsily 1993; Kitanidis 
1997, among others) that the groundwater flow equation that 
physically links the log-transmissivity and water head implies 
that their cross-covariance is anisotropic and antisymmetric. 
As it is difficult to provide a good estimate of this convoluted 
cross-covariance from small sets of experimental log-trans-
missivity and water head data, a theoretical derivation of the 
cross-covariance may be preferable. This problem has received 
significant attention in the scientific literature. Basically, there 
are two approaches—use various numerical methods to pro-
vide an analytical solution (Rubin 2003) or use a Monte Carlo 
method (Kitanidis 1997). In this sense, Dagan (1985) derived 

(26)E{H(u)} = mH(u)

(27)mH(u) =

p∑
i=0

bifi(u)

(28)
n∑
i=1

�0
i
= 1

(29)
m∑
j=1

�0
j
= 0

(30)
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�0
i
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(31)
n∑
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�0
i
yi = 0

Table 4  Experimental water head data (37 values). A map of their 
spatial locations is shown in Fig. 4

Easting (m) Northing (m) Water head (m)

6,076 17,905 523.33
8,223 18,195 531.88
9,826 21,140 540.64
9,299 22,897 544.64
7,287 21,038 548.07
12,615 21,703 549.16
6,882 22,645 552.84
11,192 16,445 559.11
16,449 20,317 565.34
14,798 17,124 567.69
15,083 15,859 570.01
16,562 19,052 570.64
16,453 17,635 572.31
17,564 17,904 575.88
16,588 15,847 578.93
17,555 16,641 581.41
22,287 16,360 595.49
20,033 18,379 596.61
21,331 13,624 598.21
23,850 14,224 600.14
19,556 13,853 602.08
25,109 14,307 602.31
21,320 12,145 602.94
24,302 11,632 602.99
24,670 11,260 603.20
27,612 12,258 605.34
27,676 10,655 606.29
26,664 10,630 609.72
20,021 20,167 610.45
21,755 17,936 610.80
23,698 17,121 613.14
28,904 9,733 614.33
26,508 9,337 629.34
23,146 19,467 645.20
22,813 21,226 660.70
25,182 17,882 671.52
24,721 19,180 676.13
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an analytical expression that considered an aquifer of infinite 
extent and a water head with a linear trend along one of its 
principal axes together with an exponential covariance for the 
log-transmissivity and found that the cross-covariance between 
log-transmissivity and water head, CYH(h), is given by:

where�2
Y
∶ is the variance, or total sill, of the log-transmissivity 

Y(u) andℓ is the range of the exponential covariance of log-
transmissivity Y(u). The covariance of the log-transmissivity is:

where:
C0 is the nugget variance;
C1 is the partial sill variance;
h =

(
hx, hy

)
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(

x1−x2

�
,
y1−y2

�

)
 is the distance vector stand-

ardized by the range of log-transmissivity;
h =

√
h2
x
+ h2

y
 is the magnitude of the standardized dis-

tance vector andmH(u) = m(x, y) = β0 + β1x is the linear trend 
of the water head, which, in this case, is an east–west trend.

The universal co-kriging estimator can then be written as:

for which the optimal weights are obtained by solving the 
universal co-kriging system (in matrix form) such as given 
in Eq. (11) but with the following matrix elements:
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where μ1, μ2 μ3 and μ4 are Lagrange multipliers or param-
eters that are included in the minimization of the estima-
tion variance subject to the constraints given in Eqs. (12) 
and (13). The solution of the co-kriging system is given by 
Eq. (14). In the geostatistical literature the co-kriging sys-
tem in Eqs. (12) and (13) is known as universal co-kriging. 
It should be noted that in Eqs. (12) and (13) the trend is 
considered only in the secondary variable (i.e., water head) 
as there is no trend in the primary variable (i.e., log-trans-
missivity). Furthermore, the universal co-kriging system in 
which the cross-covariances between log-transmissivity and 
water head take into account the groundwater flow equation 
(i.e., the physical link between log-transmissivity and water 
head) is the geostatistical solution to the inverse problem 
in hydrogeology (Kitanidis 1996; Zimmerman et al. 1998; 
Rubin 2003) and hence the descriptive name of “inverse 
problem universal co-kriging” given to the estimator.

Results

The first result is the log-transmissivity obtained by ordinary 
kriging using the log-transmissivity data from the pumping 
tests. The estimated variogram and the fitted model for the 
log-transmissivity data from the pumping tests are shown 
in Fig. 5a. The estimated log-transmissivity field is shown 
in Fig. 6a. The model fitted to the estimated covariance is:

i.e., an isotropic exponential covariance with a nugget 
variance of 1.5, a partial sill of 1.5 and a range of 3,373 
m. A study of the uncertainty of the covariance parameters 
for log-transmissivity can be found in Pardo-Igúzquiza et al. 
(2009).

The second result is the log-transmissivity obtained by ordi-
nary kriging of the log-transmissivity data from the hydrofa-
cies data. The estimated variogram and the model fitted for 
the log-transmissivity data from pumping tests are shown 
in Fig. 5b; the estimated log-transmissivity field is shown in 
Fig. 6b. The model fitted to the estimated covariance is:

i.e., an isotropic exponential covariance with a nugget 
variance 2.14, a partial sill of 4.98 and a range of 3,373 
m. Both covariances were modelled with the same range 
because the same range must be used in the linear co-region-
alization model to generate the co-kriged estimates.

Another result of estimated log-transmissivity maps is 
provided by ordinary co-kriging with one unbiasedness 
condition. In this case the estimated cross-variogram and 
the fitted model are shown in Fig. 5c and the fitted model is

(38)CY (h) = 1.5 + 1.5 exp (−h∕3373)

(39)CZ(h) = 2.14 + 4.98 exp (−h∕3373)
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The cross-covariance between the two types of log-trans-
missivity data was difficult to estimate from the data as the 
experimental sampling plan was heterotopic (Wackernagel 
2003) with few sites at which both the primary and second-
ary variables were sampled.

The linear model of co-regionalization was used to 
model the direct and cross covariances. The estimated 
maps are provided in Fig. 7a,b for ordinary co-kriging 
using both types of log-transmissivity data and consid-
ering the pumping test data and the lithofacies data as 
primary variables respectively.

A fourth result is the log-transmissivity estimated by 
universal co-kriging using the log-transmissivity data from 
the pumping test and the head data. The experimental vari-
ograms of the water head for the four main geographical 
directions is shown in Fig. 5d. The water head clearly has 

(40)CY (h) = 1.5 exp (−h∕3373) a trend (Fig. 8) that provides the difference in potential 
energy (in an unconfined aquifer) that drives the water 
flow from the northern and eastern parts of the aquifer 
towards the south-east where the water exits the aquifer. 
As there is a small number (37) of water head data together 
with a trend and the parameters of the variogram of the 
residual must be estimated, the maximum likelihood esti-
mation method was used to infer these parameters (Pardo-
Igúzquiza 1997). The estimated water head trend is:

where

The estimated isotropic variogram of the residual is:

(41)mH(x, y) = 423.3874 + 0.006125x + 00.3368y

(42)E{H(u)} = mH(u) = mH(x, y)

(43)�R(h) = 241.4Sph(h;7147)
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Fig. 5  a Omnidirectional experimental variogram (solid blue dots) 
and fitted model (solid red line) for log-transmissivity estimated 
from pumping tests. b Omnidirectional experimental variogram 
(solid blue dots) and fitted model (solid red line) for the log-trans-
missivity estimated from borehole lithofacies. c Omni-directional 

experimental cross-variogram (solid blue dots) and fitted model 
(solid red line) between log-transmissivity estimated from pumping 
tests and log-transmissivity estimated from borehole lithofacies. d 
Experimental variogram of water head for the four main geographi-
cal directions
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i.e., a spherical model with no nugget effect, a sill of 241.4 
and a range of 7,147 m. The water head field, estimated by 
using universal kriging with a linear trend, is shown in Fig. 8.

The cross-covariance between log-transmissivity and 
water head is required for the application of inverse model 
universal co-kriging. The estimated cross-covariance 
between log-transmissivity data from the lithofacies and the 
water head data is shown in Fig. 9a. This cross-covariance 
is anisotropic, antisymmetric and shows a high statistical 
variability because of the small amount of data in the data 
sets, especially in the water head data set. Consequently, 
instead of trying to fit a convoluted model to the experi-
mental variogram, Dagan’s (1985) analytical solution was 
used. Figure 9b shows the analytical cross-covariance pro-
vided by Dagan’s solution which can be compared with the 
experimental cross-covariance in Fig. 9a. A comparison of 
Figs. 9a and 9b shows that the neat cross-covariance model 
in Fig. 9b can be intuited in the experimental cross-covar-
iance in Fig. 9a. The cross-covariance is anisotropic, with 
higher variability in the flow direction and vanishing in a 
direction perpendicular to the water flow. In addition, the 
cross-covariance is antisymmetric with:

However, the co-kriging covariance matrix is still sym-
metric because for a given single entry in this matrix in rela-
tion to the cross-covariance:

The cross-covariance between log-transmissivity from 
the pumping tests and the water head is the imposed cross-
covariance given in Eq. (7) with 3.0, 0.0061, and 3,373 m 
for �2

Y
 , β1 and ℓ, respectively. The same is valid for the cross-

covariance between log-transmissivity data from lithofacies 

(44)CYH(h) = −CYH(−h)

(45)CYH

(
ui − uj

)
= CHY

(
uj − ui

)

and water head but taking into account that �2
Y
 is equal to 

7.12. Four cases of the inverse problem by universal co-
kriging have been considered:

• Inverse problem universal co-kriging using log-trans-
missivity data from pumping tests and water head data. 
The estimated map of log-transmissivity is shown in 
Fig. 10a.

• Inverse problem universal co-kriging using log-trans-
missivity data from lithofacies and water head data. The 
estimated map of log-transmissivity is shown in Fig. 10b.

• Inverse problem universal co-kriging using log-transmis-
sivity data from the pumping test, log-transmissivity data 
from lithofacies and water head data. The log-transmis-
sivity data from the pumping test is the primary variable, 
the other two are secondary variables. The estimated map 
of log-transmissivity is shown in Fig. 11a.

• Inverse problem universal co-kriging using log-transmis-
sivity data from pumping tests, log-transmissivity data 
from lithofacies and water head data. The log-transmis-
sivity data from lithofacies is the primary variable, the 
other two are secondary variables. The estimated map of 
log-transmissivity is shown in Fig. 11b.

The implications of these results are discussed in the fol-
lowing section.

Discussion

Although the different geostatistical estimation methods pro-
vide different transmissivity fields (Figs. 6, 7, 10 and 11), 
they are significantly coherent. The log-transmissivity field 
obtained by ordinary kriging of the log-transmissivity data 
(Fig. 6a) from the pumping test provides a transmissivity 
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Fig. 6  Log-transmissivity field estimated by ordinary kriging. a 
Using log-transmissivity data from pumping tests (OK-1 in Table 5). 
b Using log-transmissivity data from borehole lithofacies (OK-2 in 
Table 5). The black squares represent the 41 locations at which log-

transmissivity was measured from pumping tests. The biased spatial 
locations of the pumping tests are clear because the low transmissiv-
ity regions (A, B, C and D) have no pumping tests. The units of log-
transmissivity are ln(m2/day)
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map with the coarsest detail and it is based on biased data in 
the sense of preferential sampling in areas of high transmis-
sivity as may be seen in Fig. 6b, where low transmissivity 
zones A, B, C and D, in the figure, have no pumping test. 
The transmissivity field estimated by ordinary kriging of the 
log-transmissivity data from the hydrofacies data generates a 
map (Fig. 7b) that agrees with the general trend provided by 
the previous transmissivity field. It also incorporates more 
detail because there are more experimental data that were 
sampled more homogenously over the whole area rather than 
only in high transmissivity zones.

An improved map could be generated by ordinary co-
kriging using the additional indirect transmissivity data from 
the hydrofacies or by using inverse problem co-kriging and 
head data. The estimated log-transmissivity maps for ordi-
nary co-kriging are provided in Fig. 7a,b for the cases that 

consider as primary variables the experimental data from 
pumping tests or from lithofacies. A comparison of the ordi-
nary kriging maps and the ordinary co-kriging maps shows 
that they are very similar because the cross-correlation 
between the two sets of log-transmissivity data is low and 
thus the information provided by the secondary information 
is low. This is especially clear by comparing Figs. 6b and 7b, 
which are almost identical.

With respect to the inverse problem, universal co-
kriging of the four previous possibilities resulted in the 
log-transmissivity maps in Figs. 10 and 11. Figure 10 is a 
log-transmissivity map estimated by inverse problem uni-
versal co-kriging using two variables. Figure 10a uses log-
transmissivity data from pumping tests and water head data 
while Fig. 10b uses log-transmissivity data from lithofacies 
and water head data. Figure 11 is the log-transmissivity map 

5 km

ln T

a

8.221
7.649
7.077
6.505
5.932
5.36
4.788

5 km

ln T

b

10.33
9.123
7.915
6.706
5.497
4.288
3.079

Fig. 7  Log-transmissivity field estimated by ordinary co-kriging 
with one unbiasedness condition and using log-transmissivity 
data from the pumping test and the borehole log-transmissivity 
lithofacies data. a Using log-transmissivity data from pumping 

tests as the primary variable (OCOK-1-2 in Table  5). b Using 
log-transmissivity data from borehole lithofacies as the primary 
variable (OCOK-2-1 in Table  5). The units of log-transmissivity 
are ln(m2/day)
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Fig. 8  a Water head map (in metres) estimated by universal krig-
ing with a linear drift and the variogram of the residuals estimated 
by maximum likelihood. b Numerical model of the aquifer using a 
discretization of 100 m  ×  100 m cells. The cells of the aquifer are 
active cells while the cells outside of the aquifer are impervious cells 

that remain inactive. The coloured line (blue and red) represents the 
boundary Ω. The different colours represent the different bound-
ary conditions: the blue line represents the border with a fixed head 
boundary condition and the red line represents the no-flow boundary 
condition
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estimated by inverse problem universal co-kriging using 
three variables: the two log-transmissivity data sets and 
water head data. Figure 11a uses log-transmissivity data 
from pumping tests as the primary variable and in Fig. 11b 
the primary variable used was log-transmissivity data from 
the lithofacies.

The different methods could also be compared by their 
estimation variance for the different methodologies; how-
ever, these results depend significantly on the parameters 
estimated for the covariances of the different variables 
and a more independent comparison would be better. For 
this, the transmissivity fields can be used as input to the 
direct problem of using the groundwater flow model to 
estimate the May 1970 head field. The direct model solves 
the 2D steady-state saturated groundwater flow model in 
an unconfined aquifer and can be written in terms of log-
transmissivities as given in Eq. (22) with the boundary 
conditions of no-flow and prescribed head given in Fig. 8. 

The area in Fig. 8 was discretized into 265 × 200 cells of 
100 m × 100 m and a finite difference scheme was used to 
solve Eq. (22) taking into account two types of boundary 
conditions—no-flow and prescribed head, of which the 
no-flow boundary condition implies no-flow in the per-
pendicular direction.

The boundary conditions for the steady-state model were 
chosen as the specified heads as provided by the univer-
sal kriging map of water head shown in Fig. 8 and the no-
flow boundaries in the borders are those determined from 
previous studies—Pardo-Igúzquiza et al. (2009); Pardo-
Igúzquiza and Chica-Olmo 2004, 2007 and Kuhlman and 
Pardo-Igúzquiza (2010).

Taking each estimated log-transmissivity field as an input it 
is possible to estimate the water head data by solving Eq. (17) 
using the boundary conditions of Fig. 8. From the modelled 
water head field it is possible to calculate the corresponding 
water head values at the experimental locations where water 
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Fig. 9  a Experimental cross-covariances between log-transmissivity 
and water head. The different colours represent different spatial direc-
tions. Experimental variogram (solid blue dots) and fitted model 
(solid red line) for log-transmissivity estimated from pumping tests. 
b Theoretical cross-covariances between log-transmissivity and water 
head. Experimental variogram (solid blue dots) and fitted model 
(solid red line) for the log-transmissivity estimated from borehole 

lithofacies. c Experimental cross-covariance between log-transmissiv-
ity data from pumping tests and log-transmissivity data from lithofa-
cies. Note the low value of the cross-covariance close to the origin 
indicating that the maximum correlation is reached for a distance for 
which one data set should be shifted with respect to the other. This 
explains the low correlation between the two data sets indicated by 
the variogram in Fig. 5c
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head is known and different validation statistics can be cal-
culated. The validation statistics considered in this work are 
mean error (ME), mean squared error (MSE), mean normal-
ized squared error (MNSE), the mean absolute error (MAE), 
the Nash and Sutcliffe (1970) efficiency (NSE) and the Kling-
Gupta Efficiency criteria (KGE) (Knoben et al. 2019):

(46)ME =
1

N

N∑
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(
ho
i
− hm

i

)
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Fig. 10  Log-transmissivity (T) field estimated by inverse problem 
ordinary universal co-kriging with two variables: a Using log-trans-
missivity data from pumping tests and water head data (IP-UCOK-1 
in Table 5). The white arrow shows a channel of relatively high trans-

missivity that is discussed in the main text. b Using log-transmissiv-
ity data from borehole lithofacies and water head data (IP-UCOK-1 in 
Table 5). The units of log-transmissivity are ln(m2/day)
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Fig. 11  Log-transmissivity (T) field estimated by inverse problem 
ordinary universal co-kriging with three variables: log-transmissiv-
ity data from pumping tests, log-transmissivity data from borehole 
lithofacies and water head data. a Using log-transmissivity data from 

pumping tests as the primary variable (IP-UCOK-1-2 in Table 5). b 
Using log-transmissivity data from borehole hydrofacies as the pri-
mary variable (IP-UCOK-2-1 in Table 5). The units of log-transmis-
sivity are ln(m2/day)
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σo  Standard deviation of observed values
σm  Standard deviation of modelled values
μo  Mean of observed values, i.e., equal to ho

i

μm  Mean of modelled values
N  Number of spatial locations at which the water head 

was measured

The ME should be zero for an unbiased model. The MSE, 
MNSE and MAE should be as small as possible, whereas 
NSE and KGE should be as close to 1 as possible. The 
results obtained for the different validation statistics for the 
different geostatistical methodologies are shown in Table 5.

A field of constant log-transmissivity was used as a refer-
ence for comparison and the validation results are also shown 
in Table 5. The ordinary kriging map of the log-transmissiv-
ity data from pumping tests provides a map that produces 
worse results (MSE = 5.4197, in Table 5) than considering 
a field of constant log-transmissivity (MSE = 5.2864). This 
implies that the image in Fig. 6a is not a good representation 
of the true unknown underlying log-transmissivity field and 
even a constant image—for example, the mean log-transmis-
sivity value, gives better performance results. However, the 
ordinary kriging map of log-transmissivity obtained by using 
the lithofacies and shown in Fig. 6b produces the third-best 
result (MSE = 1.7418) of all the methods that have been 
tested. A comparison of Figs. 6a and 6b shows that Fig. 6b 
has significantly more spatial detail than Fig. 6a, especially in 
the elongated high log-transmissivity values in the centre of 
the western part of the aquifer. The use of ordinary co-krig-
ing with the log-transmissivity data as the primary variable 
makes very little difference (MSE = 5.2764) when compared 
with ordinary kriging (MSE = 5.4197). Using ordinary co-
kriging with log-transmissivity data from lithofacies gives 
worse results (MSE = 2.7325) than ordinary kriging (MSE 
= 1.7418). In fact, it seems that, despite the coherence of the 
basic statistics and histograms (Figs. 2b and 3c) of both log-
transmissivity data sets, they have no spatial correlation for 
a distance of zero as may be seen in Fig. 9c, which shows the 
spatial cross-covariance between the two data sets. Thus, the 
cross-variogram (Fig. 5c) used in ordinary co-kriging does 
not capture the spatial shift between the two data sets and 
the sill of the cross-variogram indicates a low correlation 
of around 0.3 between the two data sets. As a result, merg-
ing the two data sets is not useful as the cross-variogram 
cannot capture the complexity of the cross-covariance in 
Fig. 9c; however, each data set can be used independently 
of the other. When applying inverse problem universal co-
kriging, Fig. 10a is obtained by using the log-transmissivity 
data from pumping tests and the water head data provide the 
best image as measured by the validation statistics in Table 5 
(MSE = 0.6305). This image is even better than the solution 
given by inverse problem universal co-kriging using the log-
transmissivity data from the lithofacies and the water head 

data (MSE = 1.3799), even though the log-transmissivity 
from the lithofacies data were better in ordinary kriging and 
ordinary co-kriging. The images of the log-transmissivity 
fields (Fig. 10a,b) are clearly improved by including the water 
head data irrespective of the log-transmissivity data set used.

Finally, if the three variables (the two log-transmissivity 
data sets and the water head data) are used in the inverse 
problem universal co-kriging, the results deteriorate because 
of the spatial incompatibility of the two log-transmissivity 
data sets. When the pumping test data are used as the pri-
mary variable the results are bad (MSE = 5.9882). They are 
also bad when the primary variable is the lithofacies data 
(MSE = 2.9084). The estimated log-transmissivity fields are 
given in Fig. 11.

To put these results into perspective it must be said that 
the aquifer boundary conditions shown in Fig. 8 have a 
strong influence on the output of the direct modelling and 
even using a constant log-transmissivity field gives good 
results as can be seen in Fig. 12a where the scatterplot 
between observed versus modelled water head data can 
be compared with Fig. 12b, which shows the scatterplot 
with the best results obtained by inverse problem univer-
sal kriging using the pumping test log-transmissivities and 
water head data in Fig. 10a. In terms of the NSE and KGE 
validation statistics, the solutions provided by the differ-
ent methods are very similar as can be seen in Table 5. 
However, the best estimated log-transmissivity field is the 
one in Fig. 10a, which was obtained by inverse problem 
universal co-kriging using the pumping test data and water 
head data. This figure shows remarkably well the high log-
transmissivity channel that runs through the central part 
of the aquifer (highlighted with a white arrow in Fig. 11a) 
and follows the course of the Genil River (black arrow in 
Fig. 1c), thus confirming the conceptual model proposed 
by the hydrogeologists who have worked in this area over 
an extended period (Castillo 1986; Luque-Espinar 2001; 
García-Soldado 2009). This conceptual model consists of 
a channel of high transmissivity running through the mid-
dle of the aquifer with transmissivity decreasing towards 
the borders; however, Fig. 10a provides a quantitative and 
more complete picture than the simple conceptual scheme 
proposed by the hydrogeologists.

It is well-known that even the best estimated image, 
such as the one in Fig. 10a, is a smoothed version of the 
true but unknown log-transmissivity field. Since Del-
homme (1979), geostatistical simulation has been used 
to generate simulated images of the transmissivity field 
of an aquifer in which each image reproduces the real 
variability of the log-transmissivity as expressed by the 
variogram. A representative set of these images includes 
the uncertainty introduced by the spatial variability of the 
transmissivity between the experimental data. It is pos-
sible that one of these simulated images is very close to 
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the reality but all of them must be used because the real-
ity is unknown. Obviously, the uncertainty of the param-
eters of the variogram model should also be taken into 
account when generating the simulated images. By using 
a large number of simulated images, it is, for example, 
possible to transfer the uncertainty in the transmissiv-
ity field into the uncertainty of the modelled water head. 
Thus, at each location, instead of having a single mod-
elled water head, there is an ensemble of water heads the 
histogram of which provides the probability of the water 
head having a given interval value or being higher than a 
given threshold at each location. However, this is not the 
purpose of the work presented here, which is to identify 
smooth log-transmissivity images that contain as much 
detail as possible, and that can be used, inter alia, for 
modelling, optimization of observation grids and planning 
future geophysical campaigns.

Conclusions

Co-kriging, in its various forms, provides a means of com-
bining different sources of hydrogeological information, 
which is particularly useful in estimating transmissivity 
fields. A case study of a detritic unconfined aquifer in 
southern Spain has been used as a benchmark for com-
paring methodologies. The transmissivity field generated 
from the lithofacies measured at boreholes demonstrates 
the importance of the indirect measures of log-transmis-
sivity obtained from indirect data. This is particularly 
important because log-transmissivity data from pumping 
tests are biased towards high values as pumping tests are 
usually conducted to validate boreholes for productive 
water extraction. Nevertheless, the validation results show 
the incompatibility of the two types of information—the 
hard log-transmissivity data from the pumping tests and 

Table 5  Mean error (ME), mean square error (MSE), mean normal-
ized square error (MNSE), mean absolute error (MAE), Nash and 
Sutcliffe efficiency (NSE) and the Kling-Gupta Efficiency (KGE) 
validation statistics for the different geostatistical methods. The geo-
statistical methods are ordinary kriging with log-transmissivity from 
pumping tests (OK-1), ordinary kriging with log-transmissivity data 

from boreholes (OK-2), ordinary co-kriging with log-transmissivity 
data from pumping tests and from hydrofacies (COK-1-2), inverse 
problem universal co-kriging with log-transmissivity data from 
pumping tests and head data (IP-UCOK-1) and inverse problem uni-
versal co-kriging with log-transmissivity data from hydrofacies and 
head data (IP-UCOK-2)

Geostatistical method ME MSE MNSE MAE NSE KGE

Constant ln T 0.0027 5.2864 0.0085 1.6880 0.9959 0.9800
OK-1 0.0070 5.4197 0.0087 1.7366 0.9958 0.9797
OK-2 0.0738 1.7418 0.0028 0.9529 0.9986 0.9867
OCOK-1-2 0.1374 5.2764 0.0084 1.6870 0.9960 0.9782
OCOK-2-1 0.1289 2.7325 0.0043 1.1788 0.9979 0.9831
IP-UCOK-1 -0.0041 0.6305 0.0010 0.6087 0.9995 0.9925
IP-UCOK-2 0.0449 1.3799 0.0022 0.8891 0.9989 0.9889
IP-UCOK-1-2 0.1121 5.9882 0.0096 1.7969 0.9954 0.9776
IP-UCOK-2-1 0.1100 2.9084 0.0046 1.2241 0.9977 0.9829
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Fig. 12  Observed water head versus modelled water head for two 
extreme cases of the estimated log-transmissivity field. a Con-
stant log-transmissivity. b The method with the best performance in 

Table 5, that is, inverse problem universal co-kriging using log-trans-
missivity data from pumping tests and water head data (IP-UCOK-1)
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the soft log-transmissivity data from the lithofacies. Each 
log-transmissivity datum from the pumping tests encap-
sulates the permeability value (or hydraulic conductivity) 
and the saturated thickness at the location of the test. On 
the other hand, the transmissivity data from the lithofacies 
is proportional to the transmissivity from pumping tests 
(Table 3) and does not contain information on saturated 
thickness. A mean saturated thickness of 100 m for the 
aquifer is assumed in order to transform the permeability 
data into transmissivity data or, more exactly, data with 
“transmissivity units”. The incompatibility between the 
two log-transmissivity data sets is due to the spatial vari-
ability of the saturated thickness. The log-transmissivity 
data from the pumping test incorporates that spatial vari-
ability (at least in theory), whereas the log-transmissivity 
data from the lithofacies does not.

However, even though the log-transmissivity data sets 
are incompatible, if there were no pumping test data, 
the log-transmissivity data from the lithofacies would 
provide reasonable images of the log-transmissivity 
field that could be further improved by incorporating the 
water head data by inverse modelling with universal co-
kriging. Nevertheless, the best results were obtained by 
inverse problem universal co-kriging using the log-trans-
missivity data from pumping tests and the water head 
data (Fig. 10a; Table 5). In addition, the ability of ana-
lytical solutions to obtain the cross-covariance between 
log-transmissivity and water head data has been demon-
strated. In particular, the analytical solution of Dagan 
(1985) overcomes the necessity of fitting a model to a 
complex cross-covariance that is anisotropic, antisym-
metric and difficult to visualize from the experimental 
cross-covariances. However, a verification of the analyti-
cal solution using the experimental data is desirable. A 
comparison of the different estimated log-transmissivity 
values can be used to improve knowledge of the transmis-
sivity field and could be used to optimize the locations 
for acquiring additional experimental data—pumping test 
data, borehole data and geophysical data. In the interests 
of open science, the experimental data used in the work 
have been provided. This will allow others to verify the 
work or assess alternative methodologies to obtain more 
reliable log-transmissivity fields.
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