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A B S T R A C T   

Background: The diagnosis of rare genetic diseases is often challenging due to the complexity of the genetic 
underpinnings of these conditions and the limited availability of diagnostic tools. Machine learning (ML) algo-
rithms have the potential to improve the accuracy and speed of diagnosis by analyzing large amounts of genomic 
data and identifying complex multiallelic patterns that may be associated with specific diseases. In this sys-
tematic review, we aimed to identify the methodological trends and the ML application areas in rare genetic 
diseases. 
Methods: We performed a systematic review of the literature following the PRISMA guidelines to search studies 
that used ML approaches to enhance the diagnosis of rare genetic diseases. Studies that used DNA-based 
sequencing data and a variety of ML algorithms were included, summarized, and analyzed using bibliometric 
methods, visualization tools, and a feature co-occurrence analysis. 
Findings: Our search identified 22 studies that met the inclusion criteria. We found that exome sequencing was 
the most frequently used sequencing technology (59%), and rare neoplastic diseases were the most prevalent 
disease scenario (59%). In rare neoplasms, the most frequent applications of ML models were the differential 
diagnosis or stratification of patients (38.5%) and the identification of somatic mutations (30.8%). In other rare 
diseases, the most frequent goals were the prioritization of rare variants or genes (55.5%) and the identification 
of biallelic or digenic inheritance (33.3%). The most employed method was the random forest algorithm 
(54.5%). In addition, the features of the datasets needed for training these algorithms were distinctive depending 
on the goal pursued, including the mutational load in each gene for the differential diagnosis of patients, or the 
combination of genotype features and sequence-derived features (such as GC-content) for the identification of 
somatic mutations. 
Conclusions: ML algorithms based on sequencing data are mainly used for the diagnosis of rare neoplastic dis-
eases, with random forest being the most common approach. We identified key features in the datasets used for 
training these ML models according to the objective pursued. These features can support the development of 
future ML models in the diagnosis of rare genetic diseases.   

1. Introduction 

Rare diseases (RDs) continue to be a challenge to the healthcare 
system due to the difficulty of reaching an accurate diagnosis. Although 

there is no uniform international criteria, RDs are usually defined as 
those affecting fewer than 4–5 cases out of 10,000 individuals [1]. 
Considering them as a whole, RDs can be regarded as a common event, 
with 7,265 different RDs (http://www.orphadata.org/data/xml/en_pro 
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duct7.xml, updated on November 28, 2022) with an estimated accu-
mulated prevalence of 3.5–5.9% and affecting more than 400 million 
people worldwide [2,3]. 

Most RDs appear to be caused or modified by genetic factors; up to 
80% of them are thought to have a genetic etiology [4]. Our current 
knowledge on this aspect is limited, existing 3,868 RDs (53.2%) linked 
to, at least, a gene that cause or modify the disease phenotype 
(http://www.orphadata.org/data/xml/en_product6.xml, updated on 
November 28, 2022) [2]. The improved performance and the price 
reduction of Next-generation sequencing (NGS) technologies in recent 
years have made them more attractive for clinical applications in RDs, 
increasing rapidly the number of phenotype-genotype associations [5]. 
This has resulted in an accurate molecular diagnosis in many patients 
suffering from monogenic RDs, which has occasionally led to person-
alized treatments and improved disease management. Nevertheless, 
other patients with more complex disorders receive an inconclusive 
genetic diagnosis, placing the diagnostic yield of DNA-based NGS 
technologies in most studies at 40–50% [6,7]. This is mainly caused by 
the absence of pathogenic or likely pathogenic variants in known 
disease-causing genes, finding instead variants of unknown significance 
(VUS) or variants in novel genes not previously associated with the 
disease. 

In this scenario of rare and complex genetic disorders where a 
diagnosis is not reached or a prognosis is not accurate enough, more 
sophisticated methods should be applied to analyze large-scale genomic 
data. The use of artificial intelligence (AI) and, particularly, machine 
learning (ML) algorithms has raised great interest in recent years due to 
its potential to uncover complex patterns in genomic data [8]. These ML 
algorithms have shown the capacity to learn from and act on large, 
heterogeneous datasets to extract new biological insights, improving the 
accuracy of the diagnosis of RDs [9–12]. 

Compared to previous reviews in the field of ML and RDs, such as 
Schaefer et al. [9] or Brasil et al. [13], in this systematic review we used a 
different approach, investigating the role of AI/ML algorithms in the 
diagnosis and prognosis of RDs using genomic data. The range of options 
when it comes to choosing a learning algorithm or a DNA-based NGS 
technique to address RDs is highly variable. On the one hand, ML 
methods are usually divided into two main categories: supervised and 
unsupervised learning. Supervised ML algorithms require labeled data to 
solve mainly regression and classification tasks, whereas unsupervised 
ML algorithms address classification tasks based on unlabeled data by 
seeking common patterns. The review from Libbrecht et al. describes 
these algorithms in more detail and provides examples applied to 
genomic data [14]. On the other hand, regarding NGS techniques, there 
are mainly two strategies: a) to sequence the entirety of the DNA 
sequence (whole genome sequencing, WGS), or b) to just sequence some 
regions of the DNA, such as coding regions (exome sequencing, ES), or 
certain disease-causing genes (gene panel). Nevertheless, the raw data 
generated in these experiments can be processed in many ways, with 
different workflows depending on the aim of the study. 

This systematic review presents a thorough overview of the existing 
evidence on the application of AI/ML algorithms to the diagnosis of RDs 
using DNA-based sequencing data. We conducted a comprehensive 
search of the literature and included studies that used a variety of ML 
approaches and sequencing data sources in different research settings. 
Our analysis focused on the evaluation of trends in the field, the ability 
of these approaches to identify genetic variations associated with RDs, 
and the potential of AI/ML to improve their diagnosis. 

2. Methods 

2.1. Systematic literature search and data sources 

We performed a literature search using PubMed, Web of Science, and 
Scopus to identify relevant publications on the use of AI/ML for the 
diagnosis and prognosis of RDs using genomic data. We also used 

citation and hand searching to ensure that potentially relevant studies 
were retrieved. The Preferred Reporting Items for Systematic Reviews 
and Meta-Analyses (PRISMA) guidelines were followed to design and 
perform this systematic review [15], and its protocol was registered in 
PROSPERO (registration number CRD42022360247). 

A search in the selected databases using the search terms ‘rare AND 
(“artificial intelligence” OR “machine learning” OR “deep learning”) 
AND ((exome OR genome OR panel) AND sequencing)’ and considering 
publications from 2012 onward resulted in 296 abstracts. The citation 
and hand searching resulted in 10 additional records. The date of the last 
search was September 29, 2022. 

The list of abstracts was screened for inclusion using the following 
inclusion criteria: (i) an application of AI/ML methods; (ii) a diagnostic 
or prognosis application using a DNA-based NGS technique (panel, 
exome, or genome sequencing); and (iii) an application to a RD within 
the orpha.net database. Non-English articles, review articles, conference 
papers, duplicate records, and studies not relevant to any RD or AI/ML 
were excluded. To narrow our focus to clinical applications, we excluded 
animal studies as well as publications that only reported methodological 
aspects of AI/ML without presenting clinical data from the study pop-
ulation. For all articles considered relevant, the full text was reviewed 
using the same screening procedure as in the first stage. 

2.2. Data extraction 

All the selected articles were evaluated to gather data on five main 
aspects: i) study characteristics and study population (subjects included, 
RDs studied, study design, use of secondary data), ii) characteristics of 
the applied AI/ML techniques (selected ML model, programming lan-
guages used, input data, associated features, feature selection methods, 
model evaluation), iii) information about the DNA-based NGS technol-
ogy used (type, sample collected, DNA sequencing kit, sequencing 
platform, read length, mean coverage), iv) the variant discovery 
approach (alignment method, used SNV/Indel/CNVs callers, variant 
annotation software, variant filtering criteria), and v) authors (number 
of authors and institutions involved, authors’ countries) and journal 
details (name, category, journal impact factor, journal citation 
indicator). 

2.3. Data analysis 

The data collected from selected articles were summarized and 
analyzed using a variety of approaches. Journal Impact Factor (JIF) 
scores were obtained from the Journal Citation Report (JCR) database. 
Bibliometric networks, including data from authors and abstracts, were 
constructed and visualized using VOSviewer [16]. Similarly, full-text 
articles were analyzed using WordStat 9.0 (Provalis Research, Mon-
treal, Quebec, Canada) to extract main topics and keywords. 

Selected articles were divided into “rare neoplastic diseases” and 
“other rare diseases” to enable comparisons. AI/ML models were cate-
gorized into three categories: supervised, unsupervised, and deep 
learning models. Input variables that the model uses to make predictions 
(features) were classified in 1) “clinical features”, which include infor-
mation about patients’ clinical characteristics; 2) “phenotype-related 
features”, including data about the association between genes and 
phenotypes (e.g., Human Phenotype Ontology); 3) “read alignment 
features”, which include the properties related to read mapping and 
sequencing quality; 4) “genotype-related features”, including details of 
variants found in patients (e.g., variant allele frequency, count of vari-
ants in a certain gene, length of indel); 5) “sequence region and struc-
tural features”, including information about the region where the 
variant is located (e.g., gene size, GC content); 6) “network features”, 
which include details about the known pathways in which a particular 
gene is involved (e.g., number of pathway, network neighbors); 7) 
“evolutionary/pathogenicity features”, which include pathogenicity and 
evolutionary conservation scores of variants (e.g., CADD, PolyPhen-2); 
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8) “gene expression features”, including data on gene expression; 9) 
“tissue-specific features”, including features which are specific for 
certain types of tissues; and 10) “disease-specific features”, including 
features which are specific for certain types of diseases. The co- 
occurrence of these features in the datasets used for training AI/ML 
models was examined and plotted using UpSetR [17]. 

3. Results 

3.1. Included studies 

The literature search in databases identified 494 studies, with 296 
remaining after removing duplicates (Supplementary Table 1). Among 
them, 93 studies were selected for full-text review, and 14 were included 
in the final analysis. In addition, 11 studies were identified through hand 
and citation searching. After screening, 8 further studies met the selec-
tion criteria of this systematic review. Thus, 22 studies were included in 
the final analysis (Supplementary Table 2). Fig. 1 shows the PRISMA 
flow diagram for article selection, including the reasons for excluding 
records. 

3.2. Temporal trends and bibliometrics 

To assess the temporal trends in the use of AI/ML methods for the 
diagnosis and prognosis of RDs using sequencing data, meta-data from 
included articles was retrieved (Supplementary Table 3). In recent years, 
we noticed a relative rise in the number of studies that address this 
challenge using AI/ML (Fig. 2A). Most of these articles were published in 
journals belonging to the first quartile (90.9%) and within the “Genetics 
& Hereditary” JCR category (31.8%) (Supplementary Fig. 1). It should 
be noted that the count for 2022 is based on studies published up to 
September 29, 2022. 

A total of 318 authors contributed to the selected articles. The bib-
liometric analysis showed a low level of collaboration between authors 
of different articles, creating 19 clusters where only 3 authors partici-
pated in 2 or more articles (Supplementary Fig. 2A). The term co- 

occurrence analysis of abstracts found 100 relevant terms divided into 
3 clusters that summarize the main topics of this research field. These 
clusters group together terms mainly associated with genetics (cluster 
1), cancer (cluster 2), and methodology terms (cluster 3) (Fig. 2B). The 
most frequently occurring terms in these abstracts were “genetics” (18 
occurrences), “machine learning” (15 occurrences) and “whole-exome 
sequencing” (10 occurrences). These key terms were also among the 
most frequently used terms in the analysis of full-text articles, where 
terms such as “random forest” (59.1% of studies), “somatic mutations” 
(54.5% of studies), or “rare variants” (54.5% of studies) were also in a 
significant proportion of studies (Supplementary Fig. 2B). 

3.3. Application areas for AI/ML techniques 

The most common disease scenario was rare neoplastic diseases 
(59%). The remaining studies investigated different kinds of RDs, such 
as developmental, neurological, or circulatory diseases (Fig. 3A). Exome 
sequencing was the most used NGS method in both rare neoplastic dis-
eases (61.5%) and other RDs (55.5%) (Fig. 3B). Of note, 63.6% (14/22) 
of the studies employed sequencing data stored in external databases, 
primarily The Cancer Genome Atlas (TCGA), but also the Myocardial 
Genetics Consortium (MIGEN), or the Undiagnosed Diseases Network 
(UDN). These studies showed larger sample sizes than those using their 
own cohorts (Supplementary Fig. 3), but they also showed higher intra- 
method variability, as seen by the mixed sample processing methods 
they employed (Supplementary Fig. 4). Supplementary Table 4 sum-
marizes the NGS-related and sequencing data processing methods in 
detail. 

Supervised machine learning methods were chosen in 86.3% of the 
studies, with Random Forest (RF) being the most employed algorithm 
within this group (54.5%) (Fig. 3C). One study discarded the genetic 
features after the feature selection process, and three studies did not 
describe the selected features in detail. In terms of model performance 
evaluation, 20 studies clearly stated the evaluation metrics of the 
selected model, while 2 studies directly referred to the results obtained 
by the selected model without reporting evaluation metrics. Finally, 12 

Fig. 1. PRISMA flow diagram for the identification, screening and selection of genetic studies using AI/ML for the diagnosis of rare diseases.  
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of the 22 included studies compared the efficacy of their models with at 
least one existing approach (comparators). These studies reported 
varying degrees of improvement over the comparators. Supplementary 
Table 5 summarizes the AI/ML methods chosen by the included studies 
and their performances. 

3.4. AI/ML in the study of rare genetic diseases 

The objectives of AI/ML approaches in the different studies were 
investigated. It was found that the primary goal of using AI/ML in rare 
neoplastic diseases was the differential diagnosis of patients (5/13), 
followed by the identification of somatic mutations when a matched 
normal tissue was not available (4/13). In contrast, the major goals in 
other RDs were to prioritize variants and candidate genes (5/9) and to 
identify biallelic or digenic inheritance (3/9). To date, the use of AI/ML 
for the differential diagnosis of patients with non-neoplastic diseases is 
uncommon (1/9) (Fig. 4A). 

Looking at the types of instances (labels) and features (attributes) of 
datasets used for training these AI/ML models, we found that they were 
distinctive and different depending on the goal pursued (Table 1 and 
Fig. 4B). For the differential diagnosis of patients, most datasets 
included only features related to the genotype of patients. These features 
primarily contained mutational load data for each gene or genomic 
window using collapsing methods. Models trained to predict the prog-
nosis of RDs included clinical features (e.g., sex, age, exposure to certain 
substances) in addition to genotype features. The four AI/ML models 
aimed at finding possible pathogenic combinations of genes (digenic) or 
variants (biallelic) shared the usage of features related to biological 
networks or pathways (e.g., the associated pathway of each gene in 
KEGG or Reactome, network neighbors). Datasets focused on training 
models for variant or gene prioritization were distinguished by using 
features linked to predictors of variant pathogenicity at protein level and 
conservation across the genome of different species. Finally, for the 
identification of somatic mutations without a matched normal sample, 
the AI/ML models combined genotype features (e.g., variant allele fre-
quency) with characteristics of the genome region where the variant is 
located (e.g., GC-content) or sequencing and mapping quality scores (e. 
g., coverage). Supplementary Table 6 contains further information 

regarding these types of features and how they were selected. 

3.5. Data and code access for reproducibility 

When it comes to studies that define ML models, reproducibility is a 
key factor. Of the selected articles, 16 studies (72.7%) provided access to 
the data used during the analysis; 3 studies did so only upon data 
request; 2 did not explicitly declare in the text that data were available; 
and one stated that data were not available. In terms of the code of AI/ 
ML models, 16 studies (72.7%) had made it publicly available. With 
respect to the variant discovery approaches, all studies specified the 
software used for sequence alignment; 21 studies (95.5%) included in-
formation about the variant calling step; 17 studies (77.3%) did not 
mention the use of copy number variations (CNVs) during the analysis, 
and 3 studies did not state how the variants were annotated. Supple-
mentary Table 7 summarizes data availability and reproducibility 
information. 

4. Discussion 

AI/ML involve the use of algorithms to process and gain insights 
from data with the aim of making predictions or decisions that can be 
applied to a wide range of fields, including healthcare and genetics. In 
this systematic review, we have evaluated the latest developments in AI/ 
ML when it comes to rare genetic conditions and examined the ways in 
which the use of DNA sequencing data can improve their diagnosis. In 
addition, we have identified some challenges and opportunities for 
future research in this area. 

4.1. Exome sequencing and rare neoplastic diseases as main topics 

Although to a lesser extent than in other types of diagnostic methods, 
such as medical imaging, AI/ML are increasingly being used in the field 
of RDs [9,18,19]. This trend was also found when focusing only on those 
studies that use DNA sequencing data to improve the diagnostic process. 
Through the bibliometric study carried out in this review, and the sub-
sequent manual analyses, we found that exome sequencing was the most 
prevalent sequencing approach in the field, and that rare neoplastic 

Fig. 2. Visualization of temporal trends and bibliometrics. Panel A) shows the selected studies distributed per year and divided into deciles (D) according to journal 
impact factors (JIF). Panel B) displays a keyword co-occurrence network using abstracts of selected studies. 
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diseases were the most prevalent clinical scenario. Exome sequencing 
continues to be a good starting point for the genetic diagnosis of RDs, as 
it provides a cost-effective and efficient way to identify disease-causing 
variants [20]. However, depending on the specific rare disease context, 
genome sequencing may be necessary to provide a complete diagnosis, 
including the analysis of non-coding variations, CNVs, or chromosomal 
rearrangements [21,22]. 

Rare neoplastic diseases generally have a worse diagnosis and higher 
funding opportunities than other RDs, making them the type of rare 
disease in which AI/ML are used the most [19,23]. This is also due to the 
existence of public databases such as TCGA, which allow researchers to 
access a large amount of genomic data and use AI/ML techniques to 
identify patterns and make predictions [24]. When we analyzed the data 
on which these AI/ML models were trained, we saw that many of them 
(63.6%) were based on sequencing data from external sources, such as 
TCGA. These studies showed larger sample sizes, but also a greater 

diversity in sequencing technology characteristics, such as read depth, 
different length of reads or different sequencing kits and platforms. 
Mixing sequencing data from different technologies, qualities, and 
batches may lead to several biases that can influence the variant calling 
results, affecting in turn the results of downstream analyses, and making 
difficult to draw accurate conclusions from the data [25]. The precision 
when taking clinical decisions must be maximized, so these studies must 
have control over these factors [26]. Different studies have shown how 
to approach this process [25,27]. 

4.2. AI/ML algorithms and feature selection in genetic studies 

Most of the methods utilized in the selected studies fall into the 
category of supervised learning (86.7%), with RF being the most com-
mon algorithm among them (73.7%). RF algorithm offers a combination 
of properties that makes it one of the most widely used and suitable 

Fig. 3. Methods and areas of application. 
Panel A) displays the distribution of rare 
diseases identified in selected studies. 
Panel B) shows the next-generation 
sequencing (NGS) methods used in studies 
targeting rare neoplastic diseases and other 
rare diseases. Panel C) summarizes the 
types of machine learning algorithms 
applied in selected studies. Footer: KNN: K- 
Nearest Neighbors; LDA: Linear Discrimi-
nant Analysis; FNN: Feedforward neural 
network; CNN: Convolutional Neural 
Networks.   
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algorithms for the study of genetic variants [28,29]. RF combines mul-
tiple decision trees (forest) that can handle high-dimensional data, 
capturing interactions and complex relationships between features by 
creating random subsets of both, data and features, at each tree. In 
addition, RF also allows to compute feature importances, which can be 
used to identify the most relevant features for the prediction task, 
providing interpretable models [30]. All this makes RF well suited for 
complex genetic problems and explains its popularity among genetic 
studies. 

Conversely, the application of deep learning and unsupervised al-
gorithms in the analysis of DNA-based NGS data for RDs was limited. 
While these types of models have shown remarkable success in other 
domains, such as image or gene expression analyses, their adaptation to 
genomic data could be a complex task. In general, deep learning algo-
rithms need a large amount of data to be trained, which can be a chal-
lenge when dealing with RDs. Although deep learning might be a 
powerful approach, the use of these methods with small datasets can 
result in suboptimal models. In addition, due to the complex trans-
formations made on data, the interpretability of decisions made by deep 
learning models can be difficult, behaving as black boxes. For these and 
other reasons, researchers may choose other available ML models over 
deep learning. On the other side, none of the included studies utilized 

unsupervised algorithms. This may be due to the complexity and genetic 
heterogeneity of RDs. Unsupervised methods are based on the identifi-
cation of repeated patterns in the data. However, patients with RDs often 
carry very rare or novel variants, which makes it difficult to find clusters 
of patients with the same features. 

The structure of the dataset is a fundamental and key aspect of any 
AI/ML model, as it is the data that the model uses to learn and make 
predictions. The processes of feature selection and feature engineering 
can have a substantial effect on the performance of the model; hence, it 
is essential that the final features possess relevance to the problem at 
hand [31]. In this systematic review, we have identified the features 
used by each of the selected studies and found that these features were 
specific to each of the objectives pursued. This insight can be valuable in 
understanding the current state of research in the field, and it can serve 
as a starting point for creating new datasets in future studies. 

The results suggested that collapsing or burden methods seem to be 
crucial for setting up the features of datasets used to train models for the 
stratification or differential diagnosis of patients. These methods divide 
the genome into portions (bins or genes) and summarize the information 
contained in these segments into a burden value, which can be calcu-
lated in different ways [32,33]. This approach has shown its usefulness 
in finding candidate genes in different complex RDs with both genome 
and exome sequencing data [34–36]. Thus, applied to AI/ML tasks, this 
process helps to decrease the dimensionality of datasets based on genetic 
variants by grouping them into one value per gene or bin, which helps to 
reduce the curse of dimensionality and improve interpretability [37]. 

On the other hand, models focused on predicting patient prognosis 
integrate clinical and genomic data to obtain a more complete picture of 
the patient and assess the risk of disease progression. Previous studies, 
particularly in cancer, have shown how this integration of data provides 
a more comprehensive and accurate assessment of patient outcome 
[38,39]. Alternatively, models aimed at predicting possible pathogenic 
combinations of genes use features that summarize the association of 
these genes with the biological pathways in which they participate. The 
use of these features is supported by the fact that digenic diseases are 
usually caused by variants in genes that are functionally related and 
have a common pathway [40,41]. 

4.3. Future challenges 

From the results of this review, we identified some challenges that 
need to be addressed in future studies. When we analyzed the type of 
genomic data used to train the AI/ML models reviewed, we realized that 

Fig. 4. Objectives and settings of AI/ML models. Panel A) displays the goals of AI/ML models in rare neoplastic diseases (blue) and other rare diseases (orange). 
Panel B) contains an upset plot showing the different combinations of features in the training datasets of AI/ML models depending on the objective pursued. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 1 
Distinctive features identified in the datasets used for training the ML models of 
included studies, based on the specific goal being pursued.  

Objective AI/ML 
algorithm 

Type of 
instances 

Distinctive 
dataset 
feature/s 

Example of 
feature 

Use 
cases 
(ref) 

Stratification/ 
Differential 
diagnosis 

Patients Genotype 
features 

Burden 
value 

[48–52] 

Prognosis of 
patients 

Patients Genotype +
Clinical features 

Burden 
value + age 

[53,54] 

Variant/Gene 
prioritization 

Genes/ 
variants 

Pathogenicity 
features 

CADD score [55–58] 

Identification of 
digenic/biallelic 
combinations 

Pair of 
genes/ 
variants 

Network 
features 

Number of 
pathways 
shared 

[59–61] 

Identification of 
somatic 
mutations 

Variants Genotype +
Sequence 
features 

VAF + GC- 
content 

[62–64] 

CADD: Combined Annotation Dependent Depletion; VAF: Variant allelic 
frequency. 
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most of them (77.3%) were based exclusively on single nucleotide var-
iants or short indels, not including the analysis of CNVs. CNVs are a 
significant source of genetic diversity in humans that has remained 
understudied due to the difficulty of detection. However, today there are 
different algorithms for CNV detection that simplify the task consider-
ably, as well as guidelines that help us to interpret them [42,43]. This 
allows the possibility of evaluating its effect on the pathogenesis and 
outcome of RD. On the other hand, when we examine the goals pursued 
in the analysis of neoplastic RDs, we can see that the differential diag-
nosis or stratification of patients stands out above the other objectives. 
This is totally different in other RDs, where, in fact, this objective is the 
least pursued of the 3 objectives identified, and, therefore, a field where 
the contribution of genetic variation to the phenotype is not well un-
derstood. The use of AI/ML algorithms on rare disease sequencing data 
can support the identification of novel genetic interactions, uncovering 
patterns and relationships that may not be immediately apparent, and 
providing a better understanding of the regulatory mechanisms medi-
ated by these variants in the phenotype. The use of unsupervised 
methods would be a possible first approach to achieve the objective of 
identifying clusters of patients according to their genetic background 
[44]. 

4.4. Limitations 

Our review is limited by the design of the systematic search and the 
exclusion of purely methodological articles, focusing only on those 
studies that applied machine learning methods to data retrieved from 
patients with a rare disease. Because of the limited number of studies 
available on the topic, and although it has been studied, articles have not 
been discarded because of the quality of the journal in which they were 
published (i.e., JIF), and this may have influenced, in some way, the 
results of this review. In addition, to reduce variability in study meth-
odology and facilitate the analysis, we have only focused on those 
studies using DNA-based sequencing, not including other NGS meth-
odologies such as RNA-seq, which are widely used in conjunction with 
AI/ML methodologies [45–47]. Finally, by restricting the literature 
search to those articles whose title, abstract or main text includes the 
terms “artificial intelligence”, “machine learning” or “deep learning”, 
we may have missed some studies that used statistical models to make 
predictions and did not use any of these terms. 

5. Conclusions 

We have conducted a systematic review of ML algorithms to the 
diagnosis of RDs using DNA-based sequencing data, providing an over-
view of the current state of the field and the potential of these methods 
to improve diagnostic accuracy. Exome sequencing is the most widely 
used sequencing technology and rare neoplastic diseases are the most 
common disease scenario. On the other hand, the goals of AI/ML algo-
rithms in RDs using sequencing data are broad, ranging from patient 
stratification to the identification of possible pathogenic combinations 
of variants. However, we found common patterns in these goals when 
configuring the datasets with which these models are trained, identi-
fying key features for each of the objectives. Finally, we identified 
possible future challenges, such as the use of CNV to train the AI/ML 
models, or the application of AI/ML for the stratification of patients with 
non-neoplastic RDs. Thus, this systematic review can be used as a 
reference for further studies, supporting the development of future ML 
models in the diagnosis of rare genetic diseases. 
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[6] M. Vinkšel, K. Writzl, A. Maver, B. Peterlin, Improving diagnostics of rare genetic 
diseases with NGS approaches, J. Community Genet. 12 (2) (2021) 247–256, 
https://doi.org/10.1007/s12687-020-00500-5. 

[7] Dai P, Honda A, Ewans L, et al. Recommendations for next generation sequencing 
data reanalysis of unsolved cases with suspected Mendelian disorders: A systematic 
review and meta-analysis. Genet Med. Published online May 14, 2022. 10.1016/j. 
gim.2022.04.021. 

[8] E. Routhier, J. Mozziconacci, Genomics enters the deep learning era, PeerJ. 10 
(2022) e13613. 

[9] J. Schaefer, M. Lehne, J. Schepers, F. Prasser, S. Thun, The use of machine learning 
in rare diseases: a scoping review, Orphanet J Rare Dis. 15 (1) (2020) 145, https:// 
doi.org/10.1186/s13023-020-01424-6. 

[10] S.T. Setty, M.P. Scott-Boyer, T. Cuppens, A. Droit, New Developments and 
Possibilities in Reanalysis and Reinterpretation of Whole Exome Sequencing 
Datasets for Unsolved Rare Diseases Using Machine Learning Approaches, Int. J. 
Mol. Sci. 23 (12) (2022) 6792, https://doi.org/10.3390/ijms23126792. 

[11] A.S.A. Cohen, E.G. Farrow, A.T. Abdelmoity, et al., Genomic answers for children: 
Dynamic analyses of >1000 pediatric rare disease genomes, Genet. Med. Off J. Am. 
Coll. Med. Genet. 24 (6) (2022) 1336–1348, https://doi.org/10.1016/j. 
gim.2022.02.007. 

[12] A. Okazaki, J. Ott, Machine learning approaches to explore digenic inheritance. 
Trends Genet TIG, Published online May 14 S0168–9525 (22) (2022) 00105–00106, 
https://doi.org/10.1016/j.tig.2022.04.009. 

[13] Brasil S, Pascoal C, Francisco R, dos Reis Ferreira V, A. Videira P, Valadão G. 
Artificial Intelligence (AI) in Rare Diseases: Is the Future Brighter? Genes. 2019;10 
(12):978. 10.3390/genes10120978. 

[14] M.W. Libbrecht, W.S. Noble, Machine learning applications in genetics and 
genomics, Nat. Rev. Genet. 16 (6) (2015) 321–332, https://doi.org/10.1038/ 
nrg3920. 

[15] M.J. Page, J.E. McKenzie, P.M. Bossuyt, et al., The PRISMA 2020 statement: An 
updated guideline for reporting systematic reviews, PLOS Med. 18 (3) (2021) 
e1003583. 

[16] N.J. van Eck, L. Waltman, Software survey: VOSviewer, a computer program for 
bibliometric mapping, Scientometrics. 84 (2) (2010) 523–538, https://doi.org/ 
10.1007/s11192-009-0146-3. 

[17] A. Lex, N. Gehlenborg, H. Strobelt, R. Vuillemot, H. Pfister, UpSet: Visualization of 
Intersecting Sets, IEEE Trans. Vis. Comput. Graph. 20 (12) (2014) 1983–1992, 
https://doi.org/10.1109/TVCG.2014.2346248. 

[18] Oren O, Gersh BJ, Bhatt DL. Artificial intelligence in medical imaging: switching 
from radiographic pathological data to clinically meaningful endpoints. Lancet Digit 
Health. 2020;2(9):e486-e488. 10.1016/S2589-7500(20)30160-6. 

[19] J. Lee, C. Liu, J. Kim, et al., Deep learning for rare disease: A scoping review, 
J. Biomed. Inform. 135 (2022), 104227, https://doi.org/10.1016/j. 
jbi.2022.104227. 

[20] J. Klau, R. Abou Jamra, M. Radtke, et al., Exome first approach to reduce 
diagnostic costs and time – retrospective analysis of 111 individuals with rare 

P. Roman-Naranjo et al.                                                                                                                                                                                                                      

https://doi.org/10.1016/j.jbi.2023.104429
https://doi.org/10.1016/j.jbi.2023.104429
https://doi.org/10.1016/j.jval.2015.05.008
https://doi.org/10.1016/j.jval.2015.05.008
http://www.orphadata.org.+Data+version
https://doi.org/10.1038/s41431-019-0508-0
https://doi.org/10.1016/S0140-6736(19)31274-7
https://doi.org/10.1016/S0140-6736(19)31274-7
https://doi.org/10.1007/s12687-020-00500-5
http://refhub.elsevier.com/S1532-0464(23)00150-8/h0040
http://refhub.elsevier.com/S1532-0464(23)00150-8/h0040
https://doi.org/10.1186/s13023-020-01424-6
https://doi.org/10.1186/s13023-020-01424-6
https://doi.org/10.3390/ijms23126792
https://doi.org/10.1016/j.gim.2022.02.007
https://doi.org/10.1016/j.gim.2022.02.007
https://doi.org/10.1016/j.tig.2022.04.009
https://doi.org/10.1038/nrg3920
https://doi.org/10.1038/nrg3920
http://refhub.elsevier.com/S1532-0464(23)00150-8/h0075
http://refhub.elsevier.com/S1532-0464(23)00150-8/h0075
http://refhub.elsevier.com/S1532-0464(23)00150-8/h0075
https://doi.org/10.1007/s11192-009-0146-3
https://doi.org/10.1007/s11192-009-0146-3
https://doi.org/10.1109/TVCG.2014.2346248
https://doi.org/10.1016/j.jbi.2022.104227
https://doi.org/10.1016/j.jbi.2022.104227


Journal of Biomedical Informatics 143 (2023) 104429

8

neurodevelopmental disorders, Eur. J. Hum. Genet. 30 (1) (2022) 117–125, 
https://doi.org/10.1038/s41431-021-00981-z. 

[21] S. Marwaha, J.W. Knowles, E.A. Ashley, A guide for the diagnosis of rare and 
undiagnosed disease: beyond the exome, Genome. Med. 14 (1) (2022) 23, https:// 
doi.org/10.1186/s13073-022-01026-w. 

[22] E. Souche, S. Beltran, E. Brosens, et al., Recommendations for whole genome 
sequencing in diagnostics for rare diseases, Eur. J. Hum. Genet. 30 (9) (2022) 
1017–1021, https://doi.org/10.1038/s41431-022-01113-x. 

[23] Z. Dlamini, F.Z. Francies, R. Hull, R. Marima, Artificial intelligence (AI) and big 
data in cancer and precision oncology, Comput. Struct. Biotechnol. J. 18 (2020) 
2300–2311, https://doi.org/10.1016/j.csbj.2020.08.019. 

[24] J.N. Weinstein, E.A. Collisson, G.B. Mills, et al., The Cancer Genome Atlas Pan- 
Cancer Analysis Project, Nat. Genet. 45 (10) (2013) 1113–1120, https://doi.org/ 
10.1038/ng.2764. 

[25] R. De-Kayne, D. Frei, R. Greenway, S.L. Mendes, C. Retel, P.G.D. Feulner, 
Sequencing platform shifts provide opportunities but pose challenges for 
combining genomic data sets, Mol. Ecol. Resour. 21 (3) (2021) 653–660, https:// 
doi.org/10.1111/1755-0998.13309. 

[26] R.L. Goldfeder, J.R. Priest, J.M. Zook, et al., Medical implications of technical 
accuracy in genome sequencing, Genome Med. 8 (1) (2016) 24, https://doi.org/ 
10.1186/s13073-016-0269-0. 

[27] K. Ellrott, M.H. Bailey, G. Saksena, et al., Scalable Open Science Approach for 
Mutation Calling of Tumor Exomes Using Multiple Genomic Pipelines, Cell Syst. 6 
(3) (2018) 271–281.e7, https://doi.org/10.1016/j.cels.2018.03.002. 

[28] B.A. Goldstein, E.C. Polley, F.B.S. Briggs, Random Forests for Genetic Association 
Studies, Stat. Appl. Genet. Mol. Biol. 10 (1) (2011) 32, https://doi.org/10.2202/ 
1544-6115.1691. 

[29] X. Chen, H. Ishwaran, Random Forests for Genomic Data Analysis, Genomics. 99 
(6) (2012) 323–329, https://doi.org/10.1016/j.ygeno.2012.04.003. 

[30] L. Breiman, Random Forests, Mach Learn. 45 (1) (2001) 5–32, https://doi.org/ 
10.1023/A:1010933404324. 

[31] Pudjihartono N, Fadason T, Kempa-Liehr AW, O’Sullivan JM. A Review of Feature 
Selection Methods for Machine Learning-Based Disease Risk Prediction. Front 
Bioinforma. 2022;2. Accessed January 21, 2023. https://www.frontiersin.org/ 
articles/10.3389/fbinf.2022.927312. 

[32] Dering C, König IR, Ramsey LB, Relling MV, Yang W, Ziegler A. A comprehensive 
evaluation of collapsing methods using simulated and real data: excellent 
annotation of functionality and large sample sizes required. Front Genet. 2014;5. 
Accessed January 21, 2023. https://www.frontiersin.org/articles/10.3389/ 
fgene.2014.00323. 

[33] D.L. Nicolae, Association Tests for Rare Variants, Annu. Rev. Genom. Hum. Genet. 
17 (1) (2016) 117–130, https://doi.org/10.1146/annurev-genom-083115-022609. 

[34] P. Roman-Naranjo, A. Gallego-Martinez, A. Soto-Varela, et al., Burden of Rare 
Variants in the OTOG Gene in Familial Meniere’s Disease, Ear Hear. 41 (6) (2020) 
1598–1605, https://doi.org/10.1097/AUD.0000000000000878. 

[35] A.A. Dilliott, A. Abdelhady, K.M. Sunderland, et al., Contribution of rare variant 
associations to neurodegenerative disease presentation, NPJ Genomic Med. 6 
(2021) 80, https://doi.org/10.1038/s41525-021-00243-3. 

[36] Lin J, Li C, Cui Y, et al. Rare variants in IMPDH2 cause autosomal dominant 
dystonia in Chinese population. J Neurol. Published online January 17, 2023. 
10.1007/s00415-023-11564-x. 

[37] N. Altman, M. Krzywinski, The curse(s) of dimensionality, Nat. Methods. 15 (6) 
(2018) 399–400, https://doi.org/10.1038/s41592-018-0019-x. 

[38] B. Lobato-Delgado, B. Priego-Torres, D. Sanchez-Morillo, Combining Molecular, 
Imaging, and Clinical Data Analysis for Predicting Cancer Prognosis, Cancers. 14 
(13) (2022) 3215, https://doi.org/10.3390/cancers14133215. 

[39] J. Gonzalez-Bosquet, S. Gabrilovich, M.E. McDonald, et al., Integration of Genomic 
and Clinical Retrospective Data to Predict Endometrioid Endometrial Cancer 
Recurrence, Int. J. Mol. Sci. 23 (24) (2022) 16014, https://doi.org/10.3390/ 
ijms232416014. 

[40] A. Gazzo, D. Raimondi, D. Daneels, et al., Understanding mutational effects in 
digenic diseases, Nucleic Acids Res. 45 (15) (2017) e140. 
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