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a b s t r a c t

In a round ball B ⊂ Rn+1 endowed with an O(n+1)-invariant metric we consider a
radial function that weights volume and area. We prove that a compact two-sided
hypersurface in B which is stable capillary in weighted sense and symmetric about
some line containing the center of B is homeomorphic to a closed n-dimensional
disk. When combined with Hsiang symmetrization and other stability results this
allows to deduce that the interior boundary of any isoperimetric region in B for
the Gaussian weight is a closed n-disk of revolution. For n = 2 we also show that
a compact weighted stable capillary surface in B of genus 0 is a closed disk of
revolution.
© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The partitioning problem inside an open round ball B ⊂ Rn+1 seeks those sets in B minimizing the relative
erimeter for a given volume (we recall that, for a set E ⊂ B, the contribution of ∂E ∩ ∂B is not taken into

account when computing the relative perimeter). It is well known that, for any solution E to this problem,
the interior boundary Λ := ∂E ∩B is either a spherical cap meeting ∂B orthogonally, or an equatorial disk
n B. This was first proved by Burago and Maz’ya [6, Lem. 9 in p. 54] and later also by Bokowski and
perner [5, Sect. 2], who employed spherical symmetrization and the isometries of B. We refer the reader
o [42, Thm. 5] for a nice exposition of their arguments.

A closely related and much more involved problem is the description of stable free boundary hypersurfaces
n B, i.e., compact second order minima of the interior area for fixed volume while having non-empty
oundary contained in ∂B. This started with the work of Ros and Vergasta [44], who established some
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artial results for characterizing the orthogonal spherical caps and the totally geodesic disks as the unique
table hypersurfaces. By relying on these results, Barbosa [3] and Nunes [38] solved the problem for n = 2.
n arbitrary dimension, the desired classification was obtained by Wang and Xia [48, Thm. 3.1] by using
he stability condition with a clever test function associated to a conformal Killing vector field in Rn+1.
s a matter of fact, they were able to describe all compact, two-sided, stable capillary hypersurfaces in B

fter previous work of Ros and Souam [43], Marinov [31], and Li and Xiong [29]. We recall that capillary
ypersurfaces in B are those with constant mean curvature and making constant angle θ with ∂B (for
= π/2 we get the free boundary case).
In this work we study isoperimetric regions and stable capillary hypersurfaces in round balls with radial

eights. So, we consider a smooth positive function eψ, only depending on the distance from the center of
, to weight the Euclidean volume and relative perimeter of sets, as that as the area of hypersurfaces. It

s worth mentioning that most of the classical differential operators and curvature notions in Riemannian
eometry have a weighed counterpart, which allows a proper treatment of variational questions into this
ontext.

As in the unweighted setting, standard compactness arguments in geometric measure theory provide
xistence of weighted isoperimetric regions in B. However, unlike the Euclidean case, the spherical caps
eeting ∂B orthogonally do not necessarily bound weighted minimizers in B. This is easy to see for the
aussian weight, where such hypersurfaces are not even critical points of the area for fixed volume, see
emark 4.7. This shows us that other geometric shapes different from the totally umbilical ones appear
s isoperimetric boundaries in round balls with radial weights. Motivated by this phenomenon, our aim in
his paper is to deduce some relevant geometric and topological properties of any weighted minimizer E. In
heorem 4.2 we prove that

“If the regular part of Λ := ∂E ∩B is connected, then Λ is a smooth hypersurface, symmetric
about a line passing through the center of B, and homeomorphic either to a closed n-dimensional
disk (if ∂Λ ̸= ∅) or to an n-dimensional sphere (if ∂Λ = ∅)”.

his means, in particular, that the isoperimetric boundaries in B have the simplest possible topology. We
emark that weighted minimizers bounded by spheres of revolution could appear because a minimizer in

need not meet ∂B. An example of this situation in a Riemannian manifold with non-empty boundary
is found after Remark 2.5 in [40]. In the unweighted case this theorem is combined with the classification
of constant mean curvature hypersurfaces of revolution to conclude that Λ is totally umbilical, i.e., it is a
pherical cap meeting ∂B orthogonally or an equatorial disk. Unfortunately, an analogous description for
rbitrary radial weights in Rn+1 is still unknown.

The proof of Theorem 4.2 goes as follows. The symmetry of Λ about a line L comes by adapting the
ymmetrization technique of Hsiang [23] to our setting. After this, the smoothness of Λ is consequence of
he regularity results for weighted minimizers, see [35, Sect. 3.10], [34, Sects. 2.2, 2.3], together with the fact
hat an area-minimizing tangent cone to Λ at any point in L must be totally geodesic. Note also that the
otational symmetry implies that Λ is topologically an (n-dimensional) cylinder, disk, torus or sphere. To

complete the proof we invoke the stability result in Theorem 3.8 to rule out cylinders and tori as isoperimetric
boundaries.

The topological restriction in Theorem 3.8 is essentially a particular case of a more general property
for weighted stable capillary hypersurfaces in B. These were introduced and studied by Li and Xiong [28].
imilarly to the Riemannian context, they have constant weighted mean curvature and meet ∂B making
onstant angle θ, see Section 3.1 for details. The free boundary case θ = π/2 was first discussed by Castro
nd the author [9]. In Theorem 3.6 we prove the following:

“If Σ is a compact, connected, two sided, weighted stable capillary hypersurface in B with
∂Σ ̸= ∅ and symmetric about a line L passing through the center of B, then Σ if homeomorphic
to a closed n-dimensional disk”.
2
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or the proof we use in a natural way the symmetries of the ball B and the weight eψ. First, we take a
otations vector field X in Rn+1 and check that, for any capillary hypersurface Σ ⊂ B with unit normal
, the associated function w :=

⟨
X,N

⟩
solves a PDE problem for the weighted Laplacian ∆Σ ,ψ with a

eumann boundary condition (Lemma 3.3). Thus, we can apply a weighted version of the Courant’s nodal
omain theorem (Proposition 2.1) to deduce that, if Σ is also stable, then w = 0 or has at most two nodal
omains. On the other hand, when Σ is topologically a cylinder, we are able to find X such that w has at
east four nodal domains. This allows to conclude that Σ cannot be a cylinder and must be homeomorphic
o a disk. We point out that the test function w was previously utilized by Hutchings, Morgan, Ritoré and
os [25] for solving the double bubble conjecture in R3, see also Ros and Vergasta [44], Ros and Souam [43],
ĺıas, López and Palmer [1] and Ros [41]. By means of other test functions, Li and Xiong gave in [28, Sect. 4]
ifferent instability criteria in Euclidean balls with radial weights eψ(r) such that ψ′′ ⩽ 0.

For a capillary surface Σ in a ball B ⊂ R3 it is possible to estimate the number m of nodal domains
or some non-vanishing function w =

⟨
X,N

⟩
in terms of the genus g of Σ . This is done in Theorem 3.9,

here we prove that m ⩾ 3 − 2g. From this we easily infer the next statement for radial weights in B with
on-negative Bakry-Émery-Ricci curvature:

“If Σ is a compact, connected, two sided, weighted stable capillary hypersurface in B with
∂Σ ̸= ∅ and genus zero, then Σ if a closed disk of revolution”.

his extends to a weighted setting a result and proof of Ros and Souam [43, Thm. 2.2]. They generalized
n argument of Ros and Vergasta [44] for the unweighted free boundary case relying on the Gauss–Bonnet
ormula and the structure of the nodal set of w described by Cheng [13]. The theorem may be seen as a
onverse of Theorem 3.6, in the sense that a topological hypothesis (genus zero) entails not only a topological
estriction (connected boundary) but also a geometric conclusion (rotational symmetry).

An interesting weight where our results apply is the Gaussian one. We must observe that minimizers and
table area-stationary hypersurfaces in half-spaces, slabs, and convex cylinders of Gauss space have been
tudied by many authors, see for instance [45,46] and the references therein. For a Gaussian ball, we remark
hat a compact area-stationary hypersurface with empty boundary cannot be stable. This comes since a
omplete, two-sided, stable area-stationary hypersurface in Gauss space having empty boundary and finite
rea must be a hyperplane, see McGonagle and Ross [32]. For the unit ball we provide in Proposition 4.6 a
irect and original proof of this instability statement. When this is combined with Theorem 4.2, we obtain
hat

“In a Gaussian ball, the interior boundary of any isoperimetric region is a smooth closed
n-dimensional disk symmetric about a line containing the center of the ball”.

s we already mentioned, the spherical caps meeting ∂B orthogonally are not critical points for the
artitioning problem in a Gaussian ball. However, for any minimizer E ⊂ B with vanishing weighted mean

curvature, its interior boundary ∂E ∩B is an equatorial disk of B. This is consequence of a stability result
f Li and Xiong [28, Thm. 1] for radial weights. In Proposition 4.6 we show a different proof of this fact
hich follows the ideas of Ros and Vergasta in [44, Thm. 6].
The techniques employed in this paper allow to consider O(n+ 1)-invariant metrics in Rn+1 and weights

only depending on the Riemannian distance from the center of B. In particular, the results are valid for
geodesic balls in simply connected space forms of any curvature and dimension. Moreover, since most of the
arguments rely on the symmetries of the ball, these can be used to analyze capillary hypersurfaces outside
a round ball, as that as weighted minimizers in the whole space Rn+1 with an O(n + 1)-invariant metric
and radial weight. This includes the case of Euclidean space with radial weight, where isoperimetric regions
were previously studied by Morgan and Pratelli [37] and Chambers [10], among other authors. We finish
3
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his work by showing how our methods are also useful to discuss the partitioning problem in Riemannian
ylinders with horizontal weights, see Theorem 4.8.

The paper contains four sections. In Section 2 we introduce the notation and establish a weighted version
f the Courant’s nodal domain theorem for solutions to certain elliptic problems. In Section 3 we review
ome facts about capillary hypersurfaces and obtain geometric and topological consequences of the stability
ondition. Finally, in Section 4 we analyze weighted minimizers in round balls with radial weights, and
educe the topological classification of their interior boundaries for Gaussian balls.

. Preliminaries

In this section we introduce notation and review some properties of the solutions to certain elliptic
roblems that will be applied later for capillary hypersurfaces inside weighted manifolds. We have organized
he content into three subsections.

.1. Weighted manifolds

A weighted manifold is a complete oriented manifold Mn+1, possibly with smooth boundary ∂M , together
ith a Riemannian metric g :=

⟨
· , ·
⟩
, and a smooth positive function eψ. We denote by int(M) the set

\ ∂M and by | · | the norm of tangent vectors in M . The function eψ is used to weight the Hausdorff
easures associated to the Riemannian distance in (M, g). In particular, the weighted volume of a Borel set
and the weighted area of a hypersurface Σ in M are defined by

Vψ(E) :=
∫
E

dvψ, Aψ(Σ ) :=
∫
Σ

daψ, (2.1)

here dvψ := eψ dv and daψ := eψ da are the weighted elements of volume and area, respectively. For an
n− 1)-dimensional submanifold C ⊂ M we consider the weighted measure

Lψ(C) :=
∫
C

dlψ,

here dlψ := eψ dl and dl is the (n − 1)-dimensional Hausdorff measure in (M, g). For the constant weight
= 0 we recover the corresponding measures in (M, g).
Most of the differential operators and curvature notions in Riemannian geometry have a weighted

ounterpart, which combines the classical definitions with the derivatives of the weight. For instance, the
eighted divergence [20, p. 68] of a C1 vector field X on M is given by

divψX := e−ψ div(eψX) = divX +
⟨
∇ψ,X

⟩
, (2.2)

here div is the usual divergence in (M, g) and ∇ψ stands for the Riemannian gradient of ψ. The weighted
aplacian is introduced in [20, Sect. 3.6] as the second order elliptic linear operator

∆ψu := divψ ∇u = ∆u+
⟨
∇ψ,∇u

⟩
,

here ∆ is the Laplacian operator in (M, g) and u is a C2 function on M . On the other hand, the most
atural generalization of the Ricci tensor in (M, g) is the Bakry-Émery-Ricci tensor, see [36, p. 182] and the
eferences therein, which is the 2-tensor

Ricψ := Ric − ∇2ψ, (2.3)

here ∇2 stands for the Hessian operator in (M, g). We recall that Ric is the 2-tensor Ric(X,Y ) := trace(u ↦→
(X,u)Y ), where R is the curvature tensor as defined in [17, Sect. 4.2]. The Bakry-Émery-Ricci curvature
t a point p ∈ M in the direction of a tangent vector X ∈ TpM is the number (Ricψ)p(X,X). The notation

icψ ⩾ 0 means that (Ricψ)p(X,X) ⩾ 0 for any p ∈ M and X ∈ TpM .

4
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A smooth hypersurface Σ ⊂ M , possibly with smooth boundary ∂Σ , becomes a weighted manifold with
respect to the induced metric g|Σ and the restriction of eψ to Σ . We will denote the weighted volume and
area elements in Σ by daψ and dlψ, respectively. We will add the subscript Σ to distinguish the gradient
nd the weighted Laplacian ∇ and ∆ψ in M from the ones ∇Σ and ∆Σ ,ψ in Σ . For a C1 vector field on Σ ,

tangent or not to Σ , the weighted divergence is

divΣ ,ψX := divΣ X +
⟨
∇ψ,X

⟩
, (2.4)

where divΣ X is the Riemannian divergence of X relative to Σ . When X is tangent to Σ this coincides with
the definition in (2.2) when we see Σ as a weighted manifold. In particular, we have

∆Σ ,ψu = divΣ ,ψ ∇Σu = ∆Σu+
⟨
∇Σψ,∇Σu

⟩
, (2.5)

for any C2 function u on Σ .

2.2. Weighted Sobolev functions

The contents of this subsection and 2.3 will be applied in Section 3 to capillary hypersurfaces. By
this reason, though we consider arbitrary weighted manifolds, we will follow the notation for hypersurfaces
introduced above.

Let Σ be a Riemannian manifold, possibly with smooth boundary ∂Σ , and with weight eψ. We denote by
L2
ψ(Σ ) the space of those functions u : Σ → R such that u2 is integrable with respect to daψ. The associated

L2
ψ-norm is given by ∥u∥L2

ψ
:=
(∫

Σ
u2 daψ

)1/2. The weighted Sobolev space H1
ψ(Σ ) consists of the functions

u ∈ L2
ψ(Σ ) having a distributional gradient ∇Σ ,ψu satisfying |∇Σ ,ψu| ∈ L2

ψ(Σ ). The tangent vector field
Σ ,ψu on Σ is characterized by equality∫

Σ

u divΣ ,ψX daψ = −
∫
Σ

⟨
∇Σ ,ψu,X

⟩
daψ,

or any tangent C1 vector field X with compact support inside int(Σ ) := Σ \ ∂Σ . The associated H1
ψ-norm

s defined by

∥u∥H1
ψ

:=
(∫

Σ

u2 daψ +
∫
Σ

|∇Σ ,ψu|2 daψ
)1/2

.

For the constant weight ψ = 0 we will use the notation L2(Σ ) and H1(Σ ) for the corresponding spaces.
We refer the reader to [20, Sect. 4.1] and [22, Ch. 2] for basic facts about Sobolev spaces in weighted and
Riemannian manifolds.

From now on we suppose that Σ is compact. Note that L2
ψ(Σ ) = L2(Σ ) because α ⩽ eψ ⩽ β for some

constants α, β > 0. Moreover, by taking into account the identity

divΣ ,ψX daψ = divΣ (eψX) da (2.6)

or any tangent C1 vector field X, we deduce that H1
ψ(Σ ) = H1(Σ ) and ∇Σ ,ψu = ∇Σu for any u ∈ H1

ψ(Σ ).
e also infer that the norms ∥ · ∥L2

ψ
and ∥ · ∥L2 (respectively ∥ · ∥H1

ψ
and ∥ · ∥H1) are equivalent, so that they

have the same convergent sequences.
Recall that, when ∂Σ ̸= ∅, the trace operator is a continuous linear map T : H1(Σ ) → L2(∂Σ ) such that

(u) = u|∂Σ if u is continuous on Σ , and the next equality holds∫
u divΣ X da = −

∫ ⟨
∇Σu,X

⟩
da−

∫
T (u)

⟨
X, ν

⟩
dl,
Σ Σ ∂Σ

5
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here ν is the inner conormal along ∂Σ , u ∈ H1(Σ ) and X is any C1 tangent vector field on Σ , see Theorem
in [18, Sect. 4.3]. As usual, we will simply denote T (u) = u. Again from (2.6), we get∫

Σ

u divΣ ,ψX daψ = −
∫
Σ

⟨
∇Σu,X

⟩
daψ −

∫
∂Σ

u
⟨
X, ν

⟩
dlψ,

or any u ∈ H1
ψ(Σ ) and any C1 tangent vector field X on Σ . From here and (2.5) we derive the integration

y parts formula ∫
Σ

u∆Σ ,ψw daψ = −
∫
Σ

⟨
∇Σu,∇Σw

⟩
daψ −

∫
∂Σ

u
∂w

∂ν
dlψ, (2.7)

hich is valid for any u ∈ H1
ψ(Σ ) and w ∈ C2(Σ ). When ∂Σ = ∅ the previous formulas are satisfied by

dopting the convention that all the integrals along ∂Σ vanish.

.3. Nodal domains for solutions to some weighted elliptic problems

Let Σ be a compact Riemannian manifold, possibly with smooth boundary ∂Σ , and with weight eψ. We
enote

Fψ(Σ ) :=
{
u ∈ H1

ψ(Σ ) ;
∫
Σ

u daψ = 0
}
, F∞

ψ (Σ ) :=
{
u ∈ C∞(Σ ) ;

∫
Σ

u daψ = 0
}
.

y using that C∞(Σ ) is dense in H1
ψ(Σ ) it is easy to see that F∞

ψ (Σ ) is dense in Fψ(Σ ).
Fix two functions q ∈ C∞(Σ ) and b ∈ C∞(∂Σ ). For any λ ∈ R we consider the following problem for the

eighted Laplacian in Σ with a Neumann boundary condition

(Pλ)

⎧⎨⎩∆Σ ,ψw + q w = λ in Σ ,

∂w

∂ν
+ bw = 0 in ∂Σ .

(2.8)

or a solution w ∈ F∞
ψ (Σ ) of (Pλ), Eq. (2.7) entails that Qψ(u,w) = 0 for any u ∈ Fψ(Σ ), where

ψ : Fψ(Σ ) × Fψ(Σ ) → R is the symmetric bilinear form given by

Qψ(u,w) :=
∫
Σ

{⟨
∇Σu,∇Σw

⟩
− q uw

}
daψ −

∫
∂Σ

b uw dlψ. (2.9)

ence, if w ∈ F∞
ψ (Σ ) solves (Pλ) for some λ ∈ R, then w ∈ rad(Qψ) (the radical of Qψ). Conversely,

ny function w ∈ rad(Qψ) is a solution of (Pλ) for some λ ∈ R. Indeed, by elliptic regularity, we infer
hat w ∈ F∞

ψ (Σ ) (we can argue as in [20, Cor. 7.3] for interior regularity, see [33, Ch. IV] for boundary
egularity); thus, we can employ again (2.7) to get∫

Σ

(∆Σ ,ψw + q w)u daψ +
∫
∂Σ

(
∂w

∂ν
+ bw

)
u dlψ = −Qψ(u,w), (2.10)

hich vanishes for any u ∈ Fψ(Σ ). Now, standard arguments entail that w solves (Pλ) for some λ ∈ R. For
uture reference we also observe that Qψ(u,w) is well defined for any u,w ∈ H1

ψ(Σ ).
Let w ∈ C∞(Σ ), w ̸= 0, be a function such that ∆Σ ,ψw+ q w = λ. A nodal domain of w is any connected

omponent of the set Σ \w−1(0). By reasoning as in the proof of the Courant’s nodal domain theorem [11,
. 19] we can establish the following result.

roposition 2.1. Let Σ be a compact and connected Riemannian manifold with weight eψ. Suppose that,
or some q ∈ C∞(Σ ) and b ∈ C∞(∂Σ ), the bilinear form defined in (2.9) satisfies Qψ(u, u) ⩾ 0 for any

∈ F∞
ψ (Σ ). If a function w ∈ C∞(Σ ) solves the problem (P0) in (2.8), then w = 0 or w has at most two

odal domains.

6
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roof. Suppose w ̸= 0 and take a nodal domain D of w. Define wD := χD w, where χD is the characteristic
unction of D in Σ . Since w = 0 in ∂D∩int(Σ ) it follows that wD is a continuous function in H1(Σ ) = H1

ψ(Σ )
ith ∇ΣwD = ∇Σw in D, see [11, Lem. 1, p. 21] for details. Note that

Qψ(wD, wD) =
∫
Σ

(
|∇ΣwD|2 − q w2

D

)
daψ −

∫
∂Σ

bw2
D dlψ

=
∫
Σ

(⟨
∇Σw,∇ΣwD

⟩
− q wwD

)
daψ −

∫
∂Σ

bwwD dlψ

= −
∫
Σ

wD (∆Σ ,ψw + q w) daψ −
∫
∂Σ

wD

(
∂w

∂ν
+ bw

)
dlψ = 0,

here we have used Eq. (2.7) and that w solves (P0).
Suppose that D1 and D2 are different nodal domains of w. Denote wi := wDi for i = 1, 2. The fact that

Σ
wi daψ ̸= 0 allows to find a constant α ̸= 0 such that w := w1 + αw2 is a continuous function in Fψ(Σ ).

t is clear that Qψ(w,w) = 0 because Qψ(wi, wi) = 0 for any i = 1, 2 and D1 ∩ D2 = ∅. Take any function
∈ Fψ(Σ ). By using the non-negativity hypothesis about Qψ and that F∞

ψ (Σ ) is dense in Fψ(Σ ) for the
eighted Sobolev norm ∥ · ∥H1

ψ
, we obtain

0 ⩽ Qψ(u+ t w, u+ t w) = Qψ(u, u) + 2 Qψ(u,w) t, for any t ∈ R.

his entails that Qψ(u,w) = 0. Since u is arbitrary then w ∈ rad(Qψ). As a consequence, w ∈ F∞
ψ (Σ ) and

w solves the problem (Pλ) for some λ ∈ R. Note that λ = 0 because w = w on Di.
Finally, in case there were at least three different nodal domains Di with i = 1, 2, 3, we could construct a

unction w as above such that w = 0 on D3. As ∆Σ ,ψw+ q w = 0 on Σ , we would conclude from the unique
ontinuation principle for elliptic partial differential equations in [2] that w = 0 in Σ . This is a contradiction
ecause w = w ̸= 0 in Di with i = 1, 2. The proof is completed. □

emark 2.2. The previous result also holds when ∂Σ = ∅. In this case the arguments are simpler because
he Neumann boundary condition disappears and the integrals along ∂Σ vanish.

. Stable capillary hypersurfaces

In this section we study capillary hypersurfaces in weighted manifolds. We introduce them in the first
ubsection together with some useful results. The reader is referred to the paper of Li and Xiong [28,
ect. 2.2], which extends the free boundary case discussed by Castro and the author [9, Sect. 3], and follows
losely the exposition of Ros and Souam [43, Sect. 1] for the unweighted case. In the second subsection we
stablish geometric and topological properties of stable capillary hypersurfaces in balls with radial weights.

.1. Weighted capillarity

Let Ω be a smooth domain with boundary ∂Ω in an oriented Riemannian manifold Mn+1 with weight
ψ. We take a compact two-sided hypersurface Σ ⊂ Ω with smooth boundary ∂Σ such that Σ ∩ ∂Ω = ∂Σ

(this implies that int(Σ ) ⊆ Ω). We suppose that ∂Σ bounds a relatively compact open set D ⊂ ∂Ω , and
hat there is a bounded open set E ⊂ Ω satisfying ∂E = Σ ∪D.

Let X be a complete smooth vector field on M which is tangent along ∂Ω . We denote Σt := ϕt(Σ ),
t := ϕt(D) and Et := ϕt(E), where {ϕt}t∈R is the flow of diffeomorphisms associated to X. Clearly we
ave Σt ∩ ∂Ω = ∂Σt, Dt ⊆ ∂Ω , ∂Dt = ∂Σt and ∂Et = Σt ∪Dt, for any t ∈ R. The deformation {Et}t∈R is
olume-preserving if the weighted volume functional t ↦→ Vψ(Et) is constant for any t small enough. For a
xed contact angle θ ∈ (0, π) we define an energy functional Eψ : R → R by

E (t) := A (Σ ) − (cos θ)A (D ),
ψ ψ t ψ t

7



C. Rosales Nonlinear Analysis 233 (2023) 113291

w
E
d

n
h
e
a
c

d

L

(

o
G

w
t
F

H
t
s
(
f

w

d
t
f
i

here Aψ is the weighted area of hypersurfaces in (2.1). We say that Σ is a ψ-capillary hypersurface if
′
ψ(0) = 0 for any volume-preserving deformation. If, in addition, E ′′

ψ(0) ⩾ 0 for any volume-preserving
eformation, then Σ is ψ-stable or ψ-stable capillary.

Remark 3.1 (The Free Boundary Case). For contact angle θ = π/2 we have Eψ(t) = Aψ(Σt), which does
ot involve ∂Σ nor Dt. So, we do not need that ∂Σ bounds a set D in ∂Ω . In this context we also allow
ypersurfaces Σ ⊂ Ω with ∂Σ = ∅. For them we adopt the convention that the conditions involving ∂Σ are
mpty and the integrals along ∂Σ vanish. Anyway, the critical points of Aψ(Σt) for fixed weighted volume
re called weighted area-stationary hypersurfaces. The corresponding ψ-stable ones provide the second order
andidates to solve the partitioning problem in Ω , see Section 4.

By using the first and second variation formulas for the weighted volume and the functional Eψ, we can
educe the following result [28, Sect. 2.2].

emma 3.2. Under the conditions previously stated, we have

(i) Σ is ψ-capillary if and only if Hψ is constant and Σ intersects ∂Ω making constant angle θ.
ii) A ψ-capillary hypersurface Σ is ψ-stable if and only if Iψ(u, u) ⩾ 0 for any u ∈ F∞

ψ (Σ ).

Let us clarify the notation in the preceding lemma. The symbol Hψ stands for the weighted mean curvature
f Σ computed with respect to the unit normal N pointing into E. This function was introduced by
romov [21, Sect. 9.4.E], see also Bayle [4, Sect. 3.4.2], by means of equality

Hψ := − divΣ ,ψ N = nH −
⟨
∇ψ,N

⟩
, (3.1)

here H is the Riemannian mean curvature of Σ . The fact that Σ intersects ∂Ω making angle θ means
hat

⟨
η,N

⟩
= cos θ along ∂Σ , where η is the inner unit normal along ∂Ω . On the other hand, Iψ :

ψ(Σ ) × Fψ(Σ ) → R is the weighted index form, i.e., the symmetric bilinear form given by

Iψ(u,w) :=
∫
Σ

{⟨
∇Σu,∇Σw

⟩
−
(
Ricψ(N,N) + |σ|2

)
uw
}
daψ

−
∫
∂Σ

{(csc θ) II(ν, ν) + (cot θ)σ(ν, ν)}uw dlψ.
(3.2)

ere ∇Σ is the distributional gradient in Σ for the induced metric, Ricψ denotes the Bakry-Émery-Ricci
ensor of M in (2.3), ν is the inner conormal of ∂Σ in D, σ is the second fundamental form of Σ , and II
tands for the second fundamental form of ∂Ω . Clearly Iψ coincides with the bilinear form Qψ defined in
2.9) when we take q := Ricψ(N,N) + |σ|2 on Σ and b := (csc θ) II(ν, ν) + (cot θ)σ(ν, ν) along ∂Σ . In the
ree boundary case θ = π/2 we have ν = N , so that b = II(N,N).

Note that Iψ(u,w) is well defined for arbitrary functions u,w ∈ H1
ψ(Σ ). In the particular situation where

u ∈ H1
ψ(Σ ) and w ∈ C2(Σ ), Eq. (2.10) implies that

Iψ(u,w) = −
∫
Σ

uLψw daψ −
∫
∂Σ

u

[
∂w

∂ν
+ {(csc θ) II(ν, ν) + (cot θ)σ(ν, ν)}w

]
dlψ, (3.3)

here Lψ is the weighted Jacobi operator of Σ , i.e., the second order linear operator

Lψw := ∆Σ ,ψw +
(

Ricψ(N,N) + |σ|2
)
w. (3.4)

The two differential operators appearing in (3.3) have a geometric meaning. While Lψ provides the
erivative of the weighted mean curvature along the variation, the first order operator in the boundary
erm coincides with the derivative of the angle that Σt makes with ∂Ω . These interpretations lead to the
ollowing lemma, where we derive some properties for the normal component of a Killing vector field (the

nfinitesimal generator of a one-parameter group of Riemannian isometries).

8
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emma 3.3. Let Ω be a smooth domain of a Riemannian manifold M with weight eψ. Suppose that X
s a Killing vector field on M , which is tangent to ∂Ω , and has a one-parameter flow {ϕt}t∈(−ε,ε) such that

◦ ϕt = ψ for any t ∈ (−ε, ε). If Σ ⊂ Ω is a compact, connected and two-sided ψ-capillary hypersurface,
hen the function w :=

⟨
X,N

⟩
satisfies:

(i) ∆Σ ,ψw + (Ricψ(N,N) + |σ|2)w = 0 on Σ ,
ii) ∂w

∂ν +
{

(csc θ) II (ν, ν) + (cot θ)σ(ν, ν)
}
w = 0 along ∂Σ .

Moreover, if Σ is also ψ-stable, then w = 0 or w has at most two nodal domains.

Proof. By Lemma 3.2(i) we know that Σ has constant weighted mean curvature and meets ∂Ω along ∂Σ
aking constant angle θ. From Equation (3.5) in [9], for any p ∈ Σ we know that(

∆Σ ,ψw + (Ricψ(N,N) + |σ|2)w
)
(p) = (Lψw)(p) = d

dt

⏐⏐⏐⏐
t=0

(Hψ)t(ϕt(p)), (3.5)

here (Hψ)t is the weighted mean curvature of the hypersurface Σt := ϕt(Σ ). So, to prove (i) it suffices to
ee that (Hψ)t(ϕt(p)) = Hψ(p) for any t ∈ (−ε, ε). Since ϕt is an isometry of M we can define a unit normal
t along Σt by setting Nt(ϕt(p)) := (dϕt)p(N(p)) for any p ∈ Σ . By differentiating the equality ψ ◦ ϕt = ψ

n the direction of N(p), we obtain⟨
(∇ψ)(ϕt(p)), Nt(ϕt(p))

⟩
=
⟨
(∇ψ)(p), N(p)

⟩
,

or any t ∈ (−ε, ε). By taking into account (3.1) and that the Riemannian mean curvature is preserved under
sometries we conclude that Hψ(ϕt(p)) = Hψ(p), as we claimed. The proof of (ii) does not involve the weight
nd it comes by using that ϕt is an isometry of M together with the identity

d

dt

⏐⏐⏐⏐
t=0

⟨
η,Nt

⟩
(ϕt(p)) = −(sin θ)

[
∂w

∂ν
+
{

(csc θ) II(ν, ν) + (cot θ)σ(ν, ν)
}
w

]
(p),

hich is achieved by following the calculus in the proof of [43, Lem. 4.1], see also [29, Lem. 3.3]. The last
tatement in the lemma is a direct consequence of Lemma 3.2 (ii) and Proposition 2.1. □

emark 3.4. Equality (i) in the preceding lemma holds for any hypersurface Σ with constant weighted
ean curvature. Equality (ii) is valid for hypersurfaces meeting ∂Ω at a constant angle θ.

We finish this subsection with an easy application of Lemma 3.3 to an interesting situation.

xample 3.5 (Capillary Hypersurfaces in Cylinders with Horizontal Weights). Consider a Riemannian
roduct Ω ×R, where Ω is a smooth relatively compact domain of a Riemannian manifold, endowed with a
eight eψ(x,s) := eh(x). When h = 0 we recover the unweighted setting. We denote by ξ the vertical vector
eld on Ω × R defined by ξ(x, s) := (0, 1) ∈ TxΩ × R. This is a Killing vector field since the associated
ne-parameter group of diffeomorphisms consists of the vertical translations ϕt(x, s) := (x, s+ t). It is clear
hat ξ is tangent along ∂Ω × R and that ψ ◦ ϕt = ψ for any t ∈ R.

Let Σ ⊂ Ω × R be a compact two-sided hypersurface separating a bounded open set E in Ω × R. Define
he angle function on Σ by ϑ :=

⟨
ξ,N

⟩
. Note that ϑ ̸= 0. Otherwise, ξ would be tangent to Σ and so, Σ

ould be foliated by vertical lines, which contradicts its compactness. Observe also that∫
Σ

ϑ daψ = −
∫
E

divψ ξ dvψ = −
∫
E

(
div ξ +

⟨
∇ψ, ξ

⟩)
dvψ = 0,

where we have used the divergence theorem, Eq. (2.2), the fact that ξ is parallel on Ω × R and the

horizontality of the weight. This implies that ϑ cannot be ⩾ 0 nor ⩽ 0 on Σ , so that it has at least

9
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wo nodal domains where it changes its sign. Moreover, when Σ is connected and ψ-stable capillary, then
emma 3.3 ensures that ϑ has exactly two nodal domains. This is a geometric property of ψ-stable capillary
ypersurfaces. Indeed, since the horizontal projection π : Σ → Ω defined by π(x, s) := x is a local
iffeomorphism at p ∈ Σ if and only if ϑ(p) ̸= 0, this might suggest that a ψ-stable capillary hypersurface
s the union of two graphs over a horizontal set A ⊂ Ω × {s0} that meet along ∂A.

.2. Results for balls with radial weights

In this subsection we obtain symmetry and topological properties for stable capillary hypersurfaces by
pplying Lemma 3.3 to suitable rotations vector fields. This requires the ambient weighted manifold to satisfy
ertain conditions that we now introduce.

For any subgroup G of diffeomorphisms in Rn+1, a Riemannian metric g is said to be G-invariant is any
φ ∈ G is an isometry of (Rn+1, g). Suppose that g is SO(n+ 1)-invariant (as usual, SO(n+ 1) denotes the
ubgroup of O(n + 1) given by all direct isometries fixing 0 with respect to the Euclidean metric). When
n ⩾ 2, any straight line L ⊂ Rn+1 with 0 ∈ L is the fixed point set of a family of maps in SO(n + 1); this
ields that L is a totally geodesic curve in (Rn+1, g), see for instance [39, Prop. 24 in p. 145]. Thus, the
eodesics in (Rn+1, g) leaving from 0 parameterize straight lines and they are always length-minimizing. In
articular, the Riemannian distance function d(p) with respect to 0 is smooth in Rn+1 \{0}, and its gradient
∇d)(p) is proportional to p whenever p ̸= 0.

In our first result we consider a compact capillary hypersurface Σ with ∂Σ ̸= ∅ and symmetric about
line L, i.e., invariant under all Euclidean isometries fixing L. In this situation Σ is topologically an n-

imensional cylinder or a disk. We prove below that the stability condition implies that Σ must be a disk.
imilar arguments were previously employed by Hutchings, Morgan, Ritoré and Ros [25, Prop. 5.2] for solving
he double bubble conjecture in R3, see also Ros [41, Thm. 4].

heorem 3.6. In Rn+1, n ⩾ 2, we consider an SO(n + 1)-invariant Riemannian metric g =
⟨
· , ·
⟩

and a
eight eψ only depending on the Riemannian distance d(p) with respect to 0. Let B ⊂ Rn+1 be an open round
all about 0 and Σ ⊂ B a compact, connected, two-sided hypersurface with ∂Σ ̸= ∅. If Σ is ψ-stable capillary
nd symmetric about some line L passing through 0, then Σ ∩ L ̸= ∅. As a consequence, Σ if homeomorphic
o a closed n-dimensional disk.

roof. Choose any Euclidean orthonormal basis B := {e1, e2, . . . , en+1} where e1 generates the line L.
efine the smooth vector field on Rn+1 given by

X(x1, x2, x3, . . . , xn+1) := (−x2, x1, 0, . . . , 0),

here (x1, x2, . . . , xn+1) denote the coordinates with respect to B. The one-parameter flow of diffeomor-
hisms associated to X is the family {ϕt}t∈R defined as

ϕt(x1, x2, x3, . . . , xn+1) :=
(
(cos t)x1 − (sin t)x2, (sin t)x1 + (cos t)x2, x3, . . . , xn+1

)
.

ince g is an SO(n + 1)-invariant metric then any ϕt is an isometry of (Rn+1, g). It follows that X is a
omplete Killing vector field in (Rn+1, g), which is tangent to the round sphere ∂B. We also have that
◦ ϕt = ψ for any t ∈ R because ψ only depends on d(p).
Consider the function w :=

⟨
X,N

⟩
, where N stands for the unit normal on Σ in (Rn+1, g). The ψ-stability

f Σ entails by Lemma 3.3 that w = 0 or w has at most two nodal domains. The case w = 0 is not possible.
therwise, X would be tangent to Σ , so that Σ would be invariant under any ϕt. Hence, the generating
curve of Σ (as a hypersurface of revolution about L) in the plane x1 x2 would be a circle centered at 0 and
10
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o, Σ would be a round sphere about 0. This contradicts that ∂Σ ̸= ∅ and allows us to conclude that w has
t most two nodal domains. To finish the proof we will see that, in case Σ ∩ L = ∅, then w would have at
east four nodal domains.

Consider the hyperplane Π ⊂ Rn+1 of equation x2 = 0. Since L ⊂ Π and Σ is symmetric about
, we know that C := Σ ∩ Π is a hypersurface of Σ . Let us check that w = 0 on C. Take any point

p = (x1, 0, x3, . . . , xn+1) ∈ C and choose k ∈ {3, . . . , n+ 1} for which xk ̸= 0 (this is possible because we are
assuming Σ ∩ L = ∅). We define the curve α : R → Rn+1 by

α(t) := (x1,−(sin t)xk, x3, . . . , xk−1, (cos t)xk, xk+1, . . . , xn+1).

rom the symmetry of Σ we get α(R) ⊂ Σ , and so α′(0) ∈ TpΣ . It is clear by definition that X(p) is
roportional to α′(0). Hence X(p) ∈ TpΣ , which leads to w(p) =

⟨
X(p), N(p)

⟩
= 0.

Next, we choose a point p0 ∈ Σ minimizing the distance function d(p) with p ∈ Σ . Note that p0 ̸= 0
nd p0 ∈ int(Σ ); this implies (∇Σd)(p0) = 0, and therefore N(p0) is proportional to p0. Let S ⊂ int(Σ ) be
he (n − 1)-dimensional round sphere obtained from the action over p0 of the maps in SO(n + 1) fixing L.
y having in mind that Σ is invariant under these maps and g is SO(n+ 1)-invariant, we get that N(p) is
roportional to p, for any p ∈ S. Thus, we have

w(p) = λp
⟨
X(p), p

⟩
= 0.

he last equality holds for any p ∈ Rn+1. This is clear when p = 0 or X(p) = 0. Otherwise, it comes from the
O(n+ 1)-invariance of g when applied to a map ϕ ∈ SO(n+ 1) such that ϕ(p) = p and ϕ(X(p)) = −X(p).
All this shows that w = 0 on C ∪ S. Note that Σ \ (C ∪ S) has four connected components Σi. By the

nique continuation principle [2] it follows that w ̸= 0 on any Σi, so that any Σi contains a nodal domain
f w. Hence w has at least four nodal domains. This contradiction entails that Σ ∩ L ̸= ∅. Finally, the
opological conclusion is clear because Σ is symmetric about L and ∂Σ ̸= ∅. □

emark 3.7 (The Planar Case). For n = 1 the topological conclusion in the theorem is obvious because
is a compact and connected curve. Observe that no hypotheses involving the metric nor the weight are

equired.

The previous theorem applies to the free boundary case, i.e., to weighted area-stationary hypersurfaces
ith non-empty boundary. Thanks to Remark 2.2 we can reason as in the proof of Theorem 3.6 to analyze
lso ψ-stable hypersurfaces with empty boundary. This leads us to the next result, that will be used in
ection 4, and implies inexistence of ψ-stable tori and ψ-stable cylinders of revolution.

heorem 3.8. In Rn+1, n ⩾ 2, we consider an SO(n + 1)-invariant Riemannian metric g and a weight
ψ only depending on the Riemannian distance d(p) with respect to 0. Let B ⊂ Rn+1 be an open round ball
bout 0 and Σ ⊂ B a compact, connected, two-sided, weighted area-stationary hypersurface. If Σ is ψ-stable
nd symmetric about some line L containing 0, then Σ ∩ L ̸= ∅. As a consequence, Σ is homeomorphic to a
losed n-dimensional disk (if ∂Σ ̸= ∅), or to an n-dimensional sphere (if ∂Σ = ∅).

Our second result illustrates that, in dimension 3, the topology of Σ controls the number of nodal domains
or a function associated to a rotations vector field. This allows to deduce that a compact stable capillary
urface of genus 0 is homeomorphic to a disk and rotationally symmetric about some line. In particular, any
apillary surface of genus 0 and disconnected boundary (a capillary annulus, for instance) must be unstable.
he proof follows the ideas of Ros and Souam [43, Thm. 2.2] for the unweighted setting after previous work

f Ros and Vergasta on the free boundary case [44, Thm. 11].

11
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heorem 3.9. In R3 we consider an SO(3)-invariant Riemannian metric g =
⟨
· , ·
⟩

together with a weight
eψ only depending on the Riemannian distance d(p) with respect to 0, and whose Bakry-Émery-Ricci curvature
atisfies Ricψ ⩾ 0. Let B ⊂ R3 be an open round ball about 0 and Σ ⊂ B a compact, connected, two-sided,
-capillary surface with ∂Σ ̸= ∅. Then, there is a rotations vector field X on R3 for which the function

w :=
⟨
X,N

⟩
either vanishes on Σ or verifies the inequality

m ⩾ 3 − 2 genus(Σ ),

where m is the number of nodal domains of w in Σ . As a consequence, if Σ is ψ-stable capillary and
genus(Σ ) = 0, then Σ if a closed disk of revolution about some line containing 0.

Proof. Take p0 ∈ Σ minimizing the distance function d(p) with p ∈ Σ . As in the proof of Theorem 3.6
we have that p0 ∈ int(Σ ) and p0 is proportional to N(p0), where N is the unit normal to Σ in (R3, g).
Let B = {e1, e2, e3} be a Euclidean orthonormal basis with e3 parallel to N(p0). We define the vector
field X given in coordinates (x, y, z) with respect to B by X(x, y, z) := (−y, x, 0). This is a Killing vector
field in (R3, g) since g is SO(3)-invariant and the one-parameter group associated to X consists of the
Euclidean rotations about the line L ⊂ R3 containing 0 and e3. We take the function w :=

⟨
X,N

⟩
on

Σ . By Lemma 3.3(i) we know that ∆Σ ,ψw + q w = 0 for some q ∈ C∞(Σ ). We suppose that w ̸= 0 and we
see that m ⩾ 3 − 2 genus(Σ ).

Let Di be a nodal domain of w. From the regularity of the nodal set w−1(0), see Cheng [13, Thm. 2.5]
and Remark 3.10 below, the boundary ∂Di ⊂ ∂Σ ∪ w−1(0) is a finite union of piecewise C2 closed curves.
Hence, we can apply the Gauss–Bonnet theorem in Di to obtain∫

Di
K da = 2π χ(Di) −

∫
∂Di

hi dl −
ni∑
k=1

θik,

where K is the Gaussian curvature of Σ for the induced metric, χ(Di) is the Euler characteristic of Di,
i is the geodesic curvature along the smooth arcs of ∂Di, and {θi1, . . . , θini} are the external angles of Di.
ote also that the elements of area and length are the Riemannian ones. By summing up these identities

or i = 1, . . . ,m and taking into account that w−1(0) has null area, we infer∫
Σ

K da = 2π
m∑
i=1

χ(Di) −
∫
∂Σ

h dl −
s∑

k=1
θk,

here h is the geodesic curvature of ∂Σ with respect to the inner conormal ν and {θ1, . . . , θs} are the external
ngles associated to all the nodal domains. On the other hand, by applying directly the Gauss–Bonnet
ormula in Σ , we get ∫

Σ

K da = 2π χ(Σ ) −
∫
∂Σ

h dl.

y comparing the two previous equations and having in mind that χ(Di) ⩽ 1 we arrive at

2π χ(Σ ) = 2π
m∑
i=1

χ(Di) −
s∑

k=1
θk ⩽ 2πm−

s∑
k=1

θk.

ince χ(Σ ) = 2 − 2 genus(Σ ) − r, where r is the number of boundary components of Σ , the desired estimate
⩾ 3 − 2 genus(Σ ) comes from the inequality above if we prove that

∑s
k=1 θk ⩾ 2π (1 + r).

Note that X(p0) = 0 because p0 is proportional to N(p0) and N(p0) is parallel to e3. Observe also that
X, e3

⟩
= 0 on R3 because X and e3 are orthogonal in Euclidean sense and g is SO(3)-invariant. So, we

ave
⟨
∇vX, e3

⟩
+
⟨
X(p0),∇ve3

⟩
= 0 for any v ∈ Tp0Σ . All this gives us w(p0) = 0 and (∇Σw)(p0) = 0,
.e., w has a zero of order at least 2 in p0. As w ̸= 0 then w has finite order at p0 by the unique continuation
12
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rinciple [2]. In particular, p0 ∈ int(Σ ) is a vertex of the nodal set w−1(0) and so, there are at least two nodal
ines meeting at p0 in an equiangular way, see Cheng [13, Thm. 2.5]. Hence, the contribution to

∑s
k=1 θk of

he nodal domains Di with p0 ∈ ∂Di is 2π.
Now, we fix a connected component C of ∂Σ . As C is compact, the restriction to C of the Euclidean

eight function with respect to e3 has at least two critical points p1 and p2. It is easy to check that X(pi) is
angent to C, so that w(pi) = 0. Hence (∂w/∂ν)(pi) = 0 by Lemma 3.3 (ii). Suppose that w ⩽ 0 on a small
omain Ui ⊂ Σ with pi ∈ Ui. Then, the equality in Lemma 3.3(i) and the fact that Ricψ ⩾ 0 would imply
hat ∆Σ ,ψw ⩾ 0 on Ui. As (∂w/∂ν)(pi) = 0 we would deduce from the Hopf boundary point lemma and the
aximum principle that w = 0 on Ui. Thus, the unique continuation principle [2] would lead to w = 0 on
, a contradiction. This shows that w must change sign on any neighborhood of pi in Σ . In particular, for

ny i = 1, 2, there is a nodal line of w−1(0) intersecting int(Σ ), containing pi and separating two different
odal domains of w in Σ . It follows that the contribution of C to

∑s
k=1 θk is at least 2π. By having in mind

he contribution of the nodal domains containing p0 we conclude that
∑s
k=1 θk ⩾ 2π (1+r). This proves the

nequality m ⩾ 3 − 2 genus(Σ ) in the statement.
Finally, if Σ is ψ-stable capillary and genus(Σ ) = 0, then m ⩾ 3, so that w = 0 on Σ by Lemma 3.3.

his means that X is tangent to Σ , i.e., Σ is a surface of revolution about L. As p0 ∈ Σ ∩ L and ∂Σ ̸= ∅
e conclude that Σ is homeomorphic to a closed disk. □

emark 3.10. The structure of the nodal set w−1(0) for a non-trivial solution of equation ∆Σw+q w = 0
as described in [13, Thm. 2.5]. For the proof, Cheng showed that, in a neighborhood of any vertex, the
odal set is C1 diffeomorphic to the nodal set of a spherical harmonic in R2 around the origin. This relies
n a theorem of Bers [13, Thm. 2.1] which is valid for more general elliptic equations. In particular, any
olution to a weighted elliptic equation ∆Σ ,ψw + q w = 0 satisfies locally the conditions in Bers’ theorem.
hus, the structure of the nodal set in the weighted setting is the same as in the unweighted one and can
e deduced by following the original proof of Cheng.

emarks 3.11. (i). Our results also hold for ψ-capillary hypersurfaces outside a ball about 0. For this case,
he point p0 appearing in the proofs must be chosen so that it maximizes d(p).

(ii). Indeed, the arguments remain valid for hypersurfaces with empty boundary and not necessarily
onfined inside or outside a ball about 0. Thus, in Rn+1 with an SO(n + 1)-invariant metric and a weight
nly depending on d(p), a compact, connected, two-sided, weighted area-stationary hypersurface Σ with
Σ = ∅, which is also ψ-stable and symmetric about some line containing 0, must be homeomorphic to
n n-dimensional sphere. Moreover, for n = 2, a ψ-stable area-stationary 2-sphere must be rotationally
ymmetric about some line containing 0.

(iii). In Euclidean space Rn+1 with constant weight, the classification of constant mean curvature
ypersurfaces having rotational symmetry allows to conclude in the previous theorems that Σ is a totally
mbilical hypersurface. Therefore, Σ is a spherical cap or an equatorial disk when ∂Σ ̸= ∅, whereas it
oincides with a round sphere when ∂Σ = ∅. Unfortunately, there is no similar characterization result for
rbitrary radial weights in Rn+1.

We finish this section by showing an interesting situation where our results are applied.

xample 3.12. In Rn+1 we consider a conformal metric gµ := e2µ g0, where µ : Rn+1 → R is a smooth
adial function and g0 denotes the Euclidean metric. It is clear that gµ is O(n+1)-invariant and so, our results
old for those weights only depending on the distance function d(p). This includes not only the Euclidean
ase (µ = 0) but also all the simply connected space forms with radial weights. More precisely, the hyperbolic

n+1
pace of constant curvature −1 is identified with the unit round ball B ⊂ R endowed with the metric gµ
13
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btained when e2µ(p) := 4/(1 − |p|2)2. In this case the hyperbolic geodesic ball centered at 0 of radius r > 0
oincides with the open round ball centered at 0 of radius

√
(1 − argcosh(r))/(1 + argcosh(r)) ∈ (0, 1). On

he other hand, if S denotes the south pole in the unit sphere Sn+1 of constant curvature 1, then we can
dentify Sn+1 \ {S} with Rn+1 endowed with the metric gµ such that e2µ(p) := 4/(1 + |p|2)2. In this setting,
he open geodesic ball about the north pole N of radius r ∈ (0, π) is identified with the round ball about 0
f radius

√
(1 − cos(r))/(1 + cos(r)) ∈ (0,∞). The reader is referred to [12, §2.3] for the details.

. The partitioning problem

In this section we study minimizers of the weighted relative perimeter for fixed weighted volume inside
eighted manifolds. More precisely, we will use our previous results in Section 3.2 to establish symmetry and

opological properties of minimizers in balls endowed with Riemannian metrics invariant under Euclidean
sometries and with radial weights. After that, we will apply stability arguments to deduce the topological
lassification of isoperimetric boundaries in the Gaussian case.

We start by introducing notation and recalling some existence and regularity results valid in arbitrary
omains of weighted manifolds.

Let Ω be a smooth domain of a Riemannian manifold Mn+1 with weight eψ. A weighted isoperimetric
egion in Ω of weighted volume v0 ∈ (0, Vψ(Ω)) is a set E ⊂ Ω satisfying Vψ(E) = v0 and Pψ(E,Ω) ⩽

ψ(E′,Ω), for any other set E′ ⊂ Ω with Vψ(E′) = v0. Here Vψ(E) denotes the weighted volume defined in
2.1) and Pψ(E,Ω) is the weighted relative perimeter given by equality

Pψ(E,Ω) := sup
{∫

E

divψX dvψ ; |X| ⩽ 1
}
,

here divψX is the weighted divergence in (2.2) and X ranges over smooth vector fields with compact
upport on Ω . By using the divergence theorem as in [30, Thm. 9.6, Ex. 12.7] we infer that

Pψ(E,Ω) = Aψ(∂E ∩ Ω), (4.1)

or any open set E ⊂ Ω such that ∂E is a smooth hypersurface, up to a closed subset of volume zero.
s the weighted relative perimeter does not change by sets of volume zero we can always suppose that
< Vψ(E ∩B) < Vψ(B) for any open metric ball B centered at ∂E ∩ Ω , see [19, Prop. 3.1].
The existence of weighted minimizers in Ω is a non-trivial question. Thanks to the lower semicontinuity

f Pψ(·,Ω) and standard compactness arguments this is guaranteed for any weighted volume if Vψ(Ω) < ∞,
ee [36, Sects. 5.5, 9.1], [7, Prop. 2.2] and [34, Sect. 2.2]. This happens for instance when Ω is a relatively
ompact domain of M .

On the other hand, the regularity properties of weighted isoperimetric regions in Ω are the same as in
he unweighted case, see Morgan [35, Sect. 3.10], Milman [34, Sect. 2.2] and the references therein. Thus,
f E is a weighted minimizer in Ω , then the interior boundary Λ := ∂E ∩ Ω is a disjoint union Σ ∪ Σ0,
here Σ is a smooth embedded hypersurface, possibly with boundary ∂Σ = Σ ∩ ∂Ω , and Σ0 is a closed

et of singularities with Hausdorff dimension less than or equal to n − 7. Moreover, at any point p ∈ Λ, a
low-up argument provides the existence of a closed tangent cone Cp ⊂ TpM which is area-minimizing in
pM . Then, the points of Σ are those where Cp is either a hyperplane (if p ∈ Ω) or a half-hyperplane (if
∈ ∂Ω), see [34, Sect. 2.3] and the references therein.

emark 4.1. A minimizer E need not meet ∂Ω , i.e., the boundary ∂Σ could be empty. An example of
his situation is found after Remark 2.5 in [40]. Note also that the condition ∂Σ = Σ ∩ ∂Ω prevents the
xistence of points of int(Σ ) inside ∂Ω .
14
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Now, we are ready to state and prove the main result of this section.

Theorem 4.2. In Rn+1, n ⩾ 2, we consider an O(n + 1)-invariant Riemannian metric g =
⟨
· , ·
⟩

and
a weight eψ only depending on the Riemannian distance d(p) with respect to 0. Let B ⊂ Rn+1 be an open
ound ball about 0 and E ⊂ B a weighted isoperimetric region such that the regular part Σ of the interior
oundary Λ := ∂E ∩B is connected. Then, Λ coincides with its smooth part Σ , is symmetric about some line L
ontaining 0, and homeomorphic either to an n-dimensional sphere (if ∂Σ = ∅) or to a closed n-dimensional
isk (if ∂Σ ̸= ∅).

roof. From the regularity results and Eq. (4.1) we can represent the minimizer as an open set E ⊂ Ω

uch that Pψ(E,U) = Aψ(Σ ∩ U) for any open set U ⊆ B.
We first prove that E is symmetric about some line L ⊂ Rn+1 with 0 ∈ L. For this we will use Hsiang

symmetrization [23] in our setting. The main idea is that, if a hyperplane Π ⊂ Rn+1 with 0 ∈ Π bisects E
i.e., the weighted volume of E at both sides of Π is the same), then E is symmetric with respect to Π . To
how this we proceed below as in the proof of [24, Lem. 1’].

Let Π± be the connected components of Rn+1 \Π . For any set S ⊂ Rn+1 we denote S± := S∩Π±. After
hanging Π+ to Π− if necessary we can suppose that Aψ(Σ+) ⩽ Aψ(Σ−). We define the set

E∗ := E+ ∪ s(E+) ∪ (E ∩ Π ),

here s is the mirror symmetry with respect to Π . Since the metric g is O(n+ 1)-invariant, s(B) = B, the
eight eψ only depends on d(p) and Vψ(E+) = Vψ(E−), it follows that Vψ(E∗) = Vψ(E) and

Pψ(E∗, B) ⩽ Aψ(Σ ) = Pψ(E,B).

s E is a weighted minimizer we obtain Pψ(E∗, B) = Pψ(E,B), so that Aψ(Σ+) = Aψ(Σ−). In particular,
also minimizes the weighted relative perimeter in B+ for fixed weighted volume. Hence Lemma 3.2(i) and

emark 3.1 entail that Σ meets Π orthogonally along Σ∩Π (observe that Σ∩Π ̸= ∅ because Σ is connected).
n the other hand, as E∗ is another weighted isoperimetric region in B, the regularity results imply that
∗ := ∂E∗ ∩B coincides with a smooth embedded hypersurface Σ∗, up to a closed set of singularities with
ausdorff dimension less than or equal to n− 7. By using again Lemma 3.2(i) and that Σ ∩Π+ = Σ∗ ∩Π+

e infer that Σ and Σ∗ have the same constant weighted mean curvature. Finally, since Σ ∩ Π = Σ∗ ∩ Π

nd Σ meets Π orthogonally, we conclude from the unique continuation property [2] applied to the weighted
ean curvature equation that Σ = Σ∗. From here we deduce Λ = Λ∗ and E = E∗, so that E is symmetric
ith respect to Π .
Next, we employ the symmetry property of E with respect to bisecting hyperplanes to derive its rotational

ymmetry. Let Π1 := v⊥
1 be a hyperplane in Rn+1 bisecting E. Consider the family Πv := v⊥ with

∈ Sn−1 := Sn ∩ v⊥
1 . By continuity, there is v2 ∈ Sn−1 such that Π2 := Πv2 bisects E. Similarly, we

an find Π3 := v⊥
3 with v3 ∈ Sn−2 := Sn ∩ {v1, v2}⊥ and bisecting E. This produces a family of hyperplanes

Π1, . . . ,Πn} bisecting E and with Πi ⊥ Πj for any i ̸= j. We know that E is symmetric with respect to any
i and so, E is invariant under the Euclidean symmetry r associated to the line L := Π1 ∩ . . .∩Πn. Thus, for
ny hyperplane Π with L ⊂ Π , we have r(E+) = E−, where E± := E ∩ Π±. Since g is O(n+ 1)-invariant
nd eψ only depends on d(p) we deduce that Π bisects E, so that E is symmetric with respect to Π . As Π

s any hyperplane containing L then E is symmetric with respect to L.
We now prove that Λ = Σ , i.e., the singular set Σ0 is empty. Note that Σ0 ⊆ L. Otherwise Σ0 would

ontain the (n− 1)-dimensional round sphere obtained from the action over a point p ∈ Σ0 \L of the maps
n O(n+1) fixing L. This would contradict that the Hausdorff dimension of Σ0 is less than or equal to n−7.

n+1
ow, take p ∈ Λ ∩ L and consider an associated area-minimizing closed tangent cone Cp ⊂ R . Because
15
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f the symmetry of E, this cone is also symmetric about some line. Since Cp is area-minimizing then it
as vanishing mean curvature along its regular points. Hence, the classification of minimal hypersurfaces of
evolution in Rn+1 implies that Cp is a hyperplane if p ∈ Ω or a half-hyperplane if p ∈ ∂Ω . It follows that
∈ Σ . All this shows that Σ0 = ∅.
Finally, since E is a weighted minimizer and Σ0 = ∅, then Λ is a compact, connected and ψ-stable weighted

rea-stationary hypersurface, which is also symmetric with respect to L. So, the topological conclusion about
is a direct consequence of Theorem 3.8. □

emarks 4.3. (i). In general, the regular part Σ of the interior boundary Λ need not be connected. When
he Bakry-Émery-Ricci tensor in (2.3) satisfies Ricψ ⩾ 0, then Σ is either connected or a totally geodesic
ypersurface with ∂Σ = ∅ and Ricψ(N,N) = 0 on Σ . This is done by inserting locally constant and nowhere
anishing functions in the weighted index form (3.2), see [46, Thm. 2.2, Cor. 2.8]. In particular, if Ricψ > 0
ver non-vanishing vector fields, then Σ is connected.

(ii). The properties in Theorem 4.2 also hold for bounded minimizers outside a round ball about 0, or in
n+1 endowed with an O(n + 1)-invariant metric and a weight eψ only depending on d(p). A remarkable
ifference with respect to the case of round balls is that the existence and boundedness of weighted
soperimetric regions are not guaranteed. Some related results in Euclidean space with radial weight were
roved by Morgan and Pratelli [37]. We point out that, in this setting, the rotational symmetry of minimizers
as obtained in [37] by using spherical symmetrization.
(iii). For a round ball B in Rn+1 with constant weight, the information in Theorem 4.2 combined with the

lassification of constant mean curvature hypersurfaces with rotational symmetry in Rn+1, allow to deduce
hat the interior boundary of any isoperimetric solution is a totally umbilical disk. For more details we refer
he reader to the proof of Ros [41, Thm. 4] after Burago and Maz’ya [6, Lem. 9 in p. 54], see also Bokowski
nd Sperner [5, Sect. 2]. Unfortunately, the classification of hypersurfaces of revolution with constant mean
urvature with respect to a radial weight is much more involved, even in the Gaussian case, where only some
pecial cases are completely understood.

(iv). For n = 1 the regularity and topological conclusions in Theorem 4.2 are valid for any Riemannian
etric and any smooth weight. When the metric is O(2)-invariant and the weight only depends on d(p) we

an apply Hsiang symmetrization to deduce that any minimizer is symmetric with respect to a line containing
.

xamples 4.4. (i). Theorem 4.2 is valid in Rn+1 with a conformal metric gµ := e2µ g0 associated to a
mooth radial function µ, see Example 3.12. In particular, it applies for geodesic balls in simply connected
pace forms. As indicated in Remarks 4.3 (ii) the result also holds for bounded minimizers (not necessarily
onfined into a ball) in these spaces with respect to weights only depending on d(p).

(ii). Let eψ be a radial non-decreasing weight in a Euclidean round ball B ⊂ Rn+1 about 0. Since eψ
ttains its minimum value at 0, we might expect the weighted minimizers to be concentrated near 0, at
east for small weighted volumes and big enough radius of B. For a minimizer E such that E ⊂ B and Σ is
onnected, Theorem 4.2 implies that ∂E is a smooth n-dimensional sphere symmetric with respect to some

line L with 0 ∈ L. In the special case where eψ is log-convex, a result of Chambers [10] entails the stronger
conclusion that E is a round ball contained in the region of B where eψ equals its minimum value.

Next, we discuss the partitioning problem for Gaussian balls. In this situation we can improve Theorem 4.2
not only by showing that spherical hypersurfaces cannot minimize, but also by classifying all isoperimetric
regions with vanishing weighted mean curvature.

Theorem 4.5. Consider an open Euclidean round ball B ⊂ Rn+1 about 0 with Gaussian weight eψ(p) :=
−|p|2/2. Then, the interior boundary Λ := ∂E ∩B of any weighted isoperimetric region E is a smooth closed
16



C. Rosales Nonlinear Analysis 233 (2023) 113291

n

c

P
R
T
h
c

w
o
e

f
T
t

P
u

(

P
t
H

w
a
a

O

F

B

T

-dimensional disk symmetric about some line L containing 0. Moreover, if the associated weighted mean
urvature vanishes, then Λ is an equatorial disk.

roof. Let E ⊂ B be a weighted minimizer. Since the Bakry-Émery-Ricci tensor satisfies equality
icψ(X,X) = |X|2, we know from Remarks 4.3 (i) that the regular part Σ of Λ is connected. By
heorem 4.2 we get that Λ is a smooth hypersurface, symmetric with respect to some line L with 0 ∈ L, and
omeomorphic either to a sphere or to a disk. In the first case E ⊂ B and so, Λ would be a compact and
onnected ψ-stable hypersurface with empty boundary in Gauss space. Then, a result of McGonagle and

Ross [32, Cor. 4.8], see also [45, Cor. 4.9], would imply that Σ is a hyperplane, a contradiction. From here
e deduce that Λ is a closed n-dimensional disk. Finally, the classification by Li and Xiong [28, Thm. 1]
f weighted stable area-stationary hypersurfaces in B with vanishing mean curvature yields that Λ is an
quatorial disk. □

The previous proof relies on Theorem 4.2 and characterization results obtained in other works. The
ollowing proposition contains two statements (i) and (ii), which lead to a fully self-contained proof of
heorem 4.5. Our proof of (i) is different from the aforementioned ones in [32,45]. For proving (ii) we extend

o the Gaussian setting an argument of Ros and Vergasta in [44, Thm. 6].

roposition 4.6. Let Σ be a compact, two-sided, weighted area-stationary hypersurface inside the Euclidean
nit ball B ⊂ Rn+1 with Gaussian weight eψ(p) := e−|p|2/2.

(i) If ∂Σ = ∅, then Σ is ψ-unstable.
ii) If Hψ = 0 and Σ is ψ-stable, then Σ is an equatorial disk.

roof. For a fixed vector e ∈ Rn+1 \ {0} we consider the height function π(p) :=
⟨
p, e
⟩

with p ∈ Rn+1 and
he angle function ϑ(p) :=

⟨
e,N(p)

⟩
with p ∈ Σ . It is clear that ∇Σπ = e − ϑN and ∆Σπ = nH ϑ, where

is the Euclidean mean curvature of Σ . By using (2.5) and that (∇ψ)(p) = −p, we get

∆Σ ,ψπ = Hψ ϑ− π, (4.2)

here Hψ is the weighted mean curvature of Σ defined in (3.1). The Riemannian divergence theorem
nd Eq. (2.6) imply that the function u := Hψ ϑ − π satisfies u ∈ F∞

ψ (Σ ) when ∂Σ = ∅. From (3.4)
nd the fact that Ricψ(N,N) = 1, we have

Lψπ = Hψ ϑ+ |σ|2 π.

n the other hand, for the Euclidean translations ϕt(p) := p+ te, we deduce by Eq. (3.5) that

Lψϑ = ϑ.

rom the two previous equalities and the fact that Hψ is constant (Lemma 3.2(i)), we infer

Lψu = −|σ|2 π.

y having in mind (3.3) we derive the following identity when ∂Σ = ∅:

Iψ(u, u) = −
∫
Σ

uLψu daψ = Hψ

∫
Σ

|σ|2 ϑπ daψ −
∫
Σ

|σ|2 π2 daψ. (4.3)

o transform the first integral, observe that∫
ϑπ daψ =

∫
πLψϑ daψ =

∫
ϑLψπ daψ = Hψ

∫
ϑ2 daψ +

∫
|σ|2 ϑπ daψ,
Σ Σ Σ Σ Σ

17
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here we have used the symmetry of Iψ. By substituting this information into (4.3), we obtain

Iψ(u, u) = Hψ

∫
Σ

ϑπ daψ −H2
ψ

∫
Σ

ϑ2 daψ −
∫
Σ

|σ|2 π2 daψ.

Let {e1, . . . , en+1} be the standard basis in Rn+1. For any i = 1, . . . , n + 1 we denote ui := Hψ ϑi − πi,
where ϑi(p) :=

⟨
ei, N(p)

⟩
and πi(p) :=

⟨
p, ei

⟩
. When ∂Σ = ∅ the last equation gives us

n+1∑
i=1

Iψ(ui, ui) = Hψ

∫
Σ

h daψ −H2
ψ Aψ(Σ ) −

∫
Σ

|σ|2 |X|2 daψ, (4.4)

here X(p) := p and h(p) :=
⟨
X(p), N(p)

⟩
, for any p ∈ Σ . Next, we transform the first integral above. It is

lear from (2.4) and (3.1) that

n− |X|2 = divΣ ,ψX = divΣ ,ψX
⊤ −Hψ h, (4.5)

where X⊤ := X − hN . Hence, the Riemannian divergence theorem entails∫
Σ

(n− |X|2) daψ = −Hψ

∫
Σ

h daψ

when ∂Σ = ∅. By plugging this into (4.4) we conclude that
n+1∑
i=1

Iψ(ui, ui) =
∫
Σ

(|X|2 − n) daψ −H2
ψ Aψ(Σ ) −

∫
Σ

|σ|2 |X|2 daψ.

ince the right hand side in the equality above is negative, we can find j ∈ {1, . . . , n + 1} such that
ψ(uj , uj) < 0. By Lemma 3.2 (ii) this shows that Σ is ψ-unstable when ∂Σ = ∅, so that (i) is proved.

Now we prove (ii). Consider the constants ci := Aψ(Σ )−1 ∫
Σ
πi daψ and the vector c :=

∑n+1
i=1 ci ei. If we

efine vi := πi − ci, then it is clear that vi ∈ F∞
ψ (Σ ). From the stability inequality in Lemma 3.2 (ii) it

ollows that Iψ(vi, vi) ⩾ 0 for any i = 1, . . . , n+ 1. By taking into account (3.2) together with θ = π/2 and
I(N,N) = 1 along ∂Σ , we infer

0 ⩽
n+1∑
i=1

Iψ(vi, vi) =
∫
Σ

(
n+1∑
i=1

|∇Σvi|2
)
daψ −

∫
Σ

(1 + |σ|2) |X − c|2 daψ −
∫
∂Σ

|X − c|2 dlψ. (4.6)

ince ∇Σvi = ∇Σπi = ei − ϑiN , then
∑n+1
i=1 |∇Σvi|2 = n on Σ . Thus, by using (4.5), the Riemannian

ivergence theorem, the fact that ν = −X along ∂Σ and equality Hψ = 0 on Σ , we have∫
Σ

(
n+1∑
i=1

|∇Σvi|2
)
daψ = nAψ(Σ ) =

∫
Σ

|X|2 daψ −
∫
∂Σ

⟨
X, ν

⟩
dlψ =

∫
Σ

|X|2 daψ + Lψ(∂Σ ). (4.7)

n the other hand, as Hψ = 0 on Σ , then ∆Σ ,ψπi = −πi by (4.2). The divergence theorem gives us

−
∫
Σ

πi daψ = −
∫
∂Σ

⟨
∇πi, ν

⟩
dlψ =

∫
∂Σ

⟨
∇πi, X

⟩
dlψ =

∫
∂Σ

πi dlψ,

nd so ∫
∂Σ

|X − c|2 dlψ = (1 + |c|2)Lψ(∂Σ ) + 2
∫
Σ

⟨
X, c

⟩
daψ. (4.8)

y substituting (4.7) and (4.8) into (4.6), and simplifying, we deduce

0 ⩽ −|c|2 Aψ(Σ ) − |c|2 Lψ(∂Σ ) −
∫
Σ

|σ|2 |X − c|2 daψ.

rom here we conclude that c = 0 and |σ|2 = 0 on Σ . By the regularity of Σ and the orthogonality condition
etween Σ and ∂B we conclude that Σ is a single equatorial disk in B. □
18
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emarks 4.7. (i). Unlike the unweighted setting, the interior boundary of a minimizer in a Gaussian ball
annot be a totally umbilical disk when the associated weighted mean curvature does not vanish. This
s because hyperplanes avoiding 0 do not meet ∂B orthogonally and round spheres with constant mean
urvature in Gauss space are those centered at 0. We have shown that the interior boundary is a closed
mbedded disk with constant weighted mean curvature, symmetric with respect to some line containing 0,
nd meeting ∂B orthogonally. Hypersurfaces of constant mean curvature λ in Gauss space are also known

as λ-hypersurfaces and they are connected to the study of singularities for the Euclidean mean curvature
flow [15]. Unfortunately, the classification of embedded λ-hypersurfaces of revolution is still incomplete. Some
related results can be found in [14,16,26,27,47].

(ii). Consider the Gaussian weight on the exterior Ω of a Euclidean round ball centered at 0. Since
Vψ(Ω) < ∞ we have existence of weighted minimizers in Ω for any weighted volume. By the stability result
in [45, Cor. 4.9], if a minimizer E satisfies E ⊂ Ω , then the interior boundary is a hyperplane. Though
alf-spaces meeting ∂Ω orthogonally are natural candidates to solve the problem we have not been able to
onfirm if they really minimize.

We finish this work by employing our techniques to derive some interesting properties of minimizers in a
ifferent weighted setting.

Let Ω be a smooth domain of a compact Riemannian manifold Nn with ∂N = ∅ and weight eh.
n the Riemannian cylinder Ω × R with horizontal weight eψ(x,s) := eh(x) the vertical translations are
sometries preserving the weight. By the existence result of Castro [8, Thm. 2.1] this guarantees that weighted
inimizers of any volume exist and they are bounded. Moreover, for large weighted volumes, any weighted

soperimetric region in N ×R is equivalent to a product N × [a, b], see Castro [8, Thm. 3.3]. Our contribution
o this problem is the next result.

heorem 4.8. In the previous conditions, let E ⊂ Ω ×R be any weighted minimizer with interior boundary
, regular part Σ and associated weighted mean curvature Hψ. Then, we have:

(i) if Hψ = 0 then E = Ω × [a, b], up to a measure zero set,
ii) if Σ is connected, then E is symmetric with respect to some horizontal slice Ω ×{s0}. Moreover, the angle

function ϑ :=
⟨
ξ,N

⟩
associated to the vertical Killing vector field ξ has at least two nodal domains on Σ .

When Σ is also compact, then ϑ has exactly two nodal domains.

roof. We first observe that Σ is a weighted parabolic hypersurface, see [46, Thm. 2.2] and the references
herein. In particular, any bounded from above function w ∈ C2(Σ ) such that ∆Σ ,ψw ⩾ 0 on Σ and
w/∂ν ⩾ 0 along ∂Σ must be constant.

Define the height function π : Ω × R → R by π(x, s) := s. As the weight is horizontal we easily get
∆Σ ,ψπ = Hψ ϑ. Moreover, we have ∂π/∂ν =

⟨
ξ, ν
⟩

= 0 along ∂Σ by the orthogonality condition between Σ

and ∂Ω × R. All this implies that π is constant on Σ when Hψ = 0. So, any connected component of Σ is
contained inside a horizontal slice Ω × {s}, which is a totally geodesic hypersurface in Ω ×R. By regularity
properties of minimizers this prevents the existence of points in Λ with an associated closed tangent cone
different from a hyperplane or a half-hyperplane. Therefore, we deduce that Σ0 = ∅ and Σ is the union of
finitely many horizontal slices having the same weighted area. Since Vψ

(
Ω×(−∞, s)

)
= Vψ

(
Ω×(s,∞)

)
= ∞

there must be at least two different horizontal slices in Σ . As a single cylinder Ω × [a, b] is isoperimetrically
better than a finite union ∪mi=1(Ω × [ai, bi]) enclosing the same weighted volume, we conclude that E is
equivalent to Ω × [a, b]. This proves (i).

Suppose now that Σ is connected. By continuity, there is a horizontal slice Ω × {s0} bisecting E. As the
mirror symmetry with respect to Ω × {s0} is an isometry of N × R that preserves not only the weight but

also the cylinder Ω × R and the boundary ∂Ω × R, we can apply Hsiang symmetrization as in the proof of

19
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heorem 4.2 to infer that E is symmetric with respect to Ω × {s0}. On the other hand, note that ϑ ̸= 0
n Σ . Otherwise, Σ would be foliated by vertical segments. As a singular point cannot appear along these
egments we would deduce that Σ = Σ∗ × R, which contradicts that E is bounded. If ϑ did not change
ign on Σ then we would have ∆Σ ,ψπ ⩾ 0 or ∆Σ ,ψπ ⩽ 0. Hence, the weighted parabolicity of Σ would lead
o the conclusion that Σ contains at least two horizontal slices, which contradicts that Σ is connected. So,

has at least two nodal domains. The last assertion in the statement is a consequence of Lemma 3.3, see
xample 3.5 for the details. □

emark 4.9 (About the Hypotheses on Σ ). If Ricψ ⩾ 0 and Ω is locally convex, then Σ is either connected
r totally geodesic with Ricψ(N,N) = 0 on Σ and II(N,N) = 0 along ∂Σ , see [46, Cor. 2.8]. When n ⩽ 6
he regularity properties of minimizers ensure that Σ is compact.

eferences
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