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1. Introduction

The partitioning problem inside an open round ball B C R™*! seeks those sets in B minimizing the relative
perimeter for a given volume (we recall that, for a set E C B, the contribution of 9F N 9B is not taken into
account when computing the relative perimeter). It is well known that, for any solution E to this problem,
the interior boundary A := 0E N B is either a spherical cap meeting B orthogonally, or an equatorial disk
in B. This was first proved by Burago and Maz’ya [6, Lem. 9 in p. 54] and later also by Bokowski and
Sperner [5, Sect. 2], who employed spherical symmetrization and the isometries of B. We refer the reader
to [42, Thm. 5] for a nice exposition of their arguments.

A closely related and much more involved problem is the description of stable free boundary hypersurfaces
in B, i.e., compact second order minima of the interior area for fixed volume while having non-empty
boundary contained in 0B. This started with the work of Ros and Vergasta [44], who established some
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partial results for characterizing the orthogonal spherical caps and the totally geodesic disks as the unique
stable hypersurfaces. By relying on these results, Barbosa [3] and Nunes [38] solved the problem for n = 2.
In arbitrary dimension, the desired classification was obtained by Wang and Xia [48, Thm. 3.1] by using
the stability condition with a clever test function associated to a conformal Killing vector field in R™*!.
As a matter of fact, they were able to describe all compact, two-sided, stable capillary hypersurfaces in B
after previous work of Ros and Souam [43], Marinov [31], and Li and Xiong [29]. We recall that capillary
hypersurfaces in B are those with constant mean curvature and making constant angle 6 with 0B (for
6 = 7/2 we get the free boundary case).

In this work we study isoperimetric regions and stable capillary hypersurfaces in round balls with radial
weights. So, we consider a smooth positive function e¥, only depending on the distance from the center of
B, to weight the Euclidean volume and relative perimeter of sets, as that as the area of hypersurfaces. It
is worth mentioning that most of the classical differential operators and curvature notions in Riemannian
geometry have a weighed counterpart, which allows a proper treatment of variational questions into this
context.

As in the unweighted setting, standard compactness arguments in geometric measure theory provide
existence of weighted isoperimetric regions in B. However, unlike the Euclidean case, the spherical caps
meeting OB orthogonally do not necessarily bound weighted minimizers in B. This is easy to see for the
Gaussian weight, where such hypersurfaces are not even critical points of the area for fixed volume, see
Remark 4.7. This shows us that other geometric shapes different from the totally umbilical ones appear
as isoperimetric boundaries in round balls with radial weights. Motivated by this phenomenon, our aim in
this paper is to deduce some relevant geometric and topological properties of any weighted minimizer E. In
Theorem 4.2 we prove that

“If the regular part of A .= OF N B is connected, then A is a smooth hypersurface, symmetric
about a line passing through the center of B, and homeomorphic either to a closed n-dimensional
disk (if A # 0) or to an n-dimensional sphere (if 0A =0)".

This means, in particular, that the isoperimetric boundaries in B have the simplest possible topology. We
remark that weighted minimizers bounded by spheres of revolution could appear because a minimizer in
B need not meet 0B. An example of this situation in a Riemannian manifold with non-empty boundary
is found after Remark 2.5 in [40]. In the unweighted case this theorem is combined with the classification
of constant mean curvature hypersurfaces of revolution to conclude that A is totally umbilical, i.e., it is a
spherical cap meeting OB orthogonally or an equatorial disk. Unfortunately, an analogous description for
arbitrary radial weights in R™*! is still unknown.

The proof of Theorem 4.2 goes as follows. The symmetry of A about a line L comes by adapting the
symmetrization technique of Hsiang [23] to our setting. After this, the smoothness of A is consequence of
the regularity results for weighted minimizers, see [35, Sect. 3.10], [34, Sects. 2.2, 2.3], together with the fact
that an area-minimizing tangent cone to A at any point in L must be totally geodesic. Note also that the
rotational symmetry implies that A is topologically an (n-dimensional) cylinder, disk, torus or sphere. To
complete the proof we invoke the stability result in Theorem 3.8 to rule out cylinders and tori as isoperimetric
boundaries.

The topological restriction in Theorem 3.8 is essentially a particular case of a more general property
for weighted stable capillary hypersurfaces in B. These were introduced and studied by Li and Xiong [28].
Similarly to the Riemannian context, they have constant weighted mean curvature and meet 0B making
constant angle 6, see Section 3.1 for details. The free boundary case 6 = 7/2 was first discussed by Castro
and the author [9]. In Theorem 3.6 we prove the following:

“If X is a compact, connected, two sided, weighted stable capillary hypersurface in B with
0X # 0 and symmetric about a line L passing through the center of B, then X if homeomorphic
to a closed n-dimensional disk”.
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For the proof we use in a natural way the symmetries of the ball B and the weight e¥. First, we take a
rotations vector field X in R™*! and check that, for any capillary hypersurface ¥ C B with unit normal
N, the associated function w = <X , N > solves a PDE problem for the weighted Laplacian Ay , with a
Neumann boundary condition (Lemma 3.3). Thus, we can apply a weighted version of the Courant’s nodal
domain theorem (Proposition 2.1) to deduce that, if X' is also stable, then w = 0 or has at most two nodal
domains. On the other hand, when X is topologically a cylinder, we are able to find X such that w has at
least four nodal domains. This allows to conclude that X' cannot be a cylinder and must be homeomorphic
to a disk. We point out that the test function w was previously utilized by Hutchings, Morgan, Ritoré and
Ros [25] for solving the double bubble conjecture in R, see also Ros and Vergasta [44], Ros and Souam [43],
Alias, Lépez and Palmer [1] and Ros [41]. By means of other test functions, Li and Xiong gave in [28, Sect. 4]
different instability criteria in Euclidean balls with radial weights e¥(") such that ¥" < 0.

For a capillary surface X in a ball B C R? it is possible to estimate the number m of nodal domains
for some non-vanishing function w = <X , N > in terms of the genus g of Y. This is done in Theorem 3.9,
where we prove that m > 3 — 2¢g. From this we easily infer the next statement for radial weights in B with
non-negative Bakry—Emery—Ricci curvature:

“If X is a compact, connected, two sided, weighted stable capillary hypersurface in B with
0% # 0 and genus zero, then X if a closed disk of revolution”.

This extends to a weighted setting a result and proof of Ros and Souam [43, Thm. 2.2]. They generalized
an argument of Ros and Vergasta [44] for the unweighted free boundary case relying on the Gauss—Bonnet
formula and the structure of the nodal set of w described by Cheng [13]. The theorem may be seen as a
converse of Theorem 3.6, in the sense that a topological hypothesis (genus zero) entails not only a topological
restriction (connected boundary) but also a geometric conclusion (rotational symmetry).

An interesting weight where our results apply is the Gaussian one. We must observe that minimizers and
stable area-stationary hypersurfaces in half-spaces, slabs, and convex cylinders of Gauss space have been
studied by many authors, see for instance [45,46] and the references therein. For a Gaussian ball, we remark
that a compact area-stationary hypersurface with empty boundary cannot be stable. This comes since a
complete, two-sided, stable area-stationary hypersurface in Gauss space having empty boundary and finite
area must be a hyperplane, see McGonagle and Ross [32]. For the unit ball we provide in Proposition 4.6 a
direct and original proof of this instability statement. When this is combined with Theorem 4.2, we obtain
that

“In a Gaussian ball, the interior boundary of any isoperimetric region is a smooth closed
n-dimensional disk symmetric about a line containing the center of the ball”.

As we already mentioned, the spherical caps meeting 0B orthogonally are not critical points for the
partitioning problem in a Gaussian ball. However, for any minimizer £ C B with vanishing weighted mean
curvature, its interior boundary F N B is an equatorial disk of B. This is consequence of a stability result
of Li and Xiong [28, Thm. 1] for radial weights. In Proposition 4.6 we show a different proof of this fact
which follows the ideas of Ros and Vergasta in [44, Thm. 6].

The techniques employed in this paper allow to consider O(n + 1)-invariant metrics in R"** and weights
only depending on the Riemannian distance from the center of B. In particular, the results are valid for
geodesic balls in simply connected space forms of any curvature and dimension. Moreover, since most of the
arguments rely on the symmetries of the ball, these can be used to analyze capillary hypersurfaces outside
a round ball, as that as weighted minimizers in the whole space R**! with an O(n + 1)-invariant metric
and radial weight. This includes the case of Euclidean space with radial weight, where isoperimetric regions
were previously studied by Morgan and Pratelli [37] and Chambers [10], among other authors. We finish

3



C. Rosales Nonlinear Analysis 233 (2023) 113291

this work by showing how our methods are also useful to discuss the partitioning problem in Riemannian
cylinders with horizontal weights, see Theorem 4.8.

The paper contains four sections. In Section 2 we introduce the notation and establish a weighted version
of the Courant’s nodal domain theorem for solutions to certain elliptic problems. In Section 3 we review
some facts about capillary hypersurfaces and obtain geometric and topological consequences of the stability
condition. Finally, in Section 4 we analyze weighted minimizers in round balls with radial weights, and
deduce the topological classification of their interior boundaries for Gaussian balls.

2. Preliminaries

In this section we introduce notation and review some properties of the solutions to certain elliptic
problems that will be applied later for capillary hypersurfaces inside weighted manifolds. We have organized
the content into three subsections.

2.1. Weighted manifolds

A weighted manifold is a complete oriented manifold M™+!, possibly with smooth boundary OM, together
with a Riemannian metric g := (-,-), and a smooth positive function €. We denote by int(M) the set
M \ OM and by | -| the norm of tangent vectors in M. The function e¥ is used to weight the Hausdorff
measures associated to the Riemannian distance in (M, g). In particular, the weighted volume of a Borel set
E and the weighted area of a hypersurface X in M are defined by

Vd,(E) Z:/Ede, Aw(Z) :Z/Edaw, (2.1)

where dv, = e¥ dv and day = e¥ da are the weighted elements of volume and area, respectively. For an
(n — 1)-dimensional submanifold C' C M we consider the weighted measure

Lw(C) = Ldl¢,

where dl,, = e¥ dl and dl is the (n — 1)-dimensional Hausdorff measure in (M, g). For the constant weight
1 = 0 we recover the corresponding measures in (M, g).

Most of the differential operators and curvature notions in Riemannian geometry have a weighted
counterpart, which combines the classical definitions with the derivatives of the weight. For instance, the
weighted divergence [20, p. 68] of a C! vector field X on M is given by

divy X = e ¥ div(e? X) = divX + (Vy, X), (2.2)

where div is the usual divergence in (M, g) and Vi stands for the Riemannian gradient of ¢. The weighted
Laplacian is introduced in [20, Sect. 3.6] as the second order elliptic linear operator

Apu = divy Vu = Au + <V¢, Vu>,

where A is the Laplacian operator in (M, g) and u is a C? function on M. On the other hand, the most
natural generalization of the Ricci tensor in (M, g) is the Bakry-Emery-Ricci tensor, see [36, p. 182] and the
references therein, which is the 2-tensor

Ricy = Ric — V21, (2.3)

where V2 stands for the Hessian operator in (M, g). We recall that Ric is the 2-tensor Ric(X,Y') := trace(u
R(X,u)Y), where R is the curvature tensor as defined in [17, Sect. 4.2]. The Bakry-Emery-Ricci curvature
at a point p € M in the direction of a tangent vector X € T,,M is the number (Ricy),(X, X ). The notation
Ricy > 0 means that (Ricy),(X,X) > 0 for any p € M and X € T,M.
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A smooth hypersurface X C M, possibly with smooth boundary 0%, becomes a weighted manifold with
respect to the induced metric g|x and the restriction of e¥ to X. We will denote the weighted volume and
area elements in X' by day and dly, respectively. We will add the subscript X' to distinguish the gradient
and the weighted Laplacian V and Ay in M from the ones Vs and Ay in X. For a C'*! vector field on X,
tangent or not to X, the weighted divergence is

diVZj,w X = diVE X+ <V1/),X>, (24)

where divy X is the Riemannian divergence of X relative to X'. When X is tangent to X' this coincides with
the definition in (2.2) when we see X' as a weighted manifold. In particular, we have

Ag’wu =divy y Vysu = Asu+ <V2’Q/J, V2u>, (2.5)

for any C? function u on Y.

2.2. Weighted Sobolev functions

The contents of this subsection and 2.3 will be applied in Section 3 to capillary hypersurfaces. By
this reason, though we consider arbitrary weighted manifolds, we will follow the notation for hypersurfaces
introduced above.

Let X be a Riemannian manifold, possibly with smooth boundary 9%, and with weight e¥. We denote by
L?/)(E) the space of those functions v : ¥ — R such that u? is integrable with respect to day. The associated

Li—norm is given by HUHL?Z) = ([ u? da¢)1/2. The weighted Sobolev space Hi(Z) consists of the functions
u € Li(Z) having a distributional gradient Vx 4u satisfying |V yu| € Li(Z’). The tangent vector field
Vs pu on X is characterized by equality

/udiVZ’deaw:—/ <V2,w'u,,X>daw,
X X

for any tangent C! vector field X with compact support inside int(X) := ¥ \ X. The associated Hi)—norm

is defined by
1/2
lull g1 = </ uzda,/,—i—/ Vz,¢u|2da¢> .
¥ z z

For the constant weight 1 = 0 we will use the notation L?(X) and H!(X) for the corresponding spaces.
We refer the reader to [20, Sect. 4.1] and [22, Ch. 2] for basic facts about Sobolev spaces in weighted and
Riemannian manifolds.

From now on we suppose that X is compact. Note that pr(E) = L%(Y) because a < e¥ < 3 for some
constants «, > 0. Moreover, by taking into account the identity

divs .y X day = divs(e¥X) da (2.6)

for any tangent C'! vector field X, we deduce that H}b(Z) = HY(X) and Vg yu = Vxu for any u € Hi(E).
We also infer that the norms || - HL?& and || ||2 (respectively || - ||H11b and || - || 1) are equivalent, so that they
have the same convergent sequences.

Recall that, when X # 0, the trace operator is a continuous linear map 7' : H*(X) — L?(9X) such that
T'(u) = ujpx if u is continuous on X, and the next equality holds

/udiv;Xda:—/ <V2u,X>da—/ T(u)<X,V>dl,
b b5 oz

5
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where v is the inner conormal along 0, u € H*(X) and X is any C! tangent vector field on X, see Theorem
1 in [18, Sect. 4.3]. As usual, we will simply denote T'(u) = u. Again from (2.6), we get

/udivEﬂﬁXdaw:—/ <VEU,X>da¢—/ U<X,V>dlw7
b = ax

for any u € Héj(Z ) and any C! tangent vector field X on X. From here and (2.5) we derive the integration
by parts formula
/ uAy pwday = —/ <Vgu,ng> day, —/ ug—wdlw, (2.7)
z z ox v
which is valid for any u € H)(¥) and w € C*(¥). When 9% = ) the previous formulas are satisfied by
adopting the convention that all the integrals along 0% vanish.

2.3. Nodal domains for solutions to some weighted elliptic problems

Let X be a compact Riemannian manifold, possibly with smooth boundary 0%, and with weight e?¥. We
denote

Fyp(X) = {UGHi(E);/Zud%:O}, FX(X) = {“GCOO(E)5/EUdaw=0}~

By using that C°°(X) is dense in Hi(Z) it is easy to see that F7°(X) is dense in Fy (X).
Fix two functions ¢ € C*°(X) and b € C*°(9X). For any A € R we consider the following problem for the
weighted Laplacian in Y with a Neumann boundary condition

Apgpw+qw=X in X,

(Py) 2.8
* o hw=o in 0. 28)
ov

For a solution w € F2°(X) of (Py), Eq. (2.7) entails that Qy(u,w) = 0 for any u € Fy(X), where
Qy : Fy(X) x Fy(X) — R is the symmetric bilinear form given by

Qu(u,w) ::/Z{<Vgu,V2w>—quw}daw—/azbuwdlw. (2.9)

Hence, if w € F2°(X) solves (P)) for some A € R, then w € rad(Qy) (the radical of Q). Conversely,
any function w € rad(Qy) is a solution of (Py) for some A € R. Indeed, by elliptic regularity, we infer
that w € F;°(X) (we can argue as in [20, Cor. 7.3] for interior regularity, see [33, Ch. IV] for boundary
regularity); thus, we can employ again (2.7) to get

/(Agyww+qw)udaw+/ (&U—Fbw)udlw——Qw(u,w), (2.10)
z ox \ OV

which vanishes for any u € Fy(X). Now, standard arguments entail that w solves (Py) for some A € R. For
future reference we also observe that Q(u, w) is well defined for any u,w € Hi(E ).

Let w € C*°(X), w # 0, be a function such that Ay, yw+gw = A. A nodal domain of w is any connected
component of the set X'\ w~1(0). By reasoning as in the proof of the Courant’s nodal domain theorem [11,
p. 19] we can establish the following result.

Proposition 2.1. Let X be a compact and connected Riemannian manifold with weight e¥. Suppose that,
for some g € C®(X) and b € C*(0X), the bilinear form defined in (2.9) satisfies Qu(u,u) = 0 for any
u € FX(X). If a function w € C*°(X) solves the problem (Py) in (2.8), then w = 0 or w has at most two
nodal domains.
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Proof. Suppose w # 0 and take a nodal domain D of w. Define wp := xp w, where xp is the characteristic
function of D in ¥. Since w = 0 in 9DNint(X) it follows that wp is a continuous function in H'(X) = H,,(¥)
with Vywp = Vyw in D, see [11, Lem. 1, p. 21] for details. Note that

Qw(wD,wD):/ (|ngp|2—qw2p) daw—/ bw%d@,
z ox
:/2(<VEU),V21UD>—quD)da¢_/ bwwp dly

oz
:—/ wD(AE,d,w—i—qw)daw—/
b 9

EU}D (?;: + bw) dld, = O,
where we have used Eq. (2.7) and that w solves (FPp).

Suppose that D; and D, are different nodal domains of w. Denote w; := wp, for ¢ = 1,2. The fact that
fE w; day, # 0 allows to find a constant o # 0 such that @ := w; + aws is a continuous function in Fy (X).
It is clear that Qu(w,w) = 0 because Qy(w;, w;) = 0 for any ¢ = 1,2 and D; N Dy = . Take any function
u € Fy(X). By using the non-negativity hypothesis about Qy and that F2°(X) is dense in Fy(X) for the
weighted Sobolev norm || - ”pr’ we obtain

0< Qpu+tw,u+tw) = Qy(u,u) +2Qy(u,w)t, foranyteR.

This entails that Qy(u,w) = 0. Since u is arbitrary then W € rad(Qy). As a consequence, w € F2°(X) and
w solves the problem (Py) for some A € R. Note that A = 0 because W = w on D;.

Finally, in case there were at least three different nodal domains D; with ¢ = 1,2, 3, we could construct a
function w as above such that w = 0 on D3. As Ay, yw+qw = 0 on X, we would conclude from the unique
continuation principle for elliptic partial differential equations in [2] that @ = 0 in X. This is a contradiction
because w = w # 0 in D; with ¢ = 1,2. The proof is completed. [

Remark 2.2. The previous result also holds when 0% = ). In this case the arguments are simpler because
the Neumann boundary condition disappears and the integrals along dX vanish.

3. Stable capillary hypersurfaces

In this section we study capillary hypersurfaces in weighted manifolds. We introduce them in the first
subsection together with some useful results. The reader is referred to the paper of Li and Xiong [28,
Sect. 2.2], which extends the free boundary case discussed by Castro and the author [9, Sect. 3], and follows
closely the exposition of Ros and Souam [43, Sect. 1] for the unweighted case. In the second subsection we
establish geometric and topological properties of stable capillary hypersurfaces in balls with radial weights.

3.1. Weighted capillarity

Let £2 be a smooth domain with boundary 92 in an oriented Riemannian manifold M™*! with weight
e¥. We take a compact two-sided hypersurface X C 2 with smooth boundary X such that ¥ N 92 = 0%
(this implies that int(X) C £2). We suppose that 9X bounds a relatively compact open set D C 92, and
that there is a bounded open set F C {2 satisfying O0F = X U D.

Let X be a complete smooth vector field on M which is tangent along 9f2. We denote X} = ¢(X),
D; == ¢+(D) and E; := ¢:(F), where {¢:}+cr is the flow of diffeomorphisms associated to X. Clearly we
have X, N 02 = 0%, D; C 02, 0D, = 0%, and OF; = Xy U Dy, for any t € R. The deformation {E;}icr is
volume-preserving if the weighted volume functional ¢ — Vi, (E;) is constant for any ¢ small enough. For a
fixed contact angle § € (0, ) we define an energy functional £; : R — R by

Ey(t) = Ay(Zy) — (cos0) Ay (Dy),
7
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where A, is the weighted area of hypersurfaces in (2.1). We say that X is a 1-capillary hypersurface if
&,(0) = 0 for any volume-preserving deformation. If, in addition, £;(0) > 0 for any volume-preserving
deformation, then X is -stable or -stable capillary.

Remark 3.1 (The Free Boundary Case). For contact angle 8 = m/2 we have £y (t) = Ay (X}), which does
not involve 9% nor D;. So, we do not need that 9% bounds a set D in 0f2. In this context we also allow
hypersurfaces X~ C 2 with 0% = (). For them we adopt the convention that the conditions involving 9% are
empty and the integrals along 0X vanish. Anyway, the critical points of A, (X;) for fixed weighted volume
are called weighted area-stationary hypersurfaces. The corresponding i-stable ones provide the second order
candidates to solve the partitioning problem in 2, see Section 4.

By using the first and second variation formulas for the weighted volume and the functional &, we can
deduce the following result [28, Sect. 2.2].

Lemma 3.2. Under the conditions previously stated, we have

(1) X is -capillary if and only if Hy is constant and X intersects 052 making constant angle 6.
(ii) A y-capillary hypersurface X is -stable if and only if Ty, (u,u) > 0 for any u € F°(X).

Let us clarify the notation in the preceding lemma. The symbol H,, stands for the weighted mean curvature
of X computed with respect to the unit normal N pointing into E. This function was introduced by
Gromov [21, Sect. 9.4.E], see also Bayle [4, Sect. 3.4.2], by means of equality

Hil) = —diVE’,pN =nH — <V¢,N>, (31)

where H is the Riemannian mean curvature of Y. The fact that X intersects 02 making angle § means
that <77,N > = cosf along 90X, where n is the inner unit normal along 2. On the other hand, Z, :
Fp(X) x Fyp(X) — R is the weighted index form, i.e., the symmetric bilinear form given by

Zy(u,w) = / {<Vgu,ng> — (Ricy(N,N) + |cr|2) uw} day
> (3.2)
- {(csc0) II(7, D) + (cot B) o (v, v) uwdly.
ox
Here Vy is the distributional gradient in X' for the induced metric, Ric,, denotes the Bakry—Emery—Ricci
tensor of M in (2.3), 7 is the inner conormal of X in D, ¢ is the second fundamental form of X, and II
stands for the second fundamental form of 942. Clearly Z, coincides with the bilinear form Q. defined in
(2.9) when we take ¢ :== Ricy(N, N) + |o|* on ¥ and b := (csc) II(7,7) + (cot 0) o(v,v) along 5. In the
free boundary case § = 7/2 we have 7 = N, so that b = II(N, N).
Note that Zy (u, w) is well defined for arbitrary functions u, w € H i}(Z ). In the particular situation where
u € Hy(X) and w € C*(%), Eq. (2.10) implies that

0
Zy(u,w) = —/ uLypwday — / u {w + {(csc0) I1(7, D) + (cot 0) o(v,v) fw| diy, (3.3)
z oz LOv
where Ly is the weighted Jacobi operator of X, i.e., the second order linear operator
Low = Ag yw+ (Ricw(N, N) + \aﬁ) w. (3.4)

The two differential operators appearing in (3.3) have a geometric meaning. While £, provides the
derivative of the weighted mean curvature along the variation, the first order operator in the boundary
term coincides with the derivative of the angle that X; makes with 9f2. These interpretations lead to the
following lemma, where we derive some properties for the normal component of a Killing vector field (the
infinitesimal generator of a one-parameter group of Riemannian isometries).

8
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Lemma 3.3. Let 2 be a smooth domain of a Riemannian manifold M with weight e¥. Suppose that X
is a Killing vector field on M, which is tangent to 0§2, and has a one-parameter flow {¢s}ie(—c.e) such that
Yoo, =1 foranyt € (—e,e). If ¥ C 2 is a compact, connected and two-sided 1h-capillary hypersurface,
then the function w = <X, N> satisfies:

(i) As yw + (Ricy(N,N) + o )w =0 on X,
(it) 2% + {(csc0) I (7,7) + (cot ) o(v,v) }w = 0 along 0.

Moreover, if X is also -stable, then w = 0 or w has at most two nodal domains.

Proof. By Lemma 3.2(i) we know that X' has constant weighted mean curvature and meets 92 along 0%
making constant angle 6. From Equation (3.5) in [9], for any p € X' we know that

(Azpw + (Ricy (N, N) +[o]*) ) (p) = (Lyw)(p) (Hy)e(¢¢(p)), (3.5)

_ 4
- dt]

where (Hy); is the weighted mean curvature of the hypersurface X} := ¢,(X). So, to prove (i) it suffices to
see that (Hy)¢(¢¢(p)) = Hy(p) for any t € (—¢,€). Since ¢ is an isometry of M we can define a unit normal
N, along X} by setting N;(¢¢(p)) == (d¢¢),(N(p)) for any p € X. By differentiating the equality ¢ o ¢, =

in the direction of N(p), we obtain

(Vi) (), Ne(e(p))) = (V) (p), N(p)),

for any t € (—¢,€). By taking into account (3.1) and that the Riemannian mean curvature is preserved under
isometries we conclude that Hy(¢:(p)) = Hy(p), as we claimed. The proof of (ii) does not involve the weight
and it comes by using that ¢; is an isometry of M together with the identity

ow

L] (1, Nt )(¢e(p)) = —(sin0) v

o + {(csc0) IL(w, D) + (cot ) o(v,v) } w| (p),
t=0

which is achieved by following the calculus in the proof of [43, Lem. 4.1], see also [29, Lem. 3.3]. The last
statement in the lemma is a direct consequence of Lemma 3.2 (ii) and Proposition 2.1. O

Remark 3.4. Equality (i) in the preceding lemma holds for any hypersurface X' with constant weighted
mean curvature. Equality (ii) is valid for hypersurfaces meeting 942 at a constant angle 6.

We finish this subsection with an easy application of Lemma 3.3 to an interesting situation.

Example 3.5 (Capillary Hypersurfaces in Cylinders with Horizontal Weights). Consider a Riemannian
product {2 x R, where {2 is a smooth relatively compact domain of a Riemannian manifold, endowed with a
weight e?(#%) .= ¢"(®) When h = 0 we recover the unweighted setting. We denote by ¢ the vertical vector
field on 2 x R defined by &(x,s) = (0,1) € T, 2 x R. This is a Killing vector field since the associated
one-parameter group of diffeomorphisms consists of the vertical translations ¢¢(x, s) := (x,s +¢). It is clear
that £ is tangent along 02 x R and that ¢ o ¢, = 1) for any t € R.

Let ¥ C 2 x R be a compact two-sided hypersurface separating a bounded open set E in 2 x R. Define
the angle function on X by 9 := (£, N). Note that 9 # 0. Otherwise, £ would be tangent to ¥ and so, X
would be foliated by vertical lines, which contradicts its compactness. Observe also that

/ﬁdaw:—/divwgdv¢:—/(div£+<Vzp,£>)dv¢:0,
P E E

where we have used the divergence theorem, Eq. (2.2), the fact that £ is parallel on 2 x R and the
horizontality of the weight. This implies that ¢ cannot be > 0 nor < 0 on X, so that it has at least

9
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two nodal domains where it changes its sign. Moreover, when Y is connected and -stable capillary, then
Lemma 3.3 ensures that 1 has exactly two nodal domains. This is a geometric property of -stable capillary
hypersurfaces. Indeed, since the horizontal projection = : X — 2 defined by 7w(z,s) := x is a local
diffeomorphism at p € X' if and only if ¥(p) # 0, this might suggest that a w-stable capillary hypersurface
is the union of two graphs over a horizontal set A C 2 x {so} that meet along OA.

3.2. Results for balls with radial weights

In this subsection we obtain symmetry and topological properties for stable capillary hypersurfaces by
applying Lemma 3.3 to suitable rotations vector fields. This requires the ambient weighted manifold to satisfy
certain conditions that we now introduce.

For any subgroup G of diffeomorphisms in R"*!, a Riemannian metric g is said to be G-invariant is any
¢ € G is an isometry of (R"*!, g). Suppose that g is SO(n + 1)-invariant (as usual, SO(n + 1) denotes the
subgroup of O(n + 1) given by all direct isometries fixing 0 with respect to the Euclidean metric). When
n > 2, any straight line L C R"*! with 0 € L is the fixed point set of a family of maps in SO(n + 1); this
yields that L is a totally geodesic curve in (R™*1 g), see for instance [39, Prop. 24 in p. 145]. Thus, the
geodesics in (R"*1, g) leaving from 0 parameterize straight lines and they are always length-minimizing. In
particular, the Riemannian distance function d(p) with respect to 0 is smooth in R"*1\ {0}, and its gradient
(Vd)(p) is proportional to p whenever p # 0.

In our first result we consider a compact capillary hypersurface X with 0X # () and symmetric about
a line L, i.e., invariant under all Euclidean isometries fixing L. In this situation X is topologically an n-
dimensional cylinder or a disk. We prove below that the stability condition implies that X must be a disk.
Similar arguments were previously employed by Hutchings, Morgan, Ritoré and Ros [25, Prop. 5.2] for solving
the double bubble conjecture in R?, see also Ros [41, Thm. 4].

Theorem 3.6. In R n > 2, we consider an SO(n + 1)-invariant Riemannian metric g = < , > and a
weight e¥ only depending on the Riemannian distance d(p) with respect to 0. Let B C R"! be an open round
ball about 0 and ¥ C B a compact, connected, two-sided hypersurface with 0% # (. If X is 1p-stable capillary
and symmetric about some line L passing through 0, then X N L # (). As a consequence, X if homeomorphic
to a closed n-dimensional disk.

Proof. Choose any Euclidean orthonormal basis B := {ej,ea,...,e,+1} where e; generates the line L.
Define the smooth vector field on R™*! given by

X(xl,xg,x37 e ,$n+1) = (—.’Eg,l’l,o, e ,0),

where (z1,Za,...,2Zn4+1) denote the coordinates with respect to B. The one-parameter flow of diffeomor-
phisms associated to X is the family {¢;}ier defined as

G1(w1, 22,23, ..., Tpg1) = ((cost) wy — (sint) za, (sint) z1 + (cost) T2, T3, ..., Tni1).

Since g is an SO(n + 1)-invariant metric then any ¢; is an isometry of (R™*!, g). It follows that X is a
complete Killing vector field in (R™*!, g), which is tangent to the round sphere dB. We also have that
Yo ¢y =1 for any t € R because 1 only depends on d(p).

Consider the function w := (X, N), where N stands for the unit normal on X in (R™*, g). The ¢-stability
of X entails by Lemma 3.3 that w = 0 or w has at most two nodal domains. The case w = 0 is not possible.
Otherwise, X would be tangent to X, so that X would be invariant under any ¢;. Hence, the generating
curve of X (as a hypersurface of revolution about L) in the plane x; 22 would be a circle centered at 0 and

10
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so, X would be a round sphere about 0. This contradicts that X # () and allows us to conclude that w has
at most two nodal domains. To finish the proof we will see that, in case X N L = (), then w would have at
least four nodal domains.

Consider the hyperplane I C R"*! of equation 5 = 0. Since L C II and X is symmetric about
L, we know that C' := X N I is a hypersurface of X. Let us check that w = 0 on C. Take any point
p=(x1,0,23,...,2,41) € C and choose k € {3,...,n+ 1} for which x; # 0 (this is possible because we are
assuming X N L = (). We define the curve o : R — R"*! by

at) == (x1, —(sint) zx, T3, ..., Tr—_1, (COST) Tk, Tpt1y- -+ Tnp1)-

From the symmetry of X we get a(R) C X, and so o/(0) € T,X. It is clear by definition that X (p) is
proportional to o/(0). Hence X (p) € T, X, which leads to w(p) = (X(p), N(p)) = 0.

Next, we choose a point pp € X minimizing the distance function d(p) with p € X. Note that py # 0
and pg € int(X); this implies (Vxd)(po) = 0, and therefore N(pg) is proportional to pg. Let S C int(X) be
the (n — 1)-dimensional round sphere obtained from the action over py of the maps in SO(n + 1) fixing L.
By having in mind that ¥ is invariant under these maps and g is SO(n + 1)-invariant, we get that N(p) is
proportional to p, for any p € S. Thus, we have

w(p) =X (X (p),p) = 0.

The last equality holds for any p € R™*1. This is clear when p = 0 or X (p) = 0. Otherwise, it comes from the
SO(n+ 1)-invariance of g when applied to a map ¢ € SO(n+ 1) such that ¢(p) = p and ¢(X(p)) = —X (p).

All this shows that w = 0 on C'U S. Note that X \ (C' U S) has four connected components X;. By the
unique continuation principle [2] it follows that w # 0 on any X, so that any X; contains a nodal domain
of w. Hence w has at least four nodal domains. This contradiction entails that X' N L # (). Finally, the
topological conclusion is clear because X' is symmetric about L and 0% # (). O

Remark 3.7 (The Planar Case). For n = 1 the topological conclusion in the theorem is obvious because
XY is a compact and connected curve. Observe that no hypotheses involving the metric nor the weight are
required.

The previous theorem applies to the free boundary case, i.e., to weighted area-stationary hypersurfaces
with non-empty boundary. Thanks to Remark 2.2 we can reason as in the proof of Theorem 3.6 to analyze
also -stable hypersurfaces with empty boundary. This leads us to the next result, that will be used in
Section 4, and implies inexistence of -stable tori and i-stable cylinders of revolution.

Theorem 3.8. InR""' n > 2 we consider an SO(n + 1)-invariant Riemannian metric g and a weight
eV only depending on the Riemannian distance d(p) with respect to 0. Let B C R"*1 be an open round ball
about 0 and ¥ C B a compact, connected, two-sided, weighted area-stationary hypersurface. If X is 1-stable
and symmetric about some line L containing 0, then ¥ N L # (). As a consequence, X is homeomorphic to a
closed n-dimensional disk (if 0X # (), or to an n-dimensional sphere (if 90X =0).

Our second result illustrates that, in dimension 3, the topology of X controls the number of nodal domains
for a function associated to a rotations vector field. This allows to deduce that a compact stable capillary
surface of genus 0 is homeomorphic to a disk and rotationally symmetric about some line. In particular, any
capillary surface of genus 0 and disconnected boundary (a capillary annulus, for instance) must be unstable.
The proof follows the ideas of Ros and Souam [43, Thm. 2.2] for the unweighted setting after previous work
of Ros and Vergasta on the free boundary case [44, Thm. 11].

11
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Theorem 3.9. In R3 we consider an SO(3)-invariant Riemannian metric g = < , > together with a weight
eV only depending on the Riemannian distance d(p) with respect to 0, and whose Bakry-Emery-Ricci curvature
satisfies Ricy > 0. Let B C R3 be an open round ball about 0 and X C B a compact, connected, two-sided,
p-capillary surface with 0X # 0. Then, there is a rotations vector field X on R® for which the function
w = <X7 N> either vanishes on X or verifies the inequality

m > 3 — 2 genus(X),

where m is the number of nodal domains of w in X. As a consequence, if X is 1-stable capillary and
genus(X) =0, then X if a closed disk of revolution about some line containing 0.

Proof. Take pg € Y minimizing the distance function d(p) with p € ¥. As in the proof of Theorem 3.6
we have that py € int(X) and po is proportional to N(pg), where N is the unit normal to X in (R?,g).
Let B = {e1,e2,e3} be a Euclidean orthonormal basis with es parallel to N(pg). We define the vector
field X given in coordinates (x,y, z) with respect to B by X (z,y, z) := (—y,x,0). This is a Killing vector
field in (R3,g) since g is SO(3)-invariant and the one-parameter group associated to X consists of the
Euclidean rotations about the line L C R? containing 0 and e3. We take the function w = <X , N > on
X. By Lemma 3.3(i) we know that Ay 4w + qw = 0 for some ¢ € C°(X). We suppose that w # 0 and we
see that m > 3 — 2 genus(X).

Let D; be a nodal domain of w. From the regularity of the nodal set w=*(0), see Cheng [13, Thm. 2.5]
and Remark 3.10 below, the boundary 9D; C ¥ Uw~1(0) is a finite union of piecewise C? closed curves.
Hence, we can apply the Gauss—Bonnet theorem in D; to obtain

Kda:27rx(Di)—/ hidl =Y 6%,

where K is the Gaussian curvature of ¥ for the induced metric, x(D;) is the Euler characteristic of D;,

h; is the geodesic curvature along the smooth arcs of 9D;, and {6, ..., 0}%} are the external angles of D;.
Note also that the elements of area and length are the Riemannian ones. By summing up these identities
for i = 1,...,m and taking into account that w~!(0) has null area, we infer
m S
/ Kda=27rY x(D;) 7/ hdl = 6,
z i=1 ox k=1
where h is the geodesic curvature of X with respect to the inner conormal v and {61, ..., 60} are the external

angles associated to all the nodal domains. On the other hand, by applying directly the Gauss—Bonnet

/Kda:27rx(2)—/ hdl.
X ox

By comparing the two previous equations and having in mind that x(D;) < 1 we arrive at

formula in XY, we get

2rx(X) =27 Y x(Di) = > Op <2rm = by
i=1 k=1 k=1
Since x(X) = 2 —2genus(X) — r, where r is the number of boundary components of X, the desired estimate
m > 3 — 2genus(X) comes from the inequality above if we prove that Y ;_; 6y = 27 (1 + 7).

Note that X (pg) = 0 because pg is proportional to N(pg) and N(pg) is parallel to e3. Observe also that
<X, €3> = 0 on R? because X and e3 are orthogonal in Euclidean sense and g is SO(3)-invariant. So, we
have (V, X, e3) + (X(po), Vyes) = 0 for any v € T, X. All this gives us w(pg) = 0 and (Vzw)(po) = 0,
i.e., w has a zero of order at least 2 in pg. As w # 0 then w has finite order at py by the unique continuation

12
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principle [2]. In particular, pg € int(X) is a vertex of the nodal set w=!(0) and so, there are at least two nodal
lines meeting at po in an equiangular way, see Cheng [13, Thm. 2.5]. Hence, the contribution to > ;_, 0 of
the nodal domains D; with pg € 9D; is 2.

Now, we fix a connected component C' of 9X. As C' is compact, the restriction to C of the Euclidean
height function with respect to ez has at least two critical points p; and ps. It is easy to check that X (p;) is
tangent to C, so that w(p;) = 0. Hence (Qw/0v)(p;) = 0 by Lemma 3.3 (ii). Suppose that w < 0 on a small
domain U; C X with p; € U;. Then, the equality in Lemma 3.3(i) and the fact that Ricy, > 0 would imply
that Ax yw > 0 on U;. As (Ow/0v)(p;) = 0 we would deduce from the Hopf boundary point lemma and the
maximum principle that w = 0 on U;. Thus, the unique continuation principle [2] would lead to w = 0 on
XY, a contradiction. This shows that w must change sign on any neighborhood of p; in Y. In particular, for
any i = 1,2, there is a nodal line of w=1(0) intersecting int(X), containing p; and separating two different
nodal domains of w in X. It follows that the contribution of C' to Y_;_, 6 is at least 27. By having in mind
the contribution of the nodal domains containing py we conclude that Y7 _; 6 > 27 (1+). This proves the
inequality m > 3 — 2genus(X) in the statement.

Finally, if X' is 1-stable capillary and genus(X) = 0, then m > 3, so that w = 0 on ¥ by Lemma 3.3.
This means that X is tangent to X, i.e., X is a surface of revolution about L. As pg € ¥ N L and 9% # ()
we conclude that X is homeomorphic to a closed disk. [

Remark 3.10. The structure of the nodal set w=!(0) for a non-trivial solution of equation Axw+qw =0
was described in [13, Thm. 2.5]. For the proof, Cheng showed that, in a neighborhood of any vertex, the
nodal set is C! diffeomorphic to the nodal set of a spherical harmonic in R? around the origin. This relies
on a theorem of Bers [13, Thm. 2.1] which is valid for more general elliptic equations. In particular, any
solution to a weighted elliptic equation Ay yw 4+ gw = 0 satisfies locally the conditions in Bers’ theorem.
Thus, the structure of the nodal set in the weighted setting is the same as in the unweighted one and can
be deduced by following the original proof of Cheng.

Remarks 3.11. (i). Our results also hold for i-capillary hypersurfaces outside a ball about 0. For this case,
the point py appearing in the proofs must be chosen so that it maximizes d(p).

(ii). Indeed, the arguments remain valid for hypersurfaces with empty boundary and not necessarily
confined inside or outside a ball about 0. Thus, in R"*! with an SO(n + 1)-invariant metric and a weight
only depending on d(p), a compact, connected, two-sided, weighted area-stationary hypersurface X' with
0% = (), which is also 1)-stable and symmetric about some line containing 0, must be homeomorphic to
an n-dimensional sphere. Moreover, for n = 2, a 1)-stable area-stationary 2-sphere must be rotationally
symmetric about some line containing 0.

(iii). In Euclidean space R™*! with constant weight, the classification of constant mean curvature
hypersurfaces having rotational symmetry allows to conclude in the previous theorems that Y is a totally
umbilical hypersurface. Therefore, X is a spherical cap or an equatorial disk when 9% # (), whereas it
coincides with a round sphere when 9% = (). Unfortunately, there is no similar characterization result for
arbitrary radial weights in R™t1.

We finish this section by showing an interesting situation where our results are applied.

Example 3.12. In R""! we consider a conformal metric g,, := €?* gy, where p : R"™' — R is a smooth
radial function and go denotes the Euclidean metric. It is clear that g,, is O(n+1)-invariant and so, our results
hold for those weights only depending on the distance function d(p). This includes not only the Euclidean
case (u = 0) but also all the simply connected space forms with radial weights. More precisely, the hyperbolic
space of constant curvature —1 is identified with the unit round ball B C R"*! endowed with the metric g,
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obtained when () .= 4/(1 — |p|2)2. In this case the hyperbolic geodesic ball centered at 0 of radius r > 0
coincides with the open round ball centered at 0 of radius /(1 — argcosh(r))/(1 + argcosh(r)) € (0,1). On
the other hand, if S denotes the south pole in the unit sphere S"*! of constant curvature 1, then we can
identify S**1\ {S} with R"*! endowed with the metric g, such that e2®) .= 4/(1 + |p|*)2. In this setting,
the open geodesic ball about the north pole N of radius r € (0,7) is identified with the round ball about 0
of radius /(1 — cos(r))/(1 + cos(r)) € (0,00). The reader is referred to [12, §2.3] for the details.

4. The partitioning problem

In this section we study minimizers of the weighted relative perimeter for fixed weighted volume inside
weighted manifolds. More precisely, we will use our previous results in Section 3.2 to establish symmetry and
topological properties of minimizers in balls endowed with Riemannian metrics invariant under Euclidean
isometries and with radial weights. After that, we will apply stability arguments to deduce the topological
classification of isoperimetric boundaries in the Gaussian case.

We start by introducing notation and recalling some existence and regularity results valid in arbitrary
domains of weighted manifolds.

Let £2 be a smooth domain of a Riemannian manifold M"*+! with weight e¥. A weighted isoperimetric
region in {2 of weighted volume vy € (0,Vy(2)) is a set E C 2 satisfying Vi, (E) = v and Py(E, 2) <
Py(E', 2), for any other set £’ C 2 with V,,(E’) = vy. Here V,,(E) denotes the weighted volume defined in
(2.1) and Py (E, 2) is the weighted relative perimeter given by equality

Py(E, 2) = Sup{/ divy X doy ; | X| < 1},
E

where divy X is the weighted divergence in (2.2) and X ranges over smooth vector fields with compact
support on 2. By using the divergence theorem as in [30, Thm. 9.6, Ex. 12.7] we infer that

Py(E, Q) = Ay(0EN 0), (4.1)

for any open set E C {2 such that OF is a smooth hypersurface, up to a closed subset of volume zero.
As the weighted relative perimeter does not change by sets of volume zero we can always suppose that
0 < Vy(ENB) < Vy(B) for any open metric ball B centered at 0E N 12, see [19, Prop. 3.1].

The existence of weighted minimizers in {2 is a non-trivial question. Thanks to the lower semicontinuity
of Py(-, 2) and standard compactness arguments this is guaranteed for any weighted volume if V4, (£2) < oo,
see [36, Sects. 5.5, 9.1], [7, Prop. 2.2] and [34, Sect. 2.2]. This happens for instance when (2 is a relatively
compact domain of M.

On the other hand, the regularity properties of weighted isoperimetric regions in {2 are the same as in
the unweighted case, see Morgan [35, Sect. 3.10], Milman [34, Sect. 2.2] and the references therein. Thus,
if F is a weighted minimizer in {2, then the interior boundary A == OE N {2 is a disjoint union X U Xy,
where Y is a smooth embedded hypersurface, possibly with boundary 0X = X N 9f2, and X is a closed
set of singularities with Hausdorff dimension less than or equal to n — 7. Moreover, at any point p € 4, a
blow-up argument provides the existence of a closed tangent cone C, C T, M which is area-minimizing in
T,M. Then, the points of X' are those where C), is either a hyperplane (if p € {2) or a half-hyperplane (if
p € 012), see [34, Sect. 2.3] and the references therein.

Remark 4.1. A minimizer E need not meet 0f2, i.e., the boundary 9X could be empty. An example of
this situation is found after Remark 2.5 in [40]. Note also that the condition 0% = X N 92 prevents the
existence of points of int(X) inside 912.
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Now, we are ready to state and prove the main result of this section.

Theorem 4.2. In R""' n > 2, we consider an O(n + 1)-invariant Riemannian metric g = < , > and
a weight € only depending on the Riemannian distance d(p) with respect to 0. Let B C R"*! be an open
round ball about 0 and E C B a weighted isoperimetric region such that the regular part X of the interior
boundary A := OE N B is connected. Then, A coincides with its smooth part X, is symmetric about some line L
containing 0, and homeomorphic either to an n-dimensional sphere (if 0X = () or to a closed n-dimensional

disk (if 05 #0).

Proof. From the regularity results and Eq. (4.1) we can represent the minimizer as an open set E C 2
such that Py(E,U) = Ay (X NU) for any open set U C B.

We first prove that E is symmetric about some line L C R™*! with 0 € L. For this we will use Hsiang
symmetrization [23] in our setting. The main idea is that, if a hyperplane II C R with 0 € II bisects E
(i.e., the weighted volume of E at both sides of IT is the same), then E is symmetric with respect to II. To
show this we proceed below as in the proof of [24, Lem. 17].

Let II* be the connected components of R"*1\ IT. For any set S C R"*! we denote ST := SN IT*. After
changing IT" to II~ if necessary we can suppose that Ay (X7) < Ay (X7). We define the set

E* =ETUs(ET)U(EN),

where s is the mirror symmetry with respect to II. Since the metric g is O(n + 1)-invariant, s(B) = B, the
weight e¥ only depends on d(p) and Vy(ET) = Vi, (E7), it follows that Vi, (E*) = Vi, (E) and

P,(E*,B) < Ay(X) = Py(E, B).

As FE is a weighted minimizer we obtain P, (E*, B) = Py (E, B), so that A, (X %) = A, (X ™). In particular,
E also minimizes the weighted relative perimeter in B* for fixed weighted volume. Hence Lemma 3.2(i) and
Remark 3.1 entail that X meets IT orthogonally along XNII (observe that XNIT # () because X is connected).
On the other hand, as E* is another weighted isoperimetric region in B, the regularity results imply that
A* .= OE* N B coincides with a smooth embedded hypersurface X*, up to a closed set of singularities with
Hausdorff dimension less than or equal to n — 7. By using again Lemma 3.2(i) and that NI+ = X*N I+
we infer that X and X* have the same constant weighted mean curvature. Finally, since X NIl = X* N 11
and X meets IT orthogonally, we conclude from the unique continuation property [2] applied to the weighted
mean curvature equation that X = X*. From here we deduce A = A* and F = E*, so that F is symmetric
with respect to I1.

Next, we employ the symmetry property of E with respect to bisecting hyperplanes to derive its rotational
symmetry. Let II; = vi be a hyperplane in R"*! bisecting E. Consider the family I, := vt with
v € S"7! .= S" Nwvi. By continuity, there is vo € S*~! such that I, = II,,, bisects . Similarly, we
can find II3 := vy with vz € S"~2 := S" N {v1,v2}+ and bisecting E. This produces a family of hyperplanes
{II,...,II,} bisecting E and with II; L II; for any i # j. We know that E is symmetric with respect to any
II; and so, F is invariant under the Euclidean symmetry r associated to the line L := I N...NII,. Thus, for
any hyperplane II with L C II, we have r(Et) = E~, where E* := E N II*. Since g is O(n + 1)-invariant
and e¥ only depends on d(p) we deduce that IT bisects E, so that E is symmetric with respect to IT. As IT
is any hyperplane containing L then E is symmetric with respect to L.

We now prove that A = Y| i.e., the singular set Xy is empty. Note that Yy C L. Otherwise Xy would
contain the (n — 1)-dimensional round sphere obtained from the action over a point p € Xy \ L of the maps
in O(n+1) fixing L. This would contradict that the Hausdorff dimension of Xj is less than or equal to n—7.
Now, take p € AN L and consider an associated area-minimizing closed tangent cone C,, C R"*!1. Because
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of the symmetry of E, this cone is also symmetric about some line. Since ), is area-minimizing then it
has vanishing mean curvature along its regular points. Hence, the classification of minimal hypersurfaces of
revolution in R™*! implies that C, is a hyperplane if p € 2 or a half-hyperplane if p € 9£2. It follows that
p € X. All this shows that Xy = 0.

Finally, since E is a weighted minimizer and Xy = (), then A is a compact, connected and -stable weighted
area-stationary hypersurface, which is also symmetric with respect to L. So, the topological conclusion about
A is a direct consequence of Theorem 3.8. O

Remarks 4.3. (i). In general, the regular part X' of the interior boundary A need not be connected. When
the Bakry—Emery—Ricci tensor in (2.3) satisfies Ricy, > 0, then X' is either connected or a totally geodesic
hypersurface with 9X = () and Ricy, (N, N) = 0 on Y. This is done by inserting locally constant and nowhere
vanishing functions in the weighted index form (3.2), see [46, Thm. 2.2, Cor. 2.8]. In particular, if Ricy, > 0
over non-vanishing vector fields, then X is connected.

(ii). The properties in Theorem 4.2 also hold for bounded minimizers outside a round ball about 0, or in
R+ endowed with an O(n + 1)-invariant metric and a weight ¥ only depending on d(p). A remarkable
difference with respect to the case of round balls is that the existence and boundedness of weighted
isoperimetric regions are not guaranteed. Some related results in Euclidean space with radial weight were
proved by Morgan and Pratelli [37]. We point out that, in this setting, the rotational symmetry of minimizers
was obtained in [37] by using spherical symmetrization.

(iii). For a round ball B in R"*! with constant weight, the information in Theorem 4.2 combined with the
classification of constant mean curvature hypersurfaces with rotational symmetry in R**!, allow to deduce
that the interior boundary of any isoperimetric solution is a totally umbilical disk. For more details we refer
the reader to the proof of Ros [41, Thm. 4] after Burago and Maz’ya [6, Lem. 9 in p. 54], see also Bokowski
and Sperner [5, Sect. 2]. Unfortunately, the classification of hypersurfaces of revolution with constant mean
curvature with respect to a radial weight is much more involved, even in the Gaussian case, where only some
special cases are completely understood.

(iv). For n = 1 the regularity and topological conclusions in Theorem 4.2 are valid for any Riemannian
metric and any smooth weight. When the metric is O(2)-invariant and the weight only depends on d(p) we

can apply Hsiang symmetrization to deduce that any minimizer is symmetric with respect to a line containing
0.

Examples 4.4. (i). Theorem 4.2 is valid in R"*! with a conformal metric g, = e gy associated to a
smooth radial function p, see Example 3.12. In particular, it applies for geodesic balls in simply connected
space forms. As indicated in Remarks 4.3 (ii) the result also holds for bounded minimizers (not necessarily
confined into a ball) in these spaces with respect to weights only depending on d(p).

(ii). Let e¥ be a radial non-decreasing weight in a Euclidean round ball B C R™*! about 0. Since e¥
attains its minimum value at 0, we might expect the weighted minimizers to be concentrated near 0, at
least for small weighted volumes and big enough radius of B. For a minimizer E such that E C B and ¥ is
connected, Theorem 4.2 implies that OF is a smooth n-dimensional sphere symmetric with respect to some
line L with 0 € L. In the special case where e is log-convex, a result of Chambers [10] entails the stronger
conclusion that F is a round ball contained in the region of B where e? equals its minimum value.

Next, we discuss the partitioning problem for Gaussian balls. In this situation we can improve Theorem 4.2
not only by showing that spherical hypersurfaces cannot minimize, but also by classifying all isoperimetric
regions with vanishing weighted mean curvature.

Theorem 4.5. Consider an open Euclidean round ball B C R" about 0 with Gaussian weight e¥®) =
2 -
e~ IPI°/2 Then, the interior boundary A :== OE N B of any weighted isoperimetric region E is a smooth closed
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n-dimensional disk symmetric about some line L containing 0. Moreover, if the associated weighted mean
curvature vanishes, then A is an equatorial disk.

Proof. Let E C B be a weighted minimizer. Since the Bakry—Emery-Ricci tensor satisfies equality
Ricy(X, X) = |X I, we know from Remarks 4.3 (i) that the regular part X of A is connected. By
Theorem 4.2 we get that A is a smooth hypersurface, symmetric with respect to some line L with 0 € L, and
homeomorphic either to a sphere or to a disk. In the first case £ C B and so, 4 would be a compact and
connected -stable hypersurface with empty boundary in Gauss space. Then, a result of McGonagle and
Ross [32, Cor. 4.8], see also [45, Cor. 4.9], would imply that X' is a hyperplane, a contradiction. From here
we deduce that A is a closed n-dimensional disk. Finally, the classification by Li and Xiong [28, Thm. 1]
of weighted stable area-stationary hypersurfaces in B with vanishing mean curvature yields that A is an
equatorial disk. [

The previous proof relies on Theorem 4.2 and characterization results obtained in other works. The
following proposition contains two statements (i) and (ii), which lead to a fully self-contained proof of
Theorem 4.5. Our proof of (i) is different from the aforementioned ones in [32,45]. For proving (ii) we extend
to the Gaussian setting an argument of Ros and Vergasta in [44, Thm. 6].

Proposition 4.6. Let X be a compact, two-sided, weighted area-stationary hypersurface inside the Euclidean
unit ball B C R with Gaussian weight e?®) = e Ip1?/2

(i) If 0X =0, then X is v-unstable.
(i1) If Hy = 0 and X is ¢-stable, then X is an equatorial disk.

Proof. For a fixed vector e € R"*1\ {0} we consider the height function 7(p) := (p, ) with p € R"** and
the angle function J(p) := (e, N(p)) with p € L. It is clear that Vym = e — N and Axm = nH ¥, where
H is the Euclidean mean curvature of X'. By using (2.5) and that (V4)(p) = —p, we get

Ag’w’ﬂ' = le?—’fr, (42)

where Hy is the weighted mean curvature of X defined in (3.1). The Riemannian divergence theorem
and Eq. (2.6) imply that the function u = Hy 9 — m satisfies u € F}°(Y) when 0¥ = (. From (3.4)
and the fact that Ricy (N, N) = 1, we have

Lym=Hy9+ lo|? 7.
On the other hand, for the Euclidean translations ¢¢(p) := p + te, we deduce by Eq. (3.5) that
Ly =19.
From the two previous equalities and the fact that H, is constant (Lemma 3.2(i)), we infer
Lyu=—|o|* .

By having in mind (3.3) we derive the following identity when 9% = (:

Iw(u,u):—/zuﬁwudawsz, /E|o|2197rda¢,—/2|0|27r2da¢. (4.3)

To transform the first integral, observe that

/ﬁwdawz/Wﬁwﬁdad,:/ﬁﬁwwdaw:Hw/Wdaw—f—/ lo|* 0 7 day,
X X X P P
17
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where we have used the symmetry of Z,,. By substituting this information into (4.3), we obtain

Iw(u,u):Hw/197rda¢—Hi/192da¢—/ |lo|* 7% da.
by by by

Let {e1,...,ent1} be the standard basis in R"*!. For any i = 1,...,n + 1 we denote u; :== Hy9; — m;,
where ¥;(p) == <ei, N(p)> and m;(p) == <p, ei>. When 0% = () the last equation gives us

n+1
> Ty (i ui) = / hday — H3 Ay(Z / lo* | X|? day, (4.4)
where X (p) := p and h(p) := <X(p), N(p)>, for any p € Y. Next, we transform the first integral above. It is
clear from (2.4) and (3.1) that
n—|X"=divgy X =divsy X' — Hyh, (4.5)

where X T := X — hN. Hence, the Riemannian divergence theorem entails

/(n—|X\2)daw:—H¢/hda¢
P X

when 90X = . By plugging this into (4.4) we conclude that

n+1

SO T (s, i) = /E (X2~ n)day — H2 Ay(5) - /2 o | X day.
=1

Since the right hand side in the equality above is negative, we can find j € {1,...,n + 1} such that

Zy(uj,uj) < 0. By Lemma 3.2 (ii) this shows that X is ¢-unstable when 0X = (), so that (i) is proved.

Now we prove (ii). Consider the constants ¢; :== Ay (X)~! [}, m; day and the vector ¢ := E:H_ll cie;. If we

define v; == m; — ¢;, then it is clear that v; € ]-'17,‘?0(2 ). From the stability inequality in Lemma 3.2 (ii) it
follows that Z,(v;,v;) > 0 for any ¢ = 1,...,n + 1. By taking into account (3.2) together with § = 7/2 and
II(N,N) =1 along 90X, we infer

n+1 n+1
wa v v) _/ (ngm )daw—/(l—ﬂaz) |X—c|2daw—/ X —cfdl,.  (46)
P ox

Since Vxv; = Vym; = ¢; —19; N, then Z"'H \ngl| = n on X. Thus, by using (4.5), the Riemannian
divergence theorem, the fact that v = —X along 0 and equality Hy, =0 on X, we have

n+1
/ (Z |V 504 )daw_nAw /|X\ daw—/ <X,u>dlw:/ |X|? day + Ly(0%8).  (4.7)
2 \i=1 B>

On the other hand, as Hy =0 on X, then Ay, ym; = —m; by (4.2). The divergence theorem gives us

—/ m—dawz—/ <V7ri,u>dl¢,:/ <V7T“X>dlw:/ ’/Tidlw7
P ox ox ox

/ X —c]*dly = 1+ |c]) Ly(0X) 42 / (X,c)day. (4.8)
ox P

By substituting (4.7) and (4.8) into (4.6), and simplifying, we deduce

and so

2 2 2 2
0< — e[ Ay(D) — | Lw(aﬂ)—/z\ﬂ X — o da.

From here we conclude that ¢ = 0 and |<7|2 = 0 on X. By the regularity of X2’ and the orthogonality condition
between X and 0B we conclude that X is a single equatorial disk in B. [
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Remarks 4.7. (i). Unlike the unweighted setting, the interior boundary of a minimizer in a Gaussian ball
cannot be a totally umbilical disk when the associated weighted mean curvature does not vanish. This
is because hyperplanes avoiding 0 do not meet 0B orthogonally and round spheres with constant mean
curvature in Gauss space are those centered at 0. We have shown that the interior boundary is a closed
embedded disk with constant weighted mean curvature, symmetric with respect to some line containing 0,
and meeting 0B orthogonally. Hypersurfaces of constant mean curvature A in Gauss space are also known
as A-hypersurfaces and they are connected to the study of singularities for the Euclidean mean curvature
flow [15]. Unfortunately, the classification of embedded A-hypersurfaces of revolution is still incomplete. Some
related results can be found in [14,16,26,27,47].

(ii). Consider the Gaussian weight on the exterior {2 of a Euclidean round ball centered at 0. Since
Vi (£2) < 0o we have existence of weighted minimizers in {2 for any weighted volume. By the stability result
in [45, Cor. 4.9], if a minimizer E satisfies E C (2, then the interior boundary is a hyperplane. Though
half-spaces meeting 02 orthogonally are natural candidates to solve the problem we have not been able to
confirm if they really minimize.

We finish this work by employing our techniques to derive some interesting properties of minimizers in a
different weighted setting.

Let 2 be a smooth domain of a compact Riemannian manifold N with ON = ( and weight e".
In the Riemannian cylinder 2 x R with horizontal weight e¥(**) := e"(®) the vertical translations are
isometries preserving the weight. By the existence result of Castro [8, Thm. 2.1] this guarantees that weighted
minimizers of any volume exist and they are bounded. Moreover, for large weighted volumes, any weighted
isoperimetric region in /' x R is equivalent to a product N X [a, b], see Castro [8, Thm. 3.3]. Our contribution
to this problem is the next result.

Theorem 4.8. In the previous conditions, let E C 2 xR be any weighted minimizer with interior boundary
A, regular part X and associated weighted mean curvature Hy. Then, we have:

(i) if Hy =0 then E = 2 X [a,b], up to a measure zero set,

(i) if X is connected, then E is symmetric with respect to some horizontal slice 2 x{so}. Moreover, the angle
function 9 = <f, N> associated to the vertical Killing vector field & has at least two nodal domains on X.
When X is also compact, then ¥ has exactly two nodal domains.

Proof. We first observe that X is a weighted parabolic hypersurface, see [46, Thm. 2.2] and the references
therein. In particular, any bounded from above function w € C?(X) such that Ax yw > 0 on X and
Ow/0v = 0 along X must be constant.

Define the height function 7 : 2 x R — R by n(x,s) := s. As the weight is horizontal we easily get
Ag ym = Hy 9. Moreover, we have Or/0v = (¢,v) = 0 along 9% by the orthogonality condition between X
and 042 x R. All this implies that 7 is constant on X' when Hy, = 0. So, any connected component of X is
contained inside a horizontal slice £2 x {s}, which is a totally geodesic hypersurface in 2 x R. By regularity
properties of minimizers this prevents the existence of points in A with an associated closed tangent cone
different from a hyperplane or a half-hyperplane. Therefore, we deduce that Xy = () and X is the union of
finitely many horizontal slices having the same weighted area. Since V4, (Q X (—00, s)) =Vy (Q X (s, oo)) =00
there must be at least two different horizontal slices in X. As a single cylinder 2 x [a, b] is isoperimetrically
better than a finite union U™, (2 x [a;, b;]) enclosing the same weighted volume, we conclude that E is
equivalent to 2 x [a, b]. This proves (i).

Suppose now that X is connected. By continuity, there is a horizontal slice {2 x {so} bisecting E. As the
mirror symmetry with respect to £2 x {s¢} is an isometry of N' x R that preserves not only the weight but
also the cylinder {2 x R and the boundary 0f2 x R, we can apply Hsiang symmetrization as in the proof of
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Theorem 4.2 to infer that E is symmetric with respect to 2 X {sg}. On the other hand, note that ¢ # 0
on Y. Otherwise, X' would be foliated by vertical segments. As a singular point cannot appear along these
segments we would deduce that X = X, x R, which contradicts that E is bounded. If ¥ did not change
sign on X' then we would have Ay ym > 0 or Ay 47 < 0. Hence, the weighted parabolicity of X' would lead
to the conclusion that Y contains at least two horizontal slices, which contradicts that X' is connected. So,
¥ has at least two nodal domains. The last assertion in the statement is a consequence of Lemma 3.3, see
Example 3.5 for the details. [

Remark 4.9 (About the Hypotheses on X). If Ricy, > 0 and {2 is locally convex, then X is either connected
or totally geodesic with Ricy (N, N) = 0 on X and II(N,N) = 0 along 9%, see [46, Cor. 2.8]. When n < 6
the regularity properties of minimizers ensure that X' is compact.
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