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Abstract

This work reports on a novel computational approach to the efficient evaluation

of one-electron coupling coefficients as they are required during spin-adapted

electronic structure calculations of the configuration interaction type. The pres-

ented approach relies on the equivalence of the representation matrix of

excitation operators in the basis of configuration state functions and the repre-

sentation matrix of permutation operators in the basis of genealogical spin

eigenfunctions. After the details of this connection are established for every class

of one-electron excitation operator, a recursive scheme to evaluate permutation

operator representations originally introduced by Yamanouchi and Kotani is reca-

pitulated. On the basis of this scheme we have developed an efficient algorithm

that allows the evaluation of all nonredundant coupling coefficients for systems

with 20 unpaired electrons and a total spin of S¼0 within only a few hours on a

simple Desktop-PC. Furthermore, a full-CI implementation that utilizes the presented

approach to one-electron coupling coefficients is shown to perform well in terms of

computational timings for CASCI calculations with comparably large active spaces.

More importantly, however, this work paves the way to spin-adapted and configura-

tion driven selected configuration interaction calculations with many unpaired

electrons.
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1 | INTRODUCTION

Full configuration interaction (Full-CI) and selected configuration interaction (SCI) variants are frequently used in the context of multireference

(MR) electronic structure theory which plays an important role in multiple branches of chemistry, for example, photochemistry and transition

metal chemistry [1, 2]. Depending on the circumstances it is beneficial to solve the corresponding eigenvalue equation either in the basis of Slater

determinants (SDs) or spin adapted configuration state functions (CSFs). A formulation in terms of SDs results in relatively simple expressions for

the molecular Hamiltonian matrix elements and allows for an efficient implementation in computer programs [3–6], in particular when the

involved routines are run on graphical processing units (GPUs) [7, 8]. Yet, it is impossible to directly target specific spin states and the
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wavefunction representation in terms of SDs can become quite inefficient [9, 10]. In contrast, a formulation in terms of CSFs comes at the cost of

a more complex logic but results in a more compact wavefunction representation, particularly when antiferromagnetically coupled local spins are

present, for example, in polynuclear transition metal clusters. Formulations that use a mixed CSF/SD approach aim to capture the best of two

worlds, the seemingly simple logic during matrix element evaluation, rigorous enforcement of spin symmetry and a compact representation [11,

12]. Such approaches have been enabled by the development of routines for the fast transformation of expansion vectors between the two repre-

sentations [13].

One of the critical aspects of a CSF-based formulation is the efficient evaluation of one-electron coupling coefficients between spin-adapted

basis functions. An approach based on explicit representations of the involved spin eigenfunctions suffers from the factorial scaling of the number

of primitive spin functions and is therefore impractical for systems with many unpaired electrons [9]. A more elegant alternative is provided by

the graphical unitary group approach (GUGA) that was developed by Moshinsky, Paldus and Shavitt and coworkers in the 1970's and has recently

been used by Alavi and coworkers to formulate a spin-adapted version of stochastic CI [14–20]. However, within configuration-driven CI calcula-

tions the GUGA has to be applied to all pairs of CSFs leading to numerical bottlenecks due to the fast growing number of CSFs with increasing

number of unpaired electrons.

As an alternative approach, this work reports on the theoretical background and implementation of a recursive scheme to efficiently evaluate

matrices of one-electron coupling coefficients between all CSFs of a given configuration based on representation matrices of permutation opera-

tors. The connection between these quantities has been realized and applied in the context of Hamiltonian matrix element evaluation in a number

of earlier works that resulted in closed formulas for one- and two-electron coupling coefficients [21–31]. In contrast, the work presented here

relies on a recursive scheme that was originally introduced by Yamanouchi and Kotani [32, 33]. A similar approach to the calculation of represen-

tation matrices of permutation operators and in turn coupling coefficient matrices was established by Rettrup [34] which was later used by Wer-

ner and coworkers in various contexts [35, 36]. However, in their works the coupling coefficient matrices are constructed as products of matrices

that correspond to a single orbital index. While this decomposition serves to reduce the number of required permutation classes and the storage

requirement, it doubles the amount of matrix operations during CI calculations. In the algorithm presented here, all different classes of coupling

coefficient matrices are constructed as a whole thereby slightly increasing the complexity of the logic. Yet, a key feature of the presented algo-

rithm is that only non-zero matrix elements are explicitly calculated thereby making it remarkably efficient in terms of required computer time.

Furthermore, we present a Full-CI program that utilizes large coupling coefficient matrices in a direct fashion which avoids any memory bottle-

necks entirely.

2 | THEORY

2.1 | Configuration interaction and coupling coefficients

Before the aforementioned recursive scheme is described in detail, we briefly discuss the identity of one-electron coupling coefficients and their

usage in spin-adapted CI. A general CI wavefunction for N electrons takes the form

jΨCI⟩¼
X
I

CI jΦI⟩ ð1Þ

Where in the current context the set of N-electron basis functions ΦIf g consists of spin-adapted CSFs. Since the dimension of the CSF basis is

usually too large to directly diagonalize the molecular Hamiltonian matrix H, the CI problem is solved by means of multiroot Davidson or Lanczos

algorithms [37–39]. The central quantity one has to calculate for these algorithms is the vector σ¼HC. After application of the resolution-of-the-

identity (RI) in the CSF space the elements of σ can be written as

σI ¼
X
J

X
pq

hpqA
IJ
pqCJþ1

2

X
JK

X
pqrs

pqjrsð ÞAIK
pqA

KJ
rq CJ ð2Þ

Here, hpq and pqjrsð Þ denote molecular one- and two-electron integrals, respectively, while the set of CJf g are the CSF expansion coefficients

introduced in Equation (1). The one-electron coupling coefficients are given by

AIK
pq ¼ ⟨ΦIjEpqjΦK⟩ ð3Þ

Where Epq ¼ba†pαbaqαþba†pβbaqβ is a spin-traced replacement operator in second quantization. Obviously, the two-electron part of Equation (2) is the

computationally most demanding part of the σ vector evaluation. However, it can brought into the matrix-form [40]
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ΔσI ¼1
2
Tr AIID
� �

ð4Þ

Where Ipq,rs ¼ pqjrsð Þ and Drs,K ¼
P

JA
KJ
rs CJ. Importantly, once the one-electron coupling coefficients are known, the σ vector in Equation (2) can be

efficiently evaluated using modern linear algebra routines.

2.2 | Symmetry of coupling coefficients

With increasing number of molecular orbitals and configurations the number of coupling coefficients that have to be evaluated grows rapidly.

However, the numerical value of AIK
pq is identical for many CSFs which significantly reduces the storage requirements. Most importantly, two cou-

pling coeffcients AIK
pq and AI0K0

pq have identical values if the position of the two indices p and q relative to the unpaired electrons is the same and the

spin coupling in ΦI and ΦI0 as well as ΦK and ΦK0 is identical. This symmetry can be illustrated by means of a simple example with the three CSFs

jΦ1⟩¼jn¼22211;S¼0⟩ ð5aÞ

jΦ2⟩¼j 22121;0⟩ ð5bÞ

jΦ3⟩¼j 12221;0⟩ ð5cÞ

Where each CSF is determined by an occupation number vector n and a total spin S. Note that since there is only one way of constructing a spin

eigenfunction with S¼0 from N¼2 unpaired electrons, no extra index k for the spin eigenfunction has to be introduced in this case. Generally,

the number of independent spin eigenfunctions with N unpaired electrons and total spin S is obtained as

fNS ¼
N

1
2
N�S

 !
�

N
1
2
N�S�1

 !
ð6Þ

In the present example, Φ1 is connected to Φ2 and Φ3 through a single excitation of the DOMO!SOMO type via excitation operators E43
and E41, respectively. Without actually calculating the matrix elements it can be seen that

⟨Φ2jE43jΦ1⟩¼ ⟨Φ3jE41jΦ1⟩ ð7Þ

since the position of the doubly occupied donor orbital in Φ1 relative to the singly occupied orbitals in Φ1 is identical. In other words, one may

permute doubly occupied orbitals without having an influence on the single-excitation matrix element as long as there are no singly occupied

orbitals between the doubly occupied orbitals and as long as these permutations affect both involved CSFs. Therefore, for a given number of

unpaired electrons N and total spin S one only needs to compute and store the coupling coefficients for all possible combinations of Nþ1 relative

donor positions and N relative acceptor positions. This reduces the computation and storage requirement to Nþ1ð Þ�N coupling coefficient

matrices of dimension fNS� fNSð Þ to represent all DOMO!SOMO excitations. Analogous arguments can be made for SOMO!SOMO excitations

leading to a computation and storage requirement of N�N matrices of dimension fNS� fNSð Þ. Additional cost reduction is achieved by making use

of the fact that every coupling coefficient matrix that corresponds to a DOMO!Virtual excitation can be obtained by transposing the matrix

belonging to a SOMO!SOMO excitation. For example, the matrix associated with

⟨22220;0 j E45 j22211;0⟩ ð8Þ

corresponds to a SOMO!SOMO excitation when read from right to left while it describes a DOMO!Virtual excitation when interpreted in the

opposite direction. Analogously, the coefficient matrix associated with a SOMO!Virtual excitation is connected to a DOMO!SOMO coupling

coefficient matrix through transposition and a change of sign. Hence, one only needs to compute and store Nþ1ð Þ�N DOMO!SOMO and

N�N SOMO!SOMO coupling coefficient matrices for every pair of N and S that occurs in the set of CSFs in Equation (1).

2.3 | Replacement operators and permutations

The starting point of the presented recursive evaluation scheme for coupling coefficients is the realization that the action of a replacement opera-

tor onto a CSF is analogous to the action of a permutation operator onto a spin eigenfunction combined with a parity factor. This analogy can be
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illustrated by considering a system with N¼4 unpaired electrons and a total spin of S¼0. For this case there are fNS ¼2 degenerate spin

eigenfunctions X1 and X2 that correspond to the branching diagrams depicted in Figure 1. According to the genealogical spin coupling scheme [41]

these two functions are given by the following linear combinations of primitive spin functions

jX1 N¼4, S¼0, Ms ¼0ð Þ⟩¼ 1ffiffiffi
3

p j ααββ⟩� 1ffiffiffiffiffiffi
12

p j αβαβ⟩� 1ffiffiffiffiffiffi
12

p jαββα⟩ ð9aÞ

� 1ffiffiffiffiffiffi
12

p j βααβ⟩� 1ffiffiffiffiffiffi
12

p j βαβα⟩þ 1ffiffiffi
3

p j ββαα⟩

jX2 4,0,0ð Þ⟩¼ 1ffiffiffi
4

p j αβαβ⟩� 1ffiffiffi
4

p j αββα⟩� 1ffiffiffi
4

p j βααβ⟩þ 1ffiffiffi
4

p j βαβα⟩ ð9bÞ

Throughout the current work only spin eigenfunctions with Ms ¼ S will be targeted and thus the Ms label is dropped in the following. For the

current argument we will further assume that the four unpaired electrons are located in four molecular orbitals ϕ2,ϕ3,ϕ4 and ϕ5 while an addi-

tional molecular orbital, ϕ1, is doubly occupied. Using X1 and X2 two orthonormal spin-adapted CSFs can be effortlessly constructed for this

orbital configuration:

jΦ21111
1 4, 0ð Þ⟩¼ 1ffiffiffi

3
p j112345⟩� 1ffiffiffiffiffiffi

12
p j112345⟩� 1ffiffiffiffiffiffi

12
p j112345⟩� 1ffiffiffiffiffiffi

12
p j112345⟩

� 1ffiffiffiffiffiffi
12

p j112345⟩þ 1ffiffiffi
3

p j112345⟩
ð10aÞ

jΦ21111
2 4, 0ð Þ⟩¼ 1ffiffiffi

4
p j112345⟩� 1ffiffiffi

4
p j112345⟩� 1ffiffiffi

4
p j112345⟩þ 1ffiffiffi

4
p j112345⟩ ð10bÞ

A bar over the orbital label in Equations (10a) and (10b) indicates occupation with a β electron and the exponent of Φ denotes the orbital

occupation pattern n. Note, that every ket represents a vector in Fock space, that is, an antisymmetrized orbital product. The action of E41 on Φ1 is

now given by

E41jΦ21111
1 4, 0ð Þ⟩¼ 1ffiffiffi

3
p j412345⟩� 1ffiffiffiffiffiffi

12
p j142345⟩� 1ffiffiffiffiffiffi

12
p j412345⟩� 1ffiffiffiffiffiffi

12
p j142345⟩

� 1ffiffiffiffiffiffi
12

p j412345⟩þ 1ffiffiffi
3

p j142345⟩
ð11aÞ

¼� 1ffiffiffi
3

p j123445⟩þ 1ffiffiffiffiffiffi
12

p j123445⟩þ 1ffiffiffiffiffiffi
12

p j123445⟩þ 1ffiffiffiffiffiffi
12

p j123445⟩

þ 1ffiffiffiffiffiffi
12

p j123445⟩� 1ffiffiffi
3

p j123445⟩
ð11bÞ

F IGURE 1 Branching diagrams corresponding to two genealogical spin eigenfunctions for N¼4 and S¼0.
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¼C1 jΦ11121
1 ⟩þC2 jΦ11121

2 ⟩ ð11cÞ

A comparison of the occupation pattern in the singly occupied parts of equation (11b) with equation (10a) reveals that the action of E41 on Φ1

is equivalent to the action of bPN¼4

3124ð Þ on X1 4, 0ð Þ with a parity factor of �1 since

�bPN¼4

3124ð ÞjX1 N, Sð Þ⟩¼� 1ffiffiffi
3

p jβααβ⟩þ 1ffiffiffiffiffiffi
12

p jααββ⟩þ 1ffiffiffiffiffiffi
12

p jβαβα⟩þ 1ffiffiffiffiffiffi
12

p j αβαβ⟩

þ 1ffiffiffiffiffiffi
12

p j ββαα⟩� 1ffiffiffi
3

p j αββα⟩
ð12Þ

Thus the coefficients in equation (11c) can be determined through finding the representation of permutation operators in the basis of spin

eigenfunctions, that is,

C1 ¼�⟨X1 4, 0ð ÞjbPN¼4

3124ð ÞjX1 4, 0ð Þ⟩ ð13aÞ

C2 ¼�⟨X2 4, 0ð ÞjbPN¼4

3124ð ÞjX1 4, 0ð Þ⟩ ð13bÞ

For a general DOMO!SOMO excitation that corresponds to a replacement operator Epq the relative position of orbitals p and q, depicted in

Figure 2 and henceforth denoted as prel and qrel, determine the corresponding permutation bPN through

bPN Epq

� �
¼

b1N
if prel ¼ qrel

b1N
if prelþ1¼ qrel

bPN1��� qrel�1ð Þprelqrel qrelþ1ð Þ��� prel�1ð Þ prelþ1ð Þ���Nð Þ if prel > qrel

bPN1��� prel�1ð Þ prelþ1ð Þ��� qrel�1ð Þprelqrel qrelþ1ð Þ���Nð Þ if qrel > prelþ1

0
BBBBBB@

ð14Þ

Furthermore, the difference between the relative positions determines the parity factor as it contains the essential information about the

number of pairwise exchanges of singly occupied orbitals that is required to establish the standard orbital order after the application of Epq on a

given CSF (cf. the step from equation (11a) to equation (11b)).

F IGURE 2 All unique relative positions of the donor and acceptor orbitals relative to the set of singly occupied orbitals for the case of N¼2
unpaired electrons.
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In case of a SOMO!SOMO excitation the connection to a permutation operator is not quite as obvious as for DOMO!SOMO excitations.

At the heart of the problem lies the fact that a SOMO!SOMO excitation connects CSFs with different numbers of unpaired electrons: When an

operator Epq acts on a CSF ΦI with N unpaired electrons and total spin S and both, p and q, are singly occupied then the resulting set of CSFs ΦJ

feature only N�2 unpaired electrons with the same total spin. The simplest situation of that kind is met when the orbitals in a given ΦI S, Nð Þ are
arranged such that the electron spins of the singly occupied orbitals p and q take positions N�1 and N in the corresponding spin eigenfunction

Xk N, Sð Þ. For example, the pair of p¼5 and q¼4 fulfills this requirement for jΦ21111
1 4, 0ð Þ⟩ and jΦ21111

2 4, 0ð Þ⟩. In this case we find

E54 jΦ21111
1 4, 0ð Þ⟩¼ 0 jΦ21102

1 2, 0ð Þ⟩ ð15aÞ

E54 jΦ21111
2 4, 0ð Þ⟩¼

ffiffiffi
2

p
jΦ21102

1 2, 0ð Þ⟩ ð15bÞ

Note, that there exists only a single spin eigenfunction X 2, 0ð Þ and accordingly only a single CSF with occupation pattern 21102 and S¼0.

Since the spin eigenfunctions used to construct the CSFs here follow the genealogical coupling scheme the coefficients on the right hand side of

equations (15a) and (15b) can be expressed as sum over Clebsch-Gordan coefficients. In the following we will establish this connection for the

general case of N unpaired electrons.

Within the genealogical coupling scheme the set of spin eigenfunctions Xk N, S, Msð Þf g are constructed from spin eigenfunctions with N�2

through coupling with two additional electron spins. Figure 3 depicts all possible routes through a branching diagram that connect the fNS spin

eigenfunctions with N and S to spin eigenfunctions with N�2 unpaired electrons and total spins of S�1, S and Sþ1. The f11 first eigenfunctions

correspond to antiferromagnetic coupling of the two spins associated with the N�1’th and N’th electron to the f11 spin eigenfunctions

Xk0 N�2, Sþ1ð Þf g. Then, f12 and f21 spin eigenfunctions originate from up-down and down-up paths while the last f22 spin eigenfunctions are

constructed by ferromagnetically coupling the N�1’th and N’th electron spin to f22 spin eigenfunctions Xk0 N�2, S�1ð Þf g. The Clebsch-Gordan

coefficients that correspond to the four pathways are given by [41]

Xk N, S, Sð Þ¼
ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Sþ2ð Þ 2Sþ3ð Þp Xk0 N�2, Sþ1, S�1ð Þ� α N�1ð Þα Nð Þ½ �

�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2Sþ1

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Sþ2ð Þ 2Sþ3ð Þp Xk0 N�2, Sþ1, Sð Þ� αβþβα½ � ð16Þ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Sþ1ð Þ 2Sþ2ð Þp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Sþ2ð Þ 2Sþ3ð Þp Xk0 N�2, Sþ1, Sþ1ð Þ� ββ½ �

Where k¼ k0 ¼1� � �f11 and

F IGURE 3 Possible pathways toward the fNS spin eigenfunctions with N unpaired electrons and a total spin S from spin eigenfunctions with
N�2 unpaired electrons and total spins of S�1, S and Sþ1. For each point in the branching diagram the spin degeneracy is given.
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Xk N, S, Sð Þ¼�
ffiffiffiffiffiffi
2S

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Sþ1ð Þ 2Sþ2ð Þp Xk0 N�2, S, S�1ð Þ� αα½ �

� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Sþ1ð Þ 2Sþ2ð Þp Xk0 N�2, S, Sð Þ� βα½ � ð17Þ

þ 2Sþ1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Sþ1ð Þ 2Sþ2ð Þp Xk0 N�2, S, Sð Þ� αβ½ �

Where k0 ¼1� � �f12 and k¼ f11þk0. Furthermore,

Xk N, S, Sð Þ¼ �
ffiffiffiffiffiffi
2S

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2S 2Sþ1ð Þp Xk0 N�2, S, S�1ð Þ� αα½ �

þ 2Sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2S 2Sþ1ð Þp Xk0 N�2, S, Sð Þ� βα½ �

ð18Þ

Where k0 ¼1� � �f21 and k¼ f11þ f12þk0 and

Xk N, S, Sð Þ¼Xk0 N�2, S�1, S�1ð Þ� αα½ � ð19Þ

Where k0 ¼1� � �f22 and k¼ f11þ f12þk0. When p and q take positions N and N�1, the action of Epq on a CSF Φn
k N, Sð Þ is to convert α N�1ð Þβ Nð Þ½ �

as well as � β N�1ð Þα Nð Þ½ � to α Nð Þβ Nð Þ½ � while all other combinations vanish. Therefore, the coefficients Ck
k0

n o
in

Epq jΦn
k N, Sð Þ⟩¼

X
k0

Ck
k0 jΦn0

k0 N�2, Sð Þ⟩ ð20Þ

simply become

Ck
k0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Sþ2

2Sþ1ð Þ 2Sþ2ð Þ

s
if k¼ k0 þ f11

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2S

2S 2Sþ1ð Þ

s
if k¼ k0 þ f11þ f12

0 otherwise

0
BBBBBBB@

ð21Þ

As a consequence, every spin eigenfunction Xk N, S, Sð Þ that follows the up-down or down-up path in Figure 3 is connected to at most two

spin eigenfunctions Xk0 N�2, S, Sð Þ. Obviously, all spin eigenfunctions Xk N, S, Sð Þ that are associated with a down-down or up-up route are not

connected to any eigenfunctions Xk0 N�2, S, Sð Þ through the action of Epq. Hence, the coupling coefficient matrix has a dimension of fN�2 S� fNSð Þ
(see also discussion above).

If p and q do not take positions N and N�1, respectively, the action of the corresponding operator Epq on a given CSF has to be described by

a two-step procedure. First, the electrons are permuted such that the larger index of prel and qrel takes position N while the smaller index occupies

position N�1. Then equation (21) is applied to determine nonvanishing coupling coefficients. For example, to describe E32 jΦ21111
1 4, 0ð Þ⟩ one

would have to apply the combination of permutation operators

on X1 4, 0ð Þ before using equation (21) to determine nonvanishing coupling coefficients. Analogous to the above discussed case of

DOMO!SOMO excitations the representation matrices of the applied permutation operators have to be combined with a parity factor that

depends on prel and qrel.

UGANDI AND ROEMELT 7 of 14



In summary, we have established that the representation matrices of nonredundant excitation operators in the basis of CSFs can be

expressed through

AN
S Epq

� �
¼ s p, qð Þ �US

bPN� �
DOMO!SOMOð Þ ð23Þ

AN
S Epq

� �
¼ s p, qð Þ �C�US

bRN� �
�US

bPN� �
SOMO!SOMOð Þ ð24Þ

Where s p, qð Þ¼1,�1 is a sign factor, C is the matrix of projection coefficients from equation (21) while US
bPN� �

and US
bRN� �

are representation

matrices of the required permutation operators in the basis of genealogical spin eigenfunctions with N unpaired electrons and totals spin S. An

efficient algorithm for the efficient evaluation of these matrices is described in the following section.

2.4 | Recursive formulation of representation matrices

The presented algorithm relies on a recursive scheme for the construction of representation matrices US
bPN� �

from N�1ð Þ – electron per-

mutation operators that was originally developed by Yamanouchi [32]. Kotani later elaborated on this method and presented it in a clear

way [33]. This work is based on the description of the method given by Pauncz [41]. In the framework of Yamanouchi's method, any

permutation is expressed as product of permutations that do not affect the N’th electron and the operator N�1, Nð Þ that exchanges electrons
N�1 and N.

The representation matrix of any permutation bPN of N electrons that does not affect the N’th electron in the basis of spin eigenfunctions with

N and S can be readily constructed when the representation matrix of the same permutation for N�1 and Sþ 1
2 as well as S� 1

2 is already known;

it reads

US
bPN� �

¼
USþ1

2

bPN�1� �
0

0 US�1
2

bPN�1� �
0
B@

1
CA ð25Þ

Where US
bPN� �

is a fNS� fNSð Þ matrix while USþ1
2

bPN�1� �
and US�1

2

bPN�1� �
are square matrices of dimension f1 ¼ f11þ f12 and f2 ¼ f21þ f22, respec-

tively. Furthermore, the representation matrix of N�1, Nð Þ can be readily formulated when the two spin labels for electrons N�1 and are inter-

changed in equations (16) through (19) and the resulting functions are projected on the original set of spin eigenfunctions:

US N�1, Nð Þ¼

1f11 0 0 0

0 �a1f12 b1 0

0 b1 a1f21 0

0 0 0 1f22

0
BBBBBB@

1
CCCCCCA

ð26Þ

Here, 1 denotes unity matrices of dimension f11, f12, f21 and f22, respectively, while

a¼ 1
2Sþ1

ð27Þ

b¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�a2

p
ð28Þ

are simple constants.

In the case of DOMO!SOMO excitations for N and S the representation matrices of the corresponding permutations can be expressed

through

1. equation 25 if bPN Nð Þ¼N which means that electron N is not affected by bPN
2. US

bPN� �
¼US

bQN� �
�US N�1, Nð Þ, if bPN Nð Þ¼N�1 which means that bPN acts to put electron N to position N�1.

3. US
bPN� �

¼US N�1, Nð Þ�US
bQN� �

, if bPN Nð Þ<N�1 which means that bPN acts to put electron N to a position smaller than N�1.
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The permutation bQN
that appears in cases (2) and (3) does not affect electron N but has a similar cyclic character as bPN. Therefore, US

bQN� �
can be constructed according to equation (25) and the descending permutation bQN�1

can be treated according to cases (1) through (3) again where

N has been reduced by one. Accordingly, the representation matrix US
bPN� �

of any permutation that corresponds to a DOMO!SOMO excitation

may be computed by recursively applying cases (1) through (3) until N¼2 is reached in which case the representation matrices take a

simple form.

The representation matrices for the two permutations that are required to express the action of a given SOMO!SOMO excitation

can be computed in a similar fashion. However, subtle differences occur which necessitate a different case structure for their evaluation. In gen-

eral, every involved permutation either promotes a given electron with index prel to position N or N�1 (see above). The relative positioning of all

other electrons remains unchanged. Accordingly, the following case structure can be applied to compute the corresponding representation

matrices:

1. Apply equation 25 if prel is promoted to N�1

2. US
bPN� �

¼US N�1, Nð Þ�US
bQN� �

, if prel is promoted to N

3. US
bPN� �

¼1, if prel ¼N

Here, permutation bQN
promotes electron prel to position N�1. Therefore its corresponding representation matrix can be constructed

according to equation (25) while its descendant permutations have to be treated again according to case (2) with N being reduced by one. Again,

these relations allow for a simple recursive construction of all required representation matrices.

3 | IMPLEMENTATION AND PERFORMANCE

3.1 | Generation of coupling coefficient matrices

The recursive scheme for the construction of permutation representation matrices in the basis of spin eigenfunctions and in turn the generation

of one-electron coupling coefficent matrices is amenable for an efficient implementation in computer code. Algorithms 1 and 2 provide

pseudocode for the implementations in the recursiveCC standalone program as well as the full-CI module of the MOLBLOCK program (see below)

[42, 43]. The former can be obtained (also as shared library) free of charge at our website1 while the latter will be made publicly available in due

course. Importantly, Algorithms 1 and 2 only evaluate nonzero elements of every US
bPN� �

explicitly and hence no computational effort is wasted

on calculating zeros. Furthermore, the implementations require a minimal amount of memory as the descending matrices US�1
2

bPN�1� �
and

US�1
2

bQN�1� �
are not generated as separate entities but as part of the original matrix US

bPN� �
. This strategy is feasible because every entry of

US
bPN� �

remains constant after it has been evaluated once. Using a desktop PC with an Intel® Core™ i9-10 900 with 2.80GHz and 32GB RAM

the computation of all nonredundant coupling coefficient matrices for an active space with 20 electrons in 20 orbitals and a total spin of S¼0

required only 6 h and 46 min . During these test calculations the computer time was dominated by the final matrix multiplication step of the

SOMO!SOMO algorithm which took 92% of the computer time. In contrast to the efficient recursive generation presented here, a creation of

coupling coefficient matrices utilizing a straightforward contraction of transformation matrices is only feasible for up to 16 unpaired electrons [9].

In our test calculations using the ORCA program package [44] in its version 5.0.1 the generation of all coupling coefficient prototypes for a

(16, 16) active space required ca. 14 h. In comparison, the creation of one-electron coupling coefficent matrices with recursiveCC took only 13 s

which corresponds to a speedup of about four orders of magnitude. We would like to note at this point that a calculation of all nonredundant cou-

pling coefficient matrices with the aid of GUGA or other symmetric group approaches including the approach developed by Schlesinger and

coworkers [27] that is utilized in the CSF-based CI formulation in ORCA [9] will most likely provide a comparable or perhaps even higher effi-

ciency as the approach presented here. Yet, as the corresponding computer codes do not follow the same strategy of calculating all nonredundant

coupling coefficient matrices at once and/or are not available to us at all, a detailed comparison of efficiency necessitates considerable

reimplementation efforts and hence exceeds the scope of this work.

Since the computing time for the different coupling coefficient matrices is almost perfectly evenly distributed the parallel usage of the pres-

ented algorithm scales well with the number of processors. As demonstrated in Figure 4, a simple message passing interface (MPI) based parallel

implementation lead to almost perfectly linear scaling of the speedup for the calculation of coupling coefficients for up to 18 unpaired electrons

on up to 10 processors which was the maximum tested.

Nevertheless, we would like to mention that the factorial scaling of the required computational effort and the corresponding storage require-

ment will quickly impede calculations with many more than 20 unpaired electrons and S¼0. Therefore, systems whose description necessitate

CSFs with significantly more unpaired electrons are best tackled by stochastic or selected CI variants that rely on the selection of single CSFs

rather than entire configurations [9, 20].

UGANDI AND ROEMELT 9 of 14



3.2 | Spin-adapted full-CI

When dealing with CI expansions that involve CSFs with many unpaired electrons, storage of the coupling coefficient matrices will become a

memory bottleneck on account of the steep scaling of the space requirement. For example, when 20 unpaired electrons occur, the number of

nonredundant SOMO!SOMO coupling coefficient matrices amounts to 400 with each matrix requiring around 2 GB of space. An efficient

approach to reduce the required memory by decomposing any coupling coefficient matrix into a product of two matrices which are associated

with a single orbital label has been outlined by Knowles and Werner [35]. Yet, this procedure doubles the amount matrix-times-matrix operations

during the σ-vector generation and still requires a significant amount of memory when large coupling coefficient matrices are being contracted.

An alternative strategy for the σ-vector generation that aims to minimize the storage requirements is to construct and use large coupling coeffi-

cient matrices “on-the-fly”. In that case an efficient means to calculate entire coupling coefficient matrices as a whole –like the one presented

here– becomes absolutely vital. We have adopted this “direct” strategy during the design of a configuration-driven and thus spin-adapted Full-CI

implementation in our MOLBLOCK program [42, 43]. Within our implementation the critical Δσ contribution to the σ-vector is evaluated

according to Siegbahn's suggestion from equation (4). Algorithm 3 outlines the basic steps to constructing the D matrix. The final contraction of

coupling coefficient matrices with ID is done analogously.

Since neither the computation nor the storage of all coupling coefficient matrices for up to Nmax ¼16 unpaired electrons is particularly

demanding they are calculated once and kept in memory. Then all one-electron replacement connections between configurations Epq j nI⟩!jnJ⟩
with N≤Nmax are stored in a simple list L1 alongside their essential information, that is, N,T,prel ,qrel where T is the excitation type (SOMO!SOMO

etc.). Finally, the contributions of the configurations with N≤Nmax to D are computed by looping over the connections and contracting the

required coupling coefficient matrix with CJ, the fNJS-dimensional part of the trial vector C corresponding to nJ. For configurations with N>Nmax

the algorithm is adapted as indicated above. Importantly, the list L2 that holds the connections between these configurations is ordered according

ALGORITHM 1 Algorithm for the recursive construction of DOMO!SOMO coupling coefficient matrices
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to a key with elements N,T,prel,qrel that uniquely defines the involved coupling coefficient matrix. Thus, for every unique coupling coefficient

matrix AN
S Ep

rel

qrel

� �
the list L2 holds another list L3 of connections that AN

S Ep
rel

qrel

� �
is involved in. This list structure allows us to loop over unique cou-

pling coefficient matrices first and construct them “on-the-fly” before looping over the associated connections and finally evaluating the contribu-

tion to D through contraction of AN
S Erelqrel

� �
and CJ.

To test the performance of the presented algorithms, a series of CASCI calculations was run on benzene with the def2-SVP basis set [45] and

different active spaces comprising n electrons in m active orbitals, henceforth denoted as CASCI(n,m). In terms of their computing times the

ALGORITHM 2 Algorithm for the recursive construction of SOMO!SOMO coupling coefficient matrices

F IGURE 4 Speedup for the calculation of coupling coefficient matrices for up to 18 unpaired electrons with respect to the number of used
processors with a simple MPI based parallel implementation of the presented algorithm.
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following steps are relevant: Recursive construction of all coupling coefficient matrices for up to Nmax = 16 unpaired electrons (t(CC)) and config-

urations (t(CFG)), creation of connections lists t(conn.), σ-vector evaluation (t(σ)) and the linear algebra operations related to the Davidson diago-

nalization routine (t(lin. alg.)). Table 1 summarizes the timings for every step as obtained using up to 12 cores of a single Intel® Xeon(R) Gold 6128

CPU with 3.40GHz and 1.5 TB RAM. It should be noted that neither the recursive coupling coefficient build for up to Nmax unpaired electrons uti-

lized in our Full-CI implementation nor the routine to generate all configurations has been parallelized since none of the two steps constitutes a

computational bottleneck. Moreover, for σ-vector evaluations, only the average time for a single vector build is listed in Table I to make the data

independent of the number of steps required to achieve convergence of the underlying Davidson diagonalization routine [38]. In the present case,

10 iterations were sufficient to reach convergence. For technical reasons the first iteration invokes the σ-vector build twice. Therefore, t(σ) for

the first iteration was divided by 2 during the averaging procedure.

Obviously, the σ-vector generation is the most time-consuming step in the presented example with every σ-vector build taking 241.22 s on

average in a serial run of the code. Yet, the time for this step can be considerably reduced by running the code in parallel. When 12 cores are used

the time for a single σ-vector build reduces to 44.56 s. Likewise, t(conn.) and t(lin. alg.) reduce from 155.14 to 23.69 s and from 485.66 to 73.42 s,

respectively. The total run time for the CASCI calculation reduces from 3365.64 to 654.96 s. It is noteworthy that these timings are on the same

order of magnitude as the run times reported recently by Fales et al. for a spin-adapted CASCI (16, 16) calculation on ethylene [11]. Yet, a direct

comparison of these timings can be misleading since

1. the number of CI iterations and accordingly the number of σ builds and linear algebra operations is not equal in the two calculations

(11 vs. 21).

ALGORITHM 3 Algorithm for the computation of the D-matrix from equation (4)

TABLE 1 Relevant timings (in s) for a CASCI (16, 16) calculation on benzene

#(cores) t(CC) t(CFG) t(conn.) t(lin. alg.)a t(σ)b

Required 1� Required 10�
1 55.63 15.68 155.14 485.66 241.22

2 50.29 14.16 102.36 275.60 166.81

4 51.10 11.88 56.72 153.62 91.67

8 55.28 11.09 33.43 93.17 56.30

12 56.97 10.71 23.69 73.42 44.56

aTotal sum of time of linear algebra operations related to Davidson routine.
bTime for single σ-vector builds were averaged over all iterations.
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2. the computer hardware used in both cases greatly differ and thus do not allow for a straightforward comparison. More precisely, the calcula-

tion reported in reference [11] Martinez2020a employed an Intel® Xeon(R) E5-2643@3.40 GHz CPU together with a NVIDIA V100 graphical

processing unit (GPU).

To demonstrate the effect that calculating coupling coefficient matrices “on-the-fly” has on the computing times the same calculation with a

reduced Nmax of 14 was run. As a result, t(CC) was reduced to 31.71 s while t(σ) increased to 344.54 s. All other timings remained similar as com-

pared to when Nmax was set to 16. With 12 cores t(σ) reduced to 99.15 s.

Of course, further enlargement of the active space size leads to a drastic increase of the required computer time. For example, a

CASCI calculation of the benzene cation radical with a (17,17) active space (S¼ 1
2) required 71601.75 s using a single core. This time distrib-

utes as follows over the aforementioned steps: t(CC) = 1154.35 s, t(CFG) = 62.57 s, t(conn.) = 658.36 s, t(lin. alg.) = 6321.22 and

t(σÞ�13 = 63405.25 s. With increasing active space size both, the time to build σ-vectors as well as their storage requirement, will eventually

become prohibitive. On computers available to us, this point is met before the recursive construction of coupling coefficient matrices becomes

unfeasible (see above).

4 | CONCLUSIONS

We have introduced a recursive computational approach to the efficient evaluation of one-electron coupling coefficients as they are required during

electronic structure calculations of the configuration interaction type. The approach relies on the equivalence of the representation matrix of excitation

operators in the basis of CSFs and the representation matrix of permutation operators in the basis of spin eigenfunctions. While for DOMO!SOMO

excitations this connection is straightforward, SOMO!SOMO excitations in general require a combination of two permutation operators and a

projection operator. With the permutation and projection operator identities at hand, the former are generated by a recursive scheme originally

introduced by Yamanouchi and Kotani. On the basis of this scheme we have implemented an efficient computer code that allows the evaluation

of all nonredundant coupling coefficients for systems with 20 unpaired electrons and a total spin of S¼0 within only a few hours on a simple

Desktop-PC. Furthermore, a full-CI implementation that utilizes the presented method is shown to perform well in terms of computational timings

for CASCI calculations with comparably large active spaces. More importantly, however, this work paves the way to spin-adapted and configura-

tion driven SCI calculations on systems with many unpaired electrons. Finally, we would like to emphasize that the recursive CC code is available

free of charge on our website2 and can thus be used by anyone to easily spin-adapt existing CI codes or write such a code from scratch.
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