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Abstract We introduce a path-integral formulation of network-based measures that generalize the concept
of geodesic distance and that provides fundamental insights into the dynamics of disease transmission as
well as an efficient numerical estimation of the infection arrival time.

1 Introduction

The forecast and control of emergent diseases has
become particularly important in recent years because
of the increasingly growing structure and velocity of
transportation means. A series of papers have been
devoted to the problem of infection arrival times in
complex networks [2,3,6,7]. Most of them are based
on the assumption that a single dominant path, asso-
ciated with maximal traffic probability, is sufficient to
estimate accurately the arrival time of a diffusive pro-
cess. While this is partially true in some specific cases,
when a single path between each pair of nodes is avail-
able, in the general scenario this assumption can give
poor estimates for the arrival time.

Effective distances (ED) in the dominant-path
approach can be defined, for both directed and undi-
rected networks, as the geodesic graph distance of a
weighted graph with edge weights given by the first
moment of a distribution known from extreme events
statistics [8], which depends only on the network topol-
ogy and on the transmission and recovery rates. This
approach has the disadvantage that it can significantly
overestimate the infection arrival time obtained numer-
ically [5,6]. In addition, in situations where multiple
equiprobable paths exist between node pairs, as in reg-
ular lattices, this approach breaks down. A more realis-
tic scenario takes into account all possible propagation
routes [7] yielding a multiple-path ED, which is sup-
posedly the best possible estimate of infection arrival
times. Unfortunately, the computation becomes infea-
sible as the number of paths between two nodes grows
exponentially with the size of the network. The lack of
a practical computational approach leads back to con-
sidering only the dominant path.

Here, we introduce a path-integral formulation that
generalizes the multiple-path ED and that can be used
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as a computationally feasible alternative with a clear
interpretation, paving the way for future studies on
spreading processes in complex networks.

The paper is organized as follows. In Sect. 2.1, we
define the dominant-path ED by considering node-
independent exit rates. In Sect. 2.2, we present the gen-
eralization to multiple paths of arbitrary length con-
necting two nodes. In Sect. 2.3, we follow the random-
walk approach defining the path-integral formulation of
the problem. Then using a metapopulation model, we
compare the path-integral formulation of ED with the
infection arrival times. In Sect. 3, we summarize our
results and present our conclusions.

2 Network effective distances

2.1 Dominant path

The fundamental metric in networks is the geodesic dis-
tance, i.e. the shortest-path length over all paths {Γij}
connecting node i to node j. For weighted networks,
where the weights Wij are positive numbers identify-
ing the carrying capacity of a certain route, each edge
(k, l) ∈ Γij contributes to the total length with its recip-
rocal weight. This generalizes the standard definition
for unweighted networks as

Dij = min
{Γij}

∑

(k,l)∈Γij

W−1
kl . (1)

The reciprocal of the weights is used consistently with
the fact that a higher flux of passengers along an edge
reduces the distance between the respective nodes.

Starting from the heuristic definition equation (1), it
is possible to extend the notion of distance by replac-
ing the weights with an effective function of the weights
f(Wkl) that quantitatively reproduces the distance as
measured by the arrival time of spreading processes
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unfolding on a given network. In [3], the authors pro-
posed the ansatz

Deff
ij = min

{Γij}

∑

(k,l)∈Γij

(1 − ln Pkl), (2)

where Pkl = Wkl/
∑

m Wkm is the transition probabil-
ity to navigate the graph via random walks. The choice
for the logarithm is motivated by the authors simply
by requiring the additivity of the distance equation (2),
consistently with multiplying the corresponding proba-
bilities. Although this ED is able to reproduce to a good
approximation the infection arrival time in the GMN,
its interpretation is quite obscure and the particular
choice of the logarithm function is not derived from
a microscopic description of the process. Furthermore,
the choice for the constant term equal to unity in its def-
inition is arbitrary and it is not clear a priori why such
expression would correctly quantify the arrival times
of reaction–diffusion processes. Most importantly, the
definition equation (2) suffers from the bias of consid-
ering a single (probability-dominant) path, neglecting
all other routes for information transfer.

An alternative and refined approach to derive ana-
lytically the ED using a detailed kinetic description of
spreading processes was outlined in [7]. Interestingly,
Eq. (2) can be obtained as a special case of a more gen-
eral quantity. To show this, one needs to extend and
generalize the Markovian description presented in [7]
and define the ED using a dominant-path approach,
by requiring the maximization of the travel proba-
bility between adjacent subpopulations, which can be
expressed in terms of the matrix Pij . The main differ-
ence from the existing result is that we assume that
the exit rate of each node qi =

∑
l �=i Qil is indepen-

dent on the node location, i.e. qi = α for all nodes.
After some rearrangements, one obtains an expression
with the same form of Eq. (2), but with an additional
dependence on the spreading parameters [9].

This yields the dominant-path ED

DDP
ij (λ) = min

{Γij}

∑

(k,l)∈Γij

(λ − ln Pkl) . (3)

Here we have defined

λ = ln
β − μ

α
− γe, (4)

where β and μ are the infection and recovery rates
while γe ≈ 0.577 is the Euler–Mascheroni constant.
From Eq. (3), we can recover the ansatz for the ED
equation (2) simply by setting λ = 1. However, in the
dominant-path ED equation (3), the definition of λ as a
function of the epidemic and mobility parameters gives
the optimized edge weight that should contribute into
the minimization condition over all paths connecting
source and target. On the computational side, one can
obtain the full matrix DDP

ij using the Dijkstra algorithm

in a time O(NE + N2 log N), where E and N are the
graph size and order, respectively.

The most important limitation of Eq. (3) is that only
the path that minimizes the topological length and at
same time maximizes the associated probability is con-
sidered. It turns out that, because of this limitation, the
infection arrival time DDP

ij (λ)/v, where v ≈ β −μ is the
linearized speed of the infection [3], is overestimated
with respect to the numerical arrival times obtained
from direct simulations [5,6]

2.2 Multiple paths

The correct approach is to consider the multiplicity
of transmission routes. The framework to include all
directed paths of transmission was developed in [7].
For simplicity, we start by considering only two distinct
paths Γ and Γ ′ connecting the same pair of nodes. The
two-path ED D2P

ij that generalizes the dominant-path
ED equation (3) satisfies the equation

e−D2P
ij = e−DΓ

ij + e−DΓ ′
ij , (5)

where

DΓ
ij(λ) =

∑

(k,l)∈Γij

(λ − ln Pkl) = − ln

⎛

⎝
∏

(k,l)∈Γij

e−λPkl

⎞

⎠

(6)

is the ED, which is the mean of a Gumbel distribution,
associated with a path Γij of arbitrary length connect-
ing node i to node j. Equation (5) can be easily gener-
alized to an arbitrary number of paths connecting the
same pair of nodes, as

exp
(−DMP

ij (λ)
)

=
∑

{Γij}
exp

(−DΓ
ij(λ)

)
. (7)

The previous equation defines the multiple-path ED

DMP
ij (λ) = − ln

(∑
{Γij} e−λn(Γ )P (Γ )

)
, (8)

where the total probability associated to the path Γij

of length n(Γij) = |Γij | is

P (Γij) =
∏

(k,l)∈Γij

Pkl. (9)

An analogous expression can be obtained by group-
ing all probabilities associated to paths of same length
into the quantity Fij(n) =

∑
|Γ |=n P (Γij). Then we

can replace the sum over all paths connecting i to j
in Eq. (8) with a sum over the allowed path lengths
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n = |Γ | ∈ [1, nmax], to get

DMP
ij (λ) = − ln

(
nmax∑

n=1

e−λnFij(n)

)
, (10)

where nmax is the maximum path length in the network.
If instead of considering all paths in Eq. (8) we select
the single path Γ ∗

ij of length n(Γ ∗
ij) = |Γ ∗

ij | that is asso-
ciated to the dominant contribution, i.e. the path that
maximizes its associated probability and minimizes the
topological path length, we recover the dominant-path
ED equation (3), i.e.

DDP
ij (λ) = DΓ ∗

ij (λ) = − ln
(
e−λn(Γ ∗

ij)P (Γ ∗
ij)

)
.

(11)

The multiple-path ED provides an accurate estimate of
the infection arrival time, as it counts the most prob-
able route as well as all possible alternative-directed
transmission routes. However, a major drawback of this
approach is that it is computationally not tractable.
In fact, the total number of paths between i and j is
bounded but exponentially growing with the number of
nodes N , thus the measure DMP

ij becomes useless for
large networks [13]. A trade-off between performance
and accuracy can be achieved by restricting the path
search algorithm to a maximum path length or more
elegantly, as we show next, by relaxing the assumption
of direct propagation and define a path-integral formu-
lation of the problem.

2.3 Random walks

Both measures introduced in the previous sections DDP
ij

and DMP
ij rely on the fact that the epidemic will spread

along paths, i.e. routes that do not ever cross. Here
we follow a different approach and introduce an ED
that includes all possible random walks from source to
target. Relaxing the assumption of directed spread is
equivalent to effectively erasing the memory from the
system at each time step. This is achieved by including
in Eq. (8) all walks {Ξ} that, contrary to the paths
{Γ}, allow also walking on already visited nodes. We
define the random-walk effective distance (RWED) by
generalizing Eq. (8) as

DRW
ij (λ) = − ln

⎛

⎝
∑

{Ξij}
e−λn(Ξ)P (Ξ)

⎞

⎠ , (12)

where P (Ξij) =
∏

(k,l)∈Ξij
Pkl is the total probability

associated to the walk Ξij of length n(Ξij) = |Ξij |.
We note that since {Ξ} is a bigger set than {Γ}, the
following inequalities hold:

DRW
ij ≤ DMP

ij ≤ DDP
ij . (13)

As we did in the previous section for paths with prob-
ability P (Γ ), we can group the probabilities associ-
ated to walks of the same length into the quantity
Hij(n) =

∑
|Ξ|=n Hij(Ξij). The latter is precisely the

hitting time probability defined recursively for i �= j as
Hij(n) =

∑
k �=j PikHkj(n). Contrary to the multiple-

path scenario, walks are unbounded and so becomes
the maximum length nmax in Eq. (10). Substituting,
we rewrite the RWED as

DRW
ij (λ) = − ln

( ∞∑

n=1

e−λnHij(n)

)
. (14)

Remarkably, there is a immediate interpretation of the
RWED in terms of the hitting-times generating func-
tions. Indeed by definition

DRW
ij (λ) = − ln 〈e−λnij 〉 , (15)

where nij is the random-walk hitting time to node j
[10] and the average is taken over all random walks
that start in i and terminate as soon as they hit node
j. It is easy to see that

DRW
ij (λ) =

∞∑

k=0

(−1)k+1 λk

k!
〈nk

ij〉c
= −Ψij(−λ),

(16)

where 〈nk〉c are the hitting time cumulants and Ψij(λ)
is the cumulant generating function of the random-walk
hitting time. Hence, one obtains the cumulants of the
random-walk hitting time by differentiating Eq. (14)
with respect to λ. In particular, the mean-first-passage
time (MFPT) from i to j is obtained as Mij = 〈nij〉c =
∂λDRW

ij |λ=0.
To compute DRW

ij (λ), we can write Hij(n) in terms
of powers of the transition probability sub-matrix P(j)

obtained by removing the jth row and column, as for
the computation of the MFPT. Assuming a positive λ,
the expansion in a geometric series converges1 and we
obtain

DRW
ij (λ) = − ln

(
∑

k �=j

(
I(j) − e−λP(j)

)−1

ik
e−λp

(j)
k

)
.

(17)

Here, I(j) is the (N − 1) × (N − 1) sub-identity matrix
and p(j) is the jth column of P with jth component
removed that takes into account the last step needed to
reach the target j.

1 To have a converging expression for Eq. (14), we must
require λ > 0 and then the determinant of the matrix
e−λP(j) is always smaller than unity. By recalling the def-
inition equation (2.1), the previous condition imposes an
additional constraint on the model parameters, i.e. β >
μ + αe−γe ≈ μ + 2α.
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Next we show how we can disentangle the dominant
contribution defined by DDP

ij in the RWED, using a
path-integral formulation [14] of ED. Indeed, we can
rewrite the RWED equation (12) as

DRW
ij = − ln

⎛

⎝
∑

{Ξij}
e−A(Ξ,λ)

⎞

⎠ , (18)

where A(Ξ, λ) is interpreted as the Euclidean action
defined as

A(Ξ, λ) = λn(Ξ) − ln P (Ξ). (19)

As previously, n(Ξ) is the length of the walk Ξ and
P (Ξ) is the associated probability. In this picture,
the RWED is the the free energy functional (changed
in sign) of an Euclidean field theory [11,14]. The
dominant-path ED is instead described by Eq. (11). In
contrast to Eq. (18), the dominant-path ED neglects
contributions of paths other than the one that maxi-
mizes the associated probability. Then we can think of
DDP

ij as an effective action2

DDP
ij = Aeff(Γ ∗

ij , λ) = λn(Γ ∗
ij) − ln P (Γ ∗

ij), (20)

where Γ ∗
ij is the (probability) dominant path of length

n(Γ ∗
ij). Expanding the action around the dominant con-

tribution as

A(Ξ, λ) ≈ Aeff(Γ ∗, λ) +
δA
δΞ

∣∣∣
Ξ=Γ ∗

δΞ + · · · (21)

and plugging this into Eq. (18) we find

DRW
ij = Aeff(Γ ∗

ij , λ) − ln

⎛

⎝
∑

{Ξij}
e

δA
δΞ

∣∣∣
Ξ=Γ ∗

δΞ+...

⎞

⎠ .

(22)

In the previous equation δΞ quantifies the deviation of
the walk Ξ with respect to the dominant path Γ ∗. By
comparing with the ansatz Deff

ij defined by Eq. (2), we
can finally identify

Deff
ij = Aeff(Γ ∗

ij , 1), (23)

where the effective action is defined by Eq. (20). The
additional contributions in the RWED with respect
to the effective action, given by the logarithmic term
on the right-hand side of Eq. (22), account for the
multiplicity of transmission routes. The latter quan-
tifies the discrepancy between the random-walk and
dominant-path approach. We expect this contributions

2 Note that our definition is not equivalent to the effective
action of quantum field theory used to analyze the renor-
malizability of the theory [12].

to be negligible for network topologies that are locally
tree-like, where a single path connects any pair of
nodes. For many real-world networks, this is the case
since the degree distribution behaves as a power-law
and the navigation is dominated by the presence of
large hubs [4]. However, we expect the dominant-
path approach to completely break down when the
multiplicity of paths becomes relevant as in the case
of random (Poissonian) networks and regular lattices
where a large number of paths are equally proba-
ble. In this case, the difference |DRW

ij − DDP
ij | will be

non-negligible and the arrival time estimates will sub-
stantially decrease when considering the random-walk
approach.

As the substrate for epidemic spreading, we con-
sider the global mobility network (GMN), where nodes
are different airports and weighted edges represents
the number of seats on scheduled commercial flights
between them. In Fig. 1, we show the GMN by drawing
an arc for each link connecting two airports, color coded
according to the flux of passengers on that connection.
Assuming that the number of seats on scheduled com-
mercial flights is on average proportional to the number
of passengers traveling, the data can be represented as
a weighted network with adjacency matrix Wij giving
the total traffic per day between airport i and airport
j.

To each airport j (a node in the metapopulation) is
associated a subpopulation of size Nj so that Wij =
QijNi, where Qij is the transition rate from i to j.
Although the network is directed, the degree of asym-
metry in the weighted adjacency matrix Wij is very
low. This particular feature is well confirmed also in
similar empirical datasets of air-traffic at the global
scale [1,3]. We estimate quantitatively the degree of
asymmetry by looking at both the topological and
weights asymmetry. The former is quantified by the
average number of non-zero elements ε in the corre-
sponding unweighted adjacency matrix Aij = χ(Wij),
where χ is the step function equal to one for positive
arguments and vanishing otherwise. Instead the weight
asymmetry εw is defined as the normalized net differ-
ence between travel fluxes in each route and the cor-
responding reversed travel. We find ε = 2 · 10−3 and
εw = 3.1 · 10−9. Thus, we redefine the a symmet-
ric adjacency matrix as Wij = (Wij + Wji)/2. Sym-
metrizing the weights also assures us that the sub-
population sizes are conserved quantities since Ṅi =∑

k (Wki − Wik). In principle, the matrix Wij is pro-
vided by traffic data and Ni by census data such that
the rates Qij , for i �= j, can be computed inverting
Wij = QijNi. However, although it is straightforward
to measure Wij , assessing the effective population is
more subtle. The number of individuals that effectively
participate in the dispersal Ni is not necessarily the
same as the population data provided by census. We
also assume that the exit rate qi =

∑
l �=i Qil is inde-

pendent of the node i and reformulate the diffusion
contribution in terms of the transition matrix Pij and
a constant diffusion rate α. The latter is given by the
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Fig. 1 The global mobility network (GMN) of air-traffic. Each edge corresponds to a scheduled commercial flight, with
gradient scaling from dark to light-blue according to the available number of seats

ratio α = W/N , between the total flux (per unit time)
W =

∑
ij Wij and the total population N =

∑
i Ni.

In terms of α, we can remove the dependence on
the subpopulation size Ni from the reaction–diffusion
equations.

For the numerical simulations, we use the SIR
metapopulation model with transmission and recovery
probability per time step given by the rates β and μ,
respectively. We denote by Sj , Ij and Rj the num-
ber of individuals in subpopulation j who are suscep-
tible, infected, and removed, respectively. The normal-
ized quantities are ρX

j = Xj/Nj , where X ∈ {S, I,R},
and Nj is the subpopulation size. The full SIR metapop-
ulation model is obtained by combining a diffusion term
Ω({ρX}) = α

∑
k Pik

(
ρX

k − ρX
i

)
, with a global exit rate

α, with the compartmental SIR reactions in a unified
picture that reads

ρ̇S
i = Ω({ρS}) − βρS

i ρI
i (24)

ρ̇I
i = Ω({ρI}) + βρS

i ρI
i − μρI

i . (25)

The key quantity we are interested in estimating is
the infection arrival time, defined for each pair of node
by the matrix

Tij = min
t

{
t ≥ 0 | ρI

j (t) ≥ 1/Nj

}
i
, (26)

where the subscript i implies that the process started
in node i at time t = 0, and by definition Tii = 0. We
use Tij as the benchmark of infection arrival times in
real-world pandemic scenarios and compare it to the
ED defined by Eq. (3) and Eq. (17). A comparison
between RWED and infection arrival time is shown in
Fig. 2. There we show four different time snapshots
of a pandemic in the GMN with basic reproductive
number R0 = 1.5 originated at São Paulo Guarulhos
International Airport. The embedding of the GMN pro-
vided by the path-integral formulation equation (18)
reveals simple circular wave centered at the seed of

the process, which are not present in the geographical
space.

3 Discussion

In this paper, we have introduced a path-integral for-
mulation of network effective distances by relaxing the
assumption of simple-path propagation of spreading
processes. These results provide additional insights into
the relation between random-walk-based metrics and
epidemic spreading in complex networks. The proposed
RWED includes the previously defined dominant-path
measure as a particular case. The almost perfect cor-
relation found with the infection arrival time can be
explained as follows. The contribution of looped tra-
jectories for diffusion is dramatically reduced because
of the decreasing exponential in the walk length in Eq.
(12). The latter damps all contributions of very long
walks, and in particular allows us to neglect the contri-
butions of infinite loops. In scenarios where multiple
parallel paths are important, for instance in Erdos–
Renyi graphs or regular lattices, the assumption of
a single dominant path breaks down and the mea-
sure proposed here can be used as an efficient alter-
native. The predictive power of the RWED can be used
for containment strategies and estimation of arrival
times for real global pandemics from the underlying
networks topology. The method can in fact be gen-
erally applied to any weighted and directed network
besides transportation networks, e.g. social networks.
It remains intriguing to test if this is the case also
for rumor spreading dynamics. For unweighted locally
tree-like networks both the dominant-path ED and
RWED yield maximum correlation with the simulated
arrival time, as the dominant path tends to dominate.
Our results show that infection arrival time in net-
worked systems and heuristic definitions of ED can
be obtained within a path-integral formulation of the
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Fig. 2 Left: prevalence of a global pandemic with basic
reproductive number R0 = 1.5 at four different observation
times, as obtained from numerical integration of 25. The
infection seed is São Paulo Guarulhos International Airport.

Right: corresponding plot in the hidden space of RWED,
where the epidemic spreads as a highly correlated circular
wave centered at the infection seed

problem and with the definition of suitable effective
actions.
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