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Abstract: A commercial pMOS transistor (MOSFET), 3N163 from Vishay (USA), has been character-
ized as a low-energy proton beam dosimeter. The top of the samples’ housing has been removed to
guarantee that protons reached the sensitive area, that is, the silicon die. Irradiations took place at
the National Accelerator Centre (Seville, Spain). During irradiations, the transistors were biased to
improve the sensitivity, and the silicon temperature was monitored activating the parasitic diode of
the MOSFET. Bias voltages of 0, 1, 5, and 10 V were applied to four sets of three transistors, obtaining
an averaged sensitivity that was linearly dependent on this voltage. In addition, the short-fading
effect was studied, and the uncertainty of this effect was obtained. The bias voltage that provided
an acceptable sensitivity, (11.4 ± 0.9) mV/Gy, minimizing the uncertainty due to the fading effect
(−0.09 ± 0.11) Gy was 1 V for a total absorbed dose of 40 Gy. Therefore, this off-the-shelf electronic
device presents promising characteristics as a dosimeter sensor for proton beams.

Keywords: general purpose MOSFET; proton beams; dosimetry

1. Introduction

In the last years, proton therapy has become a real alternative to conventional high-
energy photon beam therapy and shows up as an increasingly common treatment tool in
radiotherapy centers [1,2]. This is mainly due to modern delivery techniques [3,4] and
treatment planning strategies [5]. One of the main differences with photon beams is that
the proton ones are characterized by the Bragg peak, a markedly high peak that permits a
high spatial accuracy in the dose delivery and, consequently, a larger tumor control with
a simultaneous sparing of surrounding normal tissues [1,6]. For example, pencil-beam
scanning (PBS), one of the most modern treatment modalities used in proton therapy, uses
a narrow proton beam that allows spot-by-spot and layer-by-layer dose delivery, providing
accurate and complete irradiation of the whole target tumor [7].

As in electron and photon conventional radiotherapy techniques, one of the key points
to ensure treatment effectiveness concerns the accuracy of the dose distribution within the
irradiated volume. According to ICRU [8], the relative uncertainties in the absorbed dose
distributions must be below 5% in the case of external beam radiotherapy. The dosimetry
devices that are most commonly employed to measure the dose distributions in water and
air are ionization chambers. However, to obtain the actual doses, the corresponding cham-
ber outputs must be corrected by using different factors that, in general, are rather difficult
to measure. Traditionally they have been estimated by using Monte Carlo techniques [9].

Other dosimeters, such as semiconductor-based systems [10], have been increasingly
used in clinical practice. Two of the main advantages of these devices are their small size and
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repeatability. Detectors with small active volumes are essential to develop new techniques
such as, for example, stereotactic proton therapy where extremely small radiation fields
may be involved. Several commercial dosimetry systems, based on diodes or metal-oxide
semiconductor field-effect transistors (MOSFETs), are available as radiation sensors [11].
MOSFETs have the advantage of operating at a lower voltage than diodes, and their cost
is smaller. Since around 1980, MOSFETs have been tested in proton beam dosimeter
applications [12,13]. The usual dosimetric parameter in the corresponding measurements is
the voltage threshold shift before and after the irradiation, ∆VT, produced by the radiation-
induced trapped charge in the gate oxide of the MOSFETs. This electric feature is read out at
a constant drain current in the region of minimum thermal drift to reduce the temperature
effects in the dose determination. To increase the sensitivity, thick gate oxide is fabricated
under special conditions; these MOSFETs are so called RAFETs (RADiation Field Effect
Transistors) [14]. In fact RADFETs, manufactured by Tyndall Institute (Cork, Ireland) have
been successfully tested as proton dosimeters [15]. To assess the MOSFET reliability as
dosimeter for proton beams, different dependences (reproducibility, linearity, fading effect,
beam intensity, energy, and angular dependence) must be characterized. The commercial
system manufactured by Best Medical (Canada) uses the RADFET model TN502RD, that
is one of the devices most widely used for patient dose measurements and it has been
characterized as proton dosimeter [16], and for in-vivo dosimetry applications [17].

The use of general-purpose commercial transistors as gamma detectors has been
extended in the last years [18,19]. The main advantage that the MOSFET that is not
manufactured for radiation measurements presents is the low cost (compared to RADFET)
and availability. However, due to their low sensitivity, higher amplification and thermal
compensation techniques should be applied to reach an acceptable performance to be
used as dosimeters in radiotherapy treatment control. Different readout techniques have
been successfully applied to commercial transistors to enhance the linearity and reduce
thermal effects [20–22]. These techniques have made it possible for some commercial MOS
transistors to be used as clinical dosimeters in radiotherapy. Applying these techniques too,
it would be possible to use a commercial transistor as a proton dosimeter as well, and this
is the aim of the present work. A dosimeter for proton beams based on general purpose
devices, that are not aimed to radiation measurements, would reduce the cost of quality
control of the radiation source and the in vivo dosimetry in radiotherapy treatments. The
3N163 from Vishay (USA) has presented very acceptable sensitivity for dose measurements
for photo beams at different energies [18,20]. In the present work, the characterization of
the 3N163 as proton dosimetry was undertaken under different gate biases.

2. Materials and Methods

The irradiations were carried out at the National Accelerator Centre, CNA (Sevilla, Spain),
using the Tandem Accelerator for generating a low-energy proton beam (see Figure 1). It has
several beamlines, but only the implantation-irradiation line was used for this test campaign,
with protons of energy 5.36 MeV. Since low-energy protons have a very short range in matter,
all the irradiation tests were performed in a vacuum chamber (~10−6 mbar) placed at the end
of the beamline.

Regarding the methodology, we used an approach in line with [23]. First, the proton
beam was focused on a scintillator that was placed in the same sample holder as the device
under test (DUT), to check the position, shape, and size of the beam to work with around
1 cm2 spot size; this pencil area completely covers the sensitive area of the DUT. Second, we
measured the proton beam flux by using a Brookhaven 1000c current integrator connected
to the sample holder, which was electrically insulated from the rest of the line. Then, we
used the 2D beam-rastering system to cover a larger surface with the same conditions, so
we reduced the flux to the needed value. Finally, we moved the sample holder to align the
DUT with the beam, and we started the irradiation of the DUT with the fixed conditions.
The flux was also measured while the beam was sweeping thanks to the Faraday cup
configuration of the sample holder.
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that is (55.80 ± 0.01) keV.cm2/mg [24]. 
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volume of the MOSFET, its gate oxide, can be reached by the proton beam.  

 
Figure 2. (a) Two MOSFET samples placed on the holder. (b) Detail of the housing modification 
showing the silicon die of the MOSFET. (c) Silicon die image obtained with the profilometer SNeox. 

The surface morphology study of the MOSFET was carried out with the 3D optical 
profilometer SNeox (Sensofar, Barcelona, Spain). The confocal technique was configured 

Figure 1. Tandem accelerator (left), and experimental setup showing the irradiation chamber, the
reader unit, and the control computer (right).

The fluence associated with each irradiation step was calculated by multiplying the
averaged measured flux by the irradiation time. On the other hand, the dose was obtained
from the fluence and the value of the stopping power for protons of 5.36 MeV in silicon,
that is (55.80 ± 0.01) keV·cm2/mg [24].

Inside the irradiation chamber, the DUT was fixed on the holder, as Figure 2a shows.
Due to the low penetration depth in matter of the proton beams of this energy (lower than
6 MeV), the top of the device housing was removed (see Figure 2b). In this way, the active
volume of the MOSFET, its gate oxide, can be reached by the proton beam.
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Figure 2. (a) Two MOSFET samples placed on the holder. (b) Detail of the housing modification
showing the silicon die of the MOSFET. (c) Silicon die image obtained with the profilometer SNeox.

The surface morphology study of the MOSFET was carried out with the 3D optical
profilometer SNeox (Sensofar, Barcelona, Spain). The confocal technique was configured
with ×5 and ×20 optical objectives achieving an optical resolution from 470 to 250 nm (see
Figure 2c). The silicon die images were processed by the profilometer software SensoVIEW
2.0.0. With this equipment, channel dimensions were measured, obtaining a width 1.0 mm
and a length of 10 µm.

Two MOSFET samples were introduced into the irradiation chamber at the same time
but irradiated one by one. Each sample was externally connected with an independent
cable with the outside of the ionization chamber via a cable gland. The reader unit was
placed outside but close to the ionization chamber. Therefore to change the sample being
tested, just the connected cable should be switched. A total of four sets of three samples
were characterized, with different bias voltages during irradiation. Each set of samples was
biased to 0 V, 1 V, 5 V, and 10 V, respectively.

The reader unit used in this study was the system developed by our research group
capable of biasing the transistor with a constant current from 10 µA to 1 mA, with a
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resolution of 60 nA. It is also able to measure the source voltage, Vs, with a resolution of
0.1 mV [21]. Let us remember that Vs ∼= VT in a saturated MOSFET under constant drain
current biasing. In addition, it can be configured for continuous monitoring, providing
the source voltage in real-time, biasing the transistor gate with an external voltage to
improve the linearity and sensitivity. Moreover, device temperature can be monitored
with the parasitic diode built in the MOSFET. To do that, a sensor module, composed of
the MOSFET model 3N163 (Vishay, Malvern, PA, USA) and two JFETs model MMBF4391
(NXPSemiconductors, Eindhoven, The Netherlands) were designed. The JFET_GD connects
and disconnects the MOSFET’s gate and drain terminals and JFET_SD the source and drain
terminals. It can be configured in four states, controlled by voltages applied to the gate
terminals of the JFETs acting as switches (see Figure 3):

• Storage mode: All the JFETs are ON (gates of JFETs are grounded), short circuiting all
the terminals of the MOSFET to minimize gate oxide charge leakage during storage or
between irradiations. The sensor module can be connected or not to the reader unit.

• Sensing mode: In this state, the gate and the drain of the MOSFET are disconnected
(the JFET_GD is cut-off, applying a negative voltage in its gate, −13 V in our case) and
the source and drain of the pMOS transistor are connected via JFET_SD. To increase
the sensitivity, an external bias voltage is applied by the reader unit to the pMOS gate
up to 25 V (0, 1, 5, and 10 V in this study).

• Readout of VF: In this state, both JFETs are cut off and the drain current is reversed
to activate the parasitic diode, then the source voltage become negative, equal to less
forward voltage of the parasitic diode (VF) [21]. This parameter is measured by the
reader unit, and the die temperature is calculated from the linear relationship between
the diode voltage and the temperature in a forwarded diode [25].

• Readout of VS: In this state the gate is connected to the drain (ground) via the JFET_GD,
whose gate is grounded as well (see Figures 3 and 4). The JFET_SD is cut-off, biasing
its gate at negative voltage. In this configuration, the source is connected to the current
source and the direct and amplified source voltage are measured, as well as the drain
current by the reader unit after each irradiation.
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Figure 4. Measurement chronogram: In blue the source voltage is displayed; in green the gate
voltage of the MOSFET; in red the gate voltage of the JFET_GD and, in yellow, the gate voltage of the
JFET_SD.

The readout of VF or VS and sensing modes are selected during each irradiation and
rest periods and the results are sent to the computer every 4.6 seconds, as Figure 4 shows.
To avoid the body effect, the bulk terminal is connected with the source terminal in all
states. To minimize the temperature effect, the reader was configured to measure, biasing
the pMOS in the readout mode at IZTC, the minimum temperature coefficient drain current
(230 µA in our case [26]), at this current the temperature coefficient of the source voltage
is minimum. In addition, the silicon temperature was monitored during measurements,
using the parasitic diode (see Figures 3 and 5a). The VF during the experiment showed a
stable value, as Figure 5a shows, for the sample #4. The forward voltage of this sample was,
in average, VF = (693.38 ± 0.18) mV, that implies a temperature variation of approximately
0.1 ºC. The performance of the other samples was similar. Therefore, the temperature drift
was not relevant during the irradiations in this study. Therefore, after each irradiation, in
the readout mode, the complete measurement process consisted of three voltage and one
current measurement. The first one was the forward voltage of the parasitic diode (VF),
after the source voltage and the amplified source voltage (VS and VS,amp, respectively), and
finally the drain current (ID), as the oscilloscope screenshot shows in Figure 4, in which two
complete irradiation-readout cycles are represented. The red and yellow lines show the gate-
source voltages of the JFET_GD, VG_JFET_GD, and JFET_SD, VG_JFET_SD, respectively. The
blue and green lines depict the gate-drain and source voltages, VGD and VS, respectively.
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3. Results and Discussion

The irradiation runs were planned in shots of 2 min providing a medium dose of
13.4 Gy for low values of bias voltages and a rest period of 8 min between shots. After
a preliminary experimental study taking into account the sensitivity degradation of the
sensor, the samples were irradiated until the source voltage was shifted 1 V. To ensure at
least five irradiation shots per sample, without source shifts higher than 1V, the irradiation
time was 1 min for the set biased at 10 V, 1:40 for the set biased at 5 V, and 2 min for 1 and
0 V, with a dose rate of 6.7 Gy/min. Under these experimental conditions, the number of
shots for unbiased samples (0 V) was seven, and five for the samples biased at 10 V. Due to
the high dose provided in each shot, and the sensor sensitivity, the source voltage without
amplification, VS, was enough to evaluate the response of the transistors, as Figure 5a
shows. In Figure 5b, the sensibility per shot was calculated considering a linear relationship
between the source voltage shift, measured just at the beginning and the end of the shot,
and the dose per shot (solid symbols). In this calculation, fading has not been account for
and, thus, the MOSFET could be used as dose-rate dosimeter.

Alternatively, with empty symbols in Figure 5b, the sensitivity by shot has been
calculated including the short-term fading effects, with the source voltage value not just
after the irradiation but after the 8 min rest period between shots. Hereinafter, we will refer
to this sensitivity as S. With these data, the average sensitivity was calculated as the slope
of the accumulated source voltage shifts versus the accumulated dose. From Figure 5b, a
high linear sensor response can be observed in terms of sensitivity.

Table 1 summarizes the average sensitivity achieved with different bias voltages for
individual samples and the average per set. Due to dispersion of the samples’ sensitiv-
ity, an individual calibration is required to be used as dosimeter. As was expected, the
highest sensitivity was reached at the highest bias voltage due to the higher electric field
inside the gate oxide that reduces the recombination ratio of the electron-hole pairs cre-
ated by the ionizing radiation [14]. A linear dependence was found, showing a slope
of (1.56 ± 0.10) (mV/Gy)/V between the average sensitivity and the bias (gate) voltage
as shown in Figure 6. According to this, it would seem that the most suitable voltage
would be the highest studied value (10 V in our case). However, some factors should be
considered as well. If the magnitude of interest is the dose-rate, determining the slope of
the source voltage during irradiation (instant sensitivity) and high bias voltage would be
more accurate. However, to calculate the accumulated dose, measuring before and after
irradiations, the fading effect should be taken into account. In Figure 7, the source voltage
shifts of four different samples biased at 0, 1, 5, and 10 V are displayed.

Table 1. Sensitivity per sample and average sensitivity at different bias voltage.

MOSFET S (Mv/Gy) σ (S)
(mV/Gy) VG (V) Avg_S

(mV/Gy)
σ (AvgSen)

(mV/Gy)

#1 8.18 0.24
0 8.6 0.4#2 8.66 0.15

#3 9.08 0.09

#4 12.24 0.05
1 11.4 0.9#5 11.31 0.09

#6 10.50 0.30

#7 19.30 0.40
5 16.2 3.0#8 13.40 0.40

#9 15.81 0.23

#10 23.60 0.50
10 24.8 1.0#11 25.50 0.05

#12 25.30 0.30
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To evaluate the short-fading effect, the recovery of Vs was measured five minutes after
the third irradiation shot was concluded. Figure 8 shows the average recovery that was
found for the four sets of three samples, biased at 0, 1, 5, and 10 V. As it was expected, the
signal decay is higher at higher voltages, but very similar for 0 and 1 V. Taking into account
the average sensitivity that was previously calculated at different bias voltages (Table 1),
the dose error due to short fading effect can be calculated. The results are summarized in
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Table 2. Therefore, the bias voltage that was proposed to measure dose with this transistor
could be 1 V due to an acceptable sensitivity value and the lowest dose error due to
short-term fading effects.
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Table 2. Error dose due to the fading effect.

V Bias (V) Fading Dose Error (Gy)

0 −0.1 ± 0.2
1 −0.09 ± 0.11
5 −0.31 ± 0.11
10 −0.32 ± 0.10

Measurements taken after 40 Gy of accumulated dose, and 5 min after the irradiation ends.

In order to better understand these values for the sensor sensitivity, a comparative
study of this parameter was carried out for the proposed pMOS 3N136 and other dosi-
metric MOSFETs. Table 3 shows these sensitivities for different irradiation conditions.
From Table 3, we can observe a significant decrease of the sensitivity to protons compared
with high-energy photons for the 3N163 sensor as it was previously pointed out for RAD-
FETs [12,15]. This experimental response was explained because of an increased columnar
recombination of the induced electron-hole pairs for the case of proton irradiation com-
pared with 60Co, where geminate recombination dominates. Moreover, as was the case in
this study, the columnar recombination is becoming even more important as the proton
energy is decreased as the stopping power of protons decreases [13].



Sensors 2023, 23, 3771 10 of 11

Table 3. Response of different MOSFET used as proton dosimeters.

Source Sensor V Bias (V) Sensitivity (mV/Gy) Ref.
60Co photons 3N163 0 24.4 ± 0.9 [20]
6 MV photons from LINAC 3N136 0 20.1 ± 0.8 [20]
15 MV MV photons from LINAC 3N136 1 26.4 ± 0.8 [21]
190 MeV proton beam TN-502RD 15 ∼250 [16]
62 MeV proton beam TN-502RD 15 ∼75 [27]

60 MeV proton beam Tyndall
ESAPMOS4 0 ∼50 [15]

60 MeV proton beam Tyndall
ESAPMOS4 5 ∼130 [15]

5.36 MeV proton beam 3N163 1 11.4 ± 0.9 This work

4. Conclusions

A characterization of the commercial pMOS transistor 3N163 (Vishay, USA) as proton
dosimeter has been carried out. Due the low penetration power of the photons used in this
study (5.36 MeV), the samples should be irradiated in a vacuum chamber. The modification
of the samples by removing the top of the housing, was found as a suitable solution to
avoid shielding of the protons by encapsulation. Under these experimental conditions,
four external bias voltages of 0, 1, 5, and 10 V were tested, finding a linear dependence of
the average sensitivity with the external bias voltage. However, at high bias voltage, the
short fading effect, at 40 Gy, became more important, as it was expected. The bias voltage
that presented a low fading effect with an acceptable sensitivity, (11.4 ± 0.9) mV/Gy, was
1 V. Moreover, the decrease of the sensitivity to the protons beam compared with high-
energy photons can be explained based on the decreased stopping power of the proton
energy. Therefore, the model 3N163 biased at 1 V shows some characteristics that made it a
promising candidate as a proton dosimeter.
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