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Abstract: Virgin olive oil (VOO) is a high-value product from the Mediterranean diet. Some
health and nutritional benefits have been associated with its consumption, not only because of
its monounsaturated-rich triacylglycerols but also due to its minor bioactive components. The search
for specific metabolites related to VOO consumption may provide valuable information to identify
the specific bioactive components and to understand possible molecular and metabolic mechanisms
implicated in those health effects. In this regard, metabolomics, considered a key analytical tool in
nutritional studies, offers a better understanding of the regulatory functions of food components
on human nutrition, well-being, and health. For that reason, the aim of the present review is to
summarize the available scientific evidence related to the metabolic effects of VOO or its minor
bioactive compounds in human, animal, and in vitro studies using metabolomics approaches.

Keywords: olive oil; metabolomics; phenolic compounds; hydroxytyrosol; pentacyclic triterpenes

1. Introduction

Virgin olive oil (VOO) is the most important fatty source in the Mediterranean diet
(MedDiet), which is one of the healthiest diets worldwide. VOO contains a saponifiable
fraction made up of triacylglycerols (TAG; 97–99%), with oleic acid (C18:1n9) as the main
fatty acid (68–81.5%). A systematic review and meta-analysis focused on the consumption
of monounsaturated fatty acids (MUFA), and their relationship with cardiovascular disease
(CVD) concluded an overall risk reduction of all-cause mortality (11%), cardiovascular mor-
tality (12%), cardiovascular events (9%), and stroke (17%) [1]. The presence of these MUFA
in cell membranes confers stability from oxidative damage and improves their fluidity and
functions [2]. Besides, VOO contains 2% of non-saponifiable minor components, including
phenylalcohols, secoiridoids, pentacyclic triterpenes, sterols, and tocopherols, among oth-
ers. These compounds are responsible for many of the VOO health benefits, and within
them, secoiridoids are responsible for the organoleptic properties [3,4]. The major phenolic
compounds characterized in VOO are hydroxytyrosol, tyrosol, and the secoiridoids oleu-
ropein aglycon, ligstroside aglycon, oleocanthal and oleacein [5]. Antioxidant properties
have been attributed to these compounds. Hydroxytyrosol exerts antioxidant properties [6],
improves endothelial function, reduces the expression of cell adhesion molecules, increases
the availability of nitric oxide, and neutralizes intracellular free radicals [7]. It also has
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demonstrated selective toxicity against cancer cells, inducing apoptosis and protecting
non-tumorigenic cells [8]. Pentacyclic triterpenes, mainly oleanolic and maslinic acids,
are present in moderate amounts in VOOs [9]. Several studies reported that they are
bioavailable in humans [10,11] and have demonstrated vasoprotective [11], metabolic [12],
antioxidant and anti-inflammatory benefits in humans [13] and obese mice [14]. In addition,
secoiridoids have also demonstrated beneficial properties. Oleuropein aglycon has demon-
strated antioxidant capacity [5], metal-chelating and free radical scavenging activities [15]
and anti-tumor effects [5]. Oleocanthal is a potent anti-inflammatory [5], antioxidant, neu-
roprotective [15] and antiproliferative molecule [16]. VOO also contains oleacein, which
has recently shown a protective effect on experimental autoimmune encephalomyelitis and
may normalize gut alterations associated with the disease [17], and ligstroside aglycons
that reduces cell proliferation and increases cell death of liver cancer cells [16]. However,
the molecular mechanism implicated in all these beneficial effects remains unknown.

Metabolomics is the science that studies low molecular weight chemical compounds
(<1500 Da) existing in biofluids, biological tissues or cells as a consequence of genetic,
metabolic, physiological, or pathological conditions [18]. The metabolome represents the
final step in a biological system, and metabolites are the final functional entities that can
inform about the physiological or pathological phenotypes [19]. They provide information
about what we eat by describing new dietary biomarkers that could identify dietary
exposures with a high level of detail and precision, and also the metabolic pathways that
might explain the beneficial, healthy effects attributed to specific food components at a
molecular level [20]. Traditionally, two main approaches are used in metabolomics analysis:
untargeted and targeted. Untargeted metabolomics analysis focuses on the determination
of as many metabolites as possible, aiming at the coverage rather that the quantification.
Targeted metabolomics analysis is built on prior knowledge and relies on the determination
and quantification of specific metabolites of interest.

The most employed analytical techniques are liquid and gas chromatography (LC and
GC, respectively), coupled with mass spectrometry (MS) and nuclear magnetic resonance
(NMR). By using high-resolution MS (HRMS) coupled with diverse sample preparation
steps, the broad chemical complexity of the metabolome can be assessed. Indeed, a combi-
nation of separative methods is needed for in-depth investigations [21,22]. LC is perhaps
the most popular method because of its high sensitivity, availability and versatility, provid-
ing wide coverage of the metabolome [21,23]. In recent years, the LC-MS has highlighted
its enormous potential because of the minimal requirement of samples, simple pretreat-
ments, and the ability to analyze samples in their natural state [24]. In addition, it has
the advantage that it rarely requires derivatization steps and, hence, is quicker, relatively
easier to perform and less expensive; it only requires deproteinization with different polar
solvents depending on the sample [25]. GC-MS is the most effective for the analysis of the
volatile fraction of samples, mostly composed of non-polar molecules. On the other hand,
NMR has been used for over 40 years to perform metabolomic analyses in diverse biofluids
and tissues. It is characterized by high levels of robustness and reproducibility, instrument
stability, uncomplicated sample preparation, strong quantitative character, non-destructive
nature, and easy automation. However, the big size of the instrument, the expensive
maintenance and its low sensitivity, especially compared to mass spectrometry, are their
main limitation [21].

Despite the well-described beneficial effects associated with VOO consumption, there
is still a lack of information on the metabolomic changes induced after VOO intake, alone or
enriched in bioactive compounds. The aim of the present review is to compile the scientific
evidence related to the metabolic effects of VOO and its minor bioactive compounds using
metabolomics approaches in human, animal, and in vitro studies.

2. Materials and Methods

The search was conducted in Medline through PubMed (US National Library of
Medicine National Institutes of Health) and SCOPUS using the following research equation:
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“olive oil” AND “metabolomics.” We conducted the search from the beginning of the
literature until November 2022. Studies included in this review met the following inclusion
criteria: (1) human or animal studies that used metabolomics for evaluating the effects of
olive oil consumption (non-modified or enriched with bioactive compounds) or the isolated
bioactive components of olive oil, (2) in vitro cellular studies analyzing the molecular
mechanisms of olive oil or any of its components. The exclusion criteria were: (1) direct
metabolomic analyses of the oils and (2) reviews.

The search yielded 88 results from PubMed and 146 from SCOPUS. After eliminating
duplicated articles, titles and abstracts were screened to determine whether they met the
inclusion criteria. In case of doubt, the full text was evaluated for further consideration.
One hundred twenty-four papers did not meet the inclusion criteria and were excluded.
Finally, 22 papers were selected: 12 were related to human studies, 7 were aimed at animal
studies, and 3 were focused on in vitro experiments.

3. Results

Tables 1 and 2 include information about human clinical interventions, sustained or
postprandial, respectively, carried out with olive oils or polyphenol-enriched olive oils.
They include (1) the metabolites identified after the olive oil consumption compared with
the control intervention unless otherwise indicated; (2) the level of identification based
on the classification proposed by Schymanski et al. (2014), which established level 1 for
confirmed structure by reference standard, level 2 for probable structure and level 3 for
tentative candidate [26]; and (3) the metabolomics conclusions. All studies are ordered
chronologically in tables. The same information is provided in Table 3 for animal studies
and in Table 4 for in vitro experimental studies after the consumption of olive oils or
hydroxytyrosol obtained from the olive fruit.

Table 1. Results of the main human metabolomics studies.

Reference Study Data Main Metabolites Identified after
Olive Oil Consumption Conclusions

Vázquez-
Fresno

et al., 2015
[27]

Subjects
N = 98 [53–79 years]

nondiabetic at high CVD
risk 70 females 28 males

Up-regulated after 1 y: creatinine,
citrate, cis-aconitate

Up-regulated after 3 y: creatinine and
citrate

Some urine
metabolites may

discriminate dietary
pattern

Intervention
PREDIMED Study
MedDiet + EVOO
1 year vs. 3 years

Technique
Untargeted NMR (1-year

results) and targeted
(3-year results) NMR

Sample Urine

MSI Level 2

Statistical analysis
Multivariate

Unsupervised PCA
Supervised OSC-PLS-DA

Wang et al.,
2017 [28]

Subjects
N = 980 [55–80 years] high

risk CVD
541 females, 476 males

Down-regulated: 4 ceramides (C16:0,
C22:0, C24:0 and C24:1)

Positive association
between ceramide

and CVD risk
MedDiet + EVOO
may mitigate the

potentially
deleterious effects
of elevated plasma

ceramides

Intervention
PREDIMED Study
MedDiet + EVOO

Baseline vs. 7,4 years

Technique Targeted LC-MS

Sample Plasma

MSI Level 3

Statistical analysis Multivariate
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Table 1. Cont.

Reference Study Data Main Metabolites Identified after
Olive Oil Consumption Conclusions

Toledo
et al., 2017

[29]

Subjects
N = 983 [55–80 years] high

risk CVD
541 females, 479 males

Up-regulated: lysoPE (22:6), PC
plasmalogens (34:2), PE plasmalogens

(36:1), ceramide (24:1),
sphingomyelines (18:1, 18:0 and 24:1)
Down-regulated: PC (36:4b), PC (38:4),
PE (38:5 and 38:4), PE plasmalogens

(36:5 and 38:5), cholesterol esters
(16:1), diacylglycerols (32:0), TAG

(42:0, 44:0, 46:0, 48:0 and 50:0)
No significant differences were found

in adjusting p-values for multiple
comparisons

Baseline lipid
metabolomic profile
was associated with
the risk of CVD and
was reduced after

sustained
consumption of

MedDiet + EVOO

Intervention
PREDIMED Study
MedDiet + EVOO
Baseline vs. 1 year

Technique Targeted UHPLC-Orbitrap
MS

Sample Plasma

MSI Level 3

Statistical analysis Multivariate

Errazuriz
et al., 2017

[30]

Subjects

N = 43 [mean value
62 years]

Prediabetics 19 females
25 males

TAG fatty acids composition and
nonsterified fatty acids: oleic acids,

linoleic acids, palmitoleic acids,
linolenic acids, eicosapentaenoic acids,
docosahexaenoic acids, palmitic acids,

arachidonic acids, myristic acids,
and TAG

No differences were
found in the
metabolites

analyses in MUFA
vs. control diet after

12 wk

Intervention

MUFA diet (50% olive oil);
fiber-rich diet; Control

diet (high-carbohydrate,
low-fat and low fiber)

MUFA vs. fiber-rich vs.
control diet

Technique Targeted LC-MS

Sample Plasma

MSI Level 3

Statistical analysis Univariate

Yu et al.,
2017 [31]

Subjects
N = 985 [55–80 years] high

risk CVD
529 females, 456 males

Up-regulated: tryptophan
Down-regulated: kynurenine,

kynurenic acid, 3-hydroxyanthranilic
acid and quinolinic acid

Increases in plasma
tryptophan after 1 y

was inversely
associated with
incident CVD

MedDiet + EVOO
attenuated the

deleterious effect of
low levels of
tryptophan

Intervention
PREDIMED Study
MedDiet + EVOO
Baseline vs. 1 year

Technique Targeted LC-MS

Sample Plasma

MSI Level 1

Statistical analysis Multivariate

Guasch-
Ferre et al.,
2020 [32]

Subjects
N = 889 [55–80 years] high
risk CVD and T2DM risk

573 females 369 males

Down-regulated: isocitrate and malate
No significant interactions were found

after adjusting for multiple
comparisons

Glycolysis/
gluconeogenesis
and TCA-related
metabolites panel

positively
associated with

T2DM risk
MedDiet + EVOO

or nuts may
counterattack the
harmful effects of
those metabolites

Intervention
PREDIMED Study
MedDiet + EVOO
Baseline vs. 1 year

Technique Targeted LC-MS

Sample Plasma

MSI Level 3

Statistical analysis Multivariate
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Table 1. Cont.

Reference Study Data Main Metabolites Identified after
Olive Oil Consumption Conclusions

Gonzalez-
Dominguez
et al., 2020

[33] *

Subjects
N = 10 healthy [Mean

value: 40 years) 4 females
6 males

Up-regulated in urine: HT 3-sulfate
and HT 4-sulfate

Up-regulated in plasma:
ethanolamine, urea,

s-adenosylmethionine,
dimethylglycine, pyroglutamic acid,

asymmetric dimethylarginine,
trimethylamine, glutaryl-L-carnitine,

succinic acid, azelaic acid, leucine,
acetyl-L-carnitine, valine,

s-adenosylhomocysteine, lysine,
methionine, threitol, creatinine,

glycochenodeoxycholic acid
3-glucuronide, indoleacetic acid,

docosatetraenoic acid, phenylalanine

HT is bioavailable,
and its metabolites

are excreted in
urine after one
month of VOO

intervention.
Ingestion of olive

oil modified plasma
metabolome

Intervention Olive oil 80 g/day
Baseline vs. 1 month

Technique Targeted UHPLC-QTRAP

Sample Urine and plasma

MSI Level 2

Statistical analysis Univariate

Fernandez-
Castillejo
et al., 2021

[34]

Subjects
N = 33 [35–80 years]

hypercholesterolaemic
14 females 19 males Up-regulated: TAG(FA18:1),

SM(FA22:1), TAG56:5(FA20:3), TAG
54:2(FA20:1), TAG 52:2(FA16:0), TAG

52:2(FA18:1), PC(FA18:1/FA18:1),
SM(FA22:1), TAG54:2(FA18:1), TAG

56:4(FA20:2), TAG 54:4(FA20:3), TAG
56:4(FA20:3), TAG 50:3(FA14:1), TAG
52:1(FA18:1), TAG 54:2(FA16:0) and

TAG 54:3(FA20:2)
Down-regulated: CE(FA22:6),

TAG56:8(FA18:2), TAG 51:4(FA18:2),
TAG 51:4(FA15:0), TAG54:7(FA22:5),

CE(FA22:6), TAG56:8(FA18:2),
TAG51:5(FA18:3), TAG 50:4(FA18:2),
TAG 52:4(FA18:2), TAG 52:4(FA16:0)

and TAG 53:3(FA18:2)

VOO impacts the
HDL lipidome, in

particular TAG
species,

independently of
polyphenol content

Intervention

VOHF Study
25 mL/day for 3 weeks of:

VOO (80 ppm of TPC);
FVOO (500 ppm of TPC);

FVOOT (250 ppm of VOO
TPC + 250 ppm of thyme

TPC).
Baseline vs. 3 weeks

Technique Targeted NMR

Sample Serum

MSI Level 2

Statistical analysis
Multivariate

Unsupervised PCA
Supervised OPLS-DA

isFarras
et al., 2022

[35]

Subjects
N = 33 [35–80 years]

hypercholesterolaemic
14 females, 19 males

Down-regulated: glutamine, histidine,
DMA, creatine, creatinine, valine,

isoleucine
Metabolites identified after the

consumption of VOO enriched in
phenolic compounds vs. a standard

VOO

Phenol-enriched
olive oils favorably

shift circulating
metabolites

associated with
cardiometabolic

diseases

Intervention

VOHF Study
25 mL/day for 3 weeks of:

VOO (80 ppm of TPC);
FVOO (500 ppm of TPC);

FVOOT (250 ppm of VOO
TPC + 250 ppm of thyme

TPC).
Baseline vs. 3 weeks

Technique Targeted NMR

Sample Serum

MSI Level 2

Statistical analysis
Multivariate supervised

M-OPLS-DA, PLS,
Machine learning

* Indicates studies of olive oil intake metabolites. CE, cholesteryl esters; CVD, cardiovascular disease; DMA,
dimethylamine; EVOO, extra virgin olive oil; FA, fatty acid; HDL, high-density lipoprotein; HT, hydroxytyrosol;
LC, liquid chromatography; MedDiet, Mediterranean diet; M-OPLS-DA, multilevel orthogonal partial least
squares discriminant analysis; MUFA, monounsaturated fatty acids; MS, mass spectrometry; MSI, Metabolomics
Standards Initiative; NMR, nuclear magnetic resonance spectroscopy; OPLS, orthogonal partial least squares;
OSC, orthogonal signal correction; PC, phosphatidylcholine; PCA, principal component analysis; PE, phos-
phatidylethanolamine; PLS, partial least squares; PLS-DA, partial least square-discriminant analysis; PREDIMED,
Prevention with Mediterranean Diet; QTRAP, mass spectrometer with electrospray ionization source and hybrid
triple quadrupole analyser; SM, sphingomyelin; T2DM, diabetes mellitus type 2; TAG, triacylglycerols; TCA,
tricarboxylic acid; TPC, total phenolic compounds; UHPLC, ultra-high pressure liquid chromatography; VOO,
virgin olive oil; VOHF, VOO and HDL functionality.
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Table 2. Results of the main human postprandial metabolomics studies.

Reference Study Data Main Metabolites Identified after
Olive Oil Consumption Conclusions

Ferreiro-
Vela et al.,
2013 [36] *

Subjects
N= 26 obese 17 females
[48–70 years] 9 males

[39–70 years]

Up-regulated after 2 h:
3-hydroxydecanoic acid,
3-oxooctadecanoic acid,

octadecanedioic acid (12,13-DHOME,
9,10-DHOME), palmitoleic acid

(palmitelaidic acid), eicosenoic acid,
disaccharide,

lysoPE(18:1(9Z)/0:0),
lysoPE(18:1(11Z)/0:0)

Down-regulated after 2 h:
tryptophanol,

9,10-dihydroxyoctadecanoic acid,
palmitic acid, 5′-methylthioadenosine,
3-methyladipic acid (pimelic acid) and

L-tryptophan
Up-regulated after 4 h:

3-hydroxydecanoic acid,
9,10-dihydroxyoctadecanoic acid,

3-oxooctadecanoic acid,
octadecanedioic acid (12,13-DHOME,

9,10-DHOME), palmitoleic acid
(palmitelaidic acid), palmitic acid,
eicosenoic acid and disaccharide

Down-regulated after 4 h: L-tyrosine
Down-regulated after 4 h vs. 2 h:

glucosamine

Serum metabolites
may discriminate

the intake of
different oils and
the postprandial

phase
Intervention

Postprandial: Baseline, 2
and 4 h after a breakfast

including 0.45 mL of
EVOO/kg of body weight

(400 µg/mL of TPC)

Technique Untargeted LC-TOF/MS

Sample Serum

MSI Level 3

Statistical analysis Multivariate
Supervised PLS-DA

Agrawal
et al., 2017

[37]

Subjects N = 9 [20–50 y] healthy
males

Up-regulated in responders: glucose,
xylose and pinitol (carbohydrates),

glycolic acid, gluconic acid and
threonic acid (sugar acids)

Up-regulated in non-responders: oleic
acid (free fatty acid), malic acid,

isocitric acid and citric acid (citric acid
cycle metabolites)

Plasma
metabolomics
profiles may
discriminate

platelet response to
EVOO intake

Intervention
Postprandial: Baseline vs.
2 h after the intake of 40

mL of three EVOO

Technique Targeted GC-TOF

Sample Plasma

MSI Level 3

Statistical analysis Multivariate
Supervised PLS-DA

Wang et al.,
2018 [38] *

Subjects N = 17 [20–50 years]
healthy males

Up-regulated: glycochenodeoxycholic
acid, deoxycholic acid and

hyodeoxycholic acid (bile acids and
salts), 3-hydroxybutyric acid (fatty

acid metabolism), uridine (pyrimidine
nucleosides), traumatic acid,

2-ethyl-2-hydroxybutyric acid and
mandelic acid

Down-regulated:
5′-methylthioadenosine

Different metabolic
profiles were

observed between
MUFA and SFA oils

Intervention
Postprandial: Baseline vs.
2 and 4 h after the intake

of 54 g of olive oil

Technique Untargeted
UHPLC-MS/MS QTOF

Sample Serum

MSI Level 2

Statistical analysis Multivariate
Supervised SPLS-DA

* Indicates studies of olive oil intake metabolites. DHOME, dihydroxyoctadecenoic acid; EVOO, extra vir-
gin olive oil; GC-TOF, gas chromatography time-of-flight mass spectrometry; LC, liquid chromatography;
MUFA, monounsaturated fatty acids; MS, mass spectrometry; MSI, Metabolomics Standards Initiative; PE,
phosphatidylethanolamine; PLS-DA, partial least square-discriminant analysis; QTOF, quadrupole time-of-flight;
SFA, saturated fatty acids; SPLS, sparse partial least squares; TOF/MS, time-of-flight-mass spectrometry; TPC,
total phenolic compounds; UHPLC, ultra-high pressure liquid chromatography.
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Table 3. Results of the in vivo animals’ metabolomics studies.

Reference Study Data
Main Metabolites Identified after Olive Oil

and Its Minor Bioactive Components
Consumption

Conclusions

Mellert et al.,
2011 [39]

Animals N = 10 Wistar rats

Up-regulated: ketone bodies (2-, and
3-hydroxybutyrate, only in females) and
glycerol-3-phosphate (male and female)

Down-regulated: phospholipids and their
degradation products (lysoPC (C20:4),

palmitoleic acid (C16:cis [9]1), PC (C16:0,
C20:4), PC (C16:1, C18:2) and sphingomyelin

(d18:1, C24:0)

Lipid metabolism was
modified by olive and

corn oils in similar
ways

Lower levels of
phospholipids are due

to the lower food
consumption

Intervention
Olive oil (65–85% of oleic acid)
5 mL/kg of body weight/day

Baseline vs. 28 days

Technique Untargeted GC-MS and
LC-MS/MS

Sample Plasma

MSI Level 2

Statistical analysis Univariate

Poudyal
et al., 2017

[40]

Animals N = 48 metabolic syndrome rat
model

Up-regulated: HT, HT double oxidation, HT
2-ethoxyl acid, HT glucuronidation, HT

glutathione conjugation, HT sulfation *, HT
acetylation *, HT N-acetylcysteine

conjugation, HT acetylation + sulfation *, HT
methylation (homovanillic alcohol),
homovanillic alcohol first alcohol to

aldehyde *, homovanillic alcohol sulfation,
homovanillic alcohol methylation,
homovanillic alcohol acetylation,

homovanillic acid, homovanillic acid aromatic
hydroxylation, homovanillic acid

glucuronidation, homovanillic acid sulfation,
homovanillic acid methylation, homovanillic
acid acetylation *, homovanillic acid glycine
conjugation (carboxylic acid), homovanillic

acid hydroxylation + methylation,
3,4-diphenylacetic acid, 3,4-diphenylacetic acid

glucuronidation *, 3,4-diphenylacetic acid
glycine conjugation (carboxylic acid)
* Indicates discriminant metabolites
down-regulated for the obese group

compared with the control group, both
treated with HT

Cardioprotective
effects of HT were

observed by
attenuation of

metabolic risk factorsIntervention

Group 1: corn starch;
Group 2: corn starch +

20 mg HT/kg/day
Group 3: HCHF

Group 4: HCHF + 20 mg
HT/kg/day

Baseline vs. 8 weeks

Technique Targeted UHPLC-HRMS

Sample Plasma

MSI Level 3

Statistical analysis Univariate

Lemonaski
et al., 2017

[41]

Animals N = 16 metabolic syndrome rat
model

UPLC-Orbitrap up-regulated: an unknown
metabolite and

3-methoxy-4-hydroxyphenylacetaldehyde
(primary amide (fatty acyls))

UPLC-Orbitrap down-regulated:
octadecanamide, fatty acid ester, unsaturated
fatty acid/C24 bile acid (sterol lipids)/w-3

polyunsaturated fatty acid ethyl ester,
unsaturated fatty acid/C24 bile acid (sterol

lipids), C24 bile acid (sterol lipids),
1-alkyl,2-acylglycerophosphocholines

(glycerophospholipids), retinoid (prenol
lipids), oleamide,

monoacylglycerophosphocholine,
18-oxocortisol, diacylglycerophosphoinositol,
3beta-(3-methyl-butanoyloxy)-villanovane-

13alpha,17-diol,
5-hydroperoxy-7-[3,5-epidioxy-2-(2-octenyl)-
cyclopentyl]-6-heptenoic acid, C24 bile acid,

diacylglycerophosphoinositol,
sn-3-O-(geranylgeranyl)glycerol 1-phosphate

QqTOF up-regulated: (glycerol and
3-(3-hydroxyphenyl)propanoic acid)

QqTOF down-regulated: lauric acid, linoleic
acid, oleic acid, stearic acid,

3,7-dihydroxycholan-24-oic acid,
(3beta,5alpha)-4,4-dimethylcholesta-8,14,24-
trien-3-ol, myristic acid, palmitelaidic acid,

11,14,17-eicosatrienoic
acid/8,11,14-eicosatrienoic acid, arachidonic

acid/cis-8,11,14,17-eicosatetraenoic acid

HT decreases the
biosynthesis of fatty

acids, mainly
unsaturated, and the

metabolism of linoleic
acid, retinol,

sphingolipids and
arachidonic acid,

whereas glycerolipid
metabolism is
up-regulated

These metabolites
regulation may

explain the positive
effect of HT in

cardiovascular, liver
and metabolic

changes induced by
high-carbohydrate,

high-fat diet-fed rats

Intervention

Control diet: HCHF Enriched
diet: HCHF +

20 mg HT/kg/day
Baseline vs. 8 weeks

Technique Untargeted UPLC-Orbitrap
and UPLC-QqTOF

Sample Plasma

MSI Level 3

Statistical analysis

Multivariate
Supervised PCA

Unsupervised PLS-DA and
OPLS-DA
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Table 3. Cont.

Reference Study Data
Main Metabolites Identified after Olive Oil

and Its Minor Bioactive Components
Consumption

Conclusions

Dagla et al.,
2018 [42]

Animals N = 15 metabolic syndrome rat
model

Up-regulated: 9-ή 12-OAHSA (oleic acid
hydroxyl stearic acid), unsaturated lipid

acids, PC (22:6) or diacylglycerol
phosphoserine, PC (20:4), γ-glutamine amino

acid, glycerol, glycerol and/or glycine,
choline, leucine, isoleucine and/or leucine
Down-regulated: glucose and/or mannose,

glucose, glucose and/or betaine,
glucose-mannose, glucose and/or

O-phosphocholine and lactate

HT is effective
towards the

mobilization of lipids
and up-regulates

branched fatty acid
esters of hydroxy oleic

acids, denoting the
alleviation of the

metabolic syndrome

Intervention

Control group: HCHF
HT group: HCHF+ 20 mg

HT/kg/day
Baseline vs. 8 weeks

Technique Untargeted UPLC-HRMS and
NMR

Sample Liver

MSI Level 2

Statistical analysis

Multivariate
Supervised PCA

Unsupervised PLS-DA and
OPLS-DA

Ma et al.,
2017 [43]

Animals N = 360 crabs Up-regulated: pyruvic acid, succinic acid,
lactose, L-malic acid, D-gliceric acid, threitol
(related to glycolysis and tricarboxylic acid

cycle), methionine, 2-keto-isovaleric acid
(intermediate for valine and leucine synthesis)
and 2-hydroxybutanoic acid (intermediate of

ketogenic amino acids breakdown),
6-deoxy-D-glucose, 2-hydroxypyridine and

3-hydroxypropionic acid
Down-regulated: glutaconic acid

(intermediate of ketogenic amino acids
breakdown)

Compared with perilla
oil-fed crabs, olive oil

increased the
degradation of glucose
and lipids to provide

energy for growth

Intervention
Olive oil (69% oleic acid) and
perilla oil (56% linolenic acid)

Baseline vs. 8 weeks

Technique Untargeted GC-MS

Sample Serum

MSI Level 3

Statistical analysis

Multivariate
Supervised PCA

Unsupervised PLS-DA and
OPLS-DA

Ma et al.,
2018 [44]

Animals N = 360 crabs

Up-regulated: hydroxylamine,
3-hydroxypropionic acid and

2-hydroxypyridine
Down-regulated: lysine and citrulline

Compared with palm
oil-fed crabs, olive oil
provides more energy,

lower lipid
accumulation and

oxidative stress, and
improves intestinal

microbiota
Palmitic acid-enriched

palm oil tended to
increase protein

degradation and lipid
accumulation-induced

lipotoxicity

Intervention

Olive oil (69% oleic acid) and
palm oil diet (78% of palmitic

acid)
Baseline vs. 8 weeks

Technique Untargeted GC-MS

Sample Serum

MSI Level 3

Statistical analysis
MultivariateSupervised PCA
Unsupervised PLS-DA and

OPLS-DA

Zhi-hao et al.,
2022 [45]

Animals N = 48 metabolic syndrome rat
model Feces up-regulated: proline, valine, cytidine,

glutathione (reduced; amino acids, peptides,
and analogs), oleic acid and FA 18:0 + 2O +

SO4
Feces down-regulated: PE alkenyl 16, PE

alkenyl 18, PE 16, PC 15
(glycerophospholipids) FA 18:4 +1O and

citrulline
Serum up-regulated: alanine-isoleucine,

leucine and oleic acid. Serum
down-regulated: 3,5-dibromo-L-tyrosine,

folic acid and cytidine 5’-diphosphocholine

Supplementation with
both high-oleic acid

peanut oil and EVOO
reduces diet-induced
metabolic syndrome.
The major pathway
implicated in these

metabolic effects is the
BCAAs biosynthesis

pathway.

Intervention

Normal, HFHF, HFHF diet
containing high-oleic acid

peanut oil, HFHF containing
EVOO.

Baseline vs. 12 weeks

Technique Untargeted UPLC-Q/TOF-MS

Sample Feces and serum

MSI Level 2

Statistical analysis Multivariate
Supervised PLS-DA
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Table 3. Cont.

Reference Study Data
Main Metabolites Identified after Olive Oil

and Its Minor Bioactive Components
Consumption

Conclusions

Ruocco et al.,
2022 [46]

Animals N = 19 C57BL/6N mice
Plasma down-regulated: proline

Urine up-regulated: tyrosol-sulfate, HT,
HT-sulfate, HT-acetate-glucuronide,

homovanillic acid-glucuronide, oleuropein
aglycone, ligstroside

Significant differences could not be
calculated for oleuropein and oleuropein

aglycone-glucuronide because these
compounds were non-detected in the

SFA group

The replacement of
SFA with EVOO cause

moderate beneficial
cardiometabolic and

hepatic effects.

Intervention

SFA diet and EVOO diet (82%
of fat replaced by high

polyphenol EVOO)
Baseline vs. 16 weeks

Technique Untargeted and targeted
UHPLC-HRMS

Sample Plasma and urine

MSI Level 3

Statistical analysis Univariate

* Indicates discriminant metabolites down-regulated for the obese group compared with the control group, both
treated with HT. BCAAs, branched-chain amino acids; EVOO, extra virgin olive oil; FA, fatty acid; GC, gas
chromatography; HCHF, high carbohydrate and high fat diet; HFHF, high fructose and high fat diet; HRMS,
high-resolution mass spectrometry; HT, hydroxytyrosol; LC, liquid chromatography; MS, mass spectrometry; MSI,
Metabolomics Standards Initiative; NMR, nuclear magnetic resonance spectroscopy; OAHSA, oleic acid hydroxyl
stearic acid; OPLS-DA, orthogonal projection to latent structures-discriminant analysis; PC, phosphatidylcholine;
PCA, principal component analysis; PE, phosphatidylethanolamine; PLS-DA, partial least square-discriminant
analysis; QqTOF, quadrupole-time-of-flight mass spectrometry; TOF, time-of-flight; SFA, saturated fatty acid;
UHPLC, ultra-high pressure liquid chromatography; UPLC, ultra-pressure liquid chromatography; UPLC-Q/TOF-
MS, ultra-performance liquid chromatography quadrupole/time-of-flight-mass spectrometry.

Table 4. Results of in vitro experimental metabolomics studies.

Reference Study Data
Main Metabolites Identified after Olive Oil

and Its Minor Bioactive Components
Consumption

Conclusions

Fernandez-
Arroyo et al.,

2012 [47]

Experimental
design

Colon adenocarcinoma HT29
and SW480)

14 olive oil extracts from
EVOO at concentrations of

0.01% and 0.1% for 24 h.
Control vs. treated cells

Up-regulated in culture medium: vanillin,
4-OH-benzoic acid, vanillic acid, HT acetate,

10-H-oleuropein aglycone, syringaresinol,
acetoxy-pinoresinol, pinoresinol, HT, elenolic

acid, luteolin, methyl-decarboxymethyl
oleuropein aglycone and apigenin (phenolic

compounds).
Up-regulated in the cytoplasm:

decarboxymethyl oleuropein aglycone,
oleuropein aglycone, acetoxy-pinoresinol,

elenolic acid, methyl-decarboxymethyl
oleuropein aglycone (phenolic compounds)

and quercetin, methyl-hydroxy-
decarboxymethyl oleuropein aglycone and

methyl-luteolin (metabolites)

Association of
quercetin and

oleuropein aglycone
(and its derivatives)

with the
antiproliferative and
pro-apoptotic effect

Technique Targeted
Nano-LC-ESI-TOF-MS

Sample Culture medium and
cytoplasm

MSI Level 3

Statistical analysis Univariate

Rocchetti
et al., 2020

[48] *

Experimental
design

In vitro gastrointestinal
digestion

Five commercial EVOOs were
compared

Up-regulated: peonidin, luteolin,
pelargonidin, hispidulin (flavonoids),

oleuropein, HT (other phenolics),
4-hydroxybenzoic acid (phenolic acids),

2α,7β,15β,18-tetraacetoxy-cholest-5-en-3α-
ol (cholesterol analogs), nebrosteroid L

(ergosterol derivatives), 6-O-(Glcb)-(25R)-5α-
spirostan-3β,6α,23S-triol (spirostanol

derivatives)

EVOO in vitro
digestion modifies the

bioaccessibility of
minor bioactive

molecules: mainly
secoiridoides

(oleuropein) and
phenolic alcohols

(tyrosol and HT), and
flavonoids (cyanidin

and luteolin)

Technique Untargeted UHPLC-QTOF

Sample Serum

MSI Level 3

Statistical analysis
Multivariate

Unsupervised HCA
Supervised OPLS-DA

* Indicate studies of intake metabolites. ESI, electrospray ionization; EVOO, extra virgin olive oil; HCA, hi-
erarchical cluster analysis; HT, hydroxytyrosol; LC, liquid chromatography; MS, mass spectrometry; MSI,
Metabolomics Standards Initiative; OPLS-DA, orthogonal projection to latent structures-discriminant analy-
sis; PC, phosphatidylcholine; PCA, principal component analysis; PE, phosphatidylethanolamine; PLS-DA, partial
least square-discriminant analysis; QTOF, quadrupole-time-of-flight mass spectrometry; TOF, time-of-flight;
UHPLC, ultra-high pressure liquid chromatography.

Down-regulated: phospholipids and their degradation products (lysoPC (C20:4),
palmitoleic acid (C16:cis [9]1), PC (C16:0, C20:4), PC (C16:1, C18:2) and sphingomyelin
(d18:1, C24:0)
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3.1. Metabolomics Approaches in Humans

Twelve papers describing metabolites after olive oil, VOO, and extra virgin olive oil
(EVOO) intake in humans were found (Tables 1 and 2). Ten studies identified metabolites
related to a beneficial effect, while three studies identified metabolites derived from olive
oil intake. The Prevention with Mediterranean diet (PREDIMED) study is the first clinical
trial demonstrating that dietary intervention with MedDiet supplemented with EVOO
may decrease the morbidity and mortality due to CVD in high CVD-risk adults [49]. In
that study, the goal was to consume daily 50 g or more of a polyphenol-rich EVOO. Five
metabolomics analyses have been published from different sub-cohorts of the PREDIMED
study. Three PREDIMED sub-studies compared plasma metabolites of a group of 230
subjects that suffered cardiovascular events compared with more than 780 participants
without cardiovascular accidents, both before and after 1-year of intervention, using LC
targeted-metabolomics approaches [28,29,31]. The first work [29] analyzed phosphatidyl-
cholines, phosphatidylethanolamines, ceramides, cholesterol esters, diacylglycerols, and
TAG. The authors described a baseline lipidomic plasma profile associated with CVD risk
and future cardiovascular events, concretely lipid metabolites with a longer acyl chain and
higher number of double bonds. However, besides the decrease in cardiovascular events
observed after 1-year consumption of MedDiet supplemented with EVOO, the authors did
not find any significant association between the described metabolites and cardiovascular
risk [29]. It was suggested that 1 year was not enough to detect measurable changes in these
types of metabolites, and other different metabolites and mechanisms may have accounted
for the observed clinical benefits [29]. Indeed, the second work [28] identified ceramides as
plasma metabolites related to EVOO consumption and CVD prevention after 7.4 years of
supplementation. Participants with a high risk of CVD presented higher plasma amounts
of these sphingolipids, increased levels of total cholesterol, LDL, TAG, and diastolic blood
pressure, and the ceramide score was associated with a 2.18-fold higher risk of CVD. The
authors concluded that after the MedDiet intervention for 7.4 years with at least 50 mL/d
of EVOO, these ceramides decreased, potentially modulating cardiovascular risk [28].

The third sub-study described plasma metabolites related to the tryptophan-kynurenine
pathway and their relation to CVD and the consumption of EVOO for 1 year in a Med-
Diet context, demonstrating that a higher plasma concentration of tryptophan and lower
kynurenine-related metabolites were associated with a decreased risk of CVD [31]. In fact,
this is the only work that identifies tryptophan as a metabolite related to cardiovascular risk
at a level I of identification. However, it cannot be concluded whether the beneficial effect
is related to MedDiet itself or to the intake of EVOO. Therefore, further specific clinical
trials aimed at the evaluation of EVOO are necessary to ascertain if its intake may modulate
processes associated with changes in plasma tryptophan.

Another PREDIMED sub-study analyzed metabolites related to the metabolism of
carbohydrates, amino acids, lipids, and microbial cometabolites, within others, in a sub-
cohort of nondiabetic participants. This study identified some urine metabolites related to
CVD prevention and the consumption of EVOO using an untargeted NMR analysis after
1 year and a targeted approach after 3 years, compared with the baseline. Differences were
observed for all the metabolites excreted after EVOO consumption at 1 and 3 years but
creatinine at 1 year [27].

Finally, the last PREDIMED sub-study included 251 type 2 diabetes mellitus (T2DM)
participants compared with 638 non-diabetic controls [32]. These authors analyzed circulat-
ing plasma concentrations of several glycolysis/gluconeogenesis and tricarboxylic acids
cycle-related metabolites at baseline and after 1 year using an LC-targeted approach. Base-
line presence of hexose monophosphate, pyruvate, lactate, alanine, glycerol-3 phosphate
and isocitrate were associated with a higher risk of T2DM. After 1 year of intervention with
a controlled low-fat diet, citrate, isocitrate and malate were associated with a higher risk of
T2DM, whereas MedDiet plus EVOO tended (p = 0.071) to improve the evolution of those
T2DM risk-associated metabolites [32]. Once again, it cannot be concluded if the effect was
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related to the MedDiet or EVOO, confirming the need for new clinical trials exclusively
focusing on EVOO metabolomic modifications.

The VOO and HDL functionality (VOHF) study was an intervention trial involving
33 hypercholesterolemic subjects supplemented with 25 mL/d for 3 weeks of (1) a control
VOO with 80 ppm of phenolic compounds, (2) a phenolic-enriched VOO with 500 ppm
of phenolic compounds (mainly secoiridoids), or (3) a phenolic-rich VOO with 250 ppm
of phenolic compounds and enriched with 250 ppm of additional phenolic compounds
from thyme (mainly flavonoids). Two metabolomics analyses from the VOHF study have
been published employing NMR-targeted approaches (Table 1). One of them described
the impact of VOO consumption on the TAG-HDL profile [34]. An increase in TAG
containing MUFAs and a decrease in those containing PUFAs or SFAs were reported after
the supplementation with the control low-polyphenol olive oil and the phenolic-enriched
VOO, but not in the thyme polyphenol-enriched oil, indicating that the effect on HDL-
TAG depends on the type of phenolic compounds, i.e., secoiridoids vs. flavonoids, and
not on the VOO matrix. The assessment of the HDL lipidome is a valuable approach to
identifying and characterizing new biomarkers of HDL functionality. Although TAG is a
minor component of HDL, the observed changes in these particles drive HDL functionality
toward a cardioprotective pattern [34]. In the second VOHF work, the intervention with
the two phenol-rich VOO for 3 weeks modified metabolite excretion compared to the
low-polyphenols VOO, indicating a favorable shift in the circulating metabolic phenotype
associated with cardiometabolic diseases [35].

In 2017, a postprandial clinical trial in healthy volunteers compared plasma metabolomic
profile at baseline and 2 h after the consumption of 40 mL of EVOOs rich in oleocanthal,
a hydroxytyrosol-derived phenolic compound that has demonstrated ex vivo platelet
anti-aggregation properties [37]. The study used a GC-targeted metabolomic approach
to discriminate two different phenotypes: responders vs. non-responders to the EVOO
intervention. Responders to the anti-aggregating effect of EVOO tended to have higher
plasma concentrations of glucose and other monosaccharides and their corresponding
acids, whereas non-responder volunteers had higher circulating citric acid cycle metabo-
lites (malic, isocitric and citric acids) and non-esterified fatty acids (oleic acid). This study
demonstrated that subjects with different metabolomics profiles had different platelet
anti-aggregating responses after EVOO consumption [37].

Another randomized controlled trial in prediabetic subjects evaluated the consump-
tion of a MUFA diet based on olive oil and a control diet for 12 weeks on plasma TAG
and non-esterified fatty acids such as oleic acid, linoleic acid, palmitoleic acid, linolenic
acid, eicosapentaenoic acid, docosahexaenoic acid, palmitic acid, arachidonic acid, and
myristic acid using an LC-targeted approach. Despite the results showing that the MUFA
diet decreased liver fat and increased hepatic and total insulin sensitivity, no different
metabolites were found between groups for TAG fatty acids determined by LC-MS [30].
On the contrary, the modification of plasma TAG composition after an MUFA-rich diet has
been described previously [50]; however, it should be considered that plasma fatty acids
profile is usually determined by GC, not LC; therefore, differences in these methodologies
may have influenced these results.

The last clinical trial involved 10 healthy participants taking 80 g/d of VOO for
one month. The LC-targeted approach revealed plasma alterations in several metabolic
pathways modulated by VOO consumption, including the homeostasis of amino acids, one-
carbon metabolism, and fatty acid oxidation [33]. These authors proposed a new method
for the analysis of the exposome, defined as the cumulative measure of external agents and
associated biological responses throughout the lifespan. Using a targeted approach, they
quantified more than 1000 metabolites in urine and blood samples and identified twenty-
two plasma and two urine metabolites after VOO supplementation (Table 1). This work
validated hydroxytyrosol 3-sulfate and hydroxytyrosol 4-sulfate as biomarkers of olive oil
intake [33]. Sulfated-derived metabolites of hydroxytyrosol, which are phase-II hepatic
metabolites, have also been identified in plasma and urine after VOO intake by other
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authors [51,52]. The scientific data regarding the bioavailability of VOO polyphenols have
been reviewed previously [52,53]. These studies have indicated that VOO simple phenols,
such as hydroxytyrosol and tyrosol, are absorbed after ingestion, with efficiency from 75%
to 100% that depends on the food matrix [54], and excreted as glucuronide conjugates in a
dose-dependent manner [55]. These compounds have a significant metabolic and hepatic
transformation, beginning in enterocytes and continuing in the liver [56]. Regarding
secoiridoids, phase I of the metabolism implies the hydrolysis of their structure, producing
an increase in phenyl alcohols, and metabolic phase II consists of the conjugation with
glucuronic and sulfates [56]. VOO compounds are also biotransformed by gastrointestinal
microbiota into different phenolic metabolites [57]. In addition, an in vitro experiment in
Caco-2 cells has demonstrated the antioxidant properties of hydroxytyrosol and tyrosol-
sulfated derivatives [58], suggesting that both the components present in the olive oil and
their metabolites are responsible for the improvement of the antioxidant status after VOO
intake, and may also be involved in the beneficial anti-inflammatory, anti-hypertensive and
metabolic properties [59].

Two postprandial studies (Table 2) have concluded, using LC untargeted approaches,
that the serum metabolome profile may discriminate the intake of VOO from other edible
oils in obese [36] or healthy volunteers [38]. The first work compared the intake of four
different breakfasts (muffins) prepared with four heated oils: (1) EVOO with 400 µg/mL
of phenolic compounds, (2) sunflower oil, (3) sunflower oil enriched with 400 µg/mL of
phenolic compounds from pomace oil, and (4) sunflower oil enriched with a synthetic
antioxidant (400 µg/mL-dimethylsiloxane). It described differences in serum lipidic and
aminoacidic metabolites (Table 2), in particular an increase in oxidation-derived fatty
acids metabolites and changes in free fatty acids associated with different heated oils
ingestion [36]. The other study showed that the postprandial metabolomic response to
the consumption of various cooking fats: olive, soybean, palm, camellia oils and tallow,
was related to bile acids and salts metabolites, fatty acid metabolism, and pyrimidine
nucleosides, among others. In addition, oils with similar fatty acid composition, such as
olive oil and camellia oil, showed different physiological responses [38], indicating that
other minor compounds may influence the postprandial absorption and metabolism of oil
components and in the subsequent metabolic response in vivo.

Based on the available literature, it can be summarized that sustained consumption of
VOO affects the metabolome and modifies metabolic pathways of carbohydrates, lipids,
and amino acids. However, the employment of different metabolomic strategies involv-
ing several analytical methods and, mainly, differences in experimental designs make
it difficult to identify specific metabolites associated with the beneficial effect of VOO
supplementation.

3.2. Metabolomics Approaches in Experimental Studies

The bibliographic search yielded eight papers describing effects after the intake of
VOO or its isolated components in animal studies (Table 3) and two describing in vitro
experimental studies (Table 4). Within them, only one study identified biomarkers of
intake. In 2011, Mellert et al. [39] identified discriminating metabolites in Wistar rats
supplemented with 5 mL/kg of body weight/day of olive oil (65–85% oleic acid) at baseline
and after 7, 14 and 28 days of intervention [39]. An untargeted metabolomics approach was
employed using GC-MS and LC-MS/MS for the identification of metabolites related to lipid
metabolism that was different in males and females. Some metabolites derived from the
excess of fatty acids degradation, and others formed in the glycolysis process and used for
the TAG synthesis were up-regulated after VOO consumption, whereas phospholipids and
their degradation products were down-regulated compared with the control group [39].

Three works studied the metabolomic impact after ingestion of hydroxytyrosol as
a supplement in a rat model of metabolic syndrome using an untargeted approach and
focusing on the metabolic changes and their consequences [40–42]. In these studies, rats
were supplemented with 20 mg/kg/day of hydroxytyrosol for 8 weeks, along with a
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high-fat and carbohydrate diet, to induce metabolic syndrome. The first study demon-
strated a beneficial effect on adiposity, glucose and insulin tolerance, endothelial function,
systolic blood pressure, left ventricular fibrosis and resultant diastolic stiffness, as well
as in biomarkers of liver damage and oxidative stress compared with the control group
without hydroxytyrosol supplementation. Using an LC-targeted metabolomic approach,
the authors identified 24 plasma metabolites derived from hepatic or colonic microbiota
metabolism, which potentially may be related to hydroxytyrosol supplementation [40]. In
addition, they described that the excess of dietary fat and carbohydrates used to induce
obesity was accompanied by lower plasma levels of six of these hydroxytyrosol metabo-
lites compared with non-obese animals, which could be due to lower absorption, hepatic
transformation or tissue accumulation [40]. When comparing the effect of hydroxytyrosol
supplementation (20 mg/kg for 8 weeks) in the two obese groups of rats fed the high-
carbohydrate and fat diet, they reported differences in 31 metabolites using two different
analytical platforms: UPLC-Orbitrap and QqTOF [41]. Hydroxytyrosol supplementation
induced down-regulation of 16 metabolites involved in the fatty acid biosynthesis, mainly
unsaturated fatty acids, and in the metabolisms of linoleic acid, arachidonic acid, sph-
ingolipid and retinol, whereas the glycerolipid metabolism was the main up-regulated
metabolic pathway (Table 3). The QqTOF-based approach identified 12 endogenous metabo-
lites that were different between the control and hydroxytyrosol-treated groups: 10 were
down-regulated, and two were up-regulated. The authors studied the relation of all those
31 metabolites with metabolic syndrome consequences derived from insulin resistance,
lipolysis, prostaglandins biosynthesis, sphingolipid pathway, and hepatic disease, which
were improved after hydroxytyrosol intake. These findings contributed to the elucidation
of metabolic, cardiovascular, and hepatic benefits attributed to hydroxytyrosol and VOO
intake [41]. Other data from the same study focused on the hepatic metabolome and de-
scribed the effect of hydroxytyrosol intake on liver functions, mainly on lipid metabolism,
by the use of LC and NMR techniques [42]. The supplementation with 20 mg/kg/day
of hydroxytyrosol seems to mobilize and up-regulate different lipidic classes in plasma,
specifically branched fatty acid esters of hydroxyl-oleic acids (OAHSA), denoting a benefit
for metabolic syndrome, in agreement with other studies [60]. In addition, reduced glucose
plasma levels were also observed in hydroxytyrosol-treated rats, showing an improvement
in insulin sensitivity and, therefore, in the metabolic syndrome evolution [42].

In 2022, a study carried out in rats with metabolic syndrome induced by a high-
fructose, and high-fat diet evaluated the metabolic effect of the ad libitum consumption of
EVOO for 12 weeks, focusing on the metabolic profile and the role of gut microbiota [45].
This study used LC untargeted approaches to identify differences in metabolomic profiles
in feces and serum among different groups. They reported 12 potential biomarkers of
EVOO intake in feces, mainly glycerophospholipids, amino acids, peptides and analogs,
and fatty acids and derivatives, while six potential biomarkers were identified in serum
samples, mainly amino acids, peptides and their analogs. Amino acids play important
roles in various metabolic processes altered during obesity and related CVD, and other
studies have suggested a direct association between branched-chain and aromatic amino
acids and CVD [61,62]. The study concluded that EVOO supplementation mainly altered
amino acids, peptides and their analogs in feces and serum and associated those changes
with gut microbiota metabolic function [45].

On the other hand, Ruocco et al., 2022 [46] analyzed the plasmatic amino acid profile
related to the turnover of proteins of mice fed ad libitum a high-polyphenol EVOO diet
compared with mice fed a saturated fatty acids-rich diet for 16 weeks. They used LC untar-
geted to analyze metabolites in plasma and urine and suggested that dietary consumption
of polyphenol-enriched EVOO improves metabolic parameters and circulating biomarkers
of metabolic health, tending to decrease branched-chain and aromatic amino acids [46].
Further studies are needed to establish the effect of EVOO components on amino acid
metabolism and its implication on cardiovascular health.
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Two studies have described the effect of olive oil (69% oleic acid) intake compared to
perilla oil (56% of linolenic acid) and palm oil (78% of palmitic acid), during 8 weeks, in
Chinese mitten crabs (Eriocheir sinensis). One work reported that crab fed the olive oil
diet grew faster and had lower concentrations of hepatic glycogen, TAG, and oxidative
stress biomarkers, while metabolites related to glycolysis and the tricarboxylic acid cycle,
intermediate for valine and leucine synthesis, and intermediate for glutathione synthesis
were up-regulated compared with the perilla oil [43]. The other work described differences
when comparing olive oil vs. palm oil intake in five metabolic pathways, including alanine,
aspartate and glutamate metabolism, lysine biosynthesis and degradation metabolism,
arginine and proline metabolism, pyrimidine metabolism and propanoate metabolism [44].
These data are different from those obtained by Guasch–Ferré et al. (2020) in humans with
T2DM [32], but we think that differences in human and crab metabolisms make it difficult
to compare results.

In 2012, Fernandez–Arroyo et al. studied the antiproliferative and pro-apoptotic
activities of polyphenol-EVOO extracts on adenocarcinoma cells (HT29 and SW480) to
identify molecules responsible for these actions. Those authors incubated cells in the
presence of two different doses (0.01% and 0.1%) of 14 different EVOO extracts for 24 h.
Phenolic compounds and their metabolites were identified by an LC-targeted metabolomics
approach in the cytoplasm and culture medium in EVOO-treated cells but not in non-treated
cells. Within them, quercetin was the main compound found in the cytoplasm, followed by
oleuropein and its derivative decarboxymethyl oleuropein aglycone (DOA). In addition,
authors associated the presence of quercetin or oleuropein aglycone and its derivatives
with the antiproliferative and pro-apoptotic effect [47] (Table 4).

Finally, an In vitro study that simulated gastrointestinal digestion of reported 64 com-
pounds derived from In vitro digestion of five commercial EVOOs. A marked abundance
of flavonoids (15 compounds), followed by cholesterol and spirostanol analogs (15 com-
pounds), was described by an untargeted metabolomics approach using UHPLC-QTOF;
10 compounds were confirmed as the most discriminant compounds during the In vitro
gastrointestinal digestion process [48] (Table 4). Another In vitro study simulating the gas-
trointestinal digestion of phenolic alcohols hydroxytyrosol and tyrosol during a constant
24 h colonic metabolism described metabolites formed during the stomach and small intes-
tine digestion that impact their availability and metabolic fate. In addition, they reported
that the colon microbiota degrades in a similar way, both tyrosol and hydroxytyrosol [63].

It is worth mentioning that metabolomic analyses, especially those targeted approaches
in which the validation and quantification of specific metabolites are carried out, can be
a useful additional tool for supporting health claims since they can predict health risks
or evaluate dietary intake [21]. The increasing scientific evidence relating to functional
ingredients and their health effect might also be interesting for stakeholders and food
companies, which could benefit from the added value attributed to their products by
the presence of the ingredient responsible for the claimed bioactivity [64]. The EFSA’s
health claim criteria for functional foods require information about the substance (bioactive
compound), the study of the physiological effects, and the estimation of the cause-effect
relationship. In this last step, one of the main problems is that many of the studies use
biomarkers that are not significantly reliable by the Agency. In this regard, the use of
metabolomics could play an important role. However, taking into consideration that
nutrimetabolomics is still a young science under development and that more standardized
and well/designed studies are necessary [65], we are still far from the implementation of
metabolomics as a routinary tool for health claims support. Therefore, at this moment,
available data cannot support olive oil EFSA health claims.

4. Conclusions

The present review highlights the need for clinical studies necessary to understand
the molecular and metabolic mechanisms of action of VOO components. Although
metabolomics studies derived from the consumption of VOO and their metabolic routes
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are scarce, it has been shown that the intake of VOO causes an increase in derivatives of
hydroxytyrosol oleuropein and oleic acid, such as phosphatide derivatives, which may
be used as markers of VOO consumption. In addition, studies have identified possible
metabolic pathways related to glycolysis, the tricarboxylic acid cycle, and amino acids
metabolism that are modulated by VOO intake and, therefore, may be implicated in the
benefits of this healthy oil. However, differences in analytical strategies, the heterogeneity
of the experimental designs and interventions, the use of different oils and doses, the
bioavailability of VOO bioactive compounds into different matrixes, and the fact that many
of the studies carried out in humans evaluate the effect of VOO in the frame of Mediter-
ranean diet, do not allow us to reach specific conclusions on particular metabolites and
metabolic pathways affected by VOO intake.
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