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ABSTRACT

RNA-sequencing has become one of the most
used high-throughput approaches to gain knowledge
about the expression of all different RNA subpopula-
tions. However, technical artifacts, either introduced
during library preparation and/or data analysis, can
influence the detected RNA expression levels. A crit-
ical step, especially in large and low input datasets
or studies, is data normalization, which aims at elim-
inating the variability in data that is not related to bi-
ology. Many normalization methods have been devel-
oped, each of them relying on different assumptions,
making the selection of the appropriate normaliza-
tion strategy key to preserve biological information.
To address this, we developed NormSeq, a free web-
server tool to systematically assess the performance
of normalization methods in a given dataset. A key
feature of NormSeq is the implementation of informa-
tion gain to guide the selection of the best normaliza-
tion method, which is crucial to eliminate or at least
reduce non-biological variability. Altogether, Norm-
Seq provides an easy-to-use platform to explore dif-
ferent aspects of gene expression data with a spe-
cial focus on data normalization to help researchers,
even without bioinformatics expertise, to obtain reli-
able biological inference from their data. NormSeq is
freely available at: https://arn.ugr.es/normSeq.
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The continuous improvement of RNA sequencing (RNA-
seq) methodologies (1-3), together with the reduction in se-
quencing costs, has resulted in a significant rise in both the
number of RNA-seq studies as well as the size of biologi-
cal datasets. This opened up new possibilities for RNA dis-
covery and profiling, along with in-depth studies of genes
behaviour under different biological and pathological con-
ditions (4).

Although high-throughput RNA sequencing offers valu-
able insights into disease biology, it can also be subjected
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to various non-biological technical biases, which can result
in differences in sequencing depth (5,6), or GC-content (7),
among others. Consequently, an essential step during RNA-
seq data analysis is the selection of an appropriate normal-
ization strategy to remove unwanted variation caused by
technical artefacts. The application of the correct normal-
ization method is crucial to recover biological signal, i.e. the
truly differentially expressed genes, while avoiding incorrect
biological inference further downstream of the analysis.

Initially, intra-sample ‘normalization by library size’
methods (8,9), like Reads per Kilobase per Million
(RPKM), Fragments per Kilobase per Million (FPKM) or
Counts per Million (CPM), were frequently applied, while
nowadays, cross-sample distribution based methods such as
Trimmed mean of M values (TMM), quantile normaliza-
tion (QN), Relative log expression (RLE/DEseq) or Me-
dian Ratio Normalization (MRN) are usually employed.
This latter group of methods seeks to determine a scaling
factor that is applied to the raw read counts, correcting for
sequencing depth and stabilising variation between samples
(10). Yet, another set of methods relies on the existence of
control genes (5) (spike-ins, housekeeping genes) and were
initially developed to correct for batch effects, i.e. varia-
tion that is introduced when samples are processed and se-
quenced in separate batches.

It is important to realise that all methods rely on cer-
tain assumptions that need to be met, otherwise the num-
ber of false positive and negative differentially expressed
(DE) genes will increase. Key assumptions for distribution-
based methods are that only a few DE genes exist and tech-
nical artefacts affect DE and non-DE genes in the same
way (11). Over the last years considerable efforts have been
made to compare the performance of the different normal-
ization methods (11-13) and to select the most appropriate
normalization for each situation (14,15). Strong differences
do exist in the performance of the methods depending on
the experimental design and the studied biological condi-
tions (see Table 2 from Evans et al. (11)), which determine
whether the underlying assumptions are met or not. How-
ever, in practice it is not easy to infer the best normalization
strategy directly from a given experimental design. Differ-
ent tools exist that combine several normalization methods
and downstream analysis, such as GENAVi (16). However,
to our best knowledge, there is no user-friendly tool avail-
able dedicated to the assessment of normalization methods
for RNA-seq datasets and the evaluation of its impact on
downstream analysis.

To this end, we developed NormSeq, a freely accessible
webserver tool that is dedicated to the evaluation and di-
rect comparison of the most commonly used data normal-
ization methods for any user-supplied RNA-seq expression
dataset. The goal of NormSeq is to systematically compare
normalization approaches and guide the user towards the
best normalization method, i.e. the one that correctly recov-
ers biological signal. We implemented the use of the infor-
mation gain metric to guide the selection of the most appro-
priate normalization method and RLE plots for a visual in-
spection of the normalization results. Moreover, NormSeq
includes the possibility of performing batch-effect correc-
tion, as well as multiple downstream analyses, such as con-
sensus differential gene expression, multiple visualizations
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Table 1.  Description of the normalization methods implemented in
NormSeq

Normalization

method Description Reference

Counts per CPM normalization corrects for Dillies, Brief

million (CPM) library size without considering Bioinfor, 2013 (9)

transcript length. Each read
count is divided by the total
read count, followed by
multiplying by 1 000 000
Upper quartile  All genes with a read
(UQ) count of 0 are removed,
followed by a division of the
remaining gene counts by the
upper quartile
Median normalization adjusts
the data of each individual
sample by adding a constant
value to achieve the same
median value across all samples
The TMM method estimates

Bullard, Bioinfor,
2010 (8)

Median (Med) Dillies, Brief

Bioinfor, 2013 (9)

Trimmed mean Robinson, Genome

of M values scale factors for comparing Biol, 2010 (6)
(TMM) libraries on a relative scale
Quantile (QN)  Quantile normalization applies Bolstad ez al.,
a mathematical transformation  Bioinfor, 2003 (10)
to the rank statistics across
samples
Remove RUVs estimates the factors of  Risso et al., Nat
unwanted unwanted variation using Biotech, 2014 (5)

variation (RUVs) replicate samples
Relative log For each gene, the RLE scaling Anders, Genome
expression (RLE) factor is computed as the Biol, 2010 (22)
median of the ratio of the read
counts by taking the geometric
mean across all samples

and the download of all the information available on the
webserver.
NormSeq is available at: https://arn.ugr.es/normSeq.

WORKFLOW AND SCOPE

Different experimental conditions and designs call for dif-
ferent normalization methods (11). NormSeq’s main aim
is to provide researchers with an easy-accessible and sys-
tematic approach towards RNA-seq data normalization.
To this end, a side-by-side evaluation is implemented for
the most commonly used normalization methods: Counts
Per Million (CPM), Upper Quantile (UQ), Median (Med),
Trimmed mean of M values (TMM), Quantile (QN), Rela-
tive Log Expression (RLE) and Remove Unwanted Vari-
ation in its RUVs version (see Table 1 for more details).
One of NormSeq’s main innovations is the implementa-
tion of the information gain distribution analysis, in or-
der to select the best normalization method for each given
dataset. Additionally, to visually inspect the outcome of
the different normalization methods, we have included RLE
plots, that can give hints on the amount of unwanted vari-
ation removed with each of them. The general workflow
of NormSeq (Figure 1A) includes the normalization of
the user-provided RNA-seq counts, information gain per
RNA distribution assessment and finally a large subset of
downstream analysis, such as clustering analysis, PCA and
DE-analysis.
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Figure 1. NormSeq’s workflow and implementation. (A) Workflow of NormSeq. User-provided RNA-seq counts are used for data normalization. NormSeq
provides eight different options for data normalization, four differential expression analysis protocols, and optional batch effect correction. Assessment
based on the information gain distribution guides selection of the best normalization method that helps obtain the most reliable biological inference from
the data. (B) Information gain distribution of seven out of eight of the normalization methods available in NormSeq applied to the miRNA sequencing
dataset SRP326090 (32). The comparison of healthy individuals and cancer patients with active Hodgkin Lymphoma is shown, where 4 methods (CPM,
TMM, QN and RLE) outperformed the others in terms of information gain. (C) Hierarchical clustering analysis of the miRNA seq data in healthy
individuals and cancer patients with active disease. Data is normalized by upper quartile (left) and quantile (right), showing that quantile normalization
clusters better represent the two biological conditions. (D) Upset plot showing the intersection of differentially expressed miRNAs detected with edgeR,
DESeq2, NOISeq and a Student’s 7-test. (E) Boxplot visualization of the top 10 highest fold change miRNAs between healthy individuals and cancer

patients.

NORMSEQ INPUT AND TOOLS OVERVIEW
Data input and normalization method selection

The normalization analysis starts with user-provided
datasets that are required to be presented as raw count ta-
bles. Users can supply the count matrix by directly upload-
ing a file in zxt, ¢csv, tsv or xls formats or by providinga URL
link to the file in one of those formats. A matched annota-
tion file is mandatory to initiate the normalization analysis
on the webserver, and users have the possibility to provide
an additional batch-effect annotation file. Several parame-
ters can be adjusted to personalize the normalization analy-
sis. This includes the selection of a minimum read coverage,

the choice for computational batch effect correction, and
differential expression analysis related parameters. A sepa-
rate job will be created for each normalization analysis with
a URL that will remain active for 15 days.

Information gain, RNA expression distributions and RLE
plots

A unique feature of NormSeq is the possibility to select the
most optimal normalization method for a given dataset by
means of the information gain (also called mutual informa-
tion), an information theory method (17) (Figure 1B). In
essence, the information gain quantifies the degree of mu-
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tual dependence of two continuous variables by the reduc-
tion in impurity or randomness for each RNA based on its
expression levels across all samples, while considering the
biological groups to which they belong. Information gain
has been described as a well-suited statistical metric for this
purpose based on several qualities. First, it is capable to de-
tect any kind of relationship between datasets, regardless
if it involves the mean values, the variance or higher mo-
ments. Secondly, it has a straightforward interpretation, as
it is expressed as a value between 0 (highest impurity, lowest
information gain) and 1 (lowest impurity, highest informa-
tion gain), where higher values of information gain would
represent a clear dependence between the levels of expres-
sion of a given RNA and the biological groups. And finally,
it 1s insensitive to the dataset size, which differs from other
statistical tests that are depending on the size of datasets to
a much larger extent for the evaluation of statistical signifi-
cance, even for poorly related variables.

The challenge in computing information gain in RNA-
seq datasets resides mainly in the fact that the underlying
probability distribution of the data is not known, and the
continuous normalized data needs to be transformed from
a continuous scale to a discrete probability distribution.
Different methods exists to do this transformation. Among
them, we selected the ‘Nearest Neighbour’ transformation
that has been described as optimal for this type of experi-
mental design (17,18).

NormSeq offers the information gain distribution for all
chosen normalization methods in two formats: for each
pair-wise group comparison and for each individual group.
For pair-wise group comparisons (Figure 1B), a normaliza-
tion method with a higher information gain would better
recover the biological signal for that particular comparison.
On the other hand, when considering information gain dis-
tribution per group, a higher information gain distribution
would indicate that the differences of that group compared
to all other groups are more apparent using that specific
method.

Besides the information gain analysis, the RNA expres-
sion distribution is shown (Figure 2C). This is a reflection
of the expression levels of the different RNAs in each sam-
ple. Distributions between groups need to be comparable in
order to increase the probability of correct biological infer-
ences for further downstream analysis. Therefore, normal-
ization methods that lead to very dissimilar distributions for
the different samples would potentially not be suitable as
the detected differences could be due to technical biases.

Finally, NormSeq offers RLE plot visualization, which is
included to assess and estimate the unwanted variation re-
moval of each method. All together, these tools assist users
in the selection of the most optimal normalization method
for downstream analysis of their particular dataset.

Visualization: heatmap, PCA, top expressed RNAs and per
feature plots

NormSeq offers a multitude of visualization options that
can be personalized and downloaded. The visualization
section of the NormSeq webserver is divided into three
sections. Hierarchical clustering analyses are incorporated
for side-by-side visualization of similarities between sam-

Nucleic Acids Research, 2023, Vol. 51, Web Server issue W375

ples for each chosen normalization method (Figure 1C).
Principal component analysis (PCA) is implemented for
the exploration of each normalization method chosen in a
low-dimensional state. Furthermore, comprehensive down-
stream analysis of RNA expression is facilitated by plots
showing the individual RNA expression levels per normal-
ization method, as well as plots representing the top 10
most expressed RNAs, and the RNAs with the highest fold
changes (FC) per comparison.

Batch effect correction

Batch effect correction using the ComBat-Seq tool (19) is
offered in the NormSeq environment. Users can upload
a matrix containing the potential batch effects for correc-
tion of the data. The differences of clustering metrics in the
dataset before and after the batch effect correction are vi-
sualized in a PCA plot. Subsequently, the batch-effect cor-
rected matrix is used for the normalization assessment.

Differential expression analysis

Differential expression (DE) analysis is one of the most
commonly used applications of RNA-seq data analysis (20).
NormSeq implements 4 methods to detect differentially ex-
pressed RNAs: edgeR (21), DESeq2 (22,23), NOISeq (24)
and a Student’s #-test. We provide a summary with under-,
and over-expressed RNAs for each DE protocol. The con-
sensus differential expression between all methods is calcu-
lated and can be visualized with Upset plots (Figure 1D).
Additionally, results for each DE method can be accessed
individually or in summary, and a visualization of the top
10 differentially expressed genes is included (Figure 1E).

WORKING EXAMPLE

To illustrate the usefulness of our normalization tool,
we analyzed a publicly available tRNA sequencing
dataset, accession number GSE141436 from the NCBI
Gene Expression Omnibus (GEO) repository (25). In
this study, the authors developed a tRNA sequencing
method, QuantM-tRNA seq, which was extensively
validated by hybridization-based approaches, and simul-
taneously compared to other tRNA sequencing methods.
As hybridization-based approaches are often used to
confirm tRNA expression data, we first examined the
correlation between the hybridization-based tRNA array
quantification and the different normalizations of the
tRNA sequencing data. We compared all normalization
methods available in NormSeq, and we used the calculated
information gain to guide the selection of normalization.
Besides the CPM normalization that was used in the orig-
inal study, the information gain evaluation of NormSeq’s
normalization approaches applied to QuantM-tRNA seq
data, showed that all approaches performed similarly
(Figure 2A; top panel). The similar performance of these
normalization methods was also reflected by the subse-
quent analyses that showed a strong correlation between
the normalized QuantM-tRNA seq data and the tRNA
array-based quantification data for all tested normalization
methods (Pearson correlation r: 0.75; Figure 2A, bottom
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Figure 2. NormSeq can guide users in selecting the most appropriate normalization method for every dataset. (A) (top panel) Notched boxplot of informa-
tion gain results for NormSeq’s normalization methods (no normalization (NN), counts per million (CPM), upper quartile (UQ), median (Med), trimmed
mean of M values (TMM), quartile (QN) and relative log expression (RLE)) applied to count tables from QuantM-tRNA seq data in HEK293T cells.
(bottom panel) Pearson correlation of CPM and Med normalized read counts QuantM-tRNA seq data versus tRNA array quantification. (B) (top panel)
Notched boxplot of information gain results for NormSeq’s normalization methods (no normalization, CPM, UQ, Med, TMM, QN and RLE) applied
to count tables from Hydro-tRNAseq data in HEK293T cells. (bottom panel) Pearson correlation of CPM and median normalized Hydro-tRNAseq data
versus tRNA array quantification. (C) RNA expression distribution for CPM (top panel) and Med (bottom panel) normalization. Data are represented
as logjo values on the x-axis. (D) Notched boxplot of information gain results for NormSeq’s normalization methods (no normalization, CPM, UQ,
Med, TMM, QN, RUVs and RLE) applied to count tables from QuantM-tRNA seq data in CNS tissues. (E) Bar graph showing the information gain
for brain-enriched tRNA genes tRNA-Ile-TAT-2-1;2-2;2-3 (left panel) and tRNA-Ala-AGC-3-1 (right panel). (F) Box plot showing the comparison of
CPM, TMM, and QN normalization for tRNA-Ile-TAT-2-1;2-2;2-3 expression in CNS, tibia, heart and liver tissues from the QuantM-tRNA seq dataset.
(G) Box plot showing the comparison of CPM, TMM and QN normalization for tRNA-Ala-AGC-3-1 expression in CNS, tibia, heart, and liver tissues
from the QuantM-tRNA seq dataset.

panels). However, when we evaluated the information gain the array intensities (Figure 2B; bottom panels). While
distribution of data from the same dataset, but obtained CPM normalization still showed comparable correlation
with an alternative protocol, hydro-tRNA seq (26), our re- with the tRNA array quantification (Pearson correlation
sults revealed that the information gain levels distributions r: 0.38; Figure 2B, bottom left), the Median method
were not similar for all normalizations (Figure 2B, top performed poorly (Pearson correlation »: 0.21; Figure 2B,
panel). Interestingly, this was supported by the different bottom right). These results were further supported by the
correlations of all considered normalization methods with global differences that were observed in tRNA expression
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distributions across the different groups in the analysis, as
shown in Figure 2C, confirming that not all normalization
methods are always appropriate for each study. Intrigued
by these results, we aimed to further explore if the infor-
mation gain could also guide the choice of normalization
for the assessment of tRNA abundance with biological
relevance. Therefore, we analyzed the tRNA expression
profiles of 21 samples from seven different mouse tissues
(central nervous system (CNS), liver, tibia and heart), from
the same study. Information gain per tRNA isodecoder
distribution was evaluated for each normalization method
in all tissues. In this example, the quantile normalization
seemed to outperform the other normalization methods
according to its higher information gain distribution
(Figure 2D). Whereas the tissue-restricted expression of
the brain-specific tRNA-Arg-TCT-4-1 (25,27) was readily
detected in the CNS samples following all normalization
strategies (Supplementary Figure 1), the impact of the data
chosen normalization method became apparent for the less
extreme changes in tRNA expression. For this purpose,
we assessed the expression of two additional, previously
described, brain-enriched tRNA genes, tRNA-Ile-TAT-
2-1;2-2;2-3 (28) and tRNA-Ala-AGC-3-1 (25,28). The
information gain distribution of quantile (QN) normaliza-
tion was the highest for tRNA-Ile-TAT-2-1;2-2;2-3, while
TMM was shown to be close to 0 (Figure 2E; left panel). In
contrast, tRNA-Ala-AGC-3-1 showed comparable perfor-
mance for all normalizations, with a marginal increase for
the UQ, Med and RUVs methods (Figure 2E; right panel).
The evaluation of normalization performance using the
information gain, was confirmed by the fact that TMM
normalization, as well as CPM to a lesser extent, could
not differentiate tRNA-Ile-TAT-2-1;2-2;2-3 expression
between all tissues (Figure 2F). On the other hand, quantile
normalization preserved the biological signal and success-
fully detected enrichment of tRNA-Ile-TAT-2-1;2-2;2-3
in the CNS samples (Figure 2F). Lastly, the brain-specific
tRNA-Ala-AGC-3-1 could be readily detected by all
selected methods, as predicted by the similar information
gains (Figure 2G).

Taken together, the panel of tools provided by NormSeq
to evaluate normalization methods clearly indicated that
each normalization method perform differently for every
dataset. As the performance of each normalization method
heavily depends on the sequencing protocol, the design of
the study, as well as the biological circumstances, the Norm-
Seq application can guide the user in effortlessly selecting
the most appropriate normalization method to better cap-
ture meaningful expression profiles of RNAs of interest.

IMPLEMENTATION DETAILS

NormSeq website was implemented using a Django frame-
work, together with Bootstrap and Javascript. Information
gain is calculated by means of mutual_info_classif function
from Scikit-learn python package (29). PCA plots are com-
puted with the Scikit-learn package with a previous scale
step with the MinMax function from the same package. The
plotly package (30), and the R package pheatmap (31) were
used for data visualization in order to improve the interac-
tivity of the web application.
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CONCLUSION AND OUTLOOK

In this manuscript we introduce NormSeq, a web server that
provides users a guided normalization selection for high-
dimensional and complex RNA-seq datasets. The main goal
of NormSeq was to create an analytic and user-friendly
platform that simplifies RNA-seq data normalization and
differential expression analysis. To the best of our knowl-
edge, NormSeq is the first web server that offers logical and
stepwise navigation through seven different options for data
normalization, four differential expression analysis proto-
cols, information gain calculation and optional batch ef-
fect correction for the analysis of high-throughput RNA-
seq data.

Future improvements will include incorporation of ad-
ditional normalization methods and visualization options,
as well as the inclusion of an optional stand-alone version
of the NormSeq tool. Finally, we also plan to extend our
NormSeq webserver towards the application of data gen-
erated with different high-throughput profiling platforms
such as single cell RNA-sequencing.

DATA AVAILABILITY

NormSeq is freely available for all users at: https://arn.
ugr.es/normSeq/ and the source code is available at https:
/Igithub.com/cris12gm/normSeq.

SUPPLEMENTARY DATA
Supplementary Data are available at NAR Online.
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