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ABSTRACT 

RNA-sequencing has become one of the most
used high-throughput approaches to gain knowledge
about the expression of all different RNA subpopula-
tions. Ho we ver, technical artifacts, either introduced
during library preparation and / or data analysis, can
influence the detected RNA expression levels. A crit-
ical step, especially in large and low input datasets
or studies, is data normalization, which aims at elim-
inating the variability in data that is not related to bi-
ology. Many normalization methods have been devel-
oped, each of them relying on different assumptions,
making the selection of the appropriate normaliza-
tion strategy key to preserve biological information.
To address this, we developed NormSeq, a free web-
server tool to systematically assess the performance
of normalization methods in a given dataset. A key
feature of NormSeq is the implementation of informa-
tion gain to guide the selection of the best normaliza-
tion method, which is crucial to eliminate or at least
reduce non-biological variability. Altogether, Norm-
Seq pr o vides an easy-to-use platf orm to explore dif-
ferent aspects of gene expression data with a spe-
cial focus on data normalization to help researchers,
even without bioinformatics expertise, to obtain reli-
able biological inference from their data. NormSeq is
freel y a vailable at: https:// arn.ugr.es/ normSeq . 
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GRAPHICAL ABSTRACT 

INTRODUCTION 

The continuous improvement of RNA sequencing (RNA-
seq) methodolo gies ( 1–3 ), to gether with the reduction in se-
quencing costs, has resulted in a significant rise in both the
number of RNA-seq studies as well as the size of biologi-
cal datasets. This opened up new possibilities for RNA dis-
covery and profiling, along with in-depth studies of genes
behaviour under different biological and pathological con-
ditions ( 4 ). 

Although high-throughput RNA sequencing offers valu-
able insights into disease biology, it can also be subjected
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Table 1. Description of the normalization methods implemented in 
NormSeq 

Normalization 
method Description Reference 

Counts per 
million (CPM) 

CPM normalization corrects for 
library size without considering 
transcript length. Each read 
count is divided by the total 
read count, followed by 
m ultipl ying by 1 000 000 

Dillies, Brief 
Bioinfor, 2013 ( 9 ) 

Upper quartile 
(UQ) 

All genes with a read 
count of 0 are removed, 
followed by a division of the 
remaining gene counts by the 
upper quartile 

Bullard, Bioinfor, 
2010 ( 8 ) 

Median (Med) Median normalization adjusts 
the data of each individual 
sample by adding a constant 
value to achie v e the same 
median value across all samples 

Dillies, Brief 
Bioinfor, 2013 ( 9 ) 

Trimmed mean 
of M values 
(TMM) 

The TMM method estimates 
scale factors for comparing 
libraries on a relati v e scale 

Robinson, Genome 
Biol, 2010 ( 6 ) 

Quantile (QN) Quantile normalization applies 
a ma thema tical transforma tion 
to the rank statistics across 
samples 

Bolstad et al. , 
Bioinfor, 2003 ( 10 ) 

Remove 
unwanted 
variation (RUVs) 

RUVs estimates the factors of 
unwanted variation using 
replicate samples 

Risso et al. , Nat 
Biotech, 2014 ( 5 ) 

Relati v e log 
expression (RLE) 

For each gene, the RLE scaling 
factor is computed as the 
median of the ratio of the read 
counts by taking the geometric 
mean across all samples 

Anders, Genome 
Biol, 2010 ( 22 ) 
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o various non-biological technical biases, which can result 
n differences in sequencing depth ( 5 , 6 ), or GC-content ( 7 ),
mong others. Consequently, an essential step during RNA- 
eq data analysis is the selection of an appropriate normal- 
za tion stra tegy to remove unwanted varia tion caused by 

echnical artefacts. The application of the correct normal- 
zation method is crucial to recover biological signal, i.e. the 
rul y differentiall y expressed genes, w hile avoiding incorrect 
iological inference further downstream of the analysis. 
Initially, intra-sample ‘normalization by library size’ 
ethods ( 8 , 9 ), like Reads per Kilobase per Million 

RPKM), Fragments per Kilobase per Million (FPKM) or 
ounts per Million (CPM), wer e fr equentl y a pplied, w hile
owadays, cross-sample distribution based methods such as 
rimmed mean of M values (TMM), quantile normaliza- 
ion (QN), Relati v e log e xpression (RLE / DEseq) or Me-
ian Ratio Normalization (MRN) are usually employed. 
his latter group of methods seeks to determine a scaling 

actor that is applied to the raw read counts, correcting for 
equencing depth and stabilising variation between samples 
 10 ). Yet, another set of methods relies on the existence of 
ontrol genes ( 5 ) (spik e-ins, housek eeping genes) and were 
nitially de v eloped to correct for ba tch ef fects, i.e. varia- 
ion that is introduced when samples are processed and se- 
uenced in separate batches. 
It is important to realise that all methods rely on cer- 

ain assumptions that need to be met, otherwise the num- 
er of false positi v e and negati v e differentially e xpressed 

DE) genes will increase. Key assumptions for distribution- 
ased methods are that only a few DE genes exist and tech- 
ical artefacts affect DE and non-DE genes in the same 
ay ( 11 ). Over the last years considerable efforts have been 

ade to compare the performance of the different normal- 
zation methods ( 11–13 ) and to select the most appropriate 
ormalization for each situation ( 14 , 15 ). Strong differences 
o exist in the performance of the methods depending on 

he experimental design and the studied biological condi- 
ions (see Table 2 from Evans et al. ( 11 )), which determine 
hether the underlying assumptions are met or not. How- 
 v er, in practice it is not easy to infer the best normalization
trategy directly from a gi v en e xperimental design. Differ- 
nt tools exist that combine se v eral normalization methods 
nd downstream analysis, such as GENAV i ( 16 ). Ho we v er,
o our best knowledge, there is no user-friendly tool avail- 
ble dedicated to the assessment of normalization methods 
or RNA-seq datasets and the evaluation of its impact on 

ownstream analysis. 
To this end, we de v eloped NormSeq, a freely accessible 
 e bserver tool that is dedicated to the evaluation and di- 

ect comparison of the most commonly used data normal- 
zation methods for any user-supplied RNA-seq expression 

ataset. The goal of NormSeq is to systematically compare 
ormalization approaches and guide the user towards the 
est normalization method, i.e. the one that corr ectly r ecov- 
rs biological signal. We implemented the use of the infor- 
ation gain metric to guide the selection of the most appro- 

ria te normaliza tion method and RLE plots for a visual in- 
pection of the normalization r esults. Mor eover, NormSeq 

ncludes the possibility of performing ba tch-ef fect correc- 
ion, as well as multiple downstream analyses, such as con- 
ensus differential gene expression, multiple visualizations 
nd the download of all the information available on the 
 e bserver. 
NormSeq is available at: https://arn.ugr.es/normSeq . 

ORKFLOW AND SCOPE 

ifferent experimental conditions and designs call for dif- 
erent normalization methods ( 11 ). NormSeq’s main aim 

s to provide r esear chers with an easy-accessible and sys- 
ematic approach towards RNA-seq data normalization. 
o this end, a side-by-side evaluation is implemented for 
he most commonly used normalization methods: Counts 
er Million (CPM), Upper Quantile (UQ), Median (Med), 
rimmed mean of M values (TMM), Quantile (QN), Rela- 
i v e Log Expression (RLE) and Remove Unwanted Vari- 
tion in its RUVs version (see Table 1 for more details). 
ne of NormSeq’s main innovations is the implementa- 

ion of the information gain distribution analysis, in or- 
er to select the best normalization method for each gi v en 

ataset. Additionall y, to visuall y inspect the outcome of 
he dif ferent normaliza tion methods, we have included RLE 

lots, that can gi v e hints on the amount of unwanted vari- 
tion removed with each of them. The general workflow 

f NormSeq (Figure 1 A) includes the normalization of 
he user-provided RNA-seq counts, information gain per 
NA distribution assessment and finally a large subset of 
ownstream analysis, such as clustering analysis, PCA and 

E-analysis. 

https://arn.ugr.es/normSeq
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Figure 1. NormSeq’s workflow and implementation. ( A ) Workflow of NormSeq. User-provided RNA-seq counts are used for data nor malization. Nor mSeq 
provides eight different options for data normalization, four differential expression analysis protocols, and optional ba tch ef fect correction. Assessment 
based on the information gain distribution guides selection of the best normalization method that helps obtain the most reliable biological inference from 

the da ta. ( B ) Informa tion gain distribution of se v en out of eight of the normalization methods available in NormSeq applied to the miRNA sequencing 
dataset SRP326090 ( 32 ). The comparison of healthy individuals and cancer patients with acti v e Hodgkin Lymphoma is shown, where 4 methods (CPM, 
TMM, QN and RLE) outperformed the others in terms of information gain. ( C ) Hierarchical clustering analysis of the miRNA seq data in healthy 
individuals and cancer patients with active disease. Data is normalized by upper quartile (left) and quantile (right), showing that quantile normalization 
clusters better r epr esent the two biological conditions. ( D ) Upset plot showing the intersection of differentially expressed miRNAs detected with edgeR, 
DESeq2, NOISeq and a Student’s t -test. ( E ) Boxplot visualization of the top 10 highest fold change miRNAs between healthy individuals and cancer 
patients. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/article/51/W

1/W
372/7175338 by U

niversidad de G
ranada - H

istoria de las C
iencias user on 11 July 2023
NORMSEQ INPUT AND TOOLS O VER VIEW 

Data input and normalization method selection 

The normalization analysis starts with user-provided
da tasets tha t ar e r equir ed to be pr esented as raw count ta-
bles. Users can supply the count matrix by directly upload-
ing a file in txt , csv , tsv or xls formats or by providing a URL
link to the file in one of those forma ts. A ma tched annota-
tion file is mandatory to initiate the normalization analysis
on the w e bserv er, and users hav e the possibility to provide
an additional ba tch-ef fect annota tion file. Se v er al par ame-
ters can be adjusted to personalize the normalization analy-
sis. This includes the selection of a minimum read coverage,
the choice for computational batch effect correction, and
differ ential expr ession analysis r elated parameters. A sepa-
rate job will be created for each normalization analysis with
a URL that will remain acti v e for 15 days. 

Information gain, RN A e xpression distributions and RLE
plots 

A unique feature of NormSeq is the possibility to select the
most optimal normalization method for a gi v en dataset by
means of the information gain (also called mutual informa-
tion), an information theory method ( 17 ) (Figure 1 B). In
essence, the information gain quantifies the degree of mu-

art/gkad429_f1.eps
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ual dependence of two continuous variables by the reduc- 
ion in impurity or randomness for each RNA based on its 
 xpression le v els across all samples, while considering the 
iological groups to which they belong. Information gain 

as been described as a well-suited statistical metric for this 
urpose based on se v eral qualities. First, it is capab le to de-
ect any kind of relationship between datasets, regardless 
f it involves the mean values, the variance or higher mo- 

ents. Secondly, it has a straightforward interpretation, as 
t is expressed as a value between 0 (highest impurity, lowest 
nformation gain) and 1 (lowest impurity, highest informa- 
ion gain), where higher values of information gain would 

 epr esent a clear dependence between the le v els of expres-
ion of a gi v en RNA and the biological groups. And finally, 
t is insensiti v e to the dataset size, which differs from other 
tatistical tests that are depending on the size of datasets to 

 much larger extent for the evaluation of statistical signifi- 
ance, e v en for poorly related variab les. 

The challenge in computing information gain in RNA- 
eq datasets resides mainly in the fact that the underlying 

robability distribution of the data is not known, and the 
ontinuous normalized data needs to be transformed from 

 continuous scale to a discrete probability distribution. 
ifferent methods exists to do this transformation. Among 

hem, we selected the ‘Nearest Neighbour’ transformation 

hat has been described as optimal for this type of experi- 
ental design ( 17 , 18 ). 
NormSeq offers the information gain distribution for all 

hosen normalization methods in two f ormats: f or each 

air-wise group comparison and for each individual group. 
or pair-wise group comparisons (Figure 1 B), a normaliza- 

ion method with a higher information gain would better 
ecover the biological signal for that particular comparison. 
n the other hand, when considering information gain dis- 

ribution per group, a higher information gain distribution 

ould indicate that the differences of that group compared 

o all other groups ar e mor e appar ent using that specific 
ethod. 
Besides the information gain anal ysis, the RN A expres- 

ion distribution is shown (Figure 2 C). This is a reflection 

f the expression levels of the different RNAs in each sam- 
le. Distributions between groups need to be comparable in 

rder to increase the probability of correct biological infer- 
nces for further downstream analysis. Therefore, normal- 
zation methods that lead to very dissimilar distributions for 
he different samples would potentially not be suitable as 
he detected differences could be due to technical biases. 

Finally, NormSeq offers RLE plot visualization, which is 
ncluded to assess and estimate the unwanted variation re- 

oval of each method. All together, these tools assist users 
n the selection of the most optimal normalization method 

or downstream analysis of their particular dataset. 

isualization: heatmap, PCA, top expressed RNAs and per 
eature plots 

ormSeq offers a multitude of visualization options that 
an be personalized and downloaded. The visualization 

ection of the NormSeq w e bserver is divided into three 
ections. Hierarchical clustering analyses are incorporated 

or side-by-side visualization of similarities between sam- 
les for each chosen normalization method (Figure 1 C). 
rincipal component analysis (PCA) is implemented for 

he exploration of each normalization method chosen in a 

ow-dimensional state. Furthermor e, compr ehensi v e down- 
tream analysis of RNA expression is facilitated by plots 
howing the individual RNA expression levels per normal- 
zation method, as well as plots r epr esenting the top 10 

ost expressed RNAs, and the RNAs with the highest fold 

hanges (FC) per comparison. 

atch effect correction 

a tch ef fect correction using the ComBa t-Seq tool ( 19 ) is
ffered in the NormSeq environment. Users can upload 

 matrix containing the potential batch effects for correc- 
ion of the data. The differences of clustering metrics in the 
ataset before and after the batch effect correction are vi- 
ualized in a PCA plot. Subsequently, the ba tch-ef fect cor- 
ected matrix is used for the normalization assessment. 

iffer ential expr ession analysis 

iffer ential expr ession (DE) analysis is one of the most 
ommonly used applications of RNA-seq data analysis ( 20 ). 
ormSeq implements 4 methods to detect differentially ex- 

ressed RNAs: edgeR ( 21 ), DESeq2 ( 22 , 23 ), NOISeq ( 24 )
nd a Student’s t -test. We provide a summary with under-, 
nd ov er-e xpressed RNAs for each DE protocol. The con- 
ensus differ ential expr ession between all methods is calcu- 
ated and can be visualized with Upset plots (Figure 1 D). 
dditionally, results for each DE method can be accessed 

ndividually or in summary, and a visualization of the top 

0 differentially expressed genes is included (Figure 1 E). 

ORKING EXAMPLE 

o illustrate the usefulness of our normalization tool, 
e analyzed a publicly available tRNA sequencing 

ataset, accession number GSE141436 from the NCBI 
ene Expression Omnibus (GEO) repository ( 25 ). In 

his study, the authors de v eloped a tRNA sequencing 

ethod, QuantM-tRNA seq, which was e xtensi v ely 

 alidated b y hybridization-based a pproaches, and sim ul- 
aneously compared to other tRNA sequencing methods. 
s hybridization-based approaches are often used to 

onfirm tRNA expression data, we first examined the 
orrelation between the hybridization-based tRNA array 

uantification and the different normalizations of the 
RNA sequencing data. We compared all normalization 

ethods available in NormSeq, and we used the calculated 

nformation gain to guide the selection of normalization. 
esides the CPM normalization that was used in the orig- 

nal study, the information gain evaluation of NormSeq’s 
ormalization a pproaches a pplied to QuantM-tRN A seq 

a ta, showed tha t all a pproaches performed similarl y 

Figure 2 A; top panel). The similar performance of these 
ormalization methods was also reflected by the subse- 
uent analyses that showed a strong correlation between 

he normalized QuantM-tRNA seq data and the tRNA 

rray-based quantifica tion da ta for all tested normaliza tion 

ethods (Pearson correlation r : 0.75; Figure 2 A, bottom 
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Figure 2. NormSeq can guide users in selecting the most appropriate normalization method for e v ery dataset. ( A ) (top panel) Notched boxplot of informa- 
tion gain results for NormSeq’s normalization methods (no normalization (NN), counts per million (CPM), upper quartile (UQ), median (Med), trimmed 
mean of M values (TMM), quartile (QN) and relati v e log expression (RLE)) applied to count tables from QuantM-tRNA seq data in HEK293T cells. 
(bottom panel) Pearson correlation of CPM and Med normalized read counts QuantM-tRNA seq data versus tRNA array quantification. ( B ) (top panel) 
Notched boxplot of information gain results for Nor mSeq’s nor malization methods (no normalization, CPM, UQ, Med, TMM, QN and RLE) applied 
to count tables from Hydro-tRNAseq data in HEK293T cells. (bottom panel) Pearson correlation of CPM and median normalized Hydro-tRNAseq data 
versus tRNA array quantification. ( C ) RNA expression distribution for CPM (top panel) and Med (bottom panel) normaliza tion. Da ta are represented 
as log 10 values on the x-axis. ( D ) Notched boxplot of information gain results for Nor mSeq’s nor malization methods (no normalization, CPM, UQ, 
Med, TMM, QN, RUVs and RLE) applied to count tables from QuantM-tRNA seq data in CNS tissues. ( E ) Bar graph showing the information gain 
for brain-enriched tRNA genes tRNA-Ile-TAT-2–1;2–2;2–3 (left panel) and tRNA-Ala-AGC-3–1 (right panel). ( F ) Box plot showing the comparison of 
CPM, TMM, and QN normalization for tRNA-Ile-TAT-2–1;2–2;2–3 expression in CNS, tibia, heart and li v er tissues from the QuantM-tRNA seq dataset. 
( G ) Box plot showing the comparison of CPM, TMM and QN normalization for tRNA-Ala-AGC-3–1 expression in CNS, tibia, heart, and li v er tissues 
from the QuantM-tRNA seq dataset. 
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panels). Howe v er, when we evaluated the information gain

distribution of data from the same dataset, but obtained
with an alternati v e pr otocol, hydr o-tRNA seq ( 26 ), our re-
sults re v ealed tha t the informa tion gain le v els distributions
were not similar for all normalizations (Figure 2 B, top
panel). Interestingly, this was supported by the different
correlations of all considered normalization methods with
the array intensities (Figure 2 B; bottom panels). While
CPM normalization still showed comparable correlation
with the tRNA array quantification (Pearson correlation
r: 0.38; Figure 2 B, bottom left), the Median method
performed poorly (Pearson correlation r : 0.21; Figure 2 B,
bottom right). These results were further supported by the
global dif ferences tha t were observ ed in tRNA e xpression

art/gkad429_f2.eps
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istributions across the different groups in the analysis, as 
hown in Figure 2 C, confirming that not all normalization 

ethods are always appropriate for each study. Intrigued 

y these results, we aimed to further explore if the infor- 
ation gain could also guide the choice of normalization 

or the assessment of tRNA abundance with biological 
 elevance. Ther efor e, we analyzed the tRNA expression 

rofiles of 21 samples from se v en different mouse tissues 
central nervous system (CNS), li v er, tibia and heart), from 

he same stud y. Informa tion gain per tRNA isodecoder 
istribution was evaluated for each normalization method 

n all tissues. In this example, the quantile normalization 

eemed to outperform the other normalization methods 
ccording to its higher information gain distribution 

Figur e 2 D). Wher eas the tissue-r estricted expr ession of 
he brain-specific tRNA-Arg-TCT-4–1 ( 25 , 27 ) was readily 

etected in the CNS samples following all normalization 

trategies (Supplementary Figure 1 ), the impact of the data 

hosen normalization method became apparent for the less 
xtreme changes in tRNA expression. For this purpose, 
e assessed the expression of two additional, previously 

escribed, brain-enriched tRNA genes, tRNA-Ile-TAT- 
–1;2–2;2–3 ( 28 ) and tRNA-Ala-AGC-3–1 ( 25 , 28 ). The 
nformation gain distribution of quantile (QN) normaliza- 
ion was the highest for tRN A-Ile-TAT-2–1;2–2;2–3, w hile 
MM was shown to be close to 0 (Figure 2 E; left panel). In
ontrast, tRNA-Ala-AGC-3–1 showed comparable perfor- 
ance for all normalizations, with a marginal increase for 

he UQ, Med and RUVs methods (Figure 2 E; right panel). 
he evaluation of nor malization perfor mance using the 

nformation gain, was confirmed by the fact that TMM 

ormalization, as well as CPM to a lesser extent, could 

ot dif ferentia te tRNA-Ile-TAT-2–1;2–2;2–3 expression 

etween all tissues (Figure 2 F). On the other hand, quantile 
ormalization preserved the biological signal and success- 
ully detected enrichment of tRNA-Ile-TAT-2–1;2–2;2–3 

n the CNS samples (Figure 2 F). Lastly, the brain-specific 
RNA-Ala-AGC-3–1 could be readily detected by all 
elected methods, as predicted by the similar information 

ains (Figure 2 G). 
Taken together, the panel of tools provided by NormSeq 

o evalua te normaliza tion methods clearly indica ted tha t 
ach normalization method perform differently for e v ery 

ataset. As the performance of each normalization method 

eavily depends on the sequencing protocol, the design of 
he study, as well as the biological circumstances, the Norm- 
eq application can guide the user in effortlessly selecting 

he most appropriate normalization method to better cap- 
ure meaningful expression profiles of RNAs of interest. 

MPLEMENT A TION DET AILS 

ormSeq w e bsite was implemented using a Django frame- 
ork, together with Bootstrap and Javascript. Information 

ain is calculated by means of mutual info classi f function 

rom Scikit-learn python package ( 29 ). PCA plots are com- 
uted with the Scikit-learn package with a previous scale 
tep with the MinMax function from the same package. The 
lotly package ( 30 ), and the R package pheatmap ( 31 ) were
sed for data visualization in order to improve the interac- 
ivity of the w e b application. 
ONCLUSION AND OUTLOOK 

n this manuscript we introduce NormSeq, a w e b server that 
rovides users a guided normalization selection for high- 
imensional and complex RNA-seq datasets. The main goal 
f NormSeq was to create an analytic and user-friendly 

la tform tha t simplifies RNA-seq da ta normaliza tion and 

iffer ential expr ession analysis. To the best of our knowl- 
dge, NormSeq is the first w e b server that offers logical and 

tepwise navigation through se v en different options for data 

ormaliza tion, four dif fer ential expr ession analysis proto- 
ols, informa tion gain calcula tion and optional ba tch ef- 
ect correction for the analysis of high-throughput RNA- 
eq data. 

Future improvements will include incorporation of ad- 
itional normalization methods and visualization options, 
s well as the inclusion of an optional stand-alone version 

f the NormSeq tool. Finally, we also plan to extend our 
ormSeq w e bserv er towar ds the applica tion of da ta gen-

ra ted with dif ferent high-thr oughput pr ofiling platforms 
uch as single cell RNA-sequencing. 

A T A A V AILABILITY 

ormSeq is freely available for all users at: https://arn. 
gr.es/normSeq/ and the source code is available at https: 

/github.com/cris12gm/normSeq . 

UPPLEMENT ARY DA T A 

upplementary Data are available at NAR Online. 
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