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a b s t r a c t

We present a stability result for T -periodic solutions of the periodic predator–prey
Lotka–Volterra model. In 2021, R. Ortega gave a stability criteria in terms of the
L1 norm of the coefficients of a planar linear system associated to the model.
Previously, in 1994, Z. Amine and R. Ortega proved another stability criteria
formulated in terms of the L∞ norm. The present work gives a Lp criterion,
building a bridge between the two previous results.
© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

In this work we consider the periodic predator–prey Lotka–Volterra model:{
u̇ = u(a(t) − b(t)u− c(t)v),
v̇ = v(d(t) + e(t)u− f(t)v) (1)

ith u ≥ 0, v ≥ 0. All the coefficients are T -periodic, a, d ∈ Lp(TT ), p ∈ [1,∞], and b, c, e and f are positive
unctions in C(TT ), where we denote the quotient set R/TZ as TT . This model is a classical non-autonomous
odel for predator–prey interaction studied by many authors (see [1] and the references therein). In [1]

he authors study the existence of coexistence states and in particular prove that if one among the trivial
nd semi-trivial states is linear stable then it attracts all the solutions with positive initial conditions. As
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an immediate consequence, for the existence of a coexistence state it is necessary that the trivial and the
possible semi-trivial states are linearly unstable. In the same paper the authors prove that this is also a
sufficient condition.

Assuming the existence of a coexistence state, to know if it is stable or not is an important problem. In [2]
and in [3] the authors addressed this question and gave conditions for the existence of one stable coexistence
state.

The stability of the coexistence state was obtained using a homotopy from a non-autonomous linear
system to an autonomous one. In both results plays an important role to prove the non-existence of
2T -periodic solutions for a linear system of the form{

ẋ1 = −a11(t)x1 − a12(t)x2,
ẋ2 = a21(t)x1 − a22(t)x2,

(2)

here the aij are non negative. In order to guarantee this nonexistence, in [2] a condition which implies

T∥a12∥1/2
L∞(TT ) ∥a21∥1/2

L∞(TT ) + 1
2∥a11 − a22∥L1(TT ) ≤ π, (3)

s given while in [3] the analogous expression

∥a12∥1/2
L1(TT ) ∥a21∥1/2

L1(TT ) + 1
2∥a11 − a22∥L1(TT ) ≤ 2, (4)

ut concerning the L1(0, T ) norms, was obtained.
The main purpose of our paper is to extend these results allowing to use other Lp norms, see Proposi-

ion 2.1 below. With this result we connect the results in [2,3]. We also give an example of a case in which
he results in [2] and in [3] do not apply but ours does with p = 2. Finally, as in the previous papers, we
ive conditions for the local asymptotic stability of a coexistence state of (1).

. Planar linear system: Lp stability result

Our aim is to give a Lp stability condition for the system{
ẋ1 = −a11(t)x1 − a12(t)x2,
ẋ2 = a21(t)x1 − a22(t)x2,

(5)

here the coefficients aij belong to Lp(TT ) with p ∈ [1,∞] and satisfy

a11 ≥ 0, a22 ≥ 0 and a12(t) ≥ δ, a21(t) ≥ δ a.e t ∈ R, (6)

or some δ > 0 where aij = 1
T

∫ T
0 aij(t)dt.

In order to do that we are going to give conditions which guarantee the nonexistence of 2T -periodic
olutions for this linear system in the next Proposition.

roposition 2.1. The system (5) has no 2T -periodic solutions except x ≡ 0 if the periodic coefficients aij
atisfy (with 1/p + 1/q = 1):

T 1/q∥a12∥1/2
Lp(TT ) ∥a21∥1/2

Lp(TT ) + 1
2∥a11 − a22∥L1(TT ) ≤ J (q)

22−1/q , (7)

where
J (q) =

∫ 2π

0

dθ(
|cos θ|2q + |sin θ|2q

)1/q , q ∈ [1,∞[ and J (∞) := lim
q→+∞

J (q).
2
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Proof. We make a change of variables to the elliptic-polar coordinates with a weight µ > 0 that will be
etermined later:

x1 = √
µr cos θ, x2 = 1

√
µ
r sin θ.

hen the equation of motion for the variable θ is,

θ̇ = µa21(t) cos2 θ + 1
µ
a12(t) sin2 θ + (a11(t) − a22(t)) cos θ sin θ. (8)

rom (8), we can write

θ̇ ≤
⟨(

µa21(t), 1
µ
a12(t)

)
,
(
cos2 θ, sin2 θ

)⟩
+ |a11(t) − a22(t)|

⟨(
1
2 ,

1
2

)
,
(
cos2 θ, sin2 θ

)⟩
. (9)

irst, let us consider p ∈]1,∞[. By the Hölder inequality in R2, we have

θ̇ ≤

((
(µa21(t))p +

(
1
µ
a12(t)

)p )1/p

+ |a11(t) − a22(t)|
(

2
2p

)1/p
)(

|cos θ|2q + |sin θ|2q
)1/q

. (10)

Let us integrate on an interval I ∈ R where a solution of (5) is well defined,∫
θ(I)

dθ(
|cos θ|2q + |sin θ|2q

)1/q ≤
∫
I

(
(µa21(t))p +

(
1
µ
a12(t)

)p )1/p

dt + 2
1−p

p

∫
I

|a11(t) − a22(t)| dt.

ow, by the Hölder inequality in L-spaces norms , we have∫
θ(I)

dθ(
|cos θ|2q + |sin θ|2q

)1/q ≤ |I|1/q
(∫

I

(µa21(t))p dt+
∫
I

(
1
µ
a12(t)

)p
dt
)1/p

+ 2
1−p

p

∫
I

|a11(t) − a22(t)| dt.

Let us assume that exists a non-trivial 2T -periodic solution of (5) (x1(t), x2(t)). We claim that every
on-trivial solution of (8) crosses the axes in a counter-clockwise sense. Intuitively, if the coefficients a12(t)
nd a21(t) are continuous and we consider small neighborhoods of the axes, the angular evolution is always
ositive since the sign in the right hand side of Eq. (8) is positive. In [3] the author gives a proof for
oefficients in L1(TT ). Therefore we have in the angular variable θ(t + 2T ) = θ(t) + 2πk, being k a non-
egative integer. Take k = 0 and let us consider that the solution (x1(t), x2(t)) cross an axis. Due to the
eriodicity it cannot cross the axis in a clockwise sense to came back. We conclude that the solution must

ie in an open quadrant, and we have two possibilities, either x1(t) · x2(t) > 0 or x1(t) · x2(t) < 0 for t ∈ R.
n the first case we divide the first equation in (5) by x1 and integrate over a 2T -period to get a11 < 0, in
ontradiction with (6). The second case has an analog treatment considering the second equation. See [3]
or more details.

For k ≥ 1, integrating from 0 to 2T ,

kJ (q) < (2T )1/q

(∫ 2T

0
(µa21(t))p dt+

∫ 2T

0

(
1
µ
a12(t)

)p
dt
)1/p

+ 2
1−p

p

∫ 2T

0
|a11(t) − a22(t)| dt.

Additionally, we have dropped the equal sign since the equality in (9) only occurs when θ = π/4 ±πk. Now,
efining µp :=

(∫ T

0
a12(t)pdt/

∫ T

0
a21(t)pdt

)1/2
, we arrive to a contradiction with the hypothesis (7) in the more

estrictive case associated with k = 1.

Concerning the limiting cases, we can found a proof for the case p = 1 in [3] and for p = ∞ in [2]. □

3
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In the next proposition we give a result which, together to the fact that J (1) = 2π, allows us to conclude
that (7) connects the results in [2,3].

Proposition 2.2. We have that limq→+∞ J (q) = 8.

Proof. Let us study the limit of the integrand of J (q):

f(θ; q) =
(

|cos θ|2q + |sin θ|2q
)−1/q

. (11)

It is useful to write the function in two different ways

f(θ; q) = cos−2 θ
(

1 + |tan θ|2q
)−1/q

= sin−2 θ
(

1 + |cot θ|2q
)−1/q

.

For θ ∈ [−π/4, π/4] ∪ [3π/4, 5π/4] we have that

lim
q→∞

f(θ; q) = lim
q→∞

cos−2 θ
(

1 + |tan θ|2q
)−1/q

= cos−2 θ. (12)

Indeed, for θ ∈ [−π/4, π/4] ∪ [3π/4, 5π/4],

2−1/q ≤
(
1 + tan2 θ

)−1/q ≤
(

1 + |tan θ|2q
)−1/q

≤ 1,

where we have used that tan2 θ ≤ 1 and q ≥ 1 and the result follows. Analogously, for θ ∈ [π/4, 3π/4] ∪
[5π/4, 7π/4], we have that

lim
q→∞

f(θ; q) = lim
q→∞

sin−2 θ
(

1 + |cot θ|2q
)−1/q

= sin−2 θ. (13)

Now, by Lebesgue’s dominated convergence theorem,

lim
q→∞

∫ 2π

0
f(θ; q)dθ =

∫ π/4

−π/4
cos−2 θ dθ + · · · +

∫ 7π/4

5π/4
sin−2 θ dθ = 2 + · · · + 2 = 8. □

From this convergence of J (q) we recover the condition in [3] for p = 1,

∥a12∥1/2
L1(TT ) ∥a21∥1/2

L1(TT ) + 1
2∥a11 − a22∥L1(TT ) ≤ 2. (14)

dditionally, we can check numerically that J (q) ∈ [2π, 8] for q ∈ [1,∞].

emark 2.1. In the Hill’s equation

ẍ+ α(t)x = 0, α(t) > 0 a.e t ∈ R, (15)

ur criterion becomes
∥α∥Lp(TT ) ≤

(
J (q)

22−1/q

)2 1
T 1+1/q := BT (q). (16)

he classical stability criterion due to Lyapunov (see [4] or [3]) follows for q = ∞. Additionally, if q = 1, we
ecover the condition in Lemma 4.4 of [2]. In [5], Zhang and Li extended the Lyapunov stability criterion
sing Lp norms, as follows

∥α∥Lp(T ) < KT (2q) if 1 < p ≤ ∞, and ∥α∥ 1 < KT (∞) = 4
, if p = 1. (17)
T L (TT ) T
4
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Fig. 1. Comparison of the Sobolev constant K(2q) (in red) with the upper bound B(q) (in blue). On the left, for q ∈ [1, 10]; on the
right, asymptotic behavior for large q, note that K(q) and B(q) tend to 4 according to the classical Lyapunov criterion.

Here, KT (q) is the Sobolev constant defined as the optimal constant for the following inequality

KT (q)∥u∥2
Lq(TT ) ≤ ∥u̇∥2

L2(TT ),

where u is any function in the Sobolev space H1
0 [0, T ]. This Sobolev constant is given by

KT (q) =

⎧⎨⎩ 2π
q

(
2

2+q

)1−2/q
(

Γ( 1
q )

Γ( 1
2 + 1

q )

)2
1

T1+2/q , if 1 ≤ q < ∞,

4
T , if q = ∞.

(18)

is the usual Gamma function (see [6] for the proof). The upper bounds in (17) are best possible in the
ense that for any ε > 0, there is some α such that

∥α∥Lp(TT ) < KT (2q) + ε,

hile (15) is unstable. In Fig. 1 we compare numerically B(q) := T 1+2/qBT (q) with K(q) := T 1+2/qKT (q).
t seems that our bound is not the best possible for the Hill’s equation since B(q) < K(2q) for 1 < q < ∞.
n the cases q = 1 and q = ∞ both are equal.

We are willing to get our stability result as in [3], that is, using a homotopy argument. We consider the
amily of continuous matrices {Aλ} as

Aλ(t) = (1 − λ)A(t) + λA

here A(t) is the coefficient matrix of the system (5) whose elements satisfy (6), the elements of the matrix
A are the average of aij and the matrix Aλ(t) is the coefficient matrix of the associated system in the plane

ẋ = Aλ(t)x. (19)

e have that ∀λ ∈ [0, 1],

a11(·, λ) ≥ 0, a22(·, λ) ≥ 0 and a12(t, λ) ≥ δ, a21(t, λ) ≥ δ a.e t ∈ R. (20)

he continuous matrices A0, A1 will be called homotopic if the family of systems (19) is continuous on
∈ [0, 1] and has no 2T -periodic solutions excepting x ≡ 0. The continuity of {Aλ} means that for each

lement aij(t, λ) of Aλ and λ ∈ [0, 1], limh→0 ∥aij(t, λ+ h) − aij(t, λ)∥L1(TT ) = 0. It is important to note
hat requirement of non-existence of 2T -periodic solutions is crucial to guarantee the stability properties of
he family of systems (19) along the whole homotopy.

The following lemma establishes that A(t) and A can be connected by the homotopy A (t).
λ

5
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Lemma 2.1. Assume (7), then A0 = A(t) and A1 = A are homotopic.

roof. The family of systems (19) satisfies the criterion (7) of the previous section. The case λ = 0 is
mmediate. The case λ = 1, easily follows when p = ∞ and for p ∈ [1,∞[ is a consequence of the Hölder
nequality as

∥aij∥Lp(TT ) ≤ T 1/p−1∥aij∥L1(TT ) ≤ T 1/p−1T 1/q∥aij∥Lp(TT ) = ∥aij∥Lp(TT ).

he remaining details of the proof are easy to check. □

Finally, following the lines of the proof of Lemma 2.1 in [3] we obtain our main theorem, taking into
ccount that the system of constant coefficients ẋ = Ax is stable as we assume (6). The key idea of this proof
s the relation between the eigenvalues of the monodromy matrix X(T ) associated to the periodic system
5) and the non-existence of 2T -periodic solutions. It can be shown that the system (5) is asymptotically
table if and only if the trace of X(T ) satisfies

|trX(T )| < 1 + e−(a11+a22)T .

If |trX(T )| = 1 + e−(a11+a22)T , the system (5) has a non-trivial 2T -periodic solution since in that case
here is a real characteristic multiplier with absolute value equal to one. The homotopy between A0 = A(t)
nd A1 = A applied to ∆(λ) := trX(T, λ), λ ∈ [0, 1] concludes the proof. The example 1.2 in [7] also helps to
nderstand this relation between the stability properties of a periodic system and the trace of the associated
onodromy matrix.

heorem 2.1. Assume (7), then the system (5) is stable. Moreover, it is asymptotically stable if a11+a22 > 0.

.1. An example

In the following example we ask if there are coefficients aij(t) such that for some p ∈]1,∞[ and some
> 0 condition (7) is satisfied but the conditions (3) or (4) are not fulfilled.

xample 2.1. Let us consider a12(t) = 1+δ+sin
( 2πt
T

)
, a21(t) = 1+δ+cos

( 2πt
T

)
and p = 2. Also we assume

hat a11(t) = a11( 2πt
T ) and a22(t) = a22( 2πt

T ) and both are in L1(TT ). Then D(T ) := 1
2 ∥a11 − a22∥L1(TT ) is

linear function, D(T ) = α(a11, a22)T with α ≥ 0. The conditions to fulfill become⎧⎪⎨⎪⎩
f(T ) :=

[
(1 + δ)2 + 1

2
]1/2

T + α(a11, a22)T − J (2)
23/2 ≤ 0,

(
J (2)
23/2 ≈ 2, 622

)
g(T ) := (1 + δ)T + α(a11, a22)T − 2 > 0,
h(T ) := (2 + δ)T + α(a11, a22)T − π > 0.

(21)

et us observe that the slope K of these linear functions is always positive and Kh > Kf > Kg. This
guarantees that the functions intersect each other. Analyzing the ordering of the zeros and the cross-points
of the previous functions with respect to the parameters δ and α, we can prove that there exists non-empty
sets of possible values of T where the three previous conditions hold simultaneously. The zeros are given by
the equations:

Tf =
J (2)
23/2[

(1 + δ)2 + 1
2
]1/2 + α

, Tg = 2
1 + δ + α

, Th = π

2 + δ + α
,

nd we want that T > T and T > T , simultaneously. We can check that
f g f h

6
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(i) Since δ > 0 and α ≥ 0, there are no restrictions to satisfy Tf > Tg.
(ii) Tf > Th holds if ψ(δ) := J (2)

23/2 (2 + δ) − π
[
(1 + δ)2 + 1

2
]1/2

>
(
π − J (2)

23/2

)
α ≥ 0. It is easy to find a set

of the form D = {(α, δ) : α ∈ [0, α∗[, δ ∈]δ1(α), δ2(α)[⊂]0, δ+[}, in which this inequality holds.
Here, α∗ = ψ(δmax)

π− J (2)
23/2

≈ 2.692, δmax ≈ 0, 07145 and δ+ ≈ 3, 729 is the positive root of ψ(δ).

(iii) On the other hand, Th > Tg ⇒ α > 4−π
π−2 ≈ 0.752 and Tg > Th ⇒ α < 4−π

π−2 , δ ∈]0, δ3(α)[⊂]0, 4−π
π−2 [.

Consequently, it exists non-empty intervals of possible periods where the conditions (21) are satisfied
imultaneously:

T ∈]Th, Tf [ if α ∈] 4 − π

π − 2 , α∗[, δ ∈]δ1(α), δ2(α)[⊂]0, δ+[; T ∈]Tg, Tf [ if α ∈ [0,
4 − π

π − 2 [, δ ∈]0, δ3(α)[⊂]0,
4 − π

π − 2 [.

. Stability result in the predator–prey Lotka–Volterra model

Let us consider once again (1) and assume that (u(t), v(t)) is a coexistence state. In [1] the authors give
ufficient and necessary conditions for the existence of such solutions of the system (1). The following theorem
ives an additional condition in Lp spaces to guarantee the uniqueness and the asymptotic stability of the
-periodic solution (coexistence state). Additionally, we give some estimates on the Lp norm of this solution
u(t), v(t)) in terms of the coefficients of system (1).

heorem 3.1. Assume that all possible coexistence states satisfy

T 1/q
√

∥eu∥Lp(TT )∥cv∥Lp(TT ) + T

2 ∥bu− fv∥L1(TT ) ≤ J (q)
22−1/q , (22)

here p and q are conjugate indices and p, q ∈ [1,∞]. Then the T -periodic solution (u(t), v(t)) is unique and
symptotically stable. In addition, for p ∈ [1,∞[ we have the following upper bounds of this solution:

∥u∥Lp(TT ) <
∥a∥Lp(TT )

bL
, ∥v∥Lp(TT ) <

∥d∥Lp(TT ) + eM
∥a∥Lp(TT )

bL

fL
. (23)

here φL := mint∈[0,T ] φ(t) and φM := maxt∈[0,T ] φ(t) for a T -periodic function, φ(t).

roof. The result of existence and uniqueness follows as [3] using the theorem of the previous section.
Concerning the estimates, let us multiply the first equation of system (1) by up−2 and the second one by

p−2. After integrating both equations over a period T and using the T -periodicity of (u(t), v(t)) together
ith the following inequality for f, g ∈ Lp(TT ), p ∈ [1,∞[, ∥fp−1g∥L1(TT ) ≤ ∥f∥p−1

Lp(TT )∥g∥Lp(TT ), we get:

bL ∥u∥pLp(TT ) + ∥c up−1v∥L1(TT ) ≤ ∥a∥Lp(TT )∥u∥p−1
Lp(TT ) =⇒ ∥u∥Lp(TT ) <

∥a∥Lp(TT )

bL
,

or the first equation and

fL ∥v∥p
Lp(TT ) ≤ ∥(d + e u) vp−1∥L1(TT ) ≤ ∥(d + e u)∥Lp(TT ) ∥v∥p−1

Lp(TT ) =⇒ ∥v∥Lp(TT ) <
∥d∥Lp(TT ) + eM

∥a∥Lp(TT )
bL

fL

or the second one. □

Remark 3.1. By the previous proof, we conclude that the previous theorem holds if (22) is verified for all
u and v such that

∥u∥Lp(TT ) <
∥a∥Lp(TT )

bL
, ∥v∥Lp(TT ) <

∥d∥Lp(TT ) + eM
∥a∥Lp(TT )

bL

fL
.

7
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