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i

“[A] counterfeit coin in the hands of a beggar [. . . ] Might it not multiply into
real coins? Could it not also lead him to prison? A tavern keeper, a baker,
for example, was perhaps going to have him arrested as a counterfeiter
or for passing counterfeit money. The counterfeit coin could just as well,
perhaps, be the germ of several days’ wealth for a poor little speculator.
And so my fancy went its course, lending wings to my friend’s mind and
drawing all possible deductions from all possible hypotheses.”

— Charles Baudelaire, Counterfeit Money
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Abstract

The emergence of distributed ledger technologies, specifically blockchain, has revolu-
tionized the ways individuals interact with one another by enabling a “trust-less trust”
through the use of peer-to-peer networks, cryptography, and consensus algorithms.
This technology eliminates the need for intermediaries and provides secure and trans-
parent means of conducting transactions. However, despite the growing popularity of
crypto assets and their associated economy “Tokenomics,” the public still has a limited
understanding of such a technology, and much of the discourse surrounding it remains
speculative.

The primary objective of this thesis is to investigate the fundamental principles of
cryptocurrencies (cryptos) and non-fungible tokens (NFTs) and establish a correlation
between the technology and its impact on the economy from a statistical and economic
perspective. To achieve this objective, Chapters 2 and 3 delve into the influence of
blockchain technology on the economic and functional performance of cryptos, using
econometric models and clustering techniques.

Chapter 3 introduces an empirical framework that provides an insight for coin creators
and investors into the interplay between cryptonomics and blockchain functionality,
as well as market dynamics. We demonstrate that the economic performance of
cryptocurrencies can be affected by the design of their underlying blockchain technology,
with Ethereum as an example. By applying a Beta-t-EGARCH model with long-run and
short-run volatility components, a more clear resolution is obtained for the identification
of the casual relationships between volatility and other variables.

Chapter 4 examines the partial correlations of Bitcoin returns across nine different cen-
tralized exchanges from a high-frequency dynamic network perspective. The proposed
Multivariate Heterogeneous AutoRegression for Crypto Markets (MHAR-CM) provides
reasonable covariance estimates that consider the peculiarities of crypto markets. The
chapter uncovers the presence of spillover risk and counterparty risk among these
exchanges and develops a portfolio considering partial correlations.

In Chapter 5, a hedonic regression approach is used to construct the DAI digital art
index for the NFT art market. We emphasize the leveling of outliers’ impact with a
one-step robust regression Huberization and dynamic conditional score model (DCS).
The DAI index allows us to cultivate comprehension and observe the macro trend of
this brand-new art market.
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This thesis connects emerging technologies and the economy through statistical mod-
eling and analysis. By providing empirical evidence, we can observe how blockchain
technology is transforming our perception of money, art, and various other industries.
Essentially, to navigate the uncertainties and disruptions brought on by this transfor-
mation, it is imperative to have a thorough comprehension of the nature and scope of
the changes.

Keywords: Tokenomics, blockchain technology, crypto assets, index construction, econo-
metrics, network analysis.



Zusammenfassung

Das Aufkommen der Distributed-Ledger-Technologien, insbesondere der Blockchain,
hat die Art und Weise, wie Menschen miteinander interagieren, revolutioniert, indem es
durch den Einsatz von Peer-to-Peer-Netzwerken, Kryptografie und Konsensalgorithmen
„trustless trut“ ermöglicht. Diese Technologie macht Zwischenhändler überflüssig und
bietet ein sicheres und transparentes Mittel zur Durchführung von Transaktionen.
Trotz der zunehmenden Beliebtheit von Krypto-Assets und den damit verbundenen
„Tokenomics“ hat die Öffentlichkeit immer noch kein umfangreiches Wissen über die
Funktionsweisen dieser Technologie, und ein Großteil des Diskurses bleibt spekulativ.

Das Hauptziel dieser Arbeit ist, die grundlegenden Prinzipien von Krytowährungen
(Cryptos) und Non-Fungible Tokens (NFTs) zu untersuchen sowie eine Korrelation
zwischen der Technologie und ihren Auswirkungen auf die Wirtschaft aus statistischer
und wirtschaftlicher Sicht herzustellen. Um dieses Ziel zu erreichen, wird in den Kapiteln
2 und 3 der Einfluss der Blockchain-Technologie auf Ökonomie und Funktionsweise
von Kryptowährungen anhand ökonometrischer Modelle und Clustering-Techniken
untersucht.

Kapitel 3 untersucht Kryptowirschaft und Blockchain-Funktionalität anhand em-
pirischer Methoden, insbesondere für Coincreatoren und Investoren. Wir zeigen am
Beispiel von Ethereum, dass die wirtschaftliche Leistung von Kryptowährungen durch
die Gestaltung der ihnen zugrunde liegenden Blockchain-Technologie beeinflusst werden
kann. Durch die Anwendung eines Beta-t-EGARCH-Modells mit langfristigen und
kurzfristigen Volatilitätskomponenten wird eine klare Lösung für die Identifizierung
der kausalen Beziehungen zwischen der Volatilität und anderen Variablen erzielt.

Kapitel 4 untersucht die partiellen Korrelationen von Bitcoin-Renditen über neun
verschiedene Zentralbörsen aus der Perspektive eines hochfrequenten, dynamischen
Netzwerks. Die vorgeschlagene Multivariate Heterogeneous AutoRegression for Crypto
Markets(MHAR-CM) liefert Kovarianzschätzungen, die die Besonderheiten der Kryp-
tomärkte berücksichtigen. Das Kapitel zeigt Spillover- und Third-Party-Risiken zwis-
chen diesen Börsen und entwickelt ein Portfolio unter Berücksichtigung partieller
Korrelationen.

Kapitel 5 verwendet eine Hedonische Bewertungsmethode, um den DAI Digital Art
Index basierend auf dem NFT-Kunstmarkt zu konstruieren. Ein besonderer Fokus
liegt auf der Nivellierung der Auswirkungen von Ausreißern mit einer einstufigen ro-
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busten Regressions-Huberisierung (one-step robust regression Huberization) und einem
dynamic conditional score model (DCS). Der DAI-Index ermöglicht ein besseres Ver-
ständnis für diesen neuen Kunstmarkt und die Beobachtung seiner makroökonomischen
Entwicklungen.

Diese Arbeit verbindet neue Technologien und Wirtschaft durch statistische Mod-
ellierung und Analyse. Durch die Bereitstellung empirischer Belege können wir
beobachten, wie Blockchain-Technologie unsere Wahrnehmung von Geld, Kunst und
verschiedenen anderen Branchen verändert. Um die Unsicherheiten und Störungen,
die dieser Wandel mit sich bringt, zu bewältigen, ist es unerlässlich, die Art und den
Umfang der Veränderungen genau zu verstehen.

Schlagwörter: Tokenomics, Blockchain-Technologie, Krypto-Assets, Indexkonstruktion,
Ökonometrie, Netzwerkanalyse.
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Chapter 1

Introduction

Through the development of distributed ledger technologies (DLTs) – i.e. blockchain
technology, we have been witnessing a tremendous burst of creative potential that
has catalyzed exceptional levels of innovation. The inception of Ethereum (ETH) has
sparked a groundbreaking shift in the application of blockchain technology, surpassing
the boundaries of progress that had been achieved since the emergence of Bitcoin
(BTC), especially with its advanced smart contract capabilities. This technology has
introduced a new form of trust across a wide range of services, paving the way for a
new era in the digital economy, Tokenomics, which has reformed and transformed the
way we approach transactions and exchange of value. Originating in financial markets
with cryptocurrencies (cryptos) and non-fungible tokens (NFTs), this technology has
extended its reach to encompass supply chains, consumer and business-to-business
services, as well as publicly held registers, leading to a greater degree of transparency
and accountability. Although our economy is undergoing an unprecedented revolution,
there is still a prevailing sense of hype and optimism. The thesis embarks on an
exploration of the fundamentals of cryptos and NFTs, with the aim of establishing a
connection between the technology and the impact on its economy, while also providing
a statistical and economic perspective on this revolutionary development.

Chapter 2 delves into the relationship between the underlying blockchain mechanism
of cryptos and their distributional characteristics of time series. In addition to price,
we place particular emphasis on utilizing actual block size and block time as the
key operational features of cryptocurrencies. We leverage a range of distributional
characteristics, such as Fourier power spectrum, moments, quantiles, global optima,
and measures of long-term dependencies, risk, and noise to summarize information
from crypto time series. With the hypothesis that blockchain structure explains
the distributional characteristics of cryptos, we employ characteristic-based spectral
clustering to group selected cryptos into five distinct clusters. Scrutinizing these clusters
reveals that they share similar mechanisms, including fork origin, difficulty adjustment
frequency, and block size nature. The findings provide crypto creators and users with
a more in-depth understanding of the connection between blockchain protocol design
and the distributional characteristics of cryptos.

Building on the previous chapter, Chapter 3 studies the relationship between blockchain
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2 CHAPTER 1. INTRODUCTION

technology and the economic performance of cryptocurrencies, with a focus on Ethereum
as a case study. Since its inception in Nakamoto, 2008, crypto conjures a new form of
medium of exchange. However, the unregulated nature of the cryptocurrency market
has made it difficult to transition from hype to hope in comparison to traditional money
markets. To address this issue, this chapter proposes an empirical framework consisting
of 33 time series factors divided into three major components: functional characteristics,
market dynamics, and economic attributes – based on Abadi and Brunnermeier, 2018;
Buterin, 2021. We examine the definition and evolution of each factor and use Ethereum
as an example to investigate the causal relationship between these factors. We visualize
the causal dynamics using a Granger causal network and utilize Beta-t-EGARCH
(Harvey, 2013) to analyze the long-run and short-run volatility components of the
causal dynamics. Our analysis shows that functional characteristics often serve as the
root cause of economic attributes, and the large holders of ETH, known as ETH whales,
may potentially benefit from the current inequality in distribution and significantly
impact its economic attributes.

Since crypto trading commonly occurs through centralized exchanges, Chapter 4
provides a network perspective on the influence of these exchanges. The volatility and
counterparty risks associated with centralized exchanges make cross-exchange crypto
trading a risky venture. To better understand the risk spillover across exchanges,
we introduce the Multivariate Heterogeneous AutoRegression for Crypto Markets
(MHAR-CM) based on Corsi, 2009 and use BTC as an example. MHAR-CM provides
reasonable covariance estimates that consider the peculiarities of crypto markets, such
as trading 24/7 and the long-memory effect on return variations (Dwyer, 2015). We use
the monthly dependence coefficients of MHAR-CM to assess the influence of different
exchanges within high-frequency partial correlation networks. The findings suggest that
an exchange’s scale determines its influence on others, and the interconnectedness among
these exchanges is stronger during extreme events in the BTC market. Furthermore, the
volatile eigenvector centralities of Futures Exchange Ltd (FTX) could be a meaningful
indication of its bankruptcy. To mitigate these risks, we construct portfolios that
incorporate network information into risk diversification, and we show that portfolios
that consider the dynamics of partial correlations or eigenvector centralities offer a
promising result in terms of risk measures.

The emergence of non-fungible tokens (NFTs) has brought about a new era for digital
art, driven by blockchain and smart contracts. This marketplace provides artists and
art collectors with more security, flexibility, publicity, and freedom to monetize their
works. However, the novelty of the market has resulted in speculation and economic
uncertainty, as the market is not yet well understood. In Chapter 5, we provide
a comprehensive understanding of the NFT art market by constructing the Digital
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Art Index (DAI), a price index based on hedonic regression of the top 10 liquid NFT
art collections. To address the issue of outlying price observations, we propose two
innovative procedures – Huberization and DCS-t filtering – to create a more robust
index. By analyzing each artwork’s time-variant and time-invariant characteristics, we
can identify price determinants and assess the intrinsic value of the market.

In The Work of Art in the Age of Mechanical Reproduction (Benjamin, 1968), he
explored how the emergence of photography challenged traditional notions of unique,
time- and place-bound artworks. Today, in our rapidly digitalizing world, we can apply
similar arguments to the uncertainties posed by technological innovation. To navigate
such uncertainties, it’s essential to first comprehend and then determine how we will
face the changes and disruptions from an innovation. Stiglitz, 1991 noted that “The
reason that the invisible hand often seems invisible is that it is often not there.” The
invisible hand of the market is not always present or effective, but perhaps technological
advancements can revolutionize the way our economy is regulated. An “invisible hand”
could emerge in the form of new technologies?

All the supplementary materials and source codes of this dissertation are available in
the Q2 ecosystem: Quantlet.com and Quantinar.com .
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Chapter 2

Blockchain Mechanism &
Distributional Characteristics of Cryptos

Publication

Lin MB, Khowaja K, Chen CYH, Härdle WK (2021) Blockchain mechanism and distribu-

tional characteristics of cryptos. Advances in Quantitative Analysis of Finance & Accounting

(AQAFA), 18, P167 - 196. DOI:10.6293/AQAFA.202112_(18).0006

All the supplementary materials and source codes of this chapter are available in the Q2 ecosystem:

Blockchain_mechanism and .

2.1 Introduction

Cryptocurrency (crypto) is a digital asset designed to be as a medium of exchange,
wherein individual coin ownership is recorded in a digital ledger or computerized
database. Its creation of monetary units and verification of fund transactions are
secured using encryption techniques and distributed across several nodes (devices) on a
peer-to-peer network. Such technology-enhanced and privacy-preserving features make
it potentially different from other existing financial instruments and has attracted the
attention of many investors and researchers (Härdle et al., 2020). Many studies have
investigated the similarity between a pool of cryptocurrencies in order to classify the
important features of digital currencies. For example, Blau et al., 2020 has concluded
that the top sixteen most active cryptocurrencies co-move with bitcoin. Researchers
have also focused on describing the price behavior of cryptos using economic factors
(Ciaian et al., 2016; Sovbetov, 2018). However, owing to the unique technology of
cryptocurrencies, there still exists a gap between the creators of blockchain mechanism
and users operating the financial market of the cryptocurrencies and through this
research, we aim to take a step towards mitigating that gap.

We specialize our research on the following research questions. First, we characterize
crypto behavior using distributional characteristics of time series data. Also, instead
of using the prices alone, we use actual block time and block size to incorporate
the operational features of cryptos. Second, we hypothesize that the blockchain
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structure that the coin attaches plays a pivotal role in explaining the behavior. More
explicitly, we investigate the extent to which blockchain structure leads to explaining
the distributional characteristics. Using a characteristic based clustering coupled with
spectral clustering technique, we group the selected cryptos into a number of clusters,
and stratify the mechanisms that make the coins within the particular cluster showing
the same behavior in price, actual block time, and actual block size, respectively.

When studying cryptocurrencies, many researchers only focus on crypto price and daily
returns (Hou et al., 2020; Trimborn & Härdle, 2018). While price is important when
cryptos are used as a medium of payment, it is definitely not the only measure for
evaluation of cryptocurrencies. For example, many low price coins are highly traded
and many coins that are not used as medium of payment have low prices, e.g., XPR
and Dogecoin. Cryptos were introduced to serve various purposes, and the purpose of
the coin does matter. This makes it necessary to use other time series while studying
crypto markets. In this research, we propose to use actual block size and actual block
time alongside price.

Actual block size is the average actual size “usage” of a single block of data storage for
one day. Since a block comprises transaction data, it can represent the status of how
a blockchain mechanism allocates transactions to a block. We consider it a measure
of scalability of the system. A well-functioning blockchain should be able to level the
transaction arrivals. Transaction distribution within a day for any crypto needs such
balancing because it affects miner’s rewards and hence the demand of the coin. An
ideal block size would keep confirmation times from ballooning while keeping fees and
security reasonable. Therefore, actual block size of cryptos can provide insight into the
behavior of cryptos.

Actual block time, on the other hand, measures the consistency and performance of
the system. It is defined as the mean time required in minutes for each day to create
the next block. In other words, it is the average amount of time for the day a user
has to wait, after broadcasting their transaction, to see this transaction appear on the
blockchain. Think of crypto markets as a fast food franchise and miners as customers
who have to wait a certain time to make the purchase. If the waiting time is shorter on
certain days while on other instances, the customers have to wait much longer, there is
a discrepancy in the system. Analogously, the time series of block time, which is the
distribution of waiting time, can be seen as a service level of the whole system, and
it is necessary to maintain as the users’ expectation or target block time set by the
system depend on it.

The idea of investigating the underlying blockchain mechanism, a cornerstone of crypto
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technology, and its connection to the crypto behavior is still in its infancy. One of the
first endeavors in explaining this relationship was made by L. Guo et al., 2018 who
highlight that the fundamental characteristics of cryptocurrencies (e.g., algorithm and
proof type) have a vital role in differentiating the performance of cryptocurrencies.
They develop a spectral clustering methodology to group cryptos in a dynamic fashion,
but their research is limited in the exploitation of blockchain characteristics. With a
similar spirit, Iwamura et al., 2019 start by claiming that high fluctuation is a reflection
of the lack of flexibility in the Bitcoin supply schedule. They further strengthen their
arguments by considering the predetermined algorithm of cryptos (specifically, the
proof of work) to explain the volatility in cryptocurrency market. Zimmerman, 2020
argue in their work that the higher congestion in blockchain technology leads to higher
volatility in crypto prices. They claim that the limited settlement space in blockchain
architecture makes users compete with one another, affecting the demand. In his model,
the value of cryptos is governed by its demand, making the price sensitive to blockchain
capacity.

These research results, albeit true, are limited to a particular set of cryptocurrency
mechanisms and do not thoroughly explain the dynamics of cryptocurrencies. Also,
most of the papers only use price as a proxy of behavior. We advance the previous
findings by incorporating a rich set of underlying mechanisms and connecting them
to multiple time series. We take a deep dive into eighteen cryptos with a variety
of mechanisms- concluded in Garriga et al., 2020 – from a technical perspective to
summarize their mechanism and algorithm designs using variables, such as consensus
algorithm, type of hashing algorithm, difficulty adjustment frequency and so on.

We investigate a relationship between the underlying blockchain mechanism of cryptocur-
rencies and the distributional characteristics. Using a characteristic-based clustering
technique, we cluster the selected coins into a number of clusters and scrutinize the
compositions of fundamental characteristics in each group. We observe that the clus-
ters obtained from these time series indeed share a common underlying mechanism.
Through empirical evidence, we show that the cryptos forked from same origin and same
consensus mechanism tend to become part of the same clustering group. Furthermore,
the clusters obtained by the time series of block time have the same hashing algorithms
and difficulty adjustment algorithms. Furthermore, a similar nature (static or dynamic)
of block size was observed within clusters obtained by the time series of actual block
size. We conclude with empirical evidence that the crypto behavior is actually linked
with their blockchain protocol architectures.

The implications of this study are abundant. The creators of cryptocurrencies can
manage the impact of blockchain underlying mechanisms on the corresponding distri-
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butional characteristics, in a consideration of adoption rate of invented coins. From
the users’ perspective, they can make an optimal decision in which coins should be
adopted while concerning the price fluctuation.

This chapter proceeds as follows. Section 2 discusses data source and the underlying
mechanisms of the cryptos. Section 3 presents the methodology used for classifying
characteristics of time series and the clustering algorithm. Section 4 provides an
illustration of analysis results. Section 5 concludes and provides several avenues for
future research.

2.2 Data description

According to CoinMarketCap, currently there are over 7,000 cryptocurrencies and their
total market capitalization has surpassed USD$400 billion as of November 09, 2020.
Most studies have focused on the mainstream coins (e.g., Bitcoin, Ethereum), and little
has been investigated on the coins which have been introduced and featured with a
diverse blockchain mechanisms and invented technologies. The work of X. Guo and
Donev, 2020 is one of the exceptions. In this study, 18 cryptos with different sets
of blockchain mechanisms have been examined –Bitcoin, Bitcoin Cash, Bitcoin Gold,
Bitcoin SV, Blackcoin, Dash, Dogecoin, Ethereum, Ethereum Classic, Feathercoin,
Litecoin, Monero, Novacoin, Peercoin, Reddcoin, Vertcoin, XRP (Ripple), and Zcash.
We explore an interplay between distributional characteristics of cryptos and the
blockchain mechanism. We discuss the key characteristics of blockchain mechanisms
and the time series data in this section.

2.2.1 Underlying mechanism

Most of the cryptos nowadays apply blockchain-based systems, in which transactions
are grouped into blocks and cryptographically interlinked to form a back-linked list
of blocks containing transactions. The transactions are validated using the nodes
within the crypto peer-to-peer network through a majority of consensus directed by
algorithms instead of a central authority’s approval. In such an operation process,
many algorithmic mechanisms are required to govern the performance and outcome of
a crypto system. Some key blockchain-based characteristics are discussed below:

Fork. It occurs as user base or developers conduct a fundamental or significant software
change, see Figure 2.1. There are two types of forks – soft and hard forks. The former is
an update to the protocol architecture, and then all the nodes are enforced to follow to
proceed with the operations of a crypto. The latter one creates a duplicate of the origin
blockchain and modifies the copy to meet the desired quality (e.g., safety, scalability).

https://coinmarketcap.com
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In this case, a new crypto can be generated accordingly. For example, Peercoin network
facilitates an alternative consensus mechanism –proof-of-stake (PoS) to Bitcoin’s proof-
of-work (PoW) system for reducing dependency on energy consumption from the mining
process (King & Nadal, 2012).

Going beyond a digital currency, Ethereum establishes an open-ended decentralized
platform for diverse applications such as decentralized applications (dapps) and smart
contracts (Buterin, 2014).

Figure 2.1: Blockchain software forks in cryptocurrency.

Consensus mechanism. In order to establish an agreement on a specific subset
of the candidate transactions, the consensus mechanism provides a protocol for a
large number of trust-less nodes in a decentralized blockchain network. For instance,
PoW (Proof-of-Work, as adopted by e.g., Bitcoin, Litecoin) achieves consensus with a
competition among miners on solving computational puzzles, which consume numer-
ous computational resources; and PoS (Proof-of-Stake, as adopted by e.g., Peercoin,
Blackcoin) randomly assigns a block creator (transaction validator) with probability
proportional to their coins staked.

Hashing algorithm. It is a mathematical algorithm that encrypts a new transaction
(or a new block) into a fixed length character string, known as hash value, and later
interlinks this string with a given blockchain to ensure the security and immutability
of a crypto. Various hashing algorithms are implemented in cryptos such as SHA-256,
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Scrypt and Equihash. These provide different degree of complexity to blockchain
operations.

Difficulty adjustment algorithm. It is an adaptive mechanism which periodically
adjusts the difficulty toward hashrate to target an average time interval between blocks,
known as target block time or target confirmation time. It regulates the creation
rate of a block and maintains a certain number of outputs of a blockchain. Such a
mechanism is commonly seen in a PoW framework. An example from Bitcoin is shown
in Figure 2.2 where its difficulty adjustment algorithm, known as DAA, modifies the
difficulty every 2016 blocks to meet the target block time of 10 minutes.

Figure 2.2: Bitcoin’s difficulty adjustment toward actual block time.

2.2.2 Time series

The data applied in this paper are collected from Bitinfocharts. These time series are
composed of data points observed daily from the genesis date of each crypto. The
lengths of these time series are thus varied coin by coin, but as explained in the next
section, we continue to use the whole time series for each coin.

Price. Much previous literature has been triggered by the substantial fluctuations in
crypto prices. In this study, we investigate 18 crypto prices in USD on daily time series.
Among these 18 cryptos, Bitcoin has been dominant and Reddcoin has the lowest price
on balance, see Figure 2.3. We characterize these price time series in Table 2.A.1. Most
of these coins (i.e., Bitcoin, Ethereum, Bitcoin Cash) have high fluctuations in price;
while some coins (i.e., XRP, Blackcoin) tend to be steady.

Actual block time. It is the mean time required in minutes for each day to create
the next block. In other words, it is the average amount of time for the day a user
has to wait, after broadcasting their transaction, to see this transaction appear on the

https://bitinfocharts.com/
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Figure 2.3: Time series of prices of the 18 cryptos.

blockchain. Some literature also refers to it as confirmation time. It can be considered
as a service level indicator for cryptos which should be maintained by underlying
mechanisms. Most of the coins discussed in this paper tend to have lower block time
compared with Bitcoin, see Figure 3.A.2. Furthermore, many coins show outliers in
observations and this can indicate that the extreme events appear in the blockchain
system. The underlying mechanisms can be ineffective to accommodate the current
system demand. The distributional characteristics for time series of actual block time
are presented in Table 2.A.2. The data for XRP is missing, but its designed block time
is around 5 seconds per transaction.

Actual block size. It is defined as the average actual size “usage” of a single block of
data storage for one day. Since a block comprises transaction data, it can represent
the status of how a cryptocurrency mechanism allocates transactions to a block. In
this study, as introduced in Section 1, we consider it as an indicator for the stableness
in scalability of a crypto. In Figure 2.5 shows that most of the cryptos under study
have smaller block size usage than Bitcoin, except Bitcoin SV. The plot also depicts
that almost all the coins have outliers. These outliers can lead to the imbalance
in transaction fee and reward, which can influence the ecosystem of a crypto. The
characteristics for block size time series are shown in Table 2.A.3. XRP does not have
a typical blockchain structure; hence, there is no block size data in the study. The
data for Peercoin is missing.

2.3 Methodology

In order to investigate the relationship between the underlying blockchain mechanism of
cryptocurrencies and the distributional characteristics of cryptos as a proxy of behavior,
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Figure 2.4: Actual block time in minutes.

Figure 2.5: Actual block size in megabytes.
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we aim to group them into several clusters and scrutinize the compositions of features
in each group. These blockchain-based features manifest the underlying mechanism
of how the cryptos operate transactions on their chains, and subsequently govern the
price, actual block size and block time. As described in the previous section, we use
the time series data of 18 different cryptos with a range of different mechanisms.

The time series data available for the cryptos is subject to numerous limitations.
The most important one of them is that different coins were introduced at different
time points, therefore, the data available for each coin has different lengths. For the
clustering problems (Aghabozorgi et al., 2015), defining the distance metric between
times series with various lengths is not conventional. For many analytical problems,
this issue is easily tackled by truncating the time series to the shared sample period.
We refrain from doing so because, in the analysis of cryptocurrency prices, the evolution
of the data in time is highly crucial for an investigation of the short-term and long-term
dynamics and therefore, truncating the time series would lead to loss of important
information. Hence, we deal with the time series data of cryptos with different lengths
and do not directly impose a distance metric on the input data points.

Furthermore, characterizing the behavior of a time series in terms of a single quantitative
attribute (such as range-based volatility) has its limitations. The chosen attribute
usually captures the dynamics of time series in one particular aspect, which may not
be sufficient to encompass an entire behavior or introduces a biased assessment. This
becomes particularly true in the problems of crypto classification and clustering where
these attributes, used as a similarity measure, are very diverse, resulting in weak
robustness in the results.

To cope with these limitations, we resort to the characteristic based clustering method
proposed by Wang et al., 2005. It was recently applied by Pele et al., 2020 for
classifying cryptos to distinguish them from traditional assets. This method recommends
incorporating various global measures describing the structural characteristics of a
time series for a clustering problem. These global measures are obtained by applying
statistical operations that best represent the underlying characteristics. Also, by
extracting a set of measures from the original time series, we simply bypass the issue
of defining a distance metric. It’s understood that the global measures are domain-
specific. Employing a greedy search algorithm, Wang et al., 2005 selects the pivotal
features in the clustering tasks. In our case, we import the experts’ discretion on the
choice of features as distributional characteristics which best represent the dynamics of
cryptocurrencies.
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2.3.1 Distributional characteristics

We choose a variety of measures for our analysis. Starting from the first four moments
and quantiles that characterize the distribution and symmetry of the data, we include
the statistics for concluding the global structure such as global optimum, as well as the
measures for long-term dependencies, risk, and noise. The selected features are mean,
standard deviation, skewness, kurtosis, maximum, minimum, first quartile, median,
third quartile, 1% and 5% extreme quantiles as a measure of downside risk, linear
trend, intercept, autocorrelation for long-term dependency, self-similarity using Hurst
exponent and chaos using Lyapunov exponents.

Mean. It is the simplest attribute that can be driven from any data. Essentially, it is
the most basic estimate of a value that any variable in our data will assume on any
given day. We calculate this first moment by treating each value in the time series as a
separate data point and averaging them.

Standard deviation. It is the most common measure of dispersion, or how spread
out the data are around the mean. It is sometimes considered as a measure of stability,
since the phenomenon of stability is usually manifested in the stability of the average
of the process. Since stability largely accounts for the behavior of any time series, this
statistics is one of the key measures for the volatility of crypto data in our analysis.

Skewness. The symmetric (or asymmetric) shape of a distribution is indicated by
skewness. For example, a high, non-zero skewness coefficient for the crypto price data
means that for many time points, the price deviated significantly from the average price.
It is calculated with the adjusted Fisher-Pearson standardized moment coefficient G1.

Kurtosis. This fourth moment measures how heavily the tails of a distribution differ
from the tails of a normal distribution. In other words, for crypto data, this statistic
identifies whether the tails of the distribution of our time series contain extreme values.
It is calculated with the adjusted Fisher-Pearson standardized moment coefficient G2.

Quantiles. Quantiles are another measure of distribution of data that provide infor-
mation about how the values are distributed across the spectrum. For the time series
data, such as that of prices of cryptocurrencies, these measures give the values that
lie 25%, 50%, or 75% way up if the prices are sorted. The extreme quantiles of 1%
and 5%, also known as Value-at-Risk(VaR99 and VaR95), are included in analysis for
capturing downside risk.

Maximum and minimum. These simple, yet two of the most informative measures,
provide information about the highest and the lowest value that the time series has
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realized in its course.

Linear trend and intercept. These two features are usually identified as one of the
two parameters of linear regression. For the time series data, the intercept simply gives
the initial value, for example the price of crypto when it was first introduced. The
linear trend, or slope, shows the general tendency of the data to increase or decrease
during a long period of time. It is calculated by fitting a linear least-squares regression
for the values of the time series versus the sequence from 0 to length of the time series
minus one. This feature assumes the signal to be uniformly sampled. The time stamps
are not used to fit the model.

Autocorrelation. It is serial correlation of a time series with a delayed version of itself.
It measures the similarity between observations within a time series. For the example of
crypto data, a large autocorrelation coefficient could be indicative of seasonal behavior
within time series. It is calculated according to the formula

1

(n− l)σ2

n−l∑︂
t=1

(Xt − µ) (Xt+l − µ)

where n is the length of the time series, Xi, σ
2 its variance and µ its mean. I denotes

the lag. We fix the lag at 1.

Self-similarity. It is a measure of long-term memory of time series. It is an important
attribute to include because it detects the persisting behavior of the cryptos. It is
usually determined using the Hurst exponent. A Hurst exponent of 0.5 represents
white noise. It becomes greater for time series that exhibit some positive dependency
on previous values. For negative dependencies, it becomes less than 0.5.

Chaos. Chaos in the context of time series data means that the data has different
functions in different situations. It is a measure for recognizing and quantifying the
nature of underlying random behavior of the time series. We use Lyapunov exponents
as a proxy to measure chaos in our time series, details of which can be found in Parlitz,
2016.

2.3.2 Frequency domain

We further extend the methodology by including the power spectrum of time series as
an additional measure. The power spectrum is obtained in this work using Fast Fourier
Transform (FFT). For computational ease, the discrete Fourier transform (DFT) has
been formalized as a linear operator that maps the data points in a discrete input
signal X {x1, x2, · · · , xn} to the frequency domain f = {f1, f2, · · · fn},
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For a given time series X of n time points, sine, and cosine functions are used to
get the coefficients ωn = e−2πi/η and the frequencies are calculated using the matrix
multiplication: ⎡⎢⎢⎢⎢⎢⎢⎢⎣
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(2.1)

This matrix multiplication involves O(n2) and makes DFT computationally expensive.
FFT is a fast algorithm to compute DFT using only O(n log n) operations (Brunton &
Kutz, 2019). The power spectrum of this signal is the normalized squared magnitude
of the f, and it indicates how much variance of the initial space each frequency explains
(Brunton & Kutz, 2019). Including the power spectrum as a feature for characteristic
based clustering allows capturing the variability in the time signal that is not explained
by any other measure.

Accumulating all the aforementioned features in a vector gives in a reduced dimensional
representation of the time series of each crypto. These vectors are then used to cluster
the cryptos into groups using spectral clustering. Spectral clustering exploits the
eigenvalues of the similarity matrix to cluster, and results in more balanced clusters
than other techniques that were employed during the process. For details related to
spectral clustering, the readers are recommended to follow the tutorial on spectral
clustering by von Luxburg, 2006. The results of the above methodology are discussed
in detail in the next section.

2.4 Empirical result

In this section, we showcase the result from the characteristic based clustering in-
dividually on the crypto price and operational features–which are constructed with
price, block size “scalability” and block time “service level” time series. We explore
the clustering results and classify them with the underlying mechanisms of the investi-
gated 18 cryptos. The 18 cryptos are: Bitcoin, Bitcoin Cash, Bitcoin Gold, Bitcoin
SV, Blackcoin, Dash, Dogecoin, Ethereum, Ethereum Classic, Feathercoin, Litecoin,
Monero, Novacoin, Peercoin, Reddcoin, Vertcoin, XRP, and Zcash.

We calculate the characteristics for each of these cryptos for prices, block size and block
time separately. The results of all other attributes except the FFT are summarized in
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Tables 2.A.1, 2.A.2, 2.A.3 correspondingly. Note that the data for XRP is not available
for the block size and block time, and for Peercoin block size is missing as described
before in Section 3.

After calculating the attributes and FFT power spectrum described in Section 3, the
feature space is 216 dimensional (200 dimensional vectors of power spectrum and 16
characteristics), visualization of which is not possible. We project the feature space
into a three-dimensional space using principal component analysis (PCA), and the
results of which are exhibited for an intuitive understanding. We discuss each of the
clustering in detail below. Moreover, in order to avoid a monopoly outcome and sustain
a certain level of interpretability, we impose the maximum number of the clusters to
avoid a single coin case in each cluster.

2.4.1 Clustering with crypto prices

Table 2.A.1 shows that, as expected, Bitcoin has the highest average price and highest
standard deviation, due to the high magnitude of its prices. The VaR99 and VaR95
for Bitcoin are, however, very low, showing a low downside risk of Bitcoin. On the
contrary, Bitcoin Cash, Bitcoin SV, Bitcoin Gold and Zcash all show high value at
risk. This could be due to low persistence of risk shocks (de Souza, 2019; Katsiampa
et al., 2019). The high positive coefficients of self similarity for all the coins show high
dependency on the previous time values. The high autocorrelation further confirms
the presence of long-term dependencies of the time series. The Lyaponov exponent as
a measure of chaos exceeds 0 for all the time series, which shows unstable dynamics
throughout the prices of cryptos.

The characteristics of Dogecoin in Table 2.A.1 assume very low values, unlike any other
coin because the prices of Dogecoin are very low, despite it being a popular coin. This
can be due to high supply of the coin with no limit on the total number of coins created.
The coin also has no technical innovations, which is considered as one of the reasons
why the coin has such a small price. Hence, the uncontrolled underlying mechanism of
the coin has a significant impact on the prices, despite the high trading volumes of the
coin. The same can be concluded for XRP and Reddcoin, which also have a very high
maximum supply that is reflected in their very low prices.

Using characteristic based clustering on price time series, we have the result with 5
clusters as below:

0. Bitcoin, Dash

1. Bitcoin SV, Zcash
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2. Bitcoin Cash, Bitcoin Gold

3. Ethereum, Litecoin, XRP, Monero, Peercoin, Vertcoin, Reddcoin, Feathercoin,
Blackcoin

4. Ethereum Classic, Dogecoin, Novacoin

Figure 2.6: Cluster visualization. 0, 1, 2, 3, 4 of cryptos based on the prices.

Most of the coins are close to each others in a three-dimensional space, see Figure 2.6.
Except Dash, all the altcoins are in a different cluster than Bitcoin. Bitcoin Cash
and Bitcoin Gold, which principally inherit the protocol architecture from Bitcoin,
are clustered together, but not centered around with other coins. However, Bitcoin
SV–which is a fork from Bitcoin Cash and mainly increases the designed block size to
lower the transaction fee as a main software change–is not in the same cluster. This
indicates that even as a crypto adopts a similar blockchain mechanism to the other
crypto, it might have different price dynamics than its origin.

XRP, Monero, Peercoin, Reddcoin, and Blackcoin which apply significantly different
blockchain protocols in their governance types and consensus mechanisms are in the
same cluster. Specifically, XRP, Monero and Peercoin are private-based blockchain
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which possesses a stronger moderator to control the entrants (users or investors) to their
network. Peercoin, Reddcoin, and Blackcoin, instead of using PoW as their consensus
mechanisms, employ PoS which does not depend on miners’ effort to create a block. So,
coin supply and demand can reach an equilibrium without the interference of miners,
which leads to higher transaction costs. Moreover, the forks from Litecoin–Vertcoin,
Reddcoin and Feathercoin are within the same cluster with Litecoin.

Ethereum Classic is, in fact, the version of Ethereum that existed before the hard
fork of Ethereum resulting after the DAO attack, but it is not within the cluster with
Ethereum.

2.4.2 Clustering with actual block time

The block time here is measured in minutes. Likewise, we apply the characteristic
based clustering on the data and conclude them into 5 clusters as below.

0. Dogecoin, Feathercoin

1. Ethereum, Litecoin, Ethereum Classic, Dash, Zcash, Monero, Blackcoin

2. Bitcoin, Bitcoin Cash, Vertcoin

3. Bitcoin SV, Bitcoin Gold, Novacoin

4. Peercoin, Reddcoin

The result is correspondingly visualized in Figure 3.A.2. The figure indicates that
Peercoin and Reddcoin lie far away from other coins (marked by cyan cluster). They are
clustered in the same group because they both use PoS and their initial block takes the
maximum time to be added, as shown by the maximum and intercept characteristics in
Table 2.A.2. This shows that even though the coins have lower actual block time later
(with low mean), their behavior is still the similar, resulting them in the same cluster.
Also, the cryptos using PoS tend to lower the complexity of their hashing algorithms
since it is not required for miners to spend computational effort on them. The difficulty
adjustment algorithms of theirs are purely used as a mechanism for maintaining the
certain service level for users without considering hashrate from miners. Their block
time performance is relatively stable after the initialization. Here we emphasize that the
initial price, block time and block size that are usually characterized by the underlying
mechanism play a pivotal role in determining the price behavior of cryptos. This is
why we did not truncate the time series, as mentioned in the Section 4.
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Figure 2.7: Cluster visualization. 0, 1, 2, 3, 4 of cryptos are based on block time.

Though Bitcoin, Bitcoin Gold, Bitcoin Cash and Bitcoin SV are not completely grouped
into the same cluster, they are close to each others in the three-dimensional space
see Figure 3.A.2. They apply the same hashing algorithm–SHA-256 and also with
the same expected block time for their difficulty adjustment algorithms. Let’s call
attention to forks again. Dogecoin and Feathercoin are both forked from Litecoin with
the Script-based hashing algorithm and difficulty adjustment frequency after large
number of blocks–240 and 504 blocks. Litecoin is in a different cluster because the
frequency is much higher as 2016 blocks. Given the cryptos forked from the same
origin coins, their block time can be found in the same group, likewise Ethereum and
Ethereum Classic.

2.4.3 Clustering with actual block size

As previously done for price and block time, we use the characteristics based clustering
and grouped these cryptos into 5 clusters according to the characteristics of their time
series. The block size here is measured in bytes for a better data representation. As
stated before in Section 3, XRP and Peercoin data are missing due to the mechanism
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design and incomplete data from the source, respectively. The clustering result is
shown as below and the corresponding visualization is in Figure 2.5.

0. Zcash, Bitcoin Gold, Reddcoin, Novacoin

1. Ethereum, Ethereum Classic, Dogecoin

2. Bitcoin Cash, Bitcoin SV

3. Bitcoin, Dash, Monero, Feathercoin

4. Litecoin, Vertcoin, Blackcoin

Figure 2.8: Cluster visualization. 0, 1, 2, 3, 4 of cryptos are based on block size.

The actual block size (usage) of these cryptos does rarely meet their designed block
size limit (capacity), except for Bitcoin that it nearly outstretches its limit, 1 megabyte,
see Table 2.A.3. In this case, it raises an issue: Can increasing crypto’s block size
limit improve scalability? For example, Bitcoin SV enlarges dramatically its limit
to 128 megabytes, but it is out of the necessity for such a design. Likewise, Bitcoin
Cash, which Bitcoin SV forks from, has its limit as 32 megabytes. These two coins
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are, therefore, clustered together. Moreover, instead of having a static block size limit,
Ethereum and Ethereum Classic grouped in the same cluster apply block gas limit,
which is the energy consumption limit for a block, to adaptively regulate its block
size. Both Monero and Blackcoin have a dynamic mechanism to control the block size;
however, it does not represent in the clustering result.

2.5 Conclusion

In this paper, we investigate the relationship between crypto behaviors and their
underlying mechanisms. We specify the crypto behavior with their price and operational
features defined by actual block time and block size. We calculate the distributional
characteristics to define the behavior of time series. Using a characteristics based
spectral clustering technique, we cluster the selected coins into clusters and scrutinize
the blockchain mechanism in each group. We find that the underlying mechanism of
cryptos is reflected in the clustering results. We observe that cryptos forked from the
same origin and same consensus mechanism tend to become part of the same clustering
group. Furthermore, the clusters obtained by the time series of block time have the
same hashing algorithms and difficulty adjustment algorithms. Furthermore, a similar
nature (static or dynamic) of block size was observed within clusters obtained by the
time series of actual block size. We conclude with empirical evidence that the crypto
behavior is indeed linked with their blockchain protocol architectures. As a result,
cryptocurrency users and investors can have a better understanding and explanation
of price and operational features through cryptocurrency mechanism. In the future
research, we would elaborate the relation of price and operational features to underlying
mechanism with an economic model and conduct relevant simulations. We would also
like to investigate the impact of versions revisions on the dynamics of cryptos.
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Appendix

2.A Time series characteristics

Table 2.A.1: Price.

Characteristic Bitcoin Ethereum Litecoin Bitcoin
Cash

Ethereum
Classic XRP

mean 2659.127 178.966 34.394 537.723 9.381 0.192
standard_deviation 3798.466 222.452 48.645 509.244 7.827 0.302
skewness 1.338 1.950 2.389 2.322 1.491 4.193
kurtosis 0.672 4.654 7.272 6.157 2.239 29.471
maximum 19401.000 1356.000 352.799 3526.000 43.765 3.649
minimum 0.050 0.401 0.032 58.626 0.687 0.003
lowerquant 20.193 7.975 3.153 233.404 4.364 0.007
median 455.892 136.557 8.618 324.646 6.571 0.024
upperquant 5128.000 250.965 53.128 620.947 13.813 0.291
VaR99 0.062 0.578 0.040 107.426 0.809 0.004
VaR95 0.393 0.696 0.072 129.491 1.105 0.005
slope 2.781 0.163 0.032 -0.876 -0.002 0.000
intercept 0.050 2.820 0.033 63.765 0.892 0.006
autocorrelation 0.998 0.998 0.997 0.992 0.994 0.991
self_similarity 1.574 1.611 1.596 1.609 1.564 1.551
chaos 0.088 0.093 0.091 0.086 0.087 0.085

Characteristic Bitcoin
SV Dash Zcash Monero Dogecoin Bitcoin

Gold
mean 145.401 113.910 135.596 57.588 0.006 43.167
standard_deviation 66.784 187.915 125.654 75.569 0.193 70.420
skewness 0.678 3.126 1.756 2.145 49.692 2.879
kurtosis 0.079 11.777 3.208 5.300 2469.511 8.351
maximum 370.647 1436.000 728.159 439.391 9.608 513.293
minimum 52.683 0.516 23.940 0.233 0.000 5.093
lowerquant 87.323 3.950 50.251 1.100 0.000 9.710
median 135.217 66.508 72.251 44.090 0.001 15.869
upperquant 191.739 133.239 199.807 84.834 0.003 29.706
VaR99 53.377 0.711 27.767 0.272 0.000 5.357
VaR95 62.111 1.833 31.842 0.417 0.000 6.604
slope 0.218 0.083 -0.134 0.053 0.000 -0.147
intercept 111.700 1.380 286.297 1.911 0.000 513.293
autocorrelation 0.990 0.997 0.995 0.997 0.002 0.961
self_similarity 1.628 1.642 1.573 1.577 1.024 1.431
chaos 0.077 0.090 0.092 0.091 0.086 0.073

Characteristic Peer
coin Vertcoin Redd-

coin
Feather-
coin

Black-
coin

Nova-
coin

mean 1.004 0.670 0.001 0.062 0.095 2.185
standard_deviation 1.238 1.319 0.003 0.102 0.127 2.989
skewness 2.511 3.637 4.175 3.379 3.397 3.102
kurtosis 7.017 14.792 24.526 17.172 15.251 12.916
maximum 9.118 9.386 0.029 1.203 1.108 24.777
minimum 0.110 0.006 0.000 0.002 0.014 0.078
lowerquant 0.291 0.043 0.000 0.008 0.030 0.507
median 0.445 0.237 0.001 0.019 0.045 0.901
upperquant 1.275 0.626 0.001 0.072 0.088 3.301
VaR99 0.125 0.009 0.000 0.003 0.015 0.156
VaR95 0.168 0.015 0.000 0.004 0.020 0.187
slope 0.000 0.000 0.000 0.000 0.000 -0.001
intercept 0.382 6.315 0.000 0.559 0.035 0.078
autocorrelation 0.993 0.992 0.988 0.983 0.993 0.994
self_similarity 1.577 1.603 1.548 1.523 1.537 1.596
chaos 0.088 0.085 0.079 0.078 0.084 0.091
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Table 2.A.2: Block time.

Characteristic Bitcoin Ethereum Litecoin Bitcoin
Cash

Ethereum
Classic XRP

mean 10.453 0.257 2.507 11.167 0.246 NA
standard_deviation 8.814 0.045 0.385 11.009 0.032 NA
skewness 21.779 3.098 5.003 11.597 5.144 NA
kurtosis 701.717 11.987 54.589 160.209 61.066 NA
maximum 360.000 0.509 8.521 205.714 0.800 NA
minimum 2.081 0.208 0.149 1.275 0.153 NA
lowerquant 8.623 0.235 2.357 9.664 0.235 NA
median 9.474 0.241 2.474 9.931 0.238 NA
upperquant 10.435 0.268 2.599 10.360 0.242 NA
VaR99 5.923 0.220 1.710 2.331 0.215 NA
VaR95 7.129 0.222 2.111 8.479 0.218 NA
slope -0.001 0.000 0.000 -0.007 0.000 NA
intercept 102.857 0.208 0.149 160.000 0.208 NA
autocorrelation 0.494 0.981 0.705 0.395 0.818 NA
self_similarity 1.027 1.522 0.787 0.704 1.249 NA
chaos 0.012 0.070 0.012 0.003 0.068 NA

Characteristic Bitcoin
SV Dash Zcash Monero Dogecoin Bitcoin

Gold
mean 10.195 2.659 2.409 1.686 1.048 9.823
standard_deviation 1.639 0.805 0.345 0.541 0.043 0.741
skewness 12.504 19.831 -3.025 3.258 -9.220 -5.375
kurtosis 221.950 409.827 7.261 57.807 222.460 60.686
maximum 40.000 22.500 2.618 10.992 1.288 11.250
minimum 7.310 0.348 1.240 0.829 0.100 0.254
lowerquant 9.600 2.609 2.487 1.025 1.038 9.664
median 10.000 2.623 2.509 1.951 1.044 9.931
upperquant 10.511 2.637 2.531 2.020 1.050 10.141
VaR99 8.361 2.476 1.248 0.947 0.980 7.767
VaR95 9.034 2.571 1.258 0.984 1.031 8.623
slope -0.001 0.000 0.000 0.001 0.000 0.001
intercept 40.000 0.348 2.286 1.627 0.100 0.254
autocorrelation -0.115 0.707 0.982 0.805 0.787 0.378
self_similarity 0.367 0.811 1.121 0.922 1.044 0.494
chaos 0.023 0.003 0.010 0.001 0.011 -0.001

Characteristic Peer-
coin

Vert-
coin

Redd-
coin

Feather-
coin

Black-
coin

Nova-
coin

mean 10.085 2.502 4.646 2.005 1.090 6.819
standard_deviation 47.070 0.180 68.175 6.443 0.105 2.295
skewness 30.324 -1.782 20.761 11.521 -4.368 24.326
kurtosis 919.356 30.015 434.280 157.793 18.525 891.281
maximum 1440.000 4.079 1440.000 130.909 1.335 96.000
minimum 1.377 0.151 0.646 0.148 0.442 0.451
lowerquant 7.742 2.412 0.986 1.042 1.111 6.154
median 8.372 2.500 1.007 1.048 1.114 6.606
upperquant 9.057 2.590 1.028 1.171 1.117 7.164
VaR99 5.464 2.144 0.935 1.034 0.551 4.364
VaR95 6.545 2.289 0.957 1.036 0.949 5.390
slope -0.003 0.000 -0.010 -0.002 0.000 -0.001
intercept 1440.000 0.151 1440.000 0.291 1.309 1.765
autocorrelation 0.667 0.154 0.821 0.914 0.976 0.373
self_similarity 0.717 0.437 1.051 1.210 1.337 0.697
chaos 0.002 0.008 -0.001 0.032 0.006 0.009
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Table 2.A.3: Block size.

Characteristic Bitcoin Ethereum Litecoin Bitcoin
Cash

Ethereum
Classic XRP

mean 407162.152 14376.916 12909.684 138173.724 1297.638 NA
standard_deviation 363245.372 11337.562 15590.195 284058.956 340.581 NA
skewness 0.241 0.285 4.309 9.176 0.679 NA
kurtosis -1.583 -0.819 31.780 109.791 2.106 NA
maximum 998092.000 58953.000 206020.000 4710539.000 3594.000 NA
minimum 134.000 575.164 134.000 4982.000 575.164 NA
lowerquant 21246.000 1627.750 4004.750 60455.500 1054.750 NA
median 310990.000 17024.000 7016.000 94775.000 1310.500 NA
upperquant 777369.500 23068.750 19366.500 122827.500 1492.250 NA
VaR99 134.548 658.423 561.630 15574.520 653.404 NA
VaR95 134.952 788.678 800.306 27169.700 775.052 NA
slope 266.541 17.464 8.806 -89.253 0.189 NA
intercept 204.000 643.886 199.000 385996.000 643.886 NA
autocorrelation 0.985 0.981 0.872 0.626 0.850 NA
self_similarity 1.067 1.310 1.148 1.074 1.131 NA
chaos 0.058 0.058 0.065 0.027 0.045 NA

Characteristic Bitcoin
SV Dash Zcash Monero Dogecoin Bitcoin

Gold
mean 1100149.254 12999.389 23802.102 39874.397 10523.242 25312.953
standard_deviation 1278250.457 26340.294 38911.209 47310.430 6607.125 67527.275
skewness 6.673 27.654 8.711 1.703 5.917 6.269
kurtosis 84.455 1040.743 117.847 4.063 68.981 45.828
maximum 20460199.000 1059232.000 687685.000 347816.000 116605.000 739259.000
minimum 5005.000 226.545 379.573 375.434 143.000 133.000
lowerquant 257789.500 3038.000 7189.500 3047.250 6775.000 6512.500
median 996071.500 9240.000 11670.000 20980.000 9510.000 9316.000
upperquant 1573243.000 19193.000 28242.000 62002.000 12022.000 14118.000
VaR99 6435.000 1312.960 2605.530 1058.990 3432.400 2727.870
VaR95 14660.750 1736.200 3103.900 1320.350 4491.000 3983.600
slope 2318.003 14.357 -25.267 26.939 1.018 -67.625
intercept 10871172.000 226.545 379.573 375.434 143.000 133.000
autocorrelation 0.377 0.298 0.836 0.958 0.798 0.618
self_similarity 1.004 0.947 1.138 1.214 1.070 1.015
chaos 0.009 0.018 0.030 0.041 0.021 -0.012

Characteristic Peer-
coin

Vert-
coin

Redd-
coin

Feather-
coin

Black-
coin

Nova-
coin

mean NA 2641.881 772.025 806.556 687.622 539.712
standard_deviation NA 3611.409 634.442 1621.154 3441.373 1223.175
skewness NA 3.420 3.613 10.605 28.388 38.218
kurtosis NA 16.189 21.857 158.924 894.526 1712.453
maximum NA 36709.000 7808.000 36789.000 120169.000 57527.000
minimum NA 105.000 105.000 109.625 252.514 110.835
lowerquant NA 682.104 388.361 359.746 286.296 360.352
median NA 1149.000 526.043 460.827 386.251 436.181
upperquant NA 3185.000 937.696 598.841 627.727 542.228
VaR99 NA 248.950 317.797 126.333 255.520 262.588
VaR95 NA 310.697 337.320 247.907 261.297 284.524
slope NA -0.586 -0.475 -0.739 -0.025 -0.204
intercept NA 130.000 175.000 109.625 464.500 141.000
autocorrelation NA 0.894 0.609 0.705 0.360 0.069
self_similarity NA 1.129 1.007 1.063 0.959 0.951
chaos NA 0.100 0.034 0.034 0.039 0.011
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3.1 Introduction

Cryptonomics offers a new marketplace for trading, liquidity, and price discover, and its
growing valuation triggers a megatrend in which modern transaction technologies emerge
and begin to supplant others. Under cryptographic protection, crypto (cryptocurrency)
tokens allow any two willing parties to transact directly with each other without the
need for a trusted third party. Compared to the conventional transaction vehicles, such
technology achieves a higher degree of anonymity and security, and provides better
flexibility in application infrastructure, i.e. layered structure of blockchain architecture.
(Yang et al., 2019) Much research has been keen to define the financial role of cryptos
as – e.g. a medium of exchange or speculative asset, safe heaven or risky hazard
(Shahzad et al., 2019; White et al., 2020); and to differentiate from or to relate to
classical assets in the sense of price and market value (Chuen et al., 2017; Mark et al.,
2020). As cryptos are driven by distributed ledger technologies (DLT), i.e. blockchain
(BC) technology, directed acyclic graphs (DAG), the interconnected mechanism behind
cryptos – functional characteristics – provides significant features to their infrastructure
and application (Cahyadi et al., 2021; Lin et al., 2021). However, the hinge between
the economic attributes (i.e. return volatility) and underlying mechanisms has often
been neglected. The regulation of blockchain on crypto is still met with skepticism.

Often, crypto market has been considered to be full of irrationality and froth (Aloosh &
Ouzan, 2020; Kyriazis et al., 2020; Li et al., 2021), having unconditional volatility and
being subject to sudden and massive price swings (Katsiampa et al., 2019). Investor
sentiment (Gurdgiev & O’Loughlin, 2020; López-Cabarcos et al., 2021), in which
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researchers employ textual analysis on social media posts, has often been related to
the crypto price fluctuations. It raises an issue of data quality and sentiment bias,
which might not be able to capture the full impact of the sentiment and market trend
(Baker & Wurgler, 2007; McGurk et al., 2020). Instead, we include both functional
characteristics (i.e. blockchain trilemma) that are the core driver of a crypto and market
dynamics (i.e. transaction behaviors) in order to observe the endogenous and exogenous
dynamics of the crypto system; conduct a comprehensive causal analysis. Studying the
linkage among the functional characteristics, market dynamics, and economic attributes
enables crypto users to better understand crypto’s functioning mechanism and return
evolution, in particular for coin creators.

Since this market exposes to the uncertainties and unexpected changes from the coin
supply and demand, investor and user sentiments, government regulations, and media
hype (Mai et al., 2018), there exists a need to depict the volatility dynamics of cryptos
attentively. W. Zhang et al., 2018 examines the stylized facts of cryptos and concludes
that the returns of cryptos display strong volatility clustering and leverage effects.
Comparing with the classical assets, Pele et al., 2021 shows that cryptos have long
tails of the log-return distribution and exhibit a synchronous evolution among others.
Fakhfekh and Jeribi, 2020; Naimy et al., 2021 perform diverse GARCH (generalized
autoregressive conditional heteroscedasticity) models, in which they emphasize the
essence of catching asymmetries and persistence in crypto’s volatility. Due to the
existence of microstructure noise across crypto markets (Bouri et al., 2022; Dimpfl &
Peter, 2021), it is hard to observe how the mechanism amplifies fundamental shocks
volatility impact on returns and leads to boom and busts unconnected to fundamentals.

Underscoring such a noise of crypto returns on volatility, Conrad et al., 2018; Katsiampa,
2017; Walther et al., 2019 use the AR-CGARCH (autoregressive component) and
GARCH-MIDAS (mixed data sampling) respectively to differentiate between short-run
and long-run components of the conditional variance. Long-run volatility component
displays long memory behavior and commonly driven by macroeconomic conditions,
i.e., business cycle effect; on the other hand, short-run volatility component reflects a
temporary increase in volatility after a large shock and driven by an asymmetric effect
on volatility response, i.e., news effect, abnormal trading activities (Engle & Lee, 1999).
Considering of fat tails, skewness and leverage, Beta-t-EGARCH model offers a better
fit than comparable skewed-t GARCH models and superior out-of-sample predictive
performance (A. Harvey & Lange, 2018) By extending to two-component volatility
specification, it captures the persistence in returns and offers more interpretability
by removing the interference from the short-run volatility component. In this paper,
we apply the two component Beta-t-EGARCH to model the volatility components of
Ethereum (ETH) returns as the economic attributes and examine their relationship
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with ETH’s functional characteristics and market dynamics via Granger causality.

This chapter proceeds as follows. Section 2 overviews the studies on the linkage between
blockchain and crypto and then often an empirical framework to depict the dynamic
between blockchain and cryptonomics. Based on the framework proposed in Sections 3,
4 and 5 detail the functional characteristic and market dynamics factors considered
in this paper. Section 6 presents how we derive the economic attributes from ETH’s
log return time series. Section 7 elaborates our causal discovery method and discusses
causal relationships among factors. Last, we conclude the study in Section 8.

3.2 Blockchain and cryptonomics

There exists a broad body of literature respectively on – crypto economics and finance,
as well as blockchain architecture. As most of the cryptos are powered by blockchain
technology, the construction of blockchains is of essence to the functionality of them. The
inherent specifications of their mechanisms and algorithms determine their performance
(i.e. transaction per second, block size, block time) and security (Bamakan et al.,
2020; Ferdous et al., 2020). Yet, the investigation of blockchain technology as the
underlying mechanism of crypto and its price behavior still happens to be a beginning
field of research (Jiang et al., 2021; Pagnotta, 2022). Zimmerman, 2020 highlights the
restricted settlement capacity in a blockchain can lead to a competition between users
of the crypto and then produce a high volatility on price. Garratt and van Oordt, 2020
suggests a strong positive relationship between exchange rates and mining power for
several proof-of-work (PoW) cryptocurrencies. On the blockchain network, traders’ and
transaction validators’ (i.e. miners) decisions influence each other, and the evolution of
Bitcoin (BTC) price and security are jointly determined (Pagnotta, 2022).

Thus far, most of the research works have been dedicated to constructing equilibrium-
based models to depict how the blockchain interacts with the crypto prices, but
have rarely offered empirical evidence to support their claims. Some empirical study
investigations can be found in (Guo et al., 2022; Lin et al., 2021) in which they
foreground the impact of fundamental blockchain characteristics (e.g., origin and fork,
algorithm and proof type) on the performance of a crypto using statistical learning
methods. In fact, crypto’s underlying mechanism is built and governed by computer
codes that are so-called “code is law” (Lessig, 2009). Lucchini et al., 2020 offers a fresh
perspective that the network of developers and code development are in relation to the
returns of Github-linked cryptos, but it cannot identify whether the mechanism drives
the synchronization across these cryptos.

Abadi and Brunnermeier, 2018 view the design of blockchain as a digital record-keeping
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problem which aims to establish consensus on an update to the ledger. They conclude
the three properties of consensus algorithm – Fault-tolerance, resource efficiency, and
full transferability – to understand the synergies and trade-offs, in light of users’ utility.
In contrast, Buterin, 2021’s scalability trilemma – decentralization, scalability and
security – underscores the functional properties. Often, it has been considered as a
standpoint for blockchain architecture and its implementation.

From an empirical viewpoint, we propose a framework to depict the subtleties and
intricacies of cryptos in this paper. There are three main components – functional char-
acteristics, market dynamics, and economic attributes – under the two-level framework,
as of blockchain ecosystem and cryptonomics. The first level, blockchain ecosystem, is
the fundamental architecture of a blockchain which enables the functional trust among
users and settles all the transactions. We consider it to be a micro-element that drives
a crypto’s functionality and economic behavior. The addition of multi-layered infras-
tructure (such as Oracle, the lightning network, and Plasma) offers greater flexibility
and adaptability to blockchain technology. The second level, cryptonomics, is driven by
market dynamics that boil down to the supply and demand of crypto. This is initiated
by a coin’s market and its applicability (extension market), i.e. the NFT (non-fungible
token) market for Ethereum. Economic attributes are the result of a collaborative
effort between functional characteristics and market dynamics. Due to the changes in
supply and demand within the entire blockchain network, the three components are
actively interacting with each other.

Market dynamics (i.e. market sentiment, transaction behaviors) are often considered
to be the main driver of economic attributes. The influence of functional characteris-
tics, which represent the underlying mechanism, is often overlooked. From Buterin,
2021’s scalability trilemma, we propose a blockchain pyramid that highlights how the
blockchain design can achieve a trustless trust of the entire cryptonomics. Developers
at the top of the pyramid are the most indispensable role of functionality development,
as the network of them generally guides the path of a crypto project, i.e. forks for
algorithm updates or changes. In the bottom, a parallelogram combines the concept
of the scalability trilemma with the component incentive, which these four aspects of
blockchain design are calibrating with each other over time. The incentive component
is designed to motivate both traders and transaction validators.

Following, we describe the three pillars of the proposed framework – functional charac-
teristics, market dynamics, and economic attributes – and look at their relevant time
series factors. The daily observations for each factor are plotted as a violin plot, which
is a hybrid of a box plot and a kernel density plot, in the following sections. Violin
plots display the range of the data with a box plot and the corresponding kernel density.
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Figure 3.1: Blockchain ecosystem and cryptonomics.

Inside the box plot, there are two lines: the solid line represents the median and the
dashed line represents the mean.

3.3 Functional characteristics

In this section, we discuss some functional characteristics of blockchain and discuss their
dynamics in terms of algorithmic infrastructure. The characteristics are categorized
by the proposed blockchain pyramid: developers, scalability, decentralization, security,
and incentive.

3.3.1 Scalability

A blockchain network’s capacity to handle a certain amount of transaction data is
referred to as scalability. It is often influenced by endogenous factors, such as block
time intervals and block size. Between 2014 and 2017, an interesting debate on the
Bitcoin scalability problem emerged, known as Bitcoin’s civil war (Bier, 2021). Large
blockers advocated for the expansion of block size to avoid blockchain congestion and
enhance Bitcoin’s applicability, but this requires a hard-fork update, which could lead
to Bitcoin losing its popularity. The other argument from the small blockers was that
such an update might cause Bitcoin to split into two different coins due to incompatible
nodes on the network, and thus cause a devaluation. The scalability of a blockchain can
therefore be critical to crypto’s technical performance and possibly return volatility.

Definition 1 (Block utilization). The quotient of the actual usage of a block by its
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Figure 3.2: Scalability factors.

size target given by the blockchain system.

Block utilization refers to the congestion of a blockchain. A high utilization rate can
result in a low scalability for transaction processing, as the network requires more
time for information propagation. The denominator of it is the designed size of a
block, for example, ETH’s target block size is 15 million gas (around 0.937500 Mbyte
with calldata gas cost 16 gases per block). It is worth noting that the block size of
ETH is determined by the gas limit, which is the maximum amount of cost for a
validator to undertake on a specific block, compared to using a predefined size limit.
Therefore, the size of blocks can vary depending on network demand, up to a block
limit of 30 million gas, which is twice the target block size. The nominator of block
utilization here is the actual-used size of a block. The used size increases when demand
is high, and vice versa. The time for generating a block, or the confirmation time
for transactions, can be influenced by block utilization. Figure 3.A.1a illustrates the
evolution of ETH’s average block utilization daily. Since the first observation date on
January 01, 2021, the block utilization has shown an upward trend. It starts decreasing
as the deployment of Ethereum Improvement Proposal (EIP) -3675 – the Merge –
begins. There is autocorrelation within a 95% confidence interval, with up to 6 lagged
values, and the presence of a periodic signal, see Figure 3.A.1b. In Figure 3.2a, ETH
does not show any congestion, that is, the utilization remains lower than 15%. It
appears that the block utilization is not suffering from the impact of outliers.

Definition 2 (Block time). The average time that it takes the miners or validators
within a network to verify transactions within one block and append the block to the
blockchain.

Block time can also be considered a service level that provides a customer with a
service within a given time period. Low block time provides high scalability. Multiple
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factors, such as the consensus mechanisms used, block size limits, network sizes, and
network demand (congestion), affect the duration of block generation. Especially high
network demand leads to a long block time. A blockchain sets its transaction
fee in response to the likelihood of congestion in the network. Due to the
different underlying designs, each crypto has its block time. For example, BTC takes an
average of 10 minutes to generate a block, whereas ETH only takes around 13 seconds.
Figure 3.A.2a illustrates the evolution of ETH’s average block time per day. Before the
Merge, there is a periodic trend that goes upward then downward, despite the different
deviation ranges. This can be attributed to ETH’s difficulty adjustment algorithm
(DAA) of PoW, which strives to maintain an average inter-block time between 12 and
14 seconds, refer to Section 3.3.3. While the block time is increasing, the DAA is
reducing the difficulty requirement in order to grant validators a higher chance to find
the hash value. The block time, after the Merge, is around 12 seconds on average.
Since the block time is controlled by the DAA linearly based on the previous block,
it is autocorrelated to the first two lags in Figure 3.A.2b. However, the daily data
used cannot catch the dynamics of block generation, the autocorrelation is rather
unobservable. Figure 3.2b shows that there are many outliers in block time and the
two apparent peaks in the figure correspond to the periods before and after the Merge.
The large outliers are linked to the difficulty bombs that DAA exponentially increases
the difficulty level every 100,000 blocks.

Definition 3 (Throughput). The number of transactions that are processed on a
blockchain per second.

Throughput is relevant to the blockchain mechanism and also the network demand.
Higher throughput means the blockchain can process more transactions. The blockchain
is capable of processing more transactions with high throughput. In particular, while
network congestion appears, the blockchain mechanism should be able to allocate
transactions and guarantee a stable throughput. However, in order to earn more
fee in PoW, validators are often eager to include large value transactions and avoid
small and scattered transactions. It influences the speed at which a blockchain can
process transactions. On average, the daily transaction counts of the ETH are 1 million
transactions per day and present some outliers in Figure 3.2c. Figure 3.A.3a shows
that the transaction counts drop after the launch of the Merge. The spike on December
9, 2022, is a direct result of large-scale fiat withdrawals from exchanges that may be
caused by FTXs bankruptcy. It displays autocorrelation, with up to 3 lagged values,
see Figure 3.A.3b.
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3.3.2 Decentralization

Decentralization is the delegation of control and decision-making from a central au-
thority (individual, organization, or group) to a distributed network. It is the core of
blockchain and cryptocurrency technologies that offers the freedom of being trust-less to
any particular blockchain platforms or authorities, while establishing the trust-worthy
of the whole system. The realization of decentralization in a network can be strenuous
due to a skewed mining power and inherent scaling limits (Chu & Wang, 2018). Recent
research on quantifying de-centrality can be found in (Barbereau et al., 2022; Gochhayat
et al., 2020). Here, we mainly focus on the network users’ dynamics.
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Figure 3.3: Decentralization factors.

Definition 4 (Network growth). The amount of new addresses that join the
blockchain within a day.

Network growth shows the popularity of a blockchain and its adoption. In other
words, the network is more decentralized by including unique addresses. Blockchain
technology initially gained attention through its initial and most basic application,
cryptocurrency. The increasing prevalence of NFTs and utility tokens has spread
across different industrial sectors, such as creative industries, supply chain, and gaming,
due to its high applicability and capability. It accelerates the adoption of blockchain
technology, but high transaction fees can be a barrier. Consequently, many Layer-2
solutions have been created with lower fees, e.g. Polygon on Ethereum network. Figure
3.A.4a shows that ETH’s network size has a significant growth and peaked in the
May of the same year, which is one of the largest crypto crashes due to Elon Musk’s
unsupportive statement and new round of regulations by the Chinese government. The
number of new addresses is stimulated by the launch of the Merge. Figure 3.A.4b
shows that ETH’s network growth presents only a very limited autocorrelation. There
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are 100,000 unique addresses per day joining the ETH network during the observation
period, and there are more upper outliers, see Figure 3.6a.

Definition 5 (Network activeness). The quotient of the number of active addresses
a day by the total number of unique addresses over the blockchain network.

Despite network growth considered an indicator for decentralization, the number of
daily network participants shows how active a blockchain network is. Considering the
total network size, network activeness here discloses the entire network’s involvement
and daily adoption. A high network activeness also indicates that the market may
experience an extreme event, such as large price drops or rises. The entire network
frequently trades for buys and sales. This implies that network activeness can also
be associated with price volatility and market sentiment. Figure 3.3b illustrates that
there are around 0.3 unique addresses active daily on ETH’s network. The network
activeness has no autocorrelation, see Figure 3.A.5b. After the Merge, there is a spike
around the end of 2022, as illustrated in Figure 3.A.5a.

3.3.3 Security

Blockchain technology utilizes cryptography in cloud computing to provide a high
level of security and privacy. Scaling up of measures such as network size, protocols,
applications, network elements, topological constraints, and functionality expectations
can become a great challenge for the reinforcement and sustainability (Kiayias &
Panagiotakos, 2015; R. Zhang et al., 2019). Provable security, scalability, and energy
cost are often trade-offs, especially for PoW, which involves solving a computationally
difficult problem. An unsteady block time can result. Instead, PoS has a fixed tempo
for block generation and effectively avoids the massive computation efforts.1 The
computation efforts as proof can be restrained by a democratic roulette process in PoS.
The following measures can be used to compare such a change from PoW to PoS.

Definition 6 (Difficulty adjustment). The degree of difficulty involved in discovering
new blocks through mining, i.e. number of hashes per second.

The DAA is a crucial component for security as well as scalability in PoW. According to
its design, the algorithm adjusts the mining difficulty in order to regulate the inter-block
time around the target time. A high mining difficulty can result in a delay in validators

1For example, Casper, the ETH PoS protocol, divides time into 32 epochs, which consist of 32 slots
that each last 12 seconds. Each slot is assigned to a block proposer to determine which transactions
are included in the block. A minimum of 128 validators, as a committee, vote on the block. Each
validator’s deposit is used to weigh the votes, which are referred to as attestations. Upon receiving a
two-third majority of validator votes, a block will be added to the blockchain. Validators are allowed
to participate in one committee per epoch, but there may be multiple committees with the same size
per slot.
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Figure 3.4: Security factors.

appending a block, whereas a low difficulty can lead to a danger that an adversary or
fraudster could take to subvert a blockchain protocol. Below, we show an example of
DAA in ETH’s PoW, i.e. Metropolis fork determines the difficulty Di+1 of block (i+1)

by

Di+1 = max[Di +
Di

C
×∆,min(Di, D0)], i ∈ Z+

0

where the adjustment factor

∆ =

⎧⎨⎩max(2− TSi+1−TSi

9
,−99), if any uncle block exists

max(1− TSi+1−TSi

9
,−99), otherwise.

The bound divisor of the difficulty C is an arbitrary constant, e.g. C = 1024, which is
equivalent to the difficulty of genesis block 0x0400 in hexadecimal. D0 is the difficulty
of the genesis block, or the minimum difficulty of any other block, and TSi is the
timestamp for block i. Uncle blocks denote blocks that are correctly mined, but are
not appended to the blockchain.

Hashrate is also a relevant measure, here. It is the number of hashes or guesses per
second that can be made on the network. A high hashrate strengthens the security
of the blockchain, since more computational power is on the network, and it is more
difficult to conduct malicious activities. In this paper, we do not include this measure
as difficulty adjustment and hashrate significantly co-move with each other, especially
for ETH’s PoW that recalculates the difficulty each block rather than adjusting every
2016 blocks, as of BTC.

Figure 3.A.6a shows that ETH’s difficulty continuously increases. Here, PH/s denotes
one Petahash per second, equivalent to 1015 hashes per second. In order to migrate
to PoS, ETH suddenly increases mining difficulty, known as a difficulty bomb. This
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discourages miners from opting to stay with PoW. The continuous increase in difficulty
in our observation period can be attributed to the upgrades of EIP-1559 London (2021),
EIP-4345 Arrow Glacier (2021), and EIP-5133 Gray Glacier (2022). When beginning
the Merge, the difficulty eventually reaches zero. The autocorrelation of difficulty
adjustment only appears in the first and second lags, with a negative correlation in the
second lag, see Figure 3.A.6b. Figure 3.4a appears that there are three peaks in the
kernel, which may represent the periods between the issues of a difficulty bomb.

Definition 7 (Energy consumption). The amount of electricity used in a blockchain
network.

The PoW protocol has an energy-intensive design. That is, the electrical energy
consumption directly relates to the computational efforts on the network and is therefore
an essential feature of PoW. Safety and security of the network depend on energy
expenditure, which allows the network to maintain an honest record of transactions
and a predetermined fixed credible monetary policy. It implies resistance to forgery,
inflation, and theft. We therefore consider energy consumption to be a factor for
security. It can also be seen as an incentive mechanism, since less energy consumption
on the blockchain leads to lower transaction costs, which is more appealing to coin
users.

Figure 3.A.7a is the estimated daily ETH energy consumption index of Digiconomist,
2021 –which estimates the total energy consumption of the ETH network. TWh/year
represents one Terawatt hour a year, equivalent to one trillion watt-hours a year. Going
into 2021, the ETH energy consumption had been on a dramatic increase. The Gray
Glacier hard fork upgrade has delayed the planned difficulty bomb by another 700,000
blocks, which leads to a drift in both difficulty adjustment and energy consumption by
the end of June 2022. The energy consumption drops at least 99.84% after changing
from PoW to PoS, which is similar to the difficulty (De Vries, 2022). The autocorrelation
structure in Figure 3.A.7b is similar to the one of difficulty adjustment in Figure 3.A.6b.
The transition from PoW to PoS is also observed in the upper and lower parts of the
violin plot, see Figure 3.4b.

Definition 8 (Non-zero balance address). The total number of addresses with a
non-zero balance on the blockchain.

Non-zero balance addresses are those addresses where people have staked their coins on
the network. The opposite are the ghost addresses, which have no transactions since
and could be linked to a risk of undermining a blockchain protocol. Many blockchain
protocols require the honesty of the majority of addresses on the network to reach
consensus, so fraudsters may intend to manipulate these addresses. The increase in
non-zero balance addresses is associated with market confidence and coin’s widespread
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adoption, which increases the security of a blockchain by removing the possibility of
one that overpowers the majority.

The ETH’s network maintains an average of 70 million addresses with a non-zero
balance, see Figure 3.4c. Figure 3.A.8a demonstrates that the total number of non-zero
balance addresses steadily increases, and it grows by nearly 20 million addresses over
the last 12 months before going into 2023. The increasing adoption of NFTs is also one
of the drivers that bring more users to the ETH’s network. There is no autocorrelation,
apart from the first lagged value in Figure 3.A.8b. It is an apparent time trend,
implying non-stationarity or unit root.

3.3.4 Incentive mechanism

The provision for offering incentives is necessary to motivate validators to append glob-
ally agreed blocks by consensus for processing transactions, especially in a blockchain
network under a PoW consensus mechanism that is highly costly for validators. With-
out sufficient participation of validators, a network might face security issues (i.e.
adversaries from monopolizing the blockchain) and scalability issues (i.e. delays in
transaction settlement). For example, Bitcoin offers incentives to its validators through
mining rewards and transaction fees. Rewards and transaction fees are often used to
compensate each other. Since the halving policy applies to BTC, rewards for validating
transactions are reduced in half, which results in an increase in transaction fees paid
by users by time in order to compensate for the loss in rewards of validators. Such an
incentive mechanism reduces the possibility that people will use crypto as a medium
of exchange for daily transactions. In this way, transaction fees can be viewed as an
incentive for both users and validators.
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Figure 3.5: Incentive factors.
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Definition 9 (Mining profitability). The ratio derived validators’ gain to the
hashrate and price of the mining machines, and the costs incurred during validation.

Mining profitability is highly dependent on the hardware used by validators and the
current electricity costs, essentially for PoW. Mining hardware (i.e. the performance
of graphics processing units, GPUs) directly associates with the hashrate, which is
the number of hash can be computed for a second. For example, the GPU Nvidia
GTX 1080 is rated the best on minerstat, which costs around US 600$ for one with
8-GB RAM. Electricity costs differ from the region the validators locate. Furthermore,
mining hardware produces heat, which requires a cooling system to avoid machine
breakdown.

In our observations, the average profit for the validators on ETH’s network is around
10% of their costs, see Figure 3.5a. Due to ETH’s transition from PoW to PoS, many
difficulty bombs have been launched from 2021 to force users to accommodate to
the upcoming protocol. The profitability of validators in Figure 3.A.9a significantly
decreases as it requires more computation efforts. At the Merge, it eventually reaches
zero. Figure 3.A.9b has a limited autocorrelation effect and a periodic pattern.

Definition 10 (Fee to reward). The quotient of the transaction fee by the mining
reward.

The fee-to-reward ratio is used to assess the profitability of validation. Rewards and
transaction fee are used to counterbalance each other, in particular for PoW. In order
to stabilize the coin supply and demand, most PoW blockchains have a mechanism
to regulate the number of coins available for rewards. Therefore, to speed up the
transaction settlement, a user must offer an attractive transaction fee to validators,
while the rewards are decreasing. A higher transaction fee encourages validators to
include the transaction in their proposed lists of transactions, i.e. blocks. That is, users
on the network are forced to compete among themselves. The fee bidding becomes a
major obstacle for increasing the scalability and applicability of the coin (Malik et al.,
2022).

In PoS, each validator is encouraged to stake their holding coins on the network and thus
earn passive rewards. The staking rewards are based on how much a coin is validated
and what rewards the network is offering over a given time period. A user’s stake in
coins determines the weight of her vote for block validation, and therefore more coins
staked from different users will secure the blockchain by increasing the difficulty for one
to monopolize the network. This design will reduce the energy-intensive computation
and fee bidding in PoW. In the case of ETH, we can find that the proportion of
transaction fees is generally much lower than the rewards, see Figure 3.5b. Figure
3.A.10a shows that the reward-to-fee ratio has declined significantly since October

https://minerstat.com/hardware/gpus
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2021. Following the EIP-1559 upgrade – named London, ETH introduced the burning
of the base fee, which means a certain proportion of each transaction fee is removed
from circulation and hence it is not given to validators. Base fees, also known as the
market-clearing price, are adjusted by the gas limit and market demand. We see that
the fee-to-reward ratio show autocorrelation, with up to three lags in Figure 3.A.10b.

Definition 11 (Transaction fee). The average transaction fee paid to the network
validators.

As discussed previously, PoW greatly depends on the fee bidding process to encourage
block validation. On the other hand, users broadcast their transactions while the
average transaction fees are low, which indicates fewer demands on the network. Such
a mechanism does not align the users and validators in terms of their utilities. Figure
3.5c shows many outliers in ETH’s average transaction fee, which are mainly from
the observations before the Merge. Since 2022 July, the average transaction fee has
significantly decreased and eventually remained below 1 USD, see Figure 3.A.11a.
Many industry development products, such as dApps, decentralized exchanges, smart
contracts for enterprise applications, altcoins, shitcoins (i.e. meme tokens), stablecoins,
and NFTs, that are backed by the Ethereum network, are benefited from the protocol
upgrade. ETH is widely positioned by the market as a Swiss army knife that aims to
achieve high functionality and applicability, distinguished from BTC. Furthermore, the
average transaction fee presents an autocorrelation, which means that the current fee
level is associated with the previous level.

3.3.5 Developer

In the blockchain pyramid of Figure 3.1, developers are the core of functional character-
istics that determine the entire functionality of a blockchain. According to accessibility
and authority, blockchains can be identified as public (e.g. ETH) and private (e.g.
ripple). Private chains are closed networks that offer registered users the benefits of
cryptography technology, but are not necessarily decentralized or distributed. Therefore,
they are not the focus of this study.

Public chains, on the other hand, are generally open source collaborative projects that
anyone can easily access. The architecture of a blockchain, including any hard and soft
fork upgrades, is a collaborative design with a series of democratic decisions among
voluntary developers. Developer involvement has a significant impact on both technical
and economic performance of a crypto. Normally, their involvement can be observed
through the project repository, such as Github. Below are two indicators that can help
us assess developer involvement.
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Figure 3.6: Developer factors.

Definition 12 (Development contributor). The number of developers involved
within a day for a development event.

Developer engagement create and progress toward the development and adoption of the
blockchain network. They design the front-end and back-end of a proposed blockchain,
which then serves as a foundation for others to follow. Even though blockchains are
being built, they are constantly developing new features and technology to improve
functionality or activate upgrades. By facilitating applications that bring value to the
end-users, developers attract more users, which in turn draws the attention of more
developers.

Figure 3.8 indicates that the daily development contributors on the ETH network
are around 50 developers. The majority of developers in the crypto space are on the
Ethereum network, and the number is continuing to grow (Shen & Garg, 2022). In
Figure 3.A.12a shows, the number of developers involved in ETH’s development events
is considerably dynamic. This may be related to the maintenance and upgrade in
the Ethereum Improvement Proposals (EIPs), which are implemented regularly. This
periodic pattern can be observed in Figure 3.A.12b.

Definition 13 (Development activity). The number of development events in the
project repository of the blockchain.

An event is a specific activity that occurs in the blockchain project’s repository and
initiates a workflow run. Such events include every adjustment made to the repository,
from code commits to new users joining the project. All comments on issues, forks,
stars, etc. are excluded from the development activity here. Typically, a high number
of development events may indicate a significant upgrade of the protocol.

ETH has an average of 300 daily events on its public repository on GitHub, see Figure
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3.6b. Similar to the factor development contributor, the time series of the number of
daily development events shows a periodic pattern, see Figure 3.A.13.

3.4 Market dynamics

This section focuses on the factors that connect users’ trading behaviors, market
dynamics and economic values. Several aspects can be used for characterizing market
dynamics. Here, we examine dynamics via four dimensions. utilities that coin

offers, referring to coin’s market value, the realization of the monetary value of
cryptoeconomics. The value of a coin is determined by its market supply and demand,
which can be associated with the functions that coins aim to offer. For example,
every utility token is used for one specific purpose (e.g. energy token, data token);
shitcoin or memecoin offer no real utility and may be a scam; stablecoin is the coin
that pegs to a reference asset (e.g. gold, fiat money). medium of trading, a channel
for users to exchange coins. The common medium is either on-chain (i.e. decentralized
exchange) or off-chain (i.e. centralized exchange). trading behavior of users in
aggregation instead of at the individual level. applications addressing the use cases
of one particular kind of coin, e.g. the NFT markets.

3.4.1 Coin circulation

Coin circulation is determined by the monetary policy designed and its adaption to
current supply and demand. Historically speaking, we have considered a currency with
price stability and a sufficiently large network of users to be functionally successful.
The majority of crypto assets operate under a decentralized and algorithmic governance
framework, which serves as an invisible hand to equilibrate the supply and demand of
coins and then stabilize the price. Each crypto has its mechanisms for coin emissions
from the ICO (initial coin offering) wallet and coin discards from current market
circulation. Some coins have capped their total supply, which is the number of coins
currently locked up in escrow of the circulating supply. For example, BTC will no
longer release a new coin after reaching 21 million coins.

For ETH, the total coin supply is uncapped and is growing slowly, with an average of
9,000 coins per day during our observation period, see Figure 3.7. The ICO wallet has
released some small amounts of coins, with the highest being around 35,000 coins a day
and the lowest below one coin a day. The coin releases are labelled with red triangles
indicating the release date, as each number of coins is comparably smaller than the
total coin supply. Since the London upgrade on August 5, 2021, which introduced a
new burn mechanism, ETH has burned many coins, with the highest being more than
2,800,000 coins a day and the lowest being around 3,000 coins a day. The burned coins
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are marked with a blue area. Furthermore, there exist other monetary measures that
we have not mentioned or observed, and they are cooperating with the adjustment
of the coin supply over time. We, therefore, investigate the deviation between two
consecutive days.
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Figure 3.7: The dynamics of ETH coin supply. The gray area is the current coin supply,
the blue area is the burned coins, and the red triangles around 0 are the times having any
ICO released coins. The vertical dashed and dotted lines represent the times for London
(EIP-1559) and Merge (EIP-3675) upgrades, respectively.
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Figure 3.8: Coin circulation factors.

Definition 14 (Supply deviation). The difference between the current day circulated
coins and the previous day’s.

We are interested in how the monetary policy regulates supply, rather than investigating
the total supply over time that remains relatively steady. Supply deviation reflects how
coin release and burning, and other monetary measures on ETH influence the entire
network. Figure 3.8a presents that the deviation per day is generally a positive sum, but
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there is an outlier that reduces the coin supply by around 60,000 coins. Until December
2022, the total supply of ETH has been steadily increasing, see Figure 3.A.14a. The
highest level of coin burning occurs in May of the same year, which corresponds to the
lowest outlier. After the Merge, ETH’s supply deviation significantly drops in October,
and then it starts deviating around 0. Figure 3.A.14b shows that the supply deviation
has autocorrelation, with up to 6 lags.

Definition 15 (Coin age). The average amount of days that each coin has stayed in
its current addresses.

Coin age indicates how long a coin has been in a user’s possession, which are often used
as a way to prioritize its use in transactions or mining. It also indicates the liquidity of
a coin. A long coin age indicates that users often trade in a long position and own the
security, which means that most users consider such a crypto coin as an investment
instrument. Conversely, a short coin age represents trading in a short position, which
can be considered high speculation in the market or it has been used as a medium of
exchange depending on price stability. This factor is related to the aggregate behavior
of the entire network.

Figure 3.A.15a demonstrates that the average coin age of ETH continues to grow
steadily, and that the entire market has an accumulation trend. The time series does
not demonstrate significant autocorrelation in Figure 3.A.15b. The holding period
is approximately 670 days, that is, there exist many long-term holders in the ETH
network, see Figure 3.8b. Since PoS rewards staking, the coin age may continue
to increase. Similar to energy for PoW, coin age becomes an expensive resource to
accumulate in massive quantity, which can be a potential drawback for PoS.

Definition 16 (Velocity). The average frequency that a coin gets transferred around
addresses within a day.

Compared to coin age measured in units of time, velocity considers the frequency of a
coin’s transfers within a day. It can be viewed as a turnover of a crypto. The higher
the velocity the coin, the more flourishing its market, with more users and transactions.
Attacking the drawback of staking, PoSV (Proof of Stake Velocity), Reddcoin consensus
algorithm, emphasizes the concept of velocity (Ren, 2014). It encourages coin transfers
among users by defining coin aging as an exponential decay function instead of a linear
one. That is, a coin with a lower coin age gains its weight of the vote quickly, while
one with a higher coin age gains its weight increasingly slowly.

Figure 3.8c shows that the average velocity of a day for ETH is around 4 transfers.
The most frequent transfers of coins occur from April to July in 2021, as Yuga Labs
– the creators of the NFT collection: Bored Ape Yacht Club (BAYC) – launched
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its Metaverse project “Otherside” and sold 55,000 NFTs, see Figure 3.A.16a. In the
following, ETH’s velocity starts to decrease and remains around its mean. Furthermore,
it exhibits autocorrelation, with up to 8 lagged values.

3.4.2 Market scale

In this section, we examine the total market value of a coin and the financial value
of trading per day. Market scale can be linked to coin adoption as well as aggregate
transaction behavior. The more users and transactions of a crypto, the higher its
adoption. Financial value discussed here is measured in US dollars.
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Figure 3.9: Market scale factors.

Definition 17 (Market capitalization). The current market value of all unspent
transaction outputs of a crypto that are circulating within the network.

Unspent transaction output (UTXO) denotes a transaction output that can be used as
input in a new transaction. Market capitalization (market cap) is simply derived by
multiplying UTXOs, which are the current circulating supply, by the current price. It
is the most common measure for the financial size of a crypto. Often, a stable market
is considered to be one with a stable market cap, even during the turbulence.

The market cap of ETH reaches its all-time high of around 570 billions USD in
November 2022, and it suffers from continuous downhills since then, see Figure 3.A.17.
The continuous downhills can be observed in Figure 3.9a. There is a higher probability
at the bottom of the violin plot. Over the observation period, ETH’s market cap is
not stable, with a high standard deviation of over 100 billion USD. After the Merge, it
remains around 150 billions USD.

Instead of using market value, i.e. current price, realized capitalization (realized cap)
uses realized value – which is the price at the time the coin last moved – to determine
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the capitalization of a crypto. The last moved price is also the basis cost of obtaining
a coin. It emphasizes the actual presence of coins in the blockchain network, while
discounting the impact of lost and dormant coins, which are coins that have not been
transacted for a long period of time. We illustrate ETH’s market cap and realized cap in
Figure 3.10; mark the difference between them in green as Market cap ≥ Realized cap
and in red as Market cap < Realized cap. The market cap of ETH was continuously
higher than its realized cap by a large deviation before June 2022, and the market has
an uptrend. That is, the market is aggregating profit and users are buying at low and
selling at high. Later, as the market cap is lower than realized cap. The market begins
to experience a downtrend and accumulates loss. Investors tend to trade at a lower
price than ETH’s current market value as they are bearing the market. Especially, two
slight downward trends occur following the Merge. Ethereum market is recovering and
receiving increasing attention from users as its protocol is updated.

Jan
2021

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan
2022

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan
2023

100B

200B

300B

400B

500B

U
SD

Figure 3.10: Market cap and realized cap. The colored area is Market cap ≥ Realized cap
and Market cap < Realized cap. The vertical dotted line is the date of the Merge upgrade.

Definition 18 (MVRV). The ratio of a crypto’s market capitalization to its realized
capitalization.

As previously discussed, the realized cap provides a meaningful insight into actual
market evolution and profitability when compared to the market cap. MVRV (market-
value-to-realized-value) concludes the concept of the comparison and discloses whether
the crypto is undervalued or overvalued by the market. For example, if the MVRV is
smaller than 1, then the crypto is undervalued and not profitable.

Figure 3.9b shows that ETH’s market cap is generally higher than its realized cap,
with an average of around 200% higher. In other words, ETH is a rather profitable
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crypto. However, the MVRV has a significant downward trend and approaches below
0 after the Merge, see Figure 3.A.18. The market is still undervalued and not fully
recovered. Figure 3.A.18b shows there is limited autocorrelation, with up to 2 lags.

3.4.3 Transaction pattern

In this section, we focus on users’ collective trading behaviors. Depending on the
current economic status and market value of a crypto, rational users will change their
investment strategy to accommodate their risk tolerance and future needs for capital.
Particularly, cryptocurrency prices suffer from high volatility, and they have often
been considered an asset for speculation by the public. An investment strategy that
is adaptive and market-focused is of importance. Consequently, a rapid change in
the collective trading behaviors has often been discovered in crypto markets. Many
research studies have indicated that there is a coordination mechanism for the trend of
herding and feedback behaviors in crypto trading (Gurdgiev & O’Loughlin, 2020; King
& Koutmos, 2021).
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Figure 3.11: Transaction pattern.

Definition 19 (Trading volume). The total dollar amount of transactions of a day.

Trading volume provides an important link between momentum and value strategies
(Lee & Swaminathan, 2000). For example, the magnitude and persistence of price
momentum are a function of trading volume. As trading volume is an aggregate user
behavior, it has been used to observe speculation and other collective trading behaviors,
e.g. herding (Youssef, 2022); speculative trading (Bouoiyour et al., 2015); wash trading
(Cong et al., 2022).

ETH has a daily trading volume of around 5 million USD, with a standard deviation
of more than 3 million USD which is considerably volatile, see Figure 3.11a. ETH’s
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trading volume surges to an all-time high in May 2021 and significantly decreases
as approaching the upgrade EIP-1559 (London) in August, which aims to reduce
everlasting high transaction fee. Figure 3.A.19b demonstrates that the trading volume
has autocorrelation of fifth order.

Definition 20 (Transaction value). The average amount of transaction value per
day.

From the daily transaction count, we can determine the average transaction value from
trading volume, which can help us distinguish what role a crypto plays toward users.
With many small value transactions, it may be seen as a medium exchange instead of an
asset for speculation. High-value transactions, however, often occur during speculation
or specific events, such as hacking attacks, an exchange’s bankruptcy, or governmental
policy changes.

In Figure 3.11b, the largest outlier occurs on May 19, 2021, with the average transaction
value around 19,373 USD during the crypto crash. This could indicate that users are
actively avoiding future loss. The transaction value then starts to decrease, with an
average of 4,200 USD, see Figure 3.A.20a Figure 3.A.20b shows that ETH’s transaction
value has autocorrelation, with up to 7 lagged values. This could be related to the
herding and feedback trading behaviors.

Definition 21 (Whale transaction). The amount of transactions a day that exceed
105 USD.

Whale transactions often involve large coin holders and institutional users, who have a
significant impact on coin supply and demand as well as market sentiment. Their coin
movements are considered a major driver for price fluctuations, as a result, there are
many crypto whale trackers, such as ClankApp and Whale Alert. Figure 3.12 shows
that ETH’s average transaction value evolves similarly with its whale transaction count,
which indicates that these whales have a heavy influence on its average transaction
value.

Whales are viewed as early adopters who exert market power by manipulating prices,
i.e. pump and dump, and further triggering market informational cascades or herding.
That is, the extreme imbalance of coin holding leads to information asymmetry and
adverse selection in the market (Tiniç et al., 2020). Particularly, PoS may provide
these whales with an opportunity to dominate the blockchain network, as they stake
more coins and obtain higher weight of their votes. Furthermore, whale transactions
can also crowd out low-value transactions, as they are able to offer higher transaction
fees to validators, corresponding to Zimmerman, 2020’s study. In Figure 3.12, the
similarity between the whale transaction count and average transaction value may be
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Figure 3.12: Daily whale transaction count and average transaction value.

explained by such a phenomenon. This effect of crowding out can prevent the crypto
from being a medium of exchange.

Figure 3.A.21a shows that the transactions that exceed 105 USD pump up to an all-time
high of around 41,000 transactions on May 21, 2021, and begin to drop to the level
of around 7,500 transactions. The deviation of whale transaction count is large, i.e.
large-valued transactions do not occur in a daily basis, see Figure 3.11c. We observe
autocorrelation, with up to 7 lagged values in ETH’s daily whale transaction count.

3.4.4 Exchange activity

There are currently over 600 crypto exchanges worldwide according to CoinGecko.
These exchanges rely on clearing trades and off-chain scaling. They offer more advanced
asset-management tools and diverse financial products, e.g. crypto derivatives, options,
and futures, Users can trade between multiple cryptos and fiat currencies as well as
other crypto-extended financial products with ease and flexibility. However, it may
exacerbate the unregulated and volatile nature of cryptos with exchange third-party
risk exposure, which may subject users to significant risk of loss. In November 2022,
one of the largest exchanges worldwide, FTX, collapsed due to a shortage of liquidity.
This triggered a chain effect among exchanges and resulted in an unstable market
(Wang et al., 2022). Since exchanges are common in crypto markets, they have held
many coins for users and reserves. Their activity therefore has the potential to influence
the entire market.

Definition 22 (Flow balance). The difference between the amount of USD flows in
and out of exchange wallets.

https://www.coingecko.com/en/exchanges
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Figure 3.13: Exchange activity.

Many users invest in cryptocurrencies by trading them on exchanges instead of doing
on-chain trading that involves volatile transaction fees and complex operations on
the blockchain. Moreover, small-valued transactions are often crowded out by whale
transactions in PoW, as higher valued transactions offer high fees to the validators.
This increases the popularity of exchanges, for example, the biggest exchange Binance
has a daily trading volume over 25 billion USD, see CoinMarketCap for the up-to-date
information. The flow balance of the exchange wallet provides a summary of user
behavior, indicating whether the majority of users are depositing funds to participate
in the market or withdrawing them.

During the observation period, the average exchange wallet for ETH has a balance of
-14,000 USD, which indicates that users withdraw more than they deposit, see Figure
3.13a. Out of 740 days, there are 426 days where the withdrawal amount is larger than
the deposit The largest amount of withdrawal in Figure 3.A.22a is on November 15,
2021 which is during the period that ETH’s price reaches its all-time high. It comes
with a spike after the merge and then drops down. The time series of flow balance
shows really limited autocorrelation in Figure 3.A.22b.

Definition 23 (Withdrawal transaction). The total number of transactions that
involves the withdrawal addresses of exchanges.

Withdrawal transaction count considers any transactions linking to exchange with-
drawal addresses, regardless of transaction value. Without the influence of large-valued
transactions, it can provide a better representation of collective user sentiment and
activity within exchanges. ETH has around half a million withdrawal transactions on
exchanges per day, and the amount deviates greatly with the standard deviation of
around 150,000 transactions, see Figure 3.13b. It has been receiving increasing sell pres-
sure from exchanges since April 2021. Especially after FTX’s bankruptcy in November

https://coinmarketcap.com/rankings/exchanges/
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2022, the withdrawal count surges to an all-time high of over a million transactions in
December, see Figure 3.A.23a. ETH’s withdrawal count shows autocorrelation with up
to 4 lags, which indicates that selling from users has persistence.

3.4.5 Wealth distribution

Wealth distribution refers to the distribution of coins in a crypto network. It is a
common measurement for wealth inequality. As previously discussed, whale transactions
can have a significant impact on coin supply and demand, which could push a crypto to
be an asset for speculation. Particularly under a PoS protocol, a large disparity in coin
distribution leads to voting inequality. That is to say, it builds a barrier for small coin
holders to participate in consensus making. Gupta and Gupta, 2018 points out that the
rich have actually become richer, and that steps should be taken to curb such a wealth
accumulation model in the network in the case of Bitcoin. Despite the functionality of
a blockchain, fair wealth distribution also determines a crypto role in the market, such
as a medium of exchange or speculative asset. Here, we take the supplies on exchange
and non-exchange top holder in the discussion. The non-exchange top holders are the
top 10 ETH addresses that have the highest balances of a day and are not owned by a
known exchange. Figure ?? displays the proportions of ETH’s held by exchanges and
top holders over the total coin supply. Coins on exchanges start declining, while the
ones on non-exchange top holders continue to increase. Overall, supply on exchange
and non-exchange top holder accounts for around a third of the total supply.
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Figure 3.14: Exchange dominance, non-exchange top holder dominance and aggre-
gate (both) dominance. The vertical dotted line is the date of the Merge upgrade.

Definition 24 (Supply on exchange). The number of coins held by exchange
addresses.
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Figure 3.15: Wealth distribution.

Crypto exchange is a common channel for small coin holders who often value ease of
use, a high variety of assets, deep liquidity, and customer support. Therefore, exchange
wallets often include small coin holders’ supply. ETH’s supply on exchange is average
18 million coins, see Figure 3.15a. Figure 3.A.26a indicates that the supply on exchange
continues to decline and peaks up while the Merge is happening. The supply on
exchange is autocorrelated with only one lag in Figure 3.A.25b.

Definition 25 (Supply on non-exchange top holder). The number of coins held
by the top addresses, excluding exchange addresses.

Non-exchange top holders are the top 10 addresses that have the most coins on the
network, and exclude any exchange address. They are either an individual or an
institution that does not serve as a platform for others’ transaction settlements.

The top ETH holders by their balance can be found in Etherscan. The top 10 ETH
holders continue to increase their holdings until May 2022, and then gradually reduce
their holdings, see Figure 3.A.26a. After the Merge, they start buying ETH again.
The supply on these holders is only autocorrelated by the first lag in Figure 3.A.26b.
Figure 3.15b indicates that the top ETH holders remain holdings steadily around 20 to
25 million coins.

3.4.6 Social media

It is often noted that market sentiment is a metric for the influence of social media
on an investor’s overall attitude toward a particular market or an asset. Market
sentiment varies depending on the text classification (i.e. positive, negative, neutral)
for news, messages, comments, or other textual data from public media sources such
as Twitter, Reddit, or Nasdaq news. By aggregating sentiment scores from each

https://etherscan.io/accounts
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textural data, it provides a straightforward narrative to explain market behaviors.
Numerous research studies have indicated that the crypto market is susceptible to
market sentiment or investor attention (Chen & Hafner, 2019; Rognone et al., 2020).
There are, however, many challenges to interpretation, such as word ambiguity, irony,
sarcasm, and multipolarity. Also, it is difficult to have a single source of data that can
represent the market.
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Figure 3.16: Social media.

Definition 26 (Weighted sentiment). The difference between the positive and
negative sentiments weighted by social volume over the observation period, excluding
any duplicated messages.

According to classification models, corpuses used, or aggregation methods, there are
different measures to consider market sentiment. Here, we use weighted sentiment –
sourced from Santiment – as an example, see Appendix 3.B for details.

ETH’s wighted sentiment is generally neutral to positive with an average of 0 slightly
higher than 0.in Figure 3.16a. During our observation period, it appears multiple times
during the Merge upgrade and approaches its all-time high, see Figure 3.A.27a. ETH’s
PoS is viewed positively by users. The weighted sentiment has autocorrelation, with
only up to 2 lagged values.

Definition 27 (Social volume). The number of mentions of a coin on social media,
i.e. Telegram, Twitter, Reddit, Bitcointalk.

Alternative to market sentiment metrics, the frequency with which a crypto has been
searched or mentioned is often regarded as the popularity of the crypto. Several
common metrics used in the literature include Google trend, Twitter hashtags, and
Reddit mentions.

https://santiment.net/
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Sourced from Santiment, the daily ETH social volume is around 8600 mentions, see
Figure 3.16b. Any special event, such as releases of protocol upgrades, often induces
spikes in social volume in Figure 3.A.28a. Figure 3.A.28b exhibits that ETH’s social
volume has autocorrelation until 5 days. It demonstrates higher autocorrelation than
the weighted sentiment, since weighted sentiment discards the sentiment value between
the interval [−0.7, 0.7], which leads sentiment spillover to be omitted.

3.4.7 Applicability

In accordance with each crypto’s blockchain, there exists a variety of extension ap-
plications that create an extension market. Applicability hinges on this blockchain
to conduct transactions and support its functions. Examples include NFTs to Enjin
(ENJ) and Ethereum, blockchain oracle to Chainlink (LINK), data exchange market to
Ocean Protocol (OCEAN), and energy transition to Energy Web Token (EWT).

Since this study focuses on the Ethereum market, we use the NFT market for discussion
below. NFTs are a digital token used as a proof of ownership and authenticity for both
unique tangible and intangible assets such as artworks, domain names, in-game assets,
and luxury goods. The first NFT standard, ERC-721, was launched by ETH. The
following token standard, ERC-1155 Multi Token Standard, enables the efficient transfer
of fungible and non-fungible tokens in a single transaction, which significantly reduces
the transaction costs. Because ETH has more liquidity than most other cryptos, it is
the most popular blockchain for NFT development and the main medium of exchange
for NFTs.
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Figure 3.17: Applicability.

Definition 28 (NFT transaction count). The total number of NFT transactions a
day.

https://santiment.net/
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NFT transactions are active in the year 2021, but they decline significantly later, see
Figure 3.A.29a. Similar to the auction market, we observe a trading pattern that is
irregular. The outliers in Figure 3.17a that frequently occur are also an indication.
Thus, the NFT transaction count does not show significant autocorrelation in Figure
3.A.29b.

Definition 29 (NFT trading volume). The total USD amount of NFT transactions
of a day.

The NFT trading volume here depends on the change in the value of the medium of
exchange, i.e. ETH. A creator often considers the current price of ETH and transaction
costs when determining the listing price of an NFT. Especially, ERC-721 is still widely
used and does not facilitate a single transaction for multiple tokens. To sell an NFT,
two transactions must be made: one for NFT trading and the other for ETH trading.

The NFT trading volume is on average 4 million USD a day, however, there are several
large valued outliers in Figure 3.17b. The largest sales occur on October 28, 2021,
which is the date that a CryptoPunk #9998 was sold for 124,457.07 ETH. Otherwise,
the trading volume remains low, even as zero in a day, see Figure 3.A.30a. Because the
market is so extreme, Figure 3.A.30b shows that there is no significant autocorrelation.

3.5 Economic attribute

Cryptocurrencies have been considered to be volatile, experiencing short-lived bursts
of upward and downward movements over time. Volatility is time-varying, but often
exhibits persistence, by which the current return has a large effect on the unconditional
variance of many following periods. This is also known as a stylized fact – volatility
clustering

Volatility persistence in the crypto markets is inevitably ruled by the blockchain
characteristics, which yield various market microstructure noises, such as discrete price
changes, gradual responses of prices toward market sentiment, and bid-ask bounces
(Dimpfl & Peter, 2021). The microstructure noise may cause a spurious autocorrelation
in high-frequency returns that worsens when estimating volatility using high-frequency
data (Andersen et al., 2017). In order to understand the dynamics of the crypto return
volatility, we opt for a volatility model that enables disentangling the desired persistent
behavior from the part contaminated by microstructure noises. The Beta-t-EGARCH
model (A. Harvey & Lange, 2018) is proposed and employed here in the hope of
separating the long-run volatility component from the short-run part. In this paper, we
discuss log returns, the two volatility components, and volatility (conditional standard
deviation) derived from log returns as economic attributes. In the following, we review
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the formulation of the model and review the characteristics of short and long-run
volatility components.

3.5.1 Beta-t-EGARCH

It has been observed that the crypto market exhibits a high degree of volatility clustering
and asymmetry, and is contaminated with outliers or jumps (Dutta & Bouri, 2022;
W. Zhang et al., 2018). To account for the distributional characteristics of cryptos,
we use an exponential specification of volatility, an exponential GARCH, EGARCH
(Nelson, 1991). However, the EGARCH is not robust in the presence of outliers or
jumps. One may need to adopt the dynamic conditional score (DCS) model in which
each dynamic equation that drives a time-varying model parameter is updated by the
conditional score of the log-likelihood with respect to the same time-varying parameter
(Blazsek & Licht, 2020). The standard residual that updates each dynamic equation
in the parameter driven model is replaced with a score function. Exponential DCS
(dynamic conditional score) volatility model: Beta-t-EGARCH model (A. Harvey &
Sucarrat, 2014) with t = {1, . . . , T} is written as

yt = exp(λt|t−1)εt (3.1)

Given the non-normality and fat tails of crypto returns, we assume εt has a Student
tν-distribution with the degree of freedom ν > 2. If ν → ∞, then the model converges
to a Gaussian density function. exp(λt|t−1) is the scale with a dynamic equation driven
by the score ut with respect to yt. The dynamic equation for the log of scale is

λt+1|t = δ + ϕλt|t−1 + κut (3.2)

with conditional score
ut =

(ν + 1)y2t
ν exp(2λt|t−1) + y2t

− 1 (3.3)

where −1 ≤ ut ≤ ν and variance is the square of the scale, i.e. σ2
t|t−1 = exp(λt)

2[ν/(ν−
2)]. ut is IID, and may expressed as ut = (ν + 1)bt − 1 where, for finite degree of
freedom 0 < ν <∞,

bt =
y2t /ν exp(2λt|t−1)

1 + y2t /ν exp(2λt|t−1)

and 0 < bt < 1, distributed as beta(1/2, ν/2) over time, see A. C. Harvey, 2013, p. 99.
So, E(ut) = 0 and σ2

u = 2ν/(ν + 3). Incorporating the leverage effect that volatility
tends to respond to price drops than to rises, the first-order model, Equation 3.2, is
written with the sign of the observations as

λt+1|t = δ + ϕλt|t−1 + κut + κ∗u∗t (3.4)
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where κ∗ the parameter to be estimated, which is normally non-negative, due to taking
signum function of minus yt, i.e. u∗t = sgn(−yt)(ut + 1). Given a positive return, the
term κ∗u∗t enables λt|t−1 to respond asymmetrically to positive and negative values of
yt, e.g. u∗t < 0, volatility can be downward sloping. With the restriction κ ≥ κ∗ ≥ 0,
one can impose that an increase in the absolute value of a standardized observation
does not lead to a decrease in volatility.

To subtract the structure noise from the crypto returns instead of capturing long
memory by a fractionally integrated process, we use two component setting, that is,

λt|t−1 = ω + λ1,t|t−1 + λ2,t|t−1 (3.5)

with long-run volatility component and short-run volatility component written as

λ1,t+1|t = ϕ1λ1,t|t−1 + κ1ut

and
λ2,t+1|t = ϕ2λ2,t|t−1 + κ2ut + κ∗u∗t ,

respectively. ϕ1 ̸= ϕ2 imposes to ensure identifiability of the model. Having ϕ1 close to
one presents the persistence in long-run volatility component; while short-run volatility
component has usually a higher κ2 with lower ϕ2. Here, the leverage effect, termed
κ∗u∗t , is only included in λ2,t+1|t. In this case, the evolution of λ1,t+1|t is less susceptible
to the effect of strongly negative returns and so can be suitable for capturing the
ARCH-M effect, i.e. volatility clustering, persistence (Engle & Bollerslev, 1986). The
skewness can be introduced by subtracting the expectation of εt, denoted as µε from
the error term in Equation 3.1, i.e. ε∗t = εt − µε where ε∗t ∼ skew-t(0, σ2

ε∗ , ν, γ), ν > 2,
γ ∈ (0,∞), see A. Harvey and Sucarrat, 2014. If γ = 0, then we get a symmetric
t-distribution. γ > 1 is the right-skewed; γ < 1 is the left-skewed.

3.5.2 Volatility component

Figure 3.18 compares ETH’s log returns with the fitted conditional standard deviations
of the one-component model and the two-component model, and the model coefficients
are shown in Table 3.C.1. The log return series of the ETH is clearly characterized
by time-varying volatility. The two-component model is more sensitive and volatile
to the dynamics of log return series. Figure 3.19 demonstrates ETH’s long-run and
short-run volatility components. The long-run has a relatively lower frequency than
the short-run.

Short-run volatility component captures return skewness risk driven by a strong
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Figure 3.18: ETH log returns (%), fitted conditional standard deviation of the
one-component model, and fitted conditional standard deviations of the two-
component model.

leverage effect (Adrian & Rosenberg, 2008). Such skewness risk increases endogenously
in pricing theories with financial constraints (Hong & Stein, 2003; Yuan, 2005). In the
presence of different levels of microstructure noise, i.e. considering short-run volatility
component, the permanent component – trend in time series can be concealed. Thus,
it distorts price discovery and arises the market instability. As crypto investors highly
depend on market sentiment (López-Cabarcos et al., 2021) and the market pervades
information asymmetries and adverse selection, we expect that the influence from the
short-run volatility component is higher than the classic financial assets.

Long-run volatility component preserves a higher level of persistence than the short-
run. It often links to the business cycle or economic shifts in the market. Conrad et al.,
2018; Fang et al., 2020 investigate the determinants of Bitcoin long-run volatility and
associate it with the global economics and the other assets. Since cryptos are technology-
driven, we expect that such exogenous influence from the global economics reflects
on the endogenous factors in cryptos, i.e. the dynamics of blockchain characteristics.
Also, we might relate the long-run volatility component to the deign and update of
blockchain system.

Given above, we define a simple risk measure to see the degree of distortion from noise.
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Figure 3.19: Two compoents.

We calculate distortion level (DL) for each time t.

DLt
def
=

[︃
exp(λ2,t)

exp(λ1,t) + exp(λ2,t)

/︃
exp(λ2,1)

exp(λ1,1) + exp(λ2,1)

]︃
× 100

where λ1,t and λ2,t are the long-run and short-run volatility components. DL is high if
the crypto is highly influenced by (microstructure) noise; and otherwise. Figure 3.20
shows the distortion level of ETH. Our observations indicate that there is an increase
in distortion level of ETH following a sudden drop of log return, that is, there may
be more noises in the market. Moreover, despite a delay, the distortion level bears a
resemblance to the 7-day moving average of log returns.

3.6 Data description

In this paper, we investigate whether the underlying blockchain functionally influences a
cryptocurrency’s economic performance, as well as whether aggregate market behaviors
operationally direct this performance. We use Ethereum as an example. Particularly,
it has been one of the major cryptos and has involved several interconnected protocol
upgrades which have resulted in a variety of different dynamics in its ecosystem and
cryptonomics, referred to Figure 3.1. The details of ETH upgrades are available in
The history of Ethereum. ETH’s empirical data used is sourced from Santiment API
and BitInfocharts. The data for energy consumption proxy is retrieved from Ethereum
Energy Consumption Index from Digiconomist. The period is between January 01,
2021, and January 10, 2023, with a daily frequency. There are 33 time series factors
in conclusion, comprising 13 factors of functional characteristic, 16 factors of market

https://ethereum.org/en/history/
https://santiment.net/
https://bitinfocharts.com/
https://digiconomist.net/ethereum-energy-consumption
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Figure 3.20: Distortion level. The bar chart in the upper panel shows positive log returns
and negative log returns. The moving average of log returns over 7 days is in the lower panel
in dotted line. The vertical dotted line is the date of the Merge upgrade.

dynamics, and 4 factors of economic attribute. We plot each time series factor and check
its autocorrelation in Appendix 3.A. Table 3.D.1 summarizes their descriptive statistics,
including mean, median, maximum, minimum, variance, skewness, and kurtosis.

3.7 Causal discovery

Causal discovery methods have undergone numerous developments, with an emphasis
particularly on modern machine learning techniques and nonlinear causal dynamics
(Imbens, 2022; Shojaie & Fox, 2022). Still, we apply the classic Granger causality (GC)
test (Granger, 1969) because of its simplicity and wide adoption. Without any prior
hypothesis, the GC test allows us to pinpoint directional influences of time series on
one another. Thus, we are able to examine the cause and effect relationships among
the multivariate time series defined as functional characteristic, market dynamics, and
economic attribute of Ethereum.

3.7.1 Granger causality

Consider two time series x(i) = {x(i)t }Tt=1 and x(j) = {x(j)t }Tt=1 where i, j = {1, . . . , n}
and i ̸= j. The GC test examines whether including the past observations of x(j) can
help to predict future values of the other series x(i), and vice versa. If so, we say x(j)
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Granger causes x(i), i.e. x(j) GC⇒ x(i). The linear prediction model here is formulated as

x
(i)
t = c0 +

p∑︂
τ=1

ϕ(i)
τ x

(i)
t−τ +

p∑︂
τ=1

ϕ(j)
τ x

(j)
t−τ + ηt (3.6)

where ϕ(i)
τ and ϕ

(j)
τ are coefficients; τ = {1, . . . , p} the time lag; ηt

iid∼ Nn(0, σ
2) the

error term; c0 a constant. The hypothesis is to state that H0 : ϕ
(j)
τ = 0, ∀τ . That is,

σ2(x(i)|U ′) = σ2(x(i)|U ′ − x(j)′) ≻ x(j)
GC⇏ x(i) where U ′ ⊂ U is a set of prior values of

the all causative variables; and x(j)′ ⊂ x is the prior values of time series x(j). The GC
test is performed pairwise on the 33 time series collected or computed.

As classic GC tests require the stationarity of time series variables, we accordingly con-
duct Augmented Dickey-Fuller (ADF) tests for stationarity check with a 95% confidence
interval. Table 3.D.2 shows that the 13 factors – development contributor, development
activity, velocity, flow balance, supply on non-exchange top holder, weighted sentiment,
social volume, NFT transaction count, NFT trading volume, log return, long-run
volatility component, short-run volatility component, and volatility fulfill stationarity.
The rest of the factors are stationary at their first difference (∆).

Instead of having a fixed lag order for all the pairs of variables, the maximum lag length
p days for each pair in the GC test is determined by Bayes information criterion (BIC)
of vector autoregression (VAR) models, such that p̂ = argmin

p
[log |Σ̂p|+ (k2p log T )/T ]

where T the number of observations; k the dimension of the time series, i.e. k = 2

for bivariate VAR; p = {1, . . . , T − 1} the estimated number of lags; Σ̂p the estimated
noise covariance matrix. BIC places a much higher penalty on the model and avoids
overestimation while comparing to AIC (Akaike information criterion) (Gredenhoff &
Karlsson, 1999; Ng & Perron, 2005). Table 3.D.3 shows the estimation result of the
lag length for all pairwise combinations of factors. Based on the estimated lag lengths,
Table 3.D.4 presents the Granger causality result for each pair under a 95% confidence
interval.

3.7.2 Causal network

Given the pairwise GC test results, we define a granger causal network as a directed
graph G def

= (V,E) in which a finite and non-null set V of vertices are connected through
a set E ⊆ V × V of edges. Each vertex x(i) ∈ V denotes a factor and i = {1, . . . , n},
i.e. m = 33 here. Each edge (x(j), x(i)) ∈ E denotes the causal linkage between two
factors and j = {1, . . . , n} where j ̸= i. An edge (x(j), x(i)) exists only if x(j) GC⇒ x(i)

and p ̸= 0, that is, the Granger test for the pair of factors rejects the null hypothesis
under a 95% confidence interval.
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Ignoring the causal direction, Figure 3.21 shows ETH’s causal network structured
according to the empirical evaluation framework proposed as of Figure 3.1. Depending
on the types of components, each factor is colored. There are causal relationships
between the factors, with the exception of supply deviation. The changes in ETH’s
supply deviation are not followed by nor cause a significant change in the other
factors in our observation period. In other words, the influence of monetary policies
on ETH’s supply may not be transmitted to its blockchain ecosystem and market
dynamics. Policies such as the base fee burning in the London upgrade do not induce
demand compensation for later settlement, or substitute with other assets. Moreover,
MVRV and market capitalization have limited connections to the others within market
dynamics, i.e. trading volume.

To account for the causal direction, Table 3.1 presents the in and out degree of each
vertex. As for economic attributes, there are fewer connections outgoing from them
to other factors than the incoming. Functional characteristics tend to have more
out-degree connections than in-degree ones; whereas factors in market dynamics show
the opposite. Economic attributes and market dynamics may be considered a response
to blockchain mechanism.

3.7.3 Uncovering the invisible hand

Following, we discuss each economic attribute one by one. Each value on each edge
indicates the lag length of days.

Log return (%). Figure 3.22 illustrates the in-degree and out-degree of ETH’s
log return. Log return is influenced by factors such as difficulty adjustment, energy
consumption, mining profitability and fee-to-reward. These factors are significantly
changed after the ETH’s update of the consensus algorithm. Given such a precedence
relationship between them, it appears that the transition from PoW to PoS does reflect
on ETH log return. Development activity and development contributor designate how
actively the blockchain repository is revised. Both factors have a higher lag order
toward log return. It is a proof that ETH has a nature of high digitalization fueled by
technology and algorithm advancement.

The linkage from coin age shows that the average holding days of a ETH is related to
log return; while both block time and throughput considered as ETH’s service level
(Lin et al., 2021) have no connection to it. This suggests that ETH has not yet been
considered a medium of exchange, since the change in ETH’s return does not respond
to how long a transaction is processed, but how long people hold it. Enlightening
Ellingsen and Johannesson, 2009’s study, investors demand no compensation for their
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Figure 3.21: Granger causal network. Factors are colored according to the components
they belong to – functional characteristic, market dynamic, and economic attribute
The number in brackets represents the number of undirected connections between each factor
and the other, e.g. block utilization (%) has 11 linkages with the other factors.
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Table 3.1: In-degree and out-degree.

Factor In-degree Out-degree

∆ Block utilization (%) 9 6
∆ Block time 0 6
∆ Throughput 0 5
∆ Network growth 0 9
∆ Network activeness (%) 2 2
∆ Difficulty adjustment 1 6
∆ Energy consumption 1 5
∆ Non-zero balance address 0 8
∆ Mining profitability (%) 4 8
∆ Fee to reward (%) 3 7
∆ Transaction fee 2 5
Development contributor 4 8
Development activity 4 8
∆ Supply deviation 0 0
∆ Coin age 1 8
Velocity 2 4
∆ Market capitalization 2 1
∆ MVRV (%) 2 1
∆ Trading volume 5 6
∆ Transaction value 11 5
∆ Whale transaction 10 11
Flow balance 3 0
∆ Withdrawal transaction 3 3
∆ Supply on exchange 5 1
Supply on non-exchange top holder 1 3
Weighted sentiment 7 2
Social volume 6 3
NFT transaction count 2 1
NFT trading volume 4 0
Log return (%) 9 1
λ1,t 10 0
λ2,t 11 0
σ2
t|t−1 10 6
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time investments, whereas almost all subjects require compensation for equally costly
monetary investments.

Supply on non-exchange top holder is the aggregate ETH’s possessed by the top 10
highest balance addresses, known as whales. The transaction behaviors of these whales
induce a change in log return, but supply on exchanges, where many small amount
ETH holders transact, is not causally linked. The rich may have a significant influence
on ETH’s economy, which implies that there is an inequality in power.

Weighted sentiment has a causal link to log return. However, from Table 3.D.4 weighted
sentiment has inflows from block time, non-zero balance address, coin age, velocity,
transaction value, whale transaction, and σt|t−1 and outflows to block utilization and
log return. The inflows to weighted sentiment suggest that there are factors that
precede the sentiment happening. The outflows confirm that today’s research into
the connection between sentiment and crypto volatility is well-founded. A similar
phenomenon is also found in social volume, as of Table 3.D.4. Last, users on ETH’s
network consider monetary gains before broadcasting transactions, as log return is
directed to block utilization.

Long and short volatility components. The Beta-t-EGARCH model is employed
to decompose volatility into two components - the long-run component, commonly
associated with structural changes in the market, and the short-run component, which
is linked to market noise. From a causation perspective, the two components have no
outgoing connections. Both have no linkage to log return. Figure 3.23 demonstrates the
incoming connections for the two components. Similar to ETH’s log return, development
contributor and development activity show a causal relationship to them. Interestingly,
the long-run volatility component is directed by block utilization, whereas log return
directs block utilization. Throughput change causally links to both long-run and short-
run components. One possible explanation for this is herding and feedback trading,
which starts from the short-run and then spreads to the long-run.

Reward-to-fee relationship is related to the long-run, which suggests that the change in
rewards from transaction fees has a substantial impact on ETH, analog to the result of
log return. However, long-run volatility component has no linkage from the factors –
difficulty adjustment, energy consumption, and mining profitability. Velocity, which
can be seen as how often a coin is traded between addresses in a day (i.e. turnover
rate), has a connection to both components. Holden and Malani, 2022 argue that high
velocity relates to an effective supply of coins, and that to increase velocity requires a
reduction in blockchain operating costs, i.e. PoW to PoS.

Coin age directly connects to long-run as well as log return, which reflects that investors’
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Figure 3.22: In-degree and out-degree of log return (%).
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long and short positions influence ETH’s economic performance persistently. Supply
on non-exchange top holder and flow balance within exchanges show a connection
to both long-run and short-run components. Flow balance, in particular, represents
the investors’ tendency toward buying or selling, which then directly impacts coin
supply and demand. Traditionally, researchers associates trading volume to speculation
(Tauchen & Pitts, 1983). It only demonstrates a causal link to the short-run volatility
component, but not to the long-run and log return. Instead of weighted sentiment, social
volume is connected to the long-run. Regarding applicability, only NFT transaction
count directs to the short-run. In conclusion, both components appear to resemble
the result of log return, and also provide a different resolution for describing causal
connections.

Volatility. The result of volatility resembles the previous three cases discussed, in
particular in its in-degree plot, see Figure 3.24. Volatility has a bidirectional relationship
with two factors: mining profitability and fee-to-reward. Weighted sentiment outflows
from it, while social volume inflows to it. Moreover, volatility directs to trading volume,
trading value, and whale transaction. Two of the three factors are associated with one
another, such that both trading volume and transaction value are induced by whale
transactions. The whales at ETH’s network react to the volatility and may not cause it.
Instead, we see that flow balance and supply on exchange have in-degree connections
with it.

3.8 Conclusion

Stiglitz, 1991 notes that “The reason that the invisible hand often seems invisible is
that it is often not there.”

The argument highlights the concern regarding a self-regulated market where the
equilibrium between supply and demand can be maintained while everyone is pur-
suing their interests. Jumping back to the cryptocurrency space, we have witnessed
a functioning unregulated market for digital assets fueled by a cryptographic and
algorithmic mechanism. Meanwhile, there is a community of people who recognize
its value and democratically improve its applicability. Crypto’s prices that commonly
exhibit significant volatility and deviate substantially from the norms of the traditional
money market can be challenging to rationalize or embrace. In this paper, we present
an empirical framework for investigating the relationship among the three components
of a crypto – economic attributes, functional characteristics, and market dynamics. We
use Ethereum as a case study to elucidate the factors defined under these components
and scrutinize their interplay and influence on one another through the application
of Granger causality testing. Given the pairwise test results, we construct a Granger
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Figure 3.23: In-degree of long-run (upper) and short-run (lower) volatility compo-
nents.There is no out-degree for both.



3.8. CONCLUSION 69

Figure 3.24: In-degree and out-degree of volatility.
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causal network to better visualize their causal relationships.

Specifically, we use a Beta-t-EGARCH model to derive long-run and short-run volatility
components, as well as volatility (conditional standard deviation) from daily log returns.
These factors are considered as the economic attributes. Upon closer examination
of ETH’s economic attributes, we find that ETH’s transition from PoW to PoS (i.e.
energy consumption) influence on them. ETH has not yet been considered as a medium
of exchange as users still demand no compensation for their time investment, given no
connection from throughput and block time. Instead, our findings suggest that the
economic attributes of ETH are linked to coin age, which implies that an individual’s
long and short positions are influential. Additionally, the concentration of wealth in the
hands of large ETH holders, or whales, may have a disproportionate impact on ETH’s
performance, as evidenced by the links from whale transactions and the supply held
by non-exchange top holders to economic attributes. In essence, changes in economic
attributes and market dynamics often stem from alterations in functional characteristics.
The results of long-run and short-run volatility components and volatility do resemble
the one of log return. However, the analysis of these volatility components offers a
greater potential for explaining the causal relationships among these factors in a better
resolution.

The invisible hand appears to be at work in blockchain mechanism, regulating an
otherwise unregulated market. Although often unseen, its influence is active and
reflected.
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Appendix

3.A Time series & ACF

The vertical dotted line on each figure refers to the transition date for ETH to upgrade
the consensus mechanism from Proof-of-Work (PoW) to Proof-of-Stack (PoS) on
September 15, 2022 – also known as the Merge (EIP-3675). The autocorrelation plot
has a 95% confidence interval, as of grey area at the lower panel of each figure.
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Figure 3.A.2: Block time.
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Figure 3.A.3: Throughput.
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Figure 3.A.4: Network growth.
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Figure 3.A.5: Network activeness.
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Figure 3.A.6: Difficulty adjustment.
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Figure 3.A.7: Energy consumption.
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Figure 3.A.8: Non-zero balance address.
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Figure 3.A.9: Mining profitability.
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Figure 3.A.10: Fee to reward.
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Figure 3.A.11: Transaction fee.
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Figure 3.A.12: Development contributor.
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Figure 3.A.13: Development activity.
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Figure 3.A.14: Supply deviation.
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Figure 3.A.15: Coin age.
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Figure 3.A.16: Velocity.
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Figure 3.A.17: Market capitalization.
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Figure 3.A.18: MVRV.
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Figure 3.A.19: Trading volume.
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Figure 3.A.20: Transaction value.
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Figure 3.A.21: Whale transaction.
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Figure 3.A.22: Flow balance.
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Figure 3.A.23: Withdrawal transaction.
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Figure 3.A.24: Exchange supply.
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Figure 3.A.25: Supply on Exchange.
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Figure 3.A.26: Supply on non-exchange top holder.
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Figure 3.A.27: Sentiment.
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Figure 3.A.28: Social volume.
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Figure 3.A.29: NFT transaction count.
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Figure 3.A.30: NFT trading volume.
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3.B Sentiment measure

Weighted sentiment is computed by

WSτ
def
=
xτ − x̄d
sd

where t − d ≤ τ ≤ t; x̄d = d−1
∑︁t

τ=t−d(xτ ) is the expected sentiment value between
times t− d and t; and sd = [(d− 1)−1

∑︁t
τ=t−d(xτ − x̄d)

2]1/2 is the standard deviation.
For each time τ , the sentiment value is calculated by

xτ
def
= [

∑︂
m+

i ∈M+
τ

ψ̃(m+
i ) +

∑︂
m−

j ∈M−
τ

ψ̃(m−
j )]

⏞ ⏟⏟ ⏞
Sentiment balance

× (|M+
τ |+ |M−

τ |)⏞ ⏟⏟ ⏞
Unique social volume

with

ψ(m) =

⎧⎨⎩ψ̃(m), if |ψ̃(m)| > δ

0, otherwise

where m+ ∈ M+
τ is the positive message from all the positive messages mentioning a

given crypto’s name at time τ ; while m− ∈ M−
τ is the negative message from all the

negative messages mentioning a given crypto’s name at time τ . |M+
τ | and |M−

τ | are
the cardinal numbers of the sets M+

τ and M−
τ , which eliminate all redundant messages.

ψ : M ↦→ [−1, 1] is the sentiment function, which gives a real number between -1 and 1
for any message in M = M+ ∪M−. The threshold δ is set as 0.7 in our dataset, that is,
only as a positive sentiment with the value greater than 0.7 and a negative sentiment
with the value smaller than −0.7 are included.
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3.C Beta-t-EGARCH coefficient

The degree of freedom ν for skew-t distribution is estimated to be 3.168, the presence
of fat tails. Skewness γ is slightly larger than 1 showing a right-skewed distribution.

Coefficients Estimate Std. error
ω -3.65752140 0.08433820
ϕ1 0.95971465 0.02490888
ϕ2 -0.88026440 0.10086900
κ1 0.05349386 0.01712863
κ2 0.01305982 0.01337889
κ∗ -0.01639700 0.01563484
ν 3.16800000 0.42584400
γ 1.00407467 0.03047742
Log-likelihood 1818.83334300
BIC -3.73201200

Table 3.C.1: Coefficient summary.
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Table 3.D.2: ADF testa results.

x ∆x
Factor Test statistic p-value Test statistic p-value

Block utilization (%) -1.728 0.417 -8.534 0.000
Block time -1.834 0.364 -10.060 0.000
Throughput -2.453 0.127 -8.390 0.000
Network growth -1.676 0.443 -7.840 0.000
Network activeness (%) -2.226 0.197 -13.741 0.000
Difficulty adjustment -1.067 0.728 -17.924 0.000
Energy consumption -1.240 0.656 -23.978 0.000
Non-zero balance address -0.317 0.923 -4.200 0.001
Mining profitability (%) -1.189 0.678 -9.668 0.000
Fee to reward (%) -1.616 0.475 -6.772 0.000
Transaction fee -2.759 0.064 -16.359 0.000
Development contributor -3.304 0.015 -7.767 0.000
Development activity -3.976 0.002 -8.152 0.000
Supply deviation -1.570 0.499 -9.882 0.000
Coin age 0.896 0.993 -25.791 0.000
Velocity -3.071 0.029 -18.414 0.000
Market capitalization -1.792 0.385 -10.354 0.000
MVRV (%) -1.667 0.448 -10.164 0.000
Trading volume -2.217 0.200 -9.923 0.000
Transaction value -2.479 0.121 -9.358 0.000
Whale transaction -2.679 0.078 -6.199 0.000
Flow balance -16.869 0.000 -11.206 0.000
Withdrawal transaction -2.828 0.054 -16.567 0.000
Supply on exchange -2.214 0.201 -16.710 0.000
Supply on non-exchange top holder -4.251 0.001 -25.373 0.000
Weighted sentiment -3.291 0.015 -14.058 0.000
Social volume -5.317 0.000 -14.174 0.000
NFT transaction count -3.220 0.019 -11.238 0.000
NFT trading volume -24.533 0.000 -10.803 0.000
Log return (%) -22.773 0.000 -10.569 0.000
λ1,t -3.409 0.011 -29.807 0.000
λ2,t -24.405 0.000 -10.764 0.000
σt|t−1 -3.527 0.007 -18.786 0.000

a H0 : Series is non-stationary or series has a unit root; H1 : Series is stationary or series has no
unit root.
b 95% confidence interval.
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4.1 Introduction

During the COVID-19 pandemic, cryptocurrency (crypto), as an alternative risk
diversifier for typical global commodities such as gold and oil, attracted considerable
attention from investors. Cryptos have increasingly become common currencies between
economies, facilitating more trade. A large body of literature (Guesmi et al., 2019;
Huang et al., 2022; Vukovic et al., 2021) has pointed to the potential diversification
benefits of cryptos. Cryptos have thus far demonstrated rather different price evolution
and risk profiles – i.e., price stability and resistance to manipulative trading – compared
to stock and commodity markets (Alexander & Heck, 2020); see Figure 4.1. Dwyer,
2015 and Petukhina et al., 2021 indicate that the rise of high-frequency, 24/7 trading
on the computerized markets of cryptos and reputational equilibrium from the central
mechanism – blockchain technology – offer no intervention from intermediaries and
redirect investors’ trading behaviors, e.g., algorithmic trading. While considerable
research has been conducted on cross sections of cryptos, limited research has been
conducted on cross sections of their exchanges. To capture the high-frequency nature
of crypto trading and examine the fast-changing relationship among exchanges, we
consider hourly returns on Bitcoin (BTC) across crypto exchanges using a dynamic
network representation. Furthermore, we demonstrate a dynamic portfolio construction
that considers the exchanges’ relationship dynamics.

There currently exist many crypto exchanges worldwide; due to their varying levels
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Figure 4.1: CRIX, S&P500, gold and oil log prices in USD. The time series are listed
from top to bottom. CRIX is a cryptocurrency index that traces the evolution of the crypto
market.

of trading volume and liquidity – supply and demand – they have different exchange
prices. In particular, many of these exchanges are centralized and are operated by
privately owned companies as intermediaries between buyers and sellers. There is often
third-party risk for such exchanges because of government interference. For example,
FTX, one of the largest exchanges worldwide, collapsed in November 2022 due to a
shortage of liquidity (Kelley, 2022). Shortly thereafter, the BlockFi exchange filed for
bankruptcies as a result of the collateral damage from FTX. That is, BlockFi had a
significant risk exposure to FTX. It is therefore critical to study the correlation risk
that was induced by the time-varying correlations among these exchanges (Buraschi
et al., 2010; Krishnan et al., 2009).

In Figure 4.2, the BTC returns across nine different exchanges demonstrate common
upward and downward patterns; however, the return-fluctuation ranges are quite
different. A closer examination of any certain exchange pair as an example in Figure 4.2
reveals that there exists a deviation from the 45 degree, which indicates that the prices
are more aligned as the price discovery occurs – so known as arbitrage opportunity
(Makarov & Schoar, 2020). Given such price deviation, investors can seek short-term
profit and extend it to a longer time period by creating a dynamic portfolio, e.g., using
a trading bot. A cross-sectional analysis and operation of crypto arbitrage can be found
in the study by Borri and Shakhnov, 2022. However, such exchange arbitrage is limited
by the fund transfer time on a certain blockchain and a cryptocurrency exchange’s
processing time. If a blockchain network is congested (often the case with the BTC
network) or an exchange takes too long to process transactions, timely arbitrage will
fail, resulting in loss of profits. To counter such potentially debilitating factors, most
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institutional quantitative investors store a large amount of various cryptocurrencies in
various exchanges to facilitate quick capitalization of arbitrage opportunities. Such
a strategy, however, could also result in losses arising from funds sitting idle; thus,
investors are encouraged to seek an appropriate balance between risk and opportunity.
We thus focus on the cross-exchange risk and include the correlation risk induced by
the changing correlations among these exchanges.

Figure 4.2: Paired Bitcoin returns among 9 different exchanges.

We examine correlation risk and quantify its influence via partial correlations, which
allow us to model pairwise interactions between two variables after accounting for other
variables. In other words, we can disentangle the impact of other exchanges’ price
movements on BTC. The implementation of partial correlations and realization of the
corresponding network models have been discussed in the literature. Andrieş et al., 2022
treat partial-correlation networks as a better measure to capture market structure and
systemic risks than traditionally used correlation networks due to their consideration of
direct relationships. Highlighting the impact of the COVID-19 pandemic, So et al., 2021
assess systemic risk via partial-correlation networks and show that partial correlations
can better reflect the increase in the network connectedness during the pandemic period
than correlations. If a pair of exchanges is correlated with other elements in the market,
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then the correlation between them may introduce spurious information. For example,
this would be typical of exchanges that trade common cryptos. Generally, partial
correlations extract core information and control the influence of other exchanges. That
is, we avoid the common influence from BTC itself and focus on the pairwise exchange
relationships.

Currently, there are over 12,000 different cryptos across more than 600 exchanges on
CoinGecko. Given the exuberance of the crypto market and its adequate data, we have
a deeper understanding of its unique characteristics, i.e., the perceived opportunities
for short gains and impacts of blockchain architecture (Lin et al., 2021). Some stylized
facts about cryptos can be found in Vidal-Tomás, 2021. For example, the return
on BTC is relatively volatile and, consequently, it is important to consider a high-
frequency setting (e.g., hourly) to depict its rapid and dynamic price evolution. A
quantitative model that is economically motivated by the interplay between short-term
traders is the heterogeneous autoregression (HAR) model of Corsi, 2009. It matches
the long-memory property and is numerically attractive and intuitive as it appears
as a simplified regression-based procedure. Indeed, it approximates the persistence
of volatility time series under an additive cascade structure from the short to the
long term. This idea of additive components in time series can be justified in terms
of differences in agents’ risk profiles, institutional structures, temporal horizons, etc.
Based on HAR, we accommodate the stylized facts about cryptos and construct a
dynamic, multivariate, volatility model that allows long-range dependence, known as
Multivariate Heterogeneous AutoRegression for Crypto Markets (MHAR-CM). Last,
we accordingly construct a dynamic portfolio that considers correlation risk based on
the centrality measures of high-frequency, dynamic, partial-correlation networks to
conduct a robust and adaptive trading strategy specifically for cross-exchange trading
on BTC.

The chapter proceeds as follows. Section 2 describes the methodology developed.
Section 3 conducts an empirical study and analyzes partial correlations and dynamic
networks. Section 4 is dedicated to the implementation of correlation risk in asset
allocation. We conclude with findings in Section 5.

4.2 Methodology

In this section, we present, in detail, the construction of partial correlation networks
across crypto exchanges and their embedding in the HAR. The estimation procedures
for partial correlations are presented in Section 4.2.5. Essentially, the design of the
networks aims to capture the dynamic trading patterns of cryptos. We update the
partial-correlation network in high, time-frequency resolution to reflect intraday changes

https://www.coingecko.com/
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within the partial-correlation structure.

4.2.1 Partial correlation

Partial correlations help to measure the conditional strength of a linear relationship
between two random variables, given a set of other random effects. It is particularly
essential to specify and disclose dependence among crypto exchanges, as one can later
distinguish their joint dynamics. The partial correlation, ρijt , at hour t (t ∈ [0, T ])
between crypto exchanges, i and j, is defined as follows:

ρijt = − Ωij
t√︂

Ωii
t Ω

jj
t

, (4.1)

where i, j ∈ {1, . . . , q}. Ωij
t denotes the (i, j)-element of the precision matrix, Ωt, which

equals the inverse of the covariance matrix, Σt, i.e., Ωt = Σ−1
t . The partial correlation,

ρijt , measures the relationship between the crypto exchanges, i and j, with indirect
correlations removed. Alternatively, we can implement a multivariate regression to
account for confounding factors; however, this provides the influence size rather than a
numerical value that captures the strength of the relationship.

Here, Σt denotes the covariance matrix across exchanges at time t. The estimation of Σt

is crucial, particularly for network analysis (Brownlees et al., 2018), portfolio selection,
and risk management (Cai et al., 2020). We estimate Σt via the realized covariance
matrix, ΣRC

t , with the element equal to the sum of the products of high-frequency (e.g.,
5-minute) returns within a given period (Barndorff-Nielsen & Shephard, 2004).

To ensure the positive semi-definiteness of the covariance-matrix forecast, Chiriac and
Voev, 2011 applied the Cholesky decomposition to Σt, that is, Σt = P⊤

t Pt, where Pt is
the Cholesky factor. They then constructed dynamics following the half-vectorization
of the Cholesky factor and obtained forecasts of the covariance matrix through reverse
transformation. Then, Xt = vech(Pt), where vech(·) is a half-vectorization operator.
Here, Xt is a q(q + 1)/2-dimensional vector. However, as Heiden, 2015 points out, the
ordering of the variables in the Cholesky decomposition induces significant differences
in forecast performance; see 4.A for an empirical illustration. To avoid the issue of
ordering and to ensure positive semi-definiteness, Bauer and Vorkink, 2011; Hafner and
Wang, 2021 estimate the covariance matrix in the matrix-log space. In the following,
we discuss the matrix-logarithm transformation in detail.
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4.2.2 The matrix-logarithm transformation

The matrix exponential and logarithm functions (Chiu et al., 1996) are useful for our
analysis because they offer no parameter constraints to ensure proper covariance positive-
definiteness. The matrix exponential function performs a power-series expansion on a
real, symmetric matrix, S, i.e.,

Σ = expm(S)
def
=

∞∑︂
0

1

n!
Sn. (4.2)

This automatically guarantees a real, positive semi-definite covariance matrix, Σ.
Meanwhile, S can be obtained by the inverse of the matrix exponential function, i.e.,
S : S = logm(Σ), with logm the matrix-logarithm function. Accordingly, we can
obtain the forecasts of the conditional covariance matrix on BTC returns following
the three-step procedure below: First, for each hour, t, we use high-frequency data to
construct the q×q realized covariance matrix, ΣRC

t . Second, using the matrix-logarithm
function on ΣRC

t , we obtain St and a p× 1 vector, st, with p = 1
2
q(q + 1), by stacking

the elements, i.e.,
st = vech(St). (4.3)

The vector, st, forms the basis for the subsequent modeling and application. In a later
section, we present a factor model that allows the use of both lagged values of st and
other variables to forecast volatility. Last, using the inverse of the vech function, we
construct a q × q symmetric matrix, ˆ︁St, of the fitted values at each time t from st.
Applying the matrix exponential function, we obtain the following:

ˆ︂Σt = expm ˆ︁St. (4.4)

It yields a positive semi-definite matrix, ˆ︁Σt, which is our estimate of the conditional
covariance matrix at time t. In practice, the matrix exponential and matrix logarithm
transformations are implemented via the scaling and squaring and inverse scaling and
squaring methods in Higham, 2008, respectively.

4.2.3 MHAR-CM

Regarding the stylized facts about BTC and other cryptos (e.g., trading 24/7 and the
long-memory effect on returns), we extend the HAR long-memory model for realized
volatility (Corsi, 2009). We refer to such a multivariate and high-frequency extension
as MHAR-CM. The HAR-type model considers the log-realized volatility as a linear
function of the log-realized volatility of the last day, week, and month to reflect trader’s
preferences on different horizons in the past, which is easy to implement. It succeeds
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Figure 4.3: ACFs of squared (left) and absolute (right) BTC hourly log returns in
Binance.

in reproducing the main empirical features of financial returns, e.g., long memory, fat
tails, and self-similarity in a tractable and parsimonious manner. Accordingly, Bauer
and Vorkink, 2011 offer a multivariate extension of HAR to model half-vectorized st as
follows: s(1)t+1 = c+ β(1)s

(1)
t + β(5)s

(5)
t + β(22)s

(22)
t + εt, where 1, 5, and 22 represent the

frequencies of a day, a week (= 5 days), and a month (= 22 days), respectively; c is a
m× 1 vector of constants; and β(·) are scalar parameters. s(·)t are averages of lagged
daily volatility, i.e., s(5)t = 1/5

∑︁4
i=0 st−i.

The most common implementation of HAR-type modeling uses daily data. It does
not reflect the rapid changes in the crypto market. Moreover, the lagged volatilities
here are not suitable for cryptos, as they are traded 24/7 and demonstrate a different
trading pattern from that of traditional financial assets. Consequently, it motivates a
more general method, MHAR-CM:

s
(1/2)
t+1/24 = c+ β(1/2)s

(1/2)
t + β(1)s

(1)
t + β(7)s

(7)
t + β(30)s

(30)
t + εt, (4.5)

where the s
(1/2)
t+1/24 is the 1-hour-ahead forecast and s

(1/2)
t is the half-day (12-hour)

estimate.

4.2.4 Network and its centrality

Network-centrality measures are particularly salient in financial markets as they provide
a way to understand the relative importance of financial institutions and thus help
explain the propagation of shocks in the system. To calculate the centrality measures,
we consider the partial-correlation matrix among exchanges in the form of an adjacency
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matrix, which reflects the direct associations on the network, namely, At = {ai,jt }qi,j=1,
where

ai,jt =

⎧⎨⎩ρ
i,j
t , i ̸= j and |ρi,jt | > α

0, otherwise
(4.6)

α is the partial-correlation threshold. This procedure is supposed to reduce spurious
connections, i.e., given α ̸= 0, there exists a disconnection. However, while thresholding
is a good way to reduce the possibility of too much influence of spurious connections,
it leads to confounds related to arbitrary choice of the calculation routines. There is
no clear consensus on the statistical thresholds for the confirmation of a significant
effect. Boginski et al., 2005 suggest α ≥ 0.2, which results in the degree (number of
neighbors of a certain node) distribution resembling a power law. In this study, we
consider partial correlations instead of correlations so that spurious connections are less
likely to occur. We therefore choose a smaller threshold, α = 0.1, for degree centrality.
Note that At – viewed as the network – synthesizes the partial correlation structure
of high-frequency returns changing by time t. We thus can dynamically describe the
interdependencies without any indirect correlations. In particular, we can eliminate
the correlation effect induced by the same types of assets, i.e., BTC traded across
exchanges.

To describe the topology of networks and essentially quantify interconnectedness, we
consider two commonly used centrality measures – degree and eigenvector centralities
(Costenbader & Valente, 2003; Olmo, 2021; Peralta & Zareei, 2016). Degree centrality
captures the total connectedness – the number of edges connected to a node – in
a network and is conceptually the simplest. The degree centrality for exchange i is
obtained as follows:

Di
t =

q∑︂
j=1

1(ai,jt ), (4.7)

where 1(ai,jt ) is the indicator variable that equals to a if ai,jt ̸= 0. We set α = 0.1 for
degree centrality as it preserves the major connections and omits the minor linkages.

Meanwhile, eigenvector centrality measures the transitive influence of nodes. Given the
concept that high-scoring nodes contribute more to a certain node than connections
with low scores, we can access the per-node influence. Avoiding losing information, α
here is set as 0. The centrality of exchange i is defined as follows:

Ei
t = λ−1

t

q∑︂
j=1

ai,jt E
j
t , (4.8)

with λt the maximum eigenvalue for At. In the following, we use both centrality
measures to examine the evolution of crypto exchange networks.
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4.2.5 Overall procedure

We first calculate the covariance matrix, ˆ︁Σt, based on data acquired at time t. The
matrix log-transformation yields ˆ︁St = logm ˆ︁Σt; then, by half-vectorization, we obtainˆ︁st = vech(ˆ︁St). The MHAR-CM framework,

s
(1/2)
t+1/24 = ˆ︁c+ ˆ︁β(1/2)ˆ︁s(1/2)t + ˆ︁β(1)ˆ︁s(1)t + ˆ︁β(7)ˆ︁s(7)t + ˆ︁β(30)ˆ︁s(30)t + ˆ︁εt, (4.9)

produces a predicted value for the covariance. Last, we compute the covariance matrix,ˆ︁Σ(1/2)
t+1/24, and the precision estimate, ˆ︁ΩMHAR-CM

t+1/24 , by reverse transformation. Here, we
forecast partial correlations as follows:

ρMHAR-CM
t+1/24(ij) = −

ΩMHAR-CM
t+1/24(ij)√︂

ΩMHAR-CM
t+1/24(ii) Ω

MHAR-CM
t+1/24(jj)

. (4.10)

Thus, we can construct the dynamic partial-correlation networks based on (4.6) and
accordingly measure the centrality.

4.3 Empirical study

In this section, we investigate the network dynamics of the crypto exchanges, observing
the returns on BTC across the q = 9 different exchanges.

4.3.1 Data and descriptive statistics

The dataset includes the hourly BTC closing prices of nine crypto exchanges – i.e.,
Kraken, Gemini, Bitstamp, FTX, Bitfinex, Exmo, CEX, Binance, and Kucoin – from
August 03 00:00, 2020 to September 30 23:00, 2022. Each exchange comprises 18, 936

observations. The hourly BTC data for Gemini, Bitstamp, FTX, Bitfinex, Exmo, CEX
Binance, and Kucoin are sourced from CryptoDataDownload and listed in Table 4.1.
The Kraken data are collected from Kraken’s REST API, which is currently updated
to the end of 2022 Q3. Due to Kraken’s data availability, the period for this empirical
study ends in September 2022.

Among these exchanges, Kraken, Gemini, Bitstamp, FTX, Bitfinex, Exmo, and CEX
are allowed to trade in USD. The remaining Binance and Kucoin only trade in different
cryptos, without any fiat currency. They mainly use the stable coin, Tether (USDT),
or their native coins as the fundamental trading medium. USDT, pegged to the USD
and backed by Tether’s liquidity reserves, has been highly traded and has retained a
value close to that of the USD; see 4.B. For Binance and Kucoin, we thus use USDT

https://www.cryptodatadownload.com/
https://docs.kraken.com/rest/ API
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to exchange BTC. The hourly return is calculated as follows:

Ri,t = log(pi,t)− log(pi,t−1/24), (4.11)

where pi,t is the hourly closing price of BTC on exchange i at time t. We exclude the
observations in the period from August 2020 03 00:00 to November 02 11:00, i.e., the
burn-in period for the network dynamics in (4.9). The rolling-window size for network
construction is 30 days (i.e., we have 30 × 24 observations in each window), and the
out-of-sample period is between November 02 12:00, 2020 and September 30 23:00,
2022.

Table 4.1: BTC exchanges.

Name Country/Region Trading Volume
Binance Asia Pacific 71,887,560,454
FTX Asia Pacific 11,260,464,103
Kucoin Asia Pacific 995,236,044
Kraken US UK 718,113,308
Bitfinex US UK 662,990,566
Bitstamp US UK 200,757,579
Gemini US UK 75,406,613
Exmo EU Russia 52,279,596
CEX US UK 6,649,905

Note: We follow the country-region classification in Cryp-
toDataDownload. In the last column, we report the trading
volume on the last day in the sample period (September
30, 2022) sourced from nomics.

Table 4.2 shows the descriptive statistics for the Bitcoin returns for each exchange.
We find that each exchange presents a different return behavior. Although the mean
returns are similar, their medians differ considerably.

Table 4.2: Summary statistics for BTC returns.

Name Currency Med(×10−5) Mean(×10−5) Var(×10−5) Skewness Kurtosis
Binance USDT 7.4761 2.8128 6.4535 -0.2345 11.6728
FTX USD 8.3356 2.9416 6.6207 -0.3175 13.8636
Kucoin USDT 7.4185 2.9396 6.4971 -0.2972 12.2049
Kraken USD 8.9746 2.9416 6.6135 -0.3196 13.9767
Bitfinex USD 7.4368 2.9215 6.4834 -0.2667 12.7466
Bitstamp USD 1.1059 2.9440 6.6399 -0.3415 14.3515
Gemini USD 6.9679 2.9409 6.5343 -0.1430 11.4551
Exmo USD 5.1523 4.2416 6.0422 -0.2093 13.3215
CEX USD 9.9799 2.9534 6.3578 -0.2181 13.9856

Note: Mean, var, and skewness denote the mean, variance, and skewness of BTC returns, respectively.

https://www.cryptodatadownload.com/
https://www.cryptodatadownload.com/
https://nomics.com/
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4.3.2 Model coefficient

Figure 4.4 illustrates the evolution of coefficient estimates in MHAR-CM. Compared
with the longer time coefficients – β(7) and β(30) – the half-day and one-day coefficients,
β(1/2) and β(1), are inconsiderable. This provides evidence of a long-memory effect in the
realized covariance, and thus demonstrates the necessity of a HAR-type setting for BTC
returns. Closely examining β(7) and β(30), there exist many upward and downward
spikes, which relate to the strong influence from the covariance between returns.
Interestingly, these spikes often relate to some extreme events in the BTC market. For
example, the rise in β(7) and β(30) relates to the large-scale BTC withdrawals from
the exchanges on 2020-10-26. The BTC plunged 30% on 2021-05-19, which induced
an inflow to the exchanges for BTC; correspondingly, it is reflected in the coefficients.
From November 2021, the BTC price starts reaching its historical highest peak – USD
69, 000; and it leads to a continuous growth in β(30). Later, in July 2022, BTC prices
surge after a series of declines that correspondingly can be observed in β(30).

In conclusion, in the case of extreme events, the exchanges become more dependent, and
such a dependence decays slowly. This is consistent with the finding by Brunnermeier
and Sannikov, 2014 that in extreme event regimes, asset prices become more correlated,
as well as with that by Geraci et al., 2018 that the relationship between short selling
and price changes strengthens.

Focusing on each β, we plot them against non-negative and negative BTC returns in
FTX as an instance for comparison in Figure 4.5. We find that negative shocks to
returns are often followed by an increase in β. A high increase in β(30) shows that the
long-memory effect of these negative shocks is rather strong; see the last panel of Figure
4.5. This is consistent with the discussion in Assaf et al., 2022 and can also be related
to the leverage effect that the impact of shocks is asymmetric. A possible explanation
here is that the cumulative risk leads to the larger β(7) and β(30) as market participants’
expectations influence the market movement and propagate among investors, i.e., a
self-fulfilling prophecy. The matching dynamics between the extremes in β(7) and β(30)

and the BTC market dynamics (i.e., extreme events and return behaviors) is evidence
that the dynamic model designed in this study captures the BTC market changes.

4.3.3 Analysis of partial correlation

To explore the evolution of the partial correlations among these exchanges, we use
Binance and FTX as an example and illustrate their partial correlations with the other
8 exchanges as a series of monthly heatplots for different periods – i.e., February 2021,
May 2021, December 2021, and June 2022; see Figures 4.6 and 4.7. During May 2021
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Figure 4.4: Streamgraph for coefficients β(1/2), β(1), β(7), and β(30). We take exponents
of the coefficients for visualization. β(7) and β(30) present larger variations.

and December 2021, there exists an extreme event condition, as discussed in Section
4.3.2. Note that the green here illustrates that their partial correlations are nearly zero.
The depth of the blue and red colors of the boxes indicates that the pair of exchanges
has a higher linkage at that moment. We first investigate the – Hour of the Day” and
”Day of the Month effects – (Baur et al., 2019; Kinateder & Papavassiliou, 2021) on the
x- and y-axes, respectively. There is no solid evidence that supports the presence of the
Hour of the Day and Day of the Month effects on the partial correlations. This might
be attributed to the fact that the market never sleeps and traders worldwide are active
for the whole day (Vidal-Tomás, 2021); in particular, trading bots are popular in the
crypto market. This result shows a development in trading behavior from Petukhina
et al., 2021 that crypto trading is firmly in the hands of humans. Examining the
heatplots by rows, there is a sequence of boxes with a similar degree of blue or red,
which indicates the presence of a long-memory effect.

Considering Binance’s heatplots relative to the other 8 exchanges in Figure 4.6, Kucoin
and FTX present a strong positive correlation. This may reflect their firm sizes; see
Table 4.1. Note that both Binance and FTX favor USDT, which causes a strong
dependence; see Table 4.2. Kraken, however, often has a negative partial correlation
with Binance. During the extreme events, in the second and third panels, Binance’s
partial correlations with the other firms are relatively vigorous. In the case of FTX, it
has some negative partial correlations with the Exmo exchange. In May 2021, FTX’s
linkage to the other firms, except Binance, is evident. Overall, each exchange has a
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Figure 4.5: Coefficients β(1/2), β(1), β(7), and β(30) with nonnegative and negative log
BTC returns on FTX (background). The returns are from 2021-05-01 to 2021-05-31,
including 2021-05-19, when the BTC surged 30%.
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different degree of dependence on the others; moreover, during an extreme event, the
dependence can increase. This indicates that the BTC market is sensitive to negative
shocks, which leads to a challenge regarding risk diversification via portfolios. The
current result is consistent with the finding by Acemoglu et al., 2015 that, when the
price drops lower than a certain point, dense interconnections serve as a mechanism for
the propagation of shocks, which causes a more fragile market as a whole. As shown in
the color-changing heatplots, the relationships between these exchanges are unstable,
which reflects a rapidly shifting condition of the market and confirms the necessity of
examining the network in a high-frequency fashion.

4.3.4 Network dynamics

We examine the network connectedness using the MHAR-CM model for the 9 centralized
exchanges, as well as the persistence and spillover of risk. To depict the evolution of
the networks and further compare them, we plot the networks for the periods discussed
in Section 4.3.3. In Figures 4.8 - 4.11, each panel on the left is the partial-correlation
heatmap, while the corresponding network is on the right. On the networks, the thicker
the line, the stronger the paired exchanges’ connectedness. We summarize the network
centralities for these four periods in 4.D.

During extreme events when large BTC drops occur, as in Figures 4.9 and 4.10, most
of the exchanges are connected to one another. Thus, each exchange has a rather
high degree of centrality, which refers to an exchange’s many direct linkages to others.
Regarding eigenvector centrality, the exchanges with higher trading volumes have
higher values, e.g., Binance, while those with lower trading volumes obtain lower values,
e.g., Exmo. That is, a large-scale exchange is more influential in a time of crisis than
under normal conditions, as in Figures 4.8 and 4.11; dense linkages among firms induce
a higher risk spillover in the market. Note that a firm with a low trading volume or in
a more isolated position in the market is less influential during a crisis; however, it does
not mean that such a firm is riskier itself. Exmo and CEX retain the linkages with
the others; however, both have lower eigenvector centrality values. Thus, these two
exchanges may act as risk receivers and accumulate the risk from the other exchanges
during a crisis.

In summary, we report the descriptive centrality statistics for each exchange in the
period from 2020-09-02 12:00 to 2022-09-30 23:00 in Table 4.3. The results for both
centrality measures in terms of rankings are consistent. Overall, Kraken, which offers
the most fiat trading pairs (i.e., AUD, EUR, USD, and GBP) occupies a prominent
position. Exmo and CEX are in lower ranked positions, i.e., they are less influential
within the network. In addition, FTX has a relatively high variation in eigenvector
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Figure 4.6: Heatplots of partial correlations of Binance with FTX, Kucoin, Kraken,
Bitfinex, Bitstamp, Gemini, Exmo, and CEX.
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Figure 4.7: Heatplots of partial correlations of FTX with Binance, Kucoin, Kraken,
Bitfinex, Bitstamp, Gemini, Exmo, and CEX.
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Figure 4.8: Partial-correlation network on 2021-02-12 05:00:00.

Figure 4.9: Partial-correlation network on 2021-05-27 09:00:00.
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Figure 4.10: Partial-correlation network on 2021-12-04 04:00:00.

Figure 4.11: Partial-correlation network on 2022-06-04 09:00:00.
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centrality.

Table 4.3: Centrality of each exchange.

Exchange Degree Eigenvector

Mean Median Std. Mean Median Std.
Binance 4.175 4 1.424 0.516 0.511 0.296
FTX 5.207 6 1.557 0.515 0.487 0.323
Kucoin 4.215 5 1.481 0.462 0.452 0.271
Kraken 5.951 7 2.332 0.782 1.000 0.321
Bitfinex 3.628 4 1.933 0.505 0.509 0.297
Bitstamp 4.657 5 2.156 0.441 0.432 0.293
Gemini 5.302 6 2.284 0.502 0.500 0.318
Exmo 1.373 1 1.501 0.326 0.358 0.314
CEX 1.374 1 1.381 0.343 0.379 0.298

4.3.5 FTX: a node with volatile centrality

BTC and other cryptos generally purport to offer a trustless environment for users
and investors through the decentralized architecture of distributed ledger technologies,
e.g., blockchain. The idea of centralized exchanges for cryptos negates decentralization
and invokes third-party risk. Centralized exchanges are subject to varying degrees
of operational and regulatory risks based on their corporate management and the
jurisdictions in which they operate. Based on how they source liquidity (e.g., in-house
reserves and liquidity provider), exchanges present different dependencies on others.
That is, each exchange experiences different levels of risk exposure. The collapse of
FTX, one of the world’s largest crypto exchanges, on November 11, 2022, is crucial
evidence here. This highlights the significance of this study.

The wildfire that was ignited by FTX’s bankruptcy spread throughout the market
and led to an 120% uptick in average daily trading volume (Ng, 2022). It benefited
Binance, which now dominates with a 64% market share across the Top 10 crypto
exchanges. Due to data limitations, we could not access FTX’s BTC prices around
the time of its bankruptcy. Based on past dynamic partial correlation networks, we
provide some remarks on FTX below. We rank each exchange by its monthly centrality
aggregated by mean in Figure 4.12. The higher an exchange’s centrality value, the
higher its rank. In terms of degree-centrality rankings, FTX is in a rather volatile
position. Based on eigenvector centrality, the three firms with the highest trading
volumes – Binance, Kucoin, and FTX – remain influential over time. That is, their risk
spillovers are significant to the market. We illustrate the centrality rankings aggregated
by daily mean in 4.C, in which each firm’s influential position within the network over
time can easily be observed. Specifically, we plot each firm’s eigenvector centrality in
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the last year of our sample period as a monthly boxplot in Figure 4.13. The largest
trading-volume exchange, Binance, has a rather stable eigenvector centrality, with its
median around 1, while FTX’s and Kucoin’s substantially fluctuate over time. The
remaining firms’ centralities are less disperse.

Figure 4.12: Monthly centrality rank of Binance, FTX, Kucoin, Kraken, Bitfinex,
Bitstamp, Gemini, Exmo, CEX.

Issue of centralized decentralization. We discuss how centralized exchanges differ
from decentralized ones below. Centralized crypto exchanges rely on clearing trades and
off-chain scaling. Barbon and Ranaldo, 2021 point out that crypto prices in centralized
exchanges are more efficient than those in decentralized ones; however, there exist
significant risks and latency associated with delegated custody. Centralized exchanges
operate under a trading infrastructure and execution rules, similar to traditional asset
exchanges, to maintain liquidity provision and the price discovery process. Thus, a
centralized exchange is easily adopted and offers advanced asset-management tools
and financial products while retaining some comparable characteristics to traditional
asset exchanges – i.e., control on investors’ funds, non-anonymity, fragile cybersecurity,
and sever downtime – as a single point of failure. The unregulated and volatile nature
of cryptos, compounded by exchange counterparty risk exposure, subjects investors
to significant risk of loss. One can possibly observe an arbitrage opportunity here;
however, centralized exchanges may act as the Frankenstein, with high spillover effects
on such compounded risks, especially during a crisis.
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Figure 4.13: Eigenvector centralities for Binance, FTX, Kucoin, Kraken, Bitfinex,
Bitstamp, Gemini, Exmo, and CEX from September 2021 to September 2022.
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4.4 Portfolio construction

Because it is difficult to achieve cross-exchange arbitrage even if investors store abundant
cryptocurrencies in various exchanges, this study incorporates network knowledge into
risk diversification via portfolio allocation on exchanges. We consider the following
portfolio-allocation strategies in this section: The first is based on portfolio-risk
considerations, a hierarchical risk parity (HRP) portfolio with two variants to determine
the weights in this study – using HRP_MHAR_CM and realized partial correlations
(HRP_RCor). There exists rich literature on risk diversification for asset allocation.
HRP (De Prado, 2016) is among the most frequently used methods in practice. This
approach overcomes the limitations of other risk-based optimization approaches, such
as global minimum variance, equal-risk contribution, and risk budgeting, by generating
portfolios on an ill-conditioned or even singular matrix. In addition, it has been
considered to be a robust approach in that it is less susceptible to noise (Jaeger et al.,
2021). The next is the network-based strategy – inverse eigenvector centrality portfolio
(IECP) – that uses eigenvector centrality to assign weights to each exchange. We do
not consider it for the portfolio construction to ensure complete network information
as there is a threshold setting for degree centrality, i.e., α = 0.1. The last is an equally
weighted (EW) portfolio, whose weights here are assigned by 1/q and is used as a
benchmark for evaluation. Based on the burn-in period in Section 4.3.1, we exclude the
observations in the evaluation. The back-testing period, therefore, is from November
02 12:00, 2020 to March 31 23:00, 2022.

4.4.1 HRP

HRP is a risk-based portfolio-optimization approach that diversifies portfolios without
imposing a positive-definite return covariance matrix. Classical HRP is based on
variance and covariance matrices. However, the assets considered may share a common
cause (e.g., BTC prices on the exchanges) and be correlated, resulting in inference of
spurious relationships. Extending this classical HRP to partial correlations that encode
the core associations between two random variables excludes a common causality. Thus,
one can access all the effective information when optimizing a cross-exchange portfolio.
The HRP algorithm has three main steps: tree clustering, quasi-diagonalization, and
recursive bisection. We explain each step in detail in the following.
Step 1- Hierarchical Tree Clustering. We group the assets into different hierarchical
clusters following the procedures below.

(a) Estimate the q×q partial-correlation matrix by (4.10) ˆ︁ρMHAR-CM
t+1/2(ij) and ˆ︁ρMHAR-CM

t+1/2 =

{ˆ︁ρMHAR-CM
t+1/2(ij) }qi,j=1.
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(b) Transform the partial-correlation matrix to a distance matrix, D, where, for d :
(Xi, Xj) ⊂ B → R ∈ [0, 1] and each element di,j = d[Xi, Xj ] =

√︂
1
2
(1− ˆ︁ρMHAR-CM

t+1/2(ij) ).

(c) Compute a new distance index, d̃, by taking the pairwise Euclidean distances
among the columns in D; the augmented distance matrix is given by

d̃ = d̃[di, dj] =

√︃∑︂q

n=1
(dn,i − dn,j)2,

where d̃i,j : (di, dj) ⊂ B → R ∈ [0,
√
q]. Note that for two exchanges, i and j, Di,j

denotes the distance between them and d̃i,j denotes the closeness in similarity of
{i, j} relative to the remaining assets in the portfolio. More precisely, a lower
d̃i,j indicates that the assets, i and j, are similarly correlated to the others in the
portfolio.

(d) Recursively form the clusters of assets via Sub-step (c). The set of clusters is
donated by U , with the first cluster formed, (i∗, j∗), defined as follows:

U [1] = (i∗, j∗) = argmin(i, j)i ̸=j d̃i,j.

(e) Update the distance matrix, d, by computing other assets’ distances from the
newly formed cluster, U(1), using single-linkage clustering. For any asset, i,
outside U(1), its distance to U(1) is updated using di,U [1] = min {d̃i,j}j∈U [1].

Thus, the HRP algorithm recursively forms clusters and updates the distance matrix
until there exists only one cluster with all the assets.
Step 2- Quasi Diagonalization / Matrix Seriation. Following the previous step,
we re-sort the columns and rows of the covariance matrix, placing similar assets together.
Specifically, we arrange the larger covariances along the diagonal of the matrix and the
smaller ones around this diagonal. The off-diagonal elements are not completely zero.
Such a matrix is the so-called quasi-diagonal covariance matrix.
Step 3- Recursive Bisection. Last, we assign the actual portfolio weights to each
exchange in the portfolio.

(a) Assign a unit weight to all assets, i.e., Wi = 1 ∀i = 1, · · · , q.

(b) Bisect each cluster into two sub-clusters in a top-down order, such that each
cluster has left and right sub-clusters.

(c) Calculate the variance for each sub-cluster using V1,2 = w⊤Σw, where w =
diag[Ω]

tr[diag[Ω]]
and Σ and Ω are the covariance and inverse covariance matrices, re-

spectively. Because we are dealing with a quasi-diagonal matrix, the algorithm
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uses the portfolio’s property that the inverse-variance allocation is optimal for
a diagonal covariance matrix. Thus, we adopt the inverse-variance allocation
weights while computing the variances for the sub-clusters.

(d) Calculate the weighting factor based on the quasi-diagonalized covariance matrix
as α1 = 1− V1

V1+V2
, such that 0 ≤ αi ≤ 1 and α2 = 1− α1.

(e) Update the weights, w1 and w2, for both sub-clusters using w′
1 = α1w1 and

w′
2 = α2w2.

(f) Repeat Sup-steps (b) - (e) and terminate when there is one asset for each cluster.
We then assign the corresponding weight to each asset in the portfolio.

As each weight is assigned in a top-down order, only the assets within a cluster are
included instead of all the assets in the portfolio; see Vỳrost et al., 2019. The above
steps are for HRP_MHAR_CM. For HRP_RCor, we follow the same steps above,
except that we substitute ˆ︁ρMHAR-CM

t+1/24(ij) with

ρRCor
t+1/24(ij) = −

(ΣRC
t )−1

(ij)√︂
(ΣRC

t )−1
(ii)(Σ

RC
t )−1

(ii)

,

where (ΣRC
t )−1

(ij) is the (i, j) th element in the inverse realized covariance matrix, (ΣRC
t )−1.

4.4.2 Network-based Strategy

In this section, we develop an asset-allocation strategy, IECP, based on the network
topology of the exchanges, specifically through eigenvector centrality. Peralta and
Zareei, 2016 show that eigenvector centrality presents a negative relationship to optimal
portfolio weights and point out that considering the underlying structure of the financial-
market network is an effective tool in enhancing the portfolio-selection process. A
related argument can also be found in (Olmo, 2021). The idea behind this approach is
simple: the more volatile and centralized an exchange, the less weight it is allocated.
The allocated weight for each exchange, i, at time t is given by (Jaeger & Marinelli,
2022):

wIECP
i,t =

(ˆ︁σi,i
t E

i
t)

−1∑︁q
n=1(ˆ︁σn,n

t En
t )

−1
,

where Ei
t is the eigenvector centrality of exchange i at time t defined in Section 4.2.4,

and ˆ︁σi,i
t is the (i, i) th element in the estimated covariance matrix, ˆ︁Σt. Exchanges that

are strongly embedded in a correlation-based network greatly affect the market. Their
inclusion in a portfolio undermines the benefit of diversification, resulting in larger
variances, Sharpe ratios, or volatilities, depending on the specific portfolio objective.



4.4. PORTFOLIO CONSTRUCTION 141

4.4.3 Portfolio evaluation

We compute the hourly updated daily return, Ri,t = log(pi,t)− log(pi,t−1), t ∈ [0, T ] ,
for exchange i and portfolio return, Rp,t =

∑︁N
i=1wi,tRi,t, due to the confirmation time

for cross-exchange trading considered by Borri and Shakhnov, 2022. In this study, we
consider a variety of performance measures to evaluate each portfolio. Note that the
measures in the second panel in Table 4.4 consider the downside risk.

Table 4.4: Portfolio performance.

σp
(×10−3)

Sharpe
(×10−3)

δ0
(×10−3)

Sortino
(×10−3)

MDD
(×10−3)

Calmar
(×10−3)

EW 38.960 *19.300 27.800 *27.060 1000.000 *6585.77
HRP_MHAR_CM 8.085 4.000 5.809 5.561 790.439 357.972
HRP_RCor 8.093 3.770 5.815 5.250 797.038 335.538
IECP *7.995 4.077 *5.733 5.686 *781.235 365.526

Note: * means the corresponding portfolio performs best in the specific measure (the column). σp

and δ0 denote the standard deviation and semi deviation of portfolio returns, respectively. See 4.E for
details.

Table 4.4 shows that HRP_MHAR_CM outperforms HRP_RCor in all the risk mea-
sures, including the standard deviation, σp, assuming a symmetrical return distribution,
the semi deviation, δ0, as a downside risk measure, and maximum drawdown (MDD).
The deficiencies of the Sharpe ratio due to its symmetry property and inability to con-
sider the risk of low-probability events are well known. Thus, the two other alternatives,
the Sortino and Calmar ratios, are included. The risk-adjusted measures – the Sharpe,
Sortino, and Calmar ratios – reinforce the conclusion, which provides empirical evidence
that the method proposed captures the exchange-specific risk as well as the dynamic
network structure. Although the EW portfolio yields higher risk-adjusted ratios, this
occurs at the cost of a large MDD. In practice, an EW portfolio may encounter liquidity
problems and cannot finance itself in the long term. The IECP achieves the least risk
among the portfolios considered, in terms of σp, δ0, and MDD. It outperforms the two
HRP portfolios in risk-adjusted returns such as the Sharpe, Sortino, and Calmar ratios.
In other words, considering eigenvector centrality assists in risk diversification.

Specifically, Figure 4.14 illustrates the updates of FTX’s weights within a week using
the four different strategies in the upper panel and their corresponding eigenvector
centralities in the lower panel. The EW portfolio maintains equal weights over time. For
the IECP, the weights resemble the dynamics of the eigenvector centralities, whereas
those in the two HRP portfolio variants do not. HRP_MHAR_CM changes more
frequently than HRP_Rcor. HRP_Rcor uses realized partial correlations, and thus
is less responsive to a new observation and does not promptly reflect the evolution of
covariances. HRP_MHAR_CM estimates each covariance matrix under an additive
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cascade structure from the short to the long term. Consequently, it responds to such
an evolution.

Figure 4.14: Weights of FTX in HRP_MHAR_CM, HRP_Rcor, IECP and EW
(dashed); and eigenvector centralities of FTX.

To highlight the two HRP portfolio variants, we illustrate the dendrograms, showing
their portfolio structures; see 4.F. On the dendrograms, we find that HRP_MHAR_CM
is relatively distinct from the classic HRP_RCor approach in terms of the Euclidean
distance. That is, using partial correlations for HRP can better cluster the assets,
offering a more identifiable distance matrix. Last, there exists a large body of literature
on asset allocation for multiple cryptos as well as cryptos with traditional investment as-
sets, e.g., stocks. This study, in comparison, focuses on the risk within cross-centralized
exchanges. To better discuss such risk and limit the influence from heterogeneous
cryptos, we consequently focus on one common crypto – BTC – for all the exchanges.
However, such a setting cannot guarantee a promising result. As discussed in Borri,
2019, a portfolio of multiple coins improves risk-adjusted and conditional returns and
offers hedging properties for investors. This study provides a distinctive perspective on
how to achieve risk diversification, i.e., among exchanges rather than among assets,
which complements the stream of studies that constructs portfolios on different cryptos.
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4.5 Conclusion

As the growing popularity of crypto-asset investment sparks an increased demand
for trading platforms, many marketplaces are springing up. Avoiding the volatile
gas fee and complex operation of cross-chain trading, centralized exchanges enable
a straightforward trading mechanism for investors that closely resembles traditional
asset exchanges. However, the mechanism encounters a compounding threat of crypto
volatility and counterparty risk. Using MHAR-CM designed for the crypto market, we
consider the stylized facts of BTC, i.e., trading 24/7, long-memory effect, and high-
frequency data, and find that the monthly coefficients depict the evolution of returns,
especially during a crisis. In light of dynamic partial-correlation networks, a firm’s
scale and the economic condition of the crypto market highly relate to each exchange’s
connectedness with the others. In extreme situations (e.g., large price drops and hacks
on exchanges), there are high and persistent partial correlations that decay more slowly
than those under normal conditions. Given the degree and eigenvector centralities over
time, we better position each firm on the network. Higher trading-volume exchanges
are more influential; that is, their risks can be easily propagated to others. Considering
the example of FTX, the influence of its bankruptcy can definitely trigger a chain effect
among exchanges, i.e., increased partial correlations with other exchanges. We also find
that, in the networks, FTX was very often volatile. In conclusion, this study highlights
the spillover risk and its persistence effect across the centralized exchanges. It is
necessary to diversify risk and consider an exchange’s market position while conducting
cross-exchange trading on cryptos, considering the potential loss induced by processing
delays or unused funds. Due to the accuracy in the measurement of correlation structure
among the exchanges, the use of partial correlations in portfolio construction further
offers a better diversification of risk. In particular, HRP_MHAR_CM outperforms the
realized partial-correlation counterpart for downside risk-adjusted measures. Utilizing
the eigenvector centrality of partial-correlation networks in weight allocation, the IECP
achieves a better result in both risk-adjusted returns and risk measures. The EW
portfolio performs the best in all risk-adjusted returns while it is far worse than the
others in risk measures, implying considerable risk exposure for an investor adopting
such a strategy across exchanges, which may lead to enormous future loss.

In this study, we only include the centralized exchanges. Future studies may consider
decentralized exchanges and investigate the return dynamics of both types of exchanges.
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Appendix

4.A Pitfall of the Cholesky decomposition on

ordering

Here, we showcase the issue of the Cholesky decomposition on variable ordering.
A partial-correlation forecast based on the Cholesky decomposition in the last time
snapshot of the sample period is provided in Figure 4.A.1. On the left, the exchanges are
ordered based on their trading volumes in Table 4.1; and on the right, they are ordered
alphabetically. Sorting by trading volumes in descending order and by alphabetical
order yield different forecasts. For instance, the partial correlation between Binance
and Kucoin in the left panel is 0.72, while it is 0.98 on the right, resulting in a different
network structure. In contrast, based on the matrix-logarithm transformation in 4.A.2,
the two sorting methods generate an identical result.

Figure 4.A.1: Partial correlations based on the Cholesky decomposition on 2022-09-
30 23:00:00.

Figure 4.A.2: Partial correlations based on matrix logarithm on 2022-09-30 23:00:00.
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4.B USDT and USD close price

Figure 4.B.1: Daily USDT (solid) and USD (dashed) close prices.
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4.E Performance measure

To underscore the confirmation time for cross-exchange trading, the regularly (i.e.,
hourly, daily) updated return for exchange i is computed using Ri,t = log(pi,t) −
log(pi,t−1), while the portfolio return is given by Rp,t =

∑︁N
i=1wi,tRi,t. Below, we list

the performance measures considered.

⊡ Standard deviation: The dispersion of the portfolio return, Rp,t, from its mean,
E(Rp,t). It is given by

σp =

√︃∑︂T

t=1
(Rp,t − E(Rp,t))2.

⊡ Sharpe ratio:
Sharpe = E(Rp −Rf )/σp,

where Rp, σp and Rf denote the mean, standard deviation of the portfolio return,
Rp,t, and risk-free rate, respectively. E(Rp − Rf) is the expected value of the
excess of the asset return over the risk-free rate.

Because there is no acknowledged high-frequency risk-free rate in the crypto market,
we set Rf = 0. The Sharpe ratio relies on the assumption that the distribution of
returns is normal; thus, the second-order moment can depict the risk. The standard
deviation includes variations above the average returns. Most people prefer these and
are only concerned about the below-average returns. Moreover, if the portfolio returns
have non-normal distributions, comparing portfolios based on the Sharpe ratio is often
insufficient, as it ignores investors’ positive preferences for odd moments and aversion
to even moments.

The following performance measures are adjusted by downside tail or extreme risks.

⊡ Semi deviation: Semi deviation eliminates positive returns when calculating risk.
It measures the variability of the (under) performance below 0. It is given by

δ0 =

√︃∑︂T

t=1

min(Rp,t, 0)2

T
.

⊡ Sortino ratio: The Sortino ratio (Sortino and Price, 1994) differs from the Sharpe
ratio as it only penalizes deviations that fall under our target rate of return,
which refers to the negative returns here, and it is computed as follows:

Sortino = E(Rp −Rf )/δ0.
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⊡ MDD: The decline from a historical peak in return is defined as follows:

MDD = maxτ∈(0,T ){maxt∈(0,τ)Rp,t −Rp,τ},

where Rp,tandRp,τ denote the portfolio returns at times t and τ , respectively.

⊡ Calmar ratio: Whereas the Sortino ratio considers all the downside volatility over
a given time, the Calmar ratio considers the maximum drawdown for that time:

Calmar =
Scale

T
× ΣT

t=1(Rp,t)/MDD,

where Scale = 24× 365 is the number of observations in a year.
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4.F Hierarchical cluster

For each figure in this section, the dendrograms compare the two HRP variants –
HRP_MHAR_CM (on left) and HRP_RCor (on right). If the two variants generate
an equal cluster, the linkage between the same assets is a horizontal line. Furthermore,
we can observe the updating of asset allocation by time in the figure here.

Figure 4.F.1: Dendrograms for the two HRP variants – 2021-05-27 03:00:00 (top) and
2021-05-27 09:00:00 (bottom).
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All the supplementary materials and source codes of this chapter are available in the Q2 ecosystem:

DAI_digital_art_index and .

5.1 Introduction

Non-fungible token (NFT), a digital token as a proof of ownership and authenticity for
assets, offers a futuristic possibility for art trading and thus impacts the market. Its
market capitalization booms up to US$ 41 billion in 2021, which is a 30 % growth by
last year; meanwhile, the conventional art market shrinks by 22% in sales from 2019
(Chainalysis, 2022; Dailey, 2022). A preliminary comparison of quarterly sales of four
different art markets worldwide is illustrated in Figure 5.1, sourced from Artnet.com 1.
We observe a surge of NFT art since the COVID-19 pandemic in 2020; while it receives
a decline later in the Q4 of 2021. Other art markets also get boosted on sales since the
pandemic.

Driven by blockchain (BC) technology and smart contracts (SC), NFTs inherit their
functional features – i.e. network decentralization, privacy and encryption, immutability
of data, and programmability in contracts. NFT digital art market has been seen
as a rising opportunity for the creators from professionals to amateurs to interact
with under-served populations. It furnishes more equitable access to wealth and the
inclusion potential to artworks. Yet, such a market is still under development and not
fully understood.

In this paper, we investigate the top 10 NFT art collections ranked by transaction
volumes on the marketplace – Opensea which is currently the most traded NFT

1Post war: Works produced between 1945 and 1970, i.e. Yves Klein, Rothko, Gerhard Richter;
Contemporary: Works produced after postwar from the late 20th to early 21st, i.e. Andy Warhol,
Yayoi Kusama; Ultra-contemporary: Works produced by artists born from 1975 to the present, i.e.
JR.
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Figure 5.1: Quarterly sales in USD millions of post war, contemporary, ultra-
contemporary, NFT art markets, plotted in order. The dotted line is the cumulative
sales on NFT.

marketplace. The top 10 collections have consisted of a total of 92,763 digital art
pieces and represent around 84% of total market trading volume In order to outline
the general trend of the NFT art market and develop a broad understanding of its
risk and return potential, we construct a characteristic-free price index – Digital Art
Index (DAI) and then conclude its price movement and determinants. We apply
hedonic regression – which is derived from data that controls for differences in the
characteristics of assets in various samples – and use the Kalman filtering (KF) with
Huberization or DCS-t filtering to smooth the index time-series. Our results can be
used for observing and evaluating this new market and for the comparison with asset
classes, e.g. cryptocurrencies (see CRIX).

The construction of an art price index is different from building indices for stocks
or similar assets, which are based on prices of identical shares. For the art market,
heterogeneous objects are to be considered. McAndrew, 2010 indicates that the essence
of art indices are: representativeness, liquidity, and capacity, i.e. the potential and
values of sales. Due to the features of art market – high heterogeneity among artworks
and infrequent trading behaviors (i.e. unbalanced panel data), the determination of
changes in market value is difficult to ascertain (Beckert & Rössel, 2013; Ginsburgh
et al., 2006). In addition, we encounter the presence of outliers in pricing, see Figure
5.2. An average (arithmetic mean or median) price index might thus not be sufficient.
Most art indices (e.g. Artnet.com, Sothebys Mei Moses) are based on data reflecting
the artwork’s price at a certain time, a function of the fixed characteristics of work

https://www.royalton-crix.com/
https://www.artnet.com/price-database/
https://www.sothebys.com/en/the-sothebys-mei-moses-indices
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– time-invariant characteristics – and elements that vary over time – time-variant
characteristics. For the NFT digital art, we collect the metadata and historical prices
of each work and characterize it by its time-variant characteristics (i.e. number of sales,
owner address) and time-invariant characteristics (i.e. collection name, NFT scheme).
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Figure 5.2: The presence of outliers in NFT digital art pricing.

Thus far, there is a limited amount of literature that has been published to comprehend
the economics of NFT art market and underpin its role to the conventional art market.
Kräussl and Tugnetti, 2022 overview NFT pricing and valuation methods, and identify
NFTs having a similar investment profile – high yield and high risk – with classic
collectibles. Dowling, 2022a; Goldberg et al., 2021 investigate the pricing of virtual
properties in Decentraland. Nadini et al., 2021 study the behaviors of NFT traders
from a perspective of network theory and offer brief statistics. Ante, 2021; Dowling,
2022b look into co-integration relationship and time - varying co-movements among
the selected cryptos and NFTs. Borri et al., 2022 construct a market index based on
repeat-sales regression (RSR) and compare it to the conventional assets and cryptos.
Due to the lack of a representative market index, most of the studies are nevertheless
restricted to individual NFT assets. In order to mitigate such a research gap and
facilitate the realization of market research, we develop a hedonic regression-based
price index. Based on a comprehensive dataset collected in this study, we include each
work’s characteristics and historical prices. We apply two alternative methods for the
robustness of price index – Huberization and dynamic conditional score (DCS) model
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for parameter filtering in order to reduce the influence of immanent outliers.

The paper proceeds as follows. Section 2 portrays the selling processes for NFT and
conventional art markets and highlights their stylized facts. Section 3 exposes the
commonly used estimation methods for constructing art indices. Section 4 elaborates
the methodologies used in this study. Section 5 presents the data attributes and
data processing. We demonstrate the result in Section 6 and offer a discussion for
interpretation in Section 7 Finally, Section 8 concludes our findings.

5.2 NFT art market

Since the emergence of BC technology, there have been many adoptions in different
sectors across all applications – crypto utility tokens in particular (Kumar et al., 2021).
NFTs are different from utility tokens. They offer the possibility for digital assets to
be owned and traded, certifying ownership and authenticity. We define NFT as – a
cryptographically secured and unique digital identifier minted through smart contracts
on a BC that cannot be replicated, subdivided or substituted. It can be used to represent
both tangible and intangible assets and to facilitate a programmable smart contract
between seller and buyer. So, an artwork is traded directly among creators and buyers
in an automated and flexible manner. Such transactions are secured and transparent.
An outlook for the NFT digital art market can be found in Allen et al., 2022; Pawelzik
and Thies, 2022.

On the other hand, in the conventional art market artists and creators are generally
required to seek for a dealer or gallery to access potential buyers, e.g. independent
collectors, museums, or auction houses (Velthuis, 2003; Zorloni, 2005). Before a work
of art enters a marketplace, it involves a series of valuation and curation processes.
Involving third parties, it can be costly and time-consuming. McEachern, 2016 offers
review literature of the contemporary art market and its economics. In the following,
we overview both the NFT and conventional art markets.

5.2.1 Selling process

Figure 5.3 illustrates the selling processes for the NFT and conventional art markets.
The arrow lines flow with the transfer of an artwork. The primary market is where
each artwork issues when it is first made available for sale by a creator; the secondary
market contains every later sale. In the NFT art market, a creator can be either
institutional (e.g. Larva Labs, Dapper Labs) or independent. Most of the artworks are
traded in the secondary market via a marketplace (e.g. Opensea, Rarible) except the
works from the institutes that support the architecture of a BC. Art creators generally

https://larvalabs.com/
https://www.dapperlabs.com/
https://opensea.io/
https://rarible.com/
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preserve the copyright of artworks and are able to reproduce a series of similar works.
Also, they can decide the listing price – the first sale price – and control the bidding
process with buyers. Due to the programmability of NFTs, a creator can later demand
a royalty, a preset percentage of the sale price ranging from 5-10% typically. The crypto
payment and the transfer of NFT are processed automatically and simultaneously in a
single transaction between two mutually distrusting parties on a BC network. NFT
consequently establishes diverse contented marketplaces and enables a vibrant and
sustainable revenue stream for creators.

In a conventional art market, creators depend on a centralization dealer / gallery to
proceed with the selling process. The listing price is decided via a valuation process
and a negotiation between creators and dealers. After the first sale, the artwork
is traded in different channels (Towse & Hernández, 2020; Zorloni, 2005); however,
each channel might be independent of each other. Moreover, there are a few causal
linkages between different marketplaces across the world and no feedback relationships
in between (Le Fur, 2020). The transaction history and pricing are less transparent in
comparison to the NFT art market, where all the transaction history is secured by BC
technology. Resale royalty right, also called droit de suite in the conventional market,
might be difficult due to the lack of traceability in sales history.

Figure 5.3: Selling processes for (a) NFT and (b) conventional art markets.
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5.2.2 Economics of art market

Art has been considered as one of the investment instruments that offers lower volatility
and lower correlation with other assets, thus being used for portfolio diversification
(Campbell, 2008; Mei & Moses, 2002a; Worthington & Higgs, 2004). In terms of
the performance in returns, Bocart et al., 2020; Whitaker and Kräussl, 2020 indicate
that contemporary art and gallery portfolios perform almost as well as the S&P 500,
and the majority of art markets do not load significantly on momentum or liquidity
factors. Penasse and Renneboog, 2021 show that the art market is subject to frequent
booms and busts, so it is not applicable to rational consumer models and exhibits an
opportunity for spectacular profits. Goetzmann et al., 2011; Renneboog and Spaenjers,
2013 direct attention to income inequality and art market sentiment and show their
correlation to price trends. A wide body of literature analyzes price determinants via –
the work of art (size, material, genre), the artist (age, sex, place of residence), and the
sales channel (location, affiliation) (Garay, 2021; Li et al., 2021; Rengers & Velthuis,
2002). This can be summarized on the main stylized facts of the conventional art
market – i.e. infrequent trading, price inequality, illiquidity, centralized patrons, less
transparency in price formulation, multiple independent marketplaces.

The exchanges and transfers of NFT art, compared with the conventional artworks,
proceed safely and with (nearly) no intermediaries. Cryptos are essentially the means
of payment for NFTs – e.g. Ethereum (ETH), Solana (SOL), and therefore, crypto
pricing affects NFT asset pricing and the market (Ante, 2021). Dowling, 2022b remarks
that NFT assets (i.e. Decentraland, Cryptopunks) have a limited volatility spillover
from cryptos. Urom et al., 2022 find that the connectedness and volatility of returns
between NFT market and other conventional markets (e.g. stock, commodity, crypto)
are higher during extreme market conditions; NFT markets usually is a net return
shock receiver. In terms of liquidity, Wilkoff and Yildiz, 2022 conclude that there is a
positive relationship between ETH returns and NFT illiquidity. In other words, while
ETH returns are high, investors are unwilling to buy NFTs. In Figure 5.4, we observe
that the downwards and upwards of total transaction volume of NFT art are often
corresponding to dropping and rising of CRIX index proposed by Trimborn and Härdle,
2018, an index for tracking the evolution of cryptocurrency market.

Similar to the conventional art, NFT artworks are traded infrequently and there exists
an imbalance in asset pricing. In the report of Vasan et al., 2022, they indicate that
market first-mover creators, in general, own an advantage in pricing and sales, and
a network effect (i.e. from twitter followers) is observed. Rarity and uniqueness of
collectibles induce market demand and thus offer a higher price premium, known as
rarity premium (Koford & Tschoegl, 1998). For instance, the on-chain art generative

https://www.royalton-crix.com/
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Figure 5.4: Time series of total transaction volume of NFT art in USD (solid) and
CRIX (dotted).

collection – Autoglyphs, due to its limited number of issues, has consistent pricing
and resale rates in Figures 5.2 and 5.5. Mekacher et al., 2022 quantify rarity based on
natural language descriptions (i.e. traits) in the metadata of NFT art and show that
high rarity induces high returns. Moreover, in the conventional art market, curation
processes play a critical role in the valuation of a work. Applying such a mechanism to
the digital art market, ArtBlocks, for example, offers a curation board for evaluating
generative artworks from their scripts.

We observe there exist many adoptions from the conventional on the NFT art market.
Transforming and evolving towards digitalization, the NFT art market has provided
many distinctive technical properties – backed by BC technology and smart contracts –
that attract different groups of art collectors (i.e. crypto investors) and consequently
influence trading behaviors. In this study, we dedicate to categorizing the stylized facts
for such a brand-new market and empirically compare it to other markets.

5.3 Towards DAI, an Index for Digital Art

Two estimation methods – Repeat-sales regression (RSR) and hedonic regression (HR)
are commonly applied to construct price indices for heterogeneous goods that comprise
various characteristics. In the absence of individual characteristics, RSR uses the prices
traded within two distinct moments. Bailey et al., 1963 employs the RSR for real

https://www.larvalabs.com/autoglyphs
https://www.artblocks.io/
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estate price index construction and it is formulated as:

log

(︃
pit+s

pit

)︃
⏞ ⏟⏟ ⏞
Relative price

= δt+sd
i
t+s + uit+s (5.1)

where pit is the observed price of object i ∈ {1, . . . , N} in period t ∈ {1, . . . , T} with
T ≥ t + s > t; and t and t + s are the periods for the first sale and the second
sale, respectively. δt is the index; dit ∈ {0, 1} is the time dummy; and error term
u

iid∼ N (0, σu
2). One can see δt here as the average return at period t in the portfolio.

RSR might suffer though from sample biases when the data is rather sparse. Moreover,
it only considers relative prices (returns), so that the individual objects having more
than two sales are not included.

Hedonic regression model regresses prices on various characteristics of assets transacted
and can adapt the changing characteristics over time. Though the model has been
proposed since the applications of Waugh, 1928 and Court, 1939, later Griliches, 1971;
Griliches, 1961 and Rosen, 1974 have justified it as a quality-adjusted price index and
HR model has started widely being implemented in e.g. house pricing, art pricing. A
general form for an HR model is written as:

log(pit) =
t∑︂

τ=1

βτd
i
τ +

m∑︂
k=1

γkv
i
k +

t∑︂
τ=1

n∑︂
j=1

θjτw
ij
τ + εit (5.2)

where pit is the observed price of object i ∈ {1, . . . , N} in period t ∈ {1, . . . , T}; βτ is the
estimated coefficient of time dummy variable diτ ∈ {0, 1} with τ ∈ {1, . . . , T}; and εit is
the error term with ε iid∼ N (0, σε

2). pit is a function of m time-invariant characteristics
vik with k ∈ {1, . . . ,m} and of n time-variant characteristics wij

τ at period τ with
j ∈ {1, . . . , n}; and γk and θjτ are the corresponding coefficients. Characteristics depend
on the type of objects studied. We might encounter omitted bias and misspecification
challenges (Wallace & Meese, 1997).

We can easily find both the RSR and HR concepts coincide if there are no time-variant
characteristics in the hedonic factors. Then, Equation 5.2 is written as:

log(pit) =
t∑︂

τ=1

βτd
i
τ +

m∑︂
k=1

γkv
i
k + εit (5.3)

We, thus, get the difference between the first sale log price pit and the second sale pit+s

in an HR fashion as below. Note that d is being non-zero at time t and t+ s at which
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the two observable p occur succeeding.

log(pit+s)− log(pit) = (
t+s∑︂
τ=1

βτd
i
τ +

m∑︂
k=1

γkv
i
k + εit+s)− (

t∑︂
τ=1

βτd
i
τ +

m∑︂
k=1

γkv
i
k + εit)

= βt+sd
i
t+s + (εit+s − εit)

(5.4)

Similarly to other collectibles (e.g. equipment, traditional artworks, real estate), the
NFT art market is rather non-liquid and often has low frequency in sales. Figure 5.5
presents that most of the collections listed have the medians of number of sales around
1. As discussed in Shiller, 2008, if either the fraction of sales or the relative price of
new assets varies a lot, the presence of new sales along with existing sales is of essence.
Hence, RSR concept does not fit the NFT artworks with only a single sale since it
cannot represent a precise resolution of the market. One may argue that incorporating
both new and existing asset prices is an issue (Shiller, 2008), i.e. the supply of new
NFTs varies over time as market conditions change. The NFT art market is emerging
and uneven in assets’ prices and sales; therefore, it is indeed less stable and alters with
the market conditions.
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Figure 5.5: Low frequent sales in the NFT art market.
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5.4 Methodology

After going through the preliminary of the methodology, in this section we explain in
detail the regression model and the construction of art index. We explicitly consider
the hedonic price index model and refine it by emphasizing outlying and influential
data and issues on biased sampling.

5.4.1 Hedonic regression

To consider the characteristics of NFT art and understand its pricing fundamentally,
we apply a hedonic regression model and extend it from the work of Bocart and Hafner,
2015. Due to the infrequent trading, we have to deal with an unbalanced panel data
structure, i.e. panel data where the individual time series have unequal length of
observations. Writing yt = (y1t , . . . , y

Nt
t )⊤ where yit is the log price of the i-th sale at

time t ∈ {1, . . . , T} with i ∈ {1, . . . , Nt}; βt = (β1
t , . . . , β

Nt
t )⊤; and εt = (ε1t , . . . , ε

Nt
t )⊤

with ε iid∼ N (0, σε
2). Note that i here refers to the sales instead of an object. Equation

5.2 is equivalently expressed as:

yt = dtβt +X⊤
t α + εt (5.5)

where dt = (1, . . . , 1)⊤ is a (Nt × 1) vector. Xt = (vk, w
j
t ) is of dimension (Nt ×

K) and contains K explanatory variables including time-variant and time-invariant
characteristics at time t; and α = (α1, . . . , αK)⊤ is the corresponding vector parameter.
Note that Nt changes with time t.

Once we obtain the parameter α, interpreted as implicit prices of the various charac-
teristics, βt is estimated:

β̂t
OLS = argmin

βt∈R

{︂
∥yt − dtβt −X⊤

t α∥22
}︂

(5.6)

Since the model marginalizes over Xt, one creates the characteristic-free price index
β̂t

OLS.

Incorporating with lasso (the least absolute shrinkage and selection operator) for model
regularization, we subject Equation 5.5 to ∥α∥1 < b and the lasso determined coefficient
β̂t

lasso in the equivalent Lagrangian form:

β̂t
lasso = arg min

βt∈R,α∈RK

{︂
∥(yt − dtβt −X⊤

t α)∥ρ + λ∥α∥1
}︂

(5.7)

where b is a pre-defined parameter that determines the degree of regularization; ρ is a
certain loss function, i.e. Huber loss, and λ is regularization parameters. The result of
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lasso is mainly for the use of price determinants, emphasizing the characteristics of
artworks.

Given the estimate β̂t, the price index with base 100 in t = 1 is defined as:

Indext
def
= 100

exp(β̂t)

exp(β̂1)
(5.8)

5.4.2 Selection bias correction

We apply Heckman sample selection model, known as Tobit-II model – see Heckman,
1976, 1979 – to address the potential problem of sample selection bias, especially
omitted variable bias (Collins et al., 2009; Malpezzi et al., 2003). In our case, we only
observe a sub sample of the NFT transactions that have been successfully transacted
but other transaction event types (i.e. bid entered, cancelled) cannot be included in
the models of Section 4.1 due to unobserved dependent variables (i.e. price). The
Heckman model utilizes the regression covariates to approximate selection, transforms
the prediction, and then includes that transformation in the model.

Assume two latent variables yot,i
∗ and yst,i

∗ where the time t ∈ {1, . . . , T} and the sale
i ∈ {1, . . . , Nt}. yot ∗ = (yot,1

∗, . . . , yot,Nt

∗)⊤ links the covariates of interest to the outcomes
and yst

∗ = (yst,1
∗, . . . , yst,Nt

∗)⊤ is a vector of the selection propensity variables, as seen
below:

yot
∗ = xot

⊤βo
t + εot (5.9)

yst
∗ = xst

⊤βs
t + εst (5.10)

where xot and xst are matrices of explanatory variables. Here, assume xs ⊆ xo, i.e.
predictor variables using for the main outcomes of interest yo∗ are used to predict the
selection ys∗. εot and εst are error terms. βo

t and βs
t are coefficient parameters. yot,i is

only observed if the selection propensity variable is positive such as:

yst,i =

⎧⎨⎩1 if yst,i
∗ > 0

0 otherwise
(5.11)

Given selection to the main sample, the expected value of the outcome in Equation 5.9
is given by:

E[yot |xst , εst ] = xot
⊤βo

t + E[εot |εst ≥ −xst
⊤βs

t ] (5.12)

Estimating the model above by OLS gives generally biased results, hence assume εot
and εst are mean independent and follow a bivariate normal distribution, i.e.

(︁
εo

εs

)︁
∼
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N
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0
0

)︁
,
(︁

1 ρ
ρ σ2

)︁)︁
. Accordingly, we can write:

yot = βo
t x

o
t
⊤ + E[εot |εst ≥ −xst

⊤βs
t ] + ut

def
= βo

t x
o
t
⊤ + ρσλ(βs

tx
s
t
⊤) + ut

(5.13)

where λ(·) = φ(·)/Φ(·) is the inverse Mills ratio (IMR), being φ(·) the standard normal
probability density function (pdf) and Φ(·) the complementary cumulative distribution
function (cdf). ut is an error term which is independent of both xst and xot . βs

t is
estimated via a probit model, assuming P(yst = 1|xst) = Φ(xst

⊤βs
t ) and performing

MLE, and thereafter, we access the estimates of λ(βs
tx

s
t
⊤). Since ρ ̸= 0 the unknown

multiplicator ρσ is estimated by OLS regressing yot on xot given the selection sample
and λ(β̂s

tx
s
t
⊤). Further details on the consistency of such estimators are discussed in

Miranda and Rabe-Hesketh, 2006.

5.4.3 Huberization

Proceeding with the OLS regression, we observe that there exist many outliers in the
residuals ε̂t, see Figure 5.6. This is also visible in Figure 5.7 where the OLS residuals
are displayed via box plots over time in comparison with the number of transactions per
day. The number of transactions of NFT artworks induces the outlying observations in
residuals; the mean of residuals gets stablized by time.

−30 −20 −10 0 10 20 30
−30

−20

−10

0

10

20

30

Theoretical quantiles

Sa
m
pl
e 
qu
an
til
es

Figure 5.6: QQ plot for OLS standard residuals against standard normal distribu-
tion.

To alleviate such an impact of outliers and offer a robust estimate of β, we introduce a
correction procedure – Huberization to reflect the actual outlyingness. Härdle, 1984 uses
an influence curve, Huber’s ψ-function from Huber, 1964, to bent down the influence
of outlying observations. We construct pseudo observations ỹt = (ỹ1t , . . . , ỹ

Nt
t )⊤ as a
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Figure 5.7: OLS residual box plots over time with mean of residuals and number
of transactions per day.

one-step correction of yt:

ỹt = yt + ε̃t

= dtβt +X⊤
t α + ε̃t

(5.14)

where yt is estimated using ŷt = dtβ̂t + X⊤
t α from Equations 5.6 or 5.7. ε̃t =

(ε̃1t , . . . , ε̃
Nt
t )⊤ is a vector of the bounded one-step residuals:

ε̃it =
ψ(εit)

∆
(5.15)

where the scaling parameter ∆ = E[ψ′(εit)] is estimated via

∆̂ = T−1

T∑︂
t=1

[nt]
−1

nt∑︂
i=1

[ψ′
τ (ε̂

i
t)]

from OLS or lasso. The ψ-function is simply the derivative of the ρ-function.

ρτ (ε
i
t) =

⎧⎨⎩1
2
(εit)

2 ∀|εit| ≤ τ

τ(|εit| − 1
2
τ) otherwise

(5.16)

where τ ∈ R+ is a hyperparameter that controls the effect of outliers. The huberized
estimation of β is obtained: β̂∗

t = argminβt∈R

{︂
∥ỹt − dtβt −X⊤

t α∥22
}︂

.

5.4.4 Kalman filtering

To efficiently obtain estimates of the unobserved components and to refine prior
estimates, we treat the parameter βt of Equation 5.5 in a state space form and
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apply Kalman filtering. Extending the classic random-effects models and imposing
exogeneity of the regressors with respect to the time component such that βt ∼ N (0, σ2

β)

with E[βt] = 0, we rewrite (5.5) as yt = X⊤
t α + ηt with a composite error term

ηt = (η1t , . . . , η
Nt
t )⊤ and

ηt = dtβt + εt (5.17)

where ε iid∼ N (0, σε
2). σε is interpreted as idiosyncratic volatility such that it reflects

the variation around the predicted price using the market index βt and characteristics
Xt.

Given the recursive nature and normality assumption of error terms, we fit an autore-
gressive order one process, AR(1), of βt with a random walk:

βt = ϕβt−1 + ξt (5.18)

with |ϕ| ≤ 1 and ξ
iid∼ N (0, σξ

2). As ϕ = 1, ξt is the excess over the average price –
interpreted as returns of a market portfolio – and σξ is hence seen as market volatility.

Given the linear Gaussian state space representation in 5.17 and 5.18, we now use
Kalman filtering to access the underlying βt via the parameter estimation of σε and σξ.
We use MLE to calibrate these parameters. Denote the unkown parameter vector by
θ =

(︁
σε, σξ

)︁
within the parameter space Θ = {θ : σ2

ε > 0, σ2
ξ > 0}. ϕ can be estimated

jointly with σε and σξ while the AR(1) process of Equation 5.18 is stationary, i.e.
|ϕ| < 1. Here, we explicitly feature the unit root process in Equation 5.18 as ϕ = 1.

Denote conditional mean and variance by ηt|t−1 and Ση(t|t − 1), respectively. Let
et(θ) = ηt − ηt|t−1 and Σt(θ) = Ση(t|t − 1). We therefore define the log-likelihood
function of θ as:

L(θ) = 1

2

T∑︂
t=1

{︁
log |Σt(θ)|+ et(θ)

⊤Σt(θ)
−1et(θ)

}︁
(5.19)

and the maximum likelihood estimator is:

θ̂ = arg max
θ∈Θ=R2

+

L(θ) (5.20)

Obtained θ̂ through MLE we predict βt|t−1 and ηt|t−1 and correct the prediction with
σβ(t|t − 1) and Ση(t|t − 1). Given the full sample information (t = 1, . . . , T ), we
therefore infer the underlying βt.
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5.4.5 DCS-t filtering

The Kalman filtering is optimal in a linear Gaussian state space model. In the presence
of outliers, however, it may overweight the impact of these outliers on the changes in the
index βt. In consequence, we proposed to huberize residuals. Instead of Huberization,
an alternative is based on dynamic conditional score (DCS) models introduced by
Creal et al., 2011, 2013 and Harvey, 2013. The idea is to replace the one step ahead
prediction error in the updating equation of the Kalman filtering by a likelihood score
with respect to the index. For heavy-tailed distributions, this simply downweighs the
impact of extremes. For example, consider a multivariate t-distribution with ν degrees
of freedom. Assuming a random walk for βt , the model becomes:

ηt = dtβt + vt, vt ∼ tν(0, σ
2
vInt) (5.21)

βt = βt−1 + κut−1 (5.22)

ut =
1

wt

ν + nt

ν

1

σ2
v

d⊤t et (5.23)

wt = 1 +
1

νσ2
v

e⊤t et (5.24)

Here, ut is the score w.r.t. βt, i.e.

ut =
∂ log ft
∂βt

where ft is the conditional density of ηt,

log ft(ηt; θ) = log Γ(
ν + nt

2
)− log Γ(

ν

2
)− nt

2
log(πνσ2

v)−
ν + nt

2
logwt.

Figure 5.8 depicts the score ut as a function of et for the case nt = σv = 1, ν = 4

and ν = 10. We see that the downweighting is stronger the heavier the tails of the
distribution. Note that in the Gaussian case (ν → ∞), the score reduces to ut = 1

σ2
v
d⊤t et,

which is analogous to Kalman filtering, and in which case there is no downweighting
of outliers. Estimation of the model parameters is again performed by maximizing
numerically the log likelihood function

L(θ) =
T∑︂
t=1

log ft(ηt; θ)

with respect to θ = (σ2
v , κ, ν)

⊤.
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Figure 5.8: Score ut with respect to βt as a function of the one-step prediction error
for a multivariate t distribution with ν = 4 (solid) and ν = 10 (dashed) degrees of
freedom.

5.5 Data description

Our data are collected using the API from OpenSea which is the first and largest NFT
marketplace. The data are available at the Blockchain Research Center (BRC). To
consider the representative constituents, to not explode in sample size, we select the
top 10 NFT art collections ranked by the total transaction volumes, which is 83.71% of
the NFT art market volume in 2021 July. The data include two data frames – artwork
metadata and transaction histories, which are then merged for the purpose of Hedonic
regression, by the unique id of each work. Despite the continuous variables, i.e. number
of sales and punk accessory, all the other variables are one-hot encoded. Table 5.A.1
shows the attributes of each variable.

The metadata describe the properties of each work, inclusive of the collection slug,
contract type, scheme name, creator, year of creation and traits (i.e. characteristics of
artworks). Among which creator ids and addresses are only available in the collections
MakersPlace and SuperRare because the other collections considered in this study are
algorithm generated works. We assign the number of works listed to the creators, i.e.
the creators with only 1 piece, 2 to 100 pieces, 100 to 1,000 pieces, and more than 1000
pieces.

Collection specific properties are included as interactive dummies, for example, ’art_
blocks_subcollection’ in Art Blocks, ’bdap_Background’ in Bored Ape Yacht Club.
For those collections with too large set of words in traits – e.g. accessories for
CryptoPunks – and with unstructured textual descriptions – e.g. SuperRare, we
adopt the natural language processing (NLP) techniques to avoid the explosion in
feature space. CryptoPunks are in 5 types and each work has a set of accessories – such

https://blockchain-research-center.com/
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as headgears, glasses, and earrings – as of the total 92 categories. The traits within
these categories are converted into the scarcity index using the concept of TF-IDF
(term frequency inverse document frequency) in Jones, 1972. The traits of the p-th
punk’s sales are denoted by Tp where p ∈ (1, 2, . . . , P ), i.e. P = 5466. The TF of a
word w in trait Tp is computed by:

TF(w, Tp) =
fw,Tp∑︁

w′∈Ti
fw′,Tp

where fw,Tp is the raw count of a word in a given trait.

The IDF of the word is:

IDF(w, Tp) = log
P

1 +
∑︁P

p=1 I(w, Tp)
.

The scarcity index of Tp is defined as the sum of the product of TF and IDF of all the
words within a trait as:

SITp =
∑︂
w∈Tp

TF(w, Tp) ∗ IDF(w, Tp).

Having a consistent structure of CryptoPunks’ traits, the scarcity of each punk is
measured by summing the scarcity index of each accessory equipped. SITp of each
accessory is the importance of an accessory for a given punk, which is adjusted by the
rarity of this accessory owned by the existing punks.

In SuperRare each artwork has a singe tag (i.e. a word) or a set of heterogeneous tags
in its trait. The number of tags within these traits varies from the others. Most of
these tags only appear once. We, thus, apply the pre-trained word embedding model –
Global vectors for word representation (GloVe) from Pennington et al., 2014 to handle
these inconsistent traits. Based on global word-word co-occurrence statistics from
the corpus, the training result shows a linear substructure in word vector space. It
implies that the similarity between words can be measured by the linear distance of
two resulting word vectors, and these vectors are additive. We create GloVe index for
each SuperRare trait Ts, p ∈ (1, 2, . . . , S),

GITs =
1

fw,Ts

∑︂
w∈Ts

GloVew,Ts ,

where fw,Ts denotes the raw count of a tag within a given trait; and GloVew,Ts is the
output of the pre-trained GloVe model with the input of word w, trained on Wikipedia
corpuses in a 50 dimensional vector. Taking the weighted sum of the GloVe vectors for
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each word, we obtain the GloVe index for each artwork. We use this index to consider
the similarity among works in SuperRare. To further reduce the dimensionality, we
apply k-means clustering on the GloVe indices and yield the dummy variables to
represent the resulting 30 clusters.

Last, artworks’ transaction histories among all the collections include the categorical
variables (e.g. auction type, payment token, seller and winner addresses) and the
continuous variables (e.g. number of historical sales). Categorical variables are one
hot encoded, and continuous variables are aggregated into different intervals by the
frequencies.

5.6 Result

As pointed out previously, we observe the frequent presence of outliers, and it signifi-
cantly influences the stability and robustness of indices. In this paper, we have proposed
two alternative procedures (in thick lines) – to resolve the overweighted impact from
these outliers, see Figure 5.9. We first discuss how KF and DCS-t filtering perform
in our empirical study and offer a simulation to show their difference in estimation
performance. Later, we conduct the residual analysis to demonstrate how huberizing
before applying KF assists to diminish the impact of outliers. Diametrically, considering
the evolution of conditional distribution of an observation via score function, DCS-t
filtering reduces such an impact in a dynamic fashion.

Figure 5.9: Proposed procedures to handle the impact of outliers.

5.6.1 KF and DCS-t

A substantial body of literature points out that the score-driven filter (i.e. DCS-t
filtering) appears to be adaptive towards the estimation of time-varying parameters
that depend on past observations in a wide class of nonlinear models (Artemova et al.,
2022; Harvey, 2022). Related to parameter-driven models, DCS-t filtering replaces the
one-step ahead prediction error ξ with the score of the Student-t density u. Figure
5.10 shows the update of score u in our empirical study of the NFT art market. It,
hence, can deal with the intricate dynamics of time series – i.e. outlier errors, changing
conditional variances, or non-negative variables (Harvey, 2013). In contrast, due to the
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assumption of an accurate model of the state and prior distribution of noises, classic KF
might fail to react to a sudden change of an observation. In Figure 5.11, the empirical
result shows that β̂KF

t|t is volatile during the first half observation period and afterward
becomes smooth; whereas, β̂DCS-t

t|t−1 behaves in the opposite manner.
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Figure 5.10: The update and ACF of score u.
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Figure 5.11: KF predicted β̂KF
t|t−1 (dashed), KF corrected β̂KF

t|t (dotted), and DCS-t

predicted β̂DCS-t
t|t−1 (solid).

Offering a better resolution to compare them, we conduct simulation with an univariate
state space model wherein the state variable follows an AR(1) process, see 5.17 and
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5.18. At each time t there exist Nt observations and t ∈ {1, . . . , 500}. Parameters
ε

iid∼ N (0, σε
2) and ξ

iid∼ N (0, σξ
2) are the error terms for the observable and state

variables, respectively. An example with Nt = [5, 20], σε = 0.1 and σξ = 0.2 is shown
in Figure 5.12. In Table 5.1, the KF achieves a better outcome than the DCS-t in
terms of mean squared errors (MSE) if number of observations are fixed at each time t.
Under random observations the DCS-t surpasses the KF while having higher standard
deviations in the model. According to the simulation result, we find that the DCS-t
adapts better a volatile time series.

Table 5.1: DF and DCS-t simulation results.

Nt σε σξ
MSE

KF DCS-t

5 0.01 0.02 2.00e-04 2.64e-04

5 0.1 0.2 1.03e-02 2.56e-02

50 0.01 0.02 2.58e-03 4.17e-03

50 0.1 0.2 1.95e-01 2.19e-02

[5, 20] 0.01 0.02 7.66e-04 2.33e-04

[5, 20] 0.1 0.2 7.44e-02 2.75e-02

[20, 100] 0.01 0.02 2.72e-03 2.34e-04

[20, 100] 0.1 0.2 2.16e-01 2.45e-02
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Figure 5.12: βt (dashed), β̂KF
t|t (dotted), β̂DCS-t

t|t−1 (solid) and residual box plot over
time (background) with Nt = [5, 20], σε = 0.1 and σξ = 0.2.

As discussed previously, the implementation of Huberization before applying Kalman
filtering effectively avoids deterioration caused by outliers. Huber, 1964 shows that
minimizing the Huber loss can be interpreted as MLE, i.e. its asymptotic variance
EFψ

2(ε)/[EFψ
′(ε)]2 ≥ 1/EF [(f

′(ε)/f(ε))2] has the equality when ψ ∝ −f ′/f where
ε ∼ F with density f . That is, once we obtain the optimal threshold τ over time, it offers
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robust estimates of βt. However, an optimizing update like this can be computationally
costly.

5.6.2 Residual analysis

The OLS estimation of DAI exhibits a fat-and heavy-tail behavior on residuals, see
Figure 5.6. In order to achieve robustness and account for the influence of outliers,
Huberization is proposed as a one-step robust regression. Given τ = q0.1(ε̂), after
Huberization the scale of residuals has shrunk significantly in Figure 5.13b, comparing
to Figure 5.13a. Figure 5.14 illustrates that Huberization truncates the residuals over
time, and the influence of outlying observations is significantly downweighted.
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(b) After Huberization with τ = q0.1(ε̂)

Figure 5.13: QQ plots for OLS standard residuals against standard normal distribu-
tion after Heckman correction and after Huberization.
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Figure 5.14: Residual box plots for after Heckman correction (upper panel) and
after Huberization (lower panel) over time with mean of residuals.

Since τ here is a hyperparameter in Equation 5.16, we select three different quantile
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levels of residuals after Heckman correction – q0.1(ε̂), q0.05(ε̂), and q0.01(ε̂) – to examine
their sensitiveness to outliers, being against standard normal distribution. Figure 5.15
shows that Huberizing with the three quantile levels curve off in the extremities, which
indicates fat tails are still observed. Given τ = q0.01(ε̂) within theoretical quantiles
around [−3, 3] τ = q0.01(ε̂) it demonstrates a wider scope of fitting, however, in the right
extremities it has a spike where residuals aligned nearly horizontally. Both τ = q0.1(ε̂)

and τ = q0.05(ε̂) have a slight jump on the right tail. All in all, τ = q0.01(ε̂) resembles
better the normal distribution compared with the others.
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(c) τ = q0.01(ε̂)

Figure 5.15: QQ plots for OLS residuals against standard normal distribution after
Huberization with different quantile levels.

As an alternative to using Huberization and Kalman filtering, we propose DCS-t filtering
to adaptively accommodate the updates of conditional distribution. Considering the
presence of outliers or heavy tailed distributions, one takes a multivariate t-distribution,
as in Equation 5.21. Here, we plot the QQ plot for the OLS residuals after Heckman
correction against the standard t-distribution with two settings of degrees of freedom
ν in Figure 5.16. As discussed in Figure 5.8 previously, having a heavier tail in the
t-distribution (i.e. nu = 4) is more robust than the normal distribution. However,
we observe some gaps in the density in the extremities. The larger is the degree of
freedom in Figure 5.16b, the more is it approaches to the case of normal distribution
as in Figure 5.13b.

5.6.3 DAI variants

In this section we showcase the price indices computed by both proposed procedures in
different parameter settings.

Figure 5.17 illustrates the indices using Huberization with different settings on τ and
filtering. The Heckman corrected index is highly influenced by extremes, i.e. the time
2020 March to April exhibiting a relatively sharp spike. Huberization with τ = q0.1(ε̂)
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Figure 5.16: QQ plot for after Heckman against standard t-distribution with two
different ν.

is slightly sensitive, compared to the DAI variants with τ = q0.05(ε̂) and q0.01(ε̂). It is
natural that with the rise of the sales in the NFT art market, see Figures 5.1 and 5.7,
the DAI develops smoothly in its four variants.
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Figure 5.17: DAI – after Heckman correction (dotted), after Huberization with
τ = q0.1(ε̂) (dashed), after Huberization with τ = q0.05(ε̂) (dash-dotted), and after
Huberization with τ = q0.01(ε̂) (solid).

Offering an alternative to Huberization and filtering, in Figure 5.18 we compare the
DAI variants using DCS-t filtering given optimized parameters and infinite degree of
freedom to huberizing with q0.01(ε̂). After the forth quarter of 2020 the indices applying
DCS-t filtering are more reactive. Setting ν ∼ ∞, the t-distribution in Equation 5.21
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ideally should approach the normal distribution and smooth the index; however, it
remains a certain degree of sensitiveness.
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Figure 5.18: DAI variants – after Heckman correction (dash-dotted), after Huber-
ization with τ = q0.01(ε̂) (dotted) DCS-t filtering (solid), and DCS-t filtering with
ν ∼ ∞ (dashed).

As has been shown previously in Section 5.6.2, both procedures provide robustness.
Huberization in a one-step robust regression, crops off the influence from the outliers
at once. Thereafter, we use Kalman filtering to approach the unobserved components.
Instead, DCS-t filtering fits the data with a heavy-tailed distribution and gradually
adjusts by one-step updates of conditional distributions. In this case, the alternative
procedures are not that alternative, but rather complimentary. However, as the NFT
art market is rapidly changing, including the dynamics of conditional distribution may
be more adaptive and straightforward. In the following, we therefore only consider the
DAI variants with DCS-t filtering.

5.7 The DAI

The works of NFT digital art are transacted by the means of cryptocurrencies, in
particular ETH. In order to examine the dynamics between DAI and other relevant
crypto variables like the CRIX, ETH or trading volume (ETH vol.), we explore their
causal relationships. We showcase the price determinants for collected NFT artworks,
concluding the result from Lasso as a variant. Focusing on art markets, we discuss DAI
with the quarterly sales of – Post war, contemporary and ultra-contemporary markets.
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5.7.1 Causal inference

Evaluate as the returns, (pit − pit−1)/p
i
t−1 where i ∈ {DAI, CRIX, ETH, ETH vol.}.

Given two time series y = {yt}Tt=1 and x = {xt}Tt=1, we test whether including one can
help to predict the other in (any) unidirectional (i.e. x⇒ y, y ⇒ x) or bidirectional
(i.e.x ⇔ y) fashion. That is, in 5.25 and 5.26 ηt > εt ≻ x ⇒ y. This implies
σ2(y|U ′) < σ2(y|U ′ − x′) where U ′ ⊂ U is a set of prior values of the all causative
variables; and x′ ⊂ x is the prior values of time series x. We examine each pair with
different number of time lags, τ . There is no evidence that CRIX, ETH, and ETH
vol. significantly cause DAI, as well as vice versa, see Table 5.2. Consequently, NFT
art market can possibly act as a financial instrument for risk diversification towards
cryptos as their causal influence on DAI is restricted.

yt =
τ∑︂

j=1

ajyt−j + ηt (5.25)

yt =
τ∑︂

j=1

ajyt−j +
τ∑︂

j=1

bjxt−j + εt (5.26)

Table 5.2: Pairwise Granger causality test results.

Number of lags τ 1 2 3 4

Null hypothesis H0 F-test p-value F-test p-value F-test p-value F-test p-value

CRIX ̸⇒ DAI 0.0019 0.9649 0.2195 0.8030 0.1465 0.9319 0.5682 0.6858

DAI ̸⇒CRIX 0.0299 0.8628 0.1481 0.8624 0.2746 0.8437 0.2032 0.9366

ETH ̸⇒ DAI 0.0690 0.7928 0.0795 0.9236 0.4170 0.7409 0.5071 0.7305

DAI ̸⇒ ETH 0.0369 0.8477 0.0359 0.9647 0.2721 0.8456 0.3202 0.8645

ETH vol. ̸⇒DAI 1.0194 0.3131 0.4592 0.6320 0.4014 0.7521 0.5235 0.7185

DAI ̸⇒ ETH vol. 0.3906 0.5323 0.7010 0.4965 0.7884 0.5007 0.6632 0.6178

5.7.2 Price determinant

We examine the regression results and investigate price determinants of NFT artworks
by applying Hedonic Lasso regression to the pseudo observations ỹt from Huberization
and the hedonic factors in Table 5.A.1. Having the penalty parameter λ = 0.001 in
Lasso, we show the active variables and their coefficients in Tables B.1 and B.2. If a
variable receives a positive coefficient, it is marked in orange; otherwise, it is in blue.
In order to better explain price determination among these works, we categorize the
active variables into two parts – external factors and internal factors.
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External factors

External factors are relevant to transaction information which describe the trading
details such as transaction time, inflow and outflow addresses, and number of sales
occurred.

First, we see that the auction type – English auction – has a positive effect on price.
English auction is an open-outcry, ascending dynamic bids. It is more common and
straightforward for sellers and buyers. In terms of seller experience, a seller with an
address having less than 100 transaction records has the upmost influence on price. An
inexperienced seller may still have an opportunity to have a high sale price. That is, the
market is still open to new entrants. Conversely, buyers who have experienced between
100 and 500 sales have a significant negative impact on price; whereas less experienced
ones may contribute to a higher deal price. Those artworks owned by experienced
owners or professional collectors who have between 100 and 1000 transaction records
are likely to be sold at higher prices; while the opposite is also valid. Consequently,
this may be due to the bidding skill and market sensibility of experienced buyers.

Moreover, we observe that trading with commonly used cryptos (i.e. ETH, WETH) and
stable coins (i.e. DAI) may induce higher price. As NFT scheme ERC721 is the most
common standard used in the market, it presents a positive impact here. The contract
addresses are referred to the launching platforms – i.e. 0x8c9f364bf7a56ed058fc63ef81c6cf09c
833e656 links to the auction house, SuperRare. The influence, therefore, is relevant to
the collection slugs, which we discuss later in the internal factors. Last, looking at the
number of sales of works, we find it has a positive but limited influence.

Internal factors

These factors are corresponding to the intrinsic values of artworks. They present, i.e.
at which collection or auction house a work has been created or published, by whom
and when it is created, and what visual properties it has.

One of our major findings from the collection slugs is that artworks (e.g. in Rarible,
Marketplace) created by independent artists are, in general, priced lower than insti-
tutional initiated works (e.g. in Autoglyphs by Lava Lab). This result corresponds
to Figure 5.2 at which the medians of log price for Rarible and Marketplace are lower
than the others. This may explain why in the external factors of Figure B.1 frequency
of creator addresses (i.e. number of works created) and creator id negatively impact
the price as the institutional initiated works are more in favor. Interestingly, these
institutional initiated works within the same collection tend to have a similar visual

https://etherscan.io/address/0x8c9f364bf7a56ed058fc63ef81c6cf09c833e656#code
https://etherscan.io/address/0x8c9f364bf7a56ed058fc63ef81c6cf09c833e656#code


5.7. THE DAI 181

composition; they are generated by an algorithm. Also, the finding might be against
the pricing mechanism in the conventional art market (Renneboog & Spaenjers, 2013).
For example, the reputation of an artist or the authenticity evidence (the signature
of the artist) usually raise the price. Instead, the price of an NFT artwork is highly
influenced by its publisher and collection. We find that the works created during the
last 3 years induce a lower price. This might be due to the oversupply and uneven
distribution of artworks among collections, similarly to the tragedy of the commons in
Hardin, 1998.

Spotting the interactive variables that describe the properties of each work in each
collection, we conclude as follows:

Art Blocks is a collection of demand-oriented generative works. Buyers select their
desired style and later receive a corresponding randomly generated work from an
algorithm. The artwork can be a static image, 3D model, or an interactive ani-
mation. Consequently, the selection of style is crucial within this collection, see in
art_blocks_subcollection of Table B.2. For instance, the styles in Archetypes and
Ringers give a positive influence on price. In addition, the works from Art Blocks
section – Playground, which includes curated artists’ experimental projects impact
positively In contrast, the works in the section Factory, which has no curation and
valuation process, have a negative influence.

Bored Ape Yacht Club (BAYC) is a collection of 10,000 unique Bored Ape NFTs,
as well as a membership of an online community which grants access to members-only
benefits. For this collection, features such as background, earring, fur, hat, eyes, clothes
and mouth of an ape all matter in the pricing of a work. Apes with bolder and more
scarce features – i.e. trippy fur, king’s crown, beam or laser eyes, black suit, grin
multi-colored mouth – raise the price. This result might relate to the buyers’ preference
for unique features that may work as status symbols within the online community.

Hashmasks are created by over 70 artists worldwide. The collection includes 16, 384

digital portraits. Item of ’Shadow Monkey’; masks of ’Abstract’, ’Animal’ and ’Steam-
punk’; characters of ’Golden Robot’, ’Mystical’ and ’Puppet’; skin color of ’Freak’; eye
color ’Heterochromatic’; backgrounds of ’Doodle’ and ’Pixel’ have a positive impact on
price. However, Hashmasks works having an indistinguishable appearance or features
(e.g. no items, male and female characters) lead to a lower price.

CryptoPunks is a collection with limited 10, 000 unique collectible characters. It is one
of the earliest adopters of an NFT with the ERC-721 standard. For this collection, the
scarcity of attributes plays a significant role in pricing. The variable ’punk_accessory’
is based on the scarcity index for the accessories of punks (see Section 5.5) and has
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a significantly positive impact. The most common punk type ’Male’ has a negative
impact.

For SuperRare, we cluster these tags into groups based on their similarity (see Section
5.5) and we find that these tags have a significant influence on price. Last, none of
the patterns used in Autoglyphs are significant in their pricing. On a final note, we
see that the scarcity of NFT artworks’ internal factors is of importance in their price
determination. Such a result resembles the conventional art market.

5.7.3 DAI and other art markets

In this section, we intend to interpret DAI and provide a narrative to understand its
evolution through the emerging of the NFT art market. Applying Hedonic regression,
we discount the implicit price given by the characteristics of an artwork; therefore,
DAI, seen as a premium (characteristic-free price) of NFT artworks, represents better
market trends. First, we examine the return of DAI and find that it becomes more
volatile since 2021 as the growing in popularity of NFTs. Figure 5.19 presents a limited
autocorrelation. As suggested by Goetzmann, 1995 for the conventional art market,
there should exist the possibility of persistent trends – which can be considered as a
measure of market efficiency captured by serial dependency in returns. That is, the
NFT art market might be rather inefficient and immature and consequently suffers from
an instantaneous uncertainty in terms of resale values. A tendency like this produces a
price risk for investors.
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Figure 5.19: Returns and autocorrelation function for DAI with 95% CIs.
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Due to the limitation of data availability for the other markets, we are not able to
access their corresponding indices directly. Here, we illustrate DAI with the sales
shares of different art markets – post war, contemporary, ultra-contemporary, and
NFT art markets – plotting in the background of the index in Figure 5.20. During the
outbreak of the COVID-19 pandemic in 2020, all the art markets receive a recession
and these markets recover shortly after. As discussed by Mei and Moses, 2002b, during
an economic recession, declines in art prices offer an opportunity to investors and these
artworks might outperform the classic investment assets, i.e. stocks, equities, bonds.
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Figure 5.20: DAI (price index) and the sales shares of – post war, contemporary,
ultra-contemporary, NFT art markets (background).

The growing of NFT art sales brings up DAI since the end of 2020. In the mid of 2021
it starts suppressing the other markets, but DAI does not reflect this trend. The sales
of NFT art market are not fully equivalent to the performance of the market on price
or return. That is, DAI is essential to reflect this market. After the mid of 2021, we
see several spikes on DAI and the sales of these four markets remain relatively steady.
It is hard to distinguish how the NFT art would affect the other markets, yet we do
not see it as a substitute or complementary to the conventional art.

5.8 Conclusion

The discussion regarding NFT art often comes to the point – What is art? and what
is the definition of aesthetics? Experiencing the emerging of photography, Benjamin,
1968 describes the unique existence of artworks within a limited time period at a
specific place, becomes an untenable category in the era of art reproduction. NFT
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artworks are digitalized and highly accessible through the internet and replicable despite
the ownership of tokens. While the aesthetics of digital artworks can be perfectly
reproduced by simply copying and pasting, we might need to approach NFT art in a
different manner. This can be seen in consumer and market behaviors that contrast
to the conventional art market (Belk et al., 2022). This points out the essence of our
study that we not only offer an index – DAI for such a unique market, but also seek to
highlight the transformation of the overall art industry.

In this study, in order to construct a robust price index for heterogeneous digital
artworks, we include the time-variant and time-invariant characteristics of each work
through Hedonic regression. Avoiding the common issue for such a model: Selection
bias, we apply Heckman correction to refine our samples. As outlying observations
significantly impact the index, two alternative procedures – Huberization with Kalman
filter and DCS-t filtering are proposed to robustify the results. Consequently, we
see Huberization as a one-step robust regression that can be applied promptly and
efficiently. Meanwhile, DCS-t filtering is a stepwise method which includes the changes
of conditional distribution of an observation in the KF’s state space formulation. Both
procedures offer a degree of robustness to the indices, but under the fast changing
environment of NFT art market we consider the index variant from the DCS-t filtering
more adaptive and straightforward to the case.

Through the causality tests, we find that NFT art is an option for risk diversification
to cryptos. Also, the return of DAI presents limited autocorrelation, which is different
from the conventional art market. Looking into price determinants observed from
Lasso, we conclude the possible price formulation with the external and internal factors.
The external factors (i.e. payment tokens, frequency of seller addresses) influence much
on price determination. For the internal factors, the traits of NFT artworks have
limited impact and collection slugs are relatively influential. In addition, institutional
initiated collections (i.e. CryptoPunks by Lava Lab) tend to have better pricing than
the works from an independent creator. Whether the NFT art acts as a positive or
negative stimulus to the other art markets is still in vague due to the inefficiency and
immaturity of the market. This requires a follow-up study on its later development
and applications. As one of the first indices of such an emerging market, we do not aim
to define its role within the art or finance contexts. Instead, DAI is an index helping
us to foster understanding and witness the market evolution. For future studies, it
can be meaningful to look at the NFT art from the aesthetic perspective – e.g. visual
autocorrelation (Özdilek, 2013) and visual link & knowledge discovery (Castellano
et al., 2021) – to identify the value of images towards pricing.
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5.B Price determinants

Table B.1: External factors.

Type of variables Variable Coeff.

auction_type english 0.5364

event_type successful -1.2119

payment_tocken

DAI (crypto) 4.5703

ETH 1.6079

WETH 1.3497

frequency of

’seller_address’

(500, 1000] 0.3941

(100, 500] 0.8425

[2, 100] 1.0586

= 1 0.8854

frequency of

’winner_address’

(100, 500] -0.1205

= 1 0.2120

contract_address

0x2947f98c42597966a0ec25e92843c09ac17fbaa7 0.3141

0x7be8076f4ea4a4ad08075c2508e481d6c946d12b -0.2917

0x7e3abde9d9e80fa2d1a02c89e0eae91b233cde35 0.3086

0x8c9f364bf7a56ed058fc63ef81c6cf09c833e656 0.5100

0xcd4ec7b66fbc029c116ba9ffb3e59351c20b5b06 0.0714

schema_name ERC721 0.6775

frequency of

’owner_address’

(500, 1000] 0.5347

(100, 500] 0.2085

=1 -0.3033

frequency of

’creator_address’

(1000, 2000] -0.7539

(100, 1000] -1.1146

[2, 100] -1.1746

=1 -0.6828

Continued on next page
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Table B.1: External factors (cont’d)

Type of variables Variable Coeff.

frequency of

’creator_id’
(100, 1000] -0.1855

num_sales 0.0023
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Table B.2: Internal factors.

Type of variables Variable Coeff.

collection_slug

autoglyphs 2.9271

beeple-everydays 2.4190

boredapeyachtclub 1.2886

cryptopunks 1.4028

hashmasks 0.4400

makersplace -0.7214

rarible -2.8638

superrare 0.1091

wrapped-cryptopunks 1.6581

art_blocks_section
factory -1.3547

playground 0.1033

Continued on next page
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Table B.2: Internal factors (cont’d).

Type of variables Variable Coeff.

art_blocks_subcollection

All 27-Bit Digitals -1.8213

All 720 Minutes -0.6192

All Aerial Views -3.0553

All AlgoRhythms -1.2175

All Algobots -0.1761

All Apparitions -2.2533

All Archetypes 0.3477

All Bubble Blobbys -1.2125

All CENTURYs -1.2927

All Chromie Squiggles -1.6814

All Cryptoblots -2.3973

All Dreams -1.1674

All Elementals -1.1412

All Fidenzas -0.3117

All Frammentis -1.0715

All Inspirals -1.5496

All Ringers 1.0678

All Subscapes -0.4786

All Synapses -1.4979

All The Blocks of Arts -1.6330

All Watercolor Dreams -2.1511

bdap_Background
Aquamarine 0.0337

Gray 0.0022

bdap_Earring

Cross 0.0136

Gold Stud 0.0142

Silver Stud 0.0305

Continued on next page
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Table B.2: Internal factors (cont’d).

Type of variables Variable Coeff.

bdap_Fur

Black -0.0437

Brown -0.0451

Cheetah 0.0293

Cream -0.0210

Dark Brown -0.0066

Death Bot 0.1723

Solid Gold 0.2578

Trippy 0.8243

bdap_Hat

Bayc Hat Black 0.0133

Bayc Hat Red 0.0009

Fisherman’s Hat -0.0586

King’s Crown 0.4068

Seaman’s Hat -0.0071

Trippy Captain’s Hat 0.0239

bdap_Eyes

3d 0.0133

Blue Beams 0.3318

Closed -0.1473

Crazy -0.0127

Laser Eyes 0.2793

Sleepy -0.0187

Wide Eyed -0.0647

Continued on next page
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Table B.2: Internal factors (cont’d).

Type of variables Variable Coeff.

bdap_Clothes

Black Suit 0.2845

Black T -0.0118

Guayabera -0.0083

Hip Hop 0.0042

Pimp Coat 0.0093

Tie Dye 0.0450

bdap_Mouth

Bored -0.0795

Bored Cigarette -0.0063

Bored Unshaven -0.1011

Bored Unshaven Cigarette -0.0240

Dumbfounded -0.0428

Grin -0.0147

Grin Multicolored 0.0836

hash_Item

Golden Toilet Paper 0.2682

No Item -0.6320

Shadow Monkey 0.1354

hash_Mask

Abstract 0.0270

Animal 0.0388

Basic 0.0156

Doodle -0.0598

Indian -0.0169

Steampunk 0.0755

Continued on next page
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Table B.2: Internal factors (cont’d).

Type of variables Variable Coeff.

hash_Character

Female -0.0339

Golden Robot 0.9744

Male -0.0508

Mystical 1.0136

Puppet 0.1841

hash_Skin Color
Dark -0.0212

Freak 0.1429

hash_Eye Color

Blue -0.3567

Dark -0.4657

Green -0.3512

Heterochromatic 0.0739

hash_Background
Doodle -0.0065

Pixel 0.0492

super_tag

cluster_10 0.0369

cluster_18 -0.3642

cluster_2 -0.0648

cluster_22 0.0207

cluster_23 0.0113

punk_type Male -0.1262

created_year

2019 -2.8126

2020 -1.5785

2021 -1.0743

punk_accessory 0.0011
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