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Summary

Quantum field theory in curved spacetimes (QFTCS) stands as one of the corner-
stones of modern theoretical physics. This theory blends together the gravitational
and quantum realms in a unique way: It considers the influence of quantum fields
on a classical spacetime, and vice versa. While QFTCS gave birth to the phenomena
of cosmological particle creation and Hawking radiation emission in black holes,
its impact on the physics of compact relativistic stars has remained, for the most
part, undiscussed.

This thesis is an exploratory analysis. Within the framework of QFTCS, we search for
new figures of stellar equilibrium supported by the repulsive forces that characterize
vacuum energies. To tackle such an ambitious problem, we follow a constructive
approach, solving the semiclassical backreaction problem in scenarios of increasing
complexity, but always under the assumptions of staticity and spherical symmetry.
The renormalized stress-energy tensor (RSET) of quantum matter is modeled
through various analytical approximations in order to evaluate its impact on the
Schwarzschild and Reissner-Nordström black holes first, to later address (ultra-
)compact stars of uniform classical density.

Our explorations lead to the discovery of a novel exotic compact object: the
semiclassical relativistic star. These objects are composed of a mixture of classical
and quantum matter, sustained thanks to a surprising balance of forces between
these two agents. Semiclassical stars can become as compact as black holes but
stand out among other proposals since they are i) potentially testable through
gravitational-wave observations, and ii) do not rely on any physics beyond QFTCS,
which is a solid, well-established framework.

The analyses presented in this thesis venture into terra incognita, and unveil a
surprisingly rich field of study: hydrostatic equilibrium in semiclassical gravity. The
content of this thesis is based on the following publications by the candidate (and
collaborators) [1–7]. The content of each Chapter is the following:

• Chapter 1 is a summary of the context in which these investigations are
embedded. We provide an overview of the field of semiclassical gravity, with
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particular emphasis on approximating renormalized stress-energy tensors. We
introduce the Regularized Polyakov RSET (RP-RSET), to be used in Chapters 2
to 5, and review the main physical properties of semiclassical relativistic stars.

• In Chapters 2 and 3 we obtain the semiclassical counterparts to the Schwarzschild
and Reissner-Nordström spacetimes, that is, the asymptotically flat, static
vacuum (or electrovacuum) geometries incorporating the backreaction of
the RP-RSET (regularized with a cutoff). The most remarkable result is the
complete absence of event horizons, transformed into curvature singularities
by backreaction effects. The semiclassical counterpart to the extremal black
hole exhibits a singular, “quasi-extremal” horizon. Consequently, in semiclas-
sical gravity horizons must be evaporative and dynamical. Otherwise, some
classical matter fluid must be introduced to obtain regular spacetimes.

• Chapter 4 is the longest Chapter of this thesis as it exhaustively classifies
the space of solutions of classical and semiclassical stars of uniform density.
We provide a catalogue of all semiclassical stellar solutions, with particular
emphasis on a family of objects that can surpass Buchdahl limit while be-
ing arbitrarily close to becoming regular. This property suggests exploring
other regularization schemes for the RP-RSET that might accomplish strict
regularity.

• Chapter 5 contains the central result of the thesis. We find, through minimal
assumptions, families of regularization schemes for the RP-RSET that are
consistent with stellar spacetimes of arbitrary compactness. The resulting
solutions exhibit a series of universal properties: a negative-mass interior
with classical pressures that grow inwards, and the absence of curvature
singularities and event horizons. We elaborate on the implications of this
result.

• Finally, Chapter 6 constitutes a first incursion into one of the future lines of
inquiry suggested by this thesis. We rederive the semiclassical Schwarzschild
counterpart but through an alternative RSET approximation based on a
perturbative reduction of order. We compare these results with those in
Chapter 2, allowing to extract robust physical conclusions from semiclassical
analyses along the way. Finally, we sketch some preliminary results that apply
this method to uniform density stars, showing that semiclassical relativistic
stars with akin characteristics also exist under this prescription.

• We conclude with some closing remarks and future prospects in Chapter 7.
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Resumen

La teoría cuántica de campos en espacio-tiempos curvos (QFTCS) es una de las
piedras angulares de la física teórica moderna. Esta teoría combina los reinos
gravitatorio y cuántico de un modo único, por medio de considerar la influencia de
los campos cuánticos sobre un espacio-tiempo clásico, y viceversa. Mientras que la
QFTCS originó el estudio de los fenómenos de creación de partículas en cosmología
y de emisión de radiación Hawking en agujeros negros, las implicaciones de esta
teoría en la física de estrellas relativistas compactas han permanecido, en gran
parte, sin ser abordadas.

Esta tesis es una exploración. Dentro del marco de la QFTCS, buscamos nuevas
figuras de equilibrio estelar sustentadas por las fuerzas repulsivas características de
la energía del vacío. Con el fin de abordar un problema tan amplio, adoptamos un
acercamiento progresivo, resolviendo el problema de la backreaction semiclásica en
situaciones de creciente complejidad, pero siempre bajo los supuestos de estaticidad
y simetría esférica. Modelizamos el tensor de energía-impulso renormalizado
(RSET) asociado a la materia cuántica por medio de diversas aproximaciones
analíticas con el fin de, en primer lugar, analizar su impacto sobre los agujeros
negros de Schwarzschild y Reissner-Nordström. Acto seguido, nos centramos en
estrellas ultracompactas cuya densidad clásica es constante.

Estas búsquedas nos conducen al descubrimiento de un nuevo objeto compacto
exótico: la estrella relativista semiclásica. Dichos objetos están compuestos por
una mezcla de materia clásica y cuántica, posibles gracias a un sorprendente
equilibrio de fuerzas entre ambos agentes. Las estrellas semiclásicas pueden
llegar a ser tan compactas como los agujeros negros, pero destacan frente a otras
propuestas similares porque i) es un modelo potencialmente comprobable mediante
observaciones de ondas gravitatorias, y ii) no involucran ninguna física más allá de
la QFTCS, que se trata de un marco sólido y bien establecido.

Los análisis presentados en esta tesis se adentran en terra incognita, y desvelan un
campo de estudio sorprendentemente rico: el equilibrio hidrostático en gravedad
semiclásica. El contenido de esta tesis está basado en los siguientes artículos del
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candidato (y sus colaboradores) [1–7]. El contenido de cada uno de los capítulos
es el siguiente:

• El capítulo 1 es un resumen del contexto en el que se enmarcan nuestras in-
vestigaciones. Proporcionamos una visión general del campo de la gravedad
semiclásica, con especial énfasis en las aproximaciones a los tensores de
energía-impulso renormalizados. Introducimos el RSET de Polyakov Regular-
izado (RP-RSET), del cual hacemos uso en los capítulos 2 a 5, y revisamos las
principales propiedades físicas de las estrellas relativistas semiclásicas.

• En los capítulos 2 y 3 obtenemos las contrapartidas semiclásicas de los
espacio-tiempos de Schwarzschild y Reissner-Nordström, es decir, las ge-
ometrías asintóticamente planas y estáticas del vacío (o electrovacío) que
incorporan la backreaction del RP-RSET (regularizado con un cutoff). El
resultado más reseñable es la ausencia completa de horizontes de sucesos,
que se transforman en singularidades de curvatura a consecuencia de la back-
reaction. La contrapartida semiclásica del agujero negro extremal exhibe un
horizonte singular, “cuasi-extremal”. Concluimos que en gravedad semiclásica
los horizontes deben ser evaporativos y dinámicos. En caso contrario, es nece-
sario introducir un fluido de materia clásico para obtener espacio-tiempos
regulares.

• El capítulo 4 es el más largo de esta tesis ya que contiene una clasificación
exhaustiva del espacio de soluciones de estrellas clásicas y semiclásicas de
densidad constante. Proporcionamos un catálogo de todas las soluciones
estelares semiclásicas, con especial énfasis en una familia de objetos que
logran superar el límite de Buchdahl a la vez que están arbitrariamente cerca
de convertirse en regulares. Esta propiedad sugiere explorar otros esquemas
de regularización para el RP-RSET que consigan lograr una regularidad
estricta.

• El capítulo 5 contiene el resultado central de esta tesis. Encontramos, por
medio de las mínimas suposiciones, familias de esquemas de regularización
para el RP-RSET que son consistentes con la existencia de espacio-tiempos
estelares de compacidad arbitraria. Las soluciones resultantes exhiben una
serie de propiedades universales: un interior de masa negativa con presiones
clásicas que crecen hacia el interior, así como la ausencia de singularidades
de curvatura y horizontes de sucesos. Concluimos con una disertación acerca
de las implicaciones de este descubrimiento.
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• Por último, el capítulo 6 constituye una primera incursión en una de las
futuras líneas de investigación surgidas a raíz de esta tesis. Retomamos la
contrapartida semiclásica de la geometría de Schwarzschild pero esta vez por
medio de una aproximación al RSET alternativa, basada en una reducción
de orden perturbativa. Al comparar estos resultados con los del capítulo 2
logramos extraer conclusiones físicas robustas de los análisis semiclásicos.
Finalmente, esbozamos algunos resultados preliminares que surgen al aplicar
este método a estrellas de densidad constante. Así, probamos la existencia de
estrellas relativistas semiclásicas con características afines a las del capítulo 5.

• Concluimos con algunos comentarios finales y perspectivas de futuro en el
capítulo 7.

He ideado esta tesis como un mapa de carreteras que muestra el camino principal
que seguimos en nuestras investigaciones, pero también los diversos desvíos que se
produjeron por el camino. Es una recopilación de reflexiones, ideas, intuiciones
y una especie de recipiente a través del cual he intentado plasmar mi forma de
experimentar la investigación en física teórica. Espero que la lectura de esta tesis
sea de tu agrado, pero sobre todo deseo que sea útil para alguien, en algún lugar
(de algún modo). No dudes en ponerse en contacto conmigo por cualquier motivo
relacionado con este texto. Te lo agradezco de corazón.
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Introduction
1

„Telling the truth is impossible; it is either
nefarious or ineffable.

— María Zambrano

1.1 Black holes or black stars?
Black holes (BHs) are the ultimate frontier in the human quest for scientific knowl-
edge, as the answers that may dwell in their interiors are only accessible to those
who venture beyond a surface of no return: the event horizon. These one-way
membranes [8, 9] shield the Universe outside BHs (and the observers residing
there) from the unpredictable effects of curvature singularities [10–12]. While,
under certain generic assumptions on the properties of collapsing clouds of matter,
the formation of event horizons and spacetime singularities (these concepts are
inextricably linked [13]) is unavoidable [14], there is a benevolence of sorts in
Einstein’s theory of general relativity (GR) stemming from the fact that singularities
always appear hidden behind event horizons, like those in GR BHs, or inaccessible
to physical observers [15, 16], as is the case for the Big Bang singularity [17].
These intriguing properties, together with their extraordinary agreement with re-
cent gravitational-wave [18, 19] and very-long-baseline interferometric [20, 21]
observations, has put GR BHs as the most plausible candidates to describe the dark
and compact objects that we observe—astrophysical black holes (ABHs) hereafter.

This thesis is born from the increasingly accepted idea that GR BHs could cor-
respond to excessively idealized descriptions of ABHs [13, 22–30], and that the
structural properties of ABHs might be far more complex than those of GR BHs,
which are essentially vacuum—devoid from any matter—and described only by
their mass, charge, and angular momentum [31, 32]. Our modest contribution with
this thesis to such an immense field of study is the realization that, already within
the framework of quantum field theory in curved spacetimes (QFTCS) [33–36],
it is possible to find matter configurations, akin to relativistic stars, supported by
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quantum vacuum polarization effects, that can be as compact as BHs, potentially
mimicking their observational features while lacking event horizons and spacetime
singularities [6].

The motivation, derivation and implications of this result will be detailed through-
out this thesis, but to put it in the right context let us have a glimpse on how the
notion of BHs has evolved historically [37].

Black holes: the birth of an idea

The existence of gravitationally bound objects so massive that light itself would
become unable to escape from their attraction was born in the era of Newtonian
gravity and was first postulated by Michell [38] and later (independently) by
Laplace [39]. More than a century after, Schwarzschild [40] derived the first
vacuum solution within the theory of GR under the assumptions of staticity and
spherical symmetry. By vacuum we refer to a solution to the Einstein equations
(with cosmological constant Λ = 0 and G = c = 1),

Gµν = 8πTµν , (1.1)

in absence of any classical stress-energy tensor (SET), so Tµν = 0. In (1.1) and
expressions therein, Greek indices range from 0 to 3. The line element of spherically
symmetric and static spacetimes can be cast, without loss of generality, in the form

ds2 = −e2ϕ(r)dt2 + [1 − C(r)]−1 dr2 + r2dΩ2, (1.2)

Here, dΩ2 is the line element of the unit 2-sphere and e2ϕ(r) represents the redshift
function of the geometry, related to the redshift suffered by outgoing light rays.
These become unable to escape to infinity when ϕ → −∞, so the redshift function
encodes how close is the geometry to having a horizon. The other function, C(r),
denotes the compactness of the geometry. It is often written as 2m(r)/r, where
m(r) is the Misner-Sharp mass [41–43]. Compactness represents the amount of
mass contained within a spherical surface of radius r. The Schwarzschild metric
corresponds to

e2ϕ = 1 − C = 1 − 2M
r

(1.3)

and has a horizon at rH = 2M with M a positive constant, the ADM (Arnowitt-
Deser-Misner) mass [44]. Birkhoff’s theorem [45, 46] shows that the Schwarzschild
metric is the spacetime exterior to any spherically symmetric gravitating body,
irrespective of whether it is in equilibrium, like relativistic stars, or collapsing under
its own gravity.

2 Chapter 1
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The Schwarzschild solution (1.3) was not considered physical at first because
the event horizon was thought to be a singular surface. It was Lemaître [47] who
first pointed out that the horizon was a perfectly regular place by finding a set of
coordinates in which the Schwarzschild metric was manifestly regular. Despite
this, it was not until the works of Szekeres [48] and Kruskal [49], who found the
maximal extension of Schwarzschild spacetime, that the question of the regularity
of the event horizon was completely settled.

The future event horizon in the maximally extended Schwarzschild spacetime
conceals a curvature singularity at r = 0. This same curvature singularity forms
in the gravitational collapse of presureless dust balls [50] (i.e. the Oppenheimer-
Snyder model). This model was argued to appropriately capture the defining
features of generic stellar collapse, which takes place when the internal pressures of
a star become unable to withstand gravitational contraction. Theoretical progress
on the generic nature of curvature singularities in GR crystallized in the Penrose
singularity theorems [11, 51, 52] proving that their formation in gravitational
collapse becomes unavoidable beyond spherical symmetry as long as some energy
condition holds [53].

In 1916, Schwarzschild also found the solution describing an incompressible
fluid sphere of constant density and isotropic pressures occupying a finite por-
tion of spacetime. Outside the geometry is the Schwarzschild vacuum [54]. The
Schwarzschild interior solution provides the simplest model of a hydrostatic equilib-
rium configuration [55, 56] in GR. It is of the utmost importance to this dissertation,
as it exhibits the highest limit to the compactness of any spherical star of isotropic
pressure in hydrostatic equilibrium, the so-called Buchdahl limit [57]. Absent
in Newtonian gravity, this limit exists due to pressure being a source of gravity
itself within GR. When the internal pressures of a fluid sphere become sufficiently
large, they contribute towards its own collapse instead of preventing it. This is
inevitable unless the matter content violates certain properties that will be reviewed
in Subsec. 1.3.1.

Neutron stars are the most compact material bodies known to exist in our
universe (excluding ABHs). However, they do not come close to the Buchdahl
compactness limit since they are not made up of idealized, incompressible matter
and are subject to more stringent mass limits [58–60], beyond which no stable
configurations composed of ordinary nuclear matter can exist [61]. These bounds
to the stability of compact stars established the following consensus: If a dark object
whose compactness is close to that of a BH is identified, it likely corresponds to a BH,
a purely vacuum gravitational configuration. Were to be an extremely compact star
instead, it has to be composed by matter exhibiting unusual (sometimes identified
as “exotic”) properties.

1.1 Black holes or black stars? 3



Observations of active galactic nuclei [62], in which a luminosity comparable
in magnitude to that of whole galaxies is generated within volumes as small as
our solar system, tipped the scales towards acknowledging that supermassive BHs
(and not highly dense stellar clusters) where the engines behind such tremendous
releases of energy. Numerous detections for supermassive and stellar-mass BH
candidates were accumulating [63, 64], with the strongest evidence coming from
velocity dispersion measurements of stars oribiting Sgr A* [65]. The recent direct
detection of gravitational waves from binary mergers [18] and observations from
the Event Horizon Telescope collaboration [20, 21] under the lense of the BH
paradigm makes these objects—in particular, their spinning counterparts discovered
by Kerr [66]—to be universally accepted.

The confluence of a history of mathematical understanding, together with the
development of novel observations, opened a window towards the mysterious
entrails of BHs and they eventually took root in the scientific community [67].
Nowadays, it is fairly accepted (although there exists no definite proof [23, 29])
that Kerr BHs are ubiquitous objects in our Universe. This is the idea that we
question in this thesis. We propose an alternative to GR BHs that is potentially
consistent with current observations while being devoid of the puzzling features
(event horizons and curvature singularities) that baffled theorists for decades.

Alternatives to black holes

There is an ongoing effort to find alternatives to the BH paradigm. These alter-
natives can be postulated within GR and modified theories of gravity, or even be
inspired by quantum theories of gravity. Such a surge in interest is motivated
by current observations of ABHs being non-conclusive in determining their true
nature [22, 23, 29], and by the potential detectability of other proposals through
gravitational-wave observations [26, 68–72].

Current efforts to discover and model the properties of exotic compact objects
can be divided into two categories: Those models which modify GR BHs inside
trapped regions inaccessible to outside observers and which cannot be distinguished
from the current paradigm, and proposals that assume drastic deviations from
the properties of GR BHs at size-scales comparable to the event horizon itself,
confronting the BH paradigm entirely.

The former family of objects is based on the idea that long-lived trapping hori-
zons [73–75] are robust features of ABHs but curvature singularities are dissatisfy-
ing and should become regularized by quantum physics. In consequence, deviations
from GR BHs are expected deep inside the trapped region, preventing the forma-
tion of singularities like quantum-gravitational effects do in Planck stars [76], or
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replacing them entirely by the introduction of regular matter cores like in the
regular BH proposal [77–80]. Although the metric deformations characteristic of
the regular BH model have a minor impact on the region outside the event horizon,
the interior is dramatically modified by the appearance of an inner horizon, a
surface susceptible to suffering mass-inflation instabilities [30, 81–83].

The latter family encompasses objects of a drastically different nature, in some
cases displaying an astrophysically explorable surface which provides distinct
observational signatures. These can be split into two sub-types: Those whose
compactness values approach (or even surpass slightly) the Buchdahl limit, and
those whose compactness values are extremely close (or equal) to that of a BH.

Alternatives with low compactness vary widely in exoticness according to taste.
These include boson and Proca stars [84–86], ultracompact anisotropic [87] and
vector [88] stars, fermion soliton stars [89], and plenty of other objects within
modified theories of gravity [26, 90]. If these objects are compact enough as
to display a photon sphere [70], they will produce gravitational-wave echoes.
However, they do not contradict the existence of BHs themselves, as they provide
no mechanism for avoiding standard gravitational collapse.

Models whose compactness values are extremely close to those of BHs are the
so-called BH mimickers: objects whose surface (if any) is located very close above
their gravitational radius (up to few Planck lengths). Spacetime below their surface
is very different from that of a BH, and may even cease to be well described by a
classical theory of gravity. Among them we find gravastars [91] within GR, 2 + 2
holes in quadratic gravity [92], and the fuzzball proposal in string theory [93].
They exhibit a photon sphere, but their potential distinguishability from GR BHs
through gravitational-wave echoes is model-dependent [71, 94] since their redshifts
can be enormous and thus signals could take a very long time to escape from their
interiors.

The central result of this thesis is the discovery of a novel type of object that
falls within this last category, as it describes a potential equilibrium configuration
towards which matter would eventually relax instead of forming a standard BH. As
we will advance in Section 1.3, the key ingredient for the existence of these end-
states is the combination of highly compactified classical matter and the repulsive
effects characteristic of the quantum vacuum.

Quantum physics and gravity

The presence of singularities at the cores of BHs serves as an indication that
GR is not a valid effective theory for the gravitational field in regions of large
curvatures [95]. Arguably, an adequate description of these regions will be given
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by a fully quantum description of the gravitational field [96, 97]. However, while
we await the development of such ambitious theoretical framework, there is a more
conservative path to explore within the semiclassical approximation to quantum
gravity [33, 36]. Semiclassical gravity aims towards capturing the first deviations
from GR driven by quantum physics. In particular, those caused by the quantum
nature of matter fields propagating on a classical spacetime, which contributes
to—and is affected by—their zero-point energies.

The avenue of exploring semiclassical effects has turned out to be extremely
successful through the discoveries of a generation of a primordial power spectrum
in inflationary models and of Hawking evaporation [98–101]. Consider a quantum
field propagating on the spacetime of a collapsing star. Its vacuum state—or
state of minimum energy as perceived by certain observers, in this case inertial
observers at past null infinity—is defined as the state initially devoid of any particle
content. Long after the collapse and formation of a trapped region has occurred,
the vacuum is perceived by observers at future null infinity as filled with a thermal
bath of quantum particles [102, 103]. The Hawking effect also predicts an influx
of negative energy that penetrates the horizon, which slowly evaporates, being
an effect of no relevance for ABHs. This process is possible precisely due to the
violation of energy conditions [11, 53] induced by quantum fields, necessary to
bypass the area law of classical BH dynamics, which states that the area of a
BH horizon always grows. The ultimate implications of extrapolating Hawking
evaporation process to its limits (which imply the complete disappearance of
the trapped region) have crystallized in the BH information paradox, subject of
passionate debate in the last four decades [98, 104, 105]. Through evaporation,
semiclassical physics aggravates the concerns raised by curvature singularities by
putting them in causal contact with external observers.

The Hawking effect shows that the zero-point energies of quantum fields are
sensitive to the presence of gravity. This can manifest in two ways [106]: Through
spontaneous particle creation which, in the presence of a horizon, is perceived
as radiation by distant observers, and through the phenomenon of vacuum polar-
ization (not to mistake with the homonimous observable, i.e. the renormalized
two-point function). This phenomenon appears also in quantum electrodynamics
when the vacuum of the electromagnetic field generated by a point-like charge
becomes polarized by its very presence. In a gravitational context, the role of the
point-like charge is played by the mass and the vacuum states of all fields suffer the
corresponding polarization [107]. Any distribution of matter, if the gravitational
field is sufficiently intense, becomes affected by gravitational vacuum polarization
as if it was immersed in a medium that generates an effective energy density and
pressure. These contributions are suppressed by Planck’s constant, thus negligible
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in most situations. In the presence of strong gravitational fields (i.e. large spacetime
curvatures) and near event horizons [108–110], however, vacuum polarization
effects must be taken into consideration as they can exert a significant backreaction
onto the background spacetime [111–114].

Investigations in semiclassical gravity have centered, to a large extent, around
slight modifications to the standard BH paradigm (from an astrophysical perspec-
tive). The landscape suggested by semiclassical physics motivates, nonetheless, the
following question, pivotal to the rest of this thesis: Is the gravitational contribution
of vacuum polarization capable of preserving hydrostatic equilibrium beyond the
Buchdahl limit? We will prove that the characteristic violations of energy conditions
induced by quantum fields are capable of sustaining stellar bodies in situations
where they would inevitably collapse if classical matter alone was present. The
quantum forces operating in these extremely compact stars permit the existence
of regular horizonless objects that can be made as compact as BHs, serving as
well-motivated alternatives to the standard paradigm. This novel result could
bridge the existing gap between stellar and black-hole physics, evidencing that,
when classical and quantum matter are blended together, exciting new possibilities
emerge. In this thesis we will not investigate how is the dynamical process to reach
these configurations (there are already suggestions of how this could happen [115,
116]). By showing that these configurations can exist we will just assume here that
Nature would find the way to generate them. Our results encourage speculating
about the possibility that ABHs may not possess event horizons, their structure
resembling instead that of an extremely dark and compact “black star” from which
information and matter can indeed escape. Despite long-established beliefs, there
might exist a path towards revealing the dark secrets within astrophysical black
holes.

1.2 Semiclassical gravity and renormalized
stress-energy tensors
The QFTCS programme has a long and fruitful history since its inception with
Parker’s works on cosmological particle creation [117], their later application to
BH evaporation [118] and infinite moving mirrors [119], as well as with other
groundbreaking discoveries like the Schwinger [120] and Unruh [121, 122] ef-
fects. These phenomena all yield an unambiguous answer when estimating the
amount of particles produced due to a non-trivial evolution of the background
on which the fields propagate. Being particles themselves also a source of gravity,
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spontaneous particle creation phenomena must affect the very same background
responsible for it. The observable giving account of both particle creation and
vacuum polarization contributions mixed together is the renormalized stress-energy
tensor (RSET). There exist prescriptions, such as the point-splitting postulated by
Christensen [123], to regularize the (otherwise divergent) stress-energy tensor of
quantized fields. Nonetheless, when attempting to do this in practice we encounter
difficulties in finding closed, analytic expressions for the RSET.

The Anderson-Hiscock-Samuel RSET

Stress-energy tensor regularization and its calculation on different backgrounds is a
whole sub-field within QFTCS. Different methods exist for constructing regularized
observables in the quantum theory [33, 124–129] and their convenience depends
on the problem under consideration. Nonetheless, the underlying logic is common
to all of them: Observables that correspond to products of the field operator and its
derivatives are ill-defined from a distributional viewpoint. These divergences can
be traced back to the fact that fields can be decomposed in sums over an infinite
number of modes with arbitrarily large frequencies. As an ultraviolet effect, these
divergent terms are all local, depending on the metric and its derivatives, and can be
isolated and subtracted through, for example, a point-splitting regularization [119].

While not being the main focus of this thesis, we have included Appendix A
with details on the RSET renormalization of a scalar field with arbitrary mass and
coupling in the spacetime (1.2) through the Hadamard regularization method [126,
130, 131]. This method relies on Wick rotating the BH spacetime (1.2), where
the Euclidean propagator can be expressed as sums of field modes. The point-split
RSET corresponds to the action of a differential operator (A.6) onto the point-split
Euclidean bi-scalar, from which we have covariantly subtracted all the ultraviolet
divergences, enclosed in the Hadamard distribution (A.8), to finally make the
points coalesce. This method yields an exact, conserved RSET which naturally
decomposes into

⟨T̂ µν ⟩ren = ⟨T̂ µν ⟩num + ⟨T̂ µν ⟩AHS, (1.4)

in which ⟨T̂ µν ⟩num is a numerical quantity that depends on infinite (but convergent)
sums of the numeric modes that solve the radial wave equation (A.12); and
⟨T̂ µν ⟩AHS is analytic and depends solely on the spacetime metric, its derivatives,
and the free parameters of the theory (the field mass m, its coupling ξ, and an
arbitrary renormalization scale required to make the logarithmic term in (A.8)
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dimensionless). See Appendix C for its components in the notation of Eq. (6.4).
Both parts are covariantly conserved independently, i.e., their divergence vanishes

∇µ⟨T̂ µν ⟩num = ∇µ⟨T̂ µν ⟩AHS = 0. (1.5)

Whereas computing the analytic part (or AHS-RSET in what follows) on a fixed
background metric is straightforward and can, in fact, be used as an approximation
to the full RSET (see more details in Subsection 1.2.1 below), its numerical coun-
terpart requires careful evaluation. An equivalent splitting (1.4) also appears in
cosmological scenarios [132] and for the Dirac field RSET [133].

The infinite mode sums present in ⟨T̂ µν ⟩num (see [127] for the corresponding
expressions) converge slowly and an accurate result requires summing over a vast
quantity of modes, something computationally inefficient. To bypass this problem,
Howard and Candelas [134, 135] developed a method that consisted in splitting
the sums in two parts by adding and subtracting a sufficiently high-order WKB
expansion, as in Eq. (A.18), which was used to compute the RSET of various
fields in the Schwarzschild spacetime [135, 136]. For the conformally invariant
field (m = 0, ξ = 1/6), the numerical contribution ⟨T̂ µν ⟩num was found to amount
to less than ten per cent of the total RSET, revealing that the analytic part was
in excellent agreement with the complete, numerical result. Anderson, Hiscock
and Samuel [127] later improved the speed of convergence of the mode sums
by including higher orders in the WKB expansions and computed ⟨T̂ µν ⟩ren in the
Reissner-Nordström spacetime (3.2) for massless and massive fields. Recent com-
putational advances allowed to obtain, for the first time, the RSET of a minimally
coupled, massless scalar field of an evaporating Kerr BH [137]. Current efforts are
being dedicated to compute RSETs of fields of different spins in scenarios of great
phenomenological relevance.

The semiclassical Einstein equations

Computing the RSET on fixed backgrounds informs about how vacuum energies
respond to the curvature of spacetime and can give indication of regions of space-
time where quantum effects become relevant, like inner horizons [138, 139], but
the interest of the QFTCS program does not stop there. Once a closed expression
for the RSET is available, it is tempting to introduce it in the right-hand side of
the Einstein equations as an additional curvature source and analyze its impact on
the background spacetime. The resulting expressions are the semiclassical Einstein
equations

Gµν = 8π
(
Tµν + h̄⟨T̂µν⟩ren

)
, (1.6)
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where we explicitly show the dependence on h̄ that accompanies the RSET. The
semiclassical equations put on equal footing a classical spacetime geometry with a
matter content that can have both classical and quantum contributions. Eqs. (1.6)
can be argued to be nothing but an approximation to a quantum theory of gravity
in which the gravitational field is treated as classical (see [140] and references
therein). Our objective in this thesis is to solve the semiclassical equations in a full,
self-consistent manner. That is, we want to determine the background spacetime
and the sources that generate it simultaneously, something entirely different from
computing the RSET on a fixed background geometry. The numerous difficulties
one finds along this path motivate the introduction of approximate RSETs. In the
next Subsection, we elaborate on the various subtleties present in semiclassical
backreaction analyses.

1.2.1 The trouble with backreaction
Self-consistent solutions to the semiclassical Einstein equations (1.6) describe space-
times that are consistent with the same vacuum polarization that they generate.
The particularities of these configurations will depend on the method followed to
estimate quantum contributions, i.e. the physical content included in the RSET.
As we will see in what follows, the semiclassical equations are exactly solvable in
practice only if the RSET is subjected to additional simplifications.

Perturbative semiclassical gravity

Equations (1.6) result from the truncation to linear order in h̄ of an effective
quantum-gravitational action [141, 142]. Such truncation is justified on the basis
of a perturbative expansion in h̄ and, in a strict sense, is valid only if terms of
superior order are sub-leading with respect to contributions of O(h̄). This aspect
deems the solutions to the semiclassical equations physically reliable only in the
perturbative regime. Nonetheless, the semiclassical equations resulting from the
truncated expansion are, in common practice, solved as a closed system [112,
143–145], and their solutions can exhibit corrections non-perturbative in h̄. By non-
perturbative we mean that the resulting spacetime does not exhibit a smooth h̄ → 0
limit and/or that the RSET becomes O

(
h̄−1

)
. Numerous authors have argued that

this is plainly inconsistent with the logic behind the semiclassical approximation [36,
140, 141], which only makes sense as a theory governing perturbative corrections
over some fixed classical spacetime. Although this interpretation is entirely valid,
we will argue that there is still room to gain valuable insight into the way quantum
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corrections operate in extreme scenarios by addressing the non-perturbative regime
of the semiclassical equations. We elaborate on that in what follows.

Consider the semiclassical equations (1.6) sourced by the RSET (1.4). As detailed
before, this RSET is the sum of independently conserved numerical and analytical
parts. The numerical portion is not amenable to backreaction analyses in full self-
consistency since it is expressed as an infinite mode sum, said modes depending
on (and at the same time being the source of) the background spacetime on which
they propagate. Thus, without first assuming some “zeroth-order” background
we are unable, in practice, to compute the exact RSET. As the full backreaction
problem is extraordinarily complex, we are confronted with two options: Limiting
ourselves to perturbative backreaction analyses or subjecting the RSET to additional
simplifications.

As for the first option, we assume the following expansion of the semiclassical
equations holds

G(0)
µν + h̄G(1)

µν + O
(
h̄2
)

= 8πTµν + 8πh̄⟨T̂µν⟩ren + O
(
h̄2
)
, (1.7)

where the lowest order in h̄ is sourced by the zeroth-order (classical) solution.
Then, the corresponding RSET is used to compute G(1)

µν , which is subsequently used
to obtain the next order, and so on. There exist some applications of this method
to compute backreaction with the exact RSET [129] as well as through analytic
approximations [146, 147], but they are scarce due to their inherent complexity
and the phenomena they give rise to is bound to their perturbative nature.

The second option is the one we adopt in this thesis by proposing well-motivated
analytic RSETs for which the semiclassical equations (1.6) can be solved in closed
form. The most direct approach would be to neglect the numerical contribution
in (1.4) entirely and consider the conserved analytic portion as an approximation
to the total RSET. That provides us with analytic semiclassical equations that
can be solved in full form. However, this is no easy task as the AHS-RSET has a
considerable shortcoming that must be addressed beforehand.

Shortcomings of the AHS-RSET

The most problematic aspect of the AHS-RSET is that it exhibits third and fourth
order derivatives of the metric functions. These terms appear in the covariant Taylor
expansions of the Hadamard parametrix (A.8) and have many parallels to similar
high-derivative terms in the Abraham-Lorenz equation [148]. They are the result
of demanding a purely local quantity, the RSET, constructed from an object, the
propagator, that is non-local by construction. In addition, there is a local ambiguity
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in the RSET, in the form of a free parameter whose value is to be ultimately fixed
through experiments. Although this introduces additional uncertainties in the local
physics captured by the RSET, non-local contributions associated with vacuum
states (whose definition is global) are independent of this free parameter and agree
between approximations.

High derivatives in the RSET carry an enlargement of the space of solutions of the
theory, as the dimension of the space of initial data required to uniquely determine
a solution increases with the differential order of the semiclassical equations. More
so, among an enlarged space of solutions there might exist spurious, runaway,
or nonphysical solutions that must be disregarded. Simple examples of this are
the runaway solutions in the radiation–reaction equation [149, 150] and, within
quantum field theory, solutions that trigger instabilities in Minkowski spacetime
within Planckian timescales [151].

Given the situation, a programme started by Simon [141] and Parker [144]
materialized in a prescription of order reduction, based on imposing a criterion
of perturbative consistency onto the semiclassical equations. Simon and Parker
regarded every semiclassical solution non-perturbative in h̄ as plain nonphysical,
and developed a simple scheme that allowed to obtain a set of semiclassical equa-
tions of second order with an initial value problem equivalent to the one from
GR. The reduction of order is not exclusive from semiclassical theories and has
been extensively used in the radiation reaction problem [149], in theories with
quadratic Lagrangians [152] and other effective field theories [153]. Within semi-
classical gravity, solutions to order-reduced equations have been mostly obtained
in cosmological scenarios [141, 144, 154] and to prove the stability of Minkowski
spacetime [155].

In Chapter 6 we detail the first application of the order reduction to semiclassical
equations sourced by the AHS-RSET. However, we could not have come to realize
the usefulness of this procedure without first appealing to a simpler RSET approxi-
mation widely used in the literature: The Polyakov approximation. Contrarily to
the AHS-RSET, the Polyakov RSET is only valid for massless and minimally coupled
scalar fields. Since modified versions of the Polyakov RSET will be used for most
of this thesis (Chapters 2 to 5) we turn to describe its derivation, benefits and
drawbacks in the following Subsection.

To summarize, we adopt a self-consistent approach to solving the semiclassical
equations (1.6) that is no different from how other modified theories of gravity
are treated, where the aim is to classify the complete space of solutions without
appealing to these theories being embedded in some superior, unknown framework.
Our interest relies in classifying the complete space of solutions of the semiclassical
equations without attending to their smoothness in the h̄ → 0 limit, as there is
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information in the non-perturbative characteristics that the semiclassical approx-
imation should preserve when higher orders in h̄ are included. These are the
characteristics (namely, boundary conditions and singular behavior) associated
with the modes in which the field is decomposed, and that eventually percolate
onto the defining features of the various vacuum states and, by extension, to the
RSET. If these features were not robust, not even Hawking radiation could be
trusted as the generic phenomenon that we believe it to be.

1.2.2 The regularized Polyakov approximation
Polyakov RSET

By means of analyzing the propagation of a massless quantum scalar field on a
1 + 1 dimensionally-reduced metric [corresponding to the (t, r) sectors of (1.2)],
it is possible to obtain an RSET that is simple, analytical, unambiguous, and
contains only up to second-order derivatives of the metric functions. The resulting
(1 + 1)-dimensional RSET is then taken as the backbone of a (3 + 1)-dimensional
RSET. Through this process, we obtain a quantity amenable to self-consistent
backreaction analyses at the cost of reducing the physical content of the RSET,
which only takes into account the contribution from s-wave modes and neglects
their backscattering due to the gravitational potential. This RSET predicts infinite
energy and pressure contributions at the radial origin and has vanishing pressures
in the angular directions. The missing information about its behavior at r = 0
has to be supplied by hand by specifying a radial function. This Subsection will
be devoted to the derivation of the celebrated Polyakov approximation [156].
Numerous backreaction analyses, both in two-dimensional dilaton gravity and four-
dimensional semiclassical gravity, have been done under this approximation [112,
145, 157, 158] that remains indisputably the most prolific RSET approximation on
that regard.

The derivation of this RSET in (1 + 1)-dimensional spacetimes requires a point-
splitting regularization, which is dramatically simplified by the conformal flatness
of the metric. We have moved the details of this regularization to Appendix B. This
procedure requires specifying a basis of modes in which the field is expanded. Since
the wave equation (B.6) has analytic plane-wave solutions, the Polyakov RSET can
be expressed in closed analytic form. We choose the mode decomposition (B.10),
which selects the Boulware vacuum as the state in which the RSET is evaluated.
The Boulware state reduces to the Minkowski vacuum at the asymptotically flat
regions of spacetime, so it is perceived as empty by static asymptotic observers. In
exchange, the field modes (B.10) are ill-defined at the event horizon, hence the
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Boulware vacuum becomes singular there as well and this singularity shows up in
the RSET. Because of this, the Boulware vacuum has been typically regarded as not
appropriate to introduce corrections to BHs, only suitable to correct horizonless
static stellar structures. This is, however, an important misconception. The main
inquiry of this thesis is precisely whether semiclassical gravity contains static stellar
solutions beyond those found in the classical theory, and in that search we must
impose the Boulware vacuum. When allowed to backreact onto the background
spacetime through the semiclassical equations (1.6), the geometry can absorb
in some cases the singularity in the RSET through non-perturbative corrections,
leading to a perfectly self-consistent solution threaded by the Boulware vacuum,
which is also the unique state compatible with the staticity and asymptotic flatness
of spacetime. In the remaining of this thesis we will exclusively consider quantum
effects in the Boulware vacuum for situations both with and without classical
matter.

After regularization, the Polyakov approximation only involves identifying the
RSET components in the dimensionally-reduced and the four-dimensional man-
ifolds. First, we write down the RSET components in Schwarzschild coordi-
nates (B.8),

⟨T̂rr⟩P2 = − l2Pψ
2

2 , ⟨T̂tr⟩P2 = ⟨T̂rt⟩P2 = 0,

⟨T̂tt⟩P2 = l
2
Pe

2ϕ

2
[
2ψ′(1 − C) + ψ2(1 − C) − ψC ′

]
, (1.8)

where l2P = h̄/12π and ψ ≡ ϕ′, the prime denoting derivatives with respect to the r
coordinate. From the tensor (1.8), conserved in 1 + 1 dimensions by construction,
we can build a (3 + 1)-tensor which is now conserved in 3 + 1 dimensions:

⟨T̂µν⟩P4 = 1
4πr2 δ

a
µδ

b
ν⟨T̂ab⟩P2, (1.9)

where Latin indices take only two values: r and t. The multiplicative factor
1/4πr2 is introduced to ensure conservation of ⟨T̂µν⟩P4. The appearance of this
multiplicative factor is due to the RSET being oblivious to the behavior at r = 0.
This property traces back to the mode decomposition (B.10). Being defined for
a field that propagates on a dimensionally-reduced spacetime, these modes are
ill-defined at short distances in four-dimensional spacetimes. This property gets
transferred to the RSET, making it singular at r = 0, unless we introduce some
regularization mechanism by hand. In the following we elaborate on the singularity
of the Polyakov RSET and possible choices of regularization.
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Regularity at r = 0

The Polyakov RSET (1.9) diverges at r = 0 even in entirely regular spacetimes. For
the metrics we are analyzing, the Kretschmann scalar K = RµνρσR

µνρσ takes the
form

K = 4C2

r4 + 2C2′

r2 + 8ψ2(1 − C)2

r2 +
[
ψC ′ − 2(ψ2 + ψ′)(1 − C)

]2
. (1.10)

In spherical symmetry a finite Kretschmann scalar ensures that the geometry is
devoid of any curvature singularity contained in the Riemann tensor [13, 159].
This criterium excludes non-scalar curvature singularities [160] that manifest upon
contracting the Riemann curvature tensor with some tetrad fields associated with
physical observers.

From this expression we can obtain the conditions that the metric functions
need to satisfy at r = 0 in order to guarantee a finite K, hence defining a regular
geometry. Written in terms of the redshift and compactness functions ϕ and C,
these conditions enforce

ϕ = ϕ0 + ϕ1r
2 + O

(
r3
)
, C = C1r

2 + O
(
r3
)
, (1.11)

where ϕ0, ϕ1 and C1 are constants.

Given geometries with the regular local behavior (1.11) at r = 0, the proof of
the divergence in the (3 + 1)-dimensional Polyakov RSET (1.9) is straightforward.
Indeed, by taking the first term in the tt component (1.8) we can see the existence
of a 1/r2 divergence for the previously described behaviors ψ ∝ r and C ∝ r2. If we
used the Polyakov RSET as a source in the semiclassical equations and tried to look
for self-consistent stellar-like configurations, we would not find any compatible
with semiclassical effects, even in situations where these should amount to a
perturbative correction over the classical solution. Consequently, we explicitly see
that the Polyakov RSET is not suitable for the search of regular semiclassical stellar
configurations.

Regularized Polyakov RSET

One possibility in order to obtain an appropriate RSET which is at least qualitatively
trustworthy through the whole geometry is to regularize the Polyakov RSET. This
analysis is addressed in a step-by-step basis, as the first priority is obtaining an
RSET that is regular at r = 0 and only then we can worry about how accurately this
RSET resembles the four-dimensional exact RSET near r = 0. That the Polyakov
RSET must be regularized in order to deal with practical situations has been noticed
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before, for example in the numerical implementation by Parentani and Piran [145]
of a semiclassical gravitational collapse. We advance here that our regularization
procedure is only valid in static scenarios as it fails to recover a simultaneously
regular and covariantly conserved RSET in dynamical spacetimes [145, 161].

Inspired by previous works, we introduce an arbitrary radial function F (r) in the
temporal and radial components of the Polyakov RSET as

⟨T̂µν⟩DP = F (r)
4π δaµδ

b
ν⟨T̂ab⟩P2, (1.12)

the suffix DP standing for Distorted Polyakov. Taking

F (r) = 1/r2 (1.13)

returns the usual Polyakov RSET divergent at r = 0, but choices of F (r) finite
at r = 0 return a DP-RSET similarly regular at r = 0. The multiplicative factor
F (r) constitutes an attempt to regularize the RSET in the most simple and mild
way. It is straightforward to check that this regularization of the Polyakov RSET
carries along the non-conservation of this object. Thus, finding a proper RSET
both regular and conserved requires adding to the Distorted Polyakov RSET an
additional Compensatory piece. This Compensatory RSET will be assumed, for
simplicity, to have only angular contributions. Its components are obtained by
requiring that the divergence of the total tensor vanishes. As a result we obtain the
Regularized Polyakov RSET (RP-RSET) which we are going to use for the most part
of this thesis.

Leaving the radial function F undetermined, the RP-RSET looks as follows

⟨T̂rr⟩RP = −F l2Pψ
2

8π , ⟨T̂rt⟩RP = ⟨T̂tr⟩RP = 0,

⟨T̂tt⟩RP = F
l2Pe

2ϕ

8π
[
2ψ′ (1 − C) + ψ2 (1 − C) − ψC ′

]
,

⟨T̂θθ⟩RP = ⟨T̂φφ⟩
sin2 θ

= − (2F + rF ′) l2Pr
2

16π (1 − C)ψ2. (1.14)

Now, the simplest choice of the function F that yields a regular RSET at r = 0 is

F = 1
r2 + αl2P

, (1.15)

where α is a positive constant parameter that controls the suppression suffered by
the RSET at r = 0. Whereas α > 0 is sufficient for RSET regularity, the semiclassical
equations enforce α > 1 to have as solutions geometries that are locally regular,
i.e. that obey expansions of the form (1.11) (proof can be found in Chapter 2). We
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name Cutoff-Regularized Polyakov RSET (CRP-RSET) the expressions that result
from applying the regulator choice (1.15) to the RSET (1.14).

Contrarily to the Polyakov RSET, the CRP-RSET is regular at r = 0 and contains
non-vanishing angular components, both being features that the four-dimensional
AHS-RSET (1.4) manifests, but at the same time only exhibiting up to second
derivatives of the metric functions. The angular components of the CRP-RSET
vanish for α = 0 and behave properly in the r → 0 limit when α ̸= 0, by virtue of
the regularity conditions (1.11):

⟨T̂θθ(r → 0)⟩CRP = − ϕ2
1

2παr
4 + O(r6). (1.16)

The regularization scheme that we have adopted is by no means unique, since
there exists an infinite number of regularizing functions that ensure that the RP-
RSET achieves the desired properties. The choice of a better (i.e. more accurate)
regulating function should ideally contain information about characteristics of the
spacetime geometry close to the radial origin, and be capable of reproducing the
physics predicted by four-dimensional RSET approximations. It will be important to
keep this in mind when extracting conclusions from our analysis of the semiclassical
equations.

In Chapters 2, 3, and 4 we find the self-consistent semiclassical solutions in
absence of classical matter, in presence of an electromagnetic field, and with a
perfect isotropic fluid of constant density, respectively. All these analyses consider
the CRP-RSET as the source. In the vacuum and electrovacuum cases, since the
classical counterparts are already singular (as we will show), the finiteness of the
RSET at r = 0 only affects solutions where the values of the ADM mass and the
charge are Planckian. In the analysis of stellar-like configurations, however, the
choice of regularization scheme for the RSET is of key importance, as the sign and
magnitude of the RSET in a neighborhood of r = 0 have strong implications on the
resulting solutions, specially when the configurations are progressively made more
compact.

The knowledge gathered from studying constant-density stars in the CRP-RSET
approximation leads us to consider other regularization schemes for the RP-RSET
that only modify its form within a central core. Under this prescription, we
obtain in Chapter 5 semiclassical solutions describing regular stars that surpass the
compactness of the stellar objects in general relativity.
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1.3 Hydrostatic equilibrium in the semiclassical
approximation
We devote this Section to introduce some preliminary notions about stellar equilib-
rium in general relativity and semiclassical gravity. Then, we highlight the main
findings of this thesis relating stellar configurations supported by repulsive quantum
effects captured by different RSET approximations.

1.3.1 Surpassing the Buchdahl limit
As we motivated in the first part of this Introduction, if we expect some putative
object in hydrostatic equilibrium to supplant ABHs, there is an insurmountable
obstacle to be taken into account: The Buchdahl compactness limit.

Buchdahl theorem

The Buchdahl limit is a bound to the maximum compactness that applies to any
static and spherically symmetric stellar object in hydrostatic equilibrium satisfying
the following properties [57, 70, 162]

1. It smoothly matches the Schwarzschild geometry (1.3) at the surface.

2. Pressure in the angular directions does not surpass pressure in the radial
direction.

3. The energy density is a monotonically decreasing function of the radial
coordinate from the center of the star to the surface.

Under these assumptions, it is possible to prove that there exists no regular config-
uration in hydrostatic equilibrium with

CR ≡ C(R) ≥ 8/9, (1.17)

where CR is the surface compactness (i.e. the value of the C function at the star’s
surface r = R). Surpassing this limit requires that either the matter conforming
the star has some degree of exoticness (measured by the violation of properties
2 and 3), or that the exterior geometry differs from Schwarzschild’s. There is an
immense range of surface compactness values between the Buchdahl limit and the
BH limit CR = 1. In fact, if further constraints are put onto the matter fluid that
conforms the star (dominant energy condition and causality, mainly), the upper
compactness limit decreases [163, 164], making it even more strict. In this thesis,
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we limit ourselves to the study of constant-density fluid spheres, as they are the
simplest stellar models and, in absence of quantum corrections, they saturate the
Buchdahl bound.

We will return to the Buchdahl limit in Chapters 4 and 5, where we will analyze
the impact that semiclassical corrections have on it. For now, we will advance
that semiclassical effects captured by any adequate RSET approximation are po-
tentially able to overcome all the assumptions behind the Buchdahl limit, making
semiclassical gravity a promising theory to look for novel exotic compact objects.

Generic semiclassical effects

In Sec. 1.2 we have introduced two analytic RSET approximations, the AHS-RSET
and the RP-RSET. These approximations are distinguished by their trade-off be-
tween physical accuracy and mathematical complexity. Despite the aforementioned
difficulties in providing a unique, closed expression for the RSET, semiclassical
physics exhibits some generic features.

First and foremost, RSETs violate the point-wise energy conditions [108, 165].
Such violations will, of course, depend on the background geometry on which
the field propagates and on the characteristics of the field itself. In the vacuum
Schwarzschild geometry, the RSET (for massless minimally coupled fields) in the
Boulware vacuum violates all point-wise energy conditions [108]. In the interior
region of fluid spheres, however, an exact calculation of the RSET is still lacking
for non-conformally-invariant fields. Results for conformally invariant fields reveal
that the semiclassical energy density can become negative and divergent in the
central regions of constant-density stars approaching the Buchdahl limit [166,
167]. Consequently, semiclassical backreaction must be taken into account in stars
approaching the Buchdahl limit.

Renormalized tensors are also anisotropic except for some special prescrip-
tions [168], being able to potentially violate the second hypothesis of Buchdahl’s
theorem. Furthermore, there are scenarios in which violations of energy conditions
can become O

(
h̄0
)
, e.g. at event horizons or the center of stars in the CR → 8/9

limit. At event horizons, the singular nature of the Boulware vacuum will back-
react on the spacetime, dramatically affecting the Schwarzschild solution. In the
central regions of stars approaching the Buchdahl limit, the RSET can change the
sign of the total energy density (the sum of classical and quantum contributions)
making it negative. These generic characteristics of RSETs allow to violate all the
hypotheses behind the Buchdahl theorem. Remarkably, this is indeed what we find
in semiclassical gravity: The existence of regular stars that surpass Buchdahl limit
and that can be made as compact as BHs.
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Fig. 1.1.: Mass-radius diagram of semiclassical relativistic stars with ρ = 10−5

(in Planck units). The black line represents the compactness parameter of BHs
(CR = 1), the dashed red line denotes the Buchdahl compactness bound (CR = 8/9),
and the dashed green line is the minimum compactness of objects that exhibit a
photon sphere (CR = 1/3). The blue curve represents semiclassical relativistic stars.
For stars surpassing the Buchdahl limit, the total mass M grows approximately
linearly with the radius R. Each point within the blue curve admits entire families
of regulator functions F (r) in the RP-RSET for which the whole geometry is regular.
A similar diagram is obtained by applying an order reduction to the AHS-RSET.

1.3.2 Semiclassical relativistic stars

The investigations detailed throughout this thesis materialized in the discovery of a
novel family of ultracompact objects supported by semiclassical effects. In short,
the contributions from the RSET, when allowed to backreact onto the background
spacetime, make the total energy density (the sum of classical and quantum
contributions) to violate the third hypothesis of the Buchdahl theorem. The main
difficulty we faced in these explorations was to find RSETs that properly capture
the most prominent aspects of semiclassical physics while being well defined at
the center of stars (r = 0) and of second derivative order in the metric, so that the
semiclassical equations (1.6) can be solved in a full self-consistent way. We have
derived two RSET approximations that satisfy these requirements: the RP-RSET
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(see Subsec. 1.2.2) and the matter-order-reduced AHS-RSET (or MOR-AHS-RSET,
see Ch. 6 for details). Both approaches end up giving rise to regular stars with
similar qualitative features that surpass the Buchdahl limit. In these situations, the
Misner-Sharp mass, which is positive at the surface of the star, decreases towards
the interior and becomes negative, to later vanish at r = 0. The redshift function
decreases monotonically towards the interior and reaches values at r = 0 several
orders of magnitude smaller than its surface values, indicating that light rays
emitted outwards from the center suffer large redshifts.

One of the most remarkable properties of the semiclassical star model that we
have found is that it describes whole families of stellar geometries whose surface
compactness CR can range from arbitrarily small, thus describing constant-density
stars where quantum corrections are perturbative, to arbitrarily large ones, with
solutions that approach the black-hole limit CR = 1. In fact, the RP-RSET allows to
find perfectly regular stars with CR = 1 while stars sourced by the MOR-AHS-RSET
are singular in the CR → 1 limit. This discrepancy is due to the particularities of the
respective exterior vacuum solutions and its implications are left for future study.
Instead, here we want to emphasize that the existence of regular semiclassical stars
spanning a broad range of compactness values is an extremely appealing feature
of this model and can be of great interest to phenomenological studies, such as
understanding the mechanisms for the production of gravitational-wave echoes
in stars surpassing the Buchdahl limit CR = 8/9 and that approach the black-hole
limit CR = 1.

Figure 1.1 shows the mass-radius diagram of the semiclassical stars derived in
Chapter 5 (this diagram is identical for the stars derived later in Ch. 6). Straight
lines correspond to constant compactness values, and we have represented three
relevant compactness values: The compactness of objects that exhibit a photon
sphere [26], the Buchdahl limit, and the black-hole limit. The blue curve in
Figure 1.1 describes a family of regular semiclassical stars with the same classical
density ρ and with different total radius and mass. Typical stellar models present
maxima in these diagrams that indicate the presence of unstable branches of
solutions. Here, this feature is absent, and we can distinguish three regimes,
sub-Buchdahl, Buchdahl, and super-Buchdahl, depending on CR. As mentioned,
the sub-Buchdahl regime corresponds to constant-density stars that receive only
perturbative quantum corrections. The Buchdahl regime shows a drastic transition
in the shape of the blue curve, going from an M ∝ R3 behavior below the Buchdahl
limit to an M ∝ R behavior above it. This indicates an abrupt increase in the
magnitude of quantum corrections as the Buchdahl limit is approached. The super-
Buchdahl regime displays stars that can become as close to the BH limit as desired.
This continuous family of solutions suggests that, in principle, semiclassical stars
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could belong to both families, exotic compact objects and BH mimickers. Of course,
we are just claiming that these models could serve as qualitative approximations
based on effective spacetimes to the surely more complicated structures of ABHs, if
they are finally not BHs in the first place.

In summary, our results reveal that two independent modelings of the RSET
share a common physics and that semiclassical stars are not just an artifact of
one particular RSET approximation. The existence of stars with akin properties
within seemingly unrelated approaches allows to derive robust conclusions from
semiclassical analyses—and to subject them to tension. Future, more elaborate
models of the matter content of semiclassical stars may provide cumulative evidence
for the existence of new stages of stellar equilibrium that can be put to the test
with forthcoming observational capabilities.
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Schwarzschild geometry
counterpart in
semiclassical gravity

2

2.1 Introduction
This Chapter will be devoted to the derivation and analysis of the semiclassical coun-
terpart to the Schwarzschild spacetime. By semiclassical Schwarzschild counterpart,
we mean the spacetime sharing the assumptions of staticity, spherical symmetry,
asymptotic flatness and absence of a classical SET (thus vacuum) that characterize
the Schwarzschild spacetime, but corrected by the backreaction of an RSET. It
corresponds to the self-consistent solution to the semiclassical equations (1.6) in
vacuum

Gµ
ν = 8πh̄⟨T̂ µν ⟩, (2.1)

where the right-hand side is evaluated in the Boulware vacuum state. As explained
in the Introduction, this vacuum state guarantees that the RSET is consistent
with the aforementioned assumptions of staticity and asymptotic flatness [169].
In exchange, the Boulware state—and, in turn, the RSET—is singular at event
horizons, implying that these surfaces cannot exist in the self-consistent solutions
to Eqs. (2.1).

As for the approximate scheme followed to derive the RSET, we will work
with the Cutoff-Regularized Polyakov RSET (CRP-RSET) derived in Subsec. 1.2.2.
This regularization consists in specifying the regulator function F in the compo-
nents (1.14) to be of the form (1.15), in such a way that the RSET reproduces the
correct spherically-symmetric behavior at large distances [145] while ensuring its
finiteness at r = 0 when evaluated on regular spacetimes. This way, we solve the
semiclassical equations (2.1) with an RSET that is well-defined by construction. A
similar analysis with the (unregularized) Polyakov RSET was previously pursued
in [112, 170]. Our regularization has a minor impact on the qualitative features
of most vacuum solutions. Since the classical Schwarzschild spacetime already
displays a curvature singularity, we do not expect that the backreaction of the
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CRP-RSET manages to regularize it. Nonetheless, the CRP-RSET allows to extend
the space of solutions found in [112] to situations in which the ADM mass M is
comparable in magnitude to the Planck length lP. In this regime (which lies outside
the regime of validity of semiclassical gravity), the solutions rely heavily on the
particular form of the RP-RSET.

A remarkable characteristic of the semiclassical static solutions is that they cannot
posses sub-extremal horizons. By sub-extremal we mean a horizon characterized
by a positive surface gravity

κ = ψeϕ
√

1 − C|r=rH , (2.2)

which corresponds to a behavior of the metric functions of the form

e2ϕ ∝ r − rH
rH

, 1 − C ∝ r − rH
rH

. (2.3)

The RP-RSET shows a divergence at r = rH when evaluated over such spacetimes.
This can be seen directly from Eq. (1.9) by calculating e.g. the energy density and
radial pressure

ρs =e−2ϕ⟨T̂tt⟩P4 = l2P
8πr2

[
2ψ′(1 − C) + ψ2(1 − C) − ψC ′

]
,

prs = (1 − C) ⟨T̂rr⟩P4 = − l2Pψ
2

8πr2 (1 − C) . (2.4)

Assuming the metric behaves as (2.3), we have

ρs = pr
s ∝ − l2P

r3
H (r − rH) + O

(
r − rH

rH

)0
. (2.5)

Note that, to ensure that these divergence are physical, the RSET must be expressed
in a set of coordinates regular at the horizon, such as the Kruskal coordinates [101].
An alternative (though equivalent) proof involves evaluating the RSET compo-
nents in an orthonormal frame associated to a timelike observer in free fall [171].
In particular, regularity of the RSET at r = rH is not possible if the following
quantity [172]

E =
(
⟨T̂ rr ⟩P4 − ⟨T̂ tt ⟩P4

)
e−2ϕ ∝ − l2P

r2
H (r − rH)2 + O

(
r − rH

rH

)0
, (2.6)

diverges. Since the RP-RSET is clearly singular at sub-extremal horizons, any
self-consistent solution to the semiclassical Eqs. 2.1 will be horizonless. A similar
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divergence in the RP-RSET (although milder) shows up at extremal horizons, as we
will see in Ch. 3.

There is a twofold interest behind studying the semiclassical counterpart to the
Schwarzschild spacetime. Firstly, on a technical front, this analysis establishes the
bases of the tools and techniques that we will apply from Chapter 3 to 5. Secondly,
the situation with positive ADM mass has a clear physical interpretation as the
exterior geometry to any fluid sphere coexisting with vacuum polarization effects.
In absence of classical matter, we find no regular spacetimes sourced solely by
vacuum polarization effects. Since event horizons are also absent in the solutions
due to the characteristics of the Boulware vacuum state, this finding suggests the
need for introducing classical matter in order to construct static spacetimes free
from pathologies, i.e. with singularities not hidden behind event horizons. On
top of this, the present analysis constitutes a proof for the nonexistence of regular
semiclassical geons [173] originated solely by the effects of quantum vacuum
polarization that are captured through the Polyakov model.

This Chapter is organized as follows. First, in Section 2.2 we cast the semiclassical
equations into a single, first order ordinary differential equation whose solutions
can be found analytically in some special regimes. In Section 2.3 we integrate this
equation from an asymptotically flat region inwards, providing analytic arguments
that determine the solution uniquely. The main properties of these geometries
are highlighted. Finally, in Section 2.5 we elaborate on the implications of these
findings and pave the way for their generalization to the electrovacuum scenario.

2.2 Self-consistent vacuum semiclassical
equations

In what follows we present and solve the semiclassical Einstein equations (2.1)
sourced by the CRP-RSET [i.e. the RSET (1.14) where F (r) obeys (1.15)]. The rr
and tt components of the equations (2.1) become

C = 2rψ + l2Pr
2ψ2/(r2 + αl2P)

1 + 2rψ + l2Pr
2ψ2/(r2 + αl2P) , (2.7)

C ′ =−C/r + rl2P(1 − C) (ψ2 + 2ψ′) /(r2 + αl2P)
1 + rl2Pψ/(r2 + αl2P) . (2.8)
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These expressions are reducible to a single, first order differential equation for ψ
by replacing (2.7) and its first derivative in (2.8), resulting in

ψ′ = −A (ψ − R1) (ψ − R2)ψ, (2.9)

with

A =
l2Pr

[
(r2 + αl2P)2 + αl4P

]
(r2 + αl2P)2 [r2 + (α− 1)l2P]

,

R1,2 = −
[ (
r2 + αl2P

)2
+ l2P

(
r2/2 + αl2P

)
±
([
r2 + αl2P

]4
− l2P

{
r2
(
r2 + αl2P

)2

+ l2P

[(
r2/2 + αl2P

)2
− r4/2

]})1/2
]

×
[
A
(
r2 + αl2P

) (
r2 + (α− 1)l2P

)]−1
.

This is the central expression of this Chapter, from where the function ψ is obtained
by integrating Eq. (2.9). The C function can then be derived from the constraint
Eq. (2.7), and so the complete spacetime metric.

Some observations about Eq. (2.9) are relevant at this stage. This expression is
singular at r2 = (1 − α)l2P, where the denominator of A vanishes. The introduction
of the positive parameter α as regulator of the RP-RSET is enough to construct a
CRP-RSET that is finite for any given regular fixed background spacetime. How-
ever, dealing with the self-consistent semiclassical equations requires imposing
more stringent conditions to the regulator function F (r). To completely remove
divergences caused by an ill-behaved RSET we need to take α greater than 1.
Otherwise, we will face a singularity at r2 = (1 −α)l2P reminiscent of the divergence
of the Polyakov RSET at r = 0. In previous works, this singularity was regarded
as a semiclassical version of the Schwarzschild central singularity [112] or as a
numerical instability limiting the resolution of numerical analyses [170]. Our
understanding is that the nonphysical divergence at r = 0 of the Polyakov RSET
(which is rooted to the dimensional reduction adopted to derive it) is transformed
by the non-linearity of the semiclassical equations into a singularity at r =

√
1 − αlP,

which gets removed by taking α > 1. By eliminating this divergence, the solutions
to Eq. (2.9) can now be explored all the way up to r = 0 without any restrictions.
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2.2.1 From roots to branches

Let us dissect various peculiarities of the semiclassical equations. We turn our
attention to Eq. (2.9), whose right-hand side is a cubic polynomial in ψ. The
non-vanishing roots of this polynomial, R1 and R2, are negative-definite for any
positive r and α. We can deduce several properties of the solutions by inspecting
Eq. (2.9), since the sign of ψ′ depends on whether ψ takes values on the different
intervals defined by R1,R2, and 0, being monotonic within each of these intervals.

In addition to these roots, Eq. (2.9) has two non-trivial, negative-valued exact
solutions

ψ± = −r2 + αl2P
rl2P

1 ±

√√√√1 − l2P
r2 + αl2P

 . (2.10)

They correspond to negative infinite values of the compactness when plugged in
Eq. (2.7). Consequently, their Kretschmann scalar (1.10) is infinite. Nonetheless,
their interest resides in (2.9) being a first-order differential equation satisfying the
hypotheses of Picard-Lindelöf’s theorem [174], which ensures that no other exact
solution will intersect ψ± at any finite radius. See Fig. 2.1 below for a pictorial
representation of these exact solutions together with the roots R1,2.

The last remarkable feature of the semiclassical vacuum equations involves
Eq. (2.7), which is a quadratic polynomial in ψ. The roots of this polynomial are

ψ = −r2 + αl2P
rl2P

1 ±

√√√√1 + l2P
r2 + αl2P

C

1 − C

 . (2.11)

This expression has two branches depending on the ± sign. Interestingly, only the
branch with the − sign is analytic and can be deformed into the classical equations
in the lP → 0 limit. The + sign branch lacks a well-defined classical limit and is
inherently semiclassical. We shall call this branch the concealed branch, and the
other one the unconcealed branch, and maintain this assignation during the rest
of the thesis. The presence of new branches of solutions is a signature of theories
that modify the Einstein field equations by adding terms either of high derivative
order and/or of a greater power. In particular, the Polyakov RSET introduces O(ψ2)
terms in Eq. (2.7) giving rise to this new branch with no well-defined lP → 0 limit.
As we will show, the solutions that we will describe exhibit smooth jumps between
branches. Consequently, we analyze the semiclassical equations as a whole and do
not discard any solution à priori based on the smoothness of its classical limit.
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2.3 Vacuum solutions
In this Section we will prove that the semiclassical Schwarzschild counterpart is a
singular asymmetric wormhole. The proof is detailed in the upcoming Subsections,
but let us sketch it here for extra clarity. We start the analysis by imposing conditions
at the only asymptotically flat region in the spacetime. Therefore, we first prove in
Subsec. 2.3.1 that the semiclassical solutions have the expected Schwarzschild-like
behavior at large distances and describe an asymptotically flat region (up to sub-
leading corrections). Then, monotonicity arguments are used throughout Subsec.
2.3.2 on the function ψ to show that the geometry displays, instead of an event
horizon, a wormhole throat at some value of the radial coordinate rB > 0 greater
than the Schwarzschild radius rH = 2M . Finally, the semiclassical equations are
integrated on the interior (concealed) side of the wormhole in Subsec. 2.3.3, which
ends in a curvature singularity.

2.3.1 Asymptotically flat regime
We first assume C is positive at a fiducial reference radius rref and that the solution
initially belongs to the unconcealed branch of ψ. Under these two conditions, ψ(rref)
is positive via Eq. (2.11), since the unconcealed branch guarantees ψ > 0 when
C > 0. Similarly, ψ′ < 0 due to the negativity of the roots in the right-hand side of
Eq. (2.9).

In an outwards integration, ψ cannot cross ψ = 0 at a finite radius because
ψ = 0 is an exact solution of Eq. (2.9) and so it cannot be intersected by any other
solution. In addition, ψ cannot tend to a constant positive value in the limit r → ∞
because in that case ψ′ would not vanish asymptotically, producing a contradiction.
The only possibility that remains is that ψ tends to 0 asymptotically with r.

To prove this last statement, we assume a polynomial decay for the asymptotic
form of ψ

ψ ∝ r−η, η > 0, when r → ∞. (2.12)

This means that ψ′ is proportional to −η r−η−1. On the other hand, replacing the
previous ansatz in (2.9) returns the relation:

ψ′ ∝ −2r−η−1 + · · · (2.13)

where sub-leading terms in r have been neglected. Therefore, we obtain η = 2, i.e.,

ψ ≃ ψc

r2 , (2.14)
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with ψc an integration constant. The redshift function ϕ follows from integrating
(2.14). The gtt metric component results

e2ϕ ≃ e2ψc/r = 1 − 2ψc

r
+ O

(
r−2

)
, (2.15)

where we have absorbed an irrelevant re-scaling of the time coordinate.

Knowing the asymptotic behaviour of ψ, the compactness C can be obtained
through (2.7). For large r is found to be

C ≃ 2ψc

r
(2.16)

at leading order. Lastly, taking ψc = M we conclude that the semiclassical counter-
part to the Schwarzschild vacuum solution has the same asymptotic properties as
the Schwarzschild solution.

A distant observer should not be able to distinguish any semiclassical departure
from classical general relativity. This happens because the density and pressures
of the quantum substance diminish towards infinity at a rate greater than 1/r2

and, in fact, proportional to 1/r5 and 1/r6, respectively. The situation differs if the
Hartle-Hawking or Unruh states, perceived as thermal baths by static asymptotic
observers [175], are considered. While at large distances semiclassical corrections
amount to perturbative contributions, deviations from the Schwarzschild metric
start taking a prominent role as we move towards the internal region in our inte-
gration. These deviations become extreme as we get close to r = 2M , completely
removing the horizon.

2.3.2 Integrating inwards
The function ψ is positive and grows monotonically inwards. To determine the
qualitative behavior of ψ we work on a case-by-case scenario. Let us first address
the possible behaviors of ψ at r = 0. We assume ψ obeys the following expansion
around r = 0

ψ = ψ0 + ψ1r + ψ2r
2 + O

(
r3
)
, (2.17)

where ψ0 is a positive constant. Replacing this expansion in (2.9) and keeping
terms non-vanishing at r = 0 we obtain

ψ1 = − 2αψ0

(α− 1) r − 2 [(α + 1)ψ2
0 + αψ1)]

α− 1 + O(r), (2.18)

from where no solution with ψ0 ̸= 0 exists, contradicting our initial hypothesis.
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Since no finite ψ at r = 0 is solution of the semiclassical vacuum equations, only
the possibility of a positive divergent ψ at r = 0 remains. Take the ansatz

ψ ≃ ψ0

rβ
, with β > 0 (2.19)

and replace it in (2.9) to obtain

β (α− 1)ψ0

rβ+1 = 2αψ0

rβ+1 + 2 (α + 1)ψ2
0

r2β + (α + 1)ψ3
0

αr3β−1 + O
(
r1−β

)
. (2.20)

In view of this expression, if 0 < β < 1, terms linear in ψ0 dominate, but the
corresponding solution

β = 2α
α− 1 > 2, (2.21)

is inconsistent with our assumption. If, on the contrary, β > 1, the last term in the
right-hand side dominates and there is again no solution with ψ0 ̸= 0. Therefore,
the only possibility is β = 1, for which all terms in (2.20) contribute at equal order.
We obtain the pair of solutions

ψ
(±)
0 = −α±

√
α (α− 1) < 0. (2.22)

Given that these two values are negative, we find again a contradiction with the
initial hypothesis (i.e. ψ must diverge towards positive infinity). As a consequence,
no solutions with positive (finite or divergent) ψ at r = 0 exist. In conclusion, ψ
necessarily diverges at some finite nonzero radius that we shall denote rB.

Let us analyze the form of this divergence at r = rB. Again, by assuming that
ψ → +∞ when r → rB, we can safely neglect all the powers of ψ less than cubic in
Eq. (2.9), reducing it to the form

ψ′ ≃ − [(r2 + αl2P)2 + αl4P] l2Prψ3

[r2 + (α− 1)l2P] (r2 + αl2P)2 , (2.23)

whose exact solutions are given by

ψ = ± l−1
P

[
αl2P (r2 − r2

B)
(r2 + αl2P) (r2

B + αl2P) − α ln r
2 + αl2P
r2

B + αl2P

+(1 + α) ln r
2 + (α− 1)l2P
r2

B + (α− 1)l2P

]−1/2

, (2.24)

from where only the positive sign is consistent with our initial hypothesis of
asymptotic flatness. Notice that restricting to positive ψ means the solution belongs
to the unconcealed branch of (2.11).
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The divergent behavior becomes clear upon expanding the logarithms in powers
of (r − rB). The solution then acquires the simplified form

ψ ≃
√

k0

4(r − rB) , (2.25)

where the constant

k0 = 2 [r2
B + (α− 1)l2P] (r2

B + αl2P)2

rBl2P [(r2
B + αl2P)2 + αl4P] > 0 (2.26)

contains all dependence on the regulator parameter α.

The form of the ϕ function follows from integrating Eq. (2.25) in a neighborhood
of rB,

ϕ(r) = ϕref +
∫ r

rref

ψ(r′)dr′. (2.27)

Owing to the specific divergence of ψ, proportional to (r − rB)−1/2, it follows that ϕ
does not go to −∞ when r goes to rB (which we can always assume to be smaller
than rref). Instead, we obtain

ϕ ≃
√
k0(r − rB) + ϕB, (2.28)

which is manifestly finite at r = rB. This is contrary to what occurs at the event
horizon, where ψ diverges as (r − rH)−1 and so does ϕ.

The compactness function

C ≃ 1 − k1 (r − rB) , (2.29)

follows from Eq. (2.25), with

k1 = 4 (r2
B + αl2P)
r2

Bl
2
Pk0

.

The metric written in Schwarzschild coordinates is singular at r = rB. This is a
coordinate singularity, evidenced by transforming from the Schwarzschild radial
coordinate r to a proper radial coordinate l, defined through the relation

dl

dr
= 1√

k1(r − rB)
. (2.30)

Integrating this definition yields

r − rB = k1

4 (l − lB)2 . (2.31)
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In the proper radial coordinate l the resulting metric for l ≳ lB becomes

ds2 ≃ − exp
[√

k0k1(l − lB) + 2ϕB

]
dt2 + dl2

+
[
k1

4 (l − lB)2 + rB

]2

dΩ2. (2.32)

The non-singular metric (2.32) suggests its extension beyond l = lB. In terms of the
Schwarzschild radial coordinate r, this implies the presence of a second branch in
which now r increases as l decreases. The relation between the radial coordinates
on this second branch would be

dl

dr
= − 1√

k1(r − rB)
. (2.33)

Indeed, we can explicitly check that this extension exists: the metric for l ≲ lB

implies the following form for ψ,

ψ ≃ −
√

k0

4(r − rB) , (2.34)

and this negatively divergent ψ is a solution of the differential equation (2.9). That
is, continuity of the metric at rB requires the function ψ to jump from +∞ to −∞.
The redshift function e2ϕ crosses this jump in an absolutely smooth fashion, and
remains non-zero through it.

Let us summarize our analysis up to this point. We have shown that the semi-
classical vacuum solution corresponding to a positive asymptotic mass exhibits a
surface of minimum areal radius rB, or minimal surface. This surface is therefore
identified as a wormhole throat. The redshift function remains positive in passing
through the wormhole throat, even if C → 1 as r → rB; hence, no horizon is formed.
This wormhole is not mirror-symmetric through the throat, precisely because of the
behavior of the redshift function, which decreases towards the interior side of the
wormhole. The geometry around the throat could be made symmetric (entailing a
discontinuity in the derivative of the redshift function at l = lB), by introducing a
shell of matter with a SET proportional to δ(l − lB). This constitutes a proof that
there are no asymptotically flat symmetric wormholes in vacuum in semiclassical
gravity à la Polyakov. However, we will stick to the strict vacuum solution as
in future chapters it will correspond to the exterior of a material body and we
want to avoid the introduction of distributional components in the SET. It is also
interesting to notice that, at the throat, we are also passing smoothly from the
unconcealed to the concealed branch in Eq. (2.11). In turn, the self-consistent
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vacuum semiclassical solution lacks a well-defined classical limit, being more than
just a perturbative modification of the Schwarzschild solution. We will encounter a
similar wormhole geometry in the under-charged semiclassical Reissner-Nordström
geometry from Chapter 3, for which the Schwarzschild geometry is the limit case
of vanishing charge.

Before ending this Subsection let us remark that Eq. (2.32) provides a reliable
approximation to the near-neck metric in the following regimes. If rB ≫

√
αlP, then

0 < r − rB ≪ l2P
rB
. (2.35)

On the other hand, if the wormhole throat is small (rB ≪
√
αlP) then it must be

0 < r − rB ≪ rB. (2.36)

2.3.3 Through the wormhole
As a consequence of the absence of an event horizon, a new, uncovered region of
spacetime emerges. This portion of spacetime, described by a solution that belongs
to the concealed branch, has characteristics very different from the unconcealed
region. As we will show, the semiclassical vacuum generates a new internal
asymptotic region of infinite negative Misner-Sharp mass. A description of the
geometry of the other side of the wormhole can be determined from arguments
involving Eq. (2.9).

The argument starts as follows: The roots R1,2 and the exact solutions ψ± diverge
towards negative infinity in the r → 0 limit. As the boundary conditions at the
throat imply ψ → −∞ as l → l−B (r → rB from the inside), it is guaranteed that ψ
will take values below the two roots ψ± close enough to the throat. In Figure 2.1 we
have plotted the two roots and exact solutions from Eq. (2.9). We have also plotted
the portion that lives in the concealed branch of a numerical solution, showing its
divergent behavior at the throat.

Let us describe the features of the solution. The solution ψ must initially increase
with r (in the concealed branch, where r decreases with l) up to its unavoidable
crossing with R1. Then, it starts decreasing but it can neither cross back the root
R1 nor cross the exact solution. As both R1 and ψ+ have the same leading-order
asymptotic behavior for large r, the physical exact solution must acquire this same
asymptotic behavior but always staying between these two curves. The unphysical
solution ψ+ acts as an attractor to which solutions converge asymptotically [176].

Assuming that ψ deviates slightly from the non-physical exact solution ψ+, and
measuring this deviation by a function χ(r), such that ψ = ψ++χ(r), we can replace
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Fig. 2.1.: Plot of R1, R2 and the unphysical exact solutions, with ψ± for α = 1.01.
The black curve corresponds to a numerical solution with rB = 0.06. The numerical
solution intersects R1 at r ≈ 0.13, reaching a maximum, and then decreases,
remaining confined between R1 and ψ+.

this expression in (2.9), neglect O(χ2) and O(χ3) terms, expand in the r → ∞
limit and solve for χ. Dropping terms decreasing faster than r−3 asymptotically, we
arrive at the relation

χ′ = −Dχ+ O
(
χ2
)
, (2.37)

where
D =

[
16r4 + 8l2Pr2 (2α− 1) + l4P (32α− 5)

]
×
(
4l2Pr3

)
. (2.38)

Now we solve Eq. (2.37) to obtain the asymptotic deviation from the exact solution

χ ≃ −χ0

lP

(
r

lP

)2−4α
e−2r2/l2P

[
1 − (5 − 32α) l2P

8r2

]
, (2.39)

where χ0 is a dimensionless integration constant. This result is consistent (when
taking α = 0) with the asymptotic behavior found in [170]. The sign of χ is
negative due to the solution ψ approximating ψ+ from below. The presence of a
regulator causes a faster decay of the deviation (2.39) for large r. Compactness
diverges exponentially towards negative infinity in this limit,

C ≃ −(r/lP)4α−3

2χ0
e−2r2/l2P

[
1 + (9 − 32α)l2P

8r2

]
. (2.40)
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Finally, the line element can be written as

ds2 ≃
(
r

lP

)1−4α
e−2r2/l2P

{
−a0

(
1 − l2P

8r2

)
dt2

+2β0r
2

lP

[
1 − (9 − 32α)l2P

8r2

]
dr2

}
+ r2dΩ2. (2.41)

where a0 is a positive dimensionless constant coming from the integration of ψ.
The resulting geometry has a null singularity at radial infinity since the time and
radial components of the metric vanish. This asymptotic region is singular and
leads to a negatively divergent curvature scalar

R ≃ −e−2r2/l2P (2α− 1)
l2Pχ0

(
r

lP

)−5+4α
. (2.42)

This curvature singularity has an infinite negative Misner-Sharp mass associated
to it, the source of this mass being the vacuum energy of the quantized field. The
singular region is located at an infinite radial distance in the r coordinate, but
at finite proper distance from the throat. This can be seen by integrating the
asymptotic form

(
dl

dr

)2

= 2χ0 (r/lP)3−4α e−2r2/l2P

[
1 − (9 − 32α)l2P

8r2

]
. (2.43)

The exponential factor leads to a finite proper distance lI < lB for the location of
this internal asymptotic region.

2.3.4 Other asymptotic behaviors
For completeness, we finish this section by describing the solutions to the semiclas-
sical equations with negative and vanishing ADM mass.

Based on our results for the asymptotically flat regime, we first consider the
analysis of the geometry when M < 0. In this case, the asymptotic form of the
functions ψ and C, again for the unconcealed branch, follows from taking a negative
value for the integration constant in (2.14) and (2.16)

ψ ≃ −|M |
r2 , C ≃ −2|M |

r
. (2.44)

Given a faraway referential radius rref, the negative function ψ(r) for r ∈ (rref,+∞)
is always larger than the nonphysical exact solution ψ− and both roots, which are
always smaller than ψ− (see Figure 2.1). Integrating the solution inwards, as it
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cannot cross ψ− and neither can the roots, the solution is monotonically decreasing.
Following the same argument as in Subsection 2.3.1 we show that ψ diverges as

ψ ≃
−α +

√
α (α− 1)
r

(2.45)

in the r → 0 limit. Replacing this solution in Eq. (2.8) and solving for C in the
r → 0 limit we find

C ≃ −|M |r
− 2(α+1)

α−1

[
1−α+

√
α(α−1)

]
. (2.46)

This solution has a curvature singularity at r = 0 that corresponds to the semiclassi-
cal counterpart of the naked singularity of the classical Schwarzschild geometry
endowed with a negative asymptotic mass. Note that in the limit α → ∞ we
recover the Schwarzschild metric.

Finally, the solution with M = 0 corresponds to Minkowski spacetime, where
the zero-point energy of the scalar field can be renormalized away, and hence
it does not contribute to curvature. This solution, for which the RSET vanishes,
marks the boundary between positive and negative mass solutions, that is, between
wormholes and naked singularities. Since for wormhole solutions the radius of the
throat rB is directly related to the asymptotic mass M , taking rB → 0 corresponds
to making the mass vanish, thus recovering Minkowski spacetime in this limit.

2.4 Geometric characteristics of the semiclassical
Schwarzschid counterpart
The asymmetric wormhole

The semiclassical counterpart to the positive-mass Schwarzschild solution is an
asymmetric wormhole with asymptotically flat and singular internal asymptotic
regions at both ends. Figure 2.2 contains a numerical plot of a particular case.
In this plot we can appreciate that the compactness function C grows to 1 at the
neck of the wormhole, only to start decreasing exponentially as we deepen in the
internal asymptotic region. On the other hand, the redshift function is always
monotonically decreasing, vanishing only at the internal asymptotic region. The
approximate location of the classical horizon is now replaced by a wormhole throat
with a nonzero redshift value. In a sense, the horizon has been pushed away
towards an internal singular infinity.

The distribution of the Misner-Sharp mass along the radial direction can be
interpreted as if an infinite negative energy was concentrated in the internal singular
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Fig. 2.2.: Numerical plot of the semiclassical counterpart of the Schwarzschild
vacuum geometry. The horizontal axis is the proper coordinate l while the above
and below curves (green) represent the radial coordinate r (in units of rB). The
redshift function, and the compactness are plotted in red and blue, respectively.
The right side of the wormhole is asymptotically flat whereas the left side is
asymptotically singular. Both regions are joined by a minimal surface of radius
r = rB. We have chosen M = 0.1 and α = 1.01 to better highlight the properties of
the geometry, which are identical for larger ADM masses.

region, generating a cloud of negative vacuum energy distributed throughout the
entire spacetime. In going from the internal asymptotic region towards the neck,
this negative energy density increases the value of the Misner-Sharp mass. When
one reaches the throat itself the Misner-Sharp mass is already positive. Once the
throat has been surpassed, the semiclassical negative energy now progressively
decreases the value of the Misner-Sharp mass, leading finally to the asymptotic
mass M .

Notice that within the vacuum solutions analyzed here there is none which is
regular, with the exception of Minkowski spacetime. Moreover, the causality of
the wormhole solutions (see the left panel in Fig. 2.3 for a conformal diagram),
reveals that the singular region is null as opposed to the spacelike singularity in the
Schwarzschild solution. This is caused by the asymptotic vanishing of the time and
radial components of the metric (2.32). Moreover, observers following timelike
trajectories reach this singularity at finite proper time and null rays reach it at a
finite value of the affine parameter. This indicates that there are no “mass without
mass" solutions of any sort (using Wheeler’s terminology [173]) in the semiclassical
theory: vacuum energy cannot by itself generate regular self-gravitating configura-
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Fig. 2.3.: Left panel: Penrose diagram corresponding to the singular wormhole
solution for the CRP-RSET. The dashed lines denote the location of the wormhole
neck. To their right, the asymptotically flat portion of spacetime is depicted
alongside its asymptotic regions. The left hand side of the diagram shows the
internal past and future null singularities, which are located at finite proper distance
from the neck lS − lB. The point i0L is singular as well, and is reached in finite proper
time by spacelike geodesics. Right panel: Penrose diagram associated with the
vacuum solution for the OR-RSET (described in Chapter 6). In this case, the
singularity is timelike and constitutes a naked singularity. While differences in the
modelization of the semiclassical source result in singularities of different sorts,
both models agree on the absence of event horizons.

tions. The introduction of a material content of some sort is therefore a necessary
requirement in order to obtain regular and semiclassically consistent geometries.

Studies involving semiclassical backreaction in the Boulware state have been
pursued in the literature in the context of BHs in two-dimensional dilaton theo-
ries [158, 177], the Russo-Susskind-Thorlacius model [178], and the s-wave RSET
approximation in semiclassical gravity [112], where the effect of the potential bar-
rier is simulated through the coupling between the quantized massless scalar and a
dilaton [101]. In these studies, a generic phenomenon is the event horizon getting
destroyed by the backreaction of the RSET. Peculiarly, null singularities appear as
ubiquitous features, even when the RSET is the one associated with a conformally
invariant field that satisfies the (3 + 1)-dimensional trace anomaly [168]. On a
related front, the vacuum solutions from Einstein-Weyl gravity [179] share many
similarities with the wormholes described in this Chapter as well.
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Fig. 2.4.: Numerical plot of the deviation rB − 2M in terms of twice the ADM mass
of the geometry. The difference rB − 2M reaches a maximum as we approach small
values of 2M , while in the M → 0 limit rB goes to 0.

Regarding the location of the wormhole throat, in figure 2.4 we show the value
of rB − 2M with respect to the gravitational radius 2M (in Planck units). We see
that for a range of masses large enough as compared with the Planck mass, the
difference is of the order of 10−2lP. This difference increases for smaller masses and
vanishes in the M → 0 limit.

Reflections on RSET approximations

In order to analyze potentially regular geometries sourced by an internal matter
content plus the semiclassical vacuum contributions it is necessary to have control
of the effects of the semiclassical energies up to arbitrarily small radii. Initially,
we ignored how the regularizing parameter α would affect the solutions found
in [101]. The presence of the regulator brings the singular asymptotic region
closer to the throat, in terms of proper distance, than when no regulator is present
[notice the factor 1/r4α in Eq. (2.43)]. On the other hand, within the regularized
theory there exist solutions that can come as close as desired to r = 0. No matter
how small the ADM mass of the system is, the solutions are always asymmetric
wormholes. The Minkowski solution is a singular limit of the solutions as rB → 0.

In Chapters 4 and 5 we will address semiclassical backreaction in stellar space-
times. The solutions here described are the external spacetime to these material
bodies. Furthermore, there are situations in which a similar structure (i.e. a
wormhole throat connecting to a null singularity) realizes inside matter. We will
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encounter solutions in which these wormhole throats can be arbitrarily small by
tuning the parameters that characterize the star (energy density, mass and radius).
It is in this regime where the RSET regularization scheme becomes of great im-
portance, as distances close r = 0 are explored. Eventually, we will leave aside
the CRP-RSET in favor of more elaborate regularization schemes that influence the
short-distance behavior of the RSET in other ways. In vacuum, these alternative
families of RP-RSETs only affect solutions with small ADM mass (for which rB lies
within the region where the RSET depends strongly on its regularization), so all
the observations made in this Chapter apply to other regularization schemes that
we will consider in the future.

A different possibility is using an RSET approximation that is four-dimensional
from the start, namely the analytical AHS-RSET [127] introduced in Sec. 1.2.
Despite the aforementioned shortcomings of this approximation, a set of well-
posed, second-order vacuum semiclassical equations can be derived by means
of further approximations. This is the approach we follow in Chapter 6, where
we obtain the complete set of semiclassical vacuum solutions in this prescription.
For the massless minimally coupled field, the backreacted geometry has no event
horizon nor wormhole neck, displaying a (timelike) naked singularity (see Fig. 6.1).
This naked singularity is located above the Schwarzschild radius of the spacetime,
as depicted in Fig. 6.2, and at distances similar to where the wormhole neck appears
with the CRP-RSET. Finally, the conformal diagram for this spacetime is depicted in
the right panel of Fig. 2.3, where it can be clearly compared with the conformal
diagram of the asymmetric wormhole.

While the backreaction of the various existing analytical RSETs gives rise to space-
times with different characteristics as the r = 2M region is approached, the fact
that the horizon transforms into a curvature singularity by the vacuum polarization
of the Boulware vacuum state is robust and independent of the approximation. We
will return to this discussion and provide additional details in Chapter 6.

2.5 Conclusions
In this Chapter we have obtained and analyzed the characteristics of the semiclas-
sical counterpart to the Schwarzschild geometry. As a source of the semiclassical
equations, we have considered a Cutoff-Regularized version of the Polyakov RSET.
Under this simple choice of regularization, we obtain a set of equations without
the pathologies that emerge from the dimensional reduction followed to obtain
the Polyakov RSET in the first place. The semiclassical Schwarzschild counterpart
with positive ADM mass is an asymmetric wormhole. The neck of the wormhole
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(or surface of minimum radius) replaces the classical event horizon and connects
the asymptotically flat region with a null singularity located at finite affine distance
from the neck.

No regular and static vacuum geometry is compatible with quantum vacuum
polarization effects. Eternal horizons are not a feature of vacuum semiclassical
solutions. Hence, within the semiclassical paradigm, if an equilibrium (static) state
is reached at some point during evolution towards a dark compact object, it should
be given by a horizonless configuration. The evaporating BH paradigm circumvents
this situation, as trapping horizons should be formed dynamically by a collapse
process and then shrink slowly. Hence, it is assumed that the geometry would
be never static, except perhaps at the end of a long evaporation process where
the horizon itself might disappear. Let us remark that, in principle, there are two
semiclassically consistent possibilities. On the one hand, non-equilibrium configu-
rations with non-extremal trapping horizons and, on the other hand, equilibrium
configurations with no horizons whatsoever.
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Reissner-Nordström
geometry counterpart in
semiclassical gravity

3

3.1 Introduction
In this Chapter we generalize the semiclassical Schwarzschild counterpart from
Chapter 2 to the electrovacuum case by deriving the semiclassical counterpart to the
Remissness-Nordström spacetime. In GR, by electrovacuum we mean the case in
which the spacetime contains a central electromagnetic charge with its associated
Coulomb field. The electromagnetic stress-energy tensor sourcing this spacetime is
obtained from solving the Einstein-Maxwell equations in spherically symmetric and
static situations, i.e.

T ν(em)
µ = diag (−1,−1, 1, 1) Q2

8πr4 . (3.1)

Here, Q2 = Q2
e + Q2

m, where Qe, Qm denote the electric and magnetic charges,
respectively. The Reissner-Nordström spacetime [180–183] is characterized by

e2ϕ = 1 − C = 1 − 2M
r

+ Q2

r2 . (3.2)

This solution shows several unique features due to the presence of charge. The
zeroes of the redshift function determine the location of its two horizons

r± = M ±
√
M2 −Q2. (3.3)

Therefore, depending on the charge-to-mass ratio of the geometry, it can exhibit
two, one, or no horizons whatsoever. This splits the Reissner-Nordström family into
three categories:

• Sub-extremal (Q < M), which shows a timelike singularity covered by outer
and inner horizons at r− and r+ respectively. The Schwarzschild BH is the
particular case where Q = 0.

43



• Super-extremal (Q > M), where the value of the charge surpassing that of
the mass gives rise to a naked singularity.

• Extremal BHs (Q = M), for which outer and inner horizons become co-
incident, forming an extremal horizon at the end of an spatially infinite
neck.

The double horizon structure present in the sub-extremal Reissner-Nordström BH
is similar to that exhibited by Kerr BHs, while preserving the benevolence of spheri-
cal symmetry. For this reason, the analysis of Reissner–Nordström geometries is also
used as a proxy to understanding the more complicated Kerr case. The presence
of a second internal horizon adds some special features to these geometries. For
example, different analyses show that, as opposed to the outer horizon, the inner
horizon is highly unstable under both classical and quantum perturbations [184,
185]. RSETs associated to vacuum states regular at the outer horizon have a generic
divergence at the inner horizon [138, 186]. Recently, the flux components of the
RSET in the past Unruh state were computed at the Cauchy horizon of the Kerr
BH [139], showing the corresponding divergences. Semiclassical backreaction will,
presumably, destroy the inner horizon and transform it into a curvature singularity.

The semiclassical equations in electrovacuum take the form

Gµν = 8π
(
T (em)
µν + h̄⟨T̂µν⟩

)
, (3.4)

where the semiclassical source in (3.4) is, again, the CRP-RSET (1.14) with
F (r) = 1/(r2 + αl2P) and α > 1. The electromagnetic SET is trivially conserved
and traceless, and it modifies the vacuum semiclassical equations in a way that
allows to apply the same techniques used in Chapter 2 to find the semiclassical
Reissner-Nordström counterpart. This family of solutions displays three distinct
regimes depending on whether the charge is above or below a critical value Qcrit.
In the under-charged regime Q < Qcrit we find singular asymmetric wormholes,
whereas in the over-charged regime Q > Qcrit we obtain naked singularities. Both
families of solutions are qualitatively identical to the ones presented in Chapter 2,
with the exception that over-charged naked singularities receive contributions from
the electromagnetic stress-energy tensor. The separatrix solution Q = Qcrit between
both regimes is reminiscent of extremal BHs, in the sense that it preserves an event
horizon but it gets transformed into a singularity of the non-scalar type [160]. We
will elaborate on these solutions in the rest of this Chapter, but let us emphasize
here that our major finding is the non-existence of regular static electrovacuum
solutions in semiclassical gravity.
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Semiclassical backreaction analyses in charged BHs are scarce in the literature
and almost nonexistent for fields in the Boulware state in non-extremal situations.
On the contrary, perturbative analyses [in the same spirit as Eq. (1.7)] for fields in
the Hartle-Hawking state have flourished in the context of two-dimensional dila-
tonic theories [187, 188], and for conformally invariant [189, 190] and large-mass
fields in four dimensions [191]. Among the Reissner-Nordström family, a solution
that grabbed an extraordinary amount of interest is the zero-temperature extremal
BH, for which the Boulware and Hartle-Hawking states coincide. The works [192,
193] address the self-consistency of two-dimensional extremal dilatonic BHs under
semiclassical corrections in the Polyakov and s-wave approximations. According
to [192], the semiclassical counterparts to these BHs develop a mild singularity
at the event horizon. The appearance of such singularity is in connection with
the divergence of the Polyakov RSET there [see Eq. (3.6) below. This divergence
only appears in static situations and disappears when an extremal configuration is
reached as the endstate of some dynamical process. We elaborate on this discussion
in Subsec. 3.5.3.

Let us explicitly show the divergent behavior of the Polyakov RSET at extremal
horizons by considering the following profiles for the metric functions, for which
the surface gravity (2.2) vanishes,

e2ϕ ∝
(
r − rH

rH

)2
+ O

(
r − rH

rH

)3
, 1 − C ∝

(
r − rH

rH

)2
+ O

(
r − rH

rH

)3
, (3.5)

which result in finite semiclassical density and pressures at r = rH.

ρs = pr
s ∝ l2P

r4
H

+ O
(
r − rH

rH

)
. (3.6)

Despite the finiteness of the Polyakov RSET at the extremal horizon, the energy
density measured by a freely falling observer [171, 172] at the surface r = rH

diverges as

E =
(
⟨T̂ rr ⟩P4 − ⟨T̂ tt ⟩P4

)
e−2ϕ ∝ − l2P

r3
H (r − rH) + O

(
r − rH

rH

)0
. (3.7)

This divergence is milder than the one appearing in the sub-extremal case, analo-
gous to the Schwarzschild situation [see Eq. (2.6)]. Consequently, the horizon is
not replaced by a wormhole neck, but transformed into a singular surface where
curvature invariants remain finite.

Let us summarize the content of this Chapter. Section 3.2 presents the electrovac-
uum semiclassical equations and their characteristics. Sections 3.3, 3.4 and 3.5

3.1 Introduction 45



contain details about the characteristics of the under-charged, over-charged and
quasi-extremal regimes of solutions. We conclude with some final remarks in
Sec. 3.6.

3.2 Self-consistent electrovacuum semiclassical
equations
We write down the semiclassical Einstein equations (3.4) as a first order differential
equation for ψ to then discuss some of their most salient properties. By analyzing
these expressions we are able to determine the existence of three types of semiclas-
sical solutions depending on the charge-to-mass ratio of the geometry (as in the
Reissner-Nordström family), and reconstruct the shape of the solutions living in
each of these three regimes. The tt and rr components of the semiclassical field
equations are, respectively,

C + rC ′ = Q2

r2 + l2Pr
2

r2 + αl2P

{[
2ψ′ + ψ2

]
(1 − C) − ψC ′

}
, (3.8)

−2rψ + C(1 + 2rψ) = Q2

r2 + l2Pr
2

r2 + αl2P
ψ2(1 − C). (3.9)

Solving algebraically for C in the second equation and plugging the obtained
expression into the first equation results into the first-order differential equation
for the variable ψ:

ψ′ =A0 + A1ψ + A2ψ
2 + A3ψ

3, with

A0(r) = Q2D(r),

A1(r) = 2r
[
r2 −Q2

(
2 + l2P

2 [r2 + αl2P]

)]
D(r),

A2(r) = r2
[
2
(
r2 −Q2

)(
1 + l2Pr

2

2 [r2 + αl2P]2

)
+ l2P(2r2 − 5Q2)

r2 + αl2P

]
D(r),

A3(r) = r3l2P
r2 + αl2P

[
r2
(

1 + αl4P
[r2 + αl2P]2

)
−Q2

(
1 + l2P[r2 + 2αl2P]

[r2 + αl2P]

)]
D(r),

D(r) =− r2 + αl2P
r2 (r2 −Q2) [r2 + l2P(α− 1)] . (3.10)

In addition to the non-physical singularity at r = lP
√

1 − α, which we remove
taking α > 1, the quantity 1/D vanishes at r = Q as well. This surface has special
properties that we will discuss in Sec. 3.4.
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The right-hand side of Eq. (3.10) is a cubic polynomial in ψ and can be factorized
in roots that are functions of r. These roots are defined piecewise and can be
matched along different intervals of the radial coordinate so that, when plotted,
they appear as continuous curves. We have adopted the following definition

R1 =



S1 r ≤ Q

S2 Q < r ≤ r−
i

S3 r−
i < r ≤ rdiv

S1 r > rdiv

, R2 =

S3 r ≤ r−
i

S2 r > r−
i

, R3 =


S2 r ≤ Q

S1 Q < r ≤ rdiv

S3 r > rdiv

,

where the expressions for Si are, in terms of the coefficients in Eq. (3.10),

S1 = − A2

3A3

[
1 + 21/3 (3A1A3 − A2

2)
A2H

− H
21/3A2

]
,

S2,3 = − 3 ± i
√

3
2

(
1 + A2

3A3

)
R1, (3.11)

with

H =
[
−2A3

2 + 9A1A2A3 − 27A3A0

+
√

(2A3
2 − 9A1A2A3 + 27A2

3A0)2 − 4 (A2
2 − 3A1A3)3

]1/3
. (3.12)

The symbols r−
i and rdiv in (3.11) mark the lower and upper limits of a region

where the roots acquire a non-zero complex part. Particularly, R1 and R2 become
complex conjugate roots within this interval. The occurrence of complex roots has
no impact on solutions, since, as we will prove in the following sections, solutions
of (3.10) with support in the interval r ∈ (Q, rdiv) have to intersect certain fixed
points.

For the Schwarzschild counterpart, one of the three roots is trivial (R = 0),
while the others always take negative values. The presence of charge introduces a
non-vanishing zeroth-order term term in (3.10), A0 ̸= 0, modifying the shape of
the roots (in particular, these now take positive values) and, in consequence, the
domain of the solutions.

In Fig. 3.1 we show a plot of the roots and the two exact solutions (2.10) for
a particular value of the charge parameter. The curves ψ± are exact solutions
independently of the value of Q. In fact, we can rewrite (3.10) as

ψ′ = FSch(r, ψ) + G(r,Q, ψ)(ψ − ψ−)(ψ − ψ+), (3.13)
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Fig. 3.1.: Plot of the roots R1,2,3 (continuous curves) and the exact solutions ψ±
(dashed lines). The roots are defined piecewise, and take negative values except for
the positively diverging portion of R2. Its asymptote at r = rdiv (vertical, dashed
line) marks the separatrix solution between the sub-extremal and super-extremal
regimes. The dotted vertical line is r = Q. In this figure, we have taken α = 1.01
and Q = 0.3 for visualization purposes. A numerical solution ψ describing a
wormhole of asymptotic mass M = 0.285 has been drawn in black. The procedure
giving rise to such solution is detailed in later sections.

where FSch corresponds to the right hand side of (3.10) evaluated at Q = 0, and

G =
l2PQ

2
(

1 + l2Pr
r2 + αl2P

ψ

)
(r2 −Q2) [r2 + (α− 1)l2P] . (3.14)

This shows explicitly why ψ± can be exact solutions of (3.10) for arbitrary values of
the charge Q even if they do not depend on Q, given that the Q-dependent terms
in (3.10) vanish identically for ψ = ψ±.

Similarly to what happened for the Schwarzschild counterpart, smooth transitions
between both branches take place under certain conditions, resulting in solutions
that are more than a mere one-parameter deformation of the classical spacetime.
There are two distinct situations that indicate the presence of a transition between
branches: either the function ψ jumps from +∞ to −∞, or the quantity G (3.14)
vanishes at some finite radius. These conditions follow from the requirement that
the discriminant of Eq. (3.9) (seen as a second-order polynomial for ψ) vanishes.
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To end this Section let us stress that, since Eq. (3.10) is a first order differential
equation for ψ, we can apply the uniqueness and existence theorem as long as
r ̸= Q; note that for r → Q the right-hand side of (3.13) diverges as (r − Q)−1,
which makes the differential equation singular there. This implies that solutions of
this equation cannot intersect at finite r but for the surface r = Q. In turn, we will
show that the exact solutions (2.10) act as boundaries for the remaining solutions.
In addition, the roots (3.11) denote the turning points of ψ. These features will
allow us to characterize the solutions of (3.10) thoroughly.

3.2.1 Asymptotically flat regime
Let us start analyzing the behavior of (3.10) at large radial distances and imposing
asymptotic boundary conditions in order to select the solutions describing asymp-
totically flat spacetimes. Assuming that the metric (1.2) is asymptotically flat, the
leading-order term in the expansion of ψ is identical to (2.13), since Q-dependent
contributions decay faster with r.

Now, we allow the next sub-leading terms to enter expression (3.10), informing
us about the first Q-dependent corrections,

ψ′ ≃ −2ψ
r

(1 + rψ) + Q2

r4 . (3.15)

Integrating this expression twice yields

ϕ ≃ ψc1 + 1
2 ln

[
cosh

(√
2Q
r

+ ψc2

)]
, (3.16)

which now displays the leading asymptotic behavior characteristic of the Reissner-
Nordström metric, in which

e2ϕ ≃ 1 − 2M
r

+ Q2

r2 + O(r−3). (3.17)

To recover the above expression one just needs to choose the integration constants
ψc1 and ψc2 as

ψc1 = 1
2 ln [sech (ψc2)] , ψc2 = −arctanh

(√
2M
Q

)
. (3.18)

The behavior for C is found by replacing (3.16) inside (3.9) and taking the
leading order contribution for large r. We obtain (1 − C) ≃ e−2ϕ in the asymptotic
limit, so the Reissner-Nordström geometry is fully recovered.
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After fixing the asymptotic behavior of the different solutions, we proceed by
integrating the semiclassical equations towards decreasing r. In doing so, several
scenarios arise depending on the balance between the charge Q and the asymptotic
mass M . We start our integration from the asymptotic region, with positive ψ

(recall this condition is equivalent to assuming M > 0), situating the solution above
all roots and analytical exact solutions depicted in Fig. 3.1. Eq. (3.10) guarantees
that ψ grows monotonically inwards unless it intersects one of the roots. In view
of Fig. 3.1, there exist three possibilities: the solution ψ either diverges at some
radius r > rdiv; it grows sufficiently slow as to cross rdiv, encountering a maximum
and extending to r ≃ 0; or it stays in between both regimes, diverging at r = rdiv at
the same exact rate as the root R2 does. The solution will belong to one of these
regimes depending on the relative values of Q,M and α. In turn, as long as M > 0
and α > 1, there exists a critical value of the charge Qcrit that corresponds to the
separatrix solution. In the following we analyze these three cases individually.

3.3 Under-charged regime

The first solutions we analyze are deformed continuously to the Schwarzschild
counterpart in the limit Q → 0, and are valid up to a critical value of the charge
Qcrit that depends on the parameters of the integration.

3.3.1 Near-neck expansion

Assuming that the function ψ diverges at some finite radius rB > rdiv, the differential
equation (3.10) can be approximated, at leading order in ψ, by

ψ′ ≃ A3Bψ
3. (3.19)

The term A3B is just the coefficient A3 in (3.10) evaluated in the r → rB limit,
where it takes a constant value

A3B = − l2PrB

r2
B

1 + αl4P[
r2

B + αl2P
]2
−Q2

1 +
l2P
[
r2

B + 2αl2P
]

[
r2

B + αl2P
]2




×
{(
r2

B −Q2
) [
r2

B + l2P(α− 1)
]}−1

. (3.20)
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Note that the sign of this constant depends on Q. Integrating the differential
equation (3.19) returns the following pair of solutions

ψ ≃ ±
√

k0

4(r − rB) + O (r − rB)1/2 , (3.21)

where
k0 = − 2

A3B
. (3.22)

Again, the ± signs indicate that there are two solutions, one per branch. For the
moment, we take the + sign. Later, we will connect it to the − sign solution.

For each of the two solutions (3.21) to be real, the constant k0 must be positive,
which in turn implies that

|Q| < rB

√√√√ αl4P + (r2
B + αl2P)2

l2P (r2
B + 2αl2P) + (r2

B + αl2P)2 . (3.23)

This is the semiclassical equivalent of the condition that guarantees the non-
extremal nature of the classical Reissner-Nordström BH (i.e. Q < M). We will
analyze in more detail the content of the constraint (3.23) below; for the moment
let us keep describing the elements of the metric.

The redshift function follows from integrating Eq. (3.21) and the compactness
from replacing Eq. (3.21) in (3.9). In the r → rB limit, these quantities become

ϕ =
√
k0(r − rB) + ϕB + O (r − rB)3/2 , (3.24)

C =1 − k1(r − rB) + O (r − rB)3/2 , (3.25)

where

k1 = 4(r2
B −Q2)(r2

B + αl2P)
l2Pr

2
Bk0

> 0, (3.26)

and the integration constant ϕB (to be found numerically) denotes the value of the
redshift function at r = rB.

We can express the line element in coordinates adapted to wormhole spacetimes
through the transformation (2.30) matching signs to obtain a continuous and
differentiable metric through l = lB, obtaining

ds2 ≃ −e
√
k0k1(l−lB)+2ϕBdt2 + dl2 +

[
k1

4 (l − lB)2 + r2
B

]2

dΩ2, (3.27)

which is identical in form to Eq. (2.32). The line element (3.27) proves that the
charged case exhibits the same type of elimination of the horizon as the uncharged
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Fig. 3.2.: Plot of the quantity Qcrit −M in terms of M . The parameter Qcrit denotes
the value of the charge that separates under-charged from over-charged spacetimes.

situation: substitution by a wormhole neck. The role of the charge here is, similarly
to the classical situation, to produce a repulsive contribution that slows down the
growth rate of the Misner-Sharp mass inwards. Thus, the neck radius is dragged
towards smaller values of r as Q increases.

In the Q → 0 limit, this family of solutions connects smoothly with the semiclas-
sical Schwarzschild counterpart. On the other hand, the solution (3.21) provides
an upper bound for the charge parameter given by (3.23). Since the neck radius rB

can only be found numerically, we are unable to provide an exact bound for Q in
terms of the asymptotic mass M without numerically integrating the full equations.
In Figure 3.2 we have plotted the lowest charge value Qcrit that takes the solution
out of the wormhole regime for several (although quite small in Planck units)
asymptotic masses. We find that the separatrix charge Qcrit needs to surpass the
asymptotic mass M . This is so because the vacuum polarization of the scalar field,
by backreacting on the geometry, modifies (“dresses”) the mass of the spacetime,
while charge stays constant throughout the geometry. In order to compensate for
this increase in mass as smaller radii are approached, Qcrit lies above its classical
value Qcrit = M , as the expansion of (3.23) in the lP → 0 limit shows

|Q| ≲ rB

1 − l2P
2r2

B
+ O

(
lP
rB

)4
 , (3.28)
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where rB > r+ always. Since for classical sub-extremal BHs r+ > M , we conclude
that the smallest value of Q that does not obey (3.23) must be greater than M .

3.3.2 Asymptotic singularity
Below the neck, in virtue of Eq. (3.10) and the roots and exact solutions depicted
in Fig. 3.1, ψ grows with r until crossing R1, and then decreases monotonically
confined between the curves R1 and ψ+.

Assuming that, asymptotically in r, the ψ function obeys

ψ = ψ+ + β(r), (3.29)

where β(r) measures the deviation from the exact solution. Replacing in (3.10),
keeping terms up to linear order in β and taking the limit r → ∞ results in

β′ ≃ −{−16r4 + 8l2P [Q2 + r2(1 − 2α)] + l4P(5 − 32α)}
4l2Pr3 β, (3.30)

which integrated (3.30) gives

β = β0

(
r

lP

)1−4α
e

− 2r2
l2
P

[
1 − Q2

r2 − l2P(5 − 32α)
8r2 + O(r−4)

]
, (3.31)

where β0 an integration constant with dimensions of inverse of length. Inserting
this in Eq. (3.29) and integrating to obtain the redshift function and compactness
yields the asymptotic metric

ds2 ≃
(
r

lP

)1−4α
e−2r2/l2P

{
−a0

(
1 − l2P

8r2

)
dt2

+2β0r
2

lP

[
1 − (9 − 32α)l2P

8r2

]
dr2

}
+ r2dΩ2. (3.32)

Q-dependent terms enter this expression as subdominant contributions, so they
do not alter the asymptotic form of the geometry, which is the same as in the
Schwarzschild case (2.41). This becomes evident already at the level of Eq. (3.10),
where terms proportional to Q are subleading with respect to the “vacuum”, RSET-
dependent contributions already present in the Schwarzschild case. From this
perspective, there is no qualitative difference with respect to the Schwarzschild
case (Q = 0) discussed in Ch. 2.

In the following sections, we will turn to other non-wormhole geometries with
values of the charge greater than or equal to the separatrix value Qcrit.
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3.4 Over-charged regime

3.4.1 Solution across rdiv

We now turn to the situation where the resulting geometries have no wormhole
neck, extending all the way down to r = 0. This behavior manifests in two ways:
Either by considering a negative mass (M < 0), or by increasing Q beyond its
critical value Qcrit while M > 0. In the latter case, compactness increases inwards,
although its growth rate slows down as Q increases. Similarly, the repulsion exerted
by the electromagnetic field slows down the growth rate of ψ, displacing the surface
rB towards smaller radii. As Q increases, the root R2, which diverges (while
remaining positive) at rdiv, is eventually intersected by the solution. Indeed, the
explicit expression for rdiv can be derived from solving the polynomial expression
A3 = 0 for r. From all the roots that factorize this expression, the one which
corresponds to the surface of infinite R2 turns out to be

rdiv =
{

24/3Q4 + 2Q2
[
Q2V + l2P

(
33/2U + αV

)]1/3
+
[
2Q2V + 2l2P

(
33/2U + αV

)]2/3

+2l2P
[
21/3Q2(3 + 2α) − 2α

(
Q2V + l2P

[
33/2U + αV

])1/3
]

+ 24/3l4Pα(α− 3)
}

×
[
6Q2V + 6l2P

(
33/2U + αV

)]1/6
, (3.33)

with

U =
{
Q8(4α− 1) + 2l2PQ6 [α(9 + 8α) − 2] + αl4PQ

4 [12 + α(47 + 24α)]

+4α2l6PQ
2 [α(9 + 8α) − 3] + 4α3l8P(1 + α)2

}1/2
,

V = 2Q4 + l2PQ
2(9 + 4α) + 2αl4P(9 + α). (3.34)

In the lP → 0 limit,

rdiv ≃ Q+ l2P
2Q + · · · , (3.35)

which implies that, in the classical limit, this surface lies at r = Q. In short, in the
classical situation the surface r = Q serves as a separatrix between sub-extremal
Reissner-Nordström geometries, for which ψ diverges at r = r+ > Q, and super-
extremal Reissner-Nordström geometries, where ψ is bounded from above. The
solution where ψ diverges exactly as (r − Q)−1 corresponds to the extremal BH.
The introduction of the length scale lP associated to quantum corrections displaces
the separatrix surface outwards. Figure 3.3 shows a plot of the quantity rdiv −Q in
terms of the charge Q.
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Fig. 3.3.: Plot of the quantity rdiv−Q for various values of the chargeQ. Whereas for
large charges this quantity tends to zero, in the regime of small charges comparable,
in magnitude, to lP, this difference increases appreciably, going to 0 again in the
Q → 0 limit.

The crossing with R2 at r = rdiv corresponds to a maximum in ψ, preventing
the appearance of a wormhole neck. Instead, the coordinate r now extends to
r = 0. In doing so, ψ has to cross r = Q, the surface where the differential equation
(3.10) is singular (check Fig. 3.4). We can prove that the solution is regular there
taking into account Eq. (3.13). Both ψ± [see Eq. (2.10)] are compatible with a
regular behavior of the differential equation at r = Q, as for the ψ± solutions,
the Q-dependent terms in (3.10) (which contain the possible singularities) vanish
identically. Any other solution must intersect ψ+ or ψ− at r = Q to avoid a
singularity. Since the right-hand side of (3.13) is divergent, the Picard-Lindelöf
theorem does not hold at r = Q, allowing solutions to intersect at that precise
surface. The solution we are describing in this section will intersect first ψ−.

Let us derive the form of the solution ψ around r = Q by assuming

ψ = ψ− + ξ(r), (3.36)

in a neighborhood of r = Q, where ξ is the function that measures the deviation
between solutions. To guarantee the finiteness of (3.14), ξ must vanish at least
linearly as r approaches Q. Replacing (3.36) and its first derivative in (3.13) and
dropping terms beyond linear order in ξ, we obtain in the r → Q limit

ξ′(r) ≃ ξ(r)
r −Q

, (3.37)
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Fig. 3.4.: Numerical plot of an over-charged solution (black curve) alongside the
roots R2,3 and the exact solution ψ−. Once it intersects R2, the solution must
cross ψ− at r = Q and becomes trapped between R2 and ψ− by self-consistency
of the differential equation. If the maximum for ψ is reached closer to rdiv, then
the solution decreases more abruptly and can intersect R2 zero, one or two times,
but the behavior at r = 0 remains unchanged. For this plot we have chosen
M = 4, Q = 1.05M and α = 1.01. The region around the intersection point r = Q
has been depicted in detail.

which upon integration returns

ξ ≃ (r −Q) ξ0, (3.38)

where γ0 is an integration constant with dimensions of inverse of length squared.
Thus, as ψ crosses r = Q, it does so in a manner that ensures that the right-hand
side of (3.13) does not diverge.

We can qualitatively describe the behavior of these solutions in an exhaustive
way. After the solution crosses r = Q towards smaller radii, it can intersect R3 zero
times, once or twice. In the first case, ψ stays confined between the exact solution
ψ− and the root R3, its value decreasing until it reaches −∞, as depicted in Fig.
3.4. The situation in which there are two intersections with R3 occurs whenever ψ
decreases sufficiently fast (after crossing r = Q) so that it intersects the rightmost
part of R3. After the first intersection, it grows until R3 is encountered for a second
time. In between these two situations there is one in which R3 is touched once
tangentially at the same point in which R3 reaches its maximum value, which
becomes a saddle point of ψ.
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The other possibility that we mentioned at the beginning of this section requires
a negative asymptotic mass, M < 0. In this case, identical to the one described
in Subsec. 2.3.4, Ch. 2, ψ takes negative values above ψ− at infinity. By self-
consistency of (3.10), the solution decreases monotonically inwards, goes across
rdiv, and diverges towards −∞ in the r → 0 limit, confined between R3 and ψ−.
Thus, the r ≃ 0 behavior of the over-charged solution and the geometry with
negative asymptotic mass is the same. One of the shared features is the existence
of a curvature singularity at r = 0, as it is analyzed in the next section.

3.4.2 Singularity at r = 0
The form of the solution close to the origin in the over-charged regime comes from a
combination between the (singular) electromagnetic field and the effects of vacuum
polarization. The magnitude of the CRP-RSET describing quantum fluctuations
near r = 0 is strongly affected by the value assigned to the regulator α. Indeed,
if the CRP-RSET is sufficiently suppressed by considering a large α, the dominant
source of compactness in the r → 0 limit will come from terms proportional to
the charge Q. We obtain the form of the metric close to the radial by solving the
semiclassical equations in this limit.

The procedure is as follows: In order to simplify (3.8), we need to obtain the form
of solutions of Eq. (3.10) near the origin; The resulting approximate expression
and its first derivative ψ′ are then inserted in (3.8). Therefore, we start by assuming
ψ takes the form

ψ = a

r
, (3.39)

which is the only profile both divergent at r → 0 and compatible with Eq. (3.10).
Replacing (3.39) and its first derivative in Eq. (3.10) and expanding in the r → 0
limit, we obtain the following solutions for the constant a:

a0 = − α

2 + α
, a± = −

(
α±

√
α(α− 1)

)
. (3.40)

The first of these values is a solution that appears as a consequence of the intro-
duction of the electric charge. We have not been able to relate it with any of
the situations described in this Chapter, so chances are that this solution does
not connect with an asymptotically flat region. The last two values correspond
to evaluating the exact solutions ψ± in the r → 0 limit. The complete solution
depicted in Fig. 3.4 stays within the branch in which initial conditions have been
imposed (in other words, imposing asymptotic flatness implies that the concealed
branch is never explored), so we stay with the coefficient a− in (3.40), which has
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a well-defined classical limit. Terms sub-leading with respect to the leading order
(3.39) (which would be linear in r) can be derived, but the leading-order form of
ψ is sufficient to illustrate our point here.

After replacing (3.39) and its derivative in (3.8), we obtain the following approx-
imate linear differential equation for the compactness

C ′ = [(2 − a−)a− − α]C
(α + a−) r [1 + O(r)] + αQ2

(α + a−)r3

[
1 + O(r−1)

]
. (3.41)

Integrating Eq. (3.41) is straightforward and yields

C = c1

(
r

lP

)b1 [
1 + O

(
r2
)]

+ c2

(
Q

r

)2 [
1 + O

(
r0
)]
, (3.42)

where c1 is an arbitrary integration constant and b1 and c2 are known parameters
whose values are shown in Eqs. (3.43, 3.44) below. The value of c1 is determined
by numerical integration and will have some unknown dependence on M , Q, α and
lP. Since, in view of Fig. 3.4, ψ approaches ψ− in the r → 0 limit, this ensures that
compactness must diverge towards negative infinity, implying c1 < 0. The exponent
of the first term is found to be

b1 = −
2(1 + α)

[
1 − α +

√
α(α− 1)

]
α− 1 , (3.43)

whereas the second coefficient is

c2 = −α

2

{
2
√
α(α− 1) − α

[
α + 1 −

√
α(α− 1)

]}−1
. (3.44)

In the r → 0 limit, compactness has a divergence whose strength (i.e. the power of
the term that diverges faster in the r → 0 limit) is modulated by the value of the
regulator. For large α we essentially recover the behavior from the classical Reissner-
Nordstöm geometry, as expected for a fully suppressed CRP-RSET, whereas in the
α → 1 limit, b1 diverges. Although for α = 1 the CRP-RSET is itself regular, the
feedback mechanism provided by the semiclassical equations moves the Polyakov
divergence to r = 0. An already singular geometry is being coated by a cloud
of negative mass coming from vacuum polarization which nourishes from this
singularity. Hence, it is expected that the leading divergence in C becomes more
than polynomially strong in the α → 1 limit. In consequence, and as long as
α < 1

2

(
1 +

√
17
)
, the first term in (3.42) dominates over the second one. For large

α, however, the electromagnetic charge carries the leading-order divergence.
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There exists an intermediate situation where both terms in (3.42) diverge at the
same rate as r → 0. This occurs for the exact value α = 1

2

(
1 +

√
17
)
, for which

b1 = −2. Replacing this value of the regulator α in (3.41) and integrating yields

C =

(
1 +

√
17
)
Q2

4r2 log r + O
(
r−2

)
. (3.45)

This solution acts as the separatrix between two distinct behaviors of the com-
pactness function at the curvature singularity. It describes a situation where the
divergent accumulation of vacuum polarization becomes comparable to that of
the mass contribution coming from the singular electromagnetic source. Then,
both contributions intertwine and give rise to a dominant divergence in C that
depends on Q times a logarithmic contribution. It is somewhat remarkable that a
particular regularization prescription for the RSET in the vicinity of r = 0 is capable
to enhance the strength of a singularity that depends on the classical SET, given
that the sole interaction between the quantum and classical sources is through the
spacetime geometry, as both sources are conserved independently.

In summary, this section has illustrated that the over-charged regime, which
guarantees the presence of a naked singularity, shows a hierarchy of divergent
behaviors depending on how we adjust the regulator. For small α, the dominant
contribution to the compactness comes from the backreaction of vacuum polar-
ization on the vicinity of the singularity. However, if the CRP-RSET is sufficiently
dampened, the contribution coming from the singular charge-source giving rise
to the electromagnetic field is uncovered. In between both regimes there exists a
separatrix solution where the dominant divergence becomes a mix of quantum and
classical contributions.

3.5 Quasi-extremal regime
In between both of the aforementioned regimes (asymmetric wormholes and naked
singularities) there exists a single separatrix solution for which ψ diverges at
precisely rdiv, reminiscent of the classical extremal BH. In the present section we
will characterize this separatrix.

3.5.1 Geometry around the quasi-extremal horizon
The separatrix solution corresponds to the case in which the divergence in ψ takes
place at the same radius where R2 diverges, i.e. at r = rdiv. Furthermore, it can be
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checked that this divergence in ψ occurs at the same pace as R2 blows up, that is,
as (r − rdiv)−1. Take a behavior of the form

ψ = 1
λ(r − rdiv)γ

, with γ > 0. (3.46)

Now, taking the limit r → rdiv in (3.10) reveals that the coefficient A3 vanishes as
A3 ∝ (r− rdiv). This can be straightforwardly checked by factorizing the numerator
of A3 (3.10), which is a polynomial of sixth degree for the radial coordinate
with one root equal to rdiv (3.33). Assuming the profile (3.46), the following
approximate relation is derived from (3.10):

−γ

λ
(r−rdiv)−γ−1 = B

λ3 (r−rdiv)−3γ+1+A2(rdiv)
λ2 (r−rdiv)−2γ+O [(r − rdiv)]−γ , (3.47)

where B = A3/(r− rdiv)|r=rdiv has a finite value at r = rdiv. Consistency of the above
expression enforces γ = 1. Therefore, both the quadratic and cubic terms in ψ

from Eq. (3.10) enter at leading order in the r → rdiv limit. Simplifying terms, the
expression reduces to a quadratic equation for λ

λ2 + λA2(rdiv) +B = 0, (3.48)

Solutions of Eq. (3.48) return two values of λ, which we denote as λ± (the ± label
here denotes the sign of λ). We have found the explicit analytical expressions of
λ± by using the software Mathematica. They correspond to lengthy expressions
that are not illuminating, so we avoid writing them here. The coefficient λ− is
negative-valued and hence comes in conflict with our integration condition from
the asymptotic region. The profile (3.46) indicates the presence of an outer horizon
at r = rdiv, for which the redshift function vanishes at r = rdiv with a positive slope.
Hence, only the constant λ+ reproduces the required behavior of an outer horizon.
Therefore, we restrict to λ = λ+ in order to derive the approximate form of the
geometry in what follows.

Given that ψ = ϕ′ by definition, Eq. (3.46) with γ = 1 and λ = λ+ is integrated
to give to the redshift function

e2ϕ ≃ f0

∣∣∣∣r − rdiv

rdiv

∣∣∣∣2/λ+

, (3.49)

with f0 a positive integration constant. The power with which the redshift function
vanishes is modulated by λ+, which has an involved dependence on α, lP, and Q.
For example, Figure 3.5 shows a plot of the exponent 2/λ+ in terms of the charge
Q for various values of the regulator. We observe that, for Q ≫ lP, it goes as
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Fig. 3.5.: Plot of the exponent of the redshift function in terms of the charge Q
for various values of α (from bottom to top, α takes the values 1.01, 2, 4 and 10,
respectively). In the limit Q → 0 it goes to a constant value depending on α while
for large Q it approaches the extremal BH solution from below. The extremal
BH is only recovered for |Q| → ∞. For small Q the redshift function can have a
Schwarzschild-like horizon.

2
λ+

= 2 − 4l2P
Q2 + O

(
l4P
Q4

)
(3.50)

and the extremal Reissner-Nordström solution (for the r > M = Q geometric
patch) is strictly recovered only in the limit of lP = 0. On the other hand, the
compactness function can be derived from (3.9)

C = 1 − κ
(
r − rdiv

rdiv

)2
+ O

[
(r − rdiv)3

]
, (3.51)

with

k+ = λ2
+(r2

div −Q2)(r2
div + αl2P)

l2Pr
2
div

> 0. (3.52)

Given the classical limits of the quantities rdiv in Eq. (3.35) and λ+ in Eq. (3.50),
we obtain k+ = 1 for Q ≫ lP, thus reproducing the extremal Reissner-Nordström
compactness function.

The local form of the metric for r > rdiv in this solution is

ds2 ≃ −f0

∣∣∣∣r − rdiv

rdiv

∣∣∣∣2/λ+

dt2 +
[√

κ
(
r − rdiv

rdiv

)]−2
dr2 + r2dΩ2. (3.53)
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This metric has several interesting features that we turn to describe. One remarkable
characteristic is that the redshift function of the geometry vanishes with a smaller
exponent than in the classical extremal solution. The radial part of the geometry,
however, retains the quadratic dependence on r− rdiv. The affine distance between
the horizon rdiv and any point of the spacetime is infinite, as in ordinary extremal
spacetimes. This is why we refer to these solution as “quasi-extremal”.

Now we shall continue the solutions beyond rdiv. We could do that in a completely
symmetric fashion. However, this would imply, on the one hand, that the radius
would diminish inwards, but moreover, that the solution is no longer a proper
vacuum solution as it would correspond to having a null shell localized at the
horizon. On the contrary, we can select a solution with a negatively diverging
behavior at rdiv, ψ = −1/λ(rdiv − r), assuming now r < rdiv. This selection breaks
the symmetry of the construction and is more akin to a quantum version of the
extremal Reissner-Nordström solution. Consistency with the idea that now the
redshift function slope should be positive makes us to select again the λ+ value
inside the horizon. Thus, the final local form of the metric is (3.53), which is now
valid for a sufficiently small open interval containing r = rdiv.

In crossing the horizon, the solution jumps from the unconcealed branch to the
concealed branch of the semiclassical corrections. Recall that the concealed branch
has no well-defined classical limit. Therefore, the quasi-extremal solution cannot
be found by perturbatively deforming the extremal Reissner-Nordström BH. This
will be more clearly seen when analyzing the next order expansion of the metric
around r = rdiv (see right below). Thus, our self-consistent analyses reveal that
the presence of horizons enforces non-perturbative backreaction effects, typically
completely removing horizons, or at most maintaining an extremal-like horizon
with the special characteristics we are describing.

3.5.2 Singularity at the quasi-extremal horizon
A notable difference with the classical extremal BH resides in the value of the
exponent in the redshift function, 1/3 < 2/λ+ < 2 (in the α → 1 limit). The
necessary absolute value in (3.49) spoils the analyticity of the metric at the quasi-
extremal horizon rdiv. Despite this unusual behavior of the metric, curvature scalars
calculated from (3.53) that are quadratic in the Ricci and Riemann tensors are
finite and analytic at rdiv (although a different type of singularity is indeed present,
as seen in what follows). This somehow unexpected result comes from the fact that
any appearance of the function ψ in the Kretschmann scalar (1.10) is accompanied
by C factors which complete eliminate potential divergences.
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The finiteness and analyticity of curvature invariants at the quasi-extremal hori-
zon from the particular form of (3.53) describing the leading-order contributions
in an expansion around r = rdiv. The next order in the expansion introduces
additional terms in ψ which do not coincide with the classical solution in the lP → 0
limit. As mentioned above, this is another clear indication that the quasi-extremal
solution has an inherently quantum nature. Let us illustrate this point by assuming
ψ acquires an additional contribution:

ψ = 1
λ+(r − rdiv)

+ Ψ(r), (3.54)

where Ψ(r) is some function that either diverges slower than (r − rdiv)−1 or does
not diverge at all. Inserting this ansatz in (3.10), expanding in r − rdiv, and taking
into account the cancellation of the leading order contributions, we obtain the
expression

Ψ′ ≃
(
A1 + 2A2Ψ + 3BΨ

λ+

)[
1

λ+(r − rdiv)
+ Ψ

]
− Ψ2 [A2 −B (r − rdiv) Ψ] + A0,

(3.55)
where all coefficients are evaluated at r = rdiv.

Let us assume first that Ψ diverges slower than 1/(r − rdiv). This assumption
implies that the leading form of the previous equation is

Ψ′ =
(

2A2 + 3B
λ+

)
λ−1

+
Ψ

(r − rdiv)
, (3.56)

which after solving implies

Ψ ∝ 1
(r − rdiv)

, (3.57)

but this is against our starting assumption. Therefore Ψ must be finite at r = rdiv.

Hence, the only remaining possibility for the consistency of (3.55) is that Ψ
equals a constant that causes the vanishing of all divergent contributions. An extra
term linear in r − rdiv can be added to (3.54) so that the remaining constant terms
vanish as well. The solution ψ takes the form

ψ = 1
λ+(r − rdiv)

+ Ψ1 + Ψ2(r − rdiv) + O
[
(r − rdiv)2

]
,

Ψ1 = − A1λ+

3B + 2A2λ+
,

Ψ2 = 3BΨ2
1 + λ+ [A0 + (A1 + A2Ψ1) Ψ1]
−3B + λ+ (λ+ − 2A2)

λ+. (3.58)
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The coefficients Ψ1 and Ψ2 do not reduce to the extremal BH solution in the classical
limit. The main reason behind this is linked to how semiclassical modifications
extend the space of solutions of the classical theory. Indeed, the quasi-extremal
geometry emerges as a consequence of the terms cubic in ψ the RSET introduces in
(3.10) and, as a consequence, it does not connect with the extremal BH solution
when these cubic terms are suppressed. From a different perspective, as we already
mentioned, part of the support of the solution lies within the concealed branch,
which is intrinsically quantum and has no classical limit.

Replacing expression (3.58) in Eq. (3.9) we obtain the following approximate
expression for the compactness

1 − C = κ
(
r − rdiv

rdiv

)2 [
1 + κ1(r − rdiv) + O (r − rdiv)2

]
, (3.59)

with

κ1 = 2λ+

l2Prdiv

{
λ
[
r2

div + l2P (α + rdivΨ1)
]

− l2PQ
2

r2
div −Q2 + αl4P

r2
div + αl2P

}
> 0. (3.60)

The Kretschmann scalar (1.10) takes the form

K =
4
(
λ4

+ + κ2
)

(λ+rdiv)4

{
1 +κ

2rdiv (2 + λ+) (κ1 + 2λΨ1) − 4λ4
+

rdiv (λ4
+ + κ2) (r − rdiv)

+O
[
(r − rdiv)2

]}
. (3.61)

The constant term corresponds to the “bulk” contribution coming from the leading-
order contributions in the line element (3.53). Additional vanishing terms appear
in curvature invariants when subdominant contributions are taken into account.
The quasi-extremal metric is non-analytic at the horizon but, due to its particular
form, this behavior does not reflect on curvature invariants. Similar tendencies
were found in [192, 193] in the context of extremal BHs in dilatonic gravity coupled
to a quantum scalar field, in the sense that quantum-corrected extremal geometries
acquire non-analytic contributions at the corrected horizon.

There exists another notion of curvature singularity that does not rely on cur-
vature invariants. This is the definition given in [160] of non-scalar singularities:
those where the components of curvature tensors, when evaluated for a suitable
tetrad at the singular region, show divergences. By suitable we mean a particular
tetrad field which is parallel transported along a physical curve that approaches
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the singular point. For this particular case, we choose an orthonormal tetrad field
associated to an ingoing timelike geodesic path on the near-horizon metric (3.53)

eµ(0) = f−1
0

{∣∣∣∣ rdiv

r − rdiv

∣∣∣∣2/λ+

,
√
κf0

∣∣∣∣r − rdiv

rdiv

∣∣∣∣1−1/λ+

, 0, 0
}
. (3.62)

By computing a component of the Riemann curvature tensor contracted with this
tetrad, we obtain

R(0)θθ(0) = Rtθθte
t
(0)e

t
(0) +Rrθθre

r
(0)e

r
(0) = κ

f0

(
λ+ − 1
λ+

) ∣∣∣∣r − rdiv

rdiv

∣∣∣∣1−2/λ+

. (3.63)

Note that, for 1 < 2/λ+ < 2, this physical component of the curvature is singular.
We only recover a well-defined geometry in the classical limit λ+ → 1. For smaller
values of the exponent of the redshift function, divergences appear at higher-order
derivatives of the Riemann curvature tensor.

The extremal BH is more stable against quantum perturbations than sub-extremal
BHs. As we have seen, vacuum polarization eliminates these horizons replacing
them with a wormhole neck. The particular case of the extremal BH results in a
different kind of modification, in the sense that the horizon itself is preserved and
becomes a curvature singularity. An important difference between these two cases
can be understood by looking at the geometry beyond the quasi-extremal horizon.
The shape of the solution can be again univocally determined by arguments con-
cerning the roots and exact solutions. Figure 3.6 contains a plot of one of these
solutions, showing details of the inner part of the geometry. In the inner region
r < rdiv, the solution ψ, now living in the concealed branch, approaches −∞ from
below the root R2. Then, it crosses r = Q in a similar fashion as it occurred in
the over-charged regime (see Sec. 3.4), with the difference that the exact solution
intersected is now ψ+. After intersecting the exact solution, it meets the condition
for a branch jump given by the vanishing of G (3.14) and the solution switches to
the unconcealed branch back again. More explicitly, the branch jump requires that
the solution ψ takes the value

ψ(rjump) = −
r2

jump + αl2P
l2Prjump

. (3.64)

Once the transition to the unconcealed branch has occurred, the solution stays
within this branch, growing until it reaches a maximum and remaining trapped
between R2 and ψ−. The behavior of ψ near r = 0 is similar to the over-charged
regime. The main difference now is that the singularity is no longer naked, but
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Fig. 3.6.: Numerical plot of a quasi-extremal solution (black curve), with Q = 0.60,
M ≃ 0.59 and rdiv ≃ 0.62. The roots and exact solutions appear represented,
together with the vertical dashed and dotted lines denoting r = rdiv and r = Q,
respectively. The solution has a branch jump at the quasi-extremal horizon. In
the region r < rdiv, ψ intersects the exact solution ψ+ and the root R1 exactly at
r = Q (zoomed figure). Then, the solution jumps to the unconcealed branch at
rjump ≃ 0.58 and grows towards smaller r until crossing R2, reaching a maximum,
and starts decreasing confined between R2 and ψ−. The asymptotic behaviour near
r ≃ 0 is the same as for super-charged solutions.
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covered by a horizon at the end of an infinite wormhole neck. It is interesting
to recall that this is the separatrix between two solutions, both harboring naked
singularities, either at radial infinity in the wormhole regime, or at the radial origin
for the over-charged family. Beyond its neck, the wormhole geometry stays within
the concealed branch, extending towards an asymptotically singular region at
radial infinity. However, since the quasi-extremal solution does not have its radial
coordinate reverted but just elongated through an infinite spatial tube, it extends
towards r = 0. Therefore, below the (singular) quasi-extremal horizon there is
just a narrow region where the solution is non-perturbative, and the perturbative
regime is recovered once we go sufficiently deep beyond the horizon. Nevertheless,
this narrow band where quantum corrections become non-perturbative, as well as
the non-scalar singularity, persist under changes of the regulator, only disappearing
in the limit of infinite charge.

3.5.3 Viability of semiclassical extremal black holes
To end this Section we want to take the opportunity to revisit a long-standing
discussion (see Refs. [172, 194–196]) concerning the existence of extremal BHs
solutions in semiclassical gravity. Our analysis, in agreement with previous studies
on the topic [192, 193], indicates that regular static extremal BHs do not exist
when backreaction from the RSET is incorporated.

Despite the singular behavior (3.7) of the Polyakov RSET at extremal horizons,
numerical computations for the RSET of massless scalar fields show it is regular at
the extremal horizon [146]. Notwithstanding this, when the backreaction of this
RSET is incorporated, extremal BHs are not semiclassical solutions at first order in
perturbation theory [194] (as long as rH < |Q| [196]), indicating that semiclassical
corrections are incompatible with regular extremal horizons.

This striking discrepancy between the Polyakov RSET (which comes from a di-
mensional reduction) and the exact, numerical RSET (which is four dimensional)
at the extremal horizon has turned out to be a puzzling subject. Relevant contri-
butions to these matters were given in [197–199], where the authors proved that
the singularity in the Polyakov RSET at extremal horizons is only present in the
static case. For extremal BHs formed dynamically, the RSET acquires extra flux
terms that, at late times, cancel the singular contributions present in the static
situation. The four-dimensional RSET is already regular in the eternal situation,
thus we presume its dynamical counterpart will necessarily be regular as well.

There are two possibilities for explaining these discrepancies between RSETs.
One is that the singularity appearing in the s-wave sector of the theory captured
by dimensionally-reduced approach is compensated by singularities appearing in
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higher multipoles. The second possibility, and the more likely, is that the spherically
symmetric fluctuations captured through the Polyakov and s-wave approaches do
not correspond to the s-wave sector of the four-dimensional theory, thus the discrep-
ancy appears as a natural consequence of the dimensional reduction. At the classical
level, due to the separability of the wave equation, a four-dimensional scalar field
can be decomposed into an infinite number of (1 + 1)-dimensional fields, one for
each multipole value l. At the quantum level, however, this equivalence does not
hold when constructing regularized observables, as renormalization counterterms
do not obey such decomposition in spherical harmonics. This disagreement between
(1 + 1)-dimensional and (3 + 1)-dimensional quantities is called the dimensional
reduction anomaly [200, 201], and it is responsible for the discrepancies among
the different prescriptions for computing analytical RSET approximations. A proof
for this statement would require to examine whether the dimensional-reduction
anomaly associated with the s-wave mode compensates the divergence appearing
in the Polyakov RSET at the extremal horizon.

All in all, these investigations strongly suggest that extremal BHs are indeed
not consistent with semiclassical effects. Our work in particular is the first one to
address the self-consistent backreaction of the Polyakov RSET in a four-dimensional
extremal BH and it concludes that a non-scalar singularity is present at the quasi-
extremal horizon.

3.6 Conclusions
In this Chapter we have obtained the complete set of self-consistent electro-vacuum
solutions in the semiclassical approximation taking the CRP-RSET as describing
the quantum material content of the spacetime. For the Boulware vacuum state,
the only state compatible with staticity and asymptotic flatness, three families of
solutions have been obtained depending on the charge-to-mass ratio.

Under-charged solutions (Q < Qcrit) are wormhole geometries with essentially
the same features as the Schwarzschild geometry counterpart obtained in Chapter 2.
Increasing the charge makes the wormhole neck shrink, which nevertheless always
sits above the classical gravitational radius r+ = M +

√
M2 −Q2. On the other

side of the neck, there is a null naked singularity at finite affine distance from the
neck for all geodesics. Similarly to the Schwarzschild counterpart, the effect of the
regulator α is to extend the space of solutions to wormholes of arbitrarily small
size.

Over-charged solutions (Q > Qcrit) connect the asymptotically flat region with a
naked curvature singularity at r = 0. This geometry can be thought of as composed
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by a cloud of infinite negative mass coming from vacuum polarization, originated
from the backreaction of vacuum energy caused by the infinite charge density
of the electromagnetic field. Depending on the characteristics of the regulator,
the contribution of this cloud of vacuum polarization can be suppressed so that
the dominant singular contribution at short distances comes from the electromag-
netic SET. This geometry exemplifies a situation where slight modifications in the
regulator parameter α strongly change the features of the solution near r = 0.

Separating both regimes there exists a quasi-extremal geometry (Q = Qcrit)
reminiscent of the extremal BH. This solution proves that the Polyakov RSET is
incompatible with the existence of extremal horizons not formed dynamically. In
the quasi-extremal solution, quantum backreaction retains the horizon structure,
transforming it into a non-scalar curvature singularity [160]. The backreacted
geometry is thus more alike to its classical counterpart than geometries of the
wormhole kind, with the caveat that non-perturbative corrections still occur in a
narrow band behind the singular horizon.

In view of this, we conclude that semiclassical electro-vacuum static geometries
in the Boulware vacuum state are all singular. This singularity is located either
at radial infinity or at the radial origin, with the exception of the quasi-extremal
solution, which has a singularity at the horizon itself. Furthermore, in situations
where the growth of the CRP-RSET near r = 0 is not considerably suppressed, the
strength of the central singularity, present in both the under-charged and quasi-
extremal regimes, increases with respect to the classical case due to the divergent
accumulation of mass coming from the vacuum polarization of the scalar field.
Semiclassical gravity reveals that introducing a classical matter fluid is therefore a
requirement for constructing static geometries free from singularities. This is the
line that will be followed in the remaining of this thesis.
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Semiclassical
constant-density spheres

4

4.1 Introduction
Chapters 2 and 3 of this thesis have addressed the semiclassical counterparts to the
Schwarzschild and Reissner-Nordström spacetimes, respectively. When the ADM
mass is positive, these counterparts are singular asymmetric wormholes (excluding
the quasi-extremal case). Contrarily to classical situations, in which curvature
singularities are hidden behind the event horizon (thus, predictability of GR is not
jeopardized [118]), in semiclassical gravity event horizons get transformed into
curvature singularities themselves. Furthermore, their wormhole shape indicates
that they cannot result from the collapse of spherical distributions of matter [202],
being thus inappropriate to describe the end-state of gravitational collapse at
late times when the system has settled to a (quasi-)static configuration. These
characteristics motivate the following approaches: Either we drop the staticity
assumption and consider evaporating BHs [145], or we stick to strictly static
situations and introduce classical matter into the picture. The second approach is
the one we follow in this thesis, motivated by the fact, explained in Subsec. 1.3.1,
that the RSET can in principle violate the hypotheses behind Buchdahl’s theorem.
This occurs, in particular, by the introduction of negative energy densities in the
innermost regions of highly compact stars [166, 167], by inducing anisotropies in
the pressure, and by significantly modifying the Schwarzschild exterior, motivating
the search for horizonless ultracompact objects spheres that can describe the late-
time outcome of some collapse process [107].

In this Chapter and in Chapter 5 we address the problem of finding self-consistent
stellar solutions in semiclassical gravity with particular emphasis on stars that can
violate the Buchdahl limit. Due to the exploratory nature of this analysis, we
investigated exhaustively the whole space of stellar solutions to identify the most
significant deviations from their classical counterparts. This is the main focus of
this Chapter, where, as simplifying assumptions, we model the classical fluid as a
perfect fluid of constant density and isotropic pressures and the semiclassical source
via the CRP-RSET. We do not find strictly regular stars surpassing Buchdahl limit
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sourced by these stress-energy tensors but, remarkably, the space of solutions is
modified in a way that suggests that more elaborate regularizations for the RP-RSET
can result in entirely regular spacetimes. In Chapter 5 we explore these improved
regularization schemes. The reader can find a condensed summary and comparison
between the classical and semiclassical figures of equilibrium in Sec. 5.2.

Equipped with the CRP-RSET, our aim is to obtain the complete set of static,
spherically symmetric solutions to Einstein equations with a perfect fluid of con-
stant density in the semiclassical theory (the classical counterparts were found
by Lemaître [47], with the exception of one solution [203]). Constant-density
solutions depict inhomogeneous and isotropic cosmologies. Among all the cos-
mological spacetimes analyzed, we focus on stellar spacetimes: those which have
a surface that connects smoothly with the Schwarzschild vacuum solution. The
Schwarzschild stellar interior solution belongs to this latter family. We will obtain
self-consistent solutions for sub-Buchdahl (with compactness CR < 8/9, where
CR ≡ C(R) = 2M/R, R is the surface radius of the star and M ≡ m(R) the
Misner-Sharp mass at the surface [41–43]) as well as super-Buchdahl configura-
tions (8/9 < CR < 1). There will be situations in which the semiclassical solutions
here obtained are non-perturbative, in the sense that they do not have a classical
counterpart in the h̄ → 0 limit. Notice the slight change in notation with respect to
Chapters 2 and 3. In those Chapters, M corresponds to the ADM mass while in the
present Chapter and Ch. 5 it will denote the total mass of the star. The symbols CR

and C(R) are used equally throughout the rest of the thesis.
This Chapter is organized as follows. We will start in the next Section by

presenting a structured summary of the catalog of solutions that we have found.
Table 4.2 will allow a clear comparison between the classical and semiclassical
situations. We will also show Table 4.1 containing pictorial examples for each of the
situations. Before presenting these Tables, we will introduce an important aspect
of stellar equilibrium configurations that we have denoted criticality. Criticality
is related to the existence of constant offsets in the mass at r = 0 and will serve
as a classifying criterion. After that, the next Sections will provide the technical
details associated with each class of solutions, both classical and semiclassical.
Section 4.3 contains a review on the classical equations of stellar structure and
their constant-density solutions. We describe them here for easier comparison
with the semiclassical case. Later, in Section 4.4, we write down the CRP-RSET
and write down the self-consistent semiclassical equations. In Section 4.5 we turn
to the analysis of the solutions to the self-consistent semiclassical field equations,
the core of the Chapter, in which the notion of criticality is more subtle than in
the classical case. We have nevertheless been able to characterize completely the
space of solutions, obtaining numerical solutions of particular interest as well as
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analytical approximate expressions in certain regimes. Section 4.6 will provide
some conclusions and pave the road for the main result of this thesis, presented in
Chapter 5.

4.2 Classifying stellar spacetimes
This Section contains a summary of all the findings of this Chapter contextualized
and compared with the classical theory. We start by introducing the necessary
preliminaries to present our classification scheme.

The metric is described by the static and spherically symmetric line element (1.2).
For some of the geometries that we will discuss, it will be convenient to use a
different (proper) radial coordinate l defined through the relation

dr

dl
= ±

√
1 − C. (4.1)

The coordinate l can run along the entire real line, being particularly well adapted
to study the wormhole spacetimes presented in Chapters 2 and 2. In the coordi-
nates (4.1) the line element (1.2) becomes

ds2 = −e2ϕ(l)dt2 + dl2 + r(l)2dΩ2. (4.2)

Let us now consider two definitions that will describe part of the solutions
discussed in this Chapter:

* Strict stellar spacetime: A regular geometry in which matter extends from
r(l0) = 0, representing the center of the structure, up to a finite radius r(lS) = R.
The geometry for l > lS is the asymptotically flat Schwarzschild solution for
the classical field equations or its semiclassical counterpart for the semiclassical
equations (see Chapter 2). At the center l = l0 (we will set l0 = 0 in the following
without loss of generality), the geometry must be regular, in particular having finite
curvature scalars (1.10).

* ϵ-strict stellar spacetime: This is a possibly irregular spacetime (e.g. with diverg-
ing curvature invariants) but such that it does not show any signs of these possible
irregularities if analyzed only for radii larger than some rϵ = r(lϵ) ≪ R, rϵ > 0. By
this we specifically mean that the pressure and compactness are finite for l > lϵ,
and that

|C(rϵ)|< 2MP
r2
ϵ

l3P
= 2ρPr

2
ϵ . (4.3)

The radius rϵ represents an internal close-to-Planckian sphere and this last condition
implies that, whatever happens inside this core, its effective mass (either positive or
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negative) does not exceed Planckian values (MP). By construction, all strict stellar
spacetimes are ϵ-strict spacetimes for arbitrary values of ϵ down to ϵ = 0.

4.2.1 Classical equations of stellar equilibrium
The SET of a perfect fluid is given by

Tµν = (ρ+ p)uµuν + pgµν , (4.4)

where ρ and p are the energy density and the isotropic pressure of the fluid,
measured by an observer comoving with the static fluid with 4-velocity uµ. Possible
contributions to the curvature coming from shear stress, fluid viscosity, or heat
transfer are not included in this model. The tt and ll components of the resulting
classical Einstein equations are

−2r′′r + 1 − (r′)2 = 8πr2ρ, (4.5)

2rr′ϕ′ − 1 + (r′)2 = 8πr2p, (4.6)

where the ′ denotes derivatives with respect to the l coordinate. In addition,
covariant conservation of the SET provides the conservation equation

p′ = −(ρ+ p)ϕ′. (4.7)

If we interpret a relativistic star as a finite potential well, the continuity equation
(4.7) guarantees that any decrease of the redshift function with decreasing l, or
deepening of the potential, is compensated by a corresponding growth in the fluid
pressure.

Equations (4.5)-(4.7) form a closed system of differential equations as long as
we supply them with an equation of state that relates pressure and density. In the
present work we will consider the equation of state

ρ = const. (4.8)

This idealized incompressible fluid is insensitive to changes in pressure [53]. This
equation of state both allows for a simple treatment and uncovers interesting
phenomena. For instance, as the energy density is independent from pressure, it
allows for a better understanding of how the fluid arranges itself towards attaining
equilibrium. In addition, the density profile (4.8) saturates the hypothesis of
Buchdahl’s theorem [57, 70] stating that energy density must be non-increasing
towards the surface. With this equation of state we can see in a clear form the
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appearance of the Buchdahl compactness bound. Any surpassing of this bound in
the semiclassical theory will necessarily be produced by the backreaction of the
RSET.

We proceed by constructing the differential equation for the pressure known as
the TOV (Tolman-Oppenheimer-Volkoff) equation, obtained by replacing Eq. (4.7)
in Eq. (4.6),

p′ = −(ρ+ p) [8πr2p+ 1 − (r′)2]
2rr′ . (4.9)

According to this relation, pressure decreases monotonically outwards as long as
r′(l) > 0 and the numerator remains positive. Turning points for pressure can take
place only if the numerator vanishes. This can occur either because the Misner-
Sharp mass is negative [which implies r′ > 1 in virtue of (4.1)], or because pressure
reaches sufficiently negative values. These situations are realizable in the uniform
density case and will be explored in Section 4.3.

4.2.2 Criticality
Now we are going to introduce the notion of criticality in the context of the classical
solutions of stellar equilibrium, which will be later transported to the semiclassical
solutions. In general terms, the integration of equation (4.5) with the change of
variable (4.1) leads to

r′ = ±
√

1 − 8πr2ρ

3 − M0

r
. (4.10)

In this equation there is an integration constant M0, first noticed by Tolman and
Volkoff [55, 56], that accounts for a constant mass in the spacetime.

By inspection of Eq. (4.10) together with condition (4.52) it becomes evident
that having a nonzero M0 produces a curvature singularity at the radial origin. Let
us also highlight that, by replacing Eq. (4.10) inside the TOV equation (4.9), we
observe that the latter admits a complete analytical solution only in the M0 = 0
case (progress towards obtaining analytical solutions for nonzero M0 was made by
Wyman [204]), requiring numerical integration otherwise.

Endowing the spacetime with a constant mass M0 ̸= 0 generates a singularity at
r = 0, implying that the solution acquires features of vacuum geometries. These
are characterized by the mass being a constant parameter of the solution and not a
quantity identified with some well-defined physical source. In that sense, M0 can
be either positive or negative. A positive M0 indicates the presence of a positive,
singular mass, introducing a singularity at some r(ldiv) > 0 where the pressure
diverges. The final configuration resembles a BH surrounded by matter forced to
maintain hydrostatic equilibrium, causing the horizon to become singular. On the
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other hand, a negative M0 introduces a naked singularity in the spacetime, as in
the negative-mass Schwarzschild solution. The repulsion exerted by this negative
mass aids the fluid towards attaining equilibrium (pressure no longer diverges) but
at the cost of introducing a singularity at r = 0.

Analyzing how the total ADM mass relates to the matter content of the spacetime,
we can find a correspondence between three notions of mass: the ADM mass, the
mass coming from the fluid energy density ρ, and M0, given by

MADM = Mcloud +M0. (4.11)

Here, Mcloud equals the outcome of the integral

Mcloud =
∫ R

0
dr 4πr2ρ. (4.12)

When the ADM mass is equal to Mcloud we are in the critical situation. Consider
integrating the equations of stellar equilibrium from the surface of a star of radius
R and total mass M inwards. Since Mcloud is related to the energy density of the
sphere of fluid, the value of ρ that enforces M0 = 0 in (4.11) is given by

ρ = ρc-clas = 3C(R)
8πR2 (4.13)

and we will refer to this particular value as the critical density of the geometry. Any
deviation from the critical value ρ = ρc-clas results in a non-critical solution with a
nonzero M0 that accounts for the respective excess or defect in mass. Particularly,
an under-density (sub-critical case) translates into a positive M0 to account for the
missing mass in the right hand side of (4.12), while an over-density (super-critical
case) is balanced by a negative M0.

Non-critical constant-density solutions have been sparsely noticed in the litera-
ture. These were first analyzed by Oppenheimer and Volkoff [56, 58], while further
insight was provided by Wyman [204]. Since the equation for the compactness in
the classical equations (4.6) is readily integrable, relation (4.13) alone guarantees
regularity in the compactness. In the semiclassical theory, however, the equation
for the compactness is inextricably linked with that of the redshift function and
it is difficult to discern whether negative energies, which have the potential to
tame divergences in p, originate from semiclassical zero-point energies or from a
super-critical unbalance. When integrating the semiclassical equations from the
surface of a star of radius R and mass M inwards, it is not directly clear which
density parameter should be used for the integration. One has to (numerically)
explore different values of ρ and discern the precise value that separates two types
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of behavior. This is the reason behind the need to properly understand both critical
and non-critical configurations.

Let us adopt the following definition:
* Critical stellar spacetime: As we have discussed, when integrating inwards from

a radius R, with compactness C(R) < 1 and density ρ, the classical equation for
the compactness exhibits a qualitative change of behavior when going from ρ < ρc

to ρ > ρc, where ρc stands for a critical value of the density. In the classical case,
this follows straightforwardly from Eq. (4.10), as the integration constant M0 in
the latter equation changes sign. As we will show, we find equivalent changes in
behavior in the semiclassical case. We will call a configuration critical when it is
precisely the separatrix between two different behaviors of the compactness, which
in the classical case corresponds to a configuration with regular compactness and
M0 = 0. However, notice that our definition of criticality does not imply regularity.
On the one hand, the pressure can be divergent in some critical solution. On the
other hand, as we will show in the semiclassical case using the CRP-RSET, some
critical solutions lack a strictly regular compactness at the radial origin. All strict
stellar spacetimes are critical stellar configurations, but the converse is not true.
As we will show, around critical solutions the semiclassical equations uncover new
forms of ϵ-strict stellar spacetimes which are absent in classical gravity.

Finally, notice that criticality is a common property of stellar spacetimes and not
just an artifact of considering a constant-density equation of state. The observations
raised here are expected to apply to a broad class of equations of state even if, for
them, a relation such as Eq. (4.10), where M0 appears explicitly, cannot be derived.

4.2.3 The catalogue of solutions
The purpose of this Subsection is two-fold. First, it is aimed to serve as a distilled
guide for the content and main results of the rest of the Chapter; second, it is
devised as a map of the classical and semiclassical sets of stellar configurations
with constant density.

All the stellar solutions described in this Chapter are listed in the table of Fig-
ure 4.1. In addition, Figure 4.2 shows illustrative numerical plots that highlight the
overall features of the solutions described in the table in Fig. 4.1. These Figures
are organized as follows:

• First of all we distinguish between the classical and the semiclassical theory
based on the CRP-RSET. In both cases, we discriminate between sub-Buchdahl
and super-Buchdahl stars, depending on whether their surface compactness
is below or above the Buchdahl limit (given by the most compact strict stellar
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spacetime in each situation). In the classical case and for a star of constant
density, this limit corresponds to C(R) = 8/9. In the semiclassical theory there
is no clear notion of Buchdahl limit due to the introduction of a preferred
length scale lP. Now, the maximum C(R) allowed by strict stellar spacetimes
depends on the values of R, ρ, and the particular regularization scheme
adopted for the RP-RSET. In our semiclassical integrations, we do not impose
any additional restriction on how large the values of the classical pressure
can become as long as they are finite. We do this to make the discussion as
close as possible to the analysis of classical configurations approaching the
Buchdahl limit, in which the same logic is followed.

• Taking a stellar radius R and a surface compactness C(R) we can integrate
the equations of equilibrium inwards for different values of ρ. By changing
the parameter ρ one realizes that there is a gross change in behavior for the
compactness function when passing through a critical value ρc. Attending to
this value, we separate the different solutions as being sub-critical, critical, or
super-critical.

• For the semiclassical case, we distinguish three possibilities depending on
where the star surface connects with the vacuum solution. Since the vacuum
solution has a wormhole shape, the matter boundary can be located outside,
inside, or at the neck itself. The value of ρc changes strongly depending on the
region where the surface is located. Regardless, we find a similar distinction
between critical and non-critical geometries.

• For each of the cells in the classification scheme from Fig 4.1 (see Fig. 4.2
for the corresponding numerical solutions) we have added the asymptotic
behavior of the pressure p(l) and the compactness C(l) at the smallest value
of l reached by each solution. This corresponds to l = 0 for stars which extend
to r = 0, independently of whether the configuration is regular or singular
there, or to some l = ldiv > 0 for stars with a singularity at r(ldiv) > 0.

• Finally, the cells corresponding to strict stellar spacetimes have yellow back-
ground and those in which we find ϵ-strict stellar configurations have orange
background.

We will describe the different regimes shown in Fig. 4.1 in the remaining of the
Section.

Let us start this summary from the sub-critical sub-Buchdahl corner of the
classical solutions (Subsec. 4.3.3). These configurations are irregular. When the
density reaches the critical value ρc for a given compactness the geometry becomes
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Fig. 4.1.: This table shows the complete set of classical and semiclassical stellar
solutions of constant density. We distinguish whether the energy density ρ takes
values below, above, or at the critical value ρc; if the compactness is below or
above the Buchdahl limit; and, for semiclassical stars, if their surface is located
outside, inside, or at the neck itself. Each cell shows the behavior of pressure and
compactness at the smallest value of l in the domain of definition of the solution.
Light-green cells correspond to singular geometries. Yellow cells are strict stellar
spacetimes. The orange color percolating into the rightmost part of sub-critical
cells and the leftmost part of super-critical cells represents ϵ-strict spacetimes.
This family of spacetimes includes the subset of sub-critical solutions with small
wormhole necks. See Figure 4.2 for the respective numerical solutions for each cell
of the table.
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Fig. 4.2.: (Caption next page).
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Fig. 4.2.: (Previous page). This table shows numerical integrations for each of the
distinct regimes found for classical and semiclassical stellar solutions. The criteria
for classifying the solutions is the same followed in Fig. 4.1. The three regimes
(sub-critical, critical and super-critical) appear represented for sub-Buchdahl and
super-Buchdahl stars in both classical and semiclassical theories. In the semiclassical
case, distinction is made on whether the star surface is located outside, inside,
or at the neck of the vacuum wormhole geometry. In the semiclassical regime
we show ϵ-strict solutions in the cases where no regular critical solutions exist.
Each cell shows a numerical integration of a constant-density star. All but critical
sub-Buchdahl stars, which are integrated from l = 0 outwards, are integrated
from the surface lS = R = 2 inwards until the center of spherical symmetry or a
singularity is reached. We stick to the following color criteria for the represented
functions throughout the rest of the Chapter: the shape function r(l) is represented
in green, the pressure p(l) in red, and the compactness function C(l) in blue. The
region where the classical fluid is present is filled in yellow for pictorial purposes.
Spacetime singularities are depicted by a vertical zigzag line and correspond in
every case with a divergent pressure. In super-Buchdahl super-critical plots the
pressure grows inwards outside the plot window (with no divergences), to just
come back inside the plot window when closer to the radial origin. Inside-the-neck
sub-Buchdahl stars have C(R) < 8/9 and their compactness function grows to 1
inside the structure, generating a local maximum in the shape function r(l) just
below the surface. The semiclassical critical profiles from the fourth row downwards
are pictorial representations of how the respective exact critical solutions would
look like, rather than complete numerical integrations. This is due to the numerical
instability of our numerical algorithm at the critical density. See Fig. 4.1 for the
asymptotic behaviors of the pressure and the compactness in each situation.
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a strict stellar spacetime (Subsec. 4.3.1). Going into the super-critical regime
(Subsec. 4.3.4), the compactness C(r) becomes irregular at the origin, diverging
to −∞. For a small window of densities just above the critical solution ρc we find
ϵ-strict stellar configurations.

Focusing now on the sub-critical super-Buchdahl cell we have again irregular
solutions (Subsec. 4.3.3). The difference with the sub-Buchdahl case is that when
reaching the critical density ρc, although the compactness function is well-behaved
at the radial origin, the pressure diverges before reaching the origin (a divergence
at the origin happens precisely in the Buchdahl limit; Subsec. 4.3.2). Going further
into the super-critical regime (Subsec. 4.3.4) we find solutions for which the
pressure is regular until the origin, but at the cost of making a highly irregular
compactness. ϵ-strict configurations are only found very close to criticality at the
Buchdahl limit or below it.

Turning now to the semiclassical counterparts, the Schwarzschild vacuum geom-
etry is drastically modified by semiclassical corrections in the Boulware vacuum
state, becoming an asymmetric wormhole (see Chapter 2 and Fig. 2.2 for a detailed
plot of the region around the neck). This leaves three distinct regions (outside,
inside, or at the wormhole neck itself) in which to match the vacuum geometry
with the surface of a star.

Let us start the route from the sub-critical, sub-Buchdahl, outside-the-neck
configurations. These are irregular configurations that display characteristics from
vacuum solutions, i.e. they are singular wormhole-like configurations (Subsec.
4.5.2). For the critical case we find strict stellar spacetimes (Subsec. 4.5.1) that
amount to perturbative corrections of the classical regular stars. On the other side,
super-critical configurations display naked singularities, with negative divergent
compactness and Misner-Sharp mass at r = 0 (Subsec. 4.5.3).

Passing to the sub-critical super-Buchdahl case, we again find wormhole-like
configurations (Subsec. 4.5.2). In the same manner, the super-critical regime
exhibits naked singularities (Subsec. 4.5.3). We find that the critical solution is
one with a special profile of divergent pressure and compactness, which appears
resilient to quantum corrections (Subsec. 4.5.4). An important difference between
the classical and semiclassical super-Buchdahl critical configurations is that, in the
latter case, close to criticality we find an ample window of ϵ-strict configurations.
In Fig. 4.2, for the cases where no regular critical configuration exists, we have
shown an example of these ϵ-strict configurations instead.

Stars matched at the neck, analyzed in Subsec. 4.5.7, show as well three distinct
regimes (sub-critical, super-critical and critical) which depict asymptotic behaviors
similar to those of the super-Buchdahl outside-the-neck case, depending on whether
the density is above or below the critical value ρc. Additionally, we find that the
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surface of the star displays different properties depending on the value of ρ. For
sufficiently small ρ, the surface of the star corresponds to a minimal surface for
the shape function r, or neck. By increasing ρ, this bouncing surface for the shape
function gets pushed towards the interior of the star, disappearing eventually for
ρ ≥ ρc.

The situation for stars inside the neck (Subsec. 4.5.6) can be summarized saying
that there are again three regimes, sub-critical, super-critical, and critical, with
the same asymptotic behaviors seen for the super-Buchdahl, outside-the-neck
case. The only caveat is that the critical density ρc increases as the surface of
the star R is moved away from the neck, becoming trans-Planckian not far from
it (in proper distance, see Fig. 4.18 below). Therefore, reaching criticality for
these configurations requires extremely dense classical fluids that compensate the
negative masses generated by vacuum polarization [176].

4.3 Classical solutions
Next we turn to the analysis of the set of solutions to the classical equations of
stellar equilibrium for a perfect fluid of constant density. Throughout this Section
we will describe the solutions from the first two rows in Figs. 4.1 and 4.2. We
have found that it is more convenient to start the analyses by considering how the
equations of equilibrium integrate outwards starting from a regular radial origin.

4.3.1 Solutions with a regular center
The first set of solutions we are going to describe can be seen as part of inho-
mogeneous cosmologies. In this context, they were analyzed by Lemaître [47]
and later by Tolman [55]. Here we shall recall these analyses using our notation
and perspective. Some of these solutions can be used to build interiors of stellar
spacetimes. The suitable interiors retrieved in this first analysis are all critical, by
construction, and result in sub-Buchdahl configurations (the only ones that are
regular in the classical theory).

First, integrating Eq. (4.10) returns

r = sin (Al)
A

, (4.14)

with A =
√

8πρ/3. The periodic character of the shape function r(l) is consistent
with a cosmological interpretation. The shape function extends between two zeroes
which correspond to two poles of the inhomogeneous cosmologies.
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Fig. 4.3.: Plot of a positive pressure solution to the equations of structure. The
above and below green lines represent the shape function r(l) and the region in
between both curves has been colored for pictorial purposes. The blue line denotes
the compactness function of the geometry C(l), which reaches 1 at the radial
maximum and vanishes at the poles. The red curve is the pressure of the solution
(in units of ρ) for a star with ρ = 0.03 and p(0) = 2ρ. Notice that the region of
positive pressure corresponds to a relativistic star with C(lS) ≃ 0.82. This solution
has an enormous density compared to that of astrophysical objects, but the physics
of classical critical solutions is scale-invariant.

With both ρ and r known, integration of the TOV equation (4.9) is straightfor-
ward and yields

p = ρ
{2

3 [1 −B0 cos (Al)]−1 − 1
}
. (4.15)

Let us now extract the physical content of the above expression. The central
pressure p(0) is determined by the integration constant B0. For any B0 ̸= 1 pressure
is finite at l = 0, so these kind of geometries (those with regular center), will be
analyzed first. By varying the value of p at the origin, we can divide cosmological
solutions in the following three families, with their respective separatrices:

1. p(0) > −ρ/3. This guarantees that both the strong energy condition (SEC)
and the null energy condition (NEC) hold at l = 0. As Fig. 4.3 shows,
the resulting cosmologies are regular everywhere and have a pressure that
decreases between the two poles. Solutions with p(0) > 0 reach a surface of
zero pressure at lS where the geometry can be matched with the Schwarzschild
vacuum geometry, and thus resemble strict stellar spacetimes (Fig. 4.3). On
the other hand, solutions with p(0) < 0 lack such surface and therefore
resemble inhomogeneous cosmologies.

84 Chapter 4

Semiclassical constant-density spheres



2. −ρ < p(0) < −ρ/3. In this case the SEC is violated at l = 0 while the NEC
holds. Solutions with p(0) ∈ − (ρ/3, 2ρ/3) correspond to the mirror-reflected
version of type 1 profiles. Can one construct a regular star whose interior
corresponds to this left-hand-side pole of the solution? In these interior
solutions pressure decreases inwards from its zero value at the star’s surface,
becoming all the way negative. This interior geometry can be matched with
a patch of the Schwarzschild vacuum spacetime. However, in this case the
shape function r(l) is initially increasing (at the surface) towards the interior,
so one cannot smoothly connect (without introducing a shell of matter) this
interior with a patch of Schwarzschild that extends towards the asymptotically
flat region; one could only connect this interior with a Schwarzschild patch
covering r < R. Therefore, these solutions do not serve to construct regular
stars. Decreasing the central pressure below p(0) < −2ρ/3 maintains the
previous characteristics: pressure increases outwards and crosses zero at a
finite radius. The difference with the previous situation is that if one now
continued the internal solution beyond the surface of vanishing pressure, one
would uncover a curvature singularity at

ldiv = arccos (1/B0)
A

. (4.16)

This singularity has an infinite positive pressure. The right-hand part of these
geometries (that is, beyond the surface of zero pressure outwards) cannot be
used to construct regular hydrostatic equilibrium configurations. As we will
see shortly these solutions appear when integrating critical super-Buchdahl
stellar configurations from the stellar surface inwards.

3. p(0) < −ρ. This guarantees SEC and NEC are violated. Pressure decreases
from the radial origin outwards, eventually diverging towards −∞ at (4.16).
Later we will briefly comment on these solutions, since they describe the
interior patch of the gravastar model [91].

For the sake of completeness, let us comment briefly about the separatrices
between families 1-3. The case between the first and second type of solutions
corresponds to Einstein’s static and homogeneous universe, where pressure is
constant [by virtue of (4.20) below and (4.7)] and equal to −ρ/3. The instability
of this model has a long and interesting story (see for example [205]).

The remaining separatrix solution saturates the null energy condition with
constant pressure equal to −ρ. Addition of Eqs. (4.5) and (4.6) leads to the relation

r′′

r′ = ϕ′, (4.17)
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which results in
e2ϕ = [cos (Al)]2 , (4.18)

presenting a horizon at l = π/2A. This metric corresponds to de Sitter spacetime in
static coordinates

ds2 = − [cos (Al)]2 dt2 + dl2 + [sin (Al)]2

A2 dΩ2, (4.19)

revealing the existence of a cosmological horizon at r(lH) = A−1.

4.3.2 Critical Buchdahl and super-Buchdahl solutions
Note that taking B0 = 1 in (4.16) makes the pressure diverge at l = 0. The redshift
function, obtained from integrating Eq. (4.6),

e2ϕ = e2ϕ0 [B0 cos (Al) − 1]2 , (4.20)

vanishes at l = 0 for B0 = 1. Here, ϕ0 is an irrelevant integration constant that
amounts to a rescaling of t. For this particular B0, the pressure (4.15) is found to
diverge at the origin as

p ≃ 1
2πl2 . (4.21)

Since this solution does not have a regular center, we appeal to integrations from
the star surface lS to explore this and other similar cases. For that purpose, one
needs to impose the following boundary conditions at the surface of the star:

p (lS) = 0, r (lS) = R, (4.22)

ϕ (lS) = 1
2 ln [1 − C (lS)] , r′ (lS) =

√
1 − C (lS),

with C(lS) = 2MADM/R. With these boundary conditions, solution (4.21) corre-
sponds to a surface compactness

C(lS) = 1 − [r′ (lS)]2 = 8/9. (4.23)

This result denotes the maximum compactness of regular perfect fluid spheres
in hydrostatic equilibrium, or Buchdahl limit [57]. Stellar configurations that
have isotropic pressures, have an outwards non-increasing ρ, and whose exterior
geometry is the Schwarzschild vacuum geometry are subject to the upper compact-
ness bound (4.23). More compact (super-Buchdahl) stars will have the surface of
infinite pressure gradually moved from r = 0 towards r = R. Beyond this curvature
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singularity we can find another geometric patch extending up to r = 0, in which p
takes values below −ρ. Matching these two solutions through a regularizing shell
in the limit C(lS) → 1 displays a gravastar geometry [206].

This ends our discussion concerning classical critical solutions, which will guide
us in the classification of their semiclassical counterparts. In the following we turn
to the analysis of non-critical configurations, which lack a regular center from the
start.

4.3.3 Sub-critical solutions

The analysis of solutions out of criticality is interesting because in the semiclassical
case it is not directly clear how to associate a failure in criticality to the value of
the mass at the origin. An understanding of the role played by non-criticality at the
classical level will therefore allow us to distinguish between critical and non-critical
solutions in the semiclassical case.

Let us start by describing what is seen in the inwards integration of a sub-critical
star. Reference to these solutions can be found in [56, 207]. An example of a
sub-critical sub-Buchdahl star is shown in Fig. 4.4. By imposing ρ < ρc-clas the
geometry acquires a positive constant mass M0. The gravitational effect of this
mass is perceived by the fluid, which responds to it with an increase in pressure.
This increase happens more quickly than in the critical case as to compensate
for the extra gravitational pull induced by M0. As we deepen through the star,
compactness passes through a turning point and starts increasing as the radius
decreases. Not far below this turning point, the pressure diverges and the geometry
has a curvature singularity, as seen in Fig. 4.4.

We obtain the form of this curvature singularity by solving the continuity equation
for the perfect fluid of constant density (4.7)

p = −ρ+ κe−ϕ(l), (4.24)

where κ is a constant of integration with dimensions of inverse of length squared.
This expression ensures that the pressure is infinite at any surface of zero red-
shift function, i.e. when ϕ(ldiv) → −∞. Assuming that such surface exists, we
approximate the TOV equation at leading order in the pressure as

p′(l) = − 4πrp2 + O(p)√
1 − 8πr2ρ

3 − M0

r

. (4.25)
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Fig. 4.4.: Plot of a sub-critical, sub-Buchdahl star with R = 2, C(R) = 0.8 and
ρ = 0.84ρc-clas. Green lines represent the shape function r(l), while red and blue
lines denote the functions p(l) and C(l), respectively. The presence of a positive
constant mass M0 ≃ 0.07 generates a (singular) event horizon at l ≃ 7.25.

Take into account that the pressure diverges while the denominator in (4.25) is
still non-vanishing. In this regime, we can assume the following behavior for the
pressure

p ≃ p+

(l − ldiv)n
, p+ > 0, n > 0. (4.26)

Replacing this ansatz in Eq. (4.25) and solving for p+ and n we find

p ≃ (l − ldiv)−1

√
1 − 8πr2

divρ/3 −M0/rdiv

4πrdiv
, (4.27)

where rdiv = r(ldiv). The pressure diverges positively at the surface l = ldiv, whose
location depends on the boundary conditions of the star and, consequently, on M0.
By decreasing ρ (increasing M0), this divergence approaches the surface of the
star. Equivalently, the more super-Buchdahl the star is, the further the pressure
divergence moves towards the surface of the star. Recall that, for the super-
Buchdahl critical case, we know the position of the infinite pressure divergence
in terms of boundary conditions. This explicit expression is lost in the sub-critical
situation, since we lack a complete analytic solution.

The resulting geometry resembles a BH surrounded by matter forced to maintain
equilibrium, causing a runaway in the pressure of the fluid. This divergence in the
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pressure takes place at the same position at which the redshift function, obtained
from solving Eq. (4.24) in the l → ldiv, vanishes:

e2ϕ ≃
(
l − ldiv

ldiv

)2

. (4.28)

Since this geometry is not vacuum but filled with a perfect fluid, there is a curva-
ture singularity at the horizon. This is foreseeable by recalling that horizons are
incompatible with matter fluids in hydrostatic equilibrium.

4.3.4 Super-critical solutions

Now, we turn to the analysis of super-critical configurations, where we distinguish
between sub- and super-Buchdahl stars.

Recall [Subsec. 4.3.3 or Eq. (4.10)] that in the sub-Buchdahl case, the effect of
going super-critical (i.e. taking ρ > ρc-clas) is to add a negative mass M0 to the
spacetime. The repulsive effect that this negative mass exerts on the fluid makes
pressure reach a maximum value at some r > 0. This can be viewed in the vanishing
of the numerator of Eq. (4.9) when r′ [as of Eq. (4.10)] becomes large enough
as to compensate for the positive 1 + 8πr2p term. In this case, the perfect fluid
extends up to r = 0, where a naked curvature singularity resides. Figure 4.5 shows
examples of pressure profiles for several super-critical configurations. The growth
of the pressure is dampened as the solutions are made increasingly super-critical.
Integrating (4.10) in the r → 0 limit leads to the relation

r ≃

3
√

|M0|
2 l

2/3

. (4.29)

Therefore, there exists a neighborhood of r = 0 in which the geometry is well-
approximated by the Schwarzschild vacuum solution with negative ADM mass.

The TOV equation (4.9) can be integrated in terms of analytic functions by
making the coordinate change (4.1) and taking the limits r → 0 and C → −∞,
which yields

p′ ≃ (ρ+ p)
2r . (4.30)

Integrating and replacing (4.29) we obtain

p ≃ −ρ+M−2
0

(
l

|M0|

)1/3

. (4.31)
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Fig. 4.5.: Plot of the pressure profile for a super-critical, super-Buchdahl star with
C(R) = 0.96. The curves denote the pressure p(r) (in units of ρ) for the values
of the energy density (from right to left) ρ/ρc-clas = 1, 1.8, 2, 2.13, 2.26, 2.4 and 3.
The dashed curve (ρ/ρc-clas ∼ 2.13) corresponds to a separatrix for which pressure
diverges at r = 0. Note how the divergence in pressure of super-Buchdahl stars
moves inwards as the density increases. An increase of the negative mass M0 finally
regularizes the pressure, which tends to the value p = −ρ at the origin.

In the presence of a constant negative mass, the pressure acquires the equation of
state of vacuum energy in the limit r → 0. Note that this finite value for the central
pressure is reached with infinite derivative, which results in the redshift function
being divergent in the l → 0 limit as

e2ϕ ≃
(

|M0|
l

)2/3

. (4.32)

In some situations, semiclassical contributions can appear as a cloud of negative
mass in the spacetime. The pressure-regularizing effect of this cloud is similar to
that of super-criticality. We will revisit this discussion in the analysis of semiclassical
solutions. Here, given a super-Buchdahl star, gradually increasing ρ (decreasing
M0) displaces the pressure divergence towards the radial origin, eventually making
pressure finite for densities above some ρ = ρreg-p. These aspects apply to more
generic equations of state as well [208–211]. This value of the density constitutes
an infinite-pressure separatrix between super-critical solutions singular and regular
in pressure (see the dashed line in Fig. 4.5). Hence, solutions with ρ > ρreg-p

will be regular in the pressure (although the pressure gradient diverges at l = 0)
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but irregular in the compactness. The value of ρreg-p increases with the surface
compactness of the star, eventually diverging towards +∞ in the C(lS) → 1 limit.
The particular features of this separatrix solution are analyzed right below.

4.3.5 Classical infinite pressure separatrix
The separatrix solution lies between super-critical configurations irregular and
regular in the pressure, although we reserve a separate Subsection for them to
highlight their relevance. Consider a super-critical solution extending to r(0) = 0.
Since M0 < 0, the solution for the shape function r(l) around the origin always
obeys Eq. (4.29), and the pressure function can only follow two paths: either it
goes to a constant value at r = 0, which has to be exactly −ρ, in virtue of (4.31),
or it diverges necessarily towards positive infinity at r = 0. The separatrix solution
corresponds to this last possibility.

To derive the precise form of the divergence in pressure, we expand the TOV
equation (4.9) in the l → 0 limit under the assumption that p ≫ ρ, yielding

p′ ≃ −4πrp2

r′ . (4.33)

Now, assuming the following ansatz for the pressure

p = p+

ln
, n > 0, (4.34)

where p+ is a positive dimensionless constant, and replacing Eq. (4.29) and this
ansatz in Eq. (4.33), we find

n = 2, p+ = 1/3π. (4.35)

Therefore, the pressure diverges, in the l → 0 limit, with the same power of l as in
the separatrix (4.21) between sub-Buchdahl and super-Buchdahl configurations.
However, the way the areal radius of spheres r(l) approaches the origin l = 0 differs
in both cases. In terms of the shape function (4.29), solution (4.35) takes the form

p ≃ 3|M0|
4πr3 , (4.36)

revealing a direct dependence in the constant mass M0. A pictorial representation
of this separatrix is shown in Fig. 4.5. On the other hand, the separatrix described
around Eq. (4.21) satisfies

p ≃ 1
2πr2 , (4.37)
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revealing that the leading behavior in the pressure is independent of M0 since this
separatrix corresponds to a critical configuration.

The separatrix solution (4.36) was analyzed in [56, 204] (see [212] for a com-
pelling physical interpretation) and is particularly interesting because semiclassical
corrections deform this solution into a separatrix for the compactness as well (i.e. a
critical configuration). The relevance of this separatrix will be clear when analyzing
the corresponding semiclassical situation.

4.4 Semiclassical stellar equilibrium
In the following we are going to obtain the semiclassical self-consistent counterparts
to the previous classical set of solutions. We introduce, as a source of curvature,
the expectation value of the stress-energy tensor of a single massless, minimally
coupled scalar field modeled through the CRP-RSET used in previous Chapters.
This choice is motivated by the fact that the usual Polyakov approximation is plainly
incompatible with regular stellar configurations due to it being singular at r = 0. In
(t, l) coordinates the components of the CRP-RSET [taking (1.14) with the choice of
regulator (1.15)] in the Boulware state naturally adapted to stellar spacetimes are

⟨T̂tt⟩CRP = l2P
8π (r2 + αl2P)

[
(ϕ′)2 + 2ϕ′′

]
e2ϕ,

⟨T̂ll⟩CRP = − l2P
8π (r2 + αl2P)

(
ϕ′

r′

)2

,

⟨T̂θθ⟩CRP =⟨T̂φφ⟩CRP

sin2 θ
= − α (l2Prϕ′)2

8π (r2 + αl2P)2 . (4.38)

Let us now pass to the central part of the Chapter, the analysis of the internal
stellar solutions under the hypothesis of having a classical matter component with
a constant density ρ in addition to the semiclassical contribution.

4.4.1 Semiclassical equations of stellar interiors
The semiclassical field equations are obtained by plugging the CRP-RSET compo-
nents in Eq. (4.38) in Eq. (1.6),

−2r′′r + 1 − (r′)2 =8πr2ρ+ r2l2P
(r2 + αl2P)

[
(ϕ′)2 + 2ϕ′′

]
, (4.39)

2rr′ϕ′ − 1 + (r′)2 =8πr2p− r2l2P
(r2 + αl2P) (ϕ′)2

, (4.40)
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for the tt and ll components, respectively. The CRP-RSET is independently con-
served, and so is the classical SET. The system of equations is thus completed by
the equation of conservation of the classical matter (4.7) and the equation of state
of the uniform density fluid (4.8).

We can construct the semiclassical version of the TOV equation [114] by combin-
ing Eqs. (4.40) and (4.7)

p′ = (ρ+ p) r′ (r2 + αl2P)
l2Pr

1 ±

√√√√1 +
(
lP
r′

)2 8πr2p+ 1 − (r′)2

r2 + αl2P

 . (4.41)

The semiclassical TOV equation is a quadratic polynomial for the gradient of the
pressure. Therefore, the two branches of solutions already present in vacuum
are retained in situations involving a classical perfect fluid. Hence, observations
regarding the nature of these branches made in Chapter 2 also apply to this
situation. Note that analytical solutions that describe ultra-compact horizonless
stars have been found [114] for the concealed branch by solving Eq. (4.41).

For convenience in the upcoming analysis, field equations (4.39)) and (4.40)
can be combined to construct a single differential equation that relates ϕ′′(l) to the
functions ϕ′(l), ρ(l), p(l) and r(l). When expressed in terms of the Schwarzschild
coordinates (t, r, θ, ϕ), for which the metric takes the form (1.2), we can use Picard-
Lindelöf theorem to constrain the form of the solutions, in a similar spirit to what
was done in vacuum and electrovacuum. The change of variable from l to r amounts
to the following replacements

r′(l) →
√

1 − C(r), ϕ′(l) → ψ(r)
√

1 − C(r), (4.42)

where ψ(r) ≡ ϕ′(r), the prime denoting now the derivative with respect to the
coordinate r. The resulting differential equation is written as

ψ′ =D
(
A0 + A1ψ + A2ψ

2 + A3ψ
3
)
, (4.43)
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where

A0 =4π (ρ+ 3p) ,

A1 =4πr
[
3 (ρ+ p) + 2l2P

r2 + αl2P
p

]
− 2
r
,

A2 =8πr2
[
ρ− p+ l2P(3p+ ρ)

2(r2 + αl2P) + l2Pr
2p

(r2 + αl2P)2

]
− 2l2P (r2/2 + αl2P)

(r2 + αl2P)2 − 2,

A3 = l2Pr

r2 + αl2P

{
4πr2

[
ρ− p+ 2l2Pr2p

(r2 + αl2P)2

]
− αl4P

(r2 + αl2P)2 − 1
}
,

D = r2 + αl2P
(1 + 8πr2p) [r2 + (α− 1)l2P] . (4.44)

The right-hand side of (4.43) is a third-order polynomial in ψ. Now, we can formally
solve Eq. (4.7) with the equation of state (4.8) to yield Eq. (4.24). In this way,
replacing Eq. (4.24) into Eq. (4.43) will result in an integro-differential equation
for the variable ψ (although this is not the way we are going to solve the system of
equations).

Eq. (4.43) can be expressed in the form

ψ′ = FSchw + G (ρ, p, ψ, r) (ψ − ψ−) (ψ − ψ+) . (4.45)

Here FSchw is the vacuum-portion of the right-hand side of Eq. (4.43) [i.e. Eq. (2.9)],
and

G =
4πl2Pr2

[
ρ (1 + rψ) + p

(
3 + r + 2l2Pr

r2+αl2P

)
ψ
]

[r2 + (α− 1)l2P] (1 + 8πr2p) . (4.46)

Finally, ψ± are the singular exact solutions examined in the vacuum case (2.10). In
view of (4.45), matter-dependent contributions vanish for ψ = ψ± in Eq. (4.45),
leaving only the vacuum equation, for which they are exact solutions. Finally, it
will be useful afterwards to notice that, in the regime p ≫ ρ, all the p-dependence
in Eq. (4.43) disappears, making it a first order differential equation for ψ.

4.4.2 Semiclassical criticality
The classical notion of criticality described in section 4.2.2 is greatly affected by
quantum corrections. The vacuum polarization of the scalar field generates a cloud
of mass that coats the spacetime, extending to infinity. The semiclassical equivalent
to relation (4.11) would now have Mcloud defined as

Mcloud =
∫ ∞

0
dr 4πr2 [Θ(R − r)ρ+ ρs] , (4.47)
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where Θ is the Heavyside step function and ρs = −⟨T̂ tt ⟩ denotes the semiclassical
energy density. In the vacuum portion of the spacetime, the only contribution
to Mcloud is semiclassical. It supplies a negative contribution in such a way that
the Misner-Sharp mass grows from its asymptotic ADM value as we approach
the surface of the object. Once inside the object, we have semiclassical as well as
classical contributions to the density. As in the classical case, the Misner-Sharp mass
can be ill-defined at the origin (recall that in the classical case this is exclusively
related to the possible presence of an M0 offset). The difference now is that the
Misner-Sharp mass can fail to approach zero at the origin by different intertwined
reasons. It might be that there is a mismatch between the internal mass and the
classical density due to the presence of a nonzero M0; it might also be that the
semiclassical density diverges at the origin; or it might be a combination of both.

As in the semiclassical case the equation for the compactness is intertwined with
that of the pressure: given a star radius and compactness, we ignore a priori which
value of ρ we should use to find a regular compactness at the radial origin (i.e. a
zero Misner-Sharp mass at the origin). As we will see, the situation is even more
complicated, as in some important cases there does not exist a value of ρ such
that the compactness at the origin vanishes. What we do find is that there always
exists a value ρc of ρ separating two rather different qualitative behaviors for the
compactness. Therefore, in general terms we will say that a configuration is critical
when its density is such that it represents a separatrix between these two regimes.

Having posed these difficulties and a definition of criticality, we now proceed to
analyze the semiclassical set of solutions. First, we will study configurations with a
regular origin, in the same spirit as we did in the classical analysis of cosmological
solutions. Solutions with different sorts of irregularities will be analyzed in detail
in the sections that follow.

4.5 Semiclassical stellar-like solutions
The introduction of the RSET as an additional source of curvature makes exploring
the space of stellar solutions of the semiclassical equations a more subtle task than
in the classical theory. This difficulty can be attributed, in part, to the new length
scale lP that makes the physics of solutions sensitive to the overall size of the star.
In this Section we address every solutions belonging to the semiclassical sector of
Figs. 4.1 and 4.2.

Considering stars whose surface is outside the neck, Figure 4.6 shows a pictorial
representation of an R ≫ lP slice of the space of solutions. We distinguish four
differentiated regions depending on whether the star is sub- or super-critical, and
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on whether its compactness surpasses Buchdahl limit or not. The central black dot
represents the most compact configuration that is regular in both compactness and
pressure. Here, we refer to this compactness bound as the Buchdahl bound for
semiclassical stars sourced by the specific regularization of the RP-RSET that we are
using. For this particular regularization, stars with large (stellar-like) radius and
mass show a Buchdahl limit that corresponds to a perturbative correction over the
classical compactness bound of C(R) = 8/9. From now on, we distinguish between
sub-Buchdahl or super-Buchdahl stars attending to this bound. This will be useful
to divide the space of solutions in different regions, as in Fig. 4.6, although this
definition has only an operational meaning, and cannot be directly identified as a
Buchdahl limit in semiclassical gravity. In particular, defining this limit, which may
exist or not, depends on the particular modeling of the semiclassical source. We
are interested in probing whether it is possible to obtain regular or quasi-regular
configurations largely surpassing the Buchdahl limit. Particularly, we will aim at the
rightmost portion of the diagram 4.6, or ultra-compact limit, where semiclassical
corrections meet the conditions to become comparable in magnitude to that of the
classical SET, thus potentially inducing significant departures from the classical
solutions. In what follows we will obtain the specific form of the solutions for all
four regions, together with the form of the separatrix solutions ρc.

We now turn to the analysis of integrations from the asymptotically flat region
towards the center of the star. This treatment allows to better probe how the
RSET acts in response to changes in the surface compactness and the classical
density parameter used in the integrations. The boundary conditions required at
the surface of the star follow from the classical ones (4.22), with an extra condition
for ϕ′ (note that we are using l as our radial coordinate for now),

p (lS) = 0, r (lS) = R, (4.48)

ϕ (lS) = ϕS, r′ (lS) = ∓
√

1 − C(R).

ϕ′ (lS) = R2 + αl2P
Rl2P


√√√√1 + R2

R2 + αl2P

C(R)
1 − C(R) ± 1


×
√

1 − C(R),

where C(R) is the value of the compactness at the surface of the star. Here, the ±
signs select the side of the wormhole where the surface of the star is located. We
choose the + sign in r′ and the − sign in ϕ′ for stars whose surface lies outside the
neck, and vice versa if the star surface is located inside the neck. Any other sign
combination is not compatible with a stellar spacetime.
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Fig. 4.6.: Pictorial representation of an R ≫ lP slice of the phase space of semi-
classical constant-density stars. The vertical and horizontal axes represent the
energy density and the surface compactness of stars. The curve ρc corresponds
to a separatrix solution. The vertical dotted line here denotes the Buchdahl limit,
in which the central black dot represents the most compact configuration strictly
regular in both pressure and compactness, or Buchdahl solution. We distinguish
four regions in the resulting figure: region I represents sub-critical sub-Buchdahl
stars, region II is for super-critical sub-Buchdahl, region III is for sub-critical super-
Buchdahl; and region IV represents super-critical super-Buchdahl stars. In the
sub-Buchdahl semiplane (left-hand side of the vertical dotted line), the separatrix
ρc corresponds to strict stellar spacetimes. For super-Buchdahl configurations this
separatrix correspond to non-regular solutions, but in its neighbourhood we find
quasi-regular configurations (i.e. ϵ-strict stellar configurations). The narrow orange
band that surrounds the ρc line denotes the ϵ-strict regime which spans through
regions I, II and III

4.5 Semiclassical stellar-like solutions 97



The above boundary conditions can be inserted in the semiclassical field equations
to study how the CRP-RSET behaves at the surface of stars in the C(R) → 1 limit.
Computing the RSET over the classical background of the Schwarzschild interior
solution causes that both the semiclassical energy density and pressure diverge
at the surface of the star R in the limit C(R) → 1. This divergence appears both
from the interior region of the star, where ρ is constant and positive, and from the
exterior, vacuum portion, where ρ = 0. This is so because this limit corresponds to
locating the surface on top of the event horizon, where the Boulware state is, by
definition, singular.

In a self-consistent approach, on the contrary, the RSET backreacts on the metric
and there is no horizon. Instead, we encounter a wormhole neck where the
RSET components are finite and have no trace of divergences. Starting from Eqs.
(4.39, 4.40), the CRP-RSET components at the surface of a star in the C(R) → 1
limit are

pr
s = ⟨T̂ ll ⟩CRP = − 1

8πR2 + O
(√

1 − C
)
,

pθs = ⟨T̂ θθ ⟩CRP = − αl2P
8πR2 (R2 + αl2P) + O

(√
1 − C

)
,

ρs = − ⟨T̂ tt ⟩CRP = − 1
8πR2 + ρ+ O

(√
1 − C

)
. (4.49)

Every component of the CRP-RSET is finite and negative at the surface (this is
independent of the regularization scheme for the RP-RSET as long as it reduces to
the Polyakov RSET at the surface of the star). In the ultracompact limit, the radial
pressure and the energy density are able to compensate their O(l2P) suppression,
becoming comparable to the classical SET components. The finite jump in ρ at the
surface of the fluid sphere contributes positively to the semiclassical energy density.
Consequently, the total energy density (the sum of classical and semiclassical
contributions) will be positive at the surface given that

ρ >
1

16πR2 . (4.50)

This result comes from a local analysis at the surface; the particular form of
the RP-RSET at the bulk depends on the specifics of the interior solution. More
elaborate approximations to the RSET for massless, minimally coupled fields (like
the AHS-RSET) are expected to extend these negative semiclassical contributions
to the stellar interior as well. For more realistic equations of state with vanishing
energy density at the surface, the complete SET (the sum of the classical and
quantum portions) violates all energy conditions at the surface of ultracompact
stars.
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Now, picture a numerical integration starting at the asymptotically flat region
with a positive ADM mass. While in vacuum, compactness increases monotonically
until the neck as in Fig. 2.2, and we can decide to locate the surface of the perfect
fluid either outside or inside it. At the surface, compactness and radius are fixed,
leaving the energy density ρ as the only free parameter. With the aim of constraining
the various possibilities embraced by the diagram in Fig. 4.6, we will first describe
the behavior of stars situated at regions I and III in the diagram (sub-critical regime)
and at regions II, IV (super-critical regime). Since stellar geometries should connect
with the vacuum solution in the ρ → 0 limit, we can always devise a star of any
compactness that belongs to the sub-critical regime. Similarly, given a star with any
C(R) < 1, the super-critical regime is explored by increasing ρ beyond the critical
density. This classification is valid for stars located either outside or inside the neck,
so we proceed by first investigating the former. Our results and acquired intuitions
will extend to the study of the latter situation as well.

4.5.1 Solutions with a regular center
From the complete set of solutions, we want to extract first those solutions which
are strict stellar configurations, i.e. which have a regular radial center. Recall
that these configurations correspond to the critical sub-Buchdahl solutions in Figs.
4.1 and 4.2. We proceed by performing numerical integrations from a regular
origin. The following boundary conditions must be imposed at r = 0 to integrate
Eqs. (4.7), (4.39) and (4.40),

r(0) = 0, ϕ(0) = ϕc, p(0) = pc

r′(0) = 1, ϕ′(0) = 0. (4.51)

Integrations from a regular origin share many features with their classical counter-
parts. Given that the choice of ϕc represents just a rescaling of time coordinate, the
full space of solutions with regular origin is determined by the two-parameter set
(ρ, pc).

Depending on the relative values of pc and ρ, three families of solutions are
found, the separatrices between them corresponding, as in the classical case, to
pc/ρ = −1/3 and pc/ρ = −1. In this Section we focus on the semiclassical equivalent
to the type 1 set of cosmological solutions, for which the null and strong energy
conditions hold at r = 0. A specific example has been plotted in Fig. 4.7 (see Fig.
4.8 for details on the RSET). Recall from Subsec. 4.3.1 that the positive-pressure
portion of type 1 solutions (i.e. those with pc, ρ > 0) corresponds to stellar
spacetimes, and so happens in the semiclassical theory. Furthermore, extending the
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Fig. 4.7.: Plot of the semiclassical counterpart of figure 4.3 with ρ = 0.03, pc = 2ρ
and α− 1 = 10−3. We have plotted the functions r(l), C(l) and p(l) (in units of ρ)
and they appear in green, blue and red, respectively. The right pole of the geometry
is shown in detail. Notice how the radial function has a minimal surface (vertical
dashed line) at l ∼ 6.23 and the geometry connects to a singular region (vertical
zigzag line) located at r → ∞ but at finite proper distance from l = 0.

perfect fluid beyond the surface of zero pressure allows to find the semiclassical
counterparts to the classical cosmological solutions. Here, by counterparts, we are
referring to the pair of classical and semiclassical solutions with the same ρ and pc.

Firstly, we are going to describe the characteristics of the solutions that we have
been able to find through numerical integrations. Unfortunately, this covers a quite
limited range of initial conditions. This is so because of the numerical precision
required to handle highly different scales. In the semiclassical approximation,
the scale of semiclassical corrections is suppressed by lP, and has to be resolved
with the scale of typical compact objects, of the order of kilometers. Thus, the
results described in the remaining of this thesis need to be extrapolated with
care to stars of astrophysical size. Still, we do not find a reason to believe that
(within the semiclassical equations analyzed here) the physics of solutions with
realistic parameter values is going to be radically different from the one detailed
in this work. Other authors considered semiclassical corrections to astrophysical-
sized stars [213–215] and found quantum corrections to be nearly negligible in
most scenarios. These results are consistent with what we find in regimes of low
compactness. Let us now describe the characteristics of the numerical solutions
and then what appropriate conclusions one can extract from them.

Figure 4.7 depicts the semiclassical counterpart to the classical cosmology from
Fig. 4.3, with ρ = 0.03 and pc = 2ρ. Restricting ourselves to the positive pressure
portion in Fig. 4.7, we observe that the RSET contributes positively to the mass of
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Fig. 4.8.: Plot of the RP-RSET components −⟨T̂ tt ⟩ (dark blue), ⟨T̂ ll ⟩ (magenta) and
⟨T̂ θθ ⟩ (cyan) for the cosmological solution solution with pc = 2ρ, ρ = 0.03 and
α− 1 = 10−3.

the star on average (see the purple curve in Figure 4.8). The spacetime of a regular
star that fulfillst the regularity conditions

e2ϕ(l) = e2ϕc + ϕ1l
2 + O

(
l3
)
, r(l) = l + rcl

3 + O
(
l4
)
, (4.52)

where ϕ1 and rc are constants. These conditions follow from the finiteness of the
Kretschmann scalar (1.10) at r = l = 0. If the star satisfies the SEC and NEC (hence
pressure is maximal at r = 0), the semiclassical energy density is positive at the
center,

ρs = ϕ1

4παe2ϕc
> 0, (4.53)

its magnitude being inversely proportional to the value of the regulator and to
the smallness of the redshift function at the center. Consequently we find that
these semiclassical stars —stars very small in astrophysical terms but still with non-
Planckian classical densities— are slightly less compact than their classical coun-
terparts, that is, the most compact strictly regular stars always satisfy C(R) < 8/9
if their density is not trans-Planckian. This is a consequence of the total energy
density (recall, the sum of classical and semiclassical parts) now increasing towards
the center, instead of being constant everywhere inside the star.

When these low-density stars are analyzed as integrations from the surface
inwards, we find that, for counterparts of the same R and C(R), semiclassical
critical stars happen to be less dense than classical critical stars, the remaining mass
being supplied by the RSET so that relation (4.11) is fulfilled. This under-density
then results in the classical fluid perceiving an amount of mass greater than the
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one generated by its own classical energy density and pressures, thus the pressure
p needs to be greater at the center than in the classical case to retain equilibrium.
Therefore, it becomes clear that the existence of semiclassical stars that surpass the
Buchdahl limit requires the appearance of negative interior semiclassical energies.

This result is counter-intuitive with respect to initial expectations that we had re-
garding semiclassical effects. Initially we expected the total semiclassical energetic
contribution to a star to be negative, as indicated by the large negative values of the
semiclassical density and pressures (4.49) at the surface of stars in the C → 1 limit.
Two observations are pertinent at this point. On the one hand, for sub-Buchdahl
stars, the negativity of the semiclassical contribution at the surface is very small,
being suppressed by lP. On the other hand, the behavior of the CRP-RSET at the
origin is predominant and the whole geometry strongly depends on it. In our
approach, the regulating scheme for the RP-RSET comes as a cutoff to its total
magnitude at the origin. Ideally, one would like to design a regulator bringing the
CRP-RSET close to the exact RSET [127] (although it has not been computed in
stellar spacetimes at the time of the writing of this thesis). This improved RSET
would be sensitive to the local characteristics of the geometry at the origin and
so able to properly capture the physics close to r = 0. For instance, for regular
sub-Buchdahl configurations one expects the RSET to be also small at the origin as
neither large curvatures nor horizons are present through the configuration. Notice
that from these arguments alone it is not straightforward to say anything about the
Buchdahl limit itself.

In any case, the analysis reported here is valuable in clearly illustrating the
limitations and strengths of the RP-RSET. It is reasonable to expect that the RP-
RSET should be a trustworthy approximation when the physics is driven by non-
local effects generated at values of the radius close to where a horizon would
have been classically located. On the contrary, it should not provide a reliable
approximation when the physics is driven by the values of the RSET at the origin.
This motivates our definition of ϵ-strict spacetimes as the solutions of relevance for
extracting robust conclusions, since the behavior of any solution close to the origin
is necessarily impacted by the choice of regulator. As the regular solutions described
in this section are a subset of the ϵ-strict spacetimes, it cannot be assumed that
these provide a typical description of the properties of this larger set of solutions.
Nevertheless, the existence of a set of non-regular but ϵ-strict solutions provides
further motivation to analyze alternative regularizations of the RP-RSET, exploiting
the available freedom characteristic of the Polyakov approximation which may be
sufficient to regularize these solutions as well. In Chapter 5 we address this problem
following a reductionist approach, deforming the regulator only within a sphere
around r = 0 in ways that guarantee the existence of regular super-Buchdahl stars.
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Cosmological solutions

For completeness, as we did in the classical case, let us mention some particularities
of the cosmological solutions, independently of whether they can be used as regular
stellar interiors or not. Coming back to Fig. 4.7, we observe that the resulting
“cosmology” never reaches its would-be right pole. This difference with respect to
the classical cosmology from Fig. 4.3 comes from the aforementioned semiclassical
contribution to Mcloud. In an outwards integration starting at the origin, the
semiclassical energy density giving rise to such contribution begins as positive and
changes sign eventually. In Fig. 4.8 we observe that the semiclassical energy density
grows as the origin r = 0 is approached, so that its weight at short distances is
very significant. The overall effect of this mass cloud is to prevent the cosmology
from being regular at its right pole. As this region is approached, the solution
shows a minimal surface or neck that connects to an asymptotic, negative mass
singularity, in the same fashion as in the vacuum solution, but now in presence of
perfect fluid with divergent pressure. As an additional comment note that, although
pressure has a second zero close to the neck, this surface does not connect with the
Schwarzschild vacuum geometry in a way that resembles a stellar spacetime.

Now, decreasing pc below zero results in configurations qualitatively similar to
Fig. 4.7, but with pressure everywhere negative in between the center and the
neck. Taking pc = −ρ/3 results in an Einstein static universe, which receives
no semiclassical corrections whatsoever: the RP-RSET is identically zero. Going
below this separatrix for p changes the sign of the pressure gradient outside the
radial origin, so that p increases outwards. For −2ρ/3 ≲ pc < −ρ/3 the obtained
cosmologies show no neck. Instead, a second r = 0 is reached in a singular manner.
This is so because the semiclassical contribution to the Misner-Sharp mass is now
negative overall. In consequence, the solution tends to the semiclassical counterpart
of the Schwarzschild geometry with negative asymptotic mass as the second r = 0
surface is approached.

Taking pc ≲ −2ρ/3 causes the neck to reappear, leading, once again, to an
asymptotic singularity at radial infinity. This singularity moves towards smaller l
as pc decreases. When the null energy condition is saturated, the divergence has
engulfed the radial maximum and the shape function increases monotonically from
r = 0 outwards. Henceforth, all configurations show a negative-pressure divergence
at r → +∞. Note that, owing to the curvature singularity at infinite r, these profiles
cannot resemble the interior portion of gravastar solutions anymore since their
shape functions do not match continuously with those of the positive-pressure
portion of super-Buchdahl stars.
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In summary, the semiclassical counterparts to these cosmological spacetimes
have acquired features from configurations with non-regular compactness profiles
as far as the behavior of the putative right-hand-side pole is concerned. This is due
to the imbalance in mass that originates from quantum corrections as encapsulated
in the CRP-RSET. Thus, solutions with non-regular compactness are important in
the study of cosmologies with one regular center. In the next sections we derive
the properties of solutions with irregular (non-critical) compactness in detail, using
the notion of semiclassical criticality to catalog them.

4.5.2 Sub-critical solutions
We begin by considering a star with compactness well below the Buchdahl limit and
density well below ρc (we are referring to the region I from Fig. 4.6). Taking ρ = 0
we obtain the semiclassical vacuum solution, which has a wormhole neck at some
radius rB ≳ 2MADM. By matching the vacuum solution with the surface of a constant-
density configuration with small, positive ρ at some R > rB, the interior geometry
resembles the vacuum solution (in the sense that it develops a wormhole neck in
the interior) but with a perfect fluid added to it. As we saw for the cosmology
from Fig. 4.7, wormhole necks can appear in the presence of matter. In this section
we prove this statement and obtain analytic approximations to this wormhole
geometry in certain regimes: around the neck and in the singular asymptotic region
deep inside the neck. The procedure followed to derive these expressions closely
resembles the one followed in Chapter 2 to derive the semiclassical Schwarzschild
counterpart. The effect of increasing ρ is to approach the critical solution ρc in the
space of solutions from Fig. 4.6, pushing the wormhole neck [i.e. a surface where
C(rB = 1)] to smaller values of r until it disappears for some ρc. Here, all solutions
showing a wormhole neck will be called sub-critical. From a critical value of the
density upwards (super-critical regime), we find that the geometries do not longer
have a neck, having their shape functions extended until r = 0. The separatrix
solution sits, obviously, between both regimes.

Let us consider in more detail the form of configurations belonging to the sub-
critical regime and whose surface is located outside the neck. The first three panels
in Fig. 4.10 describe configurations of this kind (see Fig. 4.11 for details on the
CRP-RSET components). In virtue of Eq. (4.41), pressure grows monotonically
inwards as long as the squared root term is greater than unity. Similarly to the
classical sub-critical case, the compactness function C, which decreases as we
move away from the surface inwards, encounters a minimum value somewhere
in the bulk of the configuration, triggering a runaway in the pressure. Restricting
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Fig. 4.9.: Numerical plot of the roots R1,R2 and R3 (cyan, purple and turquoise
curves, respectively) together with the exact solutions ψ± (orange and red dashed
curves) and an exact numerical solution in black (the neck radius rB is represented
by a vertical dashed line). The numerical solution corresponds to a sub-critical
super-Buchdahl star with R = 2, C(R) = 0.95 and ρ/ρc-clas ≃ 1.67 with its neck at
l ≃ 0.45 (vertical dashed line). These values have been chosen to aid visualization.
The upper portion of the exact solution lives in the unconcealed branch, whereas
the bottom portion lives in the concealed branch. The concealed part of the exact
solution gets confined between R3 and ψ+, converting towards the vacuum solution
asymptotically.

ourselves to the regime where the expression for the pressure in Eq. (4.24) can be
well approximated by

p ≃ κe−
∫
ψdr, (4.54)

we find that Eq. (4.43) is approximated by a first-order differential equation of the
form

ψ′ = H (ψ − R1) (ψ − R2) (ψ − R3) , (4.55)

where

H = − l2Pr

2 [r2 + l2P (α− 1)]

[
1 − 2l2Pr2

(r2 + αl2P)2

]
(4.56)

and {Ri}3
i=1 are three roots with involved and lengthy expressions that depend on

r, α and lP. Their approximate asymptotic forms for r ≫
√
αlP are

R1,2 ≃3 ±
√

33
4r , R3 ≃ −2r

l2P
. (4.57)
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These roots appear plotted in Fig. 4.9 alongside ψ± as defined in Eq. (2.10), and
an exact numerical solution belonging to the sub-critical regime. While R1, R2 are
monotonic, R3 reaches a maximum value precisely where the ψ+ exact solution
intersects R3. This observation will guide us in what follows since, as long as
Eq. (4.43) is well-approximated by a first-order differential equation, the shape of
the solution ψ is determined by ψ± and {Ri}3

i=1.

The approximate expression (4.54) implies that ϕ diverges towards negative
values, for which its derivative ψ needs to diverge towards +∞ at some radius rB.
Therefore, the right-hand side in Eq. (4.55) can be approximated to cubic order in
ψ. By solving this approximate equation and expanding the solution in the limit
r → rB we find

ψ ≃ ±
√

k0

4(r − rB) , (4.58)

with

k0 = 2 [r2
B + (α− 1)l2P] (r2

B + αl2P)2

rBl2P [(r2
B + αl2P)2 − 2r2

Bl
2
P] > 0. (4.59)

The surface r = rB represents an asymmetric wormhole neck, where the shape
function r reaches a minimum value. Integrating Eq. (4.58) and returning to the
l coordinate, which is regular through the neck, the approximate behavior of the
metric functions obtained is

r ≃ k1

4 (l − lB)2 + rB, ϕ ≃
√
k0k1

2 (l − lB) + ϕB, (4.60)

where lB and ϕB are the values of the proper coordinate and the exponent of the
redshift function at the neck, and

k1 = 4 (r2
B + αl2P)
r2

Bl
2
Pk0

> 0. (4.61)

Replacing these expressions in Eq. (4.54), we see that the pressure

p ≃ pB

[
1 −

√
k0k1

2 (l − lB)
]

(4.62)

is finite and positive through the neck as well. Therefore, locally around the neck,
the geometry resembles that of the vacuum solution from Fig. 2.2, but covered by a
perfect fluid of constant density with pressures that exceed the value of the density
[note that (pB ≫ ρ) by consistency with (4.54)].

Inside the neck, the solution jumps from the unconcealed to the concealed branch,
where vacuum polarization grows unbounded. The solution ψ takes the − sign
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Fig. 4.10.: (Caption next page).
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Fig. 4.10.: (Previous page). Semiclassical stars integrated from the surface. The
green and blue curves denote r(l) and C(l), and the red curve represents the
function p(l). All integrations correspond to stars with R = 1.8 and α − 1 = 10−3.
Their surface compactness and their ρ/ρc-clas quotients are, approximately and from
top to bottom: (0.84, 0.71), (0.92, 1.16), (0.93, 1.34) and (0.96, 1.87). The second
and third panels show a zoomed plot of the near-neck region, highlighting the neck
(vertical dashed line) and the singularity (zigzag line). Increasing ρ generates a well
of negative mass. This negative mass slows down the increase in pressure, causing
a shrinkage of the wormhole neck. Eventually, the neck disappears leaving a naked
singularity at r = 0. In between sub-critical and super-critical configurations there
is an infinite pressure separatrix solution. As the wormhole neck can be as small
as desired by adjusting ρ, a mild deformation of the geometry at the core would
suffice to make the whole construction regular. See Fig. 4.11 for the RP-RSET
components from each solution.
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Fig. 4.11.: RSET components −⟨T̂ tt ⟩ (dark blue), ⟨T̂ ll ⟩ (magenta) and ⟨T̂ θθ ⟩ (cyan)
for various stars integrated from the surface. All the integrations correspond to
stars with R = 1.8 and α− 1 = 10−3. They correspond to the solutions appearing
in Fig. 4.10, whose surface compactness and ρ/ρc-clas quotients are, approximately:
(0.84, 0.71) (top left), (0.92, 1.16) (top right), (0.93, 1.34) (bottom left), (0.96, 1.87)
(bottom right). Note the abrupt change in the sign of the semiclassical energy
density in the transition from the sub-critical to the super-critical regime.
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of (4.58) at the interior (concealed) side of the neck, and that rB > 0, ψ always
takes values below the three roots and the exact solutions that appear represented
in Fig. 4.9. By consistency of Eq. (4.55), ψ grows with r until the most negative root,
R3, is crossed. Beyond this point ψ decreases linearly with r, taking values between
the exact solution ψ+ and the root R3. The former cannot be crossed in virtue of
the Picard-Lindelöf theorem, and the latter cannot be encountered for a second
time for self-consistency of (4.55). Thus, in the r → ∞ limit, ψ decreases linearly
with r (at leading order) and essentially corresponds to the vacuum solution.

To derive the asymptotic form of the metric deep inside the wormhole neck
(in radial distance), we assume ψ deviates slightly from the exact solution as
ψ ≃ ψ+ + β(r). Replacing this expression in Eq. (4.55) and neglecting terms
beyond linear order in β, we obtain

β′ ≃ −2r
l2P
β + O

(
β2
)
. (4.63)

Integrating yields
β ≃ −e−2r2/l2Pβ0, (4.64)

where β0 is a positive constant of integration of dimensions of inverse of length
[the sign in Eq. (4.64) is chosen so that the solution ψ approaches ψ+ from below].
Now, we further integrate ψ to derive the compactness function and the asymptotic
form of the metric

ds2 ≃e−2r2/l2P

(
r

lP

)1−4α
{

−a0

(
1 − l2P

8r2

)
dt2

+b0

(
r

lP

)2
[
1 − (9 − 32α) l2P

r2

]
dr2

}
+ r2dΩ2. (4.65)

Here, a0 and b0 are dimensionless integration constants. In view of the above
expression, the metric has a null singularity at radial infinity, which is located
at finite affine distance from the neck for all geodesic paths. In the asymptotic
region, the pressure of the fluid diverges exponentially towards positive infinity.
The compactness function diverges towards negative infinity exponentially as well,
due to the presence of an infinite cloud of negative mass which is being generated
by the vacuum energy of the scalar field.

The characteristics of sub-critical solutions are identical to those of the vacuum
solution i.e. an asymmetric wormhole with an interior null singularity at infinite r,
but filled with an isotropic fluid of constant density and divergent pressures. De-
spite the classical SET being singular, the dominant contribution to the divergence
in curvature invariants comes from semiclassical contributions, and differences
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between vacuum and matter geometries appear at subleading order in the approx-
imate metric (4.65). The uppermost panel in Fig. 4.10 contains an example of a
sub-Buchdahl, sub-critical star (see top left panel in Fig. 4.11 for details on the
RSET).

Semiclassical stellar solutions can be interpreted as a mixture of competing
classical and quantum contributions. Taking ρ = 0 gives all predominance to
the vacuum sector, while increasing ρ endows the geometry with classical-like
properties. On the other hand, as the compactness at the surface of the star C(R)
is increased (while keeping ρ < ρc at all times), the wormhole neck follows a
trajectory similar to the infinite positive pressure divergence from the classical
theory: it moves outwards as C(R) approaches the Buchdahl limit. At this stage,
keeping C(R) fixed and giving predominance to the classical fluid (increasing ρ)
effectively pushes the wormhole neck towards smaller radii. As a consequence of
increasing ρ, a greater amount of the contribution to Mcloud in Eq. (4.47) is coming
from the classical source rather than the semiclassical vacuum polarization.

The second panel in Fig. 4.10 (top-right panel in Fig. 4.11 for the RSET) exem-
plifies a super-Buchdahl, sub-critical star where ρ has been chosen so that the neck
is pushed inwards appreciably. Given a sub-critical super-Buchdahl configuration
and increasing ρ moves the position of the wormhole neck inwards. This is accom-
plished at the expense of generating a nucleus of negative mass whose repulsive
force smears the growth in pressure. The increase in ρ makes the classical fluid
contribution prevail, causing compactness to become negative, but not as negative
as to compensate the growth in pressure, resulting in a wormhole.

Relevance of ϵ-strict stellar spacetimes and validity of the Polyakov
approximation

The third panel in Fig. 4.10 (see bottom left panel in Fig. 4.11 for details on the
RSET) shows a geometry with its wormhole neck very close to the radial origin.
This neck has a Planckian radius, thus lying in the regime where the physics of
the solution is subject to the particular regularization scheme adopted for the
RP-RSET. Hence, the regime around where the wormhole neck is reached lies
outside the domain of reliability of the Polyakov approximation. Notice that these
configurations have the compactness function bouncing from negative numbers to
C(rB) = 1 at the neck. Hence, by moving the ρ parameter, the compactness of these
solutions can be made as small as desired arbitrarily close to r = 0. In this precise
sense, there is a family among all sub-critical semiclassical solutions that describes
ϵ-strict spacetimes, as for these solutions the compactness can be made to obey
the bound (4.3) in a sphere of radius rϵ by taking a suitable ρ < ρc. Obtaining a
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strict stellar spacetime from configurations of this sort would amount to regularize
their nucleus. This can be done through appropriate choices of regulator as we will
see in Chapter 5. As ϵ-strict spacetimes are absent in the classical space of super-
Buchdahl solutions, semiclassical constant-density spheres of high compactness
are one step closer to being regular than classical ones, precisely due to the way
quantum corrections operate within these structures.

The existence of ϵ-strict spacetimes is in a way related to the failure of the
Polyakov approximation to properly account for the contributions of vacuum po-
larization in presence of matter fluid spheres which extend all the way to r = 0
[equivalently, to distances where the spacetime metric in Eq. (1.2) cannot be di-
mensionally reduced to its non-angular sector accurately]. Were the spacetime
geometry sourced by an RSET adequate for computing backreaction effects over
regular stellar spacetimes, the resulting configurations might have been regular
from the start. We are demanding from the RSET more than just yielding finite
components at r = 0, as we also look for an RSET that captures more accurately
the physics at the nucleus of compact relativistic stars (i.e. the expected violation
of energy conditions that the CRP-RSET seems unable to reproduce at the core
of regular stellar spacetimes that approach the Buchdahl limit (4.53) but more
precise, local approximations account for [166] in the case of conformally invariant
fields). The redshift function of classical Buchdahl stars vanishes exactly at r = 0,
as seen in Eq. (4.20). The result by Hiscock [166] indicates that the RSET acquires
a negative energy density when nearing a surface of zero redshift. As the CRP-RSET
is oblivious to the overall value of the redshift function [only their derivatives enter
the field equations (4.39, 4.40)], this characteristic is not being well-captured by
this approximation.

The shrinkage of the neck as the density increases goes on until we encounter
a separatrix solution with distinct features (see Subsec. 4.5.4 below for details
and Fig. 4.10 for a series of configurations that approach this separatrix). For this
solution, pressure and compactness diverge towards positive and negative infinity,
respectively, at r = 0. This is a separatrix solution between two distinct behaviors
in the pressure and in the compactness. Hence, attending to our definition of
criticality from Subsec. 4.2.2, this solution corresponds to a critical (and singular)
configuration. Beyond this critical density ρc, solutions have no neck and their
shape function extends to r = 0, but in a singular manner. These super-critical
configurations are the ones analyzed in the next subsection.
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4.5.3 Super-critical solutions

Returning once more to the phase space from Fig. 4.6, sub-critical solutions are
situated between the pure vacuum solution, with ρ = 0, and solutions which have
regular pressure everywhere. Increasing the density allows to observe a transition
between the former and the latter, the separatrix between both being ρ = ρc. For
stars well below the Buchdahl limit, everything indicates that the lowest value
of the density that makes the neck vanish ensures the regularity of the structure.
These solutions correspond to the configurations obtained integrating outwards
from a regular radial origin (see Subsec. 4.5.1). We find that this critical solution
stops being regular beyond certain value of the compactness C(R). This can be
deduced from the fact that we have not been able to obtain solutions starting from
a regular origin that end up corresponding to super-Buchdahl stars (excluding
those with trans-Planckian ρ).

Picture now a super-critical star, for which the spacetime extends up to r = 0.
An example of this configuration appears in the bottom panel of Fig. 4.10 (see
bottom right panel in Fig. 4.11 for the corresponding CRP-RSET components).
Sufficiently close to the radial origin, the geometry can be approximated by that
of the semiclassical Schwarzschild counterpart with negative mass ADM mass. By
evaluating Eq. (4.40) in the r → 0 limit assuming a finite pressure at the origin,
we obtain

ϕ′ ≃
−α +

√
α(α− 1)
r

r′, . (4.66)

Notice that, in Schwarzschild coordinates, this corresponds to the exact solution
ψ−, which lives in the unconcealed branch and connects smoothly with the classical
solution in the lP → 0 limit. Replacing Eq. (4.66) in Eq. (4.39), we obtain the
following relation for the shape function,

r′ ≃
(

|M̃ |
r

)(1+α)(√ α
α−1 −1)

. (4.67)

Here, M̃ is a constant of integration related to the deviations of ρ from ρc. Integrat-
ing (4.67) returns the following asymptotic form of the radial function

r(l) ≃
(

|M̃ |−1+
√

α
α−1 l

)[α(√ α
α−1 −1)+

√
α

α−1 ]−1

, (4.68)
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where, in the limit of big α, or when the CRP-RSET is fully suppressed, we recover
the classical behavior (4.29). The redshift function indeed diverges towards positive
infinity in the limit l → 0,

e2ϕ ≃
(

|M̃ |
l

) 2
1+2

√
α

α−1
, (4.69)

and the classical fluid acquires the equation of state of vacuum energy at the radial
origin

p ≃ −ρ+ M̃−2
(

l

|M̃ |

) 1
1+2

√
α

α−1 . (4.70)

The finite value of the central pressure is approached with infinite gradient, as in
the classical expression (4.31). The divergence of the pressure gradient is stronger
than the classical one since the exponent of Eq. (4.70) vanishes in the limit α → 1.
Vacuum polarization gets stimulated by the presence of this central negative mass,
strengthening the super-critical singularity with respect to the classical situation.

We return now to the bottom picture in Fig. 4.10, which shows an example
of a super-Buchdahl, super-critical star. The CRP-RSET (bottom right panel in
Fig. 4.11) shows drastic differences with the sub-critical case. Namely, ρs changes
sign with respect to its negative contribution at the surface, diverging towards
positive infinity at r = 0. The semiclassical pressures diverge towards negative
infinity after having encountered a maximum.

4.5.4 Semiclassical infinite pressure separatrix

The semiclassical separatrix between sub-critical and super-critical configurations is
reminiscent of the classical separatrix in several aspects that we will detail in what
follows. Let us work under the assumption that the separatrix solution has infinite
pressure at the radial origin by similarity with the classical case in Subsection 4.3.5.
First, we go back to Eq. (4.43), expand the right-hand side in powers of r, and
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neglect terms subleading in the pressure, as of (4.54). The coefficients in Eq. (4.43)
become

A0 ≃ 12πp,

A1 ≃ 4πr
(

3p+ 2p
α

)
− 2
r
,

A2 ≃ − 8πr2p
[
1 − 3

2α − O
(
r2/l2P

)]
− 2
α

− 2,

A3 ≃ − r

α

{
4πr2p

[
1 − O

(
r2/l2P

)]
+ 1
α

+ 1
}
,

D ≃ α

(1 + 8πr2p)(α− 1) . (4.71)

We arrange these coefficients in a particularly illustrative form, yielding

ψ′ ≃
{

4πp
[
3α + (2 + 3α) rψ + (3 − 2α) r2ψ2 − r3ψ3

]
−2α
r
ψ − 2(1 + α)ψ2 − r(α + 1)

α
ψ3
}

× 1
(α− 1)(1 + 8πr2p) . (4.72)

This expression is describing a competition between vacuum and matter contribu-
tions. By dropping the terms proportional to the pressure in Eq. (4.72) we obtain
the solutions to the equation in vacuum

ψ = −
α±

√
α(α− 1)
r

, ψ = 0, (4.73)

where only the − sign returns the Schwarzschild solution in the classical limit (tak-
ing α → ∞, an infinitely suppressed CRP-RSET). Note that Eq. (4.73) is equivalent
to Eq. (4.66) for the super-critical case, but expressed in Schwarzschild coordinates.

In the regime of approximation described by Eq. (4.54), the pressure is propor-
tional to the integral of ψ. Let us assume the ansatz

ψ = η

r
. (4.74)

For this ansatz, the pressure becomes, in virtue of (4.54),

p ≃ κ
(
r0

r

)η
, (4.75)
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where r0 is an integration constant with dimension of length and η needs to take
positive values, since η < 0 is not compatible with the infinite pressure assumption.
Inserting Eqs. (4.74) and (4.75) in Eq. (4.72), we obtain

ψ′ ≃
{

4πκ
(
r0

r

)η [
3α + (2 + 3α) η + (3 − 2α) r2η2 − η3

]
−(1 + α)η

r2

(
2α + 2η + η2

)}
× 1

(α− 1)
[
1 + 8πr2κ

(
r0
r

)η] . (4.76)

The value of η determines which source, classical or quantum, provides the dom-
inant contribution to the divergence in ψ′. For η < 2, the vacuum terms carry
the dominant divergence. For η = 2, the terms in the first and second line all
contribute at the same order, whereas for η > 2, terms proportional to the pressure
dominate both the numerator and the denominator in Eq. (4.76). Let us explore
these possibilities.

Replacing the derivative of Eq. (4.74) in Eq. (4.76) and taking η = 2 (which
equates vacuum and matter contributions) yields the following relation between
integration constants,

κ = 1 + α

2παr2
0
. (4.77)

Replacing this behavior in the radial Einstein equation (4.40) (in Schwarzschild
coordinates) we obtain

C ≃ 4(1 + α)(−1 + r2
0)

(4 + 5α)r2
0

+ O
(
r2
)
, (4.78)

from where only the value r0 = 1 returns a vanishing compactness at the radial
origin. The solution

p = 1 + α

2παr2 , (4.79)

is reminiscent of the classical separatrix between critical sub- and super-Buchdahl
configurations and connects smoothly with the classical Buchdahl solution (4.37)
in the α → ∞ limit. The semiclassical counterpart to that separatrix retains its
critical character, in the sense that C(l → 0) = 0, while the rate of growth of the
pressure increases as α is decreased. Hence, semiclassical corrections contribution
towards strengthening the divergence of the pressure in this separatrix.

Once the Buchdahl limit is surpassed the separatrix solution takes a different
form. By taking η > 2 in Eq. (4.76), we are assuming that pressure-dependent
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terms carry the leading-order divergences in the expansion. Therefore, Eq. (4.76)
can be reduced to

− η

r2 ≃ r−η [3α + (2 + 3α) η + (3 − 2α) r2η2 − η3]
2(α− 1)r2−η , (4.80)

from where the only positive solution is η = 3. We have a pressure profile of the
form

p ≃ κ̃

r3 . (4.81)

where κ̃ is a positive integration constant of dimension length. Replaced in the
equation for the compactness we find

C ≃ − 8πακ̃
(9 + 7α)r . (4.82)

The separatrix between sub-critical and super-critical configurations has an infinite
compactness at the origin. This divergence in the compactness is weaker than
the curvature singularity from super-critical configurations, which fits right in the
separatrix between sub- and super-critical profiles in the super-Buchdahl case.
Since the differential equation for the compactness (4.39) is not integrable in
terms of analytical functions, we do not know the specific form of the constant κ̃.
Nevertheless, we expect it should present the correct classical limit.

Separatrices are only perturbatively deformed by semiclassical corrections. So-
lutions belonging to the sub-critical regime are wormhole geometries, whereas
super-critical solutions are naked singularities. The separatrix solutions (4.75)
and (4.81) are modified perturbatively by regulator-dependent corrections. This
resembles the vacuum situation in a sense, where the separatrix between wormhole
geometries and naked singularities at r = 0 is precisely Minkowski spacetime, for
which vacuum polarization is exactly zero. The infinite pressure separatrices here
obtained apparently exhibit a similar stability with respect to quantum corrections.

In the next three Subsections we are going to compute numerically the value of
the separatrix density ρc and how it changes with the surface compactness C(R).
Varying the compactness of a family of stars with the same radius R is equivalent
to locating the surface at different radii in the vacuum wormhole geometry. We
begin by considering the simple case of stars whose surface is outside the neck to
later analyze at-the-neck and inside-the-neck stars.
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4.5.5 Outside-the-neck stars and pressure regularization
The analyzed behaviors for both sub- and super-critical stars (i.e. top and bottom
regions of the phase space in Fig. 4.6) only depend on whether the value of ρ is
below or above ρc, and are thus universal for stars either outside or inside the
neck. Turning back to the diagram in Fig. 4.6, which qualitatively describes stars
with their surfaces outside the neck, we now draw attention to the separatrix
solution between regions III and IV (or the super-Buchdahl half-plane). Recall that
numerical integrations for these regimes (sub-critical, critical and super-critical)
appear represented in the fourth row of Fig. 4.2. Beginning with a sub-critical
configuration and integrating from the surface, we can estimate numerically from
surface integrations (within some expected numerical uncertainty) the value of
the density that sits between the less dense super-critical solution and the most
dense sub-critical solution. To the limit of our numerical precision, this density
value coincides with ρc. The critical solution acts as a separatrix in the behavior of
both pressure and compactness. Notice that, with our definition of criticality, this
coincidence does not happen in the classical case: by increasing the parameter ρ
we first find ρc, i.e. a change in behavior of C, and later on for ρreg-p > ρc we find
the first solution for which pressure becomes finite at the origin. In what follows,
we make use of ρreg-p to refer to this separatrix in pressure for classical stars and ρc

to denote the critical solution in semiclassical stars.

Let us numerically explore the behavior of the quantity ρc in different situations.
For classical and semiclassical stars with the same radius and compactness (or
counterparts), ρc is appreciably smaller than ρreg-p. Figure 4.12 shows a comparison
between these two densities for stars of various C(R), together with the line ρc−clas.
Remarkably, we find that ρc is finite in the limit C(R) → 1. In turn, the negative
mass necessary to halt the growth of the pressure is less negative for semiclassical
stars with C(R) → 1, when compared to the classical case. See Fig. 4.13 for a
detailed plot of the Misner-Sharp mass needed to regularize the pressure in each
situation.

The cause of this discrepancy between classical and semiclassical separatrix
densities in the C(R) → 1 limit comes from the differences between their respective
vacuum solutions. In the case of a classical star the surface where C(R) = 1 is
the horizon, resulting in infinite surface pressures in the C(R) → 1 limit, which
can only be compensated by the introduction of an infinite amount of negative
mass. When quantum corrections are incorporated, however, the C(R) → 1 limit
corresponds to taking the surface of the star towards the neck of the wormhole,
where pressure is indeed finite, in virtue of Eq. (4.62). In consequence, a finite
increase in ρ regularizes the pressure profile of the configuration. As observed in
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Fig. 4.12.: Plot of ρreg-p in terms of the compactness for classical (orange) stars and
of ρc for semiclassical (green) stars with R = 2 and C(R) ∈ (0, 1). The blue line
corresponds to the classical critical density (4.13). The orange curve diverges in
the C(R) → 1 limit, whereas the green curve reaches a finite value, in this case
ρc (C(R) → 1) ≃ 1.366.
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Fig. 4.13.: Plot of the Misner-Sharp mass at a central radius rcore = O(lP) in terms
of the surface compactness for classical (orange) and semiclassical (green) stars
with R = 2. Notice how the orange curve diverges in the C(R) → 1 limit, as
infinite negative masses are required to regularize the pressure in that limit. In the
semiclassical case, since the surface of C(R) = 1 is a wormhole neck. As pressure
at the neck is finite [see Eq. (4.62)] the required negative mass is finite, in this
case Mcore (C(R) → 1) ≃ −41.20.
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Fig. 4.14.: Plot of ρc for semiclassical stars of various radii and compactnes
C(R) = 1 − 10−10. As R shrinks, the separatrix density diverges, whereas for larger
radii (in Planck units) it decreases linearly.

Fig. 4.14, the parameter rc decreases linearly as the radius of the star is increased
while keeping C(R) fixed.

Fig. 4.15 shows that the negative mass core grows much faster with ρ than the
rate at which the total mass M = RC(R)/2 increases with R while keeping C(R)
fixed. This core can be estimated obtaining the value of the Misner-Sharp mass at a
security radius where the Misner-Sharp mass has not yet entered into a runaway
regime. The values of the density required to strictly regularize the pressure of
ultra-compact stars are therefore many orders of magnitude greater than the total
Misner-Sharp mass associated with those stars, although they stay finite in the
C(R) → 1 limit.

Figures (4.12-4.15) have been obtained by taking α−1 = 10−6. We have observed
that increasing the value of α has the effect of making the solutions more alike to
their classical counterparts. Consequently, it seems reasonable to assume that ρc

approaches its classical value ρreg-p in the limit α → ∞ as well.

4.5.6 Inside-the-neck stars and pressure regularization
Up to now our analysis has focused on stars located outside the neck of the
wormhole. In this Section we turn to locating the surface of the star inside the
neck, which in particular implies that these solutions have no well-defined classical
limit. In this case, there is again a strong interplay between contributions coming
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Fig. 4.15.: Plot of the central negative mass Mcore for semiclassical super-critical
stars of various radii and surface compactness C(R) = 1 − 10−10. This estimated
central mass is obtained by stopping the integration at a security radius far from
the region where the Misner-Sharp mass diverges. Notice how the central mass has
to be many orders of magnitude higher than the total mass of the star M ≃ R/2 for
big stars. For small stars have their pressure regularized by negative central masses
comparable to their total mass, indicating that the physics of Planckian stars may
be different from that of astrophysical bodies.

from the vacuum and classical matter that results in sub-critical, critical and super-
critical regimes. There exists also a distinction depending on whether the surface
is located close to the neck (super-Buchdahl, [C(R) → 1]), or far from the neck
(sub-Buchdahl, [C(R) ≪ 1]). The last two rows in Fig. 4.2 display numerical plots
for all these cases.

In the first of these scenarios the surface of the super-Buchdahl star is located
very close to the neck but inside it. If ρ is large enough, a radial maximum
takes place just below the surface of the star, inverting the tendency of the radial
coordinate to increase as we deepen through the neck. To illustrate this, we work
in Schwarzschild coordinates and consider a local analysis of Eq. (4.43) around the
surface of a star located inside the neck rB but very close to it, so that the solution
admits the approximate form (4.58). This is guaranteed as long as

r − rB ≲
l2P
rB
. (4.83)
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Now, expanding Eq. (4.43) at leading order in ψ while taking p = 0 and ρ positive
and constant, the solution is

ψ ≃ − 1
lP

{
− l2Pα (r2 − r2

B)
(r2 + αl2P) (r2

B + αl2P) − α ln
(
r2 + αl2P
r2

B + αl2P

)

+ (1 + α) ln
[
r2 + l2P(α− 1)
r2

B + αl2P(α− 1)

]
− 4πρ

(
r2 −R2

)

+4πρl2P(α− 1) ln
[
r2 + l2P(α− 1)
R2 + l2P(α− 1)

]}−1/2

. (4.84)

For a positive, large enough ρ, the term proportional to (r2 −R2) is the dominant
contribution to (4.84), which compensates the positive logarithmic terms from
vacuum contributions (recall that, initially, r increases as we move away from the
surface towards the interior of the star). The interior of the squared root in (4.84)
vanishes at some radius rM inside the star, generating a radial maximum and taking
the solution back to the concealed branch. Once ρ is large enough as to generate
this radial maximum, we encounter again three different scenarios depending on
whether ρ is above or below its critical value. If ρ < ρc, a second radial minimum or
neck takes place after the first maximum (this is the situation depicted in Figs. 4.16
and 4.17). The metric functions around this second neck have the form (4.60)
and connect with a null singularity. Further increments of ρ displace this second
neck towards smaller values of r and eventually makes solutions super-critical if
ρ > ρc, showing finite pressures everywhere. Examples for each of these cases can
be found in the last row from Fig. 4.2.

The second possibility is to consider matter located sufficiently deep inside the
neck (in radial distance), the negative mass generated by the scalar field becomes
comparable to that of the classical source. The three plots in the sixth line of
Fig. 4.2 show the respective sub-critical, critical and super-critical regimes. Here
we can observe that, unless the density of the fluid is increased sufficiently, the
geometry will adopt the form (4.65) without reaching a radial maximum. Such
geometries are completely dominated by vacuum polarization. In this regime, we
cannot appeal to the local analysis of (4.84), and we are forced to solve numerically
the complete equations. Figure 4.18 shows the value of the energy density ρc for
stars of various surface compactness. These values of the compactness are directly
linked to how far inside the neck we are locating the surface of the fluid (see the
compactness curve in Fig. 2.2). The energy density ρc is found to grow linearly as
compactness decreases (as we move the surface of the star far from the neck).
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Fig. 4.16.: Plot of a sub-critical star located inside the neck. The blue green and blue
curves represent the shape function r(l) and the compactness C(l), respectively.
The red curve is the pressure p(l). The dashed and dot-dashed vertical lines
represents the radial minimum rB and maximum rM, respectively. The singularity
is represented by a zigzag line. The parameters chosen are R = 1.8, C(R) = 0.96,
ρ/ρc-clas = 43.4 and α− 1 = 10−3.
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Fig. 4.17.: RSET components −⟨T̂ tt ⟩ (dark blue), ⟨T̂ ll ⟩ (magenta) and ⟨T̂ θθ ⟩ (cyan)
for a sub-critical star located beyond the neck. The parameters of the integration
are R = 1.8, C(R) = 0.96, ρ/ρc-clas = 43.4 and α− 1 = 10−3.
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Fig. 4.18.: Plot of ρc in terms of the compactness for a star located inside the neck.
The density required to regularize the structure grows linearly as compactness
diminishes, reaching over Planckian densities very quickly.

In conclusion, we have found that all constant-density stars with their surface
inside the neck are singular. Infinite pressure separatrices are still expected to be
present, but the densities required to reach them are trans-Planckian.

4.5.7 At-the-neck stars and pressure regularization

Finally, we examine the particular case of fluid spheres whose surface is located
at the neck of the vacuum wormhole geometry. The fifth line in Fig. 4.2 shows
the critical and non-critical regimes for at-the-neck stars. This wormhole neck
rB corresponds to C(rB) = 1 and a positive redshift function. This scenario has
therefore no classical counterpart and the boundary conditions at the surface
illustrate an intriguing interplay between quantum and classical contributions.

We combine Eqs. (4.39) and (4.40) to obtain a differential equation of the form

r′′ = E
(
r6B0 + l2Pr

4B1 + l4Pr
2B2 + l6PB3

)
, (4.85)
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where

B0 = 4πl2P (p− ρ) + (r′)2
,

B1 = 1 − H + 8πl2P [α (p− ρ) − p] + (3α− 2) (r′)2
,

B2 = (1 − 2α) H + 2αl2P
[
1 + 2παl2P (p− ρ)

]
+ α (3α− 2) (r′)2

,

B3 = α (α + 1)
[
1 − H + (α− 1) (r′)2]

,

E =
{
l2Pr

[
r2 + (α− 1) l2P

] (
r2 + αl2P

)}−1
, (4.86)

and

H =
{
1 + 8πr2p+

[
r2 + (α− 1) l2P

]
(r′/lP)2}1/2

× r′
√
r2 + αl2P. (4.87)

Let us think of an inwards integration of the semiclassical equations from an
asymptotically flat region with positive ADM mass until the neck rB, where we
decide to locate the surface of radius R of a perfect fluid of constant and positive
classical density ρ. Continuity of the metric at the neck demands the shape function
and the pressure, which are the only unknown functions appearing in Eq. (4.85),
obey expansions of the form

r(l) = R + r1 (l − lS)2 + r2 (l − lS)3 + O (l − lS)4 ,

p(l) = p1 (l − lS) + O (l − lS)2 , (4.88)

where r1, r2 and p1 are arbitrary constants. Replacing expressions (4.88) in
Eqs. (4.85) and (4.41), we obtain the following values for the first coefficients in
the expansion

r1 = (R2 + αl2P) (1 − 4πR2ρ) + αl4P
2R (R2 + αl2P) [R2 + (α− 1) l2P] ,

p1 = −

√
R2 + αl2P

lPR
ρ, (4.89)

where p1 < 0 for any positive ρ, indicating that pressure always grows in the interior
region of the star. The coefficient r1, however, vanishes for the density value

ρneck = 1
4πR2

[
1 + αl4P

(R2 + αl2P)2

]
, (4.90)

hence becoming positive if ρ > ρneck and negative if ρ < ρneck. The density ρneck

marks the separatrix between two distinct situations: For ρ < ρneck, the geometry
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is qualitatively similar to the vacuum solution depicted in Fig. 2.2 (below the
surface, r(l) increases as l decreases), whereas for ρ > ρneck the geometry is such
that, just below the surface, the shape function diminishes with l, resembling
the outermost layers of a stellar configuration. Note that, if ρ < ρc, a neck will
nevertheless appear inside the region filled with matter, endowing the solution
with a sub-critical character.

The particular case where ρ = ρneck is characterized by having r1 = 0. The next-
order coefficient in the expansion of the shape function, evaluated for ρ = ρneck,
yields

r2 = −

[
(R2 + αl2P)2 − 2R2l2P

] [
(R2 + αl2P)2 + αl4P

]
6R2lP [R2 + (α− 1) l2P] (R2 + αl2P)5/2 , (4.91)

which is a negative quantity. Therefore, this solution also has a shape function
that decreases just below the surface of the star. It corresponds to a sub-critical
configuration since, as long as R ≫ lP, it is guaranteed that (4.90) is smaller than
ρc (we infer this by extrapolating the tendency observed in Fig. 4.14 to stars of
large radii).

At-the-neck stars clearly show that the predominance of vacuum effects captured
through Polyakov’s drives the solution towards the formation of a wormhole neck,
an “opening” of the spacetime geometry, which eventually leads to an asymptotic
singularity. The predominance of classical matter, on the other hand, contributes
towards “closing” the geometry and forming a fluid sphere. The interplay between
these two effects is what eventually gives rise to ϵ-strict stellar spacetimes. These
correspond to nearly “closed” configurations in which vacuum polarization effects
end up dominating at the core of the star. In order for the configuration to reach
r = 0 in a regular manner it must be sourced by an RSET that properly accounts for
vacuum polarization at the core of compact stars, so that such “closing” is consistent
with the regularity of the entire configuration.

4.6 Conclusions
In this Chapter, we have used the CRP-RSET as a simple model to incorporate
semiclassical corrections into the equations of stellar equilibrium. We expect this
RSET to qualitatively capture the semiclassical effects caused by a geometry that is
near its gravitational radius, that is, describing ultracompact configurations. On the
other hand, the ambiguities inherent to the regularization of the Polyakov RSET
affects the solutions to the semiclassical equations describing stellar-like objects.
We summarize here the main findings that distill from our explorations.
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We have found that, for the most part, the set of strict stellar spacetimes for
the semiclassical field equations analyzed here is almost coincident with the corre-
sponding classical set. That is, only for sub-Buchdahl stars we find strictly regular
semiclassical solutions. However, this should not be understood as showing that
semiclassical gravity exhibits a Buchdahl limit essentially equal to that in classical
general relativity. This can be illustrated by taking a closer look at the super-
Buchdahl non-regular solutions that satisfy our definition of ϵ-strict spacetime. Bare
in mind as well that the most compact regular semiclassical star lies below the
classical Buchdahl limit C(R) = 8/9 due to the positive energies generated by the
CRP-RSET in the interior.

When analyzing super-Buchdahl configurations of large size, there is a stark
difference between the classical and semiclassical cases. In the classical case, for
arbitrarily compact configurations it is not possible to define a small value of the
radius rϵ so that the compactness remains small enough outside it, and at the
same time the pressure is finite up to rϵ. For highly compact (very super-Buchdahl)
stars, the classical pressures diverge very close to the surface, and the only way
to tame such divergences so that they remain finite up to rϵ is to become strongly
supercritical in the density; this in turn leaves us outside the regime that we have
denoted as ϵ-strict. In other words, in classical general relativity there are no ϵ-strict
solutions with a compactness that is appreciably greater than the Buchdahl limit.
In fact, the compactness of ϵ-strict solutions is bounded by the Buchdahl limit plus
small O(ϵ) corrections.

For the super-critical solution in the bottom panel of Fig. 4.10, the compactness
is within the ϵ-strict bound for rϵ > 1.8lP. Going further into the supercritical
regime, the compactness divergence becomes stronger causing the core to grow,
thus no longer fitting into the notion of ϵ-strict spacetime, which requires ϵ ≪ 1.
On the other hand, sub-critical solutions close to the critical one are such that
compactness turns from negative to positive values within a narrow region near
r = 0. Hence, there exist sub-critical solutions with cores in which the compactness
remains very close to zero, while the pressure remains bounded. Both below and
above criticality we have solutions which are ϵ-strict configurations, for any value
of the compactness.

Figure 4.19 shows a comparison between a critical super-Buchdahl star from the
classical theory and a series of semiclassical super-Buchdahl stars that approach
the critical solution from the sub-critical regime. Close-to-critical semiclassical
solutions are far closer to attaining regularity than classical ones, in the sense that
the geometric distortions needed to regularize the whole interior do not need to
extend all the way to the surface of the star, but can remain confined within a central
core of Planckian radius. All in all, the most relevant departure of semiclassical
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Fig. 4.19.: Left panel: series of classical super-Buchdal stars approaching a finite
pressure solution. The green lines represent the shape function r and the red
curves denote the pressures p, which diverge at r(ldiv) (zigzag lines). Lighter colors
correspond to stars whose density is nearing ρreg-p (the critical solution ρc-clas has
the darkest colors). Any attempt of regularizing the pressure makes the star highly
super-critical, causing p′ and r′ to diverge at l = 0. The shape function of a regular
star is drawn in blue for comparison. Right panel: series of semiclassical sub-critical
super-Buchdahl stars approaching the critical solution. Again, the shape functions
r are shown in green, while the pressures p are plotted in red. Lighter colors
correspond to stars whose density is nearing ρc. The critical solution is approached
together with the regularization in the pressure. The vertical dashed lines represent
the necks of the solutions and singularities are represented by vertical zigzag lines.
We have drawn in blue the shape function of a hypothetical regular star. Note that
regularity requires r′(0) = 1 + O(l2). The classical super-critical configuration with
finite pressure has r′(0) → +∞, whereas semiclassical configurations with small
wormhole necks are ϵ-strict stellar spacetimes. Regularization of these profiles
amounts to selecting a suitable regularization for the RP-RSET.

stars with respect to their classical counterparts is that, in the semiclassical theory,
the separatrix solutions in mass and pressure overlap in a narrow region of the
parameter space.

The lack of a compactness limit for ϵ-strict spacetimes in semiclassical gravity is
the main physical result of this Chapter. Conceptually, this result illustrates that the
Polyakov approximation is successful in regularizing the super-Buchdahl classical
stellar profiles in the regions of spacetime in which the approximation is expected
to be reliable. It is clear that the only missing physical information to complete
the picture is the behavior of the semiclassical source around r = 0. Among the
various ways of regularizing the Polyakov approximation near r = 0, in this Chapter
we have considered the simplest one on the basis that it proved adequate for the
analysis of (electro)-vacuum spacetimes. Our results here indicate that alternative
regularizations must be studied in presence of matter, being reasonable to think
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that there may exist regularizations in which the ultracompact ϵ-strict spacetimes
discussed in this Chapter become regular. The existence of such regularizations,
their characteristics, and the physical interpretation of the resulting stars are
discussed in the next Chapter.
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Semiclassical relativistic
stars

5

5.1 Introduction
We arrive at the Chapter containing the central result of this thesis: the derivation
of a new model of exotic compact object that results from solving the semiclassical
equations in a self-consistent way. Before describing how we derive this result and
its principal implications, let us outline the path that lead us to this point.

The outset of this thesis was born from the idea that vacuum polarization effects,
captured via approximate RSETs (the one adopted so far being RP-RSET), could
generate regular horizonless configurations that share some of the observational
properties from ABHs but none of their pathological characteristics. We search for
these ultracompact stars under the simplifying assumptions of staticity and spherical
symmetry and incorporating the backreaction of the RSET of a massless, minimally
coupled scalar field in the Boulware state. Such objects should be identified with
the late-time outcome of a modified gravitational collapse process where trapped
regions evolve in a non-trivial way that leads to their eventual disappearing.

The semiclassical equations (sourced by the RP-RSET) can be integrated from an
asymptotically flat region inwards. Far from the gravitational radius, deviations
from the Schwarzschild spacetime amount to perturbatively corrected mass and
redshift functions. As the gravitational radius is approached, however, quantum
corrections become non-perturbative and destroy the event horizon altogether,
producing instead a wormhole neck that connects to a null curvature singularity. In
situations where a constant-density classical matter fluid is introduced above this
wormhole neck, when the density of this sphere approaches certain critical value ρc

from below, we obtain configurations where the wormhole neck (now appearing in
the region filled with matter) becomes progressively smaller. Fig. 4.19 illustrates
this effect. The most striking difference between the classical and semiclassical
situations is the existence of ϵ-strict semiclassical stars beyond the Buchdahl limit.

The fact (see Chapter 1) that the Polyakov approximation must be modified
within some central radius (that we denote rcore hereafter), together with the
appearance of ϵ-strict spacetimes just by choosing a cutoff-regulator for the RP-RSET
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indicates that more elaborate regulators are potentially capable to generate fully
regular stars of arbitrary compactness. We will work with regulator functions F (r)
[appearing in the RSET components (1.14)] that differ from the usual Polyakov
form 1/r2 just for r < rcore but which are non-analytical, contrarily to the bare
cutoff (1.15). The semiclassical equations that we will solve (leaving F unspecified)
take the form

C =−8πr2p+ 2rψ + Fl2Pr
2ψ2

1 + 2rψ + Fl2Pr
2ψ2 , (5.1)

C ′ =8πr2ρ− C + Fl2Pr
2 (ψ2 + 2ψ′) (1 − C)

r + Fl2Pr
2ψ

. (5.2)

Our main result is the existence of an entire family of possibilities for F char-
acterized by the requirement of accommodating regular stellar configurations of
arbitrary compactness. Among these, there is a particular family of solutions which
is found when the compactness of the star is close to the BH limit, that is, amply
surpassing the Buchdahl bound. In this limit, their qualitative form is not very
much affected by the location of the surface with respect to the putative worm-
hole neck. These newly found stars display a three-layered structure that appears
schematically depicted in Figure 5.1.

The features of all the solutions obtained in this Chapter in the range r ∈ (rcore, R)
are universal for all the choices of F considered here. The characteristics of the
regular core r ∈ [0, rcore] depend on the particular form of F , which is obtained
following a reverse-engineering process: We assume that spacetime is regular inside
the core and smoothly connects with the bulk solution at rcore (specifically, we
assume an analytical pressure profile) and then solve the semiclassical equations
inside the core for the regulator, as the usual boundary-value problem. If the
regulator F is a regular function everywhere, we have solved the semiclassical
equations self-consistently and found a particular F that generates a regular star
surpassing the Buchdahl bound. The regulator is not unique. Slight deformations
of F translate into slightly deformed stellar cores. For any choice of rcore there
exist many regulators compatible with ultracompact regular configurations. We
will elaborate on these aspects in the upcoming Sections.

This Chapter is organized as follows. In Section 5.2 we summarize the main
findings from Chapter 4 regarding semiclassical criticality, ϵ-strict spacetimes, and
the most relevant features of classical and semiclassical stellar equilibrium that
were already presented there. Section 5.3 details our procedure to construct
stars with regular cores and the exploration of their associated space of solutions.
Section 5.4 examines the physical properties of semiclassical relativistic stars.
In addition, we derive analytical fits to the numerical solutions in terms of five
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Fig. 5.1.: Pictorial representation of a semiclassical relativistic star. The areal radius
r of spheres is shown in terms of a proper coordinate l, defined as dr/dl =

√
1 − C.

The vacuum region (gray dashed lines) is the semiclassical Schwarzschild solution
from Ch. 2 describing an asymmetric wormhole. The bulk (gray continuous lines)
is well described by the Polyakov approximation. This approximation breaks down
at the core of the star (black dashed lines), but it can be minimally modified to
adequately describe this region.

independent parameters. These fits are intended to be used in future studies as the
physical properties of the solutions can be modified in a smooth way by varying
the parameters. We conclude with some closing remarks in Section 5.5.

5.2 Summary of semiclassical stellar solutions

In the previous Chapter we exhaustively explored the space of semiclassical stellar
solutions of constant classical density through the RP-RSET and obtained an entire
catalog of regular and irregular solutions. We established a criteria for classifying
solutions in terms of a critical (separatrix) behavior in the mass that occurs beyond
certain value of the energy density ρc. Below we revisit the main differences
between the classical and semiclassical space of solutions focusing on the aspects
relevant for the current discussion. We provide illustrative diagrams for the classical
pressure and Misner-Sharp mass.
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Fig. 5.2.: Plots of the pressure (red) and Misner-Sharp mass (blue) of solu-
tions surrounding: (A) the classical critical solution with ρ = ρc; (B) the
classical separatrix in pressure; (C) the semiclassical critical solution with
F (r) = 1/(r2 + αl2P) , α = 1.01; and (D) a semiclassical ultracompact stellar so-
lution with a regular core of size rcore ≃ 0.2. For every integration, we have chosen
the values R = 1 and CR = 0.92 for visualization purposes. The values of ρ increase
from right to left in the pressure profiles (e.g. thin dashed lines correspond to
greater ρ than thin continuous lines).

5.2.1 Criticality and classical stellar solutions
Returning to Fig. 5.1 and having integrated the exterior portion of the spacetime
from the asymptotically flat region inwards with the RP-RSET, we start our bulk
integration, which takes as parameter the density ρ (4.8). In principle, given the
initial conditions {R,CR}, there is a critical value ρc for which the configuration
is regular all the way down to the center r = 0. When this does not occur (as for
stars with CR sufficiently close to 1), we consider ρc as the value of the density
corresponding to a qualitative change in the behavior of the compactness (or
the Misner-Sharp mass, equivalently) at the origin (see Sec. 4.4.2 for a thorough
discussion of this point).

The various regimes in our numerical integrations for a star that surpasses the
Buchdahl bound CR = 8/9 are represented in Figure 5.2. For strictly classical
stars ⟨T̂ µν ⟩ = 0 and the critical solution with ρ = ρc−clas (thick line in Fig. 5.2A)
has vanishing Misner-Sharp mass at r = 0, separating solutions with positive and
negative mass at r = 0. However, solutions with densities around ρc−clas exhibit
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pressures that diverge at some radius far away from r = 0 (thin dashed lines in
Fig. 5.2A). Stars with ρ ≫ ρc−clas have this infinite pressure surface pushed inwards
until, eventually, a solution where pressure diverges exactly at r = 0 is reached
(thick line in Fig. 5.2B). Pressure profiles surrounding this separatrix display a
large negative mass at r = 0. By increasing the value of ρ, pressure is made finite
everywhere at the cost of making the compactness function singular at r = 0.

The semiclassical situation shown in Fig. 5.2C under the simple regulator
choice (1.15) is radically different from the classical scenario and reveals appealing
properties. The first one is that the critical solution for ρ = ρc represents two
separatrices that appear together in mass and pressure (the separatrix corresponds
again to the thick lines in Fig. 5.2C). The second compelling property is manifested
for solutions where ρ ≲ ρc. For these sub-critical stars close to criticality (thin
continuous lines in Fig. 5.2C), m(r) acquires negative values followed by a bounce
back to positive values, eventually reaching a surface where a wormhole neck is
finally formed; the pressure reaches the neck with finite values (we have stopped
these integrations at the neck since it is a singular surface for the r coordinate).
There are sub-critical solutions with arbitrarily small necks.

Both aforementioned characteristics, i.e. a simultaneous separatrix behaviour
in mass and pressure and a vanishing central mass, must be fulfilled by any star
that is regular. Therefore, we vindicate that the Polyakov approximation manages
to generate ϵ-strict ultracompact stars, in the following sense. For the geometry
to be regular at the center of spherical symmetry, the mass function must vanish
there while having finite pressure. Hence, if we consider a small core around the
center, regular configurations will have small masses (due to continuity) and finite
pressures. This is not the case in the classical theory (Figs. 5.2A and 5.2B), where
finite pressures for configurations beyond the Buchdahl limit require large negative
values of the mass. Crucially, semiclassical physics is able to produce ultracompact
configurations compatible with this vanishing of the mass and a finite pressure
at a central core. Remarkably, the core can be Planck-sized for an ultracompact
stellar object of say radius R ∼ 3 km. Strict regularity is not fulfilled because of the
singularity at r = 0 of the Polyakov approximation (1.13). The CRP-RSET (1.15)
also fails to provide a strictly regular geometry (Fig. 5.2C), as a singularity beyond
a wormhole neck is produced inside the core.

5.3 Core regularization
The Polyakov approximation fails to capture the correct physics close to the radial
origin. We stress, as detailed in Subsec. 1.2.2, that deforming the Polyakov ap-
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proximation is not a choice, but a necessity to avoid its singular nature at r = 0.
We consider the minimal extensions to achieve this goal that go beyond the CRP-
RSET (1.15). We show in this Section that these minimal deformations of the
Polyakov approximation suffice to produce regular configurations in a generic way,
i.e., there exists a whole family of regulators F leading to regular configurations.

We follow a reverse-engineering logic which consists in making an ansatz for a
regular geometry in the range r ∈ (0, rcore) and then obtaining the regulator F that
sources the geometry via the RP-RSET, in case it exists. We derive an expression for
C from the rr component of the semiclassical equations (5.1) and replace it in the
tt component (5.2). Furthermore, through conservation of the classical SET (4.7),
we find the relation

p′′ = D
[
A0 + A1 (p′) + A2 (p′)2 + A3 (p′)3]

, (5.3)

where

A0 = − 8πr (ρ+ p)3 (ρ+ 3p) ,
A1 = 4 (ρ+ 3p)2

[
6πr2 (ρ+ p) + 4πF l2Pr2p− 1

]
,

A2 = − r (ρ+ p)
[
16πr2 (ρ− 2p) − l2P (2F + rF ′)

+8πF l2Pr2 (ρ+ 5p) − 8πF ′l2Pr
3p− 6

]
,

A3 = Fl2Pr
2
[
8πr2 (ρ− p) − l2P (2F − rF ′)

−8πF ′l2Pr
3p− 2

]
,

D = 2r
(
1 − l2PF

)
(ρ+ p)2

(
1 + 8πr2p

)
. (5.4)

By imposing an ansatz for the pressure and its derivatives in the region r ∈ [0, rcore],
Eq. (5.3) becomes a first-order differential equation for the regulator F which,
upon solving, determines the entire core geometry. Naturally, if the resulting
F is everywhere regular inside the core, compactness is regular from (5.1) and
consequently the spacetime metric.

We consider a pressure profile for the core [whose classical energy density is
constant, recall Eq. (4.8)] that is everywhere finite and has a global maximum
at r = 0 (conditions necessary for regularity). At rcore, continuity of the metric
enforces pressure to be continuous up to its second derivative. The simplest analytic
function that satisfies these conditions is the fifth-order polynomial

p = p0 + p′′
0r

2/2 + c0r
3 + c1r

4 + c2r
5, (5.5)
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where the pressure at the origin p0 and its second derivative p′′
0 are positive and neg-

ative constants, respectively. Determining the coefficients {ci}2
i=0 is straightforward

given the aforementioned conditions. Now we take a fixed numerical solution for
the bulk region r ∈ (rcore, R). This amounts to choosing a particular pressure profile
that results from integrating the semiclassical equations with the Polyakov or CRP-
RSET (this makes no difference as long as rcore ≫

√
αlP). Typically, we consider the

bulk pressure profile that corresponds to the critical solution ρc or a nearby solution
in the space of parameters. Given a core size rcore, the pressure function inside the
core is determined upon fixing the two remaining free parameters {p0, p

′′
0} by hand.

We performed a numerical exploration of wide range of values of the parameters
{p0, p

′′
0} given a set of fixed solutions for r > rcore. The results are represented in

Fig. 5.3, where whole parametric regions of regular solutions are shown. These
regions exist for central cores of any size, although the central values of the
curvature increase with decreasing rcore. We can impose the reasonable condition
K < 1/l4P on the Kretschmann scalar (1.10). Consequently, we encounter that the
value of rcore has a lower bound, as the RSET magnitudes required to regularize an
ϵ-strict configuration when rcore is extremely small become increasingly high. If, on
the contrary, we make the core bigger in size, the value of the Kretschmann scalar
at the center will diminish, as the RSET contributions can be distributed along a
bigger portion of the star instead of concentrated in a Planckian central core.

The existence of regular super-Buchdahl stars in semiclassical gravity is a re-
markably non-trivial result. Of course, the Einstein equations guarantee that any
given spacetime geometry (take, for example, a regular super-Buchdahl star) is
generated by some stress-energy tensor that will certainly violate energy conditions.
This should not be mistaken with our approach here, as we are imposing that
the pressure inside the core obeys a polynomial form and asking whether this is
compatible with a stress-energy tensor that can be divided in two parts: a classical,
uniform density perfect fluid and the Polyakov RSET multiplied by some radial
function. As it is not guaranteed that a prescribed geometry will be compatible
with the Polyakov RSET multiplied by a function, it might have happened that no
F existed for any regular ansatz. Hence, that this compatibility is realized for the
simple polynomial example in Eq. (5.5) is a strong indication that the Polyakov
approximation is able to capture an important fraction of the relevant physics.

The strictly regular solutions we have obtained have a clear interpretation in
terms of the regulating functions F . By modifying the regulator inside the core we
are distorting the space of solutions (Fig. 5.2D) so that the new critical solution
corresponds to a regular configuration. The regular separatrix solution exhibits
an interior region of negative mass (encompassing the core and part of the bulk)
that exerts the gravitational repulsion necessary to sustain the whole structure for
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Fig. 5.3.: The left and right panels denote the parameter space for the analytical-
pressure core of stars with R ≃ 163, CR = 1−10−4. We have chosen rcore/R = 0.037
and rcore/R = 0.125 for the core radius, respectively. The colored region denotes
entirely regular solutions. The horizontal axis is the quotient between the central
and the core-boundary pressures p0, pcore. The vertical axis is the quotient between
the second derivatives of the pressure at the origin, p′′

0, and at the core boundary,
p′′

core. We have not constrained the central curvature of these solutions to be non-
Planckian.

values of CR for which a sphere composed of a classical fluid alone would inevitably
collapse under its own gravity.

As the bulk geometry of the star is unaffected by the characteristics of the
regular core, the surface compactness CR and radius R are fixed constants in our
integrations. Therefore, the mass-radius diagram for semiclassical relativistic stars
shown in Fig. 1.1 is independent of rcore. The most remarkable feature that we can
extract from this diagram is that semiclassical relativistic stars can be arbitrarily
close to the BH limit. In fact, there is no further upper bound to the compactness
of these objects. Their surface can lie at the wormhole neck (CR = 1), being as
compact as BHs in terms of their mass distribution, but with a positive redshift
function everywhere (thus horizonless).

5.4 Physical properties and analytic fits
Let us discuss now the most remarkable physical characteristics of semiclassical
relativistic stars. Figure 5.4 contains a pictorial representation (analogous to
Fig. 5.1) but now with the metric functions overlaid. This Figure shows both the
pure vacuum solution (short-dashed lines), an example of a sub-critical super-
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Fig. 5.4.: Example of a semiclassical ultracompact star. The color code is the
following: in terms of a proper coordinate l we have drawn in green, red and
blue the dimensionless radial coordinate r(l)/R, the compactness C(l) and the
redshift function e2ϕ(l)/e2ϕ(R). The exterior spacetime (dashed, light-colored lines)
is the semiclassical Schwarzschild solution from Ch. 2 describing an asymmetric
wormhole. The interior spacetime (continuous lines) is an exact solution of the
semiclassical equations with the RP-RSET. At the core of the star this solution
develops a wormhole neck as well. The RP-RSET can be modified in the outskirts of
this interior neck to obtain a regular core (dashed, dark-colored lines). This Figure
is a version of Fig. 5.1 showing the metric functions.

Buchdahl star of the kind reviewed in Subsec. 4.5.4 from Chapter 4 (in continuous
lines), and a semiclassical relativistic star with a regular core (in long-dashed lines).
For the vacuum and bulk regions, F = 1/r2, while the core region has the regulator
F distorted in a way compatible with regularity.

Semiclassical stars have a compactness (or, equivalently, a Misner-Sharp mass)
that becomes negative in their interiors, vanishing at r = 0 from negative values.
This kind of regularized negative mass interiors require negative total energy
densities to exist, so the semiclassical density is growing negative enough to
compensate for the positive classical density. Such negative mass cores obey, at
r = 0, the expansions

C = − C0r
2 + O

(
r3
)
, p = p0 + p1r

2 + O
(
r3
)
,

ψ = ψ0r + O
(
r3
)
, F = F0 + O(r), (5.6)
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where C0, p0 and ψ0 are positive constants and F0 is constant with (yet) unknown
sign. Replacing these expansions in (5.2) and taking the r → 0 limit we obtain, at
leading order

− 3C0r = 8πrρ+ 2F0l
2
Prψ0 + O(r2). (5.7)

Evidently, having a central core of this kind requires a sufficiently negative central
semiclassical density, for which F0 ≡ F (0) < 0. The particular form adopted by
the regulator inside the core is tied to our analytical choice of pressure profile.
We can take other (non-analytical) pressure profiles that look very similar to the
polynomial fits (5.5) and the non-linearity of the semiclassical equations will return
a considerably different F , but always fulfilling F0 < 0. The polynomial pressure
core must not be taken as a reliable descriptor of the physics at the center of
semiclassical stars. Rather, it should be understood as a proof of the existence of
such configurations under minimal assumptions. Nevertheless, it is always the case
that a star with maximal pressure and whose mass vanishes from negative numbers
at r = 0 must have negative densities at the center. These negative densities can be
provided by a modified Polyakov approximation that reproduces four-dimensional
RSET approximations that are accurate near r = 0, such as the AHS-RSET [127].

Figures 5.5 and 5.6 show the Misner-Sharp mass and classical pressure profiles
for semiclassical relativistic stars with different core sizes. Given some rcore, the
mass profile inside the core is determined by our choice of the parameters p0 and
p′′

0. Larger cores have less negative Misner-Sharp mass, although these values are
distributed throughout a larger portion of the stellar interior. Larger cores also
allow for smaller values of p0.

Parametrized shapes

To end this Section we provide a family of analytical geometries that shows the
main characteristics of semiclassical relativistic stars. They exhibit a negative
mass region in the interior of the structure together with a redshift that decreases
inwards. This family accommodates qualitatively to foreseeable solutions found
using different approximation schemes to the RSET. Alternatively, it can be taken
as a parametrized phenomenological approach to this type of ultracompact objects.
They also reproduce the effect of varying the size of the core.

Defining r̂ = r/R, the five-parameter family of metrics is:

ds2 = −e2ϕ(r̂)dt2 +R2 [1 − C(r̂)]−1 dr̂2 +R2r̂2dΩ2
2, (5.8)
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Fig. 5.5.: Misner-Sharp mass for semiclassical relativistic stars stars with
CR = 0.96, R = 10 and rcore = 0.3R, 0.5R , 0.7R, respectively. As the regular
core is made smaller, the RP-RSET needs to attain larger magnitudes inside it.
Consequently, the Misner-Sharp mass reaches more negative values to compensate
for the gravitational pull of the outer layers of the star.
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Fig. 5.6.: Classical pressure for semiclassical relativistic stars stars with
CR = 0.96, R = 10 and rcore = 0.3R, 0.5R , 0.7R, respectively. As the regular core
is made larger, smaller central classical pressures are sufficient to maintain the
whole star in equilibrium.
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with

e2ϕ(r̂) =

1 − CR/(r̂ + β0), 1 ≤ r̂ < ∞

β1a
β2r̂2

0 + a1r̂
6ea2(r̂−1), 0 ≤ r̂ < 1

C(r̂) =

CR/r̂, 1 ≤ r̂ < ∞

β3 [cos (β4r̂) − 1] e−β4r̂ + a3r̂
2, 0 ≤ r̂ < 1

(5.9)

The constants {ai}3
i=0 depend on the 5 independent parameters {βi}4

i=0:

a0 =1 − CR + β0

β1 (1 + β0)
, a1 = 1 − CR

1 + β0
− β1a

β2
0 ,

a2 =
{

2β1a
β2
0 [3 − 2β2 log a0] + CR (7 + 6β0)

(1 + β0)2 − 6
}
a−1

1 ,

a3 =β3e
−β4 (1 − cos β4) + CR. (5.10)

Thus, the family of metrics (5.9) is characterized by five form parameters {βi}4
i=0

with a clear physical interpretation. β0 introduces an offset in the redshift e2ϕ(r)

associated with the fact that the external semiclassical metrics we have found are
almost Schwarzschild up to very close to the gravitational radius. β1 ∈ (0, e2ϕ(R))
represents the redshift at the origin. β2 ∈ [0, 1) controls the flatness of the redshift
profile in the interior region. Finally β3, β4 > 0 determine the width and depth of
the negative energy internal region. Figure 5.7 shows a comparison between a
numerical solution and the corresponding analytical fit.

5.5 Closing remarks
Neutron stars are the most compact relativistic stars known to exist. We have shown
that semiclassical gravity, the most straightforward and conservative extension of
GR, can accommodate more compact stellar configurations supported by quan-
tum vacuum polarization. This result has been obtained using a well-motivated
semiclassical source given by a minimal deformation of the Polyakov approxima-
tion. Our scheme is approximate and, despite its limitations, i.e. ambiguities in
specifying the RP-RSET, the signature properties of semiclassical stars (namely, a
negative-mass interior surrounded by a positive-mass crust and classical pressures
that increase monotonically towards the center) hold for all the solutions explored
here. A semiclassical star surpassing Buchdahl’s limit with maximal pressure at
r = 0 always displays a negative-mass interior [see Eq. (5.7)]. Thus, given the
ambiguities of our construction (and which are inherent to semiclassical theories)
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Fig. 5.7.: Comparison between a numerical solution describing a semiclassical ultra-
compact object (continuous lines, compactness C(r) in blue and redshift ϕ(r) in red)
and a particular solution of the parametrized family of geometries (5.9) (dashed
lines). The numerical solution is the separatrix from Figure 5.2D. The parame-
ters of the analytical fit are β0 = 10−4, β1 = 2.14 × 10−7, β2 = 0.905, β3 = 42.8 and
β4 = 16.8.

we should understand semiclassical relativistic stars not as a definite model whose
characteristics are tightly constrained, but as a novel type of exotic compact object
whose specific properties will depend on the modeling of the RSET, but for which
semiclassical effects are definitely responsible.

Semiclassical contributions are suppressed by lP, so significant quantum con-
tributions need of some other scale that compensates for this suppression. As
seen in Section 4.5 [Eq. (4.49), specifically], this suppression is eliminated in the
C(R) → 1 limit, for which the RSET becomes an O(1) contribution. Based on
this argument, stars whose surface is extremely close to its gravitational radius
receive notable semiclassical corrections. However, there is another scale that
produces significant semiclassical contributions: the proximity to the Buchdahl
limit. As the surface compactness of a constant density sphere approaches 8/9,
spacetime curvature grows unboundedly at r = 0, triggering a divergence in the
RSET components [167]. The backreaction of the RSET can then add an extra
repulsion that prevents pressure from diverging and allows to surpass the Buchdahl
limit. This transition can be observed in the mass-radius diagram from Fig. 1.1. We
find whole families of semiclassical stars whose surface compactness ranges from
the Buchdahl limit to the BH limit itself. The phenomenological implications of this
result are promising, as they allow to probe the observational properties of exotic
compact objects at nearly unexplored compactness values [216].
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Following this line of thought, semiclassical relativistic stars are the result of a
balance between classical and quantum effects. In fact, these stars have classical
energy densities much larger than the typical volumetric density associated with
fluid spheres of mass M and radius R (compare ρc and ρc-clas in Fig. 4.12). These
large classical densities are however compensated by correspondingly large negative
semiclassical densities, so that the total positive mass M is given by the offset
between the two. This might imply that semiclassical relativistic stars cannot be
obtained from the adiabatic collapse of a less compact uniform density fluid sphere
and that some alternative process must be involved in their formation. The role
of semiclassical physics in changing the outcome of gravitational collapse is a
vivid subject of debate [217], specially in what refers to the evolution of inner
horizons [116]. Another crucial aspect is the stability of the static stars found here
against various perturbations. An important obstruction to address this problem
is the absence of well-defined dynamic semiclassical equations on which we can
analyze the growth or decay over time of perturbations. For this purpose, an RSET
that is dynamical and regular at r = 0 should be first found.

Lastly, we want to highlight the close resemblance between semiclassical stars and
gravastars [91]. Gravastars have positive interior densities and are supported by
negative pressures, resembling a de-Sitter interior, whereas semiclassical stars have
positive pressures but negative energy densities. The SET of a gravastar violates
the strong energy condition but satisfies the null one, and the converse occurs for
the total SET of semiclassical stars. Even within semiclassical gravity evidence for
configurations resembling gravastars has been found [114]. Semiclassical stars,
contrarily to gravastars, do not need any matter shell with anisotropic pressures at
their surface [162].

A clear extension of this work is to analyze whether similar solutions exist when
using the AHS-RSET, which is (3 + 1)-dimensional [127]. This RSET is a perfectly
well-defined source in stellar spacetimes, with the shortcoming that it exhibits high-
order terms in the derivatives of the metric. To conclude this thesis, we present,
in the next Chapter, a method of reduction of order that transforms the high-
derivative terms in the AHS-RSET into low-derivative ones, yielding a novel RSET
approximation that is amenable to backreaction studies in vacuum spacetimes and
relativistic stars. Using this approximation, we have found preliminary evidence
for the existence of stellar spacetimes with akin characteristics (i.e. surpassing the
Buchdahl limit by means of a negative mass interior). While we finish polishing
all the aspects of this work, we include in this thesis some preliminary results
supporting this statement and an exhaustive analysis of the corresponding vacuum
solutions. These investigations suggest the existence of new stages of stellar
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equilibrium beyond relativistic stars without the need for new physics beyond the
effects of quantum vacuum polarization.
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Beyond the Polyakov
approximation:
order-reduced
semiclassical gravity

6

6.1 Introduction
In this Chapter we will explore a different analytical approximation to the RSET
based on applying a perturbative order-reduction procedure to the analytical
AHS-RSET [127]. We will work out this procedure in detail and use it to find
vacuum and stellar semiclassical solutions. Apart from developing this alternative
approximation scheme, one of the central interests of these explorations is to extract
robust physical conclusions that are preserved when changing the approximation
scheme. An example of such robust conclusions could be that in static situations
event horizons disappear and are replaced by pathological singularities, as shown
in Chapter 2 and previous works [112, 218]. We present some early work showing
that semiclassical stars are realized under an order-reduced version of the AHS-
RSET, and that their characteristics are very similar to the solutions presented in
Chapter 5.

6.1.1 The AHS-RSET: strengths and shortcomings
In [127], Anderson, Hiscock and Samuel derived the RSET of a scalar field of
arbitrary mass and coupling in static and spherically symmetric spacetimes, i.e. a
field obeying the equation of motion

□ϕ−
(
m2 + ξR

)
ϕ = 0, (6.1)

where □ is the d’Alembertian operator, m is the field mass, and ξ the coupling to
the Ricci scalar R. As already discussed in the Introduction, this exact RSET can
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be decomposed into two independently conserved parts, one of which is entirely
analytical and the other requires numerical calculation,

⟨T̂ µν ⟩ren = ⟨T̂ µν ⟩AHS + ⟨T̂ µν ⟩num. (6.2)

The analytical portion ⟨T̂µν⟩AHS already captures the defining features of the stan-
dard vacuum states at horizons, yields the correct trace anomaly in the conformally
invariant case (m = 0, ξ = 1/6), and is well defined at the center of stellar space-
times (with a caveat shown in Appendix C.2, where the explicit form is provided).
This last characteristic is absent in the Polyakov approximation. Nonetheless, as a
drawback, the analytical part, or AHS-RSET, exhibits terms that have up to fourth
order derivatives of the metric functions (these expressions were also derived
by Popov for the Boulware state [219]). Their presence is a consequence of the
quasi-local nature of the regularization procedure and they bring an enlargement
of the space of solutions of semiclassical gravity with respect to standard GR (a
straightforward demonstration of which is the enlargement of the initial conditions
necessary to have a well-posed initial value problem).

However, as it is clearly exposed in [140, 141, 144], many of these solutions
cannot be regarded as physical. On the one hand, these higher-derivative equa-
tions exhibit non-physical solutions in a manner analogous to the Dirac-Abraham-
Lorentz equation of classical electrodynamics [148] (e.g. runaway solutions, pre-
acceleration effects). Bear in mind that, while such pathologies are linked to the
presence of higher-order temporal derivatives [220], higher-order spatial deriva-
tives can also entail the presence of non-physical solutions, see e.g. [221].

On the other hand, there is the argument made by Simon [222] that such
solutions are non-perturbative in h̄, and therefore inconsistent with the idea that
the semiclassical equations (1.6) are derived upon truncating the effective action
of the theory at linear order in h̄ [141, 223]. This process should eliminate all non-
perturbative behavior in h̄ from the start. In addition to these problems, it is the
case that finding the self-consistent solutions to the higher-derivative semiclassical
equations by brute force, despite being doable in some situations (see [221]),
requires exploring an enormous space of parameters and defining a trustworthy
criterion for selecting which solutions are physical. Henceforth, it is reasonable to
subject the AHS-RSET to a procedure of order reduction so that we are left with a
second-order system of differential equations.

We will work out in detail the method of reduction of order in the next Section
but, before that, let us advance a few observations. As we will see, the procedure
of the order reduction naturally leads to a new analytical approximation for the
RSET which satisfies all the desirable properties that an RSET should have (as
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captured by Wald’s axioms [224], which exact RSETs obtained through covariant
regularization procedures satisfy). We then apply our method towards obtaining
geometries incorporating semiclassical backreaction in the absence of classical
matter. In cosmological scenarios, the order-reduced equations admit analytical
solutions [144, 154, 155]. On the contrary, the geometries here obtained are found
through numerical integration, but analytic arguments allow to constraint the form
of the various solutions that appear.

Before ending this Introduction, it is worth highlighting the advantages and
limitations of the analytical approximation to the RSET obtained in [127]. To which
extent the very AHS-RSET is a good approximation to the total RSET depends on
the background geometry on which it is evaluated and on the mass of the scalar
field. Dependence on the background requires computing ⟨T̂ µν ⟩num in each scenario
and check whether the correction it entails can be safely neglected compared
to ⟨T̂ µν ⟩AHS. For conformally invariant fields in the Schwarzschild BH spacetime,
⟨T̂ µν ⟩AHS reduces to the Page-Brown-Ottewill RSET [225], which has been shown
to be an extremely good approximation [134]. In Reissner-Nordström spacetimes,
however, the AHS-RSET becomes a progressively worse approximation as the
charge-to-mass ratio is increased [127]. Whether something similar occurs in other
spacetimes (like regular stellar geometries) is yet to be known.

As for the effect of the field mass, in flat spacetime the components of the
AHS-RSET reduce to

⟨T̂ rr ⟩ AHS = κ4

1440π2 − κ2m2

96π2 + m4

128π2 (4 log ν − 3) ,

⟨T̂ tt ⟩AHS = − κ4

480π2 + κ2m2

96π2 + m4

128π2 (4 log ν + 1) , (6.3)

with ⟨T̂ θθ ⟩AHS = ⟨T̂φφ ⟩AHS = ⟨T̂ rr ⟩AHS. The first term on the right-hand side of (6.3)
is the thermal bath seen by a static observer for which the field is in a state
with nonzero temperature κ/2π. For massive fields, ν can either equal meγ/2κ or
m/2λ depending on whether the field is in a thermal or zero-temperature state,
respectively (λ is a positive parameter related to an infrared cutoff in the otherwise
divergent frequency integrals in [127] and γ is Euler’s constant). For massless
fields, ν is an arbitrary parameter. Ambiguities present in RSET definitions have to
be ultimately fixed via experiments. A suitable RSET is unique up to the addition of
a local, conserved quantity, thus the local physics described by it is ambiguous (we
had to deal with a similar form of ambiguity already within the framework of the
Polyakov approximation). One crucial aspect of backreaction analyses is whether
robust physical conclusions can be extracted despite this ambiguity in the local
terms. One such conclusion would be the non-existence of event horizons for fields
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in the Boulware state, as the divergence of a vacuum state is not a local property,
but a signature of the global field modes becoming singular at some region of
spacetime.

Recall that suitable RSETs must reproduce standard results in Minkowski space-
time, where the RSET can be renormalized to zero via normal ordering [34]. In the
zero-temperature massive case, the AHS-RSET (6.3) has mass-dependent anoma-
lous contributions in flat spacetime that cannot be canceled in all components
by a particular choice of ν. These contributions also arise in the context of the
cosmological constant problem [226], where massive scalar fields in Minkowski
generate non-vanishing quantum pressures and densities. As the involved integrals
over the frequency are divergent, some regularization method must be applied.
Those which violate Lorentz invariance (like a bare cutoff in the frequency) yield an
effective quantum fluid that does not satisfy the equation of state of vacuum energy.
The infrared cutoff λ plays a similar role here, as the components (6.3) describe a
cosmological constant only in the ν → 0 and ν → ∞ limits, the latter corresponding
to the absence of any infrared cutoff λ in the renormalization procedure. In that
case, the RSET components (6.3) diverge, although in a way that satisfies the
equation of state of vacuum energy. As this discussion extends beyond the scope of
this thesis, we adopt the view that the analytical approximation alone cannot be
trusted if the field is massive since, in BH spacetimes, their components will be non-
vanishing in the asymptotically flat region for the Boulware state. Consequently,
we set m = 0 for the remaining of this work.

The Chapter is organized as follows. Section 6.2 describes the order-reduction
procedure and the derivation of the order-reduced RSET approximation in the
Boulware vacuum state. Then, in Section 6.3 we solve the semiclassical equations
in vacuum self-consistently using this new RSET approximation and analyze the
characteristics of the solutions. Section 6.4 discusses the accuracy of the order-
reduced RSET (OR-RSET) by addressing how it differs from the AHS-RSET for
particular solutions. Additionally, we compare these results with our analysis from
Chapter 2 using the CRP-RSET in Subsec. 6.4.1. In particular, we discuss which
elements are specific of the approximation and which ones are more generic. We
have included some preliminary application of the method of reduction of order to
constant-density stars in Section 6.5. We conclude in Section 6.6 with a summary
of our results.
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6.2 Reducing the order of the AHS-RSET in
vacuum

The order reduction procedure did not originate in semiclassical analyses, but is
much older and emerged in the context of the electromagnetic radiation reaction
equation [149]. The method applies to any theory where higher-order contri-
butions in a set of ordinary differential equations are multiplied by some small
parameter [150, 152] in terms of which the solutions can be expanded.

In the context of semiclassical gravity, order reduction was first applied to prove
the stability of flat space [222] and the absence of a Starobinski inflationary phase
driven by semiclassical backreaction [155]. Then, it has been applied as well
for obtaining the dynamics of Friedmann-Lemaître-Robertson-Walker and Kasner
cosmologies [144, 154, 227] and the study of averaged energy conditions [140].
Here we present the first application of this method to static and spherically
symmetric spacetimes. We slightly change the notation with respect to previous
Chapters and write the line element as

ds2 = −f(r)dt2 + h(r)dr2 + r2dΩ2, (6.4)

where dΩ2 is the line element of the unit 2-sphere.

The tt and rr components of the vacuum semiclassical equations 1.6 now take
the form

h(1 − h) − rh′

h2r2 = 8πh̄⟨T̂ tt ⟩AHS,

rf ′f − fh

fhr2 = 8πh̄⟨T̂ rr ⟩AHS, (6.5)

where the right-hand side contains higher-derivative terms. The concrete and
lengthy form of the AHS-RSET, which is not very illustrative, can be seen in [127];
we recall it here in Appendix C for completeness. Neglecting terms O(h̄) in (6.5)
leads to

h(1 − h) − rh′

h2r2 = O(h̄),

rf ′ + f − fh

fhr2 = O(h̄). (6.6)

These expressions can be differentiated consecutively to derive recursion relations
between f, h, and their higher-order derivatives {f (n)}∞

n=1 and {h(n)}∞
n=1. For h,
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said relations are obtained by solving the tt equation directly, which can then be
used to derive the f relations from the rr equation. The result is

h(n) = (−1)n n!hn
rn

(h− 1) + O(h̄),

f (n) = (−1)n+1 n! f
rn

(h− 1) + O(h̄). (6.7)

Relations (6.7) are now inserted in the AHS-RSET components ⟨T̂ tt ⟩AHS and
⟨T̂ rr ⟩AHS (Sec. C.1 in App. C) until they only depend on f and h. After a lengthy
but straightforward calculation using symbolic computation software, the resulting
expressions are

16π2⟨T̂ tt ⟩OR = − κ4

30f 2 + κ2
(
ξ − 1

6

) 3 (h− 1)2

6fhr2 + (h− 1)2 (h2 + 6h+ 33)
480h2r4

−
(
ξ − 1

6

) (h− 1)2 (h2 + 2h+ 5)
8h2r4 ,

16π2⟨T̂ rr ⟩OR = κ4

90f 2 − κ2
(
ξ − 1

6

) (h− 1) (h+ 3)
6fhr2 − (h− 1)2 (h2 + 6h− 15)

1440h2r4

+
(
ξ − 1

6

) (h− 1)2 (h+ 3)2

24h2r4 , (6.8)

where the suffix OR stands for Order-Reduced. Taking κ = 0 selects the Boulware
vacuum state. On the other hand, by taking κ equal to the surface gravity of the
Schwarzschild BH we ensure the finiteness of the RSET components at the horizon,
thus selecting the Hartle-Hawking vacuum state.

So far, we have applied the method of order reduction to the tt and rr components
of the AHS-RSET. If we continue and apply the same method to the angular
components of the AHS-RSET, it turns out that the set of order-reduced field
equations do not satisfy the Bianchi identities [152]. In other words, we find that
the order-reduced RSET is not covariantly conserved, but satisfies

∇µ⟨T̂ µν ⟩OR = O(h̄). (6.9)

However, as it is discussed just below, we propose a different algorithm for order
reduction that leads to a covariantly conserved RSET. This will be used in our
analysis of solutions.
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6.2.1 The covariantly conserved OR-RSET and its properties

The method followed to obtain a covariantly conserved RSET is already familiar to
us: we just need to add the angular components needed to obtain conservation.
This is identical to what we did to obtain the RP-RSET (1.14). The only non-trivial
component of the divergence of the OR-RSET (6.9) is

∇µ⟨T̂ µr ⟩OR = ∂r⟨T̂ rr ⟩OR + 2
r

(
⟨T̂ rr ⟩OR − ⟨T̂ θθ ⟩OR

)
+ f ′

2f
(
⟨T̂ rr ⟩OR − ⟨T̂ tt ⟩OR

)
. (6.10)

Using the expressions for ⟨T̂ tt ⟩OR and ⟨T̂ rr ⟩OR in Eq. (6.8) we can deduce the angular
components necessary to force this divergence to vanish. Specifically, we find

16π2⟨T̂ θθ ⟩OR =16π2⟨T̂φφ ⟩OR = κ4

90f 2 − κ2
(
ξ − 1

6

)
f (h2 + 3) + f ′ (h− 1) (h− 3)

12f 2hr

− h− 1
1440fh2r4

{
f
[
h3 (r − 1) + h2 (3r − 5) + 3h (r + 7) − 15 (r + 1)

]
+f ′ (h− 1)

(
h2 + 6h+ 21

)}
+
(
ξ − 1

6

)
h− 1

24fh2r4

{
f (h+ 3)

[
h2 (r − 1) − 2h+ 3 (r + 1)

]
+rf ′ (h− 1)

(
h2 + 3h+ 6

)}
. (6.11)

We have thus constructed a new approximation to the RSET valid for beackreaction
studies in vacuum spacetimes. The OR-RSET approximation is divergenceless,
yields the correct values at the event horizon, and vanishes in flat spacetime in the
Boulware state. It therefore satisfies all Wald’s axioms [224]. In addition, it is not a
higher-derivative quantity, which makes it an excellent RSET candidate to address
the semiclassical backreaction problem.

Before turning to analyze the set of self-consistent solutions of these semiclassical
equations, let us make a few further observations. On the one hand, the reduction
of order in the vacuum case gets rid of the ν parameter. This allows us to give
unique and unambiguous results for the corresponding solutions, and simplifies
the analysis significantly.

On the other hand, when the OR-RSET is evaluated on the Schwarzschild space-
time, f(r) = h(r)−1 = 1 − 2M/r, we realize that it gives the exact result

⟨T̂ µν ⟩(Schw)
OR = ⟨T̂ µν ⟩(Schw)

AHS . (6.12)
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This is not surprising upon realizing that the Schwarzschild metric is an exact
solution to Eq. (6.6), thus the O

(
h̄2
)

terms neglected in our expansion vanish
identically. Therefore, for the Schwarzschild metric only, the reduction of order is
an exact procedure, i.e. the OR-RSET coincides with the AHS-RSET. Furthermore,
considering arbitrary spherically symmetric spacetimes and restricting ourselves to
the m = 0, ξ = 1/6 case, the trace of the OR-RSET is state-independent.

6.3 Classification of vacuum solutions
Equipped with the OR-RSET from Eqs. (6.8) and (6.11), we are now ready to
address the backreaction problem. In principle, the domain of consistency of the
order reduction à la Simon [222] is limited to solving the order-reduced equations
(expressions displayed below) perturbatively [140]. This requires assuming from
the onset that the Einstein tensor and the OR-RSET admit perturbative expansions
in h̄ and then solve the expanded equations order by order. Whereas entirely
consistent, this logic eliminates the possibility of any non-perturbative backreaction
effect associated with the Boulware state, which any proper RSET should capture
as well, and which is responsible for the interesting physics that we have discussed
in an important part of this thesis. We stick to our modified gravity perspective and
solve the semiclassical equations in a self-consistent fashion. We will review the
logic behind this approach and on the comparison between results derived with the
CRP-RSET in Subsec. 6.4.1. For the moment, its just necessary to keep in mind that,
regardless of its origin, the OR-RSET satisfies all the requirements for a legitimate
semiclassical source, and in the following we are treating it as such.

In this Section, we will classify the self-consistent semiclassical solutions in
vacuum for arbitrary coupling ξ and ADM mass M (note that in this Chapter we
use the symbol M instead of MADM as in Chapters 4 and 5). The geometries here
depicted also describe, for M > 0, the spacetime exterior to any static stellar
configuration in this approximation.

The tt and rr components of the semiclassical equations with the OR-RSET in
Eq. (6.8) can be cast in the form of a dynamical system

h′ = − (h− 1)h
r

+ l2P
r3 (h− 1)2

[
(ξ − ξc)h2 + 2

(
ξ − ξc + 1

30

)
h+ 5

(
ξ − 83

300

)]
,

(6.13)

f ′

f
= (h− 1)

r
+ l2P

3hr3 (h− 1)2
[
(ξ − ξc)h2 + 6 (ξ − ξc)h+ 9

(
ξ − 25

3

)]
, (6.14)
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where l2P = h̄/16π (notice the redefinition of this symbol with respect to previous
Chapters) and ξc = 11/60. We have solved this system of equations numerically by
imposing asymptotically flat boundary conditions at some distant radius, namely
requiring that

f (r) = h (r)−1 = 1 − 2M
r
, (6.15)

in the limit r → ∞ (in practice, we are considering r ≫ M). Depending on the
sign of the ADM mass M (again, notice the slight notation change with respect to
Chapters 4 and 5), we find two distinct types of solutions. The regime of interest
for us is M > 0, as it describes the Schwarzschild counterpart and the exterior
geometry of relativistic stars in order-reduced semiclassical gravity. Furthermore,
for M > 0, there is a critical value of the coupling

ξc = 11/60, (6.16)

that denotes a separatrix between two regimes of solutions. The special value ξc

appears as a correction (originated by the trace anomaly) to the conformal coupling
ξ = 1/6 for which Eq. (6.1) becomes invariant under conformal transformations.

In what follows, we turn to describe the main features of the numerical solutions
we have obtained, while also providing analytic arguments to constrain the form of
the solutions whenever possible.

6.3.1 Positive asymptotic mass (M > 0)

Coupling ξ < ξc

Starting from the asymptotic expressions (6.15), it is possible to constrain the form
of the solutions to Eqs. (6.13, 6.14) for the case ξ < ξc through simple analytic
arguments. First, we turn our attention to Eq. (6.13). It is straightforward to check
that its right-hand side is always negative. Conditions (6.15) guarantee that h > 1
asymptotically, so h increases inwards with no turning points. In principle, the
function h could adopt one of the following behaviors: i) reaching a finite value
at r = 0, ii) diverging at r = 0, or iii) diverging at r > 0. As for possibility i),
the semiclassical equations enforce the conditions h(0) = 1 and h′(0) = 0. Let us
prove this statement by assuming that the following expansions hold for the metric
functions around r = 0:

h =
∞∑
n=0

hnr
n, f =

∞∑
n=0

fnr
n. (6.17)
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By replacing them in Eqs. (6.13, 6.14), we obtain the following values for the
lowest order expansion parameters

h0 =1, h1 = f1 = h3 = f3 = 0,

h2 = 3
2l2P (4ξ − 1) , f2 = (90ξ − 17)

15 (4ξ − 1)f0, (6.18)

with f0 > 0 a constant denoting the value of the redshift at the origin. Under
these conditions, r = 0 is a regular point of the solution. Now, since we have
h > 1 asymptotically and h cannot have turning points, possibility i) is discarded,
as a finite value of h at r = 0 must be a maximum (or minimum). Regarding the
behavior ii), an infinite h(0) is inconsistent with Eq. (6.13) which, at leading order,
would take the form

h′ ∝ h4

r3 . (6.19)

Solutions are inconsistent with assuming a divergent h at r = 0. Thus, we must
discard possibility ii) as well. In conclusion, iii) holds and h must diverge at some
radius r = rD > 0.

Let us highlight that the OR-RSET is finite for spherically symmetric spacetimes
which are regular at r = 0. This is so even under the fact that the OR-RSET
is derived assuming the absence of any classical matter, for which the resulting
classical solutions are all singular (excluding flat spacetime, for which the RSET
vanishes in the Boulware state). This characteristic is appealing because it suggests
that our method is well defined for stellar spacetimes, a characteristic absent from
the Polyakov [156] and s-wave approximations [101] (if unregularized). See
Sec. C.2 in App. C for a discussion on the regularity of the AHS-RSET.

We now turn our attention to the differential equation for f , Eq. (6.14). In virtue
of (6.15) we have, asymptotically, f > 0 and f ′ > 0. Again, the term between
brackets on the right-hand side of the equation is negative. Thus, if h increases
monotonically as r decreases, these negative terms will eventually compensate
the positive contribution from the first term on the right-hand side, generating a
turning point in the f function.

We analyze now the divergent behavior of h at some radius r = rD > 0. Close to
rD, Eqs. (6.13, 6.14) are approximated by

h′ ≃ l2P
r3

D
(ξ − ξc)h4,

f ′

f
≃ l2P

3r3
D

(ξ − ξc)h3. (6.20)
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Fig. 6.1.: Panels A and B: self-consistent semiclassical solutions with M = 1 for
fields of coupling ξ = 0 and ξ = 1, respectively (the values have been chosen for
illustrative purposes). The geometry with ξ ≤ ξc (in particular, ξ = 0) is a timelike
naked singularity whereas for ξ > ξc (in particular, ξ = 1) we have a regular
geometry with Planckian curvatures. Panels C and D: self-consistent semiclassical
solutions with M = −1 for fields of coupling ξ = 0 and ξ = 1, respectively. For
ξ < 83/300 (in particular, ξ = 0), the geometry describes a core of negative Misner-
Sharp mass m(r), at whose center the redshift can be maximal (if ξ ≤ ξc) or
minimal (if ξc < ξ ≤ 83/300). For ξ > 83/300 (in particular, ξ = 1) the geometry
has a null singularity at the surface where h and f vanish.

The differential equation for h can be integrated directly, yielding

h ≃ rD

[
3l2P (ξc − ξ)x

]−1/3
, (6.21)

where x = r − rD. Replacing this expression in the equation for f returns

f ≃ fD

x1/9 , (6.22)

where fD is a positive integration constant bearing a relation with the ADM mass
M , not relevant here.
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The curvature scalar adopts the expression

R = 2
r2

(
1 − 1

h

)
+ 2
hr

(
h′

h
− f ′

f
+ rf ′h′

4fh

)
+ 1

2h

(f ′

f

)2

− 2f ′′

f

 . (6.23)

Near r = rD, where the approximate solutions (6.21) and (6.22) hold, the curvature
scalar (6.23) becomes

R ≃ −χ0x
−5/3, (6.24)

with

χ0 = 8
9rD

[
l2P (ξc − ξ)

9

]1/3

. (6.25)

In view of Eq. (6.24), the metric has a curvature singularity at r = rD. This is
a consequence of allowing the Boulware state to backreact onto the background
geometry in a self-consistent (and non-perturbative) way.

The reader can consult panel A in Fig. 6.1 for plots of the metric functions in
terms of r. As numerical integrations of Eqs. (6.13, 6.14) reveal, rD is a surface
located slightly above the classical Schwarzschild radius 2M . The radial distance
∆D = rD − 2M depends on the ADM mass of the geometry for every fixed value of
the coupling ξ. Fig. 6.2 contains some example cases for various ξ. As M increases,
∆D tends to the ξ-dependent constant ∆∞. Figure 6.3 shows that ∆∞ decreases as
ξ increases, vanishing in the ξ → ξc limit, i.e. the configuration with the highest ξ
belonging to this family.

Coupling ξ = ξc

Now we turn to analyze the particular case where ξ = ξc. In this situation, similar
analytic arguments as the ones exhibited above apply to Eq. (6.13), that is, h grows
monotonically inwards until it diverges at some finite radius rD as above. The f
function, however, does not reach a turning point, since the O(h2) and O(h) terms
between brackets at the right-hand side in (6.14) vanish and the O(h0) terms are
suppressed by l2P with respect to the O(l0P) terms. Close to rD, the field equations
admit the expansions

h′ ≃ − l2P
15r3

D
h3,

f ′

f
≃(15r2

D + 2l2P)
15r3

D
h. (6.26)
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Fig. 6.2.: Radial distance ∆D = rD − 2M as a function of the ADM mass M for
different values of the coupling ξ. The green, orange and blue curves correspond
to ξ = {1/6, 0,−1/2}, respectively. The distance ∆D vanishes in the M → 0 limit
and quickly reaches a constant value as M increases.
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Fig. 6.3.: Asymptotic value of the radial distance ∆∞ obtained as M is increased.
This quantity diverges as ξ → −∞ and decreases with increasing ξ, vanishing in
the ξ → ξc limit.
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Integrating them and expanding the solution for f in powers of x = r− rD we have

h ≃

√√√√15r3
D

2l2P
x−1/2,

f ≃fc

1 + 60r2
D + 8l2P√
2r3

DlP
x1/2

 , (6.27)

with fc > 0. The critical solution ξ = ξc has divergent h but vanishing redshift
function f at rD. This results again in a curvature singularity at r = rD such that
the curvature scalar

R ≃ −15r2
D + 2l2P
60rD

x−1, (6.28)

diverges slower than in Eq. (6.24).

Coupling ξ > ξc

Increasing the coupling beyond its critical value ξc results in geometries of a
drastically different nature.

We draw our attention to Eq. (6.13) first. At large r there is an initial tendency
of h to increase inwards which will eventually be reverted by the (now positive)
contribution coming from the O(h4) term in the right-hand side of (6.13). Hence,
h cannot diverge towards positive infinity at finite radius. Similarly, h cannot
vanish at some positive r since that would necessarily imply h = 1 there. Because
of (6.13), h is bounded from below by the value h = 1, which corresponds to a
minimum for h. The only remaining possibility is that h goes to a constant value
at r = 0. Recall that the only value of h(0) consistent with Eq. (6.13) is h(0) = 1
—see Eqs. (6.17, 6.18)— which corresponds to a finite Ricci scalar at r = 0. On
the other hand, the f function decreases monotonically from the asymptotic region
inwards, reaching a finite value at r = 0, as the term within brackets in Eq. (6.14)
is everywhere positive for ξ > ξc.

The metric functions obtained from numerical integration of the Eqs. (6.13, 6.14)
are displayed in Fig. 6.1B. Despite being regular, these spacetimes are not well
defined from a semiclassically-consistent perspective, as their curvature scalars have
Planckian magnitudes. Indeed, inserting Eqs. (6.17) and (6.18) into Eq. (6.23), we
obtain

R = 45 (ξ − 16/75)
8l2P(ξ − 1/4)2 + O

(
r2
)
, (6.29)

close to the origin.
The metrics from Figs. 6.1A and 6.1B are similar for r ≫ 2M , i.e. the region

where semiclassical corrections are perturbative. Thus, within their regimes of
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validity, these geometries approximate well the exterior spacetime of any semiclas-
sical stellar object for any field coupling ξ to the curvature . We will define a criteria
to estimate the closeness between solutions to the order-reduced and higher-order
systems in the next section.

So far we have classified the space of vacuum solutions with positive ADM mass.
For couplings ξ ≤ ξc we find geometries where the event horizon gets replaced by a
naked curvature singularity. For couplings ξ > ξc we obtain regular spacetimes with
curvatures that become Planckian below the region where the event horizon would
have appeared. This drastic change of behavior can be traced back to which point-
wise energy conditions [108] the OR-RSET violates depending on the coupling
near the would-be event horizon: for ξ ≤ ξc the null energy condition is violated
and the strong energy condition holds, whereas for ξ > ξc both the null and strong
energy conditions are violated.

6.3.2 Negative asymptotic mass (M < 0)
For the sake of completeness, we provide here detailed descriptions of the geome-
tries obtained when Eqs. (6.13, 6.14) are integrated for negative ADM mass. In the
classical theory, M < 0 corresponds to a naked singularity. In some situations, the
semiclassical backreaction can even regularize these singularities. This characteris-
tic is of interest to the study of stellar spacetimes for reasons that will become clear
in what follows.

We first address the case ξ ≤ ξc. For M < 0 we have in virtue of Eq. (6.15)
that h < 1, h′ > 0, f > 1, and f ′ < 0 asymptotically. By inspection of Eq. (6.13)
we observe the RSET contribution (i.e. the terms within brackets) is everywhere
negative for ξ ≤ ξc. As the equations are integrated inwards, these contributions
will decrease, cancelling the O(l0P) term, until h reaches a minimum. Afterwards,
consistency of Eq. (6.13) indicates that h can only grow inwards until reaching
h = 1 at r = 0, where the resulting solution is described by the expansions (6.18)
derived previously (which hold for M < 0 as well). On the other hand, f must
increase monotonically inwards (since the right hand side of (6.14) is always
negative) and it can only reach a finite value at r = 0 [again obeying Eq. (6.18)],
while h lies always below h = 1 for r > 0, which would correspond to a maximum.

Near r = 0, the expansion of the metric functions (6.18) now enforces h2 < 0
and f2 > 0. Numerical integration of the semiclassical equations is displayed in
Fig. 6.1C. This solution has a clear interpretation in terms of the Misner-Sharp mass
m(r) = r (1 − h−1) /2 [41, 228], which is negative everywhere. In the classical
solution, this mass would be m(r) = −M and would inevitably generate a curvature
singularity at r = 0. Here, the zero-point energies from the scalar field provide a
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(positive) contribution to this negative mass that balances it exactly at r = 0. The
Ricci scalar is negative and Planckian at r = 0.

The semiclassical equations in an order-reduced version accommodate solutions
that display whole regions of negative mass that get regularized at r = 0 by
semiclassical effects. This is a characteristic that semiclassical relativistic stars in a
Regularized Polyakov RSET clearly display. These results look appealing in the sense
that, if the innermost layers of a semiclassical star with a negative mass interior
generate relevant RSETs, these tensors can contribute towards the regularization of
such negative mass core thus making the interior geometry entirely regular. Turns
out this is precisely what happens in order-reduced semiclassical gravity, and we
give a brief glimpse on some preliminary results showing this in Sec. 6.5.

Moving on to the regime where ξc < ξ < 83/300, we obtain solutions with a
similar behavior to that where ξ ≤ ξc for the h function as in Fig. 6.1C, but the
redshift f now has a maximum at some r > 0 and reaches a minimum at r = 0.
This is because the contributions within brackets in (6.14) change sign for ξ > ξc.

For ξ > 83/300 we have a change in the behavior of h. In this case, Eq. (6.13)
now ensures that there will be no turning points in h for any r. The function
f encounters again a turning point as the term within brackets in Eq. (6.13) is
positive. Assuming h vanishes at some radius r0 as

h = h1(r − r0) + O(r − r0)2, (6.30)

and replacing this equation in Eq. (6.13) yields

h1 = 5l2P
r3

0

(
ξ − 83

300

)
. (6.31)

With the expansion (6.31), Eq. (6.14) can be approximated by

f ′ ≃ χ1f (r − r0)−1 , (6.32)

with
χ1 = 3 (ξ − 5/36)

5 (ξ − 83/300) . (6.33)

Solving Eq. (6.32) yields
f ≃ (r − r0)χ1 . (6.34)

Finally, the curvature scalar (6.23) diverges at r0 as

R ≃ (3 − χ1)χ1

2h1 (r − r0)3 . (6.35)
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Figure 6.1D shows a particular example of a solution belonging to this branch.
For ξ > 83/300, the resulting geometries display a null singularity. Since the ADM
mass of the spacetime is negative, this singularity does not have the same physical
relevance as the one that appeared in the positive ADM mass case from Fig. 6.1A.

6.4 Accuracy of the OR-RSET
An important aspect at this stage of the analysis is to what extent the solutions to
the order-reduced system are good approximations. This question lacks sense in
the framework of the RP-RSET as it follows from a dimensional reduction, not a
perturbative reduction of order, thus the accuracy of such reduction is not something
that we can quantify. However, the order-reduced system under consideration here
does proceed from a more close-to-exactness system of semiclassical equations, so
we can analyze how well do the order-reduced solutions resemble those from this
high-derivative system. We undertake this analysis in what follows.

First, we need to establish criteria that define the “proximity” between solutions
to the order-reduced system

Gµ
ν = 8πh̄⟨T̂ µν ⟩OR (6.36)

and solutions to the higher-derivative system (1.6). We do so by defining

Hµ
ν = Gµ

ν − 8πh̄⟨T̂ µν ⟩AHS, (6.37)

where Gµ
ν and ⟨T̂ µν ⟩AHS are calculated replacing the solutions f , h from (6.36), and

measuring the size of Hµ
ν . As long as Hµ

ν = O
(
h̄2
)
, the terms O

(
h̄2
)

neglected in
the expansions (6.6) will correspond to subdominant contributions. Therefore, the
solutions to Eq. (6.36) will amount to perturbative corrections of the solutions to
Eq. (6.37), the discrepancy being given by the magnitude of the truncated terms.

We have examined the validity of solutions belonging to the regimes described
in Section 6.3 by plotting, in Fig. 6.4, the relative magnitude log|Hr

r/⟨T̂ rr ⟩OR|. The
choice of the rr component mitigates the error in numerically differentiating the
solutions f and h, since the highest-order terms in this quantity are proportional to
f (3). Results show that the relative difference between the order-reduced solutions
and the higher-order ones approaches a constant value at large distances, indicating
that Hr

r decreases at the same rate as the component ⟨T̂ rr ⟩ OR, with a relative
proportionality constant. The value of this constant is independent of the arbitrary
renormalization scale ν appearing in the expressions from Appendix C, Sec. C.1, but
the quotient initially increases inwards for ν < 1 and decreases inwards for ν > 1.
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This is related to the change in sign of the log ν terms appearing in the AHS-RSET.
The quotient diverges at spacetime singularities or r = 0, and independently of
whether the spacetime is singular or regular. In the case of positive ADM mass
geometries with ξ ≤ ξc, the quotient approaches a divergence at rD, precisely where
the OR-RSET has dominant non-perturbative contributions. This is consistent with
what we would expect from an order-reduced prescription.

6.4.1 Comparison between approximations
As a proxy to the study of more complicated field contents in semiclassical theories,
it is customary to consider the propagation of a single massless and minimally
coupled scalar field. We have seen that, throughout the years, different approaches
to modeling the RSET of minimal scalar fields have been developed [101, 127, 156].
In this thesis we have put special emphasis in the RP-RSET as it is fully analytical
and preserves second-order equations of motion. However, this framework has
its limitations exploring more elaborate schemes becomes an eventual necessity.
Given the difficulties in handling a potentially exact RSET (see Subsec. 1.2.1), most
of the approaches involve making approximations. All standard approximations
properly capture effects associated with vacuum states (e.g. correct asymptotic
values at event horizons and infinity). Preference of one over another depends on
the specifics of the problem under consideration.

However, despite their resemblance in what refers to non-local contributions,
these approximations differ in their way of estimating purely local, curvature-
dependent contributions. The Polyakov approximation lacks information about
the behavior of field modes at r = 0, which has to be provided by hand (see
Subsec. 1.2.2). The AHS-RSET and the OR-RSET, on the other hand, are regular at
r = 0 (in the first case, under certain parity conditions for the metric, see Appendix
C.2), and from this viewpoint can be considered an improvement with respect to
Polyakov’s approximation. However, the AHS-RSET exhibits the free parameter ν
(which accompanies purely local contributions) that affects the sign and magnitude
of the RSET components.

Another discrepancy between the Polyakov and OR RSETs is the amount of
branches of solutions that they give place to. The introduction of these additional
branches is rooted to the differential structure of the RSET. In the Regularized
Polyakov approximation we had two branches (2.11), concealed and unconcealed,
that are not disconnected from each other as jumps between them take place
in the self-consistent vacuum solutions explored in Chapters 2 and 3. In the
more elaborate s-wave approximation that incorporates backscattering effects, the
solution is also an asymmetric wormhole but the singularity is now timelike [112]
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Fig. 6.4.: Plots of log |Hr
r/⟨T̂ rr ⟩OR|, a quantity measuring the deviation of the reduced

order solutions with respect to the exact solutions to the higher-order semiclassical
equations. Panels A and B correspond to solutions with M = 1 and ξ = {0, 1},
respectively, whereas panels C and D correspond to solutions with M = −1 and
ξ = {0, 1}, respectively. As the AHS-RSET displays a free parameter ν, we set
ν = {1, 10−5, 1010} for the green, orange and blue curves (the small oscillatory
behavior in panel B corresponds to numerical noise). We see that the validity of the
solutions is not drastically affected by the value of ν. The validity of these solutions
becomes progressively worse as r diminishes, but the mismatch between solutions
tends to the constant value c ≃ 3.17 in the region of perturbative semiclassical
corrections.

6.4 Accuracy of the OR-RSET 163



(although appears to be at infinite radial distance as well [170]), which enhances
the pathological nature of eternal vacuum solutions in semiclassical gravity.

The AHS-RSET also contains numerous branches associated to non-perturbative
solutions. The only example we know of a non-perturbative solution to the semi-
classical equations sourced by the AHS-RSET is [221], where symmetric wormholes
are obtained. These wormholes are not asymptotically flat, hence they cannot
be compared with the asymptotically flat spacetimes that we obtained with the
Polyakov approximation. On the contrary, the OR-RSET (6.8) cannot introduce
non-perturbative branches of solutions as they have been eliminated in the order
reduction.

For instance, in the situation in this Chapter, we did not find wormhole solutions
of any kind in the ξ = 0 case. The geometry instead reaches a timelike (naked)
singularity just above where the Schwarzschild radius would have been located
(see Figs 6.1A and 6.2). The same can be shown to happen by applying an order
reduction to the Polyakov approximation: The resulting vacuum solution would
result in a naked curvature singularity without the appearance of a wormhole
neck. What these analyses reveal is that the characteristics of self-consistent
solutions in regions where non-perturbative effects kick in depends strongly on the
physical content of the RSET approximation under consideration and its derivative
order. Nonetheless, different approximations to the RSET all lead to static vacuum
solutions with positive ADM mass in which the event horizon has been substituted
by a singularity of one type or another. See Fig. 2.3 for a comparative between the
Penrose diagrams associated to each situation.

Interestingly, the results presented in this thesis suggest that the situation is
different when considering the more physical non-vacuum solutions. In Chapter 5
we found semiclassical stellar configurations surpassing the Buchdahl compactness
limit [57]. These solutions are all found using just the perturbative (or unconcealed)
branch. Next Section contains some preliminary analyses showing that similar
solutions are found using an order-reduced version of the AHS-RSET in stellar
situations. We take this as an indication that branches of solutions that are not
analytic in the h̄ → 0 limit may not be a requisite to access interesting new
situations. This idea reinforces the robustness of said solutions, as seemingly
unrelated approaches (leading to drastically different RSETs) give rise to similar
geometries.

Our philosophy in this thesis is not to argue for a particular approximation
scheme as the best one; it is more to put all the possibilities on the table to see
what they can offer. By adopting the view that the only trustworthy semiclassical
self-consistent solutions are those perturbatively connected to a classical solution,
the resulting solutions could turn out not to be very interesting, as these could not
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display any new qualitative behaviors. Instead, in this thesis our point of view is
more heuristic and closer to the phenomenological philosophy underneath modified
theories of gravity: motivating a possible form for some modifications of GR and
then analyzing the new equations without caring how these equations might show
up hierarchically from an even deeper description of spacetime.

6.5 Stellar equilibrium in order-reduced
semiclassical gravity

Let us advance here some results involving classical matter, where the order-
reduction method shows some differences. In particular, the analogue of Eqs. (6.7)
acquire extra contributions proportional to the classical stress-energy tensor T C

µν . At
the end of the process we obtain an order-reduced RSET that can be decomposed
as

⟨T̂ µν ⟩MOR = ⟨T̂ µν ⟩OR + ⟨F̂µ
ν ⟩ + Ĝµ

ν log ν, (6.38)

where MOR stands for Matter-Order-Reduced. Here, ⟨F̂µ
ν ⟩ (brackets indicate that

this term is κ-dependent) and Ĝµ
ν are functions of the classical SET and vanish

together with it. As ⟨T̂ µν ⟩OR is covariantly conserved and ⟨T̂ µν ⟩MOR is conserved for
all ν, we conclude that both ⟨F̂µ

ν ⟩ and Ĝµ
ν are independently conserved quantities.

In particular, Ĝµ
ν is local and can thus be identified with the ambiguity present in

the definition of any proper RSET (which should be unique up to the addition of
a local, conserved quantity). The order reduction can be interpreted as a way of
partially fixing this ambiguity by selecting one functional form for the quantities
⟨F̂µ

ν ⟩ and Ĝµ
ν for each classical SET under consideration. There still remains the

freedom in the arbitrary parameter ν (absent in the vacuum case) that corresponds
to different choices of renormalization length scale. Finally, if the classical SET
in (1.6) is regular at r = 0, then the corresponding ⟨T̂ µν ⟩MOR will be regular as well.
This puts the MOR-RSET on equal footing with regularized versions of the Polyakov
approximation.

6.5.1 Reducing the order of the AHS-RSET in stars

When a classical SET is present, the reduction of order is slightly more involved
than in vacuum, although the logic behind the procedure is the same. We start from
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the O(h̄) equations equivalent to (6.6), but including a constant-density perfect
fluid (4.4), such that

h(1 − h) − rh′

h2r2 = − 8πρ+ O(h̄),

rf ′ + f − fh

fhr2 =8πp+ O(h̄). (6.39)

Consecutively differentiating the equation for f ′ will introduce derivatives of p,
which can be converted into terms proportional to ρ and p via the conservation
relation (4.7). The following relations are obtained

rh′ =h [1 + (Ω − 1)h] ,
r2h′′ =2h2

[
2Ω − 1 + (Ω − 1)2 h

]
,

r3h(3) =2h2
[
4Ω + 3 (Ω − 1) (3Ω − 1)h+ 3 (Ω − 1)3 h2

]
,

r4h(4) =8h2
[
Ω + Ω (11Ω − 8)h+ 3 (Ω − 1)2 (4Ω − 1)h2 + 3 (Ω − 1)4 h3

]
, (6.40)

and

rf ′ = − f [1 − (P + 1)h] ,
2r2f ′′ =f

[
4 + (Ω + P − 4)h+ (Ω + P ) (P + 1)h2

]
,

4r3f (3) = − f
[
24 − (Ω + 9P + 24)h− 3 (Ω + P ) (Ω + 3P − 2)h2

−3 (Ω + P ) (Ω − 1) (P + 1)h3
]
,

8r4f (4) =f
[
192 + (7Ω − 57P − 192)h+ (Ω + P ) (26Ω + 63P + 33)h2

+3 (Ω + P ) (Ω − 1) (5Ω + 22P − 3)h3

+15 (Ω + P ) (Ω − 1)2 (P + 1)h4
]
, (6.41)

where P = 8πr2p and Ω = 8πr2ρ.

We can replace relations (6.40) and (6.41) in the AHS-RSET and impose covari-
ant conservation, as we did in Section 6.2, to obtain the MOR-RSET. For simplicity
(and to establish a faithful comparative with the RP-RSET), we only include here
the expressions of the MOR-RSET in the Boulware vacuum state (κ = 0) and in
the minimally coupled case (ξ = 0). The impact of varying the coupling will be
explored elsewhere. The components of the MOR-RSET are

23040π2r4h2⟨T̂ aa ⟩MOR = Sa
a + T a

a (log f + 2 log ν) (6.42)
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with a = {t, r, θ, φ} and

St
t =249 − 4 (17Ω + 63P + 105)h

+ 2 [Ω (117Ω + 188) + 6P (105Ω + 148P + 53)]h2

− 4 (P + 1)2 (77Ω + 135P − 3)h3 + 33 (P + 1)4 h4,

T t
t = (Ω + P )

[
60h− 30 (Ω + 13P + 4)h2 + 60 (P + 1)2 h3

]
,

Sr
r = − 75 − (54Ω + 382P − 84)h

− [6Ω (5Ω + 6) + 4P (30Ω − 93P − 100) − 46]h2

+ 2 (P + 1)2 (45Ω + 57P − 22)h3 − 11 (P + 1)4 h4,

T r
r = (Ω + P )

[
66h− 6 (3Ω + 5P + 6)h2 − 30 (P + 1)2 h3

]
,

Sθ
θ =75rfh′ − {81rf ′ − [r (27Ω + 191P − 42)h′ + 75] f}h

+ [6r(22Ω + 16P + 21)f ′ − 84f ]h2

−
{
r [Ω(45Ω + 221) + 3P (175Ω + 184P + 59) + 20] f ′

−
[
r(45Ω + 57P − 22)(P + 1)2h′ − 2

(
15Ω2 + 60ΩP − 186P 2 + 23

)]
f
}
h3,

− (P + 1)
{
r
[
45Ω2 − 78Ω + P (46Ω − 63P − 128) + 14

]
f ′

+
[
11r (P + 1)3 h′ − 4P (45Ω + 57P − 11) − 44

]
f
}
h4

+ 11 (P + 1)3 [r (Ω − 1) f ′ − (3P − 1) f ]h5,

T θ
θ = (Ω + P )

(
−33rfhh′ − 15rh2f ′

+3
{
5r (Ω + 7P + 2) f ′ −

[
5r (P + 1)2 h′ + 6Ω + 10P

]
f
}
h3

+15 (P + 1) [r (Ω − 1) f ′ − 4Pf ]h4
)
. (6.43)

The MOR-RSET is perfectly regular at the center of stellar spacetimes and reduces
to the OR-RSET in vacuum (Ω = P = 0). Note that this RSET now depends on
the arbitrary parameter ν. Although, generally, its value is unconstrained, for
constant-density stars there is a way to fix it in terms of the other integration
parameters, as we now show. Upon matching the exterior vacuum geometry with
the surface of a constant density fluid sphere we need to impose the continuity of
the redshift function at the surface (this being a necessary condition for the absence
of distributional components in the stress-energy tensor). For constant-density stars,
the jump in Ω from Ω = 0 to Ω = 8πR2ρ at r = R translates into a discontinuity in
⟨T̂ rr ⟩MOR at the surface. In turn, Eq. (6.14) causes f ′ to be discontinuous at r = R.
In order to have a smooth matching between interior and exterior geometries, this
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jump needs to be compensated by a particular choice of renormalization constant
ν, which has to obey

log ν = − log f(R) + h(R) (15h(R) − 5Ω(R) − 6) − 9
2 [h(R) (5h(R) + 3Ω(R) + 6) − 11] . (6.44)

Notice that this fixing of ν is a consequence of the choice of equation of state for the
classical sector. Imposing another equation of state that satisfies Ω(R) = P (R) = 0
would leave ν unconstrained.

6.5.2 Stellar solutions
Having derived an analytical RSET which fulfills all the properties to be used
in stellar spacetimes, we proceed to integrate the order-reduced semiclassical
equations searching for regular stars that surpass the Buchdahl limit. Note that,
since we are assuming minimal coupling and absence of matter shells at the surface
fixes the value of ν (6.44), the MOR-RSET is uniquely determined and is less
ambiguous than the RP-RSET, which was unique up to an arbitrary radial function.

We numerically integrate the vacuum equations with ξ = 0 from an asymptot-
ically flat region inwards for some positive ADM mass, obtaining the spacetime
depicted in Fig. 6.1A. At some radius R > rD we locate the surface of a fluid sphere
with surface compactness CR and fix ν via relation (6.44). The only free parameter
left is the dimensionless energy density Ω(R), which we vary through several orders
of magnitude seeking for solutions that are regular up to the center of the star (in
practice, we consider that the integration reaches a regular center when r becomes
five orders of magnitude smaller than R).

We present here a few integrations of the semiclassical equations and summarize
the general properties of the corresponding solutions to establish a connection with
the results from Chapter 5. Figures 6.5 and 6.6 show the Misner-Sharp mass and
classical pressures of stars that approach and surpass the Buchdahl limit. These
stars are perfectly regular and are characterized by a large interior region where
the Misner-Sharp mass is negative and by classical pressures that grow inwards.
As we increase the surface compactness, their negative mass interior grows in size
(and mass becomes more negative), counterbalancing the gravitational pull of the
object. Contrarily to the situation with the RP-RSET, for each R and CR there is
a broad range of densities Ω(R) that return critical, strictly regular solutions. By
increasing Ω(R), we obtain stars where pressure has a local minimum at r = 0
after reaching a global maximum at some radius r > 0. The components of the
MOR-RSET are shown in Figs. 6.7, 6.8 and 6.9. The semiclassical energy density
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Fig. 6.5.: Plots of the Misner-Sharp mass of semiclassical stars sourced by the
MOR-RSET with MR = 5 and, from lighter to darker, CR ≃ {0.89, 0.9, 0.93, 0.96}
and Ω(R) = {0.24, 0.27, 0.36, 0.67}. The mass becomes more negative in the interior
as CR is increased.
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Fig. 6.6.: Plots of the classical pressure of semiclassical stars sourced by the MOR-
RSET with MR = 5 and, from lighter to darker shades, CR ≃ {0.89, 0.9, 0.93, 0.96}
and Ω(R) = {0.24, 0.27, 0.36, 0.67}. Central pressures increase with CR.
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Fig. 6.7.: Semiclassical energy density of stars with MR = 5 and, from lighter to
darker shades, CR ≃ {0.89, 0.9, 0.93, 0.96} and Ω(R) = {0.24, 0.27, 0.36, 0.67}. The
energy density at the center is negative and one order of magnitude larger than
the radial and angular pressures. In the central regions of the star, the total energy
density decreases inwards, allowing to surpass the Buchdahl limit.
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Fig. 6.8.: Semiclassical radial pressure of stars with MR = 5 and, from lighter to
darker shades, CR ≃ {0.89, 0.9, 0.93, 0.96} and Ω(R) = {0.24, 0.27, 0.36, 0.67}. The
semiclassical radial pressure behaves similarly to the classical one, increasing with
the compactness.
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Fig. 6.9.: Semiclassical angular pressure of stars with MR = 5 and, from lighter
to darker shades, CR ≃ {0.89, 0.9, 0.93, 0.96} and Ω(R) = {0.24, 0.27, 0.36, 0.67}.
While classical pressure is isotropic, semiclassical angular pressure is negative in a
large portion of the bulk of the star but becomes positive as the center, where it
needs to match the radial pressure for regularity.
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Fig. 6.10.: Ricci scalar of semiclassical stars sourced by the MOR-RSET with
MR = 5 and, from lighter to darker shades, CR ≃ {0.89, 0.9, 0.93, 0.96} and Ω(R) =
{0.24, 0.27, 0.36, 0.67}. The magnitude of the Ricci scalar at r = 0 increases with
CR.
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has a similar behavior to that of the RP-RSET in semiclassical stars: positive in the
bulk of the star and negative and large at the center, changing sign in between.
Finally, Figure 6.10 shows the Ricci scalar at the interior, which approaches but
does not surpass Planckian values.

Perturbative reduction of order eliminates non-perturbative branches of solu-
tions, which the RP-RSET, on the contrary, introduces. We find remarkable that
semiclassical stars exist regardless of the presence of these branches. This suggests
the existence of universal features that are captured by all analytical RSET approxi-
mations. Results presented in this thesis only apply to massless, minimally coupled
fields, but we will explore more general properties of semiclassical stars and the
effect that varying the coupling ξ have on them in the future.

6.6 Conclusions
In this Chapter we have addressed the problem of semiclassical backreaction by
reducing the order of the semiclassical equations in spherically symmetric vacuum
and stellar situations. If said equations were tackled in full glory (with the AHS-
RSET as source), solving them self-consistently would prove to be an extremely time
consuming task due to their large space of solutions. In addition, there is no definite
method for disregarding solutions based solely on their physical consistency.

Inspired by previous works in the literature [144], we have developed a pro-
cedure for obtaining regular, order-reduced RSET approximations that satisfy all
the properties expected from a suitable RSET. We used this procedure to find the
solutions to the semiclassical equations in vacuum. The results here obtained are
consistent with our analyses from Chapter 2 that made use of the CRP-RSET in the
region where semiclassical corrections are perturbative and the case ξ = 0. In the
region in which the semiclassical corrections are non-perturbative these approaches
agree in the fact that the event horizon is replaced by a curvature singularity.

For completion, we have analyzed what happens for other couplings in vacuum.
When the coupling is increased beyond its separatrix value ξc = 11/60 the space-
time becomes regular and horizonless. However, curvature invariants become
Planckian inside the region where the classical event horizon would have been
located. For negative values of the ADM mass, there are both regular and irregular
spacetimes depending on ξ. The regular ones could resemble the innermost regions
of semiclassical relativistic stars that display negative-mass interiors generated by
the effects of quantum vacuum polarization.

Following the procedure outlined in Sec. 6.2, it is possible to obtain order-
reduced RSETs in various situations. The most straightforward extensions of this
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method would imply adding a classical electromagnetic field and/or a cosmological
constant. In doing so, the validity of the very same AHS-RSET (from which the
OR-RSET is constructed) requires careful evaluation [127]. Ideally, any application
of the AHS-RSET (or its order-reduced counterpart) should come along with a
detailed analysis of the complete RSET incorporating the numerical part ⟨T̂ µν ⟩num,
but this is technically challenging and escapes the scope of this thesis.

The reduction of order that we have followed here is maximal in the sense that it
eliminates all additional branches of solutions. However, a window remains open
for the construction of partially order-reduced RSETs that, while yielding second-
order equations of motion, still retain terms proportional to f ′, h′, f ′′ and h′′, in a
similar fashion to the RP-RSET (1.14). Is it possible to find a way to reduce the order
of the AHS-RSET while retaining “physically meaningful” branches of solutions? If
so, how would this affect singularities? While the non-perturbative characteristics
revealed in vacuum solutions would be modified significantly, solutions that involve
regular fluid spheres are more robust as the additional branches are not explored.

Before turning to the Conclusions of this thesis, we have provided details about
the forthcoming analysis of semiclassical solutions incorporating a classical perfect
fluid. We have derived an order-reduced RSET approximation valid for constant-
density stars and analyzed its backreaction in the case ξ = 0. The result is a whole
family of semiclassical stellar configurations that surpass the Buchdahl limit and
which resemble qualitatively the ones found in Chapter 5 through the RP-RSET.
While more general characteristics of these fluid spheres are distilled, we presented
some preliminary results to exemplify this point. The fact that different modelings
of the semiclassical equations end up describing similar physical scenarios provides
considerable robustness to semiclassical analyses.
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Conclusion
7

„How could the invisible return to being visible?

— Roberto Calasso
The celestial hunter

We are entering a revolutionary era for gravitational physics thanks to gravitational-wave
astronomy and observations with the Event Horizon Telescope. In this exciting
context, we expect future observations to allow to test general relativity with un-
precedented precision. This will open a window towards exploring the structure of
ABHs at scales gradually closer to their supposed event horizons [25]. Thus, if an
astrophysically explorable surface is present instead of the event horizon, it might
leave some observational imprint noticeable in future gravitational-wave [28, 229]
(even electromagnetic [30]) observations.

Efforts to confront the GR BH paradigm are becoming increasingly common,
mainly because the pathological features of the BH paradigm beg exploring alter-
native routes. The absence of long-lived event horizons would entail that BHs exist
in our universe only as ephemeral objects, fated to disappear as matter relaxes
towards a horizonless object [230]. While we await progress in this direction,
a complementary approach is to search for equilibrium configurations that can
describe such horizonless end-states. We have found, to the date of the writing of
this thesis, the strongest theoretical evidence yet for the existence of ultracompact
stars that can serve as alternatives to GR BHs without the need for new physics
beyond the effects of quantum vacuum polarization.

Advances of this thesis

In classical GR, the Schwarzschild BH is identified as the late-time outcome of spher-
ically symmetric gravitational collapse, long after all matter has disappeared behind
the event horizon and the BH has radiated away all its multipole moments. Being
the most conservative theory that incorporates quantum effects, the self-consistent
counterparts to GR vacuum solutions from semiclassical gravity should admit a
similar interpretation. In this thesis we have obtained geometries incorporating the
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backreaction of the zero-point energies of a quantum scalar field, also known as
vacuum polarization effects. These contributions are captured by the RSET, which
we have modeled in two separate ways: via a dimensional reduction (RP-RSET),
and through a perturbative reduction of order (OR/MOR-RSETs). Both methods
return RSETs that are analytical, regular, and of second order in the derivatives of
the metric. Under the assumptions of staticity and asymptotic flatness, the natural
vacuum state for the quantum field is the Boulware vacuum. This state is manifestly
singular at event horizons, this singularity translating into a divergent RSET. In
vacuum, its corresponding backreaction over the background spacetime causes the
event horizon to disappear, being replaced by a wormhole neck connecting to a
null curvature singularity in the RP-RSET approximation (see Chapters 2 and 3),
and by a naked curvature singularity in the OR-RSET approximation (Chapter 6).
The case for extremal BHs is even subtler, as their extremal horizon is transformed
into a curvature singularity itself (Sec. 3.5). The absence of static event horizons
in semiclassical gravity has been confirmed via other RSET approximations as
well [112, 168, 170, 192, 218], showing that it is a generic feature of semiclassical
gravity. From our investigations we conclude, on the one hand, that the only
horizons consistent with semiclassical physics are evaporative and dynamic. On
the other hand, we evidence that the static vacuum counterparts are inadequate to
faithfully describe the end-states of gravitational collapse due to their singularities.
In consequence, we turned to explore the viability of spherical distributions of
matter in equilibrium supported by quantum vacuum polarization.

Vacuum polarization provides the repulsive effects necessary to preserve hydro-
static equilibrium in situations where classical matter alone is fated to collapse
under its own gravity. These effects translate into potential violations of one or
several of the assumptions behind the Buchdahl theorem [57]. These are: The
assumption of a Schwarzschild exterior, the presence of large anisotropies in the
pressure, and a total energy density that decreases towards the innermost layers of
the star (see Sec. 1.3). These conditions are saturated by a perfect fluid obeying
the constant-density equation of state. Under this simple choice for the classical
matter sector, we explored, in Chapter 4, the complete space of semiclassical stellar
solutions (see Fig. 4.6) modeling the semiclassical sector via the CRP-RSET. By
comparing with its classical counterpart, we found striking differences in the semi-
classical space of solutions, namely in the so-called ϵ-strict stellar spacetimes. These
are stars whose compactness can be arbitrarily large while having arbitrarily-small
mass within a central sphere of Planckian radius. These configurations are possible
thank to the backreaction of the CRP-RSET which, despite unable to generate regu-
lar stars surpassing the Buchdahl limit, misses the shot only slightly. These findings
motivated exploring alternative regularizations of the RP-RSET in Chapter 5 and
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led to the central result of this thesis: We discovered whole families of RP-RSETs
that allow for the existence of regular stars that surpass the Buchdahl limit.

These so-called semiclassical relativistic stars exhibit generic properties that
are independent from the specific regularization of the RP-RSET, and are also
reproduced via the MOR-RSET from Ch. 6. They are composed by a combination
of classical and quantum matter and exhibit negative mass interiors with redshift
functions that become minimum at the center. Our semiclassical relativistic stars
are the first exact model of exotic compact object in a semiclassical theory of
gravity. Remarkably, their surface compactness can take any value between 0 and 1
(see the family of solutions depicted in Fig. 1.1). Upon surpassing the Buchdahl
limit, a drastic change of regime occurs in the RSET (confirmed to exist also for
conformally invariant fields [167]). The specific formation mechanism responsible
for these objects remains an open subject, but the fact that they are not isolated in
the space of solutions is an appealing characteristic that differentiates semiclassical
relativistic stars from other BH mimickers in the literature [91–93, 231–234].

Future topics

The analyses presented in this thesis delve into previously unexplored terrain and
are unveiling a surprisingly rich field of study: stellar equilibrium in semiclassical
gravity. Our investigations can serve as the bedrock for future studies, some of
which we briefly summarize here.

One possibility is generalizing the semiclassical star proposal to situations where
the classical and semiclassical matter are modeled in different ways [86, 213,
214]. Regarding the RSET, the approach of reducing the order of the AHS-RSET
seems the way to go for future studies as it is regular at r = 0 by construction and
allows to explore the effect of non-minimally coupled fields. There is an analogous
analytical approximation for spin 1/2 fields that could be subjected to a similar pro-
cedure [235]. Constructing analytical RSETs from the trace anomaly [168] appears
a promising alternative as well. Regarding the classical SET, the constant-density
equation of state is a convenient toy model due to its simplicity, but it amounts
to an idealized description of the behavior of ordinary matter at high densities.
Exploring other equations of state and obtaining their associated MOR-RSETs that
they generate would allow to probe how generic are the results presented in this
thesis, in particular regarding the absence of upper compactness bounds [164] in
semiclassical gravity.

At the time of the writing of this thesis there exist no results for the exact RSET
of non-conformally-invariant scalar fields in the interior of relativistic stars [166].
Therefore, we have no way of estimating the accuracy of the RP- and MOR-RSETs
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with respect to their exact counterparts. Recently developed regularization and
efficient numerical methods to compute the RSET [236, 237] can be applied
to simple stellar models, not only to evaluate the accuracy of analytical RSET
approximations, but to know the precise way quantum corrections diverge at
the Buchdahl limit (without requiring additional simplifications), in the aim of
analyzing their implications on stellar equilibrium.

The various stellar models we have derived in this thesis (the exact solutions
and analytical fits from Chapter 5 and the exact solutions to the order-reduced
semiclassical equations from Chapter 6) can be subjected to phenomenological
studies, such as analyzing the propagation of classical fields over their spacetimes.
As shown in the diagram 1.1, semiclassical stars can display an outer light ring.
Hence, propagating fields will bounce at the stellar center [70] and at the photon
sphere, producing echoing patterns in the amplitude of fields. The form and
periodicity of these echoes relate to the time a signal needs to escape the object
and to the particular scaling of the associated time scale with the compactness.
On a related front, analyzing the stability of semiclassical stars under (spherical)
adiabatic perturbations [238] requires time-dependent equations of motion. The
RP-RSET could provide such framework, but the regularization procedure followed
in this thesis cannot be generalized to non-static situations [145] in a covariant
way. The AHS-RSET is valid in static spacetimes only, so addressing this point goes
beyond our current capabilities.

Another crucial aspect for future consideration is the formation mechanisms
behind semiclassical stars. If we acknowledge that, at the early stages of gravi-
tational collapse, matter crosses its own gravitational radius following nearly a
free-falling trajectory, then in which ways can the trapped region evolve to allow
the formation of a horizonless object? The most likely scenario is that the collapsing
star overcomes some bouncing process that expels it outwards. These bounces can
be modeled in GR and modified theories of gravity [217, 239–241], but they also
are predicted in the framework of effective quantum-gravitational theories [242,
243] and within semiclassical gravity itself [115, 116], where the backreaction
of the Polyakov RSET around inner horizons can drive them into an expansive
phase. This initially expanding tendency, if extrapolated, would imply the inner
horizon meets the outer one in a timescale of the order of the BH mass. Even in
the plausible case that semiclassical gravity was unable, in the end, of providing a
fully self-consistent description of a regular collapse towards a horizonless object,
it strongly suggests that trapped regions may evaporate faster than the timescales
associated to Hawking evaporation. Semiclassical stars may lie at the very end of
this chain of events.
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Finally, the generalization of these results to stationary and axisymmetric config-
urations should be eventually considered. In absence of an axisymmetric version of
Birkhoff’s theorem, spinning stars can show significant deviations from the Kerr
spacetime [244], although quality factors based on curvature invariants allow to
parametrize them [245]. As for QFTCS, the main obstruction is to derive the RSET
in spinning spacetimes, with the notable exceptions of the BTZ BH [246], the
RSET of massless, minimally coupled scalars in the Unruh state in Kerr BHs [247]
and its flux components at inner horizons [139]. Generic results via subtraction
of unrenormalized expectation values have been derived [248–250]. There are
exciting new discoveries ahead for quantum field theory in BHs.

Concluding remarks

Due to its nonlinear character, the theory of general relativity conceals a distinctive
complexity even within its simplest solutions. According to general relativity,
black holes are essentially vacuum objects whose extreme degeneracy makes them
describable in terms only of their mass, charge, and angular momentum. Their
event horizons make black holes the ultimate black box: The knowledge we
acquire through their gravitational interaction with their environments reveals no
information about their internal structure, which remains hidden to us.

It is precisely behind these dark curtains, in their innermost regions, where quan-
tum gravitational effects come at play. Current endeavors to derive a satisfactory
and consistent theory of quantum gravity depict black holes as purely gravitational
objects, in which quantum fields (other than the gravitational field itself) play no
significant role aside from being responsible for Hawking radiation. We believe,
on the contrary, that the material content of spacetime is indeed relevant for de-
scribing both astrophysical black holes and the formation mechanisms leading to
them. Within the framework of semiclassical gravity, we showed that quantum
vacuum polarization gives rise to horizonless semiclassical stars that are drastically
distinct from the standard evaporating BHs, opening a slit for probing their interiors
through gravitational waves and other astrophysical probes.

Semiclassical stars have much more complex structures than the vacuum, bald
black holes from Einstein’s general relativity. This complexity is what gives a
physical origin to their observed mass, which results from the balanced combination
of classical and quantum contributions. In view of this, the troublesome information
paradox would cease to exist as their regular interiors are in causal contact with
the outside universe. The implications that might follow from these explorations
in semiclassical physics are difficult to foresee but appear to us as an unmissable
thread.
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Renormalized
stress-energy tensor in
four dimensions

A

In this Appendix we outline the main characteristics of the Hadamard regularization
method [126] to derive the RSET of a scalar field with arbitrary mass and Ricci cou-
pling in static, spherically symmetric spacetimes. The technicalities of the method
applied to a variety of black-hole spacetimes are detailed in the literature (see [130,
131, 251] and references therein) and we avoid them here.

The unrenormalized stress-energy tensor

The action for a scalar field Φ on 3 + 1 dimensions is

S = −
√

−g
2

∫
d4x

[
gµνΦ,µΦ,ν +

(
m2 + ξR

)
Φ2
]
, (A.1)

where g denotes the determinant of gµν and the coma denotes a partial derivative.
Constants m and ξ are the mass and coupling of the field, respectively. Variation of
the action with respect to the scalar field Φ yields the equation of motion

δS

δΦ =
(
□ −m2 − ξR

)
Φ = 0, (A.2)

where □ = gµν∇µ∇ν . The stress-energy tensor is defined by the relation

T µν = 2 δS

δgµν
= (1 − 2ξ) Φ;µΦ;ν +

(
2ξ − 1

2

)
gµνΦ;αΦ;α − 2ξΦΦ;µν

+ 2ξgµνΦ□Φ + ξ
(
Rµν − 1

2Rg
µν
)

Φ2 − m2

2 gµνΦ2, (A.3)

where the semicolons denote covariant derivatives. This object becomes ill-defined
after the scalar field Φ is canonically quantized (see [33, 34] for details on this
procedure). In physical terms, this singularity is caused by the ultraviolet modes of
the field that give an infinite contribution to the “unregularized” SET, as SETs are
purely local quantities that must be evaluated at a single spacetime point.
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In static spherically symmetric spacetimes described by the line element (6.4)
we can derive the renormalized expression for (A.3) in a closed form. This deriva-
tion was first carried out by Anderson, Hiscock and Samuel [127] relying on the
metric (6.4) being Wick-rotated to its Euclidean form

ds2 = f(r)dτ + h(r)dr2 + r2dΩ2 (A.4)

where τ = it. The Fourier-transformed version of (A.2) in the Euclidean space
satisfies (

□ −m2 − ξR
)
GE(x, x′) = −δ4(x, x′)

√
g

(A.5)

with x = (τ, r, θ, ϕ). In the Euclidean metric, □ is now an elliptic operator and it
has a well defined inverse. GE(x.x′) is the Euclidean propagator.

The singular structure of the unrenormalized SET comes clear from the fact that
(A.3) can be written as the coincidence limit of the action of a differential operator
acting upon the Euclidean propagator [126],

⟨T̂ µν⟩ren = Re
[

lim
x→x′

DµνGE (x, x′)
]
, (A.6)

where Re denotes the real part and the differential operator

Dµν = (1 − 2ξ) gνν′∇µ∇ν′ +
(

2ξ − 1
2

)
gµνgαα′∇α′∇α − 2ξ∇µ∇ν

+ 2ξgµν∇α∇α + ξ
(
Rµν − 1

2Rg
µν
)

− 1
2m

2gµν (A.7)

acting on GE reduces to Eq. (A.3) in the coincidence limit x → x′. Here, gν′
ν denote

the bivectors of geodesic parallel transport which parallel transport along a geodesic
the objects upon which they act.

The Hadamard parametrix

Whereas GE(x, x′) only makes sense as a bivalued distribution, that is, acting
upon points x and x′ separated in spacetime, we need to evaluate this object
and its derivatives in the coincidence limit in order to construct a SET operator.
Operators constructed naively this way diverge in the coincidence limit, and this
divergence is inherited from the singular structure that characterizes the Euclidean
propagator. Fortunately, the local singular structure of all the divergences appearing
in the Euclidean propagator has been well-known for a long time [252, 253]. In
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four dimension the Euclidean Green’s function possesses the following singularity
structure,

G Esing(x, x′) = 1
8π2

[
∆1/2(x, x′)
σ(x, x′) + V (x, x′) log σ(x, x′) +W (x, x′)

]
. (A.8)

In this expression, 2σ(x, x′) denotes the square of the geodesic distance between
x and x′ [254], the term ∆1/2(x, x′) is the biscalar form of the VanVleck-Morette
determinant [128], V (x, x′) is the tail term of the Hadamard parametrix [255] and
W (x, x′) a biscalar that encodes all the information about the state. These scalars
admit covariant Taylor expansions in powers of σ (the reader can find the pertinent
expressions in [126, 128]).

The logic behind the stress-tensor regularization via the Hadamard form is similar
to the point-splitting regularization method developed by Christensen [123]. This
regularization consists in expressing the singular part of the propagator and/or SET
in a form suitable for direct subtraction from the corresponding unrenormalized
expressions. Whereas the covariant Taylor expansion of the Hadamard form (A.8)
is done in every spacetime direction, subtractions are performed in the partial
coincidence limit where the separation is only in the t coordinate. This separation
is naturally adapted to the staticity of the spacetime, but in general it is not obvious
which is the separation that most simplifies subtracting divergences. For example,
the Hadamard renormalization of the RSET at horizons requires taking a partial
coincidence limit that leaves a separation in the r direction [130, 251].

Euclidean propagator

Before the subtraction of counterterms can be attempted, we first need to rearrange
the Euclidean propagator and all the terms involving parallel transport bivectors
and covariant derivatives of GE as sums over the wave modes of the homogeneous
radial equation that follows from (A.2) after decomposing the scalar field in spher-
ical harmonics [see Eq. (B.1)]. After some algebra, it is possible to express the
propagator as

GE(x, x′) =
∫
dµ̃ cos [ω (τ − τ ′)]

∞∑
l=0

(2l + 1)Pl (cos γ)Cωlpωl(r<)qωl(r>), (A.9)
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where, depending on the temperature T of the state we have

∫
dµ̂F (ω) ≡ 1

4π2

∫ ∞

0
dωF (ω), T = 0

≡ κ

4π2

∞∑
n=1

F (ω) + κ

8π2F (0), T > 0, (A.10)

where κ = 2πT . In Eq. (A.9), Pl is a Legendre Polynomial and

cos γ ≡ cos θ cos θ′ + sin θ sin θ′ cos(ϕ− ϕ′). (A.11)

The modes pωl and qωl are the linearly-independent solutions (pωl and pωl being
regular at the lower and upper limits of the integration region, respectively) to the
homogeneous radial equation

1
h

d2S

dr2 +
[

2
rh

+ 1
2fh

df

dr
− 1

2h2
dh

dr

]
dS

dr
−
[
n2κ2

f
+ l(l + 1)

r2 +m2 + ξR

]
S = 0. (A.12)

The constant Cωl obeys the Wronskian condition

Cnl

[
pnl

dqnl
dr

− qnl
dpnl
dr

]
= − 1

r2

(
h

f

)1/2

. (A.13)

In selecting the states upon which the RSET is evaluated, we consider only those
whose singularity structure is of the Hadamard form. This is the Hadamard
condition [256] that makes possible to covariantly subtract divergences to bivalued
tensors that are ill-defined in the coincidence limit.

Hadamard regularization

The RSET can be expressed in terms of the Euclidean propagator and its deriva-
tives [131]

⟨T̂ µν ⟩ren =2
(1

2 − ξ
) [
gµν

′
GE(x, x′);νν′

]
ren

+
(

2ξ − 1
2

) [
gαβ

′
GE(x, x′);αβ′

]
ren

− 2ξ [gµνGE(x, x′);µν ]ren + 2ξ
[
gαβGE(x, x′);αβ

]
ren

+ ξ
(
Rµ
ν − 1

2R
)

[GE(x, x′)]ren − m2

2 [GE(x, x′)]ren + 2v1

8π2 + Mµ
ν , (A.14)

with

Mµ
ν = m2

16π2

{(
ξ − 1

6

)(
Rµ
ν − 1

2R
)

− 3
8m

2
}

(A.15)
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and

v1 = 1
720 (RµνρσR

µνρσ) − 1
24

(
ξ − 1

5

)
□R+ 1

8

(
ξ − 1

6

)2
R2 + 1

4m
2
(
ξ − 1

6

)
R+ m4

8 .

(A.16)
Here, the singular terms appearing in the Hadamard parametrix (A.8) after covariantly-
Taylor-expanding it can be cast into mode sums using known relations [257]. Finally,
the total coincidence limit ϵ = τ − τ ′ = 0 is taken and the terms within brackets are
split in a sum between a numerical component and an analytical part, such as

[
gµν

′
GE(x, x′);µν′

]
ren

= lim
ϵ→0

[
gµν

′
GE(x, x′);µν′ − gµν

′
GEsing(x, x′);µν′

]
=
[
gµν

′
GE(x, x′);µν′

]
num

+
[
gµν

′
GE(x, x′);µν′

]
an
. (A.17)

This decomposition applies to the RSET as well [see Eq. (1.4) and App. C for the
pertinent expressions], as detailed in Sections 1.2 and 6.1. An equivalent splitting
was also found in cosmological scenarios [132], where it is argued that each part
carries distinct physical information. The Hadamard method outlined here makes
use of the Euclidean modes and naturally incorporates the temperature of the state
into the definition of the RSET. The Boulware state is recovered by taking all the
temperature-dependent terms to zero. As the numerical and analytical portions of
the RSET are independently conserved, in Chapter 6 we take the analytical part as
an approximation to the exact RSET.

The infinite sum modes present in ⟨T̂ µν ⟩num converge slowly (strict convergence
of the sums over l is guaranteed by adding the corresponding counterterms that
compensate a surface divergence present when the coincidence limit is taken for
the propagator, see [127]) and would require summation over a vast quantity of
modes. To bypass this problem Howard and Candelas [134, 135] developed a
method that consisted in splitting the sums in two parts by adding and subtracting
a sufficiently high-order WKB expansion, as in

⟨T̂ µν ⟩num = limϵ→0
[(

⟨T̂ µν ⟩unren − ⟨T̂ µν ⟩WKB

)
+
(
⟨T̂ µν ⟩WKB − ⟨T̂ µν ⟩WKBdiv

)]
= ⟨T̂ µν ⟩modes + ⟨T̂ µν ⟩WKBfin. (A.18)

This method was applied to compute the vacuum polarization and RSET of a
conformally invariant field (m = 0, ξ = 1/6) in a thermal state in the Schwarzschild
spacetime. Anderson, Hiscock and Samuel [127] later improved the ratio of
convergence of the sums by including higher orders in the WKB expansions and
found the analytic portion exhibits a spurious logarithmic divergence at the outer
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event horizon of the Reissner-Nordström BH. This divergence is associated to the
failure of the WKB approximation at the horizon [258].
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Renormalized
stress-energy tensor in two
dimensions

B

Dimensional reduction and near-horizon approximation

In the near-horizon approximation [101], the dynamics of a minimally coupled
scalar field reduces to that of a conformally coupled scalar that propagates over
a 1 + 1 spacetime. To illustrate the emergence of conformal invariance in the
wave equation we analyze the propagation of a classical massless and minimally
coupled scalar field on the Schwarzschild spacetime. The wave equation (A.2) can
be reduced to a partial differential equation for the (t, r∗) variables via the method
of separation of variables. We assume the field obeys a decomposition of the form

Φ(t, r, ϕ, φ) =
∑
l,m

𭟋l(t, r)
r

Ylm(θ, φ), (B.1)

where Ylm(θ, ϕ) are the spherical harmonics. This way, the four-dimensional equa-
tion of motion for the field reduces to a (1 + 1)-dimensional wave equation that, in
the massless and minimally coupled case (m = ξ = 0), becomes

[
− ∂2

∂t2
+ ∂2

∂r2
∗

− Vl(r)
]
𭟋l(t, r) = 0, (B.2)

where r∗ is defined as the tortoise coordinate

dr∗

dr
=
√
f

h
, (B.3)

and Vl(r) is the potential term

Vl(r) = fl (l + 1)
r2 + f ′h− fh′

2h2r
. (B.4)
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For the Schwarzschild spacetime (1.3), the potential results

Vl(r) =
(

1 − 2M
r

) [
l(l + 1)
r2 + 2M

r3

]
, (B.5)

acting as an effective barrier against which the field modes backscatter.

In the near-horizon limit r → 2M , the potential (B.5) vanishes and the wave
equation (B.2) reduces to

∂u∂v𭟋l(u, v) = 0, (B.6)

where the coordinates u, v are the retarded and advanced null coordinates

u = t− r∗, v = t+ r∗. (B.7)

Eq. (B.2) describing the propagation of a minimal field becomes conformally
invariant in the near-horizon limit. Precisely, Eq.(B.6) is the form the wave equation
adopts for a conformally invariant field propagating over a dimensionally-reduced
metric corresponding to the (t, r) sector of the higher-dimensional spacetime (6.4),

ds2
(2) = −f(r)dt2 + h(r)dr2. (B.8)

In two spacetime dimensions every metric is conformally flat and can be reduced
to the double-null form

ds2
(2) = C(u, v)dudv, (B.9)

where the conformal factor C contains all the geometric information of the space-
time.

Eq. (B.6) has another nice property, being that it admits analytical solutions in the
form of positive-frequency plane waves which, in absence of reflective boundaries
and appropriately normalized obey

pB
u = (4πω)−1/2 e−iωu, pB

v = (4πω)−1/2 e−iωv. (B.10)

The existence of a complete basis of analytical positive-frequency modes simplifies
the RSET derivation drastically as its dependence on the modes (B.10) is through
a pair of integrals over ω that can be analytically performed. This, together with
the fact that point-splitting regularization becomes simpler the less directions are
available to split the points along, enables to obtain entirely analytical expressions
for the (1 + 1)-dimensional RSET of the massless minimally coupled field.
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Covariant point-splitting renormalization

We outline now how the RSET is obtained through the covariant point-splitting
regularization procedure, and refer the reader to [119] for the technical details.
The SET for the massless, minimally coupled scalar field in 1 + 1 dimensions adopts
the form

Tµν = ∇µΦ∇νΦ − 1
2gµν∇

σΦ∇σΦ. (B.11)

The point-split version of this operator, assuming a generic separation ϵ between
the points alongisde some geodesic, is

Tµµ (x; ϵ, tρ) =
[
eα(µ (ϵ)eβν)(−ϵ) − 1

2gµνe
α
σ(ϵ)eσβ(−ϵ)

]
× 1

2 {∇αΦ(x′),∇βΦ(−x′)} . (B.12)

In this expression, the curvy brackets and parentheses represent the symmetriza-
tions

{A,B} = AB +BA, A(µν) = 1
2 (Aµν + Aνµ) . (B.13)

The quantity eαµ(ϵ) is equivalent to the parallel transport bivector gα′
µ (x, x′), although

we have replaced x′ by xϵ and denoted the proper distance between the points xϵ
and x as |ϵ|. Parallel transport bivectors obey

deαµ/dϵ+ Γανρeνµtρ = 0, with eα(0)µ = δαµ . (B.14)

Finally, tρ is the vector tangent to the geodesic at x, namely

dxρϵ/dϵ = tρ(ϵ), tρt
ρ = Σ = ±1, (B.15)

and Σ < 0 denotes a timelike character of the geodesic.

Now, the parallel transport equations (B.14) can be solved for a vector aµ(ϵ) =
eµρ(ϵ)aρ1 in power series of ϵ. Assuming both aµ(ϵ) and tµ(ϵ) can be Taylor-expanded
as

aµ(ϵ) = aµ1 + ϵaµ2 + 1
2ϵ

2aµ3 + O
(
ϵ3
)
,

tµ(ϵ) = tµ1 + ϵtµ2 + 1
2ϵ

2tµ3 + O
(
ϵ3
)
. (B.16)

Replacing these expressions into the parallel transport equation for a general vector
aµ,

daµ(ϵ)/dϵ+ Γµνρ(xϵ)aν(ϵ)tρ(ϵ) = 0, (B.17)
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and expanding the Christoffel symbols in power series of ϵ, we obtain a series of
expressions relating the aµn coefficients with aµ1 and tµ1 . Replacing the resulting
expansions in (B.12) and using the fact that parallel transport bivectors eαµ are
diagonal matrices in double null coordinates, the expectation values of the SET
components (maintaining the separation between points) reduce to the simple
form

⟨T̂uv⟩ϵ = 0,

⟨T̂uu⟩ϵ = (4π)−1 U−ϵUϵ

∫ ∞

0
dωωeiω∆u,

⟨T̂vv⟩ϵ = (4π)−1 V−ϵVϵ

∫ ∞

0
dωωeiω∆v, (B.18)

with

Uϵ = euu(ϵ) = tu(ϵ)/tu1

= 1 − C−1Cutu1ϵ+ 1
2C

[
C−3

(
3C2

u − CCuu
)
tu1 − 1

4Rt
v
1

]
tu1ϵ

2 + O
(
ϵ3
)
,

Vϵ = 1 − C−1Cvtv1ϵ+ 1
2C

[
C−3

(
2C2

v − CCvv
)
tv1 − 1

4Rt
u
1

]
tv1ϵ

2 + O
(
ϵ3
)
, (B.19)

and
∆u = uϵ − u−ϵ, ∆v = vϵ − v−ϵ, (B.20)

where

uϵ ≡ xuϵ = u0 + tu1ϵ− 1
2C−1Cu (tu1)2 ϵ2 + O

(
ϵ3
)
, (B.21)

and similarly for vϵ. Notice how these expansions only involve up to second deriva-
tives of the metric functions, contrarily to the expansions involved in computing the
3 + 1 RSET that include up to fourth derivatives of the metric [128]. The absence
of high-derivative terms, together with the analyticity of the wave modes are the
principal advantages of dimensional reduction.

The integrals in (B.18) can be done analytically [119]. Then, expansions (B.19)
and (B.21) are inserted in the RSET components and the latter is expanded in
powers of ϵ up to terms that vanish in the ϵ → 0 limit,

⟨T̂µν (x; ϵ, tρ)⟩ = (8π)−1
[(

Σϵ2
)−1

− 1
6R

] (
gµν − 2Σ−1tµtν

)
+ θµν , (B.22)
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from where we simply subtract all the terms that diverge with ϵ → 0 and those
which depend on the tangent vector tµ, i.e. the direction in which the points are
taken together. The final expressions are

⟨T̂µν(x)⟩ = θµν − (48π)−1 Rgµν

θuu = − (12π)−1 C
1
2∂2

u

(
C− 1

2
)
,

θvv = − (12π)−1 C
1
2∂2

v

(
C− 1

2
)
,

θuv = θvu = 0. (B.23)

This method is completely analogous to the Hadamard subtraction method (indeed,
the subtracted terms correspond to the covariant Taylor expansion of the Hadamard
parametrix in 1 + 1 dimensions).

The RSET (B.23) yields the correct trace anomaly in two dimensions

⟨T̂ µµ ⟩ = R

24π , (B.24)

given by the breaking of conformal invariance by the quantization procedure.
Moreover, this RSET is conserved in two dimensions by construction

∇ν⟨T̂µν⟩ = 0. (B.25)

Vacuum state definitions

The relation between the RSET components in different vacua is given by the
Schwarzian derivative between the pair of null coordinates in terms of which the
field modes behave as plane waves. We remind the reader that a choice of positive
frequency wave modes determines a set of creation and annihilation operators in
terms of which both the notion of vacuum state and of particle is defined [33, 101].

For example, the set of plane-wave modes (B.10) corresponds to the Boulware
vacuum state, as they behave as plane waves in the null infinity regions of space-
time, (u → −∞, v = v0) and (u → u0, v = +∞) for past and future null infinities,
respectively. A static observer at the asymptotic regions of the spacetime per-
ceives this vacuum state as empty (it tends to Minkowski vacuum asymptotically).
However, the Boulware modes oscillate infinitely as the past and future event
horizons are approached, (u → +∞, v = vH) and (u = uH, v → −∞), respectively.
This characteristic propagates to the RSET in the form of a divergence at the event
horizon.
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We can consider an entirely different set of modes defined with respect to the
Kruskal coordinates (U, V ),

pH
U = (4πω)−1/2 e−iωU , pH

V = (4πω)−1/2 e−iωV (B.26)

that are regular at the event horizon, with the Kruskal coordinates defined as

U = −κ−1e−κu, V = κ−1eκv, (B.27)

with κ = 1/4M the surface gravity of the Schwarzschild BH. The state resulting from
this election is the Hartle-Hawking state, that compensates the Boulware divergence
by adding thermal fluxes to the RSET equally divergent at the horizon but with
opposite signs. Static observers at future and past null inifinities perceive a thermal
bath of radiation at the temperature of the BH horizon. The Hartle-Hawking state
describes a BH in (unstable) equilibrium with the very same radiation it emits. The
consistency of such a configuration requires adding an artificial outer boundary to
the spacetime, so that the entirety of the radiation remains confined within a finite
region. The characteristics and backreaction effects of this configuration have been
extensively analyzed in the literature [259, 260].

The RSETs constructed from two different bases of plane-wave modes (in this
case, those associated to the Hartle-Hawking and Boulware vacuums, respectively)
are related by the Schwarzian derivative [261]

⟨H|T̂uu|H⟩ − ⟨B|T̂uu|B⟩ = − (24π)−1 {U, u} ,
⟨H|T̂vv|H⟩ − ⟨B|T̂vv|B⟩ = − (24π)−1 {V, v} (B.28)

defined as

{U, u} = d3U

du3

/dU
du

− 3
2

(
d2U

du2

/dU
du

)2

. (B.29)

For the Schwarzschild spacetime, these terms equal

{U, u} = {V, v} = −κ2

2 , (B.30)

These terms compensate the divergence of the Boulware state at the horizon,
yielding a finite RSET there. Finally, the Unruh state is defined with respect to the
modes

pU
U = (4πω)−1/2 e−iωU , pU

v = (4πω)−1/2 e−iωv, (B.31)

and corresponds to a state regular at the future event horizon but singular at the
past event horizon. The |in⟩ vacuum state associated to a collapsing BH long after

192 Appendix B

Renormalized stress-energy tensor in two dimensions



the trapped region has formed approaches the Unruh vacuum state. The state-
dependent terms (B.30) are constant at radial infinity (in two dimensions). The
vacuum state compatible with the asymptotic flatness and staticity is the Boulware
vacuum, for which the RSET decays sufficiently quick with r. The emergence of
conformal symmetry near the event horizon is the underlying reason for this 1 + 1
RSET to be able to capture properly relevant fraction of the physics of 3 + 1 RSETs.
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The
Anderson-Hiscock-Samuel
RSET

C

C.1 Components of the AHS-RSET
Below we show the components of the AHS-RSET for a massless field with arbitrary
coupling ξ (keeping temperature-dependent terms). Comparing these expressions
with those of the OR-RSET [Eqs. (6.8, 6.11)], we observe that the simplification is
dramatic.
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1440π2⟨T̂ tt ⟩AHS = −3κ4

f 2 +
(

75 (f ′)2

f 3h
+ 30h′f ′

f 2h2 − 120f ′

f 2hr
+ 30h′

fh2r
− 60f ′′

f 2h
+ 30
fr2 − 30

fhr2

)(
ξ

− 1
6

)
κ2 + 7 (f ′)4

32f 4h2 + 7 (h′)3

h5r
+ 3 (f ′)2

4f 2h2r2 + 5f ′h′

2fh3r2 + (f ′)2 f ′′

8f 3h2

+ 19 (h′)2 f ′′

8fh4 + 9f ′h′f ′′

8f 2h3 + (f ′)2 h′′

4f 2h3 + f ′h′′

2fh3r
+ 13f ′h′h′′

8fh4 + h′′

h3r2

+ 2f (3)

fh2r
+ h(3)

h3r
+ f (4)

2fh2 − f ′f (3)

2f 2h2 − 3 (f ′′)2

8f 2h2 − f ′′h′′

fh3 − 3h′f (3)

2fh3 − f ′h(3)

4fh3

− (f ′)3 h′

16f 3h3 − 19 (f ′)2 (h′)2

32f 2h4 − 7f ′ (h′)3

4fh5 − 3 (f ′)3

4f 3h2r
− 2h′f ′′

fh3r
− 5 (f ′)2 h′

4f 2h3r

− 13h′h′′

2h4r
− 3f ′ (h′)2

2fh4r
− 7 (h′)2

4h4r2 − 2h′

h3r3 + 1
r4 − 1

h2r4 +
(

−49 (f ′)4

32f 4h2

− 29h′ (f ′)3

16f 3h3 + 11 (f ′)3

8f 3h2r
+ 3h′ (f ′)2

2f 2h3r
+ 29f ′′ (f ′)2

8f 3h2 + 3h′′ (f ′)2

4f 2h3

− 57 (h′)2 (f ′)2

32f 2h4 + 5 (f ′)2

8f 2h2r2 + 13 (h′)2 f ′

8fh4r
+ 5h′f ′

4fh3r2 + 27h′f ′′f ′

8f 2h3

+ 13h′h′′f ′

8fh4 − 3f (3)f ′

2f 2h2 −h(3)f ′

4fh3 − 7 (h′)3 f ′

4fh5 − 13f ′′f ′

4f 2h2r
− 3h′′f ′

4fh3r
+ 7 (h′)3

2h5r

+ 19 (h′)2 f ′′

8fh4 + h′′

2h3r2 + 2f (3)

fh2r
+ h(3)

2h3r
+ f (4)

2fh2 − 9 (f ′′)2

8f 2h2 − f ′′h′′

fh3

− 3h′f (3)

2fh3 − 13h′f ′′

4fh3r
− 13h′h′′

4h4r
− 7 (h′)2

8h4r2 − h′

h3r3 + 1
2r4 − 1

2h2r4

)
log f
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+
(

−49 (f ′)4

16f 4h2 − 29h′ (f ′)3

8f 3h3 + 11 (f ′)3

4f 3h2r
+ 3h′ (f ′)2

f 2h3r
+ 29f ′′ (f ′)2

4f 3h2

+ 3h′′ (f ′)2

2f 2h3 − 57 (h′)2 (f ′)2

16f 2h4 + 5 (f ′)2

4f 2h2r2 + 13 (h′)2 f ′

4fh4r
+ 5h′f ′

2fh3r2

+ 27h′f ′′f ′

4f 2h3 + 13h′h′′f ′

4fh4 − 3f (3)f ′

f 2h2 − h(3)f ′

2fh3 − 7 (h′)3 f ′

2fh5 − 13f ′′f ′

2f 2h2r

− 3h′′f ′

2fh3r
+ 7 (h′)3

h5r
+ 19 (h′)2 f ′′

4fh4 + h′′

h3r2 + 4f (3)

fh2r
+ h(3)

h3r
+ f (4)

fh2

− 9 (f ′′)2

4f 2h2 − 2f ′′h′′

fh3 − 3h′f (3)

fh3 − 13h′f ′′

2fh3r
− 13h′h′′

2h4r
− 7 (h′)2

4h4r2 − 2h′

h3r3

+ 1
r4 − 1

h2r4

)
log ν +

(
−945 (f ′)4

8f 4h2 − 495h′ (f ′)3

4f 3h3 + 165 (f ′)3

f 3h2r

+ 405h′ (f ′)2

2f 2h3r
+ 495f ′′ (f ′)2

2f 3h2 + 45h′′ (f ′)2

f 2h3 − 855 (h′)2 (f ′)2

8f 2h4 + 45 (f ′)2

2f 2hr2

− 45 (f ′)2

2f 2h2r2 + 285 (h′)2 f ′

fh4r
+ 15h′f ′

fh2r2 + 405h′f ′′f ′

2f 2h3 + 195h′h′′f ′

2fh4

− 90f (3)f ′

f 2h2 − 15h(3)f ′

fh3 − 105 (h′)3 f ′

fh5 − 270f ′′f ′

f 2h2r
− 120h′′f ′

fh3r
− 45h′f ′

fh3r2

+ 60 (h′)2

h4r2 + 90h′

h3r3 + 285 (h′)2 f ′′

2fh4 + 30f ′′

fh2r2 + 195h′h′′

h4r
+ 120f (3)

fh2r

+ 30f (4)

fh2 − 135 (f ′′)2

2f 2h2 − 60f ′′h′′

fh3 − 90h′f (3)

fh3 − 30h(3)

h3r
− 270h′f ′′

fh3r

− 210 (h′)3

h5r
− 30f ′′

fhr2 − 30h′′

h3r2 − 30h′

h2r3 − 60
hr4 + 60

h2r4

)(
ξ − 1

6

)
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+
[

945 (f ′)4

4f 4h2 + 270h′ (f ′)3

f 3h3 − 720 (f ′)3

f 3h2r
+ 855 (h′)2 (f ′)2

4f 2h4 − 540f ′′ (f ′)2

f 3h2

− 90h′′ (f ′)2

f 2h3 − 360h′ (f ′)2

f 2h3r
+ 270 (f ′)2

f 2hr2 − 90 (f ′)2

f 2h2r2 + 900 (h′)2 f ′

fh4r
+ 180h′f ′

fh2r2

+ 900f ′′f ′

f 2h2r
+ 180f (3)f ′

f 2h2 − 405h′f ′′f ′
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fh3r
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fh3r2 + 180 (h′)2

h4r2

+ 135 (f ′′)2
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fh3r
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hr4
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−2205 (f ′)4
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fh4r
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h4r
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fh2r
+ 90f (4)
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fh3

− 270h′f (3)
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fh3r
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h5r
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h2r4

)
log f

+
(
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fh4r
+ 180h′f ′

fh3r2 + 1215h′f ′′f ′

f 2h3 + 585h′h′′f ′
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+ 900 (h′)2

h4r2 + 720h′
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h3r
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h5r
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r4 − 1080
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h2r4

)
log ν

] (
ξ − 1

6
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,
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1440π2⟨T̂ rr ⟩AHS = κ4

f 2 +
(

−15 (f ′)2

f 3h
− 30f ′

f 2hr
− 30
fr2 + 30

fhr2

)(
ξ − 1

6

)
κ2 + (f ′)4

32f 4h2

+ 7 (f ′)2 (h′)2

32f 2h4 + 2f ′

fh2r3 + (f ′)3 h′
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f 2h2r
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8f 2h2 − (f ′)2 f ′′
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fh2r
− (f ′)3

2f 3h2r

− (f ′)2 h′

4f 2h3r
− 7f ′ (h′)2

4fh4r
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fh2r2 +
(

7 (f ′)4

32f 4h2 + 3h′ (f ′)3

16f 3h3 − 5 (f ′)3

8f 3h2r

+ 7 (h′)2 (f ′)2

32f 2h4 − 3f ′′ (f ′)2

8f 3h2 − h′′ (f ′)2

8f 2h3 − h′ (f ′)2

2f 2h3r
− (f ′)2

8f 2h2r2 + h′f ′

4fh3r2

+ 3f ′′f ′

2f 2h2r
+ h′′f ′

2fh3r
+ f (3)f ′

4f 2h2 − h′f ′′f ′

4f 2h3 − 7 (h′)2 f ′

8fh4r
+ f ′

fh2r3 + 7 (h′)2
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+ h′f ′′

2fh3r
− (f ′′)2

8f 2h2 − f (3)

2fh2r
− f ′′
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2h3r2 + 1
2r4 − 1
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)
log f

+
(

7 (f ′)4

16f 4h2 + 3h′ (f ′)3

8f 3h3 − 5 (f ′)3

4f 3h2r
+ 7 (h′)2 (f ′)2

16f 2h4 − 3f ′′ (f ′)2
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− h′ (f ′)2

f 2h3r
− (f ′)2

4f 2h2r2 + h′f ′
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f 2h2r
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fh3r
+ f (3)f ′
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)
log ν +

(
135 (f ′)4

8f 4h2 + 45h′ (f ′)3

4f 3h3 + 45 (f ′)3

f 3h2r

+ 105 (h′)2 (f ′)2
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2f 2h3 − 15 (f ′)2
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)(
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(C.2)

+
[
−45 (f ′)4

2f 4h2 − 45h′ (f ′)3
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fh2r3 + 630 (h′)2

h4r2 + 360f ′′
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1440π2⟨T̂ θθ ⟩AHS

= κ4

f 2 +
(

75 (f ′)2

2f 3h
+ 15h′f ′

2f 2h2 − 15f ′

f 2hr
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6
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fh2r3 +
(

21 (f ′)4

32f 4h2 + 13h′ (f ′)3
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32f 2h4
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+ f ′′
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+
(

21 (f ′)4

16f 4h2 + 13h′ (f ′)3

8f 3h3 − 3 (f ′)3

4f 3h2r
+ 25 (h′)2 (f ′)2

16f 2h4 − 13f ′′ (f ′)2

4f 3h2

− 5h′′ (f ′)2

8f 2h3 − h′ (f ′)2

f 2h3r
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2f 2h2r2 + 7 (h′)3 f ′

4fh5 + 7f ′′f ′

4f 2h2r
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4fh3r
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fh2r3 + 5 (f ′′)2
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− 1
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+
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+ 405h′ (f ′)2

4f 2h3r
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+
[

405 (f ′)4

2f 4h2 + 225h′ (f ′)3
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f 3h2r
+ 405 (h′)2 (f ′)2

2f 2h4 − 450f ′′ (f ′)2

f 3h2

− 90h′′ (f ′)2
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f 2h2r2 + 810 (h′)2 f ′

fh4r
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f 2h2 + 180f ′′
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− 180h(3)
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fh3r
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r4 − 540
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h2r4

)
log f

+
(

−1755 (f ′)4
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2f 3h3 + 675 (f ′)3

f 3h2r
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f 3h2 + 225h′′ (f ′)2

f 2h3

− 2115 (h′)2 (f ′)2

4f 2h4 + 180 (f ′)2

f 2h2r2 + 1485 (h′)2 f ′

fh4r
+ 540h′f ′

fh3r2 + 990h′f ′′f ′

f 2h3 + 585h′h′′f ′

fh4

− 450f (3)f ′

f 2h2 − 90h(3)f ′

fh3 − 630 (h′)3 f ′

fh5 − 1170f ′′f ′

f 2h2r
− 630h′′f ′

fh3r
+ 540f ′

fhr3 − 180f ′

fh2r3 + 1260h′

h3r3

+ 855 (h′)2 f ′′

fh4 + 2340h′h′′

h4r
+ 540f (3)

fh2r
+ 180f (4)

fh2 − 315 (f ′′)2

f 2h2 − 360f ′′h′′

fh3 − 540h′f (3)

fh3

− 360h(3)

h3r
− 1260h′f ′′

fh3r
− 2520 (h′)3

h5r
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log ν
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and
⟨T̂φφ ⟩AHS = ⟨T̂ θθ ⟩AHS. (C.4)

C.2 Regularity of the AHS-RSET
The expressions (C.1-C.3) give rise to a covariantly conserved RSET obtained
directly by taking the analytical byproduct of following the point-splitting renormal-
ization procedure (as in [127]) or the Hadamard renormalization prescription (see
App. A). The higher-derivative terms naturally arise upon isolating and subtracting
all the ultraviolet divergent terms that appear in the field propagator from which
the RSET is constructed. Thus, these expressions are purely geometrical and in-
voke no additional assumptions about the spacetime over which they are obtained,
resulting in an RSET that is regular at the center of spherical symmetry, with one
caveat that we detail in the following. It is straightforward to check that regularity
of the Kretschmann invariant

K = RµνρσRµνρσ (C.5)

of the metric (6.4) at r = 0 enforces the metric functions to obey the expansions

f(r) =a0 + a2r
2 + a3r

3 + a4r
4 + O

(
r5
)
,

h(r) =1 + b2r
2 + b3r

3 + b4r
4 + O

(
r5
)
, (C.6)

These conditions ensure the finiteness at r = 0 of all other invariants constructed
from contractions of the Ricci and Riemann tensors and the Ricci scalar [13]. Notice
how the Kretschmann invariant constraints the value of the coefficients in (C.6) up
to second-order terms in r because it only involves up to second-order derivatives
of the metric functions (notice the absence of linear terms in r in the expansion).
However, in replacing the expansions (C.6) in the AHS-RSET we obtain, for the
⟨T̂ tt ⟩AHS component

1440π2⟨T̂ tt ⟩AHS =12a3

a0r

[
1 + log

(
a0ν

2
)

+ 60
(
ξ − 1

6

)
+180 log

(
a0ν

2
)(

ξ − 1
6

)2]

+ 4b3

r

[
2 + log

(
a0ν

2
)

+ 60
(
ξ − 1

6

)
−360 log

(
a0ν

2
) (

ξ − 1
6

)2]
+ O

(
r0
)
. (C.7)

204 Appendix C

The Anderson-Hiscock-Samuel RSET



Notice the divergence at r = 0 when the terms a3 and b3 are nonzero. Here we
omit the remaining RSET components as they show similar divergences.

The presence of higher-derivative terms of the metric in the RSET imposes
more restrictive conditions for regularity than those given by the finiteness of
curvature invariants themselves. This adds an extra degree of non-physicality
to RSET approximations that exhibit higher-derivative terms due to these terms
becoming singular at r = 0 on geometries that are entirely regular in classical
general relativity. The OR-RSET is ⟨T̂ µν ⟩OR = O(r0) over any metric whose curvature
invariants are finite, while also diverging at the regions where the state in which it
is evaluated becomes singular, so here we advocate its use over the AHS-RSET in
scenarios where the point r = 0 belongs to the spacetime.
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