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Abstract
Many disciplines make use of mathematical concepts. However, there are often
discrepancies between the way mathematical concepts are understood and taught in
mathematics and the way they are used in other disciplines. The literature suggests that
such discrepancies might make it hard for students in mathematics service courses to
make a connection between the mathematical concepts taught and the way they are
used in the students’ major disciplines. We investigated this hypothesis for one specific
example in mathematics for economics students – the derivative and its interpretation
commonly used in economics as the amount of change when increasing the production
by one unit. We conducted an interview study investigating to what extent economics
students can make a connection between the mathematical concept of the derivative
and this common economic interpretation of the derivative. This study provides
empirical evidence that it is actually difficult for economics students to make this
connection, even though it was covered in their calculus course. In particular, the study
reveals difficulties students have when trying to make this connection, which could be
addressed in teaching.
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Introduction

Mathematics plays a crucial role in many disciplines. Students enrolled in such
disciplines should therefore gain a thorough understanding of the mathematical con-
cepts that play an important role in their major discipline (see e.g. Alpers et al. (2013)
for engineering). However, there are sometimes discrepancies between the way math-
ematical concepts are understood in mathematics and how they are used in the students’
major discipline (Alpers, 2017, 2018; Hochmuth et al., 2014). It is therefore important
that students can make a connection between the understanding of the mathematical
concepts acquired in their mathematics courses and the way these are used in their
major discipline.

However, if students can actually make such a connection has not thus far been
investigated explicitly. We investigated this issue for economics students and the notion
of the derivative. We selected this concept because it plays an important role in
economics, for example in marginal analysis (Ruffin & Gregory, 1990), and there
are discrepancies between the way the concept is understood in mathematics and the
way it is used in economics, as the following definition of marginal cost from the
economic textbook by Wöhe and Döring (2013) illustrates (p. 300–301, translated by
the authors):

The marginal cost C' is the additional cost of the last unit. The marginal cost for
the 33rd unit can be determined easily by subtracting the total cost for 32 units
from the total cost for 33 units. The marginal cost is the slope of the cost function.
It can be determined by taking the derivative of the cost function C0 ¼ dC

dx.

In this definition, the derivative is identified with the additional cost of the last unit
without further explanation. Similar interpretations of the derivative – mostly as the
additional cost of the next unit – can also be found in other economics textbooks,
including English-language textbooks (Pindyck & Rubinfeld, 2013; Stiglitz & Walsh,
2002; Varian, 2006). Such an interpretation might confuse students because it does not
directly correspond to any of the usual representations and interpretations of the
derivative like slope or rate of change, which they have learned at school or in their
calculus courses at university. It even contradicts these at first glance: the derivative
f ' (x) is a rate and not an amount, and its numerical value is usually not equal to the
difference f(x + 1) − f(x) or f(x) − f(x − 1). Hence, in calculus courses for economics
students, this economic interpretation of the derivative should be discussed, so that
students can make a connection between their understanding of the mathematical
concept of the derivative and this common economic interpretation, which also relies
on specific assumptions that we will explain later.

We investigated in an interview study to what extent this is achieved in current
teaching. This study is part of the first author’s Ph.D.-project about economics students’
understanding of the derivative, under the supervision of the second author at the
Centre for Higher Mathematics Education in Germany (khdm) (Feudel, 2019; Feudel &
Biehler, 2021). In this project, we first developed on the basis of didactic and
economics literature a framework that aimed at describing an understanding of the
derivative that might be desirable for economics students after their calculus course.
We then investigated, by analyzing mathematics textbooks for economics students, to
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what extent this understanding is actually conveyed. Finally, we investigated the
understanding economics students acquired in their calculus course by analyzing
answers in the students’ final exam and by conducting an additional interview study.
We want to present the latter here as it directly focuses on the problem to make a
connection between the mathematical concept of the derivative and its common
economic interpretation.

The study aims at providing detailed insights on the extent to which students in
service courses can make a connection between the way mathematical concepts are
understood in mathematics and their usage in the students’ major (academic) discipline
for one example – the derivative – that is essential for economics students to compre-
hend. Hence, unlike research conducted in the past illustrating that it might be hard for
students to make such a connection due to different practices in mathematics and the
students’ major discipline (Alpers, 2017, 2018; Hochmuth et al., 2014), our study
provides empirical evidence that making such a connection is actually not trivial for
students. Furthermore, the research reveals difficulties students have when trying to
make such a connection. Finally, our study also extends the knowledge concerning
students’ understanding of the derivative to economics students that have been rarely
investigated thus far.

Literature Review and Embedding of the Research

Students’ Difficulties in the Understanding of the Derivative Concept

A substantial amount of research has been conducted on students’ difficulties in the
understanding of the derivative concept. First, it is known that students have difficulties
in linking its different representations with each other (Hähkiöniemi, 2006; Viholainen,
2005; Zandieh, 2000), in particular the symbolic representation, which is the formal
definition of the derivative, with the graphical and verbal representations that assign a
meaning to it (Orton, 1983; Viholainen, 2005; vom Hofe, 1998).

More relevant for our research, however, is that students have a lot of problems in
interpreting the derivative in contexts. Beichner (1994) has already shown that students
often cannot connect a function and its rate of change in kinematics contexts correctly.
Typical errors are the graph-as-picture error, the slope/height confusion, or the assump-
tion that the graph of a function equals the graph of its rate of change (Beichner, 1994).
Similar problems have been found in many other studies (for example Carlson et al.,
2010; Çetin, 2009; Nemirovsky & Rubin, 1992).

An important reason documented in the literature that can lead to these problems is
an insufficient understanding of rate. Byerley et al. (2016), for example, showed in a
study with mathematics teachers that many of these could assign a meaning to the slope
Δy
Δx ¼ 3:04 on the basis of Δx = 1, but not for arbitrary Δx ≠ 1. This problem can result
from a conception of slope that Byerley et al. (2016) called “chunky”: an understanding
of slope as the change Δy if a fixed change ofΔx is given. Thompson (1994) had also
uncovered evidence of such a conception earlier in a study that examined how a student
developed a conception of speed: the first stage of the student’s speed conception was
that speed is a distance traveled in a given amount of time. Similar conceptions of rate
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may also underlie the common economic interpretation of the derivative as the amount
of change when increasing the production by one unit, which we will discuss in the
next section. However, such a conception of rate can lead to problems in assigning a

meaning to difference quotients f xþhð Þ− f xð Þ
h for arbitrary h < 1 during the limiting process

h→ 0, and hence to the derivative as the limit of such quotients.
Students’ understanding of the derivative in economic contexts has, however, been

rarely examined. Wilhelm and Confrey (2003) showed that students cannot easily
transfer their knowledge concerning rate of change from a motion context to a money
context. In their study, they asked students in an interview to relate distance–time
graphs with speed–time graphs on one day, and to relate a total amount of money with
daily transactions on a later day. The result was that some of the students who could
properly distinguish between a function and its rate of change in a motion context failed
to do so in the money context. Mkhatshwa and Doerr (2015) furthermore showed, in a
study investigating economics students reasoning when solving optimization problems,
that students talked about economic quantities like the marginal cost C' (x) as an
amount of change (as the definition from the economics textbook by Wöhe and
Döring (2013) mentioned in the introduction also suggests). They in particular used
the unit “dollars”. This suggests that students might not have a precise understanding of
the connection between the derivative C' (x) and its common economic interpretation as
the cost of the next unit. This claim has also been backed up by our own research. An
analysis of tasks from economics students’ final calculus exam at the University of
Paderborn suggests that many students did not have a deep understanding of this
connection (Feudel & Biehler, 2021). In one task, for instance, in which they had to
interpret the derivative of a profit function, 51.4% of the students stated an interpreta-
tion as an additional profit, but the interpretations of only 26.1% were fully adequate.
The others had flaws in the formulation. For example, they did not mention that the
derivative just yields an approximation of the profit of the next unit, although this was
emphasized in the calculus course.

The study by Mkhatshwa and Doerr (2015), and our own analysis of tasks
from economics students’ final calculus exam at the University of Paderborn,
suggest that many economic students might not have a precise understanding of
the common economic interpretation of the derivative and of its connection to
the mathematical concept. The interview study we present here explicitly
examines this hypothesis with some participants of the calculus course at the
University of Paderborn just mentioned. Its results support the hypothesis and
reveal specific difficulties students might have when trying to connect the
mathematical concept of the derivative with its common economic interpreta-
tion, which could be addressed in teaching.

The Influence of Contexts on Students’ Learning of Mathematical Concepts
and Possible Problems

The literature suggests that learning mathematical concepts also depends on the
contexts in which these are used (Damlamian et al., 2013). In particular, several studies
indicate that the understanding of such concepts by students of other disciplines is
influenced by the way these are used in the students’ major discipline (Bingolbali &
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Monaghan, 2008; Bingolbali et al., 2007; Maull & Berry, 2000; Mkhatshwa & Doerr,
2015).

Maull and Berry (2000), for example, investigated engineering students’ associa-
tions regarding key mathematical concepts, and compared these with associations of
mathematics students. They drew up a questionnaire, in which students had to rank
different associations presented according to how well they were present to them. The
questionnaires were given to different groups: to engineering students at the entry to
university, at the end of their first year, and in their final year, as well as to mathematics
students at the same points in time. They found that, at entry to university, the
associations of engineering and mathematics students did not differ, while the
associations tended to differ more as the students progressed in their study program.
With regard to the derivative, for example, advanced engineering students ranked
associations related to rate of change on average higher than the other groups. Maull
and Berry (2000) suggested that this ranking difference was due to the way the
derivative was used in the engineering students’ major subject.

The influence of the students’ major discipline on their understanding of the
derivative became even more explicit in a study by Bingolbali and Monaghan
(2008). They investigated engineering and mathematics students’ understanding of
the derivative and the development thereof in their calculus course by administering
a pre-test, a post-test, and a delayed post-test to both groups of students. In the pre-test,
there were no differences in the students’ performance. In the post-tests, the engineer-
ing students performed better on items focusing on rate of change while the mathe-
matics students performed better on items including tangents. Furthermore, Bingolbali
and Monaghan (2008) posed one additional item in the delayed post-test, in which they
presented to the students two ways of thinking about the derivative: as slope or rate of
change. They then asked the students to decide which way was closer to their own
“derivative definition” and to provide a reason for their choice. While most mathemat-
ics students chose the slope, the majority of the engineering students chose the rate of
change. Many of the engineering students argued that understanding the derivative as a
rate of change is closer to applications occurring in their major subject. Some students
even argued explicitly that this is the way the derivative is considered in their
department. Hence, this study suggests explicitly that the way mathematical concepts
are used in the students’major discipline influences their learning and understanding of
the concepts.

One special challenge that might make it particularly difficult for students of other
disciplines to gain an understanding of mathematical concepts is that sometimes there
are even discrepancies between the way concepts are understood in mathematics and
the way they are used in the students’ major discipline. This phenomenon is docu-
mented in the literature with respect to several examples.

Alpers (2018) illustrated this phenomenon for the concept of continuity and its use
in engineering by analyzing a textbook of technical mechanics (Gross et al., 2013). In
this book, continuity is not defined. Instead, its counterpart, discontinuity, is touched
upon by means of functions having jumps or holes at isolated points. This is not
consistent with the mathematical point of view, in which a function can be discontin-
uous even at every point, and in which a function is continuous if and only if it is
continuous at every point of its domain (Heuser, 2003). A second example, document-
ed in Alpers (2017), refers to the concept of differential. By analyzing textbooks that
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covered engineering statics, he found that these books treated differentials as quantities
– a conception of differentials that is normally not taught in mathematics courses. A
third example was investigated by Hochmuth et al. (2014), who examined the role of
the delta distribution in signal analysis. There, it is understood as a pointwise limit of
functions describing rectangle impulses (with the value ∞ at x = 0), although from a
mathematical point of view the delta-distribution has to be viewed as a limit of
distributions.

That even a whole discourse relying on mathematical concepts might be different in
other disciplines was discovered by González-Martín and Gomes (2017), who looked
at how the concept of the integral is used in electrical engineering. By analyzing the
textbook by Beer et al. (2012), they showed that important results in the book were
derived mainly from pictures on the basis of the geometric properties of specific
situations.

In all these cases, it might be difficult for students to connect their knowledge of the
mathematical concepts taught in their mathematics courses to the way these are used in
their major discipline. This might result in gaps when students are trying to make sense
of the mathematics used in their major discipline (Christensen, 2008). However, there
exists no empirical data if students really do have difficulties in making this connection.
Our research aims at addressing this gap.

Theoretical Framework of the Study

We use a framework that we developed within the Ph.D.-project mentioned above that
examined economics students’ understanding of the derivative. This framework de-
scribes an understanding of the derivative that is mathematically acceptable on the one
hand, but which also takes into account the way the derivative is used in economics.
This framework serves as a reference for the investigation of students’ understanding
that we present here.

We developed the framework on the basis of the mathematics education literature
about students’ understanding of the derivative, in particular Zandieh (2000) and
Greefrath et al. (2016), and through an analysis of the way the derivative is used in
economics textbooks, and how the textbooks justify this use (Pindyck & Rubinfeld,
2013; Reiß, 2007; Varian, 2006; Wiese, 1999; Wöhe & Döring, 2013). Its theoretical
basis is the construct of concept image by Tall and Vinner (1981) that they define as
“the total cognitive structure associated with the concept that includes all mental
pictures, associated properties, and processes” (p. 152). Details of the framework’s
development can be found in Feudel and Biehler (2021). The framework is displayed in
Fig. 1. The left part is Zandieh’s model describing an understanding of the mathemat-
ical concept of the derivative (Zandieh, 2000). The right part contains the common
economic interpretation, and the center illustrates the connection between these two.
We will now describe the latter two in detail.

If C : [0,∞)→ [0,∞) is a cost function (where C(x) represents the cost for the
production of x units), the derivative C' (x), called marginal cost, is commonly
interpreted in economics as the additional cost of the next unit (Schierenbeck &
Wöhle, 2003). However, if one takes this interpretation literally, it would be represent-
ed by a different mathematical object, namely C(x + 1) −C(x). There are two essential
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differences between the derivative C' (x) and the additional cost of the next unit. First,
the derivative is a rate while the additional cost of the next unit is an amount. This
becomes visible in the different units of C' (x) and the additional cost. If the production
output is measured in units of production and the cost is measured in euros, the unit of
C' (x) is euros per unit of production, while the additional cost is expressed in euros.
Hence, an interpretation of C' (x) as the additional cost of the next unit even contradicts
an understanding of the derivative as a rate of change at first glance. However, as
already mentioned, Thompson (1994) showed in the speed context that the first stage in
the development of a conception of rate is to conceive of it as the amount of change
resulting from a fixed change in the independent variable. Similar views might lie
behind the interpretation of the derivative C' (x) as the additional cost of the next unit.
But one needs to be aware of the different units, which might not be obvious to students
because the derivative is rarely considered as a quantity in formal university mathe-
matics, not even in some mathematics textbooks for economics students like that of
Hoy et al. (2011).

The second important difference between C' (x) and the additional cost of the next
unit is a numerical one. This numerical difference is not small for prototypical functions
students know from school, like f(x) = x2, f(x) = ex or f(x) = sin(x), and an interpretation
of f ' (x) as f(x + 1) − f(x) would have been considered as incorrect there.

Nevertheless, there is a connection between the derivative C' (x) and the additional
cost of the next unit: the approximation C(x + h) −C(x) ≈C' (x) ⋅ h for h ≈ 0. The idea
behind this approximation is to use the derivative as a linear approximation of the
original cost function in a neighborhood of x, which is one important approach to the
derivative (Greefrath et al., 2016).

Assigning h = 1 in the approximation above then leads to the common economic
interpretation of the derivative as the cost of the next unit. This assignation is often
justified in economic textbooks with the argument that one unit is considered as so
small in economics that the error between C' (x) and C(x + 1) −C(x) is negligible (Reiß,
2007). Reiß also uses the term marginal unit to emphasize that one unit is small in the
context considered. However, this justification seems a bit brief because it does not take
into account those properties of economic functions that are important for an

Fig. 1 Framework that describes an understanding of the derivative in mathematics for economics that is
mathematically acceptable, but also considers the way the derivative is used in economics
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insignificance of the error between C' (x) and the additional cost of the next unit. These
become visible in the book “Microeconomics” by Wiese (1999), pp. 47–48:

For many of the functions we want to consider, it does not make a big difference
if we consider the difference quotient [with Δx = 1] or the derivative. For small
changes, they are almost equal, and for linear functions, even perfect.

Hence, it is assumed in economics that the functions considered are almost linear
within several units. In particular, one unit is assumed to be so small in the context that
the functions considered are almost linear within [x; x + 1].

Possible Relationships of our Model to Other Theoretical Constructs

As already mentioned, our model was based on the theoretical construct of concept
image by Tall and Vinner (1981), since the model describes associations that bridge the
way the derivative is understood in mathematics to the way it is practically used in
economics (for details see (Feudel & Biehler, 2021)). However, it can also be related to
other constructs from the education literature.

The first one is the notion of representation, as different representations of the
derivative (symbolic, graphic, verbal) are part of Zandieh’s model describing an under-
standing of the mathematical concept (Zandieh, 2000), which is also the left part of our
model (see Fig. 1). However, Zandieh (2000) does not consider these as different registers
of semiotic representations in the sense of Duval (2006), but as different ways the
mathematical community thinks about the derivative in various contexts (p. 105). Never-
theless, the representations in the model can also be related to the different registers by
Duval (2006), and being able to switch between these is essential for an understanding of
the mathematical concept of the derivative (Kendal & Stacey, 2003; Zandieh, 2000).

The second theoretical construct our model can be related to is boundary-crossing,
which plays an important role in research on transfer (Tuomi-Gröhn & Engeström, 2003).
The construct was especially used to investigate boundaries, defined as sociocultural
differences that give rise to discontinuities in interaction and action (Akkerman & Bakker,
2011), between school and work. According to Engeström et al. (1995), boundary
crossing takes place when “experts face the challenge of negotiating and combining
ingredients from different contexts to achieve hybrid solutions” (p. 319). This is similar
to the challenge economics students face when trying to make sense of how the derivative
is used in their major discipline, particularly due to differences between the mathematical
concept and its typical interpretation in economics. Our theoretical model then proposes
one way of thinking about these two for bridging the differences (without abandoning
them, which is one important feature of boundary-crossing (Akkerman & Bakker, 2011)).
However, the model only describes their connection for an individual student from a
cognitive perspective, while the construct of boundary-crossing is broader, as it views the
individual as part of several communities of practice.

Use of the Model in the Study

We used the model just described as the theoretical framework for the empirical study
we are presenting here with the following research question:
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To what extent are economics students able to make a connection between the
mathematical concept of the derivative and its economic interpretation after their
calculus course?

Hereby, our theoretical framework describing an understanding of the derivative that is
mathematically acceptable on the one hand, but that also considers the way the
derivative is used in economics, serves as a reference for the analysis of the connections
the students could make.

External Conditions of the Study

Institutional Setting

The study took place with students of a two-semester course “Mathematics for eco-
nomics students” at a medium-size university in Germany (University of Paderborn).
The course consisted of two lectures (90 min each) and one accompanying tutorial
(90 min) each week. In the latter, the students had to solve problems in groups.
Furthermore, problem sheets were distributed weekly, whose solutions could be handed
in. In the following week, solutions to these problems were presented in a “grand
tutorial” in the lecture hall. The course was taught by a mathematician who had been
teaching it for many years. The first semester of the course covered logic, set theory,
and calculus of single-variable functions, while the second semester covered linear
algebra.

The teaching was traditional in that new content was introduced in the lecture first,
and practiced in the tutorials afterwards. However, the lecturer did not only try to teach
content but also techniques of mathematical working (Dietz, 2012; Feudel & Dietz,
2019). To support the students in acquiring an understanding of the mathematical
concepts taught (like the derivative), he advised them to immerse themselves with
examples, non-examples, visualizations, as well as relevant statements involving the
concept and its applications. The students were also required to provide such in the
final exam. The students were hence not only expected to carry out procedures but also
to build an understanding of the mathematical concepts taught.

Content Taught Concerning the Derivative Concept

The content taught concerning the derivative was typical compared to what can be
found in mathematics textbooks for economics students, including English-language
textbooks in common use like Sydsæter and Hammond (2012) or Hoy et al. (2011).
The concept of the derivative and its economic interpretation were explicitly covered in
two lectures, which the first author observed, and in which he took detailed notes about
the content taught. We will now describe these two lectures in detail.

First Lecture – Introduction of the Mathematical Concept of Derivative The concept
was defined formally as the limit of the difference quotient. Simultaneously, the
geometric representation as the slope of the tangent line and the verbal representation
as rate of change were introduced. Hereby, the transition from the difference quotient to
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the derivative was discussed in all three representations. Afterwards, the differentiation
rules were presented, but not proven.

Second Lecture – Treatment of the Economic Interpretation of the Derivative The
lecturer first defined the notion of a marginal function (in German: “Grenzfunktion”) as
the derivative of an economic function like a cost function without any meaning in the
context (unlike the English term marginal, the German prefix “Grenz-” only refers to
the mathematical notion of “limit”). Afterwards, he derived the unit of such marginal
functions for the example of the marginal cost C' (x) by means of the formal definition
of the derivative. He argued that, if the production output x is measured in units of
production (ME) and C(x) is measured in units of money (GE), then the unit of the
difference quotient would be GE

ME. Since the unit does not change when taking the limit,

the unit of C' (x) needs to be GE
ME as well.

The lecturer then posed the question of how to interpret C0 11ð Þ ¼ 0:7 GE
ME of a cost

function C in an economics context. To answer this, he derived the formula
ΔC ≈C′(x) ⋅Δx for Δx ≈ 0 from the formal definition of the derivative. By assigning
Δx = 1, he then derived the following interpretation of C0 11ð Þ ¼ 0:7 GE

ME:

If one increases the production output from 11 units by one unit, the costs grow by
approximately 0.7 units of money.

Hereby, he emphasized that C' (11) usually does not yield the accurate cost of the
next unit, but that the error is small if one unit is small in the context given. To illustrate
this statement, he visualized the relationship between ΔC and the approximation
C′(x) ⋅Δx on the board with the tangent line for a convex cost function C.

On this drawing, he then explained that the error between ΔC and C′(x) ⋅Δx in the
approximation ΔC ≈C′(x) ⋅Δx decreases if Δx becomes smaller. He then argued that
for Δx→ 0 the approximation becomes “asymptotically accurate” in the following
way, which is also given in his mathematics textbook for economics students (Dietz,
2012) (p. 267):

The approximationΔC ≈C′(x) ⋅Δx transforms forΔx→ 0 into a fictive equation
dC = C' (x)dx, in which dC and dx are called differentials that should be
understood as fictive infinitely small quantities.

He then introduced a second interpretation of C0 11ð Þ ¼ 0:7 GE
ME on the basis of the

equation dC =C' (x)dx:

If one increases the output from 11 units by a marginal unit, the costs grow by
0.7 marginal units.

This alternative interpretation based on differentials as infinitely small quantities is
rather unusual in mathematics for economics students. It is, for example, not found in
common mathematics textbooks for economics students like Sydsæter and Hammond
(2012), in which differentials are introduced as variables (see for example Thompson
and Dreyfus (2017) for a description of this conception). A conception of differentials
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as infinitely small quantities is, however, common in physics and engineering (e.g.
in Stroppe (2012)). By introducing this conception for interpreting C' (x) in the
context of economics, the lecturer wanted to stress that the increment dx must be
extremely small for an insignificance of the error when approximating the addi-
tional cost by C' (x)dx.

Accompanying Exercises We want to restrict the description to two tasks that explicitly
focused on the connection between the derivative and its economic interpretation.
These are:

1) State an economic interpretation of C' (5) of the cost function C with C(x) = 8x2 +
10x + 700 (x is measured in tons of oil, C(x) in 100€).

2) Estimate the cost at a production output of 45 units of another cost function, for
which it is known only that C(43) = 19 GE and C0 43ð Þ ¼ 1:4 GE

ME.

The first task was discussed in the tutorials. After this discussion, the tutors put the
following economic interpretations of C' (5) on the board:

1. If one increases the production from 5t of oil by one ton, the costs grow by
approximately 9000€.

2. If one increases the production from 5t by a marginal unit, the costs grow by 90
marginal units.

Furthermore, the tutors emphasized that the accurate result for the cost of the next ton is
represented by C(6) −C(5) = 9800€.

The second task was posed on the weekly problem sheets that the students could
submit for later feedback. The solution provided used the (local) linear approximation
C(45) ≈C(43) + 2 ⋅C′(43).

Comparison of the Content Taught with our Theoretical Framework

Although the course was not designed on the basis of our theoretical framework in Fig. 1,
all the framework’s components were covered. In the first lecture, the mathematical
concept was introduced with its three layers (ratio, limit, function) in the three represen-
tations (symbolic, graphical, verbal), which are represented in the left part of the
framework (Fig. 1). In the second lecture, the economic interpretation of the derivative
and its connection to the mathematical concept via local linear approximation were
taught (right and center part in Fig. 1). In particular, it was discussed that C' (x) does not
yield the accurate additional cost of the next unit. The connection between these two was
made in the lecture via the formula ΔC ≈C′(x) ⋅Δx for Δx ≈ 0 on the symbolic level
(derived from the definition of the derivative), and on the graphical level with the help of
the tangent line as represented in the framework (see arrows in Fig. 1). What remained
implicit were assumptions made in economics that explain why C' (x) is commonly
nevertheless simply interpreted as the additional cost of the next unit (without
approximately), namely that the functions considered are assumed to be almost
linear within several units.
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Instead, the lecturer introduced an alternative interpretation of C' (x) as the (accurate)
additional cost of the next marginal unit, which can also be found in some economics
textbooks, like that of Reiß (2007), emphasizing that the increment in x must be
extremely small for an insignificance of the error between the accurate additional cost
and the approximation relying on the derivative.

Methodology of the Study

We designed and conducted interviews to investigate the extent to which the students
could make a connection between the mathematical concept of the derivative and its
economic interpretation after their calculus course.

Design of the Interviews

For being able to make a connection between the derivative C' (x) of a cost function and
its economic interpretation in the sense of our theoretical framework (Fig. 1) the
students should:

I. know that the common economic interpretation of C' (x) as the additional cost of
the next unit is accurately represented by C(x + 1) −C(x), which differs from C' (x)
numerically and in the unit,

II. be able to connect C' (x) and the cost of the next unit on a mathematical
level via local linear approximation, for example via the approximation
C(x + h) − C(x) ≈ C′(x) ⋅ h for h ≈ 0,

III. be aware that the common economic interpretation of C' (x) relies on the assumption
that h = 1 is so small in the context that the error between C' (x) and C(x + 1) −C(x) is
negligible because the functions considered in economics are almost linear within
several units.

It was explicitly taught in the calculus course that C' (x) only yields an approximation of
the additional cost C(x + 1) −C(x). Furthermore, C' (x) and C(x + 1) −C(x) were con-
nected via local linear approximation on the graphical and the symbolic level as in our
framework. What remained implicit was the difference in the unit and assumption III.
explaining the assignation of h = 1 in economics.

To find out the extent to which the students could make this connection, and at
which points difficulties arose, we divided the interview into four phases:

Phase 1. Introductory phase aiming to remind the students of the concept of the
marginal cost

Phase 2. Discussion of differences between C' (x) and its common economic inter-
pretation as the additional cost of the next unit

Phase 3. Connection between C' (x) and the additional cost of the next unit on the
graphical level

Phase 4. Connection between C' (x) and the additional cost of the next unit on the
symbolic level
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Each of the phases started off with a task. These were:

1. Consider the cost functionCwith the equation:C xð Þ ¼ 1
1000 x

3− 1
4 x

2 þ 21xþ 500 (x≥ 0).
The variable x is given in units of production, the cost C(x) is given in €.
Determine the marginal cost at a production output of x = 100 units. What is the
unit of the marginal cost?

2. Is the derivative C' (x) the same as the additional cost when increasing the
production from x units of production by one unit? Justify your answer.

3. Justify with the picture (Fig. 2) why the values of C' (x) and C(x + 1) −C(x) of the
function from task 1 are almost identical (for x = 100).

4. Justify with the definition of the derivative why it is often assumed in economics
that the numerical values of C' (x) and C(x + 1) −C(x) are almost identical.

The interview was carried out as a semi-structured interview lasting about half
an hour. The students were first asked to find solutions to the tasks by themselves.
There was no explicit time restriction, but if they could not find solutions by
themselves they received prompts, so that difficulties at different points of the
solution process became evident. The tasks 1,3, and 4 were provided on a sheet of
paper, and the students were encouraged to take notes illustrating their solution.
These notes were also collected. However, the main focus was on the students’ oral
explanations of the solutions.

Description of the Phases and A Priori Analysis of the Corresponding Tasks

In the following, we present an a priori analysis with the intended solutions to the tasks,
anticipated difficulties and possible prompts that might help students to overcome these
difficulties.

1st phase (Introduction): The phase began with the task to determine the marginal

cost of the cost function C with C xð Þ ¼ 1
1000 x

3− 1
4 x

2 þ 21xþ 500 (x ≥ 0) at a

Fig. 2 Graph of the cost function for task 3
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production output of x = 100 with the production output given in ME (units of
production) and the cost in €. This phase aimed at finding out, what the students first
associated with marginal cost – the derivative or the additional cost of the next unit –
and if their calculation method was coherent with the unit. The derivative yields the
result C0 100ð Þ ¼ 1 €

ME. Its unit could be justified with the definition of the derivative or
by using the interpretation of the derivative as a rate of change. On the contrary, the
additional cost of the next unit is determined by C(101) −C(100) = 1.051€. Its unit
could be justified by mentioning that the unit of costs is € (this unit is also suggested by
the name marginal cost).

Prompts in the 1st Phase We expected that every student could at least remember one
of the two conceptions of marginal cost to determine it, so we did not develop specific
prompts for this phase.

2nd phase (Discussion of differences between C' (x) and the additional cost of
the next unit): This phase aimed at finding out if the students were aware of
differences between C' (x) and the additional cost of the next unit. To achieve this,
we confronted them with an alternative definition of marginal cost. If they had solved
task 1 with the derivative, the following definition from the economics textbook by
Pindyck and Rubinfeld (2009) was presented to them (p. 325):

The marginal cost at a production output x is the additional cost that results from
increasing the production by a further unit.

If they had solved task 1 by means of calculating the cost difference, they were
reminded that marginal cost was defined as C' (x) in their calculus course.

In both cases, the interviewer then posed the following question to initiate a
discussion about differences between C' (x) and the additional cost of the next unit:

Is the derivative C ' (x) the same as the additional cost while increasing the
production from x units of production by one unit?

We chose to present the derivative C' (x) and its economic interpretation as the
additional cost of the next unit as two different definitions of the marginal cost to
provoke a stronger cognitive conflict.

According to what was taught in the calculus course (see section 4.2), the students might
mention the following differences between C' (x) and the additional cost of the next unit:

1) The additional cost of the next unit accurately corresponds to the difference
C(x + 1) − C(x) on the mathematical level.

2) The numerical values of C' (x) and the additional cost of the next unit differ.
3) The units differ.

Prompts in the 2nd Phase If the students did not mention these differences by
themselves, the interviewer gave prompts that aimed at guiding them to the differences.
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Due to limited space, we will not present all the prompts here (for details see Feudel
(2019)). The most important ones were:

& Posing a task to determine the additional cost when increasing the production from
10 units by one unit for the function in Fig. 3 graphically if the students used the
derivative in task 1.

& Asking the students to determine the marginal cost on the basis of the derivative if
they used the cost difference in task 1.

& Asking for the unit if one takes literally the definition of the marginal cost as the
additional cost of the next unit.

3rd phase (Discussion of the connection between C' (x) and C(x + 1) −C(x) on
the graphical level): This phase aimed at finding out if the students could make a
connection between C' (x) and the additional cost of the next unit (possibly with new
insights from phase 2 about differences) on the graphical level. The task of this phase
was to justify graphically for the function of task 1 (the graph was provided, see Fig. 2),
why the error between C' (100) and C(101) −C(100) was small. A possible solution
might be that C' (100) represents the slope of the tangent line at x = 100. This slope
approximately equals the slope of the secant line through (100, C(100)) and
(101,C(101)), which is numerically equal to the cost of the next unit. And since the
function in Fig. 2 is almost linear within [100; 101], this error is small. Students might
also argue directly that the value of C' (100) represents the increase on the tangent line,
which is close to the graph of the original function at x = 101.

Prompts in the 3rd Phase To bring all students into the discussion of why the error
between C' (100) and C(101) −C(100) is small for the function given in Fig. 2, prompts
could be provided. The two prompts we had thought of in advance were to remind the
students of:

Fig. 3 Graph of the task to determine the additional cost when increasing the production from 10 units by one
unit
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1) The geometric interpretation of the derivative as the slope of the tangent line, and
2) The method for the determination of the slope of a linear function with gradient

triangles.

4th phase (Discussion of the connection between C' (x) and C(x + 1) −C(x) on the
symbolic level): This phase aimed at finding out if the students could connect
C' (x) and the additional cost of the next unit on the symbolic level. The task of this
phase was to justify with the definition of the derivative why it is often assumed in
economics that C' (x) and C(x + 1) −C(x) are almost equal. According to what was
taught in the calculus course, it can be expected that students derive the approximation
C(x + h) −C(x) ≈C′(x) ⋅ h for h ≈ 0 from the definition of the derivative, and then argue
that it is often assumed in economics that h = 1 is small in the context (see section 4.2).

Prompts in the 4th Phase The planned prompt in this phase was to provide the students
with the formal definition of the derivative if they could not remember or reconstruct it.

Data Collection

Eight participants in the second semester of the course “Mathematics for economics
students” described in section 4.1 (the first semester covered calculus) volunteered to
take part in the study. All participants had completed the mathematics course with
calculus described in section 4 and had passed its final exam successfully. Besides the
mathematics course, the participants had completed an introductory course in business
administration in their first semester, and attended an introductory course in economics
in their second. The latter especially included a section that covered cost theory. The
literature used there was exactly the microeconomics textbook by Pindyck and
Rubinfeld (2009), that we also referred to in our interviews when presenting the
alternative definition of marginal cost as the additional cost of the next unit (hence,
this topic was taught in the students’ courses).

Although we could not gather data about students’ performance in their mathematics
and economics courses due to data protection considerations, it can be assumed that the
volunteering participants were a special sample of students: students, who had at least
some understanding of the derivative (the theme “derivative” was announced in
advance) and who were willing to talk about it. Both characteristics were important
for the interview: the students needed at least some idea of how to determine the
marginal cost in task 1 to get the interview started, and the progress of the interviews
depended greatly on the communication between participants and interviewer. How-
ever, it turned out during the interviews that there were also some participants with a
very weak understanding of the derivative. Hence, the data also included some
variation regarding students’ understanding of the derivative and the connection to its
economic interpretation.

The interviews were conducted and recorded on video by the first author. As
previously mentioned, students’ notes from the tasks were also collected.
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Data Analysis

The interviews were first transcribed. We then analyzed the transcripts using sequential
interpretation (Krummheuer et al., 1999) aiming to reconstruct students’ understanding
of the connection between the derivative and its economic interpretation in the context
of marginal cost on the basis of students’ individual statements. We interpreted these
statements on the basis of four guiding questions relating to different aspects of this
connection described in our theoretical framework (an example illustrating the method
is shown in Fig. 4):

Q1. What conception of marginal cost do students associate with the notion of
marginal cost first?

Q2. To what extent are students aware of the differences between the derivative C' (x)
and the additional cost of the next unit?

Q3. To what extent can students make a connection between C' (x) and C(x + 1) −C(x)
on the graphical level, and what problems occur?

Q4. To what extent can students make a connection between C' (x) and C(x + 1) −C(x)
on the symbolic level, and what problems occur?

To ensure the validity of the interpretations, the two authors discussed all interpre-
tations intensively and took great care not to over-interpret by backing all their
interpretations up with the original transcript (see Fig. 4).

Results of the Study

We will now present the results of two students in detail – Holger, who could not make
a connection between the derivative and its economic interpretation, and Lisa, who
could make such a connection. For the other six students, we will present summaries
according to our guiding questions. These summaries were drawn up using the same
methods as for Holger and Lisa. However, we can explain our detailed analysis process
only for two cases due to limited space.

Holger’s Understanding of Marginal Cost

Phase I (Introduction) Holger solved the task of this phase (determination of the
marginal cost at the production output of x = 100 for the cost function
C xð Þ ¼ 1

1000 x
3− 1

4 x
2 þ 21xþ 500, the cost is expressed in €) with the derivative, and

got the correct numerical result C' (100) = 1. However, he did not mention a unit. After
having been asked explicitly, he responded “euros”, but could not justify his answer.
He simply mentioned that since the total cost is given in euros, the marginal cost is as
well (maybe due to its being named as cost).

Phase 2 (Discussion of Differences between C' (x) and the Additional Cost of the Next
Unit) Since Holger had solved task 1 with the derivative, he was now confronted with
the alternative definition of marginal cost as the additional cost of the next unit from the
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book by Pindyck and Rubinfeld (2009), and asked if this definition also describes the
derivative C' (x). After reading this definition carefully, he concluded that it describes
the same, but was not sure.

For the recognition of differences, he then got the task to determine the additional
cost when raising the production from 10 units by a further unit graphically (Fig. 3).
This initiated the following dialogue:

H: You would have to imagine the derivative. Then you would see the additional
cost. The derivative is nothing else than the slope at a point. If we take any point.
I: Here is one explicitly given. We search for it at a particular point.

Fig. 4 Illustration of the interpretation method with an excerpt of the interview with the student Holger

454 International Journal of Research in Undergraduate Mathematics Education (2022) 8:437–468



H: Here is one given, 10 units of production. So, we have that the total cost is 21.
Now we need the cost if one more is produced. Well, but we do not need this because
if we are at 11 the cost is 22 point something. So, the additional cost has to be one
point, yes 1.1.

Hence, Holger recognized that he did not need the derivative to determine the additional
cost of the next unit, and that it can be determined by C(x + 1) −C(x). Furthermore, it
became obvious that Holger knew the geometric interpretation of the derivative as the
slope at a point that is often used at school (Greefrath et al., 2016). However, he did not
associate the tangent line, which is essential to connect C' (x) and C(x + 1) −C(x) on the
graphical level.

For the comparison of C' (x) and C(x + 1) −C(x) he was then asked to also determine
the derivative graphically. Since he claimed that a graphical determination ofC' (x) does
not lead to an accurate result, he was then asked to actually calculate the additional cost
of the next unit for the function of task 1. He now got C(101) −C(100) = 1.051 (he did
not mention units) compared to C' (100) = 1.

Holger recognized the numerical difference in his calculation, and then saw that the
graph of the function (Fig. 2) also does not increase exactly by one between x = 100 and
x = 101. But instead of questioning the identity of C' (x) and C(x + 1) −C(x) he said:

H: This [the difference] is probably due to rounding.

After having been told that no rounding is involved, he faced a conflict he could not
resolve. He then received the prompt to think about the meaning of the derivative on
the graphical level (because he had already shown that he knew its geometric interpre-
tation as slope), and he found a resolution:

H:Oh, that’s the reason why it is not accurate! The origin of the derivative was to
determine the slope at a point. To achieve this, you take one point left and one
point right of it, which have the same distance, and the slope in between.
Afterwards, you try to make this distance as small as possible, as you could
think of, but we cannot reach the one point, but in our mind, we want to reach it.
And I assume this very small rounding mistake, no, not rounding mistake, but this
small difference is because you do not reach the point exactly.

Hence, Holger thought that C' (100) did not yield the accurate additional cost because the
derivative does not yield the “true slope at the point”. It later became even explicit that he
considered C' (x) as the slope of a secant through (x − h,C(x − h)) and (x + h,C(x + h))
with a “minimal h“. This indicates that Holger considered the limit as part of the limiting
process and not as the object “slope at a point”. Hence, he had a strong process conception
of the limit, but did not properly relate it to the limiting object, which is important for
understanding the derivative concept (Zandieh, 2000). This led to an erroneous conclusion
regarding the cause of the error between C' (x) and C(x + 1) −C(x).

Phase 3 (Discussion of the Connection between C' (x) and C(x + 1) −C(x) on the
Graphical Level) Since Holger had already seen the small difference between
C' (100) and C(101) − C(100) on the graphical level for the function of task 1
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(Fig. 2), the interviewer asked if he knew a function with a larger error between
C' (x) and C(x + 1) − C(x). After some thought Holger recognized that both should
be identical for linear functions. After having been asked why, he answered:

H: For linear functions, the slope is always identical at each point.
I: Yes.
H: And hence, we also have an accurate slope. This is the problem for all curved
functions because the slope always changes, and then between these two points, it is
more difficult to determine the slope.

This accords with Holger’s earlier comments. He thought that the derivative C' (x) is
represented by the slope of a secant through (x − h,C(x − h)) and (x + h,C(x + h)) with a
very small h. However, since this slope still changes as h changes for nonlinear
functions, the “true slope at x” cannot be accurately determined with the derivative,
which he regarded wrongly as part of the limiting process.

Phase 4 (Discussion of the Connection between C' (x) and C(x + 1) −C(x) on the
Symbolic Level) The task was to justify with the definition of the derivative why it is
often assumed in economics that the difference between C' (x) and C(x + 1) −C(x) is
small.

Holger did not know the definition of the derivative, so it was given to him. But
Holger ignored it, and instead focused on the equation of the function from task 1
C xð Þ ¼ 1

1000 x
3− 1

4 x
2 þ 21xþ 500

� �
, which he regarded as a prototype for a cost

function. He then argued as follows:

H: This [the small error] is due to the always small coefficient [the leading coeffi-
cient in the polynomial].

He then argued that a small leading coefficient induces a “low curvature”, and hence a
small error between C' (x) and C(x + 1) −C(x). However, his argument concerning the
leading coefficient is not correct.

The interviewer then emphasized that Holger had not yet used the definition of the
derivative (as was required in the task, see section 5.1), but Holger was not able to do
so.

Summary of Holger’s Interview According to the Four Guiding Questions

First associations regarding marginal cost in the calculation task (Q1): Holger first
associated the marginal cost with the derivative C' (100) for its calculation. The unit he
mentioned was the unit of the total cost (€). This is not the unit of C' (100), but of the
common interpretation of the derivative in economics as the additional cost of the next unit.

Awareness of differences between C' (x) and the additional cost of the next unit (Q2):
Holger first identified the two. During the interview, he recognized that the addi-
tional cost of the next unit is represented by the cost difference C(x + 1) − C(x),
which also differs numerically from C' (x). However, he did not draw adequate
conclusions due to a misconception regarding the limit concept: he considered
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C' (x) as part of the limiting process and thought that C' (x) does not yield the
accurate additional cost of the next unit because the corresponding limit yields the
slope of a secant line through (x − h, C(x −h)) and (x + h, C(x + h)) “with a minimal
h”, and not the “true slope at x”.

Connection between C' (x) and C(x + 1) − C(x) on the graphical level (Q3):
Holger could not make an adequate connection between these two on the graph-
ical level as represented in our framework, although he knew the interpretation of
the derivative as slope at a point. However, he did not associate the tangent line,
which is indispensable for connecting these two on the graphical level via local
linear approximation as in our framework (Fig. 1). Instead, he used the miscon-
ception regarding the limit just described to explain the error between C' (100) and
C(101) − C(100) for the function from task 1, and why there is no such error for
linear functions (which he recognized correctly).

Connection between C' (x) and C(x + 1) −C(x) on the symbolic level (Q4): Holger
first did not know the definition of the derivative. After it had been given to him, he
could not work with it, but instead tried to explain why C' (x) and C(x + 1) −C(x) are
often identified in economics with the equation of the function from the first task
C xð Þ ¼ 1

1000 x
3− 1

4 x
2 þ 21xþ 500. His argument that the small leading coefficient

induces a low curvature and therefore a small error, however, was not correct.
Hence, he could not connect C' (x) and C(x + 1) − C(x) via the linear approximation
C(x + h) − C(x) ≈ C' (x) ⋅ h for h ≈ 0 on the symbolic level as in our framework.

Lisa’s Understanding of Marginal Cost

Phase I (Introduction) Lisa solved the introductory task to determine the marginal cost
for a cost function at the production output of x = 100 with C0 100ð Þ ¼ 1 €

ME. Her unit “€
per unit of production” was also the correct unit for the derivative.

Phase 2 (Discussion of Differences between C' (x) and the Additional Cost of the Next
Unit) Lisa was now confronted with the alternative definition of the marginal cost as
the additional cost of the next unit. On the question of whether these are also given by
the derivative, she immediately replied that she had recognized this conflict before:

L: Yes, I really thought about this last semester. In the economic subjects, we really
learn it this way. We use the derivative and have to interpret the coefficients of
“Stata” [a statistic software], I don’t know if you know it. No, ok. Nevertheless, we
have to interpret these coefficients in econometrics.…And I always had to say: If you
increase x by one unit, y increases by these many units, eh? This is really the case!

She then referred to her mathematics lecture as follows:

L: But I have, since I had mathematics last semester, I always thought that you
learn it differently in mathematics. In mathematics, you say: “if you increase x by
one marginal unit, y increases by these many marginal units.”
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Lisa mentioned the interpretation of C' (x) as the (accurate) additional cost of the next
marginal unit, as taught in the calculus course (see section 4.2).

On the question of what a marginal unit actually is, Lisa tried to distinguish it from one
unit with the graph of the function (Fig. 2). She first illustrated one unit and determined the
additional cost of this unit graphically with the difference C(101) −C(100). Meanwhile,
she also recognized the numerical difference toC0 100ð Þ ¼ 1 €

ME. Lisa then explainedwhat
she considered to be a marginal unit:

L: And a marginal unit I imagine as very, very small. Here I would go a very,
very little bit to the right and then a very little, little bit upwards.

Hence, for Lisa, a marginal unit was not a fictive infinitely small quantity, as was taught
in the calculus course (see section 4.2), but a very tiny, yet still finite quantity.

The interviewer then prompted her by asking if the additional cost for such a tiny
unit would not be almost equal to zero. She then replied:

L: This has to do with the slope you have. For the derivative, you calculate the
slope of the tangent line. The slope of the tangent line is what you calculate, isn’t
it?
I: Right, the slope of the tangent line, yes.
L: Yes, and this is also what I get if you increase x by a marginal unit, starting at
100. [Pause] Eh no, what do I get? No, if you increase x by one marginal unit, the
marginal cost still increases by one. I think the slope still remains one, right?

These statements indicate how Lisa connects the derivative C' (x) with the cost of a
marginal unit. C' (x) represents the slope of the tangent line at x = 100, which equals 1.
But if the amount by which the production is raised is just a marginal unit (a tiny
amount, which we will now label as dx), the cost function still increases with the same
slope as the tangent line. Therefore, the derivative C' (x) can be used to determine the
additional cost for such a tiny dx via C' (x)dx. This coincides with the idea taught in the
calculus course that the linear approximation ΔC ≈C′(x) ⋅Δx “becomes accurate” for
Δx→ 0. Furthermore, Lisa recognized the difference in the unit between C' (x) and an
additional cost after being asked about which unit additional costs are measured in.

Phase 3 (Discussion of the Connection between C' (x) and C(x + 1) −C(x) on the
Graphical Level) The interviewer first asked Lisa if she knew of a function with a larger
error between C(x + 1) −C(x) and C' (x) than the function from task 1 (for the graph see
Fig. 2). She responded that these two are numerically equal for linear functions, and then
suspected that economists assume linearity when interpreting C' (x) simply as the
additional cost of the next unit. After the interviewer’s remark that the function from
task 1 was not in fact linear (Fig. 2), she recognized that the central assumption in
economics is that the functions considered are almost linear within several units:

L: Oh, yes. But you only have an excerpt of a function from 97 to 104. And in this
range, it almost looks linear. If we would scale differently and look at the whole
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function, it would be totally different.

This statement and Lisa’s remarks in phase 2, in which she stated that the cost
function increases with the same slope as for the tangent line (= C' (x)) for very a tiny
dx, suggest that she was able to make a connection between C' (x) and C(x + 1) −C(x)
via local linear approximation on the graphical level. She also recognized the central
assumption in economics that the functions considered are almost linear within some
units so that the error between C' (x) and C(x + 1) −C(x) is small.

Phase 4 (Discussion of the Connection between C' (x) and C(x + 1) −C(x) on the
Symbolic Level) Lisa first reconstructed the formal definition of the derivative

f 0 xð Þ ¼ lim
h→0

f xþ hð Þ− f xð Þ
h

by herself (on the basis of Fig. 2, in which she drew

gradient triangles). She then compared it with C(x + 1) −C(x) and recognized that
instead of taking the limit, the value of h is assigned to 1. She justified this assignation
with the argument that h < 1 does not make sense in discrete contexts:

L: Yes. They more likely say that they want to increase the production by one and
not by a marginal unit. Yes, probably because sometimes you do not want to
produce marginal units if you produce something like a pen.

Overall, Lisa could connect C' (x) and C(x + 1) −C(x) on the symbolic level and
present a plausible reason for their identification in economics (although the argument
only works for discrete contexts).

Summary of Lisa’s Interview According to the Four Guiding Questions

First associations regarding marginal cost in the calculation task (Q1): Lisa first
associated the derivative C' (100) with the marginal cost. The unit she mentioned
( €
ME) also suited the derivative.
Awareness of differences between C ' (x) and the additional cost of the next unit

(Q2): Lisa knew that C' (x) does not usually yield the accurate additional cost of the
next unit, and that the latter is represented by C(x + 1) −C(x) on the mathematical level.
She also recognized the difference in the unit after having been asked in what unit
“additional cost” would be measured. But she claimed that the derivative C' (x) can be
used to determine the additional cost of a very tiny amount dx (which she called
“marginal unit”) because the original cost function increases with the same slope within
such a tiny dx. This suggests that she had absorbed the idea from the calculus course
that the linear approximation ΔC ≈C′(x)Δx for Δx ≈ 0 “becomes accurate” for Δx→
0.

Connection between C' (x) and C(x + 1) −C(x) on the graphical level (Q3): Lisa
knew that C' (x) represents the slope of the tangent line and was able to determine
C(x + 1) −C(x) on the graphical level. She also recognized that the error between these
two is small if the function is almost linear within several units, which is often assumed
in economics. Hence, she could make a connection between C' (x) and C(x + 1) −C(x)
on the graphical level via the tangent line as in our framework in Fig. 1.
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Connection between C' (x) and C(x + 1) −C(x) on the symbolic level (Q4): Lisa
could also connect these two on the symbolic level. She was able to reconstruct the
formal definition of the derivative by herself and recognized that one gets the cost
difference C(x + 1) −C(x) by assigning h = 1 in the difference quotient instead of taking
the limit. She then justified this assignation in economics with the plausible practical
argument that h < 1 may not make sense in economics in discrete contexts.

Summaries of the Other Students’ Understanding of Marginal Cost

The summaries of the other students’ understanding of the connection between the
mathematical concept of the derivative and its economic interpretation according to our
four guiding questions are shown in Tables 1 and 2. The summaries of the results of
questions Q1 and Q2 are shown in Table 1, and the ones for questions Q3 and Q4
appear in Table 2.

Summary and Discussion

Summary and Contribution of our Research to the Research Domain

Previous research has shown that there are often discrepancies between the way
mathematical concepts are understood in mathematics and the way they are used in
other disciplines (see section 2.2), which might make it hard for students of mathemat-
ics service courses to make a connection between the mathematical concepts taught in
their mathematics courses and the way these concepts are used in the students’ major
discipline. Our study now provides empirical evidence for one specific example – the
concept of the derivative and its interpretation commonly used in economics – that this
really is the case. The study in particular reveals difficulties the students experienced
when trying to make such a connection.

Only two of the eight participants of our interview study (Lisa and Johannes) could
make a connection between the derivative C' (x) of a cost function and its common
economic interpretation as the additional cost of the next unit via local linear approx-
imation, as represented in our theoretical framework (Fig. 1), by themselves, even
though this connection had been covered in the participants’ calculus course. The other
six participants were not able to do so by themselves:

& Holger, Detlef, Karl, and Veronika just considered the derivative C' (x) as identical
with the additional cost of the next unit at the beginning of the interview, although it
was emphasized in the calculus course that this is not the case.

& Ralf did not consider these as equal, but could not state differences.
& Susanne argued that taking the derivative yields another function, but could not

explain differences between C' (x) and the additional cost of the next unit on a
conceptual level.

During the interview and with the help of the interviewer’s prompts (see section 5.1),
the following difficulties occurred while the students were trying to make a connection
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between C' (x) and its common economic interpretation as the additional cost of the
next unit:

& Except for Lisa and Johannes, the students did not know the formal definition of the
derivative and could not make sense of it after it had been given to them, which is
important for the connection between C' (x) and its interpretation as the additional

Table 1 Summary of the results of the other six participants according to the guiding questions Q1 and Q2

Student First associations regarding marginal cost (Q1) Awareness of differences between C ′ (x) and the
additional cost of the next unit (Q2)

Detlef He first associated the cost difference
C(x + 1) −C(x) for the calculation and the
corresponding unit €.

First: He identified these two.
After having been asked to determine the

marginal cost with the derivative
graphically: He recognized the numerical
difference on the graphical level.

Ralf He first associated the derivative for the
calculation, but recalled a wrong unit from
his memory (“units of production per units of
money”).

First:He considered them as different, but could
not state differences.

After the task to determine the additional cost of
the next unit graphically: He stated that
C ′ (x) represents the slope of the tangent line
at one point while the additional cost is a
growth between two points.

Karl He also associated the derivative for the
calculation, but recalled a wrong unit from
his memory (“units of production per units of
money”).

First: He identified these two.
After the task to determine the additional cost of

the next unit graphically: He recognized that
the additional cost of the next unit is
accurately represented by C(x + 1) −C(x).

Veronika She immediately associated both: the derivative
for the calculation and its interpretation as
the cost of the next unit for the reconstruction
of the unit. But she then remembered the unit
“€ per piece” for C ′ (x) from the mathematics
course.

First: She identified these two.
After the task to determine the additional cost of

the next unit graphically: She recognized that
the additional cost of the next unit is
accurately represented by C(x + 1) −C(x) and
that the unit of the latter would be €.

Susanne She first associated the cost difference
C(x + 1) −C(x) for the calculation and the
corresponding unit €.

She considered them as different because
differentiating yields another function.

Johannes He first associated the derivative and knew the
correct unit (€ per unit of production).

He considered them as different. He
knew that the additional cost of the next unit is

accurately represented by C(x + 1) −C(x),
was aware that C ′ (x) is a rate and not an

amount,
and emphasized that one would have to talk

about marginal units in the interpretation of
C ′ (x).

But unlike Lisa, he considered a marginal unit
as a fictive infinitely small quantity (as it was
taught in the calculus course), and the
marginal cost C ′ (x) as a ratio of two such
quantities dc

dx.
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Table 2 Summary of the results of the other six participants according to the guiding questions Q3 and Q4

Student Connection between C ′ (x) and C(x + 1) −C(x)
on the graphical level (Q3)

Connection between C ′ (x) and C(x + 1) −C(x)
on the symbolic level (Q4)

Detlef He could connect these two on the graphical
level with a lot of help. The main difficulties
were:

no association of the tangent line within the
geometric interpretation of the derivative as
the slope, and

problems in determining the tangent slope
graphically.

But he then recognized that the error between
these two is small if the function is
approximately linear.

He could not connect these two on the symbolic
level. He especially

did not remember the definition of the
derivative, and

could not present an argument why assigning
h=1 is often considered as adequate in
economics.

Ralf He could connect these two on the graphical
level with a little help. His main problem was
that he did not associate the tangent line
within the geometric interpretation of the
derivative as the slope.

Afterwards, he identified approximate
linearity within [x, x + 1] as a crucial
condition for a small error between
C ′ (x) and C(x + 1) − C(x).

He had problems to connect these two on the
symbolic level. He especially

did not remember the definition of the
derivative, and

could not assign a meaning to its parts after it
had been given to him (e.g., he considered h
in the difference quotient as the height of the
gradient triangle).

But he was able to justify why economists often
assign h=1 in the quotient C xþhð Þ−C xð Þ

h when
interpreting the derivative (his argument:
possible occurrence of discrete units).

Karl He could connect these two on the graphical
level with a little help. His main problem was
also that he did not associate the tangent line
within the geometric interpretation of the
derivative as the slope.

Afterwards, he also identified approximate
linearity within [x, x + 1] as a crucial
condition for a small error between C ′ (x) and
C(x + 1) −C(x).

He could not connect these two on the symbolic
level. He especially

did not remember the definition of the
derivative,

could not assign a meaning to its parts after it
had been given to him, and

got stuck in the conflict h→0 versus h=1.

Veronika She could connect these two on the graphical
level by herself (she could visualize their
magnitudes and argued that the error between
these two is small if the function is
approximately linear).

She could not connect these two on the
symbolic level. She especially

did not remember the definition of the
derivative, and

could not present an argument why assigning
h=1 is often considered as adequate in
economics.

Susanne She had no idea of how to connect these two on
the graphical level because she did not know
any meaning of C ′ (x) on the graphical level.

After she had learned during the interview that
C ′ (x) represents the slope of the tangent line,
she identified approximate linearity as a
crucial condition for a small error between
C ′ (x) and C(x + 1) −C(x).

She could not connect these two on the
symbolic level. She especially

did not remember the definition of the
derivative,

could not assign a meaning to its parts after it
had been given to her (sample quote: “I never
understood what limit means.”),

and then gave up.

462 International Journal of Research in Undergraduate Mathematics Education (2022) 8:437–468



cost of the next unit via the local linear approximation C(x + h) −C(x) ≈C′(x) ⋅ h for
h ≈ 0 on the symbolic level.

& Holger, Ralf, Karl, and Detlef did not associate the tangent line within the geomet-
ric interpretation of the derivative as slope (they only associated “slope at a point”),
which is important for connecting C' (x) and the additional cost of the next unit via
local linear approximation on the graphical level.

& Holger had misconceptions regarding the concept of limit that lead to erroneous
conclusions concerning the reason for the numerical difference between C' (x) and
C(x + 1) −C(x).

& Susanne did not even know any meaning of the derivative.
& Only Lisa, Ralf, and Johannes were able to present a plausible argument for why

economists often simply interpret the derivative as the cost of the next unit, even
though these are not equal.

These points suggest two general types of difficulty regarding the connection of a
mathematical concept and the way it is used in another discipline. The first four of these
points are gaps in students’ understanding of aspects of the mathematical concept that
are important for making this connection. The last point is the problem that students
might not comprehend why there is a certain practice of the concept’s use in their major
discipline and are not aware of underlying assumptions.

Consequences for Teaching

We now discuss consequences for teaching based on three key problems found in our
study (Fig. 5) concerning the connection between the way mathematical concepts are
understood in mathematics and the way they are used in other disciplines.

Ad I in Fig. 5 One possibility for making students aware of discrepancies between the
way a mathematical concept is understood in mathematics and the way it is used in the
students’ major discipline can be to induce cognitive conflicts that might result from
these discrepancies (just like in the interview). In our case, one could, for example,
confront the students directly with the common economic interpretation of C' (x) as the
additional cost of the next unit by asking them explicitly if it actually corresponds to the
derivative C' (x), and encouraging them to discuss differences if it does not. This might

Student Connection between C ′ (x) and C(x + 1) −C(x)
on the graphical level (Q3)

Connection between C ′ (x) and C(x + 1) −C(x)
on the symbolic level (Q4)

Johannes He could connect these two on the graphical
level by himself (he could visualize
C(x + 1) −C(x), connect it to the slope of the
tangent line, and mentioned approximate
linearity within [x, x + 1] as a crucial
condition for a small error between C ′ (x) and
C(x + 1) −C(x)).

He could connect these two also on the symbolic
level: He derived the approximation
C(x + h) −C(x) ≈C ’ (x) · h for h≈0 from the
definition of the derivative and was able to
present a plausible argument for why
economists often assign h=1 (his argument:
values of h<1 may not make sense in
economics).
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lead to a cognitive conflict so that students might be more attentive to the lecturer’s
explanations about this common economic interpretation of the derivative and its
connection to the mathematical concept.

Ad II. In Fig. 5 It is crucial to first identify and then try to address gaps in students’
understanding of the mathematical concept that are important for making a connection
to its use in the students’major discipline. In our case, the problem that students did not
associate the tangent line, which is important for the connection between C' (x) and its
interpretation as the additional cost of the next unit on the graphical level, might be
addressed by tying the geometric interpretation of the derivative as slope always to the
tangent line in the course (and maybe even to define it this way), for example by setting
tasks to determine derivatives graphically. The problem that students had no under-
standing of the definition of the derivative, which is important for connecting C' (x)
with its interpretation as the additional cost of the next unit on the symbolic level, could
be addressed by initially trying to connect the formal definition of the derivative to an
interpretation as rate of change in contexts that directly correspond to it, for example
instantaneous velocity in kinematics.

Ad III. In Fig. 5 It might be promising to discuss in mathematics courses explicitly why
mathematical concepts are used in a certain way in the students’ major discipline,
including relevant assumptions that explain prevalent usage. In our case, for example,
this means making explicit that the common economic interpretation of the derivative
as the additional cost of the next unit relies on the specific assumption that the functions
considered in economics are almost linear within several units, and in particular within

Fig. 5 Students’ difficulties concerning the connection between a mathematical concept and the way it is used
in their major discipline
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[x; x + 1]. Of course, this does not necessarily have to be done by the lecturer; students
could also try to come up with such explanations during discussions.

Outlook for Further Research

The results of our study also yield several starting points for future research. A first
point can be to develop a teaching scenario that guides more students to a deeper
understanding of the economic interpretation of the derivative and its connection to the
mathematical concept by trying to address the problems mentioned in Fig. 5.

A second point concerns the notion of marginal unit used by the two students who
were able to make a connection between the derivative C' (x) and its common economic
interpretation by themselves (and many students used it to interpret the derivative in
their final calculus exam (Feudel & Biehler, 2021)). It could therefore be fruitful to
investigate what the students actually meant with this notion to judge if the use of this
notion might help students to better understand the connection between the mathemat-
ical concept of the derivative and its economic interpretation. Furthermore, since this
notion is related to differentials, an investigation of economics students’ understanding
of this notion might also contribute to an investigation of students’ understanding of
differentials, which is an important theme in mathematics education research, for
example in connection with other disciplines like physics (Hu & Rebello, 2013) or
with alternative approaches to the concept of limit (Ely, 2019).

A third point concerns the generalization of our results as we only investigated one
specific mathematical concept. Further examples from other disciplines might help to
find out about the extent, to which the two major problems our participants had when
trying to make a connection between the mathematical concept and its use in their
major discipline (gaps in understanding of the mathematical concept, and gaps in the
comprehension of why there is a certain usage of the concept in their major discipline
including underlying assumptions) occur in general among students in mathematics
service courses.

A last point for future research concerns the theoretical perspective for investigating
students’ connections between mathematics and their major discipline. Due to our
choice of the theoretical framework, our perspective was a cognitive one. This allowed
us to uncover specific cognitive difficulties individual students had when trying to
make a connection between mathematics and economics in the case of one particular
concept, which might be addressed in teaching. However, perspectives that consider
further aspects of learning, for example sociocultural perspectives, might point the way
to more general results regarding students’ connections between different practices in
mathematics and their major discipline.
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