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Abstract
Heart failure (HF) represents an immense health burden with currently no curative

therapeutic strategies. Study of HF patient heterogeneity has led to the recognition of

HF with preserved (HFpEF) and reduced ejection fraction (HFrEF) as distinct syndromes

regarding molecular characteristics and clinical presentation. Until the recent past,

HFrEF represented the focus of research, reflected in the development of a number of

therapeutic strategies. However, the pathophysiological concepts applicable to HFrEF

may not be necessarily applicable to HFpEF. HF induces a series of ventricular

modeling processes that involve, among others, hallmarks of hypertrophy, fibrosis,

inflammation, all of which can be observed to some extent in HFpEF and HFrEF. Thus,

by direct comparative analysis between HFpEF and HFrEF, distinctive features can be

uncovered, possibly leading to improved pathophysiological understanding and

opportunities for therapeutic intervention. Moreover, recent advances in

biotechnologies, animal models, and digital infrastructure have enabled large-scale

collection of molecular and clinical data, making it possible to conduct a bioinformatic

comparative analysis of HFpEF and HFrEF.

Here, I first evaluated the field of HF transcriptome research by revisiting published

studies and data sets to provide a consensus gene expression reference. I discussed the

patient clientele that was captured, revealing that HFpEF patients were not represented.

Thus, I applied alternative approaches to study HFpEF. I utilized a mouse surrogate

model of HFpEF and analyzed single cell transcriptomics to gain insights into the

interstitial tissue remodeling. I contrasted this analysis by comparison of fibroblast

activation patterns found in mouse models resembling HFrEF. The human reference

was used to further demonstrate similarities between models and patients and a novel

possible biomarker for HFpEF was introduced.

Mouse models only capture selected aspects of HFpEF but largely fail to imitate the

complex multi-factor and multi-organ syndrome present in humans. To account for

this complexity, I performed a top-down analysis in HF patients by analyzing

phenome-wide comorbidity patterns. I derived clinical insights by contrasting HFpEF

and HFrEF patients and their comorbidity profiles. These profiles were then used to

predict associated genetic profiles, which could be also recovered in the HFpEF mouse

model, providing hypotheses about the molecular links of comorbidity profiles.

My work provided novel insights into HFpEF and HFrEF syndromes and exemplified an

interdisciplinary bioinformatic approach for a comparative analysis of both syndromes

using different data modalities.





Zusammenfassung
Herzinsuffizienz (HF) stellt eine immense gesundheitliche Belastung dar, für die es

derzeit keine heilenden therapeutischen Strategien gibt. Die Untersuchung der

Heterogenität von HF-Patienten hat dazu geführt, dass HF mit erhaltener (HFpEF) und

verminderter Ejektionsfraktion (HFrEF) als unterschiedliche Syndrome hinsichtlich

molekularer Merkmale und klinischer Präsentation anerkannt wurden. Die

HF-Forschung konzentrierte sich im vergangenen Jahrhundert in der Regel auf HFrEF,

was sich im Arsenal der Pharmakotherapie widerspiegelt, die auf kompensatorische

Mechanismen abzielt, die unser Modell des Verständnisses von HFrEF erklären, aber

nicht vollständig auf HFpEF zutreffen. HF induziert eine Reihe von ventrikulären

Modellierungsprozessen, zu denen unter anderem Merkmale der Hypertrophie, Fibrose

und Entzündung gehören, die alle in gewissem Umfang bei HFpEF und HFrEF

beobachtet werden können. Durch eine direkte vergleichende Analyse von HFpEF und

HFrEF lassen sich also Unterscheidungsmerkmale aufdecken, die möglicherweise zu

einem besseren pathophysiologischen Verständnis und zu Möglichkeiten der

therapeutischen Intervention führen. Darüber hinaus haben die Fortschritte in der

Biotechnologie, bei Tiermodellen und in der digitalen Infrastruktur die Erhebung

hochdimensionaler molekularer und klinischer Daten ermöglicht, welche eine

vergleichende bioinformatische Analyse von HFpEF und HFrEF ermöglichen.

Hier bewertete ich zunächst den Bereich der HF-Transkriptomforschung, indem ich

veröffentlichte Studien und Datensätze überprü�e, um eine konsensfähige

Genexpressionsreferenz zu erstellen. Ich diskutierte die erfasste Patientenklientel und

stellte fest, dass HFpEF-Patienten nicht vertreten waren.

Daher wandte ich alternative Ansätze zur Untersuchung von HFpEF an. Ich nutzte ein

HFpEF-Mausmodell und analysierte die Genexpression einzelner Zellen, um Einblicke

in den Umbau des interstitiellen Gewebes zu gewinnen. Ich verglich die

Aktivierungsmuster der Fibroblasten in HFpEF mit denen in Mausmodellen, welche

HFrEF ähneln. Die menschliche Genexpressionsreferenz wurde verwendet, um weitere

Gemeinsamkeiten zwischen Mausmodellen und Patienten aufzuzeigen, und ein neuer

möglicher Biomarker für HFpEF wurde vorgestellt.

Mausmodelle erfassen nur ausgewählte Aspekte der HFpEF, können aber das komplexe

Multifaktor- und Multiorgan-Syndrom des Menschen kaum nachahmen. Um dieser

Komplexität Rechnung zu tragen, führte ich bei HF Patienten eine Top-down-Analyse

durch, indem ich Phänomweite Komorbiditätsmuster analysierte. Durch die

Gegenüberstellung von HFpEF- und HFrEF-Patienten, habe ich klinische Erkenntnisse



hinsichtlich ihrer Komorbiditätsprofile gewonnen. Diese Profile wurden dann zur

Vorhersage zugehöriger genetischer Profile verwendet, die auch im HFpEF-Mausmodell

bestätigt werden konnten und Hypothesen über die molekularen Zusammenhänge der

Komorbiditätsprofile lieferten.

Meine Arbeit lieferte neue Erkenntnisse über die HFpEF und HFrEF Syndrome und

veranschaulichte einen interdisziplinären, bioinformatischen Ansatz für eine

vergleichende Analyse beider Syndrome unter Verwendung verschiedener

Datenmodalitäten.







Acknowledgements
This thesis was my effort to incorporate bioinformatics into the study of medicine. To

achieve this, a knowledgeable and supportive environment was indispensable. I am very

lucky to have found such.

I am indebted to Julio Saez-Rodriguez, who accepted me as a PhD student. He provided

me with the time and space to learn and to step-by-step grow accustomed to scientific

problem formulation and solution. I received his trust and kindness which were the

basis for joyful learning.

The colleagues that populated this scaffold were of fundamental importance to me and I

thank all my teachers and companions, especially Ricardo O. Ramirez-Flores, Alberto

Valdeolivas, Jovan Tanevski, Rebecca T. Levinson, Attila Gabor, Martin Garrido, Daniel

Dimitrov, Sophia Müller-Dott, Olga Ivanova, Robin Fallegger, Lorna Wessel, Charlotte

Boys, and Pau Badia i Mompel.

I thank Florian Leuschner, Laura Wienecke and all collaboration partners for their

valuable contributions to generating and evaluating data, and for engaging in thoughtful

scientific discussions.

I want to thank Informatics for Life funded by the Klaus Tschira foundation together

with Jobst H. Schultz and Hans-Christoph Friederich who provided funding for my

work and continuous support. The MD/PhD program of the Heidelberg University was

indispensable for it provided the necessary financial, administrative and educational

framework.

I am indebted to my parents, Renate and Peter Lanzer, who provided the right mixture

of critique and trust for me to grow. I cherish my siblings, Anne, Nina and Claudia

Lanzer; you are a great team to have by my side.

I am grateful to Sophia Frangos who accompanied me, listening to all sorrows without

growing tired, at least not showing it. You were part of any success I had.





Table of contents

Introduction................................................................................................................................................ 6

A tale of the failing heart.................................................................................................................6

HFpEF as an evolving concept...................................................................................................... 8

Ventricular tissue remodeling........................................................................................................9

Bioinformatic approaches in HF research................................................................................ 11

Molecular HF profiles...............................................................................................................11

Clinical HF profiles...................................................................................................................16

Summary............................................................................................................................................19

Chapter I - A consensus transcriptional landscape of human heart failure.....................22

1.1 Background................................................................................................................................. 22

1.2 Curation and review of data sets.......................................................................................... 23

1.2.1 Inclusion criteria..............................................................................................................23

1.2.2 Curated studies and compared metadata................................................................ 24

1.2.3 Assessing technical variation in gene expression between studies...................28

1.2.4 Evaluating consistency of gene expression changes in HF.................................32

1.3 Meta-analysis of the transcriptional responses in end-stage HF................................ 35

1.3.1 Building the heart failure consensus signature (HF-CS)...................................... 35

1.3.2 The added value of the HF-CS....................................................................................37

1.4 Functional interpretation of the HF-CS.............................................................................40

1.4.1 Comparison of diverse etiologies............................................................................... 40

1.4.2 Pathway and transcription factor activities within the HF-CS.......................... 42

1.4.3 HF-CS as a resource for biomarker detection and hypothesis building.........43

1.5 Sharing the HF-CS with the community........................................................................... 49

1.6 Discussion and Conclusion.................................................................................................... 50

Chapter II - Fibrosis in murine HFmodels....................................................................................57

2.1 Background................................................................................................................................. 57

2.2 Single cell RNAseq of the murine HFpEF model........................................................... 58

2.2.1 Disease model description........................................................................................... 58

2.2.2 Data processing and quality control......................................................................... 58

2.2.3 Cell type composition and molecular profiles suggest fibroblast and
macrophage involvement in cardiac remodeling........................................................... 61

2.3 Atlas of fibroblast activation in murine heart failure.....................................................62

2.3.1 Study integration of cardiac fibroblasts................................................................... 63

2.3.2 Comparison of fibroblast signatures between murine HF models..................70

2.3.3 Connecting fibroblast signatures with phenotypes.............................................. 73

2.4 Corroborating fibroblast signatures in human data....................................................... 78

2.4.1 Fibroblast signature detection in human HF.......................................................... 78

2.4.2 Angptl4 as a possible biomarker for HFpEF........................................................... 81

2.5 Discussion and Conclusion.....................................................................................................81

1



Chapter III - Comorbidity space of HF patients..........................................................................86

3.1 Background.................................................................................................................................86

3.2 Defining the study population and their comorbidities............................................... 87

3.2.1 The study population.....................................................................................................87

3.2.2 The comorbidity space................................................................................................. 91

3.3 Assessing distinct comorbidity profiles between HF-cohorts.....................................92

3.3.1 High variation in comorbidity profiles is associated with HFpEF/ HFrEF
subtype........................................................................................................................................ 92

3.3.2 Deriving HFpEF and HFrEF comorbidity profiles...............................................93

3.3.3 Comorbidity profile assignment compared for effects of age, sex, time to
HF diagnosis and time of recording................................................................................... 95

3.3.4 Interpreting HFpEF and HFrEF comorbidity profiles........................................ 97

3.4 The HFnet...................................................................................................................................98

3.4.1 Comorbidity relationships compared between HFpEF and HFrEF................99

3.4.2 HFnet construction and comparison..................................................................... 100

3.4.3 Central diseases in the HFnet................................................................................... 103

3.4.4 Disease Cluster analysis.............................................................................................. 105

3.5 The HFhetnet and gene prediction for HFpEF..............................................................110

3.5.1 Building the Heart Failure Heterogeneous Network (HFhetnet).....................110

3.5.2 Estimating the success of disease-gene prediction within the HFhetnet..... 112

3.5.3 Predicting genes associated with comorbidity profiles of HFpEF and HFrEF.
114

3.5.4 Corroboration of HFpEF gene candidates in independent experimental data
121

3.6 Discussion and Conclusion.................................................................................................. 122

Concluding Remarks........................................................................................................................... 126

Outlook...................................................................................................................................... 128

Glossary.....................................................................................................................................................130

Bibliography............................................................................................................................................132

2



List of Figures and Tables

Figure I.1. Possible model of heart failure progression.............................................7

Figure I.2 Pubmed article counts of HF related terms............................................. 8

Figure I.3. Contrasting therapeutic outcomes in eccentric and concentric LV
remodeling.............................................................................................................................9

Figure I.4 Overview of how this thesis addresses HFrEF and HFpEF............... 20

Table 1.1 Overview of curated studies..........................................................................25

Figure 1.1 Curation results of HF transcriptome studies........................................25

Figure 1.2 Comparison of age and sex distribution................................................. 27

Figure 1.3 Comparison of gene coverage between studies....................................29

Figure 1.4 Differences in samples included in the study.........................................31

Figure 1.5 Contribution of the covariates to the variability of individual
studies................................................................................................................................... 32

Figure 1.6 Consistency of the transcriptional signal of end-stage HF among
studies....................................................................................................................................34

Figure 1.7 Meta‐analysis summary............................................................................... 36

Figure 1.8 t-values from the differential expression analysis of genes that are
established as dysregulated in heart failure (HF)......................................................37

Figure 1.9 Added value of the heart failure consensus signature (HF-CS) on
single gene level................................................................................................................. 39

Table 1.2 Additional HF studies with etiological and technical variation.......... 41

Figure 1.10 Disease score calculation based on the top 500 genes from the
consensus signature for diverse HF studies................................................................41

Figure 1.11 Functional characterization of the HF‐CS............................................ 43

Figure 1.12. HF-CS as a reference that complements independent studies......46

Figure 1.13. Biomarker candidates and their expression in the Human Protein
Atlas (HPA)............................................................................................................................47

Figure 1.14 Heart Failure consensus signature (HF-CS) as a reference that
complements independent studies.............................................................................. 48

Figure 2.1. Study model and cell type assignment.................................................. 60

Figure 2.2 Fibroblast annotation in AngII and MI model..................................... 64

Figure 2.3 Integrated atlas of cardiac fibroblast phenotypes from different
disease models....................................................................................................................66

Figure 2.4 Functional characterization of Integrated fibroblast states (IFS).... 68

Figure 2.5 Comparison and interpretation of study specific fibroblast disease
signatures..............................................................................................................................72

Figure 2.6 Transcriptional shi�s in cardiac fibroblasts........................................... 75

Figure 2.7 Single gene expression pattern across IFS.............................................. 77

Figure 2.8 Corroborating findings in human data...................................................80

Figure 3.1 Patient Cohort description..........................................................................88

Table 3.1. Clinical characteristics of HFrEF, HFmrEF and HFpEF cohorts......90

Figure 3.2 ICD10 code mapping....................................................................................91

3



Figure 3.3 Comparison of comorbidity profiles in heart failure subtypes.......93

Figure 3.4 Patient classifier training............................................................................. 94

Figure 3.5 Time to HF and time of comorbidity profile assignment................. 97

Figure 3.6 Patient classifier interpretation................................................................. 98

Figure 3.7 Scheme of comorbidity network analysis..............................................99

Figure 3.8 Comparison of comorbidities between HFpEF and HFrEF cohort....
100

Figure 3.9 HFnet overview............................................................................................ 101

Figure 3.10 Comparison of disease networks..........................................................103

Figure 3.11 Comparison of centralities...................................................................... 104

Figure 3.12 Comparison of clustering algorithms in the HFnet........................106

Table 3.2. Overview of disease clusters......................................................................107

Figure 3.13 The heart failure comorbidity network (HFnet).............................. 109

Figure 3.14 HFhetnet overview and ............................................................................112

Figure 3.15 HF subtype gene prediction.................................................................... 115

Table 3.3 Potential HFpEF candidates based on network proximity to
comorbidity profiles........................................................................................................ 119

Figure 3.16. HFpEF gene prediction.......................................................................... 120

Figure 3.17 Myocardial gene expression in L-NAME/HFD..................................121

4



5



Introduction

A tale of the failing heart

The cardiovascular system supplies the mammalian body with oxygenic and nutritious

blood. It consists of the heart and the vasculature who build a system where the blood

circulates while it is enriched or depleted for various metabolites by the different tissues

it traverses. The regulation of blood flow is complex and multifactorial and involves

many feedback mechanisms that adjust the blood supply to the organs needs. If the

heart fails to sufficiently meet the demands of the body, a pathologic state is reached

that is termed heart failure (HF).

One possible model of understanding HF is an initial damage to the cardiac tissue,

resulting in an impaired pump function. This initial damage launches a series of

compensatory mechanisms to ensure blood supply. While these mechanisms can

alleviate HF short term, they overstrain the heart long term and cause a chronification

of HF and deterioration of the residual pump function. Thus, pharmaceutical treatment

strategies aim to block these compensatory mechanisms (e.g. beta-blockers, Angiotensin

converting enzyme inhibitors, Mineralocorticoid receptor antagonists). While these

treatments can improve patient outcomes, they cannot reverse disease progression.

6



Figure I.1. Possible model of heart failure progression.
An index event causing cardiac damage (primary damage) leads to decreased pump function.

Compensatory mechanisms are activated to maintain pump function but overstrain the heart with time

leading to decompensated heart failure (secondary damage). Reprinted with written permission from1.

Thus, to advance clinical care for HF, it is necessary to study the syndrome more closely.

One approach is to categorize HF into subgroups to identify possible pathophysiologic

subgroup characteristics as novel treatment targets. The categorization of HF today

spans multiple dimensions describing functional ( forward or backward), clinical (e.g.

NYHA, compensated or decompensated, acute or chronic), morphological (e.g.

hypertrophic, fibrotic), anatomical (e.g. right, le� or global), etiological (eg. ischemic,

hypertensive or dilated) aspects of the syndrome. An important classification is the

functional distinction between a systolic and a diastolic heart failure. The diastole is the

phase of the cardiac cycle where the ventricle relaxes and increases in volume, filling

with the blood inflow from the atria. When filled, the systolic phase begins with the

ventricle contraction, increasing intraventricular pressure. When the pressure exceeds

the arterial diastolic pressure the semilunar valves open and blood is pumped into the

arterial system until ventricular pressure falls below arterial pressure and the diastolic

phase begins again. Thus, systolic HF describes the inadequate discharge of blood from

the ventricle while diastolic HF describes the inadequate filling of the ventricle, both

ultimately leading to a reduced cardiac output. This distinction is recognized with

increasing importance.

In clinical practice a standard measure to assess LV function is the le� ventricular

ejection fraction (LVEF). LVEF is a ratio of the LV volume before and a�er the systolic

phase and thus describes the share of the blood in the LV that is ejected during the

systolic phase with physiologic values ranging between 50% and 65%. Thus, systolic HF is

characterized by reduced LVEF (<40%) while diastolic HF o�en presents with a

preserved LVEF (>50%). Systolic HF has been the major focus of twentieth century HF

research and was addressed in most clinical trials while diastolic HF has been

recognized only later2. It was noted that patients with a preserved LVEF could present

with clinically severe HF symptoms, however, at first a transient systolic recovery was

assumed. The CHARM-Preserved trial (2003) 3 was the first larger clinical trial that

addressed patient outcome for diastolic HF patients (LVEF >40%) receiving angiotensin

receptor blocker. The following years increased the attention to diastolic HF. It was

noted that patients with a preserved LVEF displayed clinically different profiles and

diastolic dysfunction was only one of many characterstics. Over time, this coined the

distinction of HF into HF with reduced or preserved ejection fraction (HFrEF and
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HFpEF, respectively), which are increasingly used to describe two major forms of

chronic HF (Figure I.2).

Figure I.2 Pubmed article counts of HF related terms.
Number of articles in the NCBI’s Pubmed database mentioning HF related search terms. Emergence

of HFpEF and HFrEF literature can be dated around 2010 while the distinction and terminology was

probably coined in the early 2000’s. Database accessed on March 15th, 2023.

HFpEF as an evolving concept

HFpEF has since been the focus of intense research efforts. While early studies already

suggest that epidemiologically HFpEF patients are no curiosity 4, the epidemiological

importance of the syndrome that makes up around 50% of HF patients was appreciated

only lately5. Considering the high prevalence of HF of up to six percent in western

countries like Germany6, HFpEF is responsible for an immense burden for patients and

the health care system. However, apart from gliflozins, no effective treatment strategies

exist today to reduce the associated diastolic dysfunction, fibrosis, hypertrophy and the

resulting pronounced morbidity and mortality. Therapeutic concepts and established

drugs for the treatment of heart failure with reduced ejection fraction (HFrEF) failed

broadly when tested for beneficial effects in HFpEF, suggesting fundamentally different

pathomechanisms that would not follow the HF paradigm of overcompensation (see

Figure I.2) 7. Moreover the recent years of HFpEF research shaped our notion of this

syndrome as a systemic disease with a multi-organ involvement. Influential factors were

learned from patient cohorts, and include aging, hypertension, obesity and metabolic

syndrome and female sex. These factors are thought to induce a series of

8

https://sciwheel.com/work/citation?ids=14551459&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=4700536&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=14551476&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=10575334&pre=&suf=&sa=0




Ventricular tissue remodeling

The cardiac ventricles in HF undergo a morphological, cell compositional and

functional adaptation process that is called remodeling. The hallmarks of this process

include inflammation, hormone and cytokine dysregulation, myocardial fibrosis,

cardiac hypertrophy, excitation-contraction coupling defects, oxidative stress, and

metabolic and mitochondrial defects. These processes are involved in HF remodeling

with different emphasis and character in HFpEF and HFrEF. Here, I will briefly

introduce hallmark features of cardiac hypertrophy, fibrosis and oxidative stress while

recent literature can provide a more comprehensive overview 7,13,14.

Muscle hypertrophy is the physiologic adaptation to strain and thus the result of muscle

training. In the heart, physiologic and pathologic hypertrophy differ fundamentally, the

former being reversible, eccentric, the latter being mainly irreversible, concentric and

associated with fetal gene program expression. In HF, cardiomyocyte growth leads to

the concentric (i.e. inwards) thickening of the ventricle, which is a morphological

transformation leading to diastolic dysfunction and thus more typical in HFpEF. With

time, eccentric hypertrophy can develop, characterized by rather elongated than

thickened cardiomyocytes (CMs) leading to impaired systolic function which is more

typical in HFrEF. CM growth is regulated by a complex interplay of biological signals

including among others NO, insulin like growth factors, thyroid hormones, mTOR

pathway, catecholamines and the renin-angiotensin II system 15.

Cardiac hypertrophy is usually accompanied by cardiac fibrosis which is an

evolutionary conserved process to preserve tissue integrity a�er injury. In the heart,

replacement fibrosis can be differentiated from reactive fibrosis. The former is induced

by cell death (e.g. a�er myocardial infarction) and is characterized by the rapid

deposition of extracellular matrix (ECM) to preserve tissue integrity, comparable with

tissue scarring. The latter is a slower process that leads to histological patterns of

interstitial or perivascular ECM deposition without significant loss of CMs 16. In HFpEF,

reactive fibrosis is a typical pattern that has been associated with increased risk of

arrhythmias and diastolic dysfunction, myocardial stiffness 17 and mortality 18. While

certain cross-organ preserved fibrotic pathways are well established like TGFbeta

pathway and fibroblast to myofibroblast transdifferentiation, mechanistic and cellular

differences regarding different fibrosis types and patterns remain unclear 19,20 19.
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Oxidative stress ist a hallmark of HFpEF that is defined as a dysbalance towards reactive

oxygen species with damaging effects to cell structure and function. In HFpEF, this

stress is linked to metabolic comorbidities such as hypertension and diabetes. Important

actors include NADPH oxidases (e.g. NOX2), xanthine oxidase and the inducible nitric

oxide synthases 7. Recent studies showed that endoplasmic reticulum stress via XBP1 is a

downstream effector of impaired NO signaling and directly related to the

pathophysiology of the studied mouse model 21.

Bioinformatic approaches in HF research

In this section I will introduce previous work in the intersection of data science and HF

research. I summarized and reviewed the state of this field in the beginning of my PhD

in a peer-reviewed manuscript 22. This article was written by me, supervision and edits

were provided by Rebecca Levinson and Julio Saez-Rodriguez. Extracts and structure of

this paragraph are cited from the review here.

In the past 5-10 years data science and bioinformatics have become an integral part of

the study of the cardiovascular system. Novel technologies and improved data

infrastructure led to a steep increase of voluminous, available data. To extract relevant

information from high dimensional data, dimension reduction methods, linear and non

linear modeling, enrichment based analysis, clustering algorithms and other machine

learning techniques are routinely applied. HF, and especially HFpEF, is a prime target

for bioinformatic research due to the complex etiology of the syndrome, the large

number of risk factors and involved organs, the high degree of comorbidity in patients

and the prolonged and progressive disease course. Data used for the study of HF are

derived from a variety of sources, while some are dependent on tissue such as blood or

myocardial samples, others are ascertained through clinical care or wearable devices. In

my thesis I have worked with both data types and will introduce technology, data

analysis principles and previous work in the next section.

Molecular HF profiles

High throughput methods enable researchers to study molecular profiles of tissues at

high resolutions. This field is generally referred to with the suffix -omics. Omics

technologies can be described as non-targeted - those that aim to measure complete
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molecular profiles in an unbiased manner - and targeted - those that have predefined

molecules of interest. In HF, the specimen for omics analysis usually is cardiac tissue or

blood (e.g. PBMCs). While myocardial omic analyses can help elucidate disease

mechanisms and identify biomarkers and therapeutic targets, the tissue availability for

human samples is limited. Blood samples are easier to access and can help survey HF

patients at a higher temporal resolution. They are used for biomarker detection and to

study genomics as well as the role of circulating cells while the origin and

pathophysiology of circulating molecules can be difficult to define.

Different omics technologies pose similar challenges on data analysis and evaluation,

including problems concerning accuracy, imputation, integration, replication and

interpretation.

Transcriptomics

The transfer from genetic code to cellular function is mediated by the transcription of

ribonucleic acid (RNA). RNA can be translated to proteins (coding RNA or messenger

RNA), or execute structural (e.g. ribosomal RNA, transfer RNA) or gene regulatory

functions (e.g. micro RNA, long non-coding RNA). The quantification of the set of RNA

molecules (transcripts) produced by the genome is generally referred to as

transcriptomics and provides important understanding of disease mechanisms23.

This quantification is routinely performed via RNA sequencing technology. Briefly,

RNA is extracted from the sample, possibly followed by mRNA enrichment or

ribosomal RNA depletion. To stabilize the fragile RNA, it is transcribed into

complementary DNA, which then can be amplified via PCR a�er adaptor ligation 24. The

amplified cDNA is sequenced by various technologies and the Illumina workflow is

widely used, including all gene expression analysis in this thesis. Here, cDNA molecules

are clustered on a flowcell and a complementary DNA strand is synthesized by using

fluorescently labeled nucleotides, such that for each nucleotide extension the growing

DNA strands are detected via imaging the fluorescence signals. The data that originates

from this process is typically stored as FASTQ files, which contain each flowcell strand

sequence together with metadata describing data quality. To quantify gene expression,

these sequences are mapped on to a reference genome. While this process is

computational intensive, pseudo aligners can offer an alternative approach by assessing

for each read the compatible transcripts 25. The alignment results in a count table

describing the number of transcripts counted for each genomic region of interest (i.e.

o�en genes). To compare genes between samples, technical factors such as sample
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sequencing depths are taken into account via normalization procedures. Gene

abundance also affects gene variance and is routinely controlled for by variance

stabilization approaches.

To relate gene expression patterns to a sample/patient phenotype such as HF, case

control study designs are necessary. Contrast analysis is routinely performed via linear

gene-level modeling, however, as transcriptome profiles can cover up to ~20.000 coding

and ~15.000 non coding genes 26, this is subject to the burden of multiple hypothesis

testing. Thus, the functional interpretation is aided by reducing data dimensions by

incorporating prior biological knowledge together with overrepresentation analysis

(ORA)27. Prior biological knowledge is the result of previous studies that generated

associations between a biological topic (e.g. gene set name) and its associated features

(e.g. gene set members). This knowledge can take many forms, such as a signaling

pathway and its members, or a signaling pathway and its gene regulatory targets, or a

cell type and its markers, or a disease and its associated genes. When analyzing

transcriptomic data, this knowledge can then be used to decipher gene expression

patterns by estimating an effect size of a gene set to be consistently up or down

regulated together with the probability of observing this pattern by chance. There are

many different methods to approach this task. The hypergeometric test relies on

estimating the intersection between two gene sets and thus necessitates a cut off decision

for the regulatory pattern (i.e. which genes are considered up-regulated). A fundamental

alternative was introduced by the development of the gene set enrichment analysis

(GSEA) 28. Here, the effect size of enrichment is calculated as a running sum by adding

or subtracting the gene-level statistic for a given gene set, thus increasing if gene sets are

located close to the top of the ranking. This approach does not depend on a cut-off and

thus considers the full transcriptome ranking. However, hypothesis testing can be

difficult and computationally intensive permutation tests were initially suggested 29.

Other approaches include the combinations of gene-level statistics in univariate or

multivariate linear models, variance analysis or simple averaging. Method selection

should ultimately consider the research question at hand, the format of prior

knowledge, the choice and reliability of the gene level statistic, the methods

assumptions and characteristics and, if available, benchmarking results30 .

The first high-throughput transcriptomic study on myocardial human HF was

published in 2000 31. In the subsequent decades, technological and bioinformatic

advances in transcriptomics have improved our comprehension of cardiac hypertrophy
32, reverse remodeling 33, cardiac metabolism 34,35, cardiac fibrosis 36, and immune
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dysregulation 37 in HF. Several studies made their data sets and protocols publicly

available on platforms like NCBI’s gene expression omnibus. However, few attempts

have been made to compare transcriptomic HF studies 38–40. The continuing

development of sophisticated data analysis methods invites the retrospective re-analysis

and integration of published HF studies, although data integration from different

platforms, centers and technologies presents many challenges 41.

Single cell RNAseq

With single cell RNAseq, the transcriptome of individual cells can be measured,

providing tissue profiling at unprecedented granularity. Bulk RNAseq fails to account

for a functional diversity of cell types that might be crucial in understanding the

orchestration of myocardial syncytium in health and disease. Single cell expression

profiles can inform about cell lineage heterogeneity 42, cell-cell communications 43,

individual transcription factor and pathway activity levels 44, or can be integrated within

multi-omic approaches 45. The main challenges in the application of this technology

included separation of single, viable cells and subsequent amplification of a minute

amount of RNA and the approaches to overcome these hurdles vary in gene coverage

and multiplexing ability (i.e. the capacity to process in parallel) 46,47. A widely used

technology developed for this task is 10x Chromium, which separates individual cells with

a microfluidic approach and merges these droplets with gel beads in emulsion which are

labeled with various oligonucleotides used for identifying unique transcripts and cells

possibly samples (so-called demultiplexing). This system allows high throughput and

reduces the need for sorting equipment or workflows that involve large numbers of

assay plates and is used in this thesis in chapter II.

The cardiac tissue poses additional challenges. Since cardiomyocytes (CM) are too large

for many cell sorting approaches, single nucleus RNAseq can be applied, which involves

isolating the nucleus rather than the whole cell prior to sequencing. The transcriptional

profile of single cell and single nucleus RNAseq has been reported to be comparable

during CM differentiation 48. As the transcriptional profiles of mono- and polynucleated

CM were reported to be similar 49, application of single nucleus RNAseq on cardiac

tissue is encouraged.

A�er the sequencing of transcripts, count matrices are obtained with the dimensions of

number of barcodes (which usually represent cells) and number of transcripts (which

represent genes or genomic regions of interest). Quality control steps then attempt to

identify the barcodes that relate to viable cells. This is done via estimating cut-offs for
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count depth, feature number (low values are expected to be empty droplets, while high

values can origin from doublets), and by assessing evidence for cell lysis (i.e. tissue

dissociation patterns, unexpected mitochondrial or ribosomal gene expression). A�er

barcode filtering, the high-dimensional count matrix can be further reduced by feature

selection, removing low expressed genes. For many downstream analyses, only highly

variable genes are considered which helps to improve signal to noise ratio. In general,

these processing steps are context dependent and should consider the data and tissue at

hand in an o�en iterative process to ensure the careful removal of non-plausible data

without dispensing biological signal. A�er these filtering steps normalization procedures

are applied, which scale count data to correct for differences in count depths between

cells and further provide approximations of normal distributions of gene expression

o�en via log transformation.

Gene expression is subjected to tissue handling and other technical factors which can

introduce strong batch effects. To compare multiple samples, species or data sets,

uncorrected normalized data is subjected to these batch effects and prevents joint

clustering and annotation. Thus, single cell integration methods are used to overcome

these challenges with the aim to remove technical and keep biological effects while

considering differences in cell type composition, ultimately resulting in a joint feature

space that enables meaningful distance calculations50. These methods provide different

degrees of flexibility for batch correction and should be chosen regarding the expected

strength of batch effect (e.g. sample integration < technology integration < species

integration) 51.

The integrated space allows for the joint analysis of samples. This typically involves

non-linear dimensionality reduction approaches which exchange distance

interpretability for visualization purposes. Thus, clustering is not performed in the

reduced dimensions but in the high-dimensional gene expression space, o�en by

making use of local similarity in community graphs to identify clusters of similar cells.

Then, identification of cluster markers via differential gene expression analysis is used

to annotate clusters by assigning cell lineage based on prior biological knowledge or

trusted annotated single cell data. Cell lineage is typically a major source of gene

expression variation and thus single cell analysis o�en directs functional analysis by

considering and comparing distinct cell lineages. Here, cluster resolution affects

granularity of this assignment and sparked lively debate about cell identities and

sub-cellular clusters, o�en called cell states 52,53.
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In case control studies, the cellular profiles are typically processed together to achieve

an integrated space of all samples. Then, disease associated patterns are o�en analyzed

via i) compositional analysis of cell clusters or ii) by comparing molecular profiles to

identify transcriptional shi�s 54. This enables the quantification of cellular contributions

to tissue remodeling as well as prioritization of cell lineages. To interpret resulting gene

expression patterns, similar strategies as in bulk transcriptomics can be applied 44.

In general, the plethora of information gathered by single cell RNAseq poses new

challenges to data analysis that have only partially been met. These include the need to

quantify uncertainty in measurements and efficiently handle gene dropout rates; the

limited benchmarking possibilities; the need to scale to higher dimensional data, as

more cells can be measured; and the integration of multiple levels of single cell omics 55.

Single cell RNAseq has already been applied to study the cardiovascular system

(reviewed in 56–60). To date, studies have focused on the description of cardiac cell

lineage heterogeneity and trajectory in mice 58,61–63, as well as on human cardiogenesis
64–68 and more recently on profiling human hearts in health 69 and disease 70,71. However,

the description of HFpEF on single cell level is missing to date.

Clinical HF profiles

Clinical data and omic data can be analyzed by similar methods, however they differ

regarding their data structure. While omic data are structured measurements, clinical

data is o�en a combination of unstructured, semi-structured, and structured data with

the added complication that free text can be subjective or spurious. Thus, clinical data

o�en requires significant pre-processing prior to analysis, a major hurdle for clinical

data analysis on a large scale. Highly promising approaches to this challenge of

extracting relevant information from unstructured clinical data include natural

language processing 72–74, but even structured clinical data is subject to noise resulting

from entry errors. Clinical data is frequently sparse, subject to care utilization and

documentation habits, and biased, in that health states outside of clinical encounters are

rarely reported. Once preprocessing challenges are overcome, clinical data analysis is

o�en subjected to similar statistical and mathematical modeling as omics data for

predictive or inference purposes. In HF, patient outcomes have been associated with the

presence of a wide variety of comorbid conditions and ejection fraction sub-group.

Despite this, mortality and risk of rehospitalization in HF patients remains high. As a
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result, two major trends have emerged in the use of clinical data for the study of HF:

sub-phenotyping and deep phenotyping.

The emergence of sub-phenotyping has caused a shi� from the tendency to view HF

patients as a single population (or as two clearly defined populations) towards the

tendency to view them as a large heterogeneous supergroup composed of many smaller

and potentially unknown subgroups 75,76. Predicting the outcomes of HF patients,

especially within subgroups, is a major area within big data studies using electronic

health record (EHR) data or other data relevant to clinical care 77. Adler et al. were able to

divide HF patients into those at high and low risk of death based on clinical variables,

and their classifier had a better predictive power than any of the individual classifier

components, and better than other comparison markers including NT-proBNP 78.

Ahmad et al. divided a group of HF patients into four clusters which differed in age, sex,

clinical measures, and comorbid conditions, before building a classifier to predict

survival. They found that cluster membership had a modest predictive ability, but

performed better than le� ventricular ejection fraction alone as the gold standard

measure of cardiac function 79. Other studies have tested multiple types of algorithms

for predicting outcomes including HF hospitalization and mortality amongst HFpEF

patients 80, and phenogrouped HF patients who had been randomized to cardiac

resynchronization therapy with a regular or implantable cardiac defibrillator prior to

evaluation of the effect on HF events and death 81.

Deep phenotyping- the characterization of a phenotype through the comprehensive

evaluation of components and intermediate manifestations- has resulted in the use of

many diverse types of data. Data including echocardiography 82, electrocardiography83,

cardiac magnetic resonance imaging84, tissue imaging 85, implantable monitors 81, and

other wearable and non-invasive cardiac monitors 86,87 are used in combination with

machine learning methods for the event prediction and monitoring of HF patients.

Laboratory values and intermediate phenotypes are also widely analyzed. The diversity

of data types used for the study of HF is rapidly expanding. Analyzing populations that

have multiple data in the same individuals can provide detailed information about the

progression of disease as well as insights into clinical characteristics that may indicate

negative outcomes.

As a whole, the recent years of large clinical data analysis has provided great insight into

the true phenotypic diversity of HF and has begun to provide links between that

diversity and patient outcomes. However, despite the increased understanding of
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phenotypic heterogeneity, there is still a significant amount to be learned about the

relationship between sub-phenotypes and outcomes. While this is a rapidly expanding

field, questions about the necessary manual curation of certain data types,

inconsistencies in imaging between clinical sites, and privacy concerns remain.

Comorbidity studies

The disease profile, i.e. the enumeration of diagnosed diseases of a patient, is an

important characteristic that is fundamental for patient phenotyping and cohort

selections. O�en an index disease is studied with respect to the accompanying disease

profiles which can be called comorbidities. The concept of comorbidities is subject to

debate and the term is in clinical context o�en used interchangeably with

multimorbidity. One possible conceptual distinction is that comorbidities are

co-occurring more frequently than expected by chance and thus dependent while

multimorbidity is the co-existence of independent diseases 88. However, both concepts

assume an unambiguous disease classification that is able to meaningfully separate

diseases, syndromes and symptoms, which is o�en challenging considering the

continuum of pathologies and the evolving clinical and societal perspective on some

disorders 89.

The study of comorbidities is thus o�en of epidemiological character, where disease

co-occurrences are statistically assessed in patient cohorts. These associations are then

interpreted and further analyzed for possible reasons of disease dependency that can

lead to improved clinical assessment or pathophysiologic understanding of the index

disease. In the case of HF, patients typically suffer from a wide range of comorbidities,

which are considered important for HF development and progression 90. In the

pathogenesis of HFpEF, comorbidities have been suggested as causal factors 7,13 and

could possibly be linked to genetic etiology. Treatment of comorbidity has also been

shown to have beneficial effects of cardiac physiology 91, emphasizing the potential to

address HF subtypes through their comorbidities.

Systems medicine attempts to model disease in a holistic manner. One facet of this,

network medicine, is used to analyze complex systems such as patients, organs or cells

via network representation 92,93. Comorbidity networks represent diseases as nodes,

connected via edges based on co-occurrence in patients. If these networks become large,

they cannot be visualized or inspected by eye, thus a toolbox of graph theory is usually

applied to summarize network topology or to answer specific research questions that

have to be translated into the network perspective. E.g. these networks can be used to i)

18

https://sciwheel.com/work/citation?ids=1668812&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=568251&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=14037557&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=10575334,12373165&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=14445141&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=10023438,2063645&pre=&pre=&suf=&suf=&sa=0,0


define disease modules i.e. clusters of co-occurring diseases ii) to assess network based

distance to describe node relationships or iii) assess the influence of a node in a network

which is o�en estimated by a nodes centrality or capacity to influence network

structure. These concepts have been applied to study comorbidity patterns in patients
94–97 including cardiovascular cohorts 98. However, these network topologies are subject

to many possible biases in the data as well as technical factors of the assessment and

statistical evaluation of comorbidity 99. A highly influential factor is the disease ontology

which, as discussed above, lies at the very heart of studying comorbidities 100.

Another aspect of studying comorbidity networks is the coupling to multi-layer gene

networks. Previous work has shown that disease comorbidity is also o�en linked to

shared disease genes that locate close together in gene-based networks like

protein-protein interaction networks 97,101. This observation is o�en the basis of

network-based gene prediction, where novel disease genes are predicted based on

network proximity to known disease genes.

Summary

HF represents a huge health burden with currently no curative therapeutic strategies.

Study of HF patient heterogeneity has led to the recognition of HFpEF and HFrEF as

distinct syndromes regarding molecular and clinical characteristics. HF research has

been typically focused on HFrEF in the past century which is reflected by the arsenal of

pharmacotherapy targeting compensatory mechanisms that explain our model of

understanding of HFrEF but does not fully apply to HFpEF. Thus, novel approaches are

necessary to study the mechanisms driving and distinguishing the HFpEF syndrome.

HF induces a series of ventricular modeling processes that involve hypertrophy, fibrosis,

inflammation, conductive coupling, all which can be observed to some extent in HFpEF

and HFrEF. Thus by direct comparative analysis between HFpEF and HFrEF, more

distinctive features could be uncovered leading to improved pathophysiological

understanding and opportunities for therapeutic intervention.

This thesis evaluated HF by considering and comparing HFpEF and HFrEF syndromes

on molecular and clinical level (Figure I.4). In chapter I, I review existing transcriptomic

data sets and compile new state-of-the-art knowledge for consensus transcriptomic

changes in HF. I discuss the patient clientele that is captured, revealing misrepresented

HF patient collectives ethnically but also phenotypically, which identifies a knowledge

gap for the molecular landscape in HFpEF ventricular remodeling. HFpEF patient
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biopsies are difficult to obtain, thus HFpEF can be addressed via study models. In

chapter II, I utilized a mouse model that resembles HFpEF and analyzed single cell

transcriptome data to gain insights into fibroblast activation. I contrast this analysis by

comparison with mouse models resembling HFrEF and use the human reference to

demonstrate similarities between models. Furthermore, a possible novel biomarker for

HFpEF is introduced. As mouse models only capture selected aspects of the HF

syndrome, I next performed a top-down analysis in human HF patients in chapter III.

By phenotyping HFpEF and HFrEF patients, I extract and describe distinctive

comorbidity profiles, yielding novel HFpEF characteristics. These profiles are then used

to predict associated recurrent gene candidates, which could be linked to the HFpEF

mouse model, providing hypotheses about the molecular links of comorbidity profiles.

Figure I.4 Overview of how this thesis addresses HFrEF and HFpEF.
Graphical overview of how this thesis addresses the two HF subtypes in three chapters. Chapter one

is reviewing existing HF transcriptome data which turns out is typically HFrEF. Chapter II and III

address HFpEF by comparative analysis to HFrEF. Chapter II is a scRNAseq data comparison of

mouse models that resemble HFrEF or HFpEF, while Chapter III analyzes comorbidity profiles of HF

patients to detect different patterns in comorbidity profiles which are also translated to associated

genes. Bottom vertical arrows indicate important cross chapter analyses. AngII, angiotensin II; MI,

myocardial infarction.
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Chapter I - A consensus transcriptional landscape of

human heart failure

1.1 Background

In this chapter, the state of the art of human heart failure bulk transcriptome research is

assessed. While targeted gene expression studies have been conducted since the advent

of polymerase chain reaction, high throughput approaches allowed for parallel

quantification of thousands of transcripts. The first high-throughput transcriptomic

study on myocardial human HF was published in 2000, to the best of my knowledge 31.

In the subsequent decades, technological and bioinformatic advances in transcriptomics

have improved our comprehension of cardiac hypertrophy 32, reverse remodeling 33,

cardiac metabolism 34,35, cardiac fibrosis 36, and immune dysregulation 37 in HF. Several

studies made their data sets and protocols publicly available on platforms like NCBI’s

gene expression omnibus. However, few attempts have been made to compare

transcriptomic HF studies 38–40. The existing studies mainly relied on comparing

intersects of differentially expressed genes. They lack an assessment of general

comparability of gene expression patterns as well as providing results in an accessible

and unified database. Moreover, the continuing development of sophisticated data

analysis methods invites the retrospective re-analysis and integration of published HF

studies, although data integration from different platforms, centers and technologies

presents many challenges 41.

20 years of sampling myocardial gene expression in heart failure patients will be

reviewed by comprehensively curating and integrating existing data sets. This work was

a joint project with Ricardo Omar Ramirez-Flores. While disentangling collaborative

work is a challenge, I will refer specifically to the parts of the project that have been my

contribution by using the first person, highlighting my responsibilities of developing a

clinical concept of this project, the cohort descriptions and curations, processing of

RNAseq data, comparative analysis between studies as well as interpretation of gene

expression patterns. Furthermore, in each figure legend a contribution statement is

added. This chapter has been published in a peer reviewed journal 102. The article was

jointly written by Ricardo Omar Ramirez Flroes and me with all authors providing

minor edits. This work was supervised by Rebecca T. Levinson and Julio

Saez-Rodriguez.
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1.2 Curation and review of data sets

1.2.1 Inclusion criteria

The first aim of this project was to identify and curate relevant HF transcriptome

studies. For this purpose I defined i) a set of key words to query databases and ii)

inclusion criteria to ensure technical and clinical comparability.

There are different databases that publicly host gene expression data, o�en with

redundant data entries. I queried three distinct data bases: NCBI’s Gene Expression

Omnibus database (GEO), the European Nucleotide Archive (ENA) and ArrayExpress. I

decided to use the following keywords: “heart failure”, “ischemic cardiomyopathy”,

“dilated cardiomyopathy”, “cardiac failure” and “heart disease”, to capture a rather broad

spectrum of all HF associated studies. Then, I manually reviewed all matching data

entries from these studies and further applied the following inclusion criteria. I will

spell out the criteria and briefly explain their rationale.

1. case samples came from biopsies of the le� cardiac ventricle

HF patients were also o�en sampled from the right heart, especially in catheter based

interventional approaches. However, the right and le� ventricle display unique gene

expression profiles that would not justify a joint analysis 103. Another frequent biopsy

location was found to be the sampling of peripheral blood mononuclear cells, which we

did not include for the same reason. This criteria thus ensured a comparability of le�

ventricular remodeling.

2. case samples of the human heart of end stage HF patients with either ischemic

cardiomyopathy (ICM) or dilated cardiomyopathy (DCM)

These criteria ensured that the two main etiological branches of chronic heart failure

were included, while more rare HF etiologies such as infectious or inherited HF were

not considered.

3. control samples were obtained from patients with non-failing heart
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As I expected strong batch effects to be associated with each study, I only considered

studies that included control samples.

4. data from at least 5 samples were available

Smaller sample size can complicate statistical reevaluation.

5. a publication or preprint with a detailed methodology was available

I relied only on data sets where a detailed methodology section enabled me to

comprehend experimental protocol for data generation.

1.2.2 Curated studies and compared metadata

A total of 16 data sets were retained, a�er manually evaluating studies for the discussed

inclusion criteria (Table 1). These 16 data sets contained 263 control, 372 DCM and 281

ICM samples (Figure 1B). The studies were published between 2005 and 2019 and their

sizes varied between 5 and 313 samples. The comparison of the country of study origin

further revealed a research bias: Ten cohorts were from the USA, while the remaining

six cohorts were from Europe (Spain, Germany, Italy).

# Study ID GEO ID Samples

(CT +

HF)

Technolo

gy

Year Countr

y

Disease Citatio

n

1 Liu15_M GSE57345 313 Microarray 2015 USA ICM, DCM 35

2 Hannenhalli06 GSE5406 210 Microarray 2006 USA ICM, DCM 104

3 vanHeesch19 not in GEO 77 RNAseq 2019 Germany DCM 105

4 Sweet18 GSE116250 64 RNAseq 2018 USA ICM, DCM 106

5 Kittleson05 GSE1869 37 Microarray 2005 USA ICM, DCM 107

6 Tarazon14 GSE55296 35 RNAseq 2014 Spain ICM,DCM 108

7 Spurrell19 GSE126573 33 RNAseq 2019 USA DCM 109

8 Kong10 GSE16499 30 Microarray 2010 USA ICM 110

9 Molina-Navarro GSE42955 29 Microarray 2013 Spain ICM, DCM 111
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13

10 Greco12 GSE26887 24 Microarray 2012 Italy DCM 112

11 Yang14 GSE46224 24 RNAseq 2014 USA ICM, DCM 113

12 Barth06 GSE3585 12 Microarray 2006 Germany DCM 114

13 Pepin19 GSE123976 9 RNAseq 2019 USA ICM, DCM 115

14 Kim16 GSE76701 8 Microarray 2016 USA ICM 116

15 Schiano17 GSE71613 6 RNAseq 2017 Italy DCM 117

16 Liu15_R GSE57344 5 RNAseq 2015 USA DCM 35

Table 1.1 Overview of curated studies.
Overview of meta-analyzed studies. This data was curated and represented by me. Reprinted from
102.

Figure 1.1 Curation results of HF transcriptome studies.
A) Sample information availability per study. yes, information available per sample; no*, incomplete

information or only summary statistics; no, no information available. B) Sample size comparison of

studies. CT, Control; DCM, dilatative cardiomyopathy; ICM, ischemic cardiomyopathy. This data was

curated and represented by me. Reprinted from 102.

I next assessed how clinical and technical information was available. The databases that

store gene expression data provide meta information stored by the author of the data.

However, there is no consensus on i) which sample features should be recorded and ii)

how sample features should be formatted. My strategy for gathering as much
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information as possible was first to define features of interest for our study. This

included clinical & demographic patient features as well as technical features of sample

processing. Then, I processed and unified all metadata stored in the gene expression

databases. To increase coverage, I next assessed for each study whether cohort

information was stored within the published manuscript. Here, I o�en found only

summary statistics of cohorts which I extracted. The results regarding availability of

demographic (age & sex) as well as clinically relevant features (Comorbidities, EF,

Medication, NYHA) is displayed in Figure 1.1A. All studies but one reported at least some

information of age and sex, while only eight provided complete sample level

information. For clinical features the sparsity of available information rendered it

almost useless for patient cohort comparison. This heterogeneity of reporting sample

information that I discovered constitutes a major impediment for data sharing and

reutilization. Thus a clear need for the standardization for data sharing is evident.

Furthermore, I found multiple relevant studies that did not publish their data which

prevented its full exploitation by the research community. Since many studies are

funded one way or another through government initiatives and taxes, data sharing

should become non-optional, if patient privacy rights are not in danger of being

violated. Furthermore the standardization for sample information deposition is

necessary.

Since age and sex were reported by most studies, I was able to compare patient

demographics between studies. Here I found that most patients were male in (Figure 1.2)

revealing another bias in the field of HF transcriptome research. Furthermore, patients

were younger than expected, as HF incidence increases with age. It can be speculated

that the young age in these cohorts is related to sample availability of HF patients: In

general, myocardial biopsies of the human heart are difficult to obtain. Usually, a clear

clinical indication is necessary to justify the probing of myocardium which causes

complications in ~1 % of patients. Ventricular rupture is a feared complication that

necessitates further surgical treatment but occurs rarely (0.42%) 118. Thus, purely

scientifically motivated biopsies were not performed and clinically motivated

opportunities for sampling included le� ventricular device implantation, surgical

ventricular restoration or heart transplantation. What is common to these indications is

the last line of treatment character. Patients went typically through stepwise escalating

heart failure pharmaceutical therapy before being subjected to a surgical or

endovascular interventional therapy. For control biopsies, all studies relied on donor

hearts that could not be transplanted due to reasons of size disparity or AB0
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mismatches. This bottleneck of sample availability prevents randomized patient

sampling and thus, results have to be considered with caution.

When comparing technical protocols of sample acquisition and handling, I also found

that many studies did not provide complete information. While all studies described

sampling location as le� ventricle ( see inclusion criteria #1), the exact location was not

described by six studies. The other studies sampled apex (four studies) or free wall ( five

studies) or both (one study). Information on tissue storage was o�en incomplete as well.

While all studies snap froze samples to -80C°, intermediate storage was o�en done at

4°C for o�en unknown duration. Gene expression is highly sensitive to tissue handling

and thus, batch effects due to technical circumstances can have a high impact on

analysis results.

In summary, HF patients represented in transcriptome studies were typically male,

from western countries, and suffered from severe HF at a relatively young age of 50-60

years justifying clinical interventions and enabling sample acquisition. These are

important cohort characteristics that might not generalize well to patients with a

different profile.

Figure 1.2 Comparison of age and sex distribution.
A) Age distribution in years of control (CT) and heart failure samples (HF) per study. Displayed is

mean and standard deviation. B) Sex of patients in % per study. This data was curated and

represented by me. Reprinted from 102.
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1.2.3 Assessing technical variation in gene expression between

studies

While differences in experimental study protocols can induce study specific gene

expression patterns, different computational pipelines can have similar effects. For this

reason, we downloaded raw expression data and processed all studies uniformly. As

mentioned in the introduction, there are two different technologies to quantify gene

expression, RNA sequencing and microarray.

For microarray data we read CEL files and normalized them using Robust Multi-array

Average (RMA). The gene probes were then annotated by using the HUGO Gene

Nomenclature Committee (HGNC) gene symbols for each platform. For RNA-Seq

studies, I downloaded FASTQ files and aligned sequence reads to the human GRCh38

reference by using Kallisto implemented in the ARCHS4 pipeline. For convenience I

utilized the BioJupies platform to run this pipeline. We only regarded protein coding

genes to increase the comparability of microarray with RNAseq data. Gene expression

counts were then filtered for low expressed genes and multiple measures of the same

gene symbol summarized by calculating the mean. I normalized samples using the

Trimmed mean of M-values (edgeR 119) and subsequent variance-stabilizing transformation

with voom (limma 120).

A�er these processing steps, study quality was assessed by visually comparing the

distribution of gene expression values for all samples. Multidimensional scaling was

performed for each study separately and satisfying separability of heart failure and

control samples was observed. I compared gene coverage and found that ~14k genes

were reported by at least 10 studies while the mean gene coverage was ~16k. Notably

microarray studies did not yield inferior coverage (Figure 1.3)
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Figure 1.3 Comparison of gene coverage between studies.
A) Absolute gene coverage per study after processing. B) Pairwise comparison of covered genes

measured with Jaccard Index. This data was analyzed by me. Reprinted from 102.

Next, we estimate the variance in association to study labels (i.e. study batch effect), HF,

and HF etiology. For this we applied Principal Component Analysis (PCA) and Analyses

of Variance (ANOVA) to various transformations.

First, we combined all normalized gene expression data and performed PCA (Figure

1.4A). We then summed up the explained variance by PC if they were associated with

study labels (ANOVA, p< 0.05). As expected, the joint analysis of gene expression data

from different studies results in mainly gene expression variance driven by study batch

effects (85%), thus preventing this simple analysis approach.

Second, we tested whether simple z-transformation can ameliorate batch effects (Figure

1.4B). For this calculated mean and standard deviations per gene in control samples and

transformed gene expression in HF samples to z-values. We repeated the PCA analysis

and found that the estimated variance associated to study batch decreased to 74%. I used

tsne to demonstrate the persistence of the batch effect (Figure 1.4C)

Third, we performed gene standardization. For this, we standardized gene expression

for control and HF samples per study (mean= 0, sd= 1). A�er performing PCA, the
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explained variance by study decreased to 0, suggesting that the scale of gene expression

is relevant for the study batch effects (data not shown).

A�er estimating study batch effect, we next addressed the association of the clinical

covariates with variance in gene expression. For this we used PCA for each study

independently and tested with linear models (p < 0.05) for association of each covariate .

We performed this analysis for all patients (Figure 1.5A) and for only HF patients (Figure

1.5B). Since the availability of sample level information was poor (see section 1.2.2), we

could not draw a general conclusion. However, we observed that HF status together with

age and sex explained most of the variance per study. When comparing HF patients, we

observed that HF etiology (ICM vs DCM) was associated with very little variance (6.98%).

Of note, our approach underestimated the variance in studies with low sample size,

since the variance is distributed on few principal components. However, as the sample

sizes of studies were balanced we expect this effect to be ameliorated.
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Figure 1.4 Differences in samples included in the study.
A) First two components from a Principal Component Analysis (PCA) done to all samples. B) First two

components from a PCA done to all z-transformed heart failure samples. C) t-distributed stochastic

neighbor embedding of all z-transformed heart failure samples. This data was analyzed by Ricardo

Ramirez Flores (panel A, B) and me (panel C). Reprinted from 102.

In conclusion, this series of analysis demonstrated that i) gene expression magnitude is

subjected to strong study batch effects and ii) clinical covariates are important drivers of

gene expression. Thus the reporting of as many possible observed confounders is

necessary to decipher gene expression, especially when patient cohorts number is small

and cohorts were not randomized (see section 1.2.2).
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Figure 1.5 Contribution of the covariates to the variability of individual studies.
Estimated proportion of explained variance associated with the different covariates used in the

differential expression analysis in A) all patients and B) only heart failure patients. Grey

tiles represent missing reported data. HTx, heart transplantation. This data was analyzed by Ricardo

Ramirez-Flores. Reprinted from 102.

1.2.4 Evaluating consistency of gene expression changes in HF

We have established that HF is associated with variance in gene expression in most

studies. Thus we posed the question, whether gene expression changes reported by each

study were consistent. To estimate the gene expression changes in HF per study, we

applied linear models as implemented in the limma package by controlling for clinical

covariates if available. This yielded gene-level statistics of p-value, t-value and effect size

(log fold change). We developed a series of different analyses that each yielded a

different perspective on the question of consistency in HF gene expression changes.

Results of differential gene expression analysis are o�en reported by choosing an alpha

level and reporting the resulting gene by disregarding those that do not reach

significance. However, applying the same alpha level to all studies would yield a very

different number of differentially expressed genes (DEGs) for the differences in sample
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size. Thus we ranked genes by p-value and compared the top 500 genes among studies

by calculating Jaccard indices (Figure 1.6A). This yielded an almost null concordance of

DEGs (mean Jaccard index = 0.05), suggesting that each study reported different top

DEGs. This was in fact the strategy of previous reports of HF transcriptome meta

analysis 38.

This analysis might suggest that different HF related expression patterns were reported

in each study. We next asked whether the top 500 genes reported from one study can

separate HF from control patients in another study. For this we calculated a disease

score for a given set of genes by multiplying the t-values reported by one study with the

sample level expression values by another study. For each sample we summed up the

values for all genes, and then estimated differences between HF and control samples by

calculating the area under the receiver operator curve (AUROC) (Figure 1.6B). This

yielded high separability in all pairwise comparisons (median AUROC = 0.94). Studies

that profiled only patients with ischemic forms of heart failure (eg, Kong10) effectively

classified studies that profiled only patients with dilated cardiomyopathy (eg, Spurrell19)

(AUROC, 1) and vice versa (AUROC, 0.95). We observed no association between each

study’s mean AUROC and their technology (Wilcoxon test, p-value = 0.72), sample size,

or estimated proportion of variance captured by HF (Pearson correlation, 0.17, 0.18,

respectively p-value > 0.4. These results indicate that patterns of coexpression of genes

are more stable between cohorts than substantial changes in expression of specific

genes. Thus, while each study reported different DEGs, the direction of expression was

conserved in other studies. This indicates that trends of transcriptional regulation are

more stable than the ranking of top marker genes.

Now that conservation of transcriptional regulation has been confirmed, I asked

whether the ranking of DEGs also was conserved. For this I applied fast gene set

enrichment analysis (fgsea ) 121 as a pairwise study comparison. Here, I selected the top

500 up- and downregulated DEGs from one study and enriched them separately in the

t-value gene ranking of another study. This yielded mostly consistent results,

Differentially up-regulated and down-regulated genes had a median enrichment score

of 0.55 (Figure 1.6C, upper panel) and -0.56 (Figure 1.6C, lower panel), respectively. In

GSEA the enrichment score is punished for genes in the top of the ranking that are not

in the tested gene set. Thus this analysis provided additional insight as we know that

there is little overlap between the top 500 genes, however, that considering the full

ranking of genes the DEGs of one study still tend to be in the top of the ranking in the

other.
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To summarize, these results suggest that the proper way to combine the evidence of the

curated studies is by looking at the consistency of deregulation of genes and not at the

dimension of the change in expression.

Figure 1.6 Consistency of the transcriptional signal of end-stage HF among studies.
A) Pairwise-comparison of the top 500 differentially expressed genes of each study using the Jaccard

index. B) AUROC of pairwise predictions using a disease score with the top 500 differentially

expressed genes of each study. C) Enrichment score (ES) of the top 500 differentially expressed of

each study in sorted gene level statistics lists. This data was analyzed together with Ricardo

Ramirez-Flores. Reprinted from 102.
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1.3 Meta-analysis of the transcriptional responses in

end-stage HF

1.3.1 Building the heart failure consensus signature (HF-CS)

A�er observing that directionality of gene regulation was conserved between studies, we

next sought to collect the consensus of gene regulation in HF. For this analysis we

selected the Fisher combined probability test. This test calculates a test statistic based on

log transformed p-values of independent studies describing the same null hypothesis. In

our case, a given gene was tested whether the difference between mean expression in HF

and control patients is non zero for each study separately. The meta-test statistic is large

when single p-values tend to be small. The null hypothesis of the meta-test is that all

null hypotheses are true, while the alternative hypothesis is that at least one of the

alternative hypotheses is true. A�er applying this test for each gene independently, meta

p-values for each gene were corrected (Benjamini and Hochberg, BH). The ranking of

genes based on this meta p-value then could be regarded as a ranking of the most

consistently regulated genes in HF. We considered only genes which were reported in

ten or more studies, resulting in the HF consensus signature (HF-CS) of 14,041 genes

(Figure 1.7A). We found that the top ~500 genes displayed an elbow in the meta p-value

distribution and thus contain the most conserved genes.

Since the individual study p-values were derived from two sided tests, a gene could

receive a low meta p-value by displaying significant but inconsistent regulation within a

study. Although we demonstrated earlier that the directionality is highly conserved

between studies, we demonstrated the agreement of directionality of the top 500 HF-CS

genes (Figure 1.7B).
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Figure 1.7 Meta‐analysis summary.
A) Sorted −log10 (meta analysis BH P values) of the 14 041 genes included in the Fisher combined

test, representing the heart failure consensus signature (HF‐CS). B) Top 500 genes sorted by their

mean log fold change across all studies; black lines represent genes that were not measured in

specific studies. A selection of HF marker genes are highlighted. BH indicates Benjamini–Hochberg.

This data was analyzed by Ricardo Ramirez-Flores. Reprinted from 102.

We found no correlation between the sample size of a study and its contribution to the

meta-analysis (Spearman correlation 0.24, p-value = 0.37), suggesting that proper

experimental design and representative sampling could compensate for study size 122.

The consensus ranking captured known HF markers such as MYH6, MYH7, MME,

CNN1, NPPA, NPPB, KCNH2 and ATP2A2; extracellular associated proteins such as

COL21A1, COL15A1, and MXRA5; fibroblast associated protein FGF14; mast cells

associated protein KIT; proteins mapped to force transmission defects like FNDC1,

LAMA4, SSPN, or related to ion channels like KCNN3. Importantly, the myosin heavy

chain isoform switch that is known to be related to the contractile velocity and energy

economy the human heart 123 was consistently found in all studies (Fig 1.8).
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Figure 1.8 t-values from the differential expression analysis of genes that are
established as dysregulated in heart failure (HF).
This data was analyzed by me. Reprinted from 102.

1.3.2 The added value of the HF-CS

We proposed three approaches to estimate the added value of the HF-CS over

individual study reports.

First, for the comparison of studies we built a disease score and classifier approach to

assess if reported DEGs in one study could also successfully separate HF from control

samples in other studies (see section 1.2.4). We used the same approach now to assess

whether the top 500 genes of the HF-CS further improves general classification

performance over DEGs derived from individual studies. We found that AUROCs and

enrichment scores improved significantly with top 500 genes from the HF-CS

compared to individual study DEGs (Wilcoxon paired test, p-value < 1x10e-16).

Second, to assess the added value of the HF-CS was to compare the diversity of

reporting top 500 genes between studies (Figure 1.9A). I demonstrated that genes that

are highly ranked in the HF-CS were only reported originally by a few studies as genes

associated with HF. I propose that these genes could be regarded as an added value as

they have been reported by few studies, but the meta-analysis uncovered their highly

consistent changes (Figure 1.9B).

Third, I compared the HFCS with a previous meta-analysis of HF transcriptomes. This

meta-analysis 38 also reported highly consistent genes in HF. To compare the resulting
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gene lists, I performed an enrichment of the top 500 reported genes from Alimadadi et

al. in the HF-CS (Figure 1.9C) resulting in a positive and significant enrichment. Not

surprisingly, as the same data has been used to generate both signatures. However, many

genes from Alimadadi et al. have been labeled to be less informative in our signature. I

expected that these genes could not be reproduced by other studies and are likely part

of the less informative noise of gene regulation and can thus serve as an example for the

added value of our analysis.

In conclusion, the HF-CS outperforms individual studies in the classification task, which

can be possibly explained by including highly consistent gene candidates that reached

significance in few studies due to low effect sizes. Moreover, noisy genes were

eliminated by data integration as demonstrated in comparison with a smaller

meta-analysis.
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Figure 1.9 Added value of the heart failure consensus signature (HF-CS) on single
gene level.
A) Histogram of genes that were reported by single studies (with adj. p-value <0.1), grouped by

HF-CS rank < 501 (upper panel) and rank between 501-5000 (lower panel). Distribution of both

groups varies significantly (p-value <0.0001, Wilcoxon test). B) Genes that were reported by only 2

individual studies (adj. p-value <0.1) and with a HF-CS rank < 500. Single study t-values are

displayed for each gene to visualize consistency in expression. C) Running sum visualization of the

top 500 genes from a previous meta-analysis 38 in the HF-CS. This data was analyzed by me.

Reprinted and modified from 102.
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1.4 Functional interpretation of the HF-CS

1.4.1 Comparison of diverse etiologies

Personalized medicine attempts to tailor treatment strategies to the individual patients'

needs. The etiology of HF is currently not considered for treatment selection, because it

is poorly understood how the diverse pathophysiological stimuli induce ventricular

remodeling and whether or not this is a common pathway independent of etiology or

whether more specific pathways exist that could offer targets for more personalized

treatment options. In our study, we found that ICM and DCM failing hearts display a

very similar gene expression program. I now posed the question, whether the HF-CS

that characterized both, further characterizes HF of more diverse etiologies. For this

reason I curated studies that were initially not included in the meta-analysis because

inclusion criteria were not met (i.e. HF etiology, biopsy location or profiling platform)

(Table 1.2).

GEO ID n

(CT)

n

(HF

)

HF etiology Reason for

exclusion

from meta

analysis

Technolo

gy

Year Count

ry

Cit

ati

on

GSE10161

7 20

Aortic stenosis

HF etiology

Microarray 2008

Netherl

ands 124

GSE4172 4 8

Inflammatory DCM

due to PVB19 infection

HF etiology &

samples from

right ventricle Microarray 2006

German

y 125

GSE84796 7 10 Chagas disease HF etiology Microarray 2016 France 126

GSE9800 11 19

Eosinophilic

myocarditis, alcoholic

cardiomyopathy,

hypertrophic

cardiomyopathy,

sarcoidosis, peripartal

cardiomyopathy, ICM,

DCM

HF etiology, no

publication

Microarray 2007 Japan -

GSE52601 8 12

ICM, DCM (additional 4

fetal samples) Technical

oligonucleot

ide beads 2013 USA 127

GSE3586 15 13 DCM Technical Microarray 2013 German 114
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GEO ID n

(CT)

n

(HF

)

HF etiology Reason for

exclusion

from meta

analysis

Technolo

gy

Year Count

ry

Cit

ati

on

y

GSE76701 4 4 ICM Technical Microarray 2016 USA 116

Table 1.2 Additional HF studies with etiological and technical variation.
This data was curated and presented by me.

I used these studies now to investigate how well the HF-CS signature can be recovered

within the gene expression changes from each individual study (Figure 1.10). I calculated

the mean disease score of each sample of these excluded studies using the top 500 genes

of the HF-CS and the gene level statistics of the studies included in the meta-analysis.

AUROCs were calculated to estimate classifier success. We found that studies with

technical exclusion reasons performed better than studies with etiological exclusion

reasons. Nevertheless, the high separability suggested that the HF-CS captures a

common pathway independent of etiologies. Thus, I concluded that the HF-CS might

serve as reference to delineate subcohort specific gene expression patterns that diverge

from the common pathway in HF. As such it might provide a highly valuable resource

for future personalized medicine approaches.

Figure 1.10 Disease score calculation based on the top 500 genes from the consensus
signature for diverse HF studies.
A) HF with diverse etiologies: aortic stenosis (GSE10161); PVB19 infection (GSE4172); chagas

disease (GSE84796); eosinophilic myocarditis, alcoholic cardiomyopathy, hypertrophic

cardiomyopathy, sarcoidosis, peripartum cardiomyopathy, ICM , DCM (GSE84796). B) HF studies
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with ICM and DCM samples but processed with different bioinformatic pipelines (GSE3586,

GSE52601).This data was analyzed by me. Reprinted from 102.

1.4.2 Pathway and transcription factor activities within the HF-CS

A�er confirming that the HF-CS contained a robust ranking of gene expression

dysregulation in HF, we sought to functionally characterize the signature. For this we

relied on a toolbox of functional genomics tools that incorporate prior biological

knowledge. Since the HF-CS ranking contained up and downregulated genes, we added

this directional information to the ranking by weighting the log-transformed meta

p-values by the mean expression change. This directed ranking now allowed us to

interpret gene expression patterns for up or down regulation.

First, I used the MSIG DB database to curate a total of 5,998 gene sets describing GO

terms, canonical and hallmark pathways. 579 gene sets yielded an enrichment in the

HF-CS (p-value <0.05; Figure 1.11A). Positively enriched gene sets were associated with

the matrisome, and thus indicative of cardiac fibrosis while down regulated gene sets

associated with inflammatory and metabolic processes.

Second, we used two footprint based tools to estimate activities of transcription factors

(TFs) and pathways. We found that the regulons of 65 TFs were consistently up- or down

regulated (p-value<0.05). Among active TFs were SOX2, MEF2A, MEF2B, MEF2C,

ARNT and MEIS1-2, RUNX2. RUNX2 is involved in osteoblast differentiation and is

suspected to drive pro-fibrotic so� tissue remodeling. MEF family members are crucial

for cardiac development and have been associated with hypertrophic remodeling in

adult HF 128. ARNT is indicative of metabolic stress as it is involved in fatty acid

oxidation together with PPARy, and the cardiac‐specific depletion of ARNT resulted in

improved cardiac function in mice 129.

The pathway analysis revealed two main findings. JAK-STAT was the only pathway with

a high activity (p-value<0.05). The JAK-STAT pathway is activated by growth factors and

cytokines and is an important regulator of cardiac development and inflammation. We

found a down-regulation of the targets of the TNFα and NFKB pathways. While TNFα

plasma level is associated with the worsening of cardiac function 130, possible

cardioprotective effects are 131,132. The decreased pathway activities of TNFα and NFKB

together with the decreased TF activities of RELA and NFKB1 that we found in the

HF-CS indicated that TNFα related signaling is decreasing in the end stage Heart. Future
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studies and experimental approaches are necessary to mechanistically elucidate the role

of TNFα in HF.

Figure 1.11 Functional characterization of the HF‐CS.
−log10 (BH P‐values) coloured by direction of enrichment (A and C) or by direction of activation (B

and D) of the top 50 (A) most enriched canonical and hallmark gene sets, (B) transcription factor

activities, (C) miRNAs’ targets, and (D) all signaling pathway activities. Dashed line indicates BH

P=0.25. BH indicates Benjamini‐Hochberg; HF‐CS, heart failure consensus signature; and miRNA,

micro RNA.This data was analyzed by Ricardo Ramirez-Flores and me. Reprinted from 102.

1.4.3 HF-CS as a resource for biomarker detection and hypothesis

building

The HF-CS can be used to learn about consistent patterns of gene expression in a large

cohort of HF patients. While these patterns can inform us about underlying biology (see

section 1.4.2), it can also be a powerful resource for prioritizing candidates from

independent data. In this section, I will demonstrate how an integrative approach using

independent data together with the HF-CS can provide a prioritization strategy by

combining multiple sources of evidence. First, I will use a plasma proteome study to
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suggest novel cardiac HF markers and second, I will use fetal transcriptome studies to

decipher fetal reprogramming in HF.

The general framework that I proposed is the signature generation in a case-control

setting. Next, a test for enrichment of the top signature features is performed in the HF

consensus signature using GSEA. Finally, highly consistent features can be filtered by

directionality of dysregulation and significance levels. Here, I used a combination of the

leading edge of GSEA and the ranking of the HF-CS (Figure1.12A).

The plasma proteome study by  Egerstedt  et al 133, analyzed the plasma proteome in an

untargeted fashion of early and manifest HF patients as well as controls. While HF is a

systemic disease, changes in plasma proteome could be attributed to multi-organ

involvement or comorbidities of HF patients. Thus, the identification of novel

biomarkers of cardiac origin is tempting to identify biomarkers indicative of cardiac

remodeling. I propose that the HF-CS can be utilized to hypothesize about possible

cardiac origin of plasma markers. I observed a clear enrichment of manifest HF proteins

(GSEA p-value = 0.0001) and a modest enrichment of early HF proteins (GSEA p-value

= 0.13) in the top of the HF-CS (Figure 1.12B), indicating that plasma protein markers

also tend to be upregulated on gene expression level in the heart (Figure 1.12C). Further,

this association is higher for HF patients in manifest disease stages. While gene

transcription o�en is poorly correlated to protein translation, I sought to filter

candidates by considering protein expression information by the human protein atlas
134. For this I processed protein expression data (Figure 1.13A) to identify genes with

recorded protein expression in cardiac tissue. Next, I calculated a cardiac specificity

score by considering whether protein expression was recorded in other tissues as well

(Figure 1.13B). Resulting Candidate markers included the established HF marker NPPA

which might serve as a proof of concept for this approach. Novel potential markers

induced CCDC80, BID, MAP2K1, MRC2, JAK2, and LTBP4. To sum up, these markers

were suggested because they were i) consistently upregulated in HF on gene expression

level, ii) reported on protein level in the heart and iii) upregulated in plasma proteome

of HF patients.

The second use case for the HF-CS as a reference could be to address the concept of

fetal reprogramming. This reactivation of gene expression patterns typical for fetal

cardiac cells and is thought to be an adaptive process to counteract pathophysiological

stress. These patterns are involved in metabolism, the contractile apparatus and

conduction system 135. I investigated whether these patterns are part of the HF-CS by

analyzing two studies (Spurrell19 & GSE52601, Table 1.2) that compared healthy human
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hearts with fetal hearts. First I analyzed the separability of the two studies by calculating

the disease score per sample based on the top 500 genes of the HF-CS which yielded

perfect separability (AUROC = 1) (Figure 1.14A). I performed differential expression

analysis and estimation of TF activities of the fetal studies by comparing fetal to healthy

adult hearts as described before. Then, I tested the enrichment of top differentially

expressed TFs in the HF-CS (Figure 1.11B). In the Spurell19 data, 221 of the top 500

genes from the consensus signature correlated with fetal, indicating that these genes

might be part of the fetal reprogramming (Figure 11D). Furthermore, 32 TFs correlated

with TFs active in fetal hearts including SOX2, NANOG, MEF2C, MEIS1 (Figure 11E).

GSE52601 displayed similar results (Figure 14B,C). This indicated that a great share of

the HF-CS can be attributed to changes related to fetal reprograming, and the HF-CS

enables us to decipher which patterns are part of the fetal reprogramming and which

patterns can be attributed to adult heart disease remodeling.
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Figure 1.12. HF-CS as a reference that complements independent studies.
A) Schematic of a suggested framework. Marker features from independent studies are enriched in

the HF-CS with GSEA. Features that belong to the leading edge are further filtered, e.g. by correlation

or ranking in the HF-CS. B) Enrichment results of marker features from four individual studies. C)

Plasma proteome of HF patients mapped to the HF-CS. D) Fetal cardiac transcriptome (Spurrell19)

mapped to HF-CS on gene level and E) TF level. Black dots in C & D indicate correlated features in

the enrichment leading edge; labeled features in C & D indicate genes with a rank < 500 in HF-CS.

Black dots in E indicate overlap with significantly dysregulated TFs derived from the HF-CS. This data

was analyzed by me. Reprinted from 102.
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Figure 1.13. Biomarker candidates and their expression in the Human Protein Atlas
(HPA).
A) Relevant biomarker candidates taken from figure 5 and analyzed for their reported protein

expression in heart muscle tissue in the HPA. Protein expression was reported for genes labeled in

red including PRDX6, LTBP4, BID, BOC, NPPA, MAP2K1, JAK2 with a rank in the heart failure

consensus signature (HF-CS) < 500 and CCDC80, MAPKAPK2, MRC2, HNRNPAB with rank

between 500-1000. Expression of FRZB, TIMP3, F3 and DPT were not assessed by the HPA. B)

Assessment of tissue specificity of protein expression using the HPA. The total number of measured

non-cardiac tissues in the HPA per candidate ranged between 46 and 48. Tissue specificity was

calculated as the ratio of tissues not expressing the protein (Low or Not detected) to the total number

of measured tissues. NPPA is not expressed in any non-cardiac tissue. CCDC80 and BID are

showing high to moderate specificity while HNRNPAB is suggested to be unsuitable for a cardiac

biomarker as it is reported in all non-cardiac tissues. This data was analyzed by me. Reprinted from
102.
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Figure 1.14 Heart Failure consensus signature (HF-CS) as a reference that
complements independent studies.
A) Disease score calculation for fetal experiments Spurrell19 and GSE52601. CT, control (adult non

failing heart samples); fetal, fetal heart samples. B) Significant genes in GSE52601 mapped to the

HF-CS. Black dots indicate correlated genes in the enrichment leading edge. Labels indicate genes
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with a rank < 500 in HF-CS and adjusted p-value < 10e-4.3. C) Significant TFs in GSE52601 mapped

to TFs derived from the HF-CS. Black dots and labels indicate significant and correlated TFs in

GSE52601 and HF-CS. D) Plasma proteome of early HF patients mapped to the HF-CS. All plasma

proteins are displayed. Black dots and labels indicate correlated proteins with a rank < 500 in the

HF-CS. This data was analyzed by me. Reprinted from 102.

1.5 Sharing the HF-CS with the community

The last part of this project was to make our work findable, accessible, interpretable and

reusable. For this, I imagined two user types, a bioinformatician and a clinician or

biologist. For the former we provided all processed data from this study in an accessible

data repository (https://zenodo.org/record/3797044#.XsQPMy2B2u5), and all scripts in a

public code repository (https://github.com/saezlab/HF_meta‐analysis). However, to

familiarize with the code and data structures might be a hurdle for some scientists that

might prevent the utilization of our work. For this reason we employed with the help of

Christian Holland a shiny app that can be accessed via a user interface

(https://saezlab.shinyapps.io/reheat/). I conceptualized this web page by defining main

use cases for clinicians:

1. Gene query: Users can select genes of interest to explore their role in the

consensus signature of heart failure (HF-CS).

a. Expression of queried gene(s), as reported by single studies. Expression is

displayed as a t-value resulting from the individual differential expression

analysis

b. Ranking of queried gene(s) in HF-CS. The lower the rank the more

consistent the deregulation of that gene was observed in all studies

c. Mean t-value of queried gene(s) compared to mean t-value of all genes in

the HF-CS

d. Raw data of queried genes (from individual studies and from

meta-analysis) to download

2. Enrichment of gene signatures: Users can upload their own signatures to test

quickly whether they are enriched in the HF-CS and see which genes are driving

this enrichment.

49

https://sciwheel.com/work/citation?ids=10801062&pre=&suf=&sa=0
https://zenodo.org/record/3797044#.XsQPMy2B2u5
https://github.com/saezlab/HF_meta-analysis/,
https://saezlab.shinyapps.io/reheat/


3. Explore the whole consensus signature of heart failure: Results of individual

studies are provided as well as the consensus statistics. Raw results can be queried

and downloaded.

4. Functional Characterization of the heart failure consensus signature (HF-CS):

Query signaling pathway activities, transcription factor activities, biological

processes and miRNAs, that characterize the HF-CS.

5. Study overview:The heart failure consensus signature integrates results from 16

different studies. Relevant information are displayed:

a. Study overview with reference to individual studies

b. Comparison of sample size and availability of clinical information

c. Gender and age distribution

d. Comparison of Gene coverage

With these efforts I hoped to provide a useful resource for the cardiovascular research

community. For instance, our work was so far successfully used as a reference for TRPM

channel expression in HF 136, for ALAS1, SUCLG1/SUCLA2 expression 137 and as an

approach to filter for HF-relevant genes from independent in vitro experiments 138.

1.6 Discussion and Conclusion

In this study, I presented a comprehensive meta‐analysis of the HF transcriptome,

analyzing and comparing 16 data sets, and a total of 916 samples, which constitutes the

largest report of HF transcriptome to date. HF is a complex disorder on both the clinical

and genetic levels. As such, the published work in myocardial transcriptomics represents

a heterogeneous picture of transcriptional regulation in the heart with little agreement

on key regulated genes. In the studies included in this meta‐analysis, clinical

heterogeneity is compounded by wide variability in analysis pipeline, study design,

tissue protocol, and patient selection. Our work showed that despite these difficulties,

combining the insights of these studies provides an opportunity not only to robustly

evaluate their reproducibility, but also to gain a more complete picture of

transcriptional regulation 102.

The presented study combines gene expression data from microarray and sequencing

technologies. While the measurements of both technologies differ fundamentally, we
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demonstrated that similar biological profiles can be captured. We focused on comparing

and combining differential expression results across studies, as opposed to integrating

all samples in a single data set. This framework prioritized molecular differences

between phenotypes that are similar in independent patient cohorts and allowed us to

reuse and review a large patient cohort to create the HF‐CS 102.

Our results suggest that the magnitude of changes in mean expression of marker genes

depends highly on the study. We observed a 5% agreement of the top 500 differentially

expressed genes between studies. This disagreement cannot be explained by differences

in gene coverage or technologies, since the intersection of profiled genes in all studies is

≈70%. However, patterns of gene coexpression are stable and comparable among

cohorts, regardless of their sample size, technology, and variability, allowing for their

integration. Unexpectedly, studies with fewer than 10 patients were still able to

effectively capture similar patterns of gene deregulation as studies with >200 patients.

This highlights the importance of representative patient sampling, since it may

compensate for sample size. Moreover, we observed that consistent coexpression

patterns were shared among etiologies, suggesting that conserved disease mechanisms

converge in end‐stage HF 102.

Important limitations of our study relate to the data used. In this meta‐analysis, we

included only public data sets from published studies. Since most of the studies lack

complete descriptions of the individuals included in their cohorts, it is unfeasible to

estimate how much of the clinical and demographic diversity of patients with HF is

covered in our curation. As the necessity of studying HF in clinically ramified subgroups

is becoming evident 75 the impact of comorbidities, medication, and disease phenotype

on the gene transcription profile needs to be considered. To test how the reported gene

expression patterns associate with severity and progression, a deeper patient

characterization is required. With this work, we aimed to encourage the community in

the field to open the dialogue about secure data‐sharing standards and more inclusive

and transparent study designs 102. Although clinical information was very sparse, we

found little variation in gene expression to be associated with those variates that were

reported. The agreement of gene expression trends as well as the expected similarity of

HF patients regarding their late disease stage together indicate that a common end-stage

disease landscape exists. We observed that the gene expression changes in late stage HF

overshadow other possible patterns. Thus, besides the improvement of sample

annotations, novel strategies for acquiring cardiac samples are needed to estimate more

reliably possible etiology or subcohort specific characteristics of ventricular remodeling

to ultimately enable a more personalized treatment of hf patients. Possible avenues are
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the improvement of low-risk sample acquisition 139 and standardization of sample

sharing and annotation.

We built the user‐friendly free platform ReHeaT (Reference of the Heart Failure

Transcriptome; https://saezlab.shinyapps.io/reheat/) to facilitate further use of the

HF‐CS. We propose two ways in which the HF‐CS can be exploited. First, the genes, TF,

and pathways provide a rich resource for interpreting and understanding the

transcriptional landscape of HF. Second, the HF‐CS can be used as a trustworthy

reference of HF to assist in hypothesis building or confirmation 102. Below, we discuss in

detail both approaches.

First, I aimed at the biological interpretation of the HF-CS and I will briefly discuss

interesting findings. These functional insights, however, still require experimental

validation to confirm their relevance.

MME encodes for Neprilysin, a transmembrane zinc-metalloendopeptidase that, if

measured in blood, predicts an increased risk of recurrent cardiovascular admissions in

ambulatory patients with heart failure140 . More relevant, Neprilysin inhibitors (i.e drug

combinations of sacubitril/valsartan) are a rather new member of the physicians arsenal

of systolic heart failure treatment 141 . Neprilysin is involved in the degradation of A-type

natriuretic protein (encoded by NPPA), a relevant serum marker for HF diagnosis. The

meta ranking reports highly consistent MME (meta-rank: 88) and NPPA (meta-rank:

293) upregulation which encourages the search for novel therapeutic targets and

biomarkers of heart failure in the meta-ranking.

NANOG and SOX2 are key regulatory TFs that help to maintain pluripotency in stem

cells. Although functional myocardium is regenerated throughout a human lifetime 142,

cardiac progenitor cells probably are not the primary resource of cardiomyocyte

regeneration 143,144. The role of cardiac progenitor cells is still poorly understood, but the

footprints of NANOG and SOX2 could indicate that cardiac progenitor cells are kept in

a pluripotent state, forestalling cardiomyocyte differentiation. Cardiomyocytes

themselves are proposed to be able to regenerate themselves, an ability that decreases

with age 145. We detected activity of MEIS1 and MEIS2, which contribute to the curbing

of cardiomyocyte differentiation: Deletion of MEIS1 in mice or inhibition of MEIS2 in

rats resulted both in the re-activation of adult cardiomyocyte mitosis 128,129 . I therefore

propose that these mechanisms could be active in human failing hearts as well, as the

regenerative power of the myocardial syncytium is impaired.
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ARNT (HIF1b) interacts with hypoxia response elements by heterodimerization with

multiple TFs including HIF1a. The cardiac specific depletion of ARNT resulted in an

increased fatty acid oxidation leading to improved cardiac function in mice 128,129. The

reported ARNT activity in the meta-ranking could indicate that this mechanism might

be part of the pathological gene expression pattern in human heart failure and therefore

constitute a promising target of intervention.

We found footprints of MEF2A, MEF2C activities. All MEF2 family members are

expressed during cardiac development and have been described as part of the fetal

reprogramming in adult heart failure 128,146While it’s complete depletion in mice lead to

prenatal death, a later siRNA knock down approach in murine heart failure model

attenuated cardiac hypertrophy 128,146,147, illustrating its physiological role during

development and pathological role during adulthood. We confirm consistent MEF2

footprints in CHF.

The classifier built with the diseases score calculation was able to correctly discern fetal

heart samples from healthy adult heart samples in two different studies, indicating that

the genes that drive gene expression variation in adult CHF also vary in fetal hearts

compared to adult hearts, part of this pattern are the genes regulated by MEF2 TFs.

ZBTB7 is a proto-oncogene that is involved in a large variety of fundamental cellular

functions like proliferation, apoptosis, migration and metabolism 148. It exerts its action

by regulating DNA chromatin structure and recruiting many other TFs or initiating

their transcription 149). ZBTB7A has mainly been studied in the field of cancer, where it

was shown to act in tissue specific context either as tumor suppressor or activator. In this

study ZBTB7A yielded strong positive footprints. This TF has not been introduced to

the pathology of chronic heart failure yet, but, considering its immense complexity of

downstream effects, could be one of the master regulators that might be responsible for

a large share of the gene expression changes observed in failing hearts.

The JAK STAT pathway is activated by growth factors and cytokines and is an

imperative regulator of cardiac development and inflammation. The role of JAK-STAT

in CHF is ambivalently discussed, with evidence that JAK STAT is involved in

physiological as well as pathophysiological cardiac hypertrophy, ischemic pre and post

conditioning and cardiac fibrosis as reviewed previously 150,151 152. We report JAK STAT to

be a significantly activated pathway in the meta ranking of end stage human heart

failure. JAK STAT could therefore be a mechanistic feature common in end stage

human heart failure and could be part of the cardioprotective loop that is activated for
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compensational purpose but on the long run injures cardiac via induction of

pathophysiological cardiac hypertrophy and fibrosis.

Inflammation plays a fundamental role in the development of heart failure. TNFa levels

are elevated in heart failure patients in relation to decreasing functional status of the

patient. Clinical Trials targeting TNFa however failed to improve HF outcome 153,154. We

report a decreased signature of TNFa activation in failing myocardium compared to

healthy tissue, which is accompanied by decreased NfKB, RELA activity. This might

indicate that TNFa does not work directly on myocardial tissue in the failing heart

leading to the absence of TNFa signaling.

The extracellular purine metabolism regulates the balance between ATP and

Adenosine. The equilibrium is tightly regulated and impacts among others local

immune response, ischemic preconditioning, thrombosis and vascular calcification.

Further adenosine is believed, to be cardioprotective against HF via i) the attenuation of

catecholamine release, β-adrenoceptor–mediated myocardial hypercontraction, and

myocardial Ca2+ overload; ii) the increases in coronary blood flow; and iii) the

inhibition of platelet and leukocyte activation 155. In the meta ranking we find evidence

of changes in actors involved in purine metabolism. CD73 is known to be a crucial

regulator of extracellular Adenosine by catalyzing ADP to Adenosine

dephosphorylation. We found that CD73 encoding NT5E gene (rank: 125) is consistently

upregulated. Adenosine signaling is mediated by G-protein coupled receptors, which

are regulated by among others, RGS4 protein. RGS4 overexpression is known to be

found in hypertrophic hearts 156 and its induction in a mouse model lead to cardiac

decompensation following transverse aortic constriction 157. In our meta-analysis, RGS4

(rank: 240) is consistently upregulated and could mediate adenosine signaling in HF.

The role of purine metabolism during HF has hitherto been poorly addressed, but

could lead to impactful results in future investigations.

The second use case of the HF-CS is a proposed signature evaluation. In this part I

demonstrated the utility of the HF‐CS by integration with studies analyzing the fetal

transcriptome and the plasma proteome from patients with HF. The two biological use

cases of the signature matching, might be to find the commonality or divergence to the

HF-CS.

In the case of the fetal reprogramming, it might be tempting to distinguish between

those patterns in the HF-CS that relate to fetal program reactivation and which are
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novel programs. Detailed pathophysiology of this process is incompletely understood.

Our analysis provides a plethora of genes and TFs that might shape the fetal response in

HF. We detected established TFs like MEF2, but also identified a collection of less

explored TFs including SOX2, ZBTB7A, NANOG, and ONECUT1.

The plasma proteome of patients with HF is used to identify circulating biomarkers.

However, tracing the origin of measured candidates to the heart is o�en difficult. Here, I

used the HF-CS to detect commonalities by filtered circulating proteins. This approach

identified the established marker NPPA 158. Other identified markers include Wnt

modulators SFRP1 and FRZB; the latter has been associated with HF outcome before159.

We also identify CXCL12 to be of potential myocardial origin, which is associated with

stroke 160 and acute HF 161 HAPLN1, MATN2, and COL8A1 constitute extracellular matrix

components with, to date, an unknown role in HF. To suggest cardiac tissue specificity of

candidates, we assessed protein expression in cardiac tissue. As a result of this, we

propose CCDC80 as a promising HF biomarker candidate, which has been suggested to

be secreted by cardiomyocytes in response to pressure overload before 162,163. BID also

displayed reasonable cardiac tissue specificity but has not been studied in the context of

HF yet. Other genes with reported protein expression included MAP2K1, MRC2, JAK2,

and LTBP4. These candidates could represent biomarkers of pathophysiological

relevance and potential clinical utility 102.

We proposed that the utility of data integration with more independent studies is highly

promising. Especially with transcriptomic technologies developing toward single‐cell

and spatial resolution, this resource could help to confirm cell type–specific elements in

a large HF population. Additionally, etiology‐specific responses could be derived by

comparing differences of different cohorts with our proposed consensus signature. As

more data are released, the resource described in this work will be updated to be a

trustful reference of the transcriptome of HF 102.

In summary, I demonstrated the feasibility of combining gene expression data sets from

different technologies, years, and centers in a biologically meaningful way. I highlighted

the importance of data reviewing and contextualisation of individual studies with prior

knowledge and data. Further, I identified knowledge gaps in earlier stage HF patient

collective and HFpEF and provided suggestions for experimental follow up studies. As

the number of cardiovascular high‐throughput studies increases, the need for

structured data integration is evident. I provide a reference for this purpose that is

applicable to many other research topics within the cardiovascular field 102.
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Chapter II - Fibrosis in murine HFmodels

2.1 Background

HFpEF comprises a complex and multifactorial interplay of the disease promoting risk

factors, such as hypertension, obesity, metabolic syndrome, chronic inflammation, and

aging. Suitable animal models were missing until a few years ago 21,164, when a two-hit

mouse model combining a 60% high-fat diet with inhibition of the constitutive nitric

oxide synthase by Nω-nitro-l-arginine methyl ester (L-NAME) recapitulated metabolic

and hypertensive stress in HFpEF. Analysis of this model led to major mechanistic

insights in the pathophysiology of hypertrophy and cardiac immunometabolic

alterations in HFpEF21,165,166 and potential drug targets. Since these studies focused

predominantly on cardiomyocyte hypertrophy and metabolism7, little knowledge was

gathered about the distinct role of cardiac interstitial cells and their cross-talk in

ventricular stiffening and fibrosis7,165.

Single-cell RNA sequencing (scRNAseq) allows for the quantification of transcriptional

changes of individual cells and description of cell phenotype heterogeneity.

Consequently, scRNAseq opened the door for fundamental insights into cellular

heterogeneity, developmental biology and molecular disease processes in the

cardiovascular field 71,167,168. Thus, its application to a HFpEF model could shed light on

the cellular disease mechanisms but, to our knowledge, no such study exists.

Here I present a scRNAseq analysis of the ventricular interstitium in mice receiving

L-NAME and high fat diet (further called HFpEF model) in early stages of diastolic

dysfunction. I compare fibroblast phenotypes and disease signatures by integration with

scRNAseq data from other HF models that are phenotypically closer to HFrEF and

identify HFpEF specific patterns of fibroblast activation. I characterize HFpEF associated

fibrotic signatures and compare them with human bulk references, providing new

pathophysiologic hypotheses relevant for HFpEF fibrosis.

This chapter is part of a manuscript that is currently in revision in a peer review journal.

I wrote this manuscript together with Laura Wienecke. I conceived, implemented,

presented and discussed all the analysis performed in this chapter, if not stated

otherwise. Laura Wienecke performed all experiments in this chapter, with assistance
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by Maura M. Zylla, Niklas Hartmann and Florian Sicklinger. Julio Saez-Rodriguez and

Florian Leuschner supervised this project and provided minor edits to the manuscript.

2.2 Single cell RNAseq of the murine HFpEFmodel

2.2.1 Disease model description

To mimic and study HFpEF, we used the established two-hit mouse model that induces

metabolic and hypertensive stress by 60% high-fat diet and L-NAME, respectively21.

From 7 weeks of dietary intervention onwards, a diastolic dysfunction phenotype was

observed echocardiographically under preservation of systolic le� ventricular function

(Figure 2.1A). Body and heart weight, normalized to tibia length, increased concordantly

indicating obesity and cardiac hypertrophy (Figure 2.1A). To describe this early

remodeling, we isolated cardiac interstitial cells a�er 7 weeks by MACS dead cell

depletion and FACS sorting of live and metabolically active cells (Figure 2.1B). We

performed scRNAseq with the 10x Chromium droplet based platform to analyze

cellular transcriptomic changes within cardiac ventricular interstitial cells of two control

and two HFpEF murine hearts.

2.2.2 Data processing and quality control

The resulting single-cell RNA-seq FASTQ files were processed using CellRanger

provided by 10x genomics with the help of Volker Ast from the core facility of the

Mannheim University. I then processed the scRNAseq count data in sample wise

manner with the following filters: >300 Feature numbers, <25% mitochondrial genes, <1%

ribosomal genes and >500 RNA counts. Doublet scores were calculated with the

R-package scDblFinder169 and only predicted singlets were kept. I further calculated a

dissociation score by estimating expression of dissociation associated gene expression170

with Seurat’s 171 AddModuleScore function and I removed cells above the 99% quantile.

Data was log-normalized. Samples were clustered individually by selecting the 3,000

highest variable genes with the FindVariableFeatures function from the Seurat package.

From the intersection of these lists, the top 3,000 genes were selected to calculate

principal components (PCs). Top 30 PC embeddings were adjusted with harmony

R-package, with samples as covariates.

To identify the main celltypes captured, I applied the nearest neighbor approach and

graph based clustering (i.e. Louvain algorithm) implemented in Seurat to cluster cells
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and to stepwise test optimal cluster resolution (from 0.1 to 1.6 in 0.1 steps) by computing

silhouette widths. This identified initially 14 distinct clusters. I removed four clusters

that were inconclusive for different reasons, i.e. high expression of mitochondrial genes,

expression of multiple cell type markers, and/or consistently low RNA and Feature

counts. A�er removal the integration process was repeated and a final atlas was created

and I retained expression profiles of 6,132 cells described by 15,046 genes (mean UMI

coverage per cell: 2,838).

Next, I annotated celltype clusters by calculating and interpreting cluster markers. I

calculated these with the FindMarkers function with default parameters (i.e. wilcoxon

test) in Seurat and cell types were manually annotated based on known canonical

markers. The ten clusters represented major cell types of the murine heart. I identified

two fibroblast clusters (Col1a1+ and Wif1+), endothelial cells (EC) (Pecam1+), natural killer

cells (Gzma+), macrophages (CD68+), T-effector cells (CD8+) and T-helper cells (CD4+),

B-cells (CD19+), granulocytes (S100a9+), smooth muscle cells and pericytes (Acta2+)

(Figure 2.1D).
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Figure 2.1. Study model and cell type assignment.
A) Murine HFpEF model characterization by ratio of heart weight to tibia length (HW/TL) and

echocardiographic hallmarks (E/E’, global-longitudinal strain and LVEF), purple data points represent
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the animals used for single-cell RNA sequencing (scRNAseq). Statistical analysis performed by

one-way ANOVA, bar graphs indicate mean±SD, *p<0.05, **p<0.01, ***p<0.001. ns= not significant,

LVEF= left ventricular ejection fraction, w= weeks. B) Schematic summary of experimental setup for

scRNAseq experiments using mice after 7 weeks of HFpEF or control diet. C) UMAP embeddings of

normalized scRNAseq data after processing and filtering. D) Marker gene expression for cell type

assignment. E) Cell type composition of main cell types as mean percentage per group (n=2 per

group), compared between HFpEF and control mice. *p<0.05, p-values were calculated via label

permutation. F) Cosine distance ratios of pseudobulked cell type profiles. Median between group

distance is divided by median within group distance. G) Representative Picrosirius-Red stainings of

fibrotic fibers and perivascular fibrosis (red) from control and different stages of HFpEF heart sections.

Imaging performed in 594 nm (Picrosirius-Red) and 488 nm (cardiomyocyte autofluorescence)

channels. Scale bars in the right bottom corner indicate 100μm length. Panels A,B,G were generated

by Laura Wienecke.

2.2.3 Cell type composition and molecular profiles suggest

fibroblast and macrophage involvement in cardiac remodeling

Next, I addressed whether the remodeling that we observed on phenotype level was

associated with compositional changes. Since our study design was limited to a two by

two comparison, I could not perform statistical tests on sample level. I thus evaluated

the significance of compositional changes via label permutation.

I tested if cell type composition changes between groups are meaningful by

implementing a permutation approach to estimate a null distribution. For each

individual cell, I considered the sample it came from and the cell type label it was

assigned. From this table, I created 1000 permutations of the sample label. For each

permutation run I calculated the cell proportions for each sample and calculated the

mean proportion per cell per group (ct, hf), from which the difference in cell proportion

was calculated as test statistic. By calculating the proportion per sample and not per

group, I kept unequal cell numbers in samples. The resulting 1000 random cell

proportion differences were an estimate for a null distribution. All distributions passed

the Shapiro-Wilk test for normality (p > 0.05). I calculated the area under the normal

curve from the mean and standard deviation of the null distribution to estimate the

probability of observing the actual measured proportional difference. This composition

analysis yielded a modest but significant increase of fibroblasts and macrophages and

decrease of B-cells and endothelial cells (Figure 2.1E).

As cell type compositions are not independent and therefore only partially informative

of the importance of a cell type for remodeling, I addressed which cell types displayed

variation in their molecular profiles. For this I computed cosine distances between

pseudobulk profiles per cell type to assess whether the variation of gene expression
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between experimental groups was higher than the variability expected within a single

group54. First, highly variable features were calculated per cell type with FindVarFeature

function from Seurat and the top 3000 features were selected for distance calculation.

For each cell type and sample, pseudobulk profiles were TMM normalized and voom

transformed with the edgeR and voom R-package and cosine similarities were calculated.

I calculated median sample distances within groups and between groups to assess the

distance ratio. Cell types with distance ratio below 1 show higher sample distances

between groups than within groups and are candidates for differential gene expression

analysis. I found that macrophages displayed the highest ratio of ‘between to within

group distance’ followed by SMC and fibroblasts. ECs and B-cells did not display high

disease associated variability, suggesting that their relative decrease in proportion is not

associated with fundamental gene expression changes or high within group variation. I

further applied Augur, a classifier-based cell type prioritization method172, to identify

distinguishable cell types. This yielded the highest performance for macrophages and

endothelial cells, followed by fibroblasts (data not shown). L-NAME treatment directly

targets ECs, expected to induce direct transcriptional changes, possibly also leading to

EC depletion.

Taken togther, the positive compositional change and the molecular differences suggest

that fibroblasts and macrophages are important contributors to the early HFpEF

associated remodeling and phenotype. HFpEF is known to be accompanied by

interstitial fibrosis14 which we confirmed histologically in myocardial tissue at various

time points in the HFpEF model (Figure 2.1G). While fibrosis at 7 weeks can be

described as an early state, collagen deposition and ECM remodeling is present thus, the

underlying fibroblast phenotype is of high interest to better understand HFpEF-related

cardiac fibrosis

2.3 Atlas of fibroblast activation in murine heart failure

Cardiac fibroblasts accomplish a wide range of biological functions, crucial for tissue

homeostasis and architecture173. In various types of heart failure, cardiac fibrosis

represents a major axis of reparative and adverse remodeling. The activation of

fibroblasts has o�en been described as a process involving TGFbeta and myofibroblasts

transdifferentiation and knowledge about etiology specific activation patterns is missing.

A�er establishing that fibroblasts are involved in early HFpEF remodeling on phenotype

and molecular level, I contextualized and compared HFpEF fibroblast activation across
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four murine HF models, i.e. early myocardial infarction (MI), late MI, Angiotensin II

(AngII) and HFpEF.

In this section, I describe how I integrated fibroblast data sets (section 2.3.1) to

comprehensively define major common phenotypes in health and disease (section

2.3.2). Next, I derived and compared fibroblast gene expression signatures from each HF

etiology (section 2.3.3). Finally, I addressed the division of labor between fibroblast states

and described gene expression patterns regarding fibroblast activation involving

fibroblast phenotypes (section 2.3.4).

2.3.1 Study integration of cardiac fibroblasts

I compared HFpEF fibroblast activation with other cardiac fibrotic disease etiologies by

integrating our single-cell data with two other single-cell studies: firstly, a model for

cardiac hypertrophy by hypertensive stress induced by two weeks of angiotensin II

(AngII) administration174 and secondly, an acute myocardial infarction model168. Both

models were used to study heart failure and included a replacement or reactive or

reparative fibrosis (Figure 2.3A).

My analysis strategy for the atlas integration was to reprocess each study with the same

computational pipeline, identify fibroblasts via clustering and annotation of cluster

markers and then integrate the annotated fibroblasts from all studies. More specifically,

the raw FASTQ files for the two additional 10x Genomics scRNAseq datasets were

processed with the same cell ranger pipeline as described above. Sample integration was

performed via canonical correlation analysis as implemented in Seurat. Unsupervised

clustering and cluster marker assessment was used to identify fibroblasts in each study

by selecting Col1a1+, Pdgfra+ and Gsn+ cells (Figure 2.2A-C and D-E) which were subset

to perform study integration.
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Figure 2.2 Fibroblast annotation in AngII and MI model.
AngII model (A-C) and MI model (D-E). A, D) UMAP embedding of full cell atlas after processing,

filtering and clustering. B+C) Expression of fibroblast marker genes (Gsn, Col1a1, Pdfgra) in the AngII

model per cluster. Cluster 0 and 8 were subset for downstream analysis. E+F) Expression of fibroblast

marker genes (Gsn, Col1a1, Pdfgra) in the MI model per cluster. Cluster 0, 5 and 6 were subset for
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downstream analysis.

Then, I integrated fibroblast cell data from three datasets via calculating highly variable

features in each data set, using 3000 overlapping features of all datasets. I used Harmony

with study and sample ID as covariates for data set integration. Downstream analysis

was performed as described above. To evaluate integration performance I ensured that

each study contributed cells to each cluster. In addition, to quantify batch effects from

different studies, samples and experimental groups, I calculated a batch mixing score

based on average silhouette width51. A score of 1 represents a balanced integration while

0 represents strong batch effect conservation. The Integrated fibroblasts atlas yielded a

batch mixing score of ~0.99 for study labels, ~1 for group labels and ~0.97 for sample

labels.

This analysis resulted in an integrated atlas of 26,455 cardiac fibroblasts, capturing a

wide spectrum of phenotype diversity across HF models.
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Figure 2.3 Integrated atlas of cardiac fibroblast phenotypes from different disease
models.
A) Schematic of murine HFpEF and HFrEF (AngII and MI) fibroblast studies. B+C) UMAP

embeddings of integrated fibroblasts, colored by disease (HF, Heart Failure) vs. control (B) and study

(C). D) Overview of top cluster marker expression of integrated fibroblast states (IFS). E) UMAP

embeddings of fibroblasts colored by cluster with annotations derived from functional interpretation of

cluster markers. F) Estimated pathway activities with PROGENy based on cell state marker gene

expression (x-axis). G) Gene set enrichment of extracellular matrix gene sets in cell state markers.

Hypergeometric test with BH correction, *q <0.05, **q<0.01, ***q<0.001). AngII= angiotensin II, HF=
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heart failure, MI= myocardial infarction.

The integrated analysis of the three data sets allowed now for the joint annotation of

fibroblast phenotypes or o�en called cell states. Previous work has reported cardiac

fibroblast phenotype diversity at the single-cell level in healthy and diseased hearts
168,174–178, but a consensus of main cell states is missing.

I identified eight integrated fibroblast cell states (IFS) by performing unsupervised

clustering as described before while every study contributed to all cell states (Figure

2.4A). In this section I aimed to characterize these IFS by suggesting their functional

niche based on their molecular profiles.

First, I calculated IFS marker genes (Figure 2.3D, Figure 2.4B) and compared them with

a cross organ fibroblast atlas177 (Figure 2.4C). This atlas can be regarded as a fibroblast

reference to jointly define fibroblast phenotypes from different organs. Thus, by

comparing this atlas, I could suggest which of the IFS could constitute cardiac specific

fibroblasts. I found that IFS 0 (Col15a1+), 3 ( Comp+) and 4 (Pi16+) displayed high marker

overlap (hypergeometric test p<0.01) which suggest that these states might represent

fibroblast phenotypes shared across organs. Conversely IFS 1, 2, 5, 6 and 7 displayed

weaker and/or ambiguous associations and could represent cardiac specific fibroblast

phenotypes.
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Figure 2.4 Functional characterization of Integrated fibroblast states (IFS).
A) Composition of cell states per study in percent. B) Cell state marker expression in the fibroblast

atlas. C) Comparison of top 100 IFS marker with top 100 marker from cross organ fibroblast atlas.

Hypergeometric test with Benjamini Hochberg correction. ***p<0.001, **p<0.01, *p<0.05. D) Mean

sample composition of IFS by study and by group.

Next, to characterize IFS roles, I performed pathway activity (Figure 2.3F) and gene set

enrichment analysis (Figure 2.3G). IFS 0 fibroblasts were the most abundant cell type in

every dataset (Figure 2.4D) and have been described as homeostatic fibroblasts

characterized by Col15a1, Dpep1 expression. IFS 4 fibroblasts are characterized by Pi16

expression and constituted adventitial stromal cells that might accomplish a reservoir

function for downstream fibroblast differentiation 177,179. The IFS 3 can be termed

matrifibrocytes and are characterized by Cilp, Thbs4, Comp and Postn expression 174,178.

Pathway analysis indicated that IFS 3 demonstrated highest TGFβ activity (Figure 2.3F),
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which highlights the pro-fibrotic potential of this cell state. ECM remodeling is a major

operation of fibroblasts and was assessed by enrichment of ECM related gene sets180

(Figure 2.3G), suggesting that IFS 0 and IFS 3 fibroblasts were the main ECM producers:

both were characterized by expression of collagens (e.g. Col5a3, Col6a3) and core

matrisome related genes (e.g. Ltbp2, Col8a1, Cilp), while IFS 0 uniquely expressed genes

associated with the basement membrane (e.g. Col4a1, Lamb1, Hspg2, Col15a1).

I identified three IFS with inflammatory profiles: IFS 2, IFS 6 and IFS 7. IFS 2 appeared

to be a heterogenous group of fibroblasts that were partly characterized by Acta2 and

Actb expression which are myofibroblast characteristics, as well as pro inflammatory

genes involved in antigen processing and representation (Psmd8, Psma6, Vamp8) and

Chaperonin containing T-complex polypeptide (CCT) genes (CCT3, CCT7, CCT4,

CCT8) that have been associated with proliferative and fibrotic tissue remodeling 181–183.

Furthermore IFS 2 exhibited highest PI3K pathway activity which has been shown to

enable fibroblast migration184,185. IFS 6 fibroblasts were characterized by

pro-inflammatory NFκB and TNFα signaling (Figure 2.3F) and cytokine expression of

Ccl2, Cxcl5 suggesting that IFS 6 participated in immune cell attraction. IFS7 cells

formed a small cluster that every study contributed to with a comparatively small

number of cells and was characterized by JAK-STAT activity and interferon-γ related

gene expressions (Ifit3, Isg15). JAK-STAT pathway has been linked to fibroblast activity in

rheumatoid arthritis 186,187 and osteoporosis 188 but its function in cardiac fibroblast is

unclear.

IFS 5 was characterized by Wif1 and Dkk3 expression. In the heart, Wif1+ cells were

shown to localize to the cardiac valves and their adjacent hinge regions 189. IFS 1 was

characterized by a secretory gene expression pattern including insulin like growth

factor1 (Igf1) and fibrinogen-like protein 2 (Fgl2) which control cardiomyocyte growth
190,191, Insulin like growth factor binding proteins (Ig�p3, Ig�p4) which are age related

factors192 that can modulate Igf function, and a set of Glycoproteins like Fibulin-1

(Fbln1), extracellular matrix protein 1 (Ecm1), Matrix-gla protein (Mgp).

In summary, the phenotype atlas of murine cardiac fibroblasts could be described as

inflammatory states IFS 2 (PI3K activity), IFS 6 (TNFa activity), IFS 7 ( JAK-STAT

activity); ECM producing states IFS 0 (basement membrane), IFS3 (collagens); stromal

fibroblasts IFS4, structural valve fibroblast IFS5 (Wif1) and secretory fibroblasts IFS1

(Growth factors and Glycoproteins) (Figure. 2.3E).
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2.3.2 Comparison of fibroblast signatures between murine HF

models

To functionally compare fibroblast activation between study models, I performed

differential gene expression analysis by comparing disease to control fibroblasts for each

study independently to avoid cross batch comparisons. Since the MI study included

multiple timepoints, I separated the samples by calculating a signature of early (days 3, 5

and 7) and later remodeling (days 14 and 28).

Similar to compositional analysis, the limited study design prevented a pseudobulked

differential expression analysis due to difficulties in estimating dispersion at sample

level. Thus I chose a cell-level differential expression analysis approach. To control for

different absolute numbers of cells per sample, I subsampled the total number of cells to

the lowest cell number in a sample. For these cells I calculated differentially expressed

genes with the Wilcoxon test implemented in Seurat’s FindMarker function. To

ameliorate sampling effects I repeated this subsampling process 5 times, and reported

the gene intersection of genes with Benjamini Hochberg corrected p-value <0.05 and

absolute log2FC >0.1. This approach was applied to every study independently.

The signatures contained different intersections between studies (Figure 2.5A),

containing a small core set of upregulated (Timp1, Col1a1, Loxl1 and Sparc) and

downregulated genes, common to all disease models. When quantifying the

intersections, I found little overlap in general, except for AngII and late MI signatures

(Figure 2.5B). As discussed in chapter I of this thesis, the agreement on sets of DEGs can

depend on technical factors and obfuscate transcriptional similarity. Hence, I compared

the direction of regulation by correlating fold change regulation of the disease

signatures between studies (Figure 2.5C). Interestingly, the HFpEF signature did not

correlate with AngII while displaying weak agreements with early and late MI. Again,

the strongest correlation was found between AngII and late MI fibroblasts.

In HFpEF fibroblasts I detected 74 upregulated genes that included fibrosis related genes

such as Col1a1, Col1a2, Col4a1 and genes involved in metabolism such as Angptl4, Slit3,

Pcolce, and Ace (Figure 2.5D). Col4a1 is an important component of the basement

membrane and its accumulation over time in the HFpEF model was confirmed

immunohistologically and indicated a Col4a1 pattern of interstitial sheathing of cardiac

cells (Figure 2.5E). Angiopoietin-like 4 (Angptl4) is a lipoprotein lipase inhibitor that was

not expressed in control fibroblasts, but was induced in HFpEF.
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For further characterization of the signatures, I enriched annotated gene sets from the

MSIG DB database. Fibrosis signatures across models contained major ECM related

gene sets (Figure 2.5F). The HFpEF signature was uniquely characterized by heat shock

factors, crosslinking of collagens, basement membrane and laminin components, and

thrombospondin-type-1-repeat (TSR) glycosylations, but contained less components

related to elastic fibers than AngII and MI (Figure 2.5G). Next, I used log fold change

regulation of target genes to infer upstream transcription factor (TF) activities (Figure

2.5H). Hsf1, Ppara and Pparg are suggested to be relevant TFs in the HFpEF model.

Notably, Pparα and Pparg positively regulate Angptl4 and other genes related to

metabolic remodeling and adipogenesis, Interestingly all models displayed high Smad3

activity, possibly linking this TF to cardiac fibrosis. Hif1α displayed activity in HFpEF

and early MI. When comparing pathway activities (Figure 2.5I), TGFβ showed strong

activation in the AngII and late MI model while in early MI fibroblasts,

proinflammatory TNFα and NFκB as well as hypoxia pathways are active. In HFpEF,

none of the tested pathways was highly activated, however, displaying only modest

activity of TGFβ and TNFα.
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Figure 2.5 Comparison and interpretation of study specific fibroblast disease
signatures.

A) Comparing intersection of upregulated (heart failure vs control) genes between studies (Venn

diagram) and B) intersection quantification via jaccard index. C) Comparison of direction of regulation

between studies. Pearson correlation was calculated between log2FC vectors of signature genes in
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pairwise comparisons. **p<0.01. D) upregulated genes E) Immunofluorescence images of collagen IV

(red) and DAPI (blue) staining of left ventricular heart sections. Lower panels show magnifications of

the areas marked by white boxes. White arrows indicate capillaries or larger blood vessels. Scale bars

in the right bottom corner indicate 50μm length. F+G) Heatmap of geneset overrepresentation in study

specific fibroblast disease signatures. F) Common genesets between signatures, G) selected gene

sets to highlight HFpEF signature characteristics. Each heatmap represents a group of similar

genesets. q-value = Benjamini Hochberg corrected p-value from hypergeometric test, *q <0.01,

**q<0.001, ***q<0.0001 H) Estimated TF activities with DoRothEA based on effect size (avg log2 fold

change) of target genes within each study. I) Estimated pathway activities with PROGENy based on

effect size of footprint genes compared between studies. Panel E was generated by Laura Wienecke.

2.3.3 Connecting fibroblast signatures with phenotypes

In the previous sections I defined and characterized IFS across mice models, and

interpreted study specific disease signatures. To link both aspects, I asked how

fibroblasts from different IFS partake in fibroblast activation, and, importantly, if there

are different activation patterns between studies.

I conceptualized different patterns of disease signature upregulation in regard to IFS

(Figure 2.6A). First, I distinguished between a composition and a transcriptional shi�.

The former describes a rather stable expression within an IFS but is accompanied by an

compositional increase of that IFS. Thus the quantification of this gene would suggest an

upregulation. On the other hand, transcriptional shi�s constitute an upregulation

without compositional increase. Here, I proposed to distinguish between an

upregulation emphasized within an IFS (state dependent) or within many or all IFS

(state independent). These terms were used to describe gene expression patterns in

fibroblasts, however, it was expected that these categories were not exclusive.

To investigate possible compositional shi�s, I calculated IFS composition changes

between control and diseased mice per study (Figure 2.6B). In HFpEF, composition

changes are faint and only IFS 0 and 6 expanded slightly, while in early MI the highest

compositional dynamics were observed with expansion of IFS 2, 3, 5 and 6. Late MI

remodeling displayed more similar characteristics to the AngII model with increase of

IFS 3 and 2. To demonstrate that these compositional shi�s impacted the disease

signatures I mapped the disease signatures to IFS state markers (Figure 2.6C). I found

that IFS 0 shared markers with the HFpEF signature while IFS 3 with AngII, late and

early MI signatures, IFS 2 and 6 with early MI signature only. This suggested that a

compositional shi� was apparent in all mouse models, however, different emphases of

IFS between HF models was evident. Interestingly no other model shared the

73



importance of IFS 0 with HFpEF, which could possibly be an important and unique

feature of metabolic cardiac fibrosis.

To investigate possible transcriptional shi�s, I addressed whether fibroblasts from IFS

that did not share disease signature genes or increase in composition nevertheless

contributed to the remodeling. I calculated gene set scores for the different disease

signatures for all fibroblasts and quantified via AUROCs how well cells within the same

IFS could be distinguished regarding their control and disease label (Figure 2.6D). In

general, all AUROCs were higher than 0.5. This indicated that the signatures were

increasingly expressed across IFS and thus a characteristic of a transcriptional shi� was

apparent in every study model. However, the highest median AUROCs were achieved in

the MI (early and late) models while HFpEF and ANGII models displayed a less

pronounced transcriptional shi�. This might be explained by the acuteness and

intensity of tissue stress a�er MI as opposed to the chronic stimuli of AngII

administration and HFpEF diet. In addition, a different IFS responsiveness could be

observed: While in HFpEF IFS 7, 0 and 4 display highest AUROCs, the highest

transcriptional shi� in the other models could be found consistently in IFS 3 and 7

(Figure 2.6D). Furthermore, IFS 5 fibroblasts were the least responsive IFS in all study

models and thus probably less relevant for disease related remodeling and could fulfill

rather homeostatic function.

I concluded that those IFS that displayed i) state marker overlap and ii) compositional

increase and iii) displayed a high within-state-transcriptional shi�, represent the crucial

fibroblast phenotypes in each study. Those states were IFS 0 in HFpEF, IFS 2, 3 and 6 in

early MI and IFS 3 in late MI and AngII. However, besides this prioritization, all IFS

partook in the cardiac remodeling and displayed transcriptional shi�s.
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Figure 2.6 Transcriptional shifts in cardiac fibroblasts.
A) Schematic of different expression patterns in regard to cell states that could yield an upregulation

of a disease signature. Compositional shifts by expanding cell number are distinguished from

transcriptional shifts via uniform (state independent) or non-uniform (state dependent) upregulation of

disease signatures. B) Composition change of IFS between control and heart failure group per study.

P-values calculated via label permutation. *p < 0.05, **p < 0.01. C) Hypergeometric test of disease

specific fibroblast signatures (x-axis) and top 100 IFS marker (y-axis), *p < 0.05 D) Gene set scores of

study specific signatures (x-axis) were used to calculate the area under the receiver operator curve

(AUROC, y-axis) between control and diseased cells within every fibroblast cell state (color). E)
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HFpEF signature expression in regard to integrated fibroblast states. Explained variance (eta² values)

of gene-wise ANOVAs (gene ~ cell state): Variance in single cell gene expression as explained by

fibroblast state categories. Violin plots display normalized expression values of three genes with

lowest ( lower panel) and highest (upper panel) variance explained by cell state. F) Explained

variance (eta² values) by cell state on x-axis and explained variance by disease class (gene ~ disease

class) on y-axis. Violett dots are part of the disease signature. G) Quantification of differences in state

dependent regulation of disease signatures across heart failure models. The ratio of the explained

variance by cell state and disease class was calculated for each HF model and its disease signature.

Wilcoxon test p-values are shown. H) The ratio of explained variance by state and disease class

compared for collagens I and IV.

A�er establishing commonalities and differences regarding transcriptional and

compositional shi�s in the HF models, I next aimed to decompose disease signatures

regarding their state dependency. This could help to elucidate for a given gene whether

it is expressed in state dependent or state independent manner (see Figure 2.6A).

Biologically, this might characterize gene programs that represent IFS related functions

and those that are general cell responses. To quantify this dependency, I fit ANOVA

models for each gene of the disease signatures, by modeling their expression value by

IFS category and calculated the explained variance (eta² values) of those models (Figure

2.6E). In HFpEF, I found that genes related to the basement membrane (Lamc1, Lamb1,

Col4a1, Nid1) were expressed rather state dependent, while metabolism associated

(Angptl4, Ech1, Man2a, Acaa2) and fibrosis associated genes (Col1a1, Col1a2, Timp1,

Mmp1) were rather state independently expressed.

To compare these state dependent expression patterns between studies, I now calculated

eta² values from ANOVAs for state and group labels for all studies separately (Figure

2.6F). Known state markers like DKK3 (IFS 5) or Pi16 (IFS4) displayed high state

dependency and low group dependency in all studies, serving as examples of genes that

were state markers but without disease involvement. POSTN displayed high group and

state related variability in all models except HFpEF, and thus represented a state marker

with high disease association, further highlighting the important role of IFS3 in

non-HFpEF fibrosis. I calculated the ratio of variance explained by state and group to

compare state dependent expression between studies (Figure 2.6G). The two chronic

models (HFpEF & AngII) again displayed a more state-dependent transcriptional shi�

compared to the MI (late & early) fibroblasts (Wilcoxon test, p < e10).
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To compare fibroblast activation for single genes of interest I selected the basement

membrane related Col4a1 and Col4a2 which displayed high state dependent expression

in all models (Figure 2.6H). Interestingly, main collagens of the ECM (Col1a1, Col1a2)

were expressed state-dependently in AngII and MI (early & late) models but were state

independently expressed in HFpEF (Figure 2.6G). This could indicate that fibrosis due to

collagen I deposition in HFpEF might not be related to state composition shi� (such as

differentiation to IFS3) but remained a global fibroblast task.

Figure 2.7 Single gene expression pattern across IFS.
A) Quantification of IFS separability with AUROC based on expression of Col1a1, Col1a2, Col4a1,

Col4a2, Postn and Angtpl4 compared between models. B) Assessing possible background

expression. Fibroblast signatures (y-axis) are used to test separability within the HFpEF data set of

other cell types by calculating AUROCs.

Lastly, I assessed whether some of the discussed key genes that were state-dependently

expressed were also part of a transcriptional shi�, by calculating AUROCs for within

state regulation of single genes (Figure 2.7A). I found that Col1a1 and Col1a2 were in all

models part of a transcriptional shi�, showing highest upregulation within IFS3 in non

HFpEF models. Col4a1 and Col4a2, although state dependent expressed in all models,

displayed a high transcriptional shi� in most IFS in HFpEF. This further elucidated that

genes that were expressed in a division of labor between fibroblasts (such as collagen IV

in IFS 0 or collagen I in IFS 3) were also upregulated by other IFS in the respective

disease context. In addition, Angptl4 displayed low state dependent variance and a high
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transcriptional shi� in all IFS in HFpEF, possibly rendering it a key candidate for

general metabolic fibroblast stress.

Differential gene expression analysis could be confounded by background gene

expression that could be associated with increased cell dissociation in diseasesed tissue

affecting contrast comparison. To ensure that the discussed disease signatures were not

confounded by background expression, I tested whether other cell types in our single

cell data could be separated on the basis of these genes (Figure 2.7B). Indeed, low

AUROCs were found for all cell types except SMC/Pericytes which were very few cells

and thus I interpreted this as a possible noise signal. Furthermore, the discussed low

correlation and overlap of signatures between HFpEF and other HF signatures (section

2.3.2) was again demonstrated here by showing that other disease signatures failed to

separate HFpEF fibroblasts from control.

In conclusion, I described fibroblast activation as a mixture of compositional and

transcriptional shi�s in all HF models. However, in the MI models, acute tissue

remodeling was associated with a stronger transcriptional shi� than in chronic

remodeling induced via AngII or L-NAME/HFD. The compositional shi� lead to a

prioritization of IFS and their functional niche. The prioritized IFS upregulated their

state markers in the disease setting (See POSTN in Figure 2.7). However, cells from

non-prioritized IFS too upregulated those patterns, but to a lesser extent (see collagen

IV in Figure 2.7). I found that some genes were state-dependently or independently

expressed. I decomposed the HFpEF signature by extracting genes which were part of a

general fibroblast response including metabolic genes and protein stress genes.

Furthermore, the division of labor for crucial collagen I synthesis was shi�ed from a

general fibroblast task in HFpEF to an IFS task in the other models which was possibly

associated with the extent of observed fibrosis in tissue staining.

2.4 Corroborating fibroblast signatures in human data

2.4.1 Fibroblast signature detection in human HF

I have identified key disease related gene programs in the murine HFpEF fibroblasts,

and associated IFS 0 as the most responsive fibroblast state in HFpEF. To investigate

whether these patterns constituted a detectable disease signal in human heart failure, I

curated myocardial bulk transcriptomic signatures acquired from HFrEF and HFpEF
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patients. For HFrEF, I relied on the HF-CS that I derived in chapter I. For HFpEF there

were very few public data sets available which represents a major challenge in HFpEF

research. I re-analyzed 5 patients that underwent coronary artery bypass gra� surgery

and met the echocardiographic and diagnostic criteria of HFpEF193. I selected top

upregulated genes from both bulk resources and performed overrepresentation analysis

with the fibroblast disease signatures (Figure 2.8A, le� panel). The murine AngII and late

MI signatures displayed a highly significant overlap with the human HFrEF bulk

reference, while murine HFpEF signatures were moderately enriched in the human

HFpEF bulk reference. Next, I addressed whether this overlap of disease signals between

mouse and human could also be recovered for IFS markers (Figure 2.8A, right panel). I

found the most significant overlap of IFS 3 with human HFrEF and of IFS 0 with human

HFpEF. This suggested that the presented fibroblast signatures from AngII, MI and

HFpEF models are partially conserved across species (mouse to human) as well as across

data modalities (single-cell to bulk RNAseq).
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Figure 2.8 Corroborating findings in human data.
A) Corroboration of murine fibroblast signatures in human myocardial samples. Human HFpEF and

HFrEF studies were curated and top differentially upregulated genes were selected (y-axis). Gene set

intersection with fibroblast disease signatures from different study models (left-panel) or fibroblast

state marker (right panel) (Hypergeometric test). AngII= angiotensin II model, HFpEF= heart failure

with preserved ejection fraction, MI= myocardial infarction. q-value = Benjamini Hochberg corrected

p-value, *q <0.05, **q<0.01, ***<0.001. B) Angptl4 normalized gene expression among different

cardiac interstitial cell types derived from the scRNAseq data showing control (left columns) and

HFpEF (right columns) samples separately per cell type. C) Immunohistochemistry DAB stainings of

Angptl4 in control, HFpEF 10 week-diet hearts and of the fibrotic zone 28 days after myocardial

infarction (MI). D) Circulating levels of ANGPTL4 in human plasma samples of HFpEF and age

matched controls measured by sandwich ELISA. n=19/20, Mann-Whitney U test, *p<0.05. E)
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ANGPTL4 plasma levels in relation to the NYHA functional class of all recruited patients. ANOVA,

p-value <0.05, n= 10/21/3 in baseline and n= 11/18/5 in 12 months (12M) follow-up. F) Subanalysis in

the HFpEF patient collective. Correlating clinical parameters to ANGPTL4 circulating levels in HFpEF

patients (n Strain = 15, n SVES = 19, n TAPSE =16) with simple linear regression. Strain= global

longitudinal strain, SVES= supraventricular extrasystoles, TAPSE=tricuspid annular plane systolic

excursion. Plots in C,D, E display mean±SD. Panels C, D and E were generated by Laura Wienecke.

2.4.2 Angptl4 as a possible biomarker for HFpEF

Angptl4 is functionally linked to inflammation, metabolism and fibrosis. Angptl4 was

induced with the highest fold change regulation in HFpEF fibroblasts and is regulated

by PPARa and PPARy transcription factors, which were both predicted in HFpEF

fibroblasts. Furthermore, I identified Angptl4 as a gene expressed as part of a state

independent transcriptional shi� in HFpEF fibroblasts. When compared to other cell

types in our data set, only ECs displayed moderate Angptl4 expression (Figure 2.8B). To

confirm Angptl4 accumulation in cardiac tissue, we confirmed its protein expression in

the murine HFpEF model (Figure 2.8C) and compared it to late remodeling a�er MI, as

a proxy for cardiac remodeling in HFrEF, where no significant Angptl4 levels were

found (data not shown).

Thus, we hypothesized that Angptl4 might be a promising candidate to be involved in

HFpEF pathophysiology and evaluated whether Angptl4 could serve as a biomarker

detectable in human plasma. We analyzed circulating levels of Angptl4 in 20 plasma

samples of HFpEF and 20 non-HFpEF (control) patients. All patients were diagnosed for

symptomatic atrial fibrillation and screened for HFpEF by echocardiography, stress

echocardiography, NT-proBNP, and HFA-PEFF-score194. Plasma samples were analyzed

by ELISA, which revealed significantly higher circulating Angptl4 levels in HFpEF

(Figure 2.8D). Angptl4 levels increased significantly in higher NYHA stages in all patients

(Figure 2.8E). A subanalysis in HFpEF patients revealed that high ANGPTL4 levels

correlated positively to global-longitudinal strain and TAPSE as markers of le� and

right ventricular function in HFpEF patients (Figure 2.8F). In addition, counts of

supraventricular extrasystoles in holter ECGs at 6- and 12- (p=0.014, r=0.618) months

follow-up were related to ANGPTL4 at baseline (prior to atrial fibrillation ablation) in

HFpEF patients exclusively (Figure 2.8F).

2.5 Discussion and Conclusion
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In this study, I provided a first comprehensive characterization of the interstitial cardiac

remodeling in a two-hit HFpEF mouse model on single-cell level. I confirmed the

murine resemblance of critical HFpEF phenotype features and systematically assessed

transcriptional disease response on a cell type level. Deterioration of cardiac diastolic

function was accompanied by increased interstitial fibrosis as assessed by histology. This

phenotype was associated with a pro-fibrotic gene program in fibroblasts. By integrating

single cell atlases of two murine HF models, I identified common and unique

characteristics of fibroblast activation in HFpEF, AngII stimulation and MI. I further

provided a functional interpretation of disease model specific signatures, as well as their

corroboration in human transcriptome data and suggested that Angptl4 could serve as a

potential biomarker for HFpEF in humans.

It can be hypothesized that among fibroblasts, different cell states correlate with tissue

functions and/or spatial niches195,196. However, a consensus and nomenclature of cell

states has not been accomplished yet, in part due to shortcomings of the concept of cell

states describing a continuity and distinguishing between a more transient functional

nature of a state or a cell differentiation195. By integrating multiple studies, I provided a

catalog of main cardiac fibroblast cell phenotypes in cardiovascular disease. I linked

conserved cell states to disease models and found that MI gives rise to a set of fibroblast

cell states including myofibroblasts (IFS 2) and matrifibrocytes (IFS 3) together with

other proinflammatory states (IFS 7 and 6). In contrast, AngII treatment mainly exerts

fibrosis via matrifibrocytes. HFpEF fibrosis might differ fundamentally from respective

HFrEF remodeling processes, as I found little disease signals involving matri- and

myofibroblasts. Instead, I identified homeostatic IFS 0 fibroblasts to be the main cell

state linked to early HFpEF fibrosis. These cells were characterized as important

contributors to ECM production, especially of the basement membrane. The basement

membrane represents a highly active ECM that underlies ECs, SMCs in the heart but

also provides a scaffold that connects the interstitial ECM with cardiomyocytes197.

Functionally, it plays an important role in angiogenesis, mechanotransduction and cell

differentiation198. The role of the basement membrane in HFpEF has not been

sufficiently explored yet, but its modulation of laminins has been suggested to cause

gene expression changes in cardiomyocytes related to increased stiffening199.

The not occurring myo- and matrifibrocyte activation in HFpEF has been suggested

before by the evidence of ECM production in the absence of TGFβ signaling and

presence of metabolic stimulation14. Our here presented data further support this

hypothesis by demonstrating that no relevant FAP protein expression and FAPi PET-CT
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tracer uptake was observed in HFpEF hearts, whereas FAP was previously described as a

marker of fibroblast activation in acute MI and AngII/PE 200,201. In addition, I confirmed

the relevance and specificity of the described fibrotic signatures including IFS 0 state

markers in myocardial transcriptomes of human HFrEF and HFpEF. These results

suggested the capability of mouse models to partially mimic human disease.

Besides compositional shi�s, I found a strong expression shi� in most fibroblast states in

HFpEF, suggesting that the defined disease signatures are in part a general cellular

response that is executed by many fibroblasts across cell states. I reported that these

expression shi�s as previously described 54 were also found in other heart failure

models, suggesting that composition shi�s alone do not explain fibroblast activation in

cardiac fibrosis. In HFpEF, the gene program associated with an expression shi� was

characterized by common fibrotic response and metabolic genes including ANGPTL4

while the basement membrane related genes were more state specific gene programs

and subsequently associated with the composition shi�.

ANGPTL4 is linking inflammatory, metabolic and fibrotic mechanisms mainly by acting

as a secreted protein, but it also controls intracellular lipoprotein metabolism and

energy homeostasis by inhibiting lipoprotein lipase in divergent tissues202. The

expression is induced by fasting and hypoxia under the control of several transcription

factors including PPARs, glucocorticoid receptors and HIF1α. ANGPTL4 levels were

previously reported to be associated with the risk of coronary artery disease,

atherosclerosis and type 2 diabetes203,204. I observed an upregulation of ANGPTL4 in

cardiac fibroblasts during HFpEF, next to activity of transcription factors Ppara and

Pparag. In a patient collective with atrial fibrillation, ANGPTL4 correlated with

functional capacity, HFpEF disease development and burden of supraventricular

extrasystoles, but correlated positively with global-longitudinal strain. ANGPTL4 might

exhibit beneficial or detrimental functions as reported in HFrEF and atrial fibrillation

models203,205. Thus, further research is necessary to illustrate its mechanistic role for

HFpEF.

The main limitations of our study related to the sample size of the single-cell

experiment. Subtle disease changes, such as gene programs occurring in more rare cell

types or cell states were probably not detectable. At the same time, our statistical

approach for differential expression analysis might result in a higher rate of false

positives than more robust approaches that rely on higher sample size. Our study

design focused on early changes of the HFpEF remodeling. As a longer dietary regimen
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leads to further disease progression, we cannot provide insights into potential dynamics

of the reported cellular disease signatures. Thus, a potential role of matrifibrocytes

during later stages of this HFpEF model was not addressed. However, validation in

human bulk RNA-Seq demonstrated that matrifibrocyte markers were upregulated in

human HFrEF, but not in HFpEF patients. Additional validation of these findings in

large human HFpEF studies could not be accomplished, due to the small number of

publicly available data sets of gene and protein expression in human HFpEF.

Common fibrotic pathways are active across pathologies, organs and species and include

hallmark signaling mediated by TGFβ, integrins, cytokines and vasoactive substances206,

resulting in increased ECM production and reparative tissue replacement.

Pharmacomodulation of these major fibrotic axes has been mainly unsuccessful in the

past, partially because of their fundamental impact on global tissue homeostasis. As

more details about differences in fibrotic signaling and fibroblast phenotypic

heterogeneity are accumulating177,207, better targeted antifibrotic therapies might come

within reach19. In cardiac fibrosis, inhibition of RAAS is a crucial treatment option in

HFrEF but not HFpEF208,209. Our study might provide important insights into the

mechanism of this lacking therapy response in HFpEF patients. In parallel, a mutual

activation occurs in the cross-talk with fibroblasts. We observed in this context especially

an expansion of the Col15a1+ pool that might contribute to a pattern of interstitial

fibrosis along basement membrane scaffolds. Future research is necessary to further

delineate these fibrotic mechanisms and identify potential targets for HFpEF therapy.

Taken together, this is the first description of adverse interstitial remodeling in HFpEF

on a single-cell level. My work provides new insights into distinct and common features

of cardiac fibrosis in heart failure and might serve as a valuable source for the scientific

community to identify disease specific treatment strategies for HFpEF in the future.
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Chapter III - Comorbidity space of HF

patients

3.1 Background

HF patients suffer from a wide range of comorbidities, which are considered important

for HF development and progression 90. In the pathogenesis of HFpEF, comorbidities

have been suggested as causal factors 7,13 and could possibly be linked to genetic etiology.

Treatment of comorbidity has also been shown to have beneficial effects of cardiac

physiology 91, emphasizing the potential to address HF subtypes through their

comorbidities. However, the modeling of multiple diseases is currently not attainable in

animal models to circumvent assessment of patients.

Systems medicine attempts to model disease in a holistic manner. One facet of this,

network medicine, is used to analyze complex systems such as patients, organs or cells

via network representation 92,93. Comorbidity networks represent diseases as nodes,

connected via edges based on co-occurrence in patients. These networks can be used to

define disease modules or explore topological changes between patient cohorts 94–97.

Previous work has shown that disease comorbidity is also o�en linked to shared disease

genes that locate close together in gene-based networks like protein-protein interaction

networks 97,101. This observation is o�en the basis of network-based gene prediction,

where novel disease genes are predicted based on network proximity to known disease

genes.

Cardiovascular diseases are particularly suited for system medicine approaches due to

the typical multi-organ involvement 210 and multifactorial etiology 211. To date, such

approaches to study HFpEF have been limited, though the comorbidity driven

pathophysiology of HFpEF makes it a promising subject. In addition, despite the

technological advances in multi-omics, functional genomics knowledge of HFpEF

remains limited, possibly due to difficulties of biopsy acquisition in HFpEF patients 12

and heterogeneity of HFpEF patients 212.

In this chapter, I applied a network medicine approach to describe comorbidity patterns

in HFpEF and investigate a genetic background associated with these patterns. I first

demonstrated that comorbidity profiles vary between HFpEF and HFrEF patients and
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derived distinct comorbidity profiles for each cohort. Then, I built a comorbidity

network that contained disease clusters relevant for HF patients. The construction of a

multilayer heterogeneous network by integration of prior knowledge resources allowed

me to translate the comorbidity profiles into a gene signature for HFpEF. I then

corroborated this signature in the cardiac transcriptome of a murine HFpEF model.

This network medicine approach allowed me to identify distinct comorbidity profiles

and novel genetic patterns in HFpEF.

I conceived, conceptualized and implemented all analysis and figures in this chapter.

Hauke Hund provided access to the data warehouse and Rebecca Levinson supervised

this project. Alberto Valdeolivas provided feedback and helpful discussion on graph

analysis. This chapter is part of a manuscript that is currently in revision in a peer

reviewed journal 213. I wrote the manuscript while Julio Saez-Rodriguez, Rebecca T.

Levinson and Alberto Valdeolivas provided edits.

3.2 Defining the study population and their

comorbidities

3.2.1 The study population

I derived the study population from a research data warehouse containing data from

patients that visited the Department of Cardiology, Angiology, and Pneumology at

Heidelberg University Hospital, Heidelberg, Germany 214. Heidelberg University

Hospital acts as a tertiary care center for the surrounding region, specializing in the

treatment of cardiomyopathy. From this data warehouse I identified patients with HF,

visiting between 01.01.2008 and 01.01.2021. The study protocol was approved by the

local ethics committee. I defined HF as two or more HF-relevant International

classification of disease, version 10 (ICD-10) diagnosis codes (I50*, I11.0, I13.0, I13.2,

I42.0, I42.5, I42.8, I42.9, I25.5) or at least one HF-relevant diagnosis and at least one of

the following criteria: i) elevated N-terminal pro b-type natriuretic peptide (NTproBNP)

(>120 ng/ml), ii) recorded New York Heart Association functional class, iii)

echocardiography based E/e’ >15 ( ratio of early diastolic mitral inflow velocity to early

diastolic mitral annulus velocity), iv) echocardiography or MRI-based le� ventricular

ejection fraction (LVEF) <50%, v) documented loop diuretic. Patients with HF before age

40, those with a diagnosis of inheritable cardiomyopathy (I42.1-I42.4, I42.6, I42.7), and

heart transplant patients (Z94.3) were excluded from the HF cohort. Within the HF
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cohort, I identified HF subtypes, based on echocardiographic or MRI-based LVEF.

Patients with LVEF >= 50% were labeled HFpEF, LVEF 40-50% HFmrEF (Heart failure

with mid range ejection fraction) and =<40% HFrEF (Figure 3.1).

Figure 3.1 Patient Cohort description.
Phenotyping algorithm to define HF cohorts. HF patients were selected with hospital visits over a time

span of 13 years at the University Hospital Heidelberg. I defined a general HF cohort by selecting

patients with either two or more HF relevant ICD-10 codes or one HF relevant ICD-10 code and one

additional HF relevant clinical characteristic, yielding 29,047 HF patients. Based on LvEF I

subclassified HF patients to HFrEF, HFmrEF or HFpEF. RWH, Research Data Warehouse; HF, Heart

failure; LvEF , left ventricular ejection fraction; e/e’ is the ratio between early mitral inflow velocity and

mitral annular early diastolic velocity on echocardiography. Reprinted from 213.

A�er applying the described phenotyping algorithm, my study population consisted of

29,047 patients with HF (Figure 3.1). This cohort consisted of three sub cohorts, HFpEF

(8,062 patients), HFrEF (6,585 patients) and HF with mid-range ejection fraction

(HFmrEF) (3,018 patients) based on LVEF. 11,382 patients in the HF cohort lacked a

subtype label (HF- unlabeled).

Next, I compared available clinical features of these cohorts. HFpEF patients were more

o�en female compared to HFrEF patients (35 vs 25%, p<0.01) (Table 3.1). However, we

did not observe a significant difference in body mass index (Median [IQR] = 26.8 [24.2,

30.0] vs 26.5 [24.1, 30.1] for HFpEF vs HFrEF, p=0.9) or age (Median [IQR] = 70[61, 88]
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for HFpEF vs 70 [60,70] for HFrEF, p=0.5). When phenotypic data were available,

cholesterol, LDL, HDL and blood pressure values were higher in HFpEF patients

compared to HFrEF, while NT-proBNP values were higher in HFrEF patients.

Comorbidity burden measured by Elixhauser index was slightly lower in HFpEF than

HFrEF patients, as previously reported 215. HFpEF patients were intubated (8.5% vs 15%,

p<0.001) or received an implantable cardioverter-defibrillator (16% vs 26%, p<0.001) less

frequently than HFrEF patients, suggesting that the HFrEF cohort was at a later stage of

HF.

HF Subtypes

Variable N Overall HFpEF HFmrEF HFrEF p-value* p-value+

(N=

17,665) (N=8,062) (N=3,018) (N=6,585)

Sex 17,617 <0.001 <0.001

Female

5,247

(30%)

2,822

(35%) 790 (26%) 1,635 (25%)

Male

12,370

(70%)

5,228

(65%) 2,218 (74%) 4,924 (75%)

Age

(years) 17,665 70 (60,78) 70 (61, 78) 70 (59,77) 70 (60, 78) 0.093 0.5

BMI 9,132

26.8 (24.2,

30.0)

26.8 (24.2,

30.0)

26.9 (24.2,

29,9)

26.5 (24.1,

30.1) 0.08 0.9

Systolic

BP(mmH

g) 5,146

148 (134,

160)

150 (139,

164)

148 (135,

160)

140 (127,

154) <0.001 <0.001

Diastolic

BP

(mmHg) 5,146 84 (76, 92) 85 (78, 93) 84 (76, 93) 82 (73, 90) <0.001 <0.001

LDL

(mg/dL) 12,270

87 (69,

110)

88 (69,

110) 91 (72, 113)

84 (67,

106) <0.001 <0.001

HDL

(mg/dL) 12,368 44 (36, 54) 46 (38, 56) 43 (36, 53) 40 (34, 50) <0.001 <0.001
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Triglyceri

des

(mg/dL) 13,859

112 (85,

153)

112 (85,

151)

112 (85,

156)

113 (85,

156) 0.11 0.006

Cholester

ol

(mg/dL) 13,577

160 (135,

188)

163 (138,

190)

164 (140,

192)

153 (129,

183) <0.001 <0.001

N

PheCodes 17,665 13 (8, 21) 13 (9,21) 12 (7, 19) 14 (9, 22) <0.001 0.088

Elixhause

r Index 17,665 5.39 (2.72) 5.36 (2.68) 5.09 (2.70) 5.56 (2.76) <0.001 <0.001

Intubated 17,665

1,766

(10.0%) 552 (6.8) 257 (8.5%) 957 (15%) <0.001 <0.001

ICD

Implantati

on 17,665 3,213 (18%) 1,007 (12%) 468 (16%) 1,738 (26%) <0.001 <0.001

PCI 17,665 9,116 (52%)

4,267

(53%) 1,554 (51%)

3,295

(50%) 0.002 <0.001

log(NT-B

NP) 6,169

2.99 (2.45,

3.53)

3.07 (2.53,

3.55)

3.07 (2.53,

3.55)

3.45 (2.96,

3.88) <0.001 <0.001

All continuous values displayed as Median (IQR) except for Elixhauser Index which is

Mean (SD)

All dichotomous values displayed as N (%)

* kruskal-wallis p-value across all subtypes

+ Wilcoxon-rank sum or chi-squared p-value for HFpEF vs HFrEF

Table 3.1. Clinical characteristics of HFrEF, HFmrEF and HFpEF cohorts.
Descriptive statistics of HFrEF, HFmrEF and HFpEF cohorts. F, female; m, male; BMI, body mass

index; BP, blood pressure; LDL, low density lipoprotein; HDL, high density lipoprotein; ICD,

implantable cardioverter defibrillator; PCI, percutaneous coronary intervention; NT-BNP, N-terminal

pro b-type natriuretic peptide. All numerical values are median (IQR), Elixhauser index is mean (SD).

Reprinted from 213.
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3.2.2 The comorbidity space

A�er defining the patient cohort, I had to define the feature space of comorbidities. In

the data warehouse, comorbidities were recorded in ICD-10 format. To keep the feature

space spares, I summarized similar diseases by mapping ICD-10 codes to

Phenome-wide association scan codes (PheWas codes). I accessed

“https://phewascatalog.org/” in October 2021 and downloaded “PheCodeMap 1.2”. From

a total of 7,817 unique ICD-10 codes in our dataset, 3,030 could be mapped directly to

PheCodes. To further improve this coverage I performed an additional stepwise

mapping: the 4,787 ICD-10 codes that could not be mapped were shortened to 4

characters (e.g. N18.89 was shortened to N18.8) and mapped again to PheCodes.

Unmapped ICD-10 codes a�er this step were shortened to 3 characters (e.g. N18.8

shortened to N18) and mapped again to PheCodes, resulting in a total of 6,676 mapped

ICD-10 codes. Most frequent ICD-10 codes that were not mapped to PheCodes included

codes from the Z-chapter that were considered outside the area of interest of this study

and were discarded a�er this step. Total coverage of the mapping was 85% (mapped

ICD-10 codes/unmapped ICD-10 codes) resulting in 1,481 unique PheCodes (Figure

3.2A).

Next, I selected comorbidities based on prevalence in my cohort. I calculated patient

frequencies in the HF cohort for these PheCodes and only analyzed PheCodes with at

least 50 patients, defining the final feature space of 569 PheCodes (Figure 3.2B).

Figure 3.2 ICD10 code mapping.
A) Number of features recorded in the general HF cohort. PheCodes and 3-letter ICD10-codes reduce

the feature space to a comparable feature size. B) Overview of all recorded PheCodes and their

frequency (log10 transformed). PheCodes with a prevalence of at least 50 patients (horizontal gray

line) resulted in 569 Phecodes (vertical gray line). These PheCodes were used in all downstream

analysis. Reprinted from 213.
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3.3 Assessing distinct comorbidity profiles between

HF-cohorts

A�er defining the patient cohort and the comorbidity feature space, I posed the

question, whether HF subcohort labels were associated with an unsupervised estimate of

variance in the comorbidity space. For this, I applied multiple correspondence analysis

(MCA), which provided a ranking of cohort comparisons based on associated variance in

comorbidity profiles (section 3.3.1). In the next section I then derived the most

distinctive comorbidities for the pronounced HFpEF/HFrEF contrast (3.3.2). Then, I

investigated whether the HFpEF/HFrEF comorbidity profiles might depend on

observed confounders (section 3.3.3), and finally provided a clinical interpretation

(section 3.3.4). The concept of this analysis is visualized in (Figure 3.3A).

3.3.1 High variation in comorbidity profiles is associated with

HFpEF/ HFrEF subtype

I expected differences in the composition of comorbidity profiles between HF subtype

cohorts. To quantify this variance, I applied MCA and estimated the variance associated

with sub-cohort labels and clinical features (Figure 3.3A). Disease profiles of HFpEF,

HFrEF and HFmrEF cohorts were captured as binary variables (0 - patient has no

record, 1 - patient has a record of disease) of 569 (PheCodes). In this feature space (569

comorbidities x 17,665 HF patients) I performed MCA (R-package FactoMiner 216). Each

MCA dimension was then tested for association with clinical covariates with linear

regression models for binary categorical (e.g. MCA-dimension 1 ~ Sex) and continuous

covariates (e.g. MCA-dimension 1 ~ Age). For each covariate I summed the variance

associated to all significantly associated dimensions (p-value <0.05) as an estimate for

the total associated variance.

Device implantation was the feature most strongly associated with variance in

comorbidity profiles (Figure 3.3B). When comparing HF subtypes, HFpEF and HFrEF

cohort labels were associated with a high degree of explained variation (39.5%). HFmrEF

patients seemed to be in an intermediate state, as they displayed lower variance when

compared to HFpEF (25.2%) and HFrEF (18.6%). Sex and age were each associated with

high variance (37.9% and 44.4%, respectively) as expected. In summary, this analysis

approach identified a pronounced contrast between comorbidities in HFpEF and HFrEF

patients.
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Figure 3.3 Comparison of comorbidity profiles in heart failure subtypes.
A) Scheme of analysis. EH, essential hypertension; CAD, coronary artery disease; DMII, Diabetes

mellitus type II; RA, rheumatoid arthritis. B) Multiple correspondence analysis of comorbidity profiles

of HFpEF and HFrEF cohort. MCA dimensions were tested for association with clinical covariates and

summed up to estimate total explained variance. Reprinted from 213.

3.3.2 Deriving HFpEF and HFrEF comorbidity profiles

Next, to explain and interpret the variance between HFpEF and HFrEF, I derived

distinct comorbidity profiles for both cohorts. For this purpose, I fit random forest and

elastic net classifier models with the 569 comorbidities as features to distinguish

between HFpEF and HFrEF (Figure 3.3A). Models were trained in R with R-packages

tidymodels using model engines from glmnet 217 and ranger 218.

For hyperparameter tuning, I performed 10 fold cross validation of 90-10% training-test

splits and selected hyperparameter values yielding highest mean AUROC.

Hyperparameters include the ratio of L1/L2 regularization and penalty for elastic net

and number of variables (mtry) and number of trees in random forest (Figure 3.4A, B).

The highest achieved mean AUROCs were 0.778 for the random forest and 0.777 for the

elastic net model, indicating that the random forest’s ability to model more complex

interactions between comorbidities did not improve classifier performance

substantially. I compared the most important features and found that they were shared

in both models (Figure 3.4C).

Next, because elastic net parameter estimates can provide both magnitude and

direction, I selected the elastic net model to assign HFpEF and HFrEF a distinctive set of

comorbidities. The elastic net model contained 196 non-zero comorbidity coefficients.

To find the most discriminant comorbidities for HFpEF and HFrEF, I next performed a

forward selection with an L1-regularized logistic regression model of the 196 non-zero
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features from the elastic net model. Finally, I found that the model with 100

comorbidities yielded a cross validated AUROC of 0.780 (Figure. 3.4D). 71 and 29

comorbidities from this model were assigned to HFpEF or HFrEF, respectively, which I

will refer to as their comorbidity profiles.

Figure 3.4 Patient classifier training.
A) Hyperparameter tuning for the elastic net model. Mixture of L1 and L2 penalty (color) and penalty

value (x-axis) are compared by accuracy and AUROC. Each hyperparameter combination was

assessed via 10-fold CV-splits. B) Hyperparameter tuning for random forest model. Number of trees

(color) and mtry (x-axis) are compared by accuracy and AUROC. Each hyperparameter combination

was assessed via 10-fold CV-splits. C) Comparison of random forest feature importance (y-axis) with

Elastic net coefficient estimates (x-axis). D) Forward selection training of L1- regularized logistic

regression by stepwise including parameters to the model (x-axis) and estimating a 10-fold CV

AUROC (y-axis). Reprinted from 213.
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3.3.3 Comorbidity profile assignment compared for effects of age,

sex, time to HF diagnosis and time of recording

The derived comorbidity profiles might have been influenced by factors such as age,

sex, time of visit or time relative to HF diagnosis. I therefore investigated whether these

factors influence the assignment of these 100 comorbidities to HF stubtype by fitting a

series of logistic regression models in different data subsets.

Age and Sex

I selected the comorbidity profiles of HFpEF and HFrEF (i.e. top 100 comorbidities

from the patient classifier) and tested each in an independent logistic regression model

while including age and sex as covariates for association with HF subtype label

(HFpEF/HFrEF ~ comorbidity + sex + age). I fit these models on the full cohort data and

found that the coefficients assigned to the comorbidities to be consistent with the

patient classifier assignments (Figure 3.5A, column “full data”).

Time to HF diagnosis

I investigated whether the comorbidity profiles of HFpEF or HFrEF were different in

regard to the time point of the patient’s first HF diagnosis. I calculated the time to HF

diagnosis in months and found that most comorbidities were recorded within a year of

the first HF diagnosis, which is most likely related to the nature of routine clinical care

data from a tertiary care provider than with the true time point of comorbidity

occurrence. Nevertheless, HFpEF patients received their comorbidities later than HFrEF

patients (Wilcoxon test, p-value <0.05) (Figure 3.5B). I next subset the data for each

patient to his comorbidities recorded at least six months before (pre HF) or a�er (post

HF). In these subsets I again fitted the logistic regression model (HFpEF/HFrEF ~

comorbidity + sex + age) and found a conserved assignment of comorbidities. This

indicated that comorbidity assignment to HFpEF or HFrEF was rather independent of

the time point of HF diagnosis (Figure 3.5A).

Date of comorbidity assignment

Recording of comorbidities is subject to clinical practice that may change over time. I

thus compared the dates of comorbidity assignments and found that HFpEF patients

recorded more recent diagnosis compared to HFrEF patients (Figure 3.5C). To

investigate if this difference in time of recording impacted our comorbidity profile

assignment I stratified our observation window into three time blocks. I again fitted the

logistic regression models (HFpEF/HFrEF ~ comorbidity + sex + age) for each time block
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separately and observed that the assignment of most comorbidities was mainly

independent of the observation window (Figure 3.5A).

In summary, I found that the derived comorbidity profiles of HFpEF and HFrEF yielded

mostly consistent patterns independent of the discussed factors.
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Figure 3.5 Time to HF and time of comorbidity profile assignment.
A) Comparing the comorbidity assignment to HF subtypes (y-axis) in different data subsets (x-axis).

Logistic Regression models were fit without regularization for each comorbidity separately to predict

HF subtype labels (HFpEF/HFrEF ~ comorbidity + age + sex). First column contains the comorbidity

estimates from the full data set. Second block displays comorbidity estimates from the data subset to

comorbidities with earliest diagnosis at least six months before (pre HF) or six months after the first

HF diagnosis (post HF). The third block displays comorbidity estimates from data subset to three

different observation windows. B) Distribution of the time in months between earliest comorbidity

diagnosis and first HF diagnosis. C) Distribution of the date of comorbidity recordings between HF sub

cohorts. B+C display p-values from unpaired, two sided wilcoxon test. Reprinted from 213.

3.3.4 Interpreting HFpEF and HFrEF comorbidity profiles

A�er deriving HFpEF and HFrEF comorbidity profiles and assessing influence of known

confounders, I sought to interpret the profiles from a clinical perspective. The HFpEF

profile (15 disease categories) was more diverse than the HFrEF profile (10 disease

categories) and included comorbidities from the digestive disease, hematopoietic and

neoplastic disease categories (Figure 3.6A). Cardiovascular disease was the most

important category in both profiles, accounting for 48.2% of the sum of parameter

estimates in HFrEF and 38.3% in HFpEF. In HFpEF, important comorbidities included

hypertensive and pulmonary heart disease, essential hypertension, inflammatory

cardiac conditions (pericarditis, myocarditis), sleep apnea, osteopenia, neoplasms

(multiple myeloma, breast cancer, metastasis in digestive systems) and rheumatoid

disorders. The HFrEF comorbidity profile was characterized among others by

myocardial infarction, ischemic heart disease, tobacco abuse, mitral valve disease, coma

and cardiogenic shock, neurological disorders (vascular dementia, cerebral edema),

chronic kidney disease and diabetes type II (Figure 3.6B).
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Figure 3.6 Patient classifier interpretation.
A) Proportions of the sum of parameter estimates of top 100 comorbidities of the patient classifier

model, colored by disease categories. B) Top 50 comorbidities of the patient classifier. The

parameters are the absolute fitted values of the coefficients in the elastic net model for each

comorbidity of the patient classifier separated by association to HFpEF (top) or HFrEF features

(bottom). Colors indicate disease category using the same color legend as in panel B. Reprinted

from 213.

In conclusion, the observed variation in comorbidity profiles between HFpEF and

HFrEF was analyzed by interpreting patient classifiers. The derived features captured

known subtype associations such as typical etiologies of HF including hypertensive

heart disease (with HFpEF) and ischemic heart disease (with HFrEF) but also more novel

and understudied comorbidity associations such as breast cancer or rheumatoid

arthritis with HFpEF.

3.4 The HFnet

The comorbidity profiles in the previous section describe comorbidities that were

distinctive in our cohort for HFpEF or HFrEF patients. I next addressed whether the

correlative association between these comorbidities can provide insights into disease
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occurrence for these cohorts. For this reason I built a comorbidity network as previously

described 96–98,219,220. I posed four questions which are schematically shown in Figure 3.7:

1. Does the relationship between comorbidities depend on the subcohort?

2. To what extent are disease relationships specific to my cohort?

3. Which are the central diseases/disease groups in my cohort?

4. Can I summarize correlative clusters of diseases and associate those to higher

order illness concepts? And do these clusters capture cohort differences?

Figure 3.7 Scheme of comorbidity network analysis.
A) Scheme of comorbidity network analysis. EH, essential hypertension; CAD, coronary artery

disease; DMII, Diabetes mellitus type II; RA, rheumatoid arthritis. Reprinted from 213.

3.4.1 Comorbidity relationships compared between HFpEF and HFrEF

While certain comorbidities were distinctive for HFpEF or HFrEF, it was unclear

whether the disease relationships that built the HFnet also depend on the HF subtype.

When comparing odds ratios for each disease pair from both cohorts, I found a high

concordance (Figure 3.8A, B). Only 33 disease pairs had significantly different odds

ratios between HFpEF and HFrEF (Breslow-Dayes test for Homogeneity of odds ratio

with BH correction p<0.01) (Figure 3.8C), suggesting that in the vast majority of cases,

the co-occurence of two diseases did not depend on whether it was assessed in HFpEF

or HFrEF patients.
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Figure 3.8 Comparison of comorbidities between HFpEF and HFrEF cohort.
A) Pairwise disease odds ratios and Fisher's exact test p-values (with BH correction) were calculated

for HFpEF and HFrEF patient cohorts separately. Pearson correlation of odds ratios between both

cohorts was ~1 with p<0.01. B) Comparison of all tested disease pairs at fisher test p<0.0001. C)

Breslow dayes test for homogeneity of odds ratios was applied and significant disease pairs (p< 0.01)

are shown with log odds ratios for each cohort (heatmap) and log transformed corrected p-value

(barplot). Reprinted from 213.

3.4.2 HFnet construction and comparison

A�er finding that disease relationships between HFpEF and HFrEF were highly

concordant, I decided to use the full HF-cohort to learn correlative disease structures.

In disease comorbidity networks, nodes represent diseases while edges represent

statistical association of co-occurrence, resulting in the graphical depiction of

comorbidities as diseases that are statistically dependent. In detail, I selected edges using

Fisher's exact test for estimating statistical dependence and its Benjamini-Hochberg

(BH) corrected p-value (p < 0.0001) to discard non-significant disease pairs and keep a

more sparse network structure. To determine strength of association I calculated

ɸ-correlation, which can be interpreted as a Pearson correlation for binary variables. I

selected all edges with positive correlation (Figure 3.9A). To account for bias in
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ɸ-correlations towards high frequent diseases, I scaled the values by dividing by mean

correlation values for every disease and assigned these values as edge weights 221 (Figure

3.9B).

The resulting significant disease - disease relationships were assembled to form an

undirected and weighted heart failure comorbidity network (HFnet) consisting of 569

nodes and 19,347 edges (Figure 3.9C), with edge weights defined by a statistical

dependency of co-occurrence for each disease pair.

Figure 3.9 HFnet overview.
A) Phi correlation and log odds ratio of pairwise disease comparison in the general HF cohort. B)

Adjustment of phi-correlation. Correlation coefficients were scaled by disease. As low prevalence

diseases are expected to result in lower phi-correlation coefficients and scaling by mean coefficient

can address this effect. The calculated weights were used as edge weights in the HFnet. C) HFnet

plotted and clustered by disease cluster (DC). DCs are arranged in rows (e.g first row : DC1, DC2,

DC3). Reprinted from 213.
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My first question was, whether the HFnet constituted a unique wiring of diseases or

predominantly captured generalizable disease relationships. To investigate this I

analyzed and compared two additional disease networks: a human phenotype ontology

network (HPOnet) where two diseases are connected if they are phenotypically similar

and Morbinet 96, another comorbidity network from a large patient cohort but without a

cohort defining disease.

I downloaded network data from Morbinet (https://shiny.odap-ico.org/morbinet,

accessed October 2021), using a threshold of OR>1 and fisher p value of p<0.01 and

mapped the ICD-10 disease ontology to PheCodes. Then, I built a phenotypic disease

network, where two diseases are connected, if they share a similar phenotype based on

the human phenotype ontology (HPO). To construct this network, I downloaded the

HPO from https://hpo.jax.org/app/ (accessed October 2021) and mapped disease

ontologies to Phecodes. Disease similarity was calculated with Lin’s methods

implemented in the OntologySimilartiy R-package 222. The full distance matrix resulting

from the ontology similarity was used to create a fully connected network with edge

weight representing ontology similarity. From this network I extracted the backbone 223

with the implementation in the corpustools R-package. This backbone extraction is based

on an assumed null distribution of local edge weights where based on an alpha level

(here 0.05) edges can be extracted that are unlikely to fall into that distribution. A�er

subsetting each network to the same nodes as the HFnet, the number of edges was

comparable (Figure 3.10A).

Now I could compare the three disease networks. Jaccard index based edge similarity of

HFnet and Morbinet was very modest with 0.18 and of HFnet and HPOnet was 0.12

(Figure 3.10B,C). I then calculated network similarities with the DeltaCon algorithm to

capture conserved node affinities between networks 224. HFnet and Morbinet displayed

again a higher similarity (0.46) than HFnet and HPOnet (0.39) (Figure 3.10D). This

suggested that comorbidity correlation was not completely redundant with phenotype

similarity. The differences between Morbinet and HFnet indicated that many disease

relationships in the HFnet could be specific for HF patients.
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Figure 3.10 Comparison of disease networks.
A) Number of edges (top panel) and number of nodes (bottom panel) compared for different disease

networks. Each disease network was also subset to the same nodes of the HFnet for comparability. B)

Jaccard comparison of nodes. C) Jaccard comparison of edges. D) DeltaCon similarity (y-axis)

compared to rewiring probabilities of the HFnet (x-axis). We used subsets of the HFnet with Morbinet

(red) and with HPOnet (blue) and rewired each subset five times with a given probability (x-axis) and

computed DeltaCon similarity with the original HFnet. Dashed lines indicate HFnet and Morbinet and

HFnet and HPOnet similarities. Reprinted from 213.

3.4.3 Central diseases in the HFnet

Next, I analyzed the centrality of diseases. Diseases which were most frequently

reported could be considered the network hubs, as indicated by their high node degree

and their closeness and betweenness centrality scores (Figure 3.11A). My network
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captured and centralized on well-known HF comorbidities (41,42), like chronic kidney

disease, which by multiple metrics was the main HFnet hub (Figure 3.11B). I tested

whether disease categories were associated with node centrality measures, and found

that closeness and degree centrality were both significantly associated with the disease

category (Figure 3.11C) (Kruskal Wallis p<0.01). Infectious and hematopoietic diseases

had the highest median centrality scores (betweenness, closeness and degree), indicating

that patients with diseases from these categories were typically suffering from many

comorbidities. Diseases affecting the circulatory system had the highest prevalence as

was expected with a HF centered cohort (Figure 3.11C).

I calculated network node characteristics, such as betweenness, closeness and degree

centrality, and transitivity with the igraph R-package. To calculate metrics based on

graph distance I replaced weights for edge i (Wi) with a new edge score Si :

.𝑆𝑖 =  𝑚𝑎𝑥(𝑊) − 𝑊𝑖

Figure 3.11 Comparison of centralities.
A) Comparison of local (node-wise) graph theory based metrics. Size, log10(prevalence) per disease;

degree, number of edges per disease; strength, sum of edge weights per disease, cc, cluster
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coefficient, number of connected vs unconnected first order neighbors per disease; btw, betweenness

centrality (fraction of shortest paths with the node vs without the node); closeness, closeness

centrality (inverse of the sum of distances to all the other vertices in the graph). Upper half displays

Pearson’s correlation between metrics. B) Important comorbidities of HF compared via centrality

rankings in the HFnet. C) Graph metrics compared by disease category in the HFnet. Kruskal Wallis

test p < 0.01 for all metrics except betweenness centrality (btw). Size, log10(prevalence); degree,

number of edges; cc, cluster coefficient, number of connected vs unconnected first order neighbors;

btw, betweenness centrality (fraction of shortest paths with the node vs. without the node); closeness,

closeness centrality (inverse of the sum of distances to all the other vertices in the graph). Reprinted

from 213.

3.4.4 Disease Cluster analysis

Network communities represent densely connected subgraphs and can be helpful to

summarize network topology. To identify disease clusters (DCs) within the network I

applied different clustering algorithms. I assumed that if different clustering algorithms

detect similar structures, these structures could be more reliable. I compared different

cluster algorithms based on the shared information between the assigned cluster labels

(normalized mutual information and adjusted Rand Index) as well as modularity scores

and module size and number. The Leiden algorithm 225 achieved the highest adjusted

Rank index and normalized mutual information scores when compared to other tested

algorithms (Figure 3.12A-E). I then tested different resolution parameters of the Leiden

algorithm and selected a parameter of 1.1 that yielded multiple clusters and maintained

a high network modularity score and high normalized mutual information values

(Figure 3.12F).

At this resolution the Leiden algorithm identified nine disease clusters (DCs).
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Figure 3.12 Comparison of clustering algorithms in the HFnet.
A) Comparison of number of clusters by algorithms. B) Number of nodes per cluster. C) Network

modularity achieved by algorithm. D&E ) Comparison of similarity of node assignment between

clustering algorithms with normalized mutual information (D) and adjusted rand index (E). F)

Comparison of modularity , cluster number and mean normalized mutual information (with other

algorithms) by resolution parameter in leiden algorithm. G) Comparisons of single disease parameters

from logistic regression models for HFpEF/HFrEF contrast that were controlled for sex. Disease

parameter estimates are on y-axis and significance of the parameter is color coded. H) Composition

of the comorbidity profiles from the patient classifier (rows) in disease clusters (DCs). Reprinted from
213.
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The nine DCs were partially grouped by disease categories (Figure 3.13B) and I labeled

DCs by manually reviewing disease composition (Table 3.2). For instance, DC1 and DC3

contained the majority of cardiovascular diseases. While DC1 contained cardiovascular

diseases with vascular etiology (EH, CAD, MI) and included metabolic and endocrine

diseases, DC3 contained valve disorders and arrhythmias (Figure 3.13C).

DC Label Important nodes

DC1

Cardiac / endocrine / respiratory

diseases

EH, MI, COPD, Hyperlipidemia,

Hypothyroidism

DC2 Sensory / ophthalmologic / skin disease

Cataract, Macular degeneration,

Melanomas of skin

DC3 Cardiovascular disease with heart focus

Valve disease, Congenital anomalies,

Arrhythmias

DC4 Vascular / renal / diabetic diseases DM II, CKD, Atherosclerosis

DC5 Critical Illness / complications Infectious disease, Organ failures

DC6

Rheumatoid / osteological / psychiatric

diseases Osteoporosis, Osteopenia, RA, Depression

DC7 Gastroenterological diseases Gastritis, Diverticulitis, Cirrhosis

DC8 Neoplastic / hematopoietic diseases

Breast cancer, Aplastic anemia,

Lymphomas

DC9

Neurological / vascular neurological

diseases Stroke, Dementias, Epilepsy

Table 3.2. Overview of disease clusters.
Manual labeling of disease clusters (DC) by characterizing most central and prevalent diseases in

each cluster. EH, Essential Hypertension; MI, Myocardial Infarction; COPD, Chronic Obstructive

Pulmonary Disease; DM II, Diabetes Mellitus Type II; CKD, Chronic Kidney Disease; RA, Rheumatoid

Arthritis. Reprinted from 213.

A�er defining the DCs, I hypothesized that DCs represent facets of the subcohort

specific HF comorbidity spectrum, and I therefore tested whether DCs capture

demographic or HF subtype related characteristics. I quantified the similarity of an

individual patient's comorbidity profile with each DC by calculating Jaccard indices and

tested for differences between patient cohorts (Figure 3.13B).
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In age stratified analyses I found that all DCs, except DC 7, were more similar to 60-80

year old (n= 16,54) compared to 40-59 year old patient’s (n =5,973) comorbidity profiles.

This could indicate a general increase of comorbidity burden with age or that with age

come increasingly consistent comorbidity profiles between individuals. The 80+ cohort

(n= 6,527) was less similar to DC1 and significantly more similar to DC3, DC5 and DC9

profiles compared to 40-60 year old patients. When comparing female and male

patients I found that DC6 and DC2 yielded the highest similarity differences,

respectively. Comparing HFpEF with HFrEF patients, I found that DC1, DC2, DC6 and

DC8 were more similar to HFpEF patients, while DC3, DC4 and DC5 were suggested to

be similar to HFrEF patients. As DC1 and DC6 also captured sex-related comorbidity

differences, I investigated further, whether DC6 diseases are more prevalent in HFpEF

independent of sex. For this I fit logistic regression models for each disease predicting

HFpEF/HFrEF while controlling for sex (Figure 3.12G). Again, DC1, DC2 and DC6

contained more diseases prevalent in HFpEF while DC3, DC4, and DC5 diseases were

more prevalent in HFrEF. In addition, this analysis also suggested that many diseases in

DC7 and DC8 too had higher prevalence in HFpEF.

I further compared the comorbidity profiles from the patient classifier from section 3.3,

by mapping them to DCs which yielded a qualitatively similar DC to HF subtype

association (Figure 3.12H). No DC was positively associated with HFmrEF. Instead,

HFmrEF patients were less similar to DC1 and DC6 than HFpEF patients and less similar

to DC3, DC4 and DC5 than HFrEF patients.

In general, I found that aggregating comorbidity profiles (569 dimensions) to DC

similarity (9 dimensions), allowed me to capture differences among patient cohorts in

regard to sex, age and HF subtype in meaningful disease groups.
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Figure 3.13 The heart failure comorbidity network (HFnet).
A) Disease category composition of disease clusters (DCs) in the HFnet. Number of nodes per cluster

in top barplot and number of disease per category in side barplot. B) Comparison of patient cohorts

based on DC similarity. Jaccard indices were calculated between each patient and each DC, then

unpaired two sided wilcoxon rank test was applied to compare different patient cohorts. The log

transformed p-value was multiplied by the sign of the test estimate for visualization purposes such

that positive values indicate higher cluster similarity with the first cohort of the contrast label. Patient

cohorts were selected by age stratification, sex and HF subtype. C) Subgraphs of the HFnet

visualized (left DC1, right DC3). Node size relates to prevalence, edge width to scaled phi-correlation,

node color to disease category. Only edges with highest weights were plotted for visibility. Reprinted

from 213.
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3.5 The HFhetnet and gene prediction for HFpEF

Biomedical research has yielded significant knowledge of disease gene associations,

which can be harnessed to extrapolate novel disease gene relationships. HFpEF is a

comorbidity driven syndrome and I hypothesized that the identified HFpEF

comorbidity profile could be translated to a genetic profile consisting of possibly

recurrent genetic associations to these comorbidities. In this part of my study, I first

integrated multiple biomedical databases to construct a cardiac specific multi-layer

disease and gene network (section 3.5.1). I then estimated the success of this network to

recover known disease-gene associations (section 3.5.2), used the HFpEF comorbidity

profile to identify the most commonly associated genes (section 3.5.3) and, finally,

corroborated gene predictions in independent experimental data (section 3.5.4)

3.5.1 Building the Heart Failure Heterogeneous Network (HFhetnet)

Gene-gene association

To consider multiple layers of gene organization, I constructed a multi-layer gene

network from different sources.

Omnipath 226 is a meta resource of a multitude of biological knowledge databases, and I

curated a network by connecting two genes if a resource provides a co-membership for

a signaling pathway. I used the number of resources that reported a relationship as an

estimate for the confidence in the relationship, which I introduced as edge weights in

the Omnipath layer.

The protein-protein interaction (PPI) network was constructed based on the union of

publicly available data from experimental and literature curated data 227.

Gene Ontology (GO) gene networks have been constructed before, and I used the GO

networks constructed by 228.

Each gene network was reduced to remove loops and multiple edges. To filter for genes

relevant in cardiac tissue, gene networks were subset to genes expressed in the human

heart on RNA or protein level. For protein expression I used proteomic data 229, where I

selected all peptides that were detected in the human heart and used the leading gene

associated with each peptide. For Gene expression I selected genes that were detected in

heart tissue in the Genotype-Tissue Expression (GTEx) Project v8 with a transcript per

million value > 1. To ensure that genes that become activated in diseased hearts were also
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captured, I also included the genes that were captured in the meta-analysis of my study

in Chapter I 102.

Disease-gene association

Next, I used DisGeNET, a resource containing disease-gene associations, to connect the

HFnet with the gene network. I downloaded DisGeNet v7.0 230 and mapped the ICD-10

codes in DisGeNet to PheCodes. To ensure that the most frequent diseases in our cohort

were mapped, I selected the most frequent 3 digit ICD-10 codes that were not mapped

to the DisGeNet gene set and performed manual annotation via Unified Medical

Language System (UMLS) IDs for 23 disease entities. E.g. PheCode 427.2 (Atrial

Fibrillation) was manually mapped to the UMLS ID C000423. I only included

disease-gene associations with a DisGeNet confidence score >0.29. This cut-off was

chosen, such that either one curated source or multiple experimental sources were

necessary for disease-gene associations.

I connected 400 diseases of the HFnet with a total of 4,044 genes via 20,170 edges. As the

HPOnet constructed earlier had a small intersection with the HFnet and appeared to

capture a different type of disease relationship, it was included as an additional disease

layer in our network.

HFhetnet

The presented HFhetnet is an assembly of the data driven comorbidity relationships

(HFnet) and six biomedical databases resulting in a total of 13,572 nodes and 181,529

edges. Its main structure is set up by two biological networks (disease layer and gene

layer) that each consist of two or four network layers (respectively) (Figure 3.14A). The

two disease networks were the smallest when comparing node numbers (Figure 3.14B).

However, edge density was much higher resulting in centralisation of these networks

compared to the gene layers. Within gene layers, the ontological layers displayed the

highest transitivity, as well as tendency to connect to hub genes (degree assortativity). To

assess research bias in the gene networks I calculated Pearson’s correlation between the

number of abstracts in PubMed mentioning a gene and the gene’s network degree per

layer, and found that only the pathway layer (Omnipath) displayed significant

correlation (p-value <0.05). This is related to a biomedical research bias towards the

investigation of a small number of genes 231. Thus, the integration of experimental and

ontological data can ameliorate the centrality of over-studied genes.

111

https://sciwheel.com/work/citation?ids=10801062&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=7887529&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=12961409&pre=&suf=&sa=0


In summary, I constructed the HFhetnet by integrating various prior knowledge

resources to incorporate genetic information. The different network layers of the

HFhetnet capture unique node relationships and display particular network topologies.

Figure 3.14 HFhetnet overview and .
A) Schematic overview of HFhetnet and its different layers built by including seven independent data

sources. B) Characterization of network layers by size (number of nodes and edges), edge density

(percentage of possible edges), degree centrality, global transitivity (average probability of the

neighbors of a node being connected), degree assortativity (preference of nodes to connect with

nodes of similar degree) and literature bias (i.e. Gene degree/pubmed score correlation). C) Leave

one out cross validation results for all diseases with two or more DisGeNET links. I compared the

performance of gene set recovery with different versions of the HFhetnet by modifying only the

disease network. I compared HFnet + HPOnet (i.e. the original HFhetnet), only the HFnet (without

HPOnet), and a rewired HFnet. Outliers are not plotted for visualization purposes. Paired, two-sided

Wilcoxon test, * p<0.001. AUC-PR Area under the Precision/Recall Curve, AUROC, Area under the

Receiver operator curve. GO, Gene Ontology; HPO, human phenotype ontology. Reprinted from 213.

3.5.2 Estimating the success of disease-gene prediction within the HFhetnet

To estimate the potential of the HFhetnet to predict disease - gene relationships we

estimated the success of predicting known disease genes. The rationale behind this
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approach is the guilt-by-association principle that assumes that functionally related

genes are also associated in the network context. Extending this notion to

heterogeneous networks, this principle can be interpreted as a disease being associated

with relevant disease genes through its position in the network. To quantify this

property and predict genes from diseases within the HFhetnet, I applied a network

propagation algorithm developed for multi-layer networks (Random walk with restart

on Multiplex heterogeneous networks; 232). This algorithm is an extension of the

random walk algorithm, that tries to find a stationary distribution of probabilities that a

node is visited when a random walk on the network is initiated in a set of seed nodes.

To quantify the property of gene prediction, I applied a the RWR-MH in a

leave-one-out validation design to assess whether known disease genes can be recovered

a�er removing the direct edges that connected them to a disease: For a given disease

that was present in the HFhetnet and directly linked to two or more genes, I attempted

to predict those genes a�er removing the direct links from the HFhetnet and running

the RWR-MH with the disease as seed node. The position of the target genes in the

resulting probability ranking was then assessed with different metrics to estimate

success of disease gene recovery.

To evaluate gene prediction success, I used three different metrics: median rank ratio,

AUROC and AUC-PR (Area under the precision recall curve).

For the median rank ratio, I calculated the median rank of the target gene set in the RW

ranking and divided this rank by the total length of the ranking. This metric is close to 0

if the genes are located towards the top, and close to 1 if they are located close to the

bottom of the ranking.

AUROCs and AUCPRs were calculated with the R-package pROCroc. Each target gene

was considered as a true positive, others were true negatives and the assigned RW

probabilities were used to calculate area under the ROC and PR curves. AUC-PRs tend

to be very low, due to the high number of non-target genes in the top of the ranking

that leads to a drop in precision. This in part is wanted for disease gene prediction, as

these true negative genes could rather be unknown potentially relevant candidates.

AUROCs can be inflated when small gene sets are recovered at the top of the ranking.

Finally, I performed this analysis by comparing the impact of three variations of the

disease layer: i) HFnet + HPOnet (original HFhetnet), ii) only HFnet, and iii) a rewired

HFnet. Gene prediction worked best in the original HFhetnet (median AUROC 0.91,

median AUC-PR 0.07, and median rank ratio 0.03) (Figure 3.14C). This performance

dropped for every metric when removing the HPO layer or when rewiring the HFnet
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(paired two-sided Wilcoxon’s rank sum test p<e-10). The rewired HFnet still performed

better than random, which might be explained by i) high edge density in the HFnet and

ii) the large size of the unaltered gene-gene and disease-gene network in comparison to

the smaller HFnet.

Prediction success correlated weakly but significantly with gene set size. In addition,

neither disease prevalence nor DisGeNET confidence scores were significantly

correlated with prediction success, suggesting that frequent diseases could not be

predicted better than less frequent diseases. Prediction performance depended on

disease category (Kruskal-Wallis test p-value <0.01 for all metrics). Respiratory,

neurological, genitourinary and cardiovascular diseases performed best.

In summary, I found that within the HFhetnet, the disease genes remain close via the

disease’s connection through its comorbidities or phenotypically similar neighbors.

Thus I concluded that HFnet and its extension, HFhetnet, capture meaningful

disease-disease, disease-gene and gene-gene relationships, which can be exploited for

predicting a disease’s genetic profile through its comorbidities.

3.5.3 Predicting genes associated with comorbidity profiles of HFpEF and

HFrEF

In the first part of this study I found that HFpEF and HFrEF patients were

distinguishable based on their comorbidity profiles (section 3.3). I then demonstrated

that diseases within the HFhetnet are located in network proximity to their respective

disease-genes (section 3.4). Leveraging both insights, I hypothesized that genes located

close to the HFpEF and HFrEF comorbidity profiles could yield novel candidates for the

respective HF subtype.

Thus, I applied the RWR-MH algorithm with the HFpEF and HFrEF comorbidity

profiles as seed nodes. This yielded two vectors of RW probabilities for each

comorbidity profile. The top 500 genes yielded non-zero probability values for each

profile (Figure 3.15A, B).
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Figure 3.15 HF subtype gene prediction.
A+B) Random walk (RW) with restart in a multiplex heterogeneous network was applied with

comorbidity profiles for HFpEF and HFrEF as seed nodes. RW probability distribution of all genes in

the HFhetnet is shown for A) HFpEF and B), HFrEF comorbidity profile. C) Gene prioritization for

HFpEF. Top 500 HFpEF genes are ranked (x-axis) and compared to their ranking in the HFrEF vector

(y-axis). Color is the RW probability for HFpEF multiplied by the ranking difference. This calculation

yields a new gene ranking that prioritizes HFpEF specific genes. D) Comparison of gene rankings

within the top 500 genes of HFpEF (x-axis) and HFrEF (y-axis). Genes that are known to be

associated with heart failure are colored and labeled. E) Comparison of intersections of HF gene sets

demonstrating a low redundancy. F) HF geneset recovery (assessed with area under the receiver

operator (AUROC) and area under the precision-recall curve (PR_AUC)) with 1000 random

comorbidity profiles from the HFnet were used to generate null distributions. The geneset recovery

values from the real HFpEF and HFrEF comorbidity profiles were then z-transformed. Reprinted from
213.
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To assess whether the resulting gene rankings recapitulate known HF genes, I curated a

set of HF related genes from various prior knowledge sources and independent datasets,

which had only little intersection (Figure 3.15D). I selected prior knowledge sources

including 1) DisGeNet genes associated to Heart Failure with confidence score >0.29; 2)

Literature curated 233, 3) Kegg disease database, dilated cardiomyopathy related

pathways and data driven resources including 4) Cardiovascular Disease Knowledge

portal, top common variants for Heart Failure; 5) Cardiovascular Disease Knowledge

portal, top single variants for Heart Failure (https://cvd.hugeamp.org/, accessed August

2022); 6) ReHeaT top 500 conserved genes from end stage heart failure meta-analysis
102. 7) PheWAS gene sets associated with Heart Failure (p<0.05, Odds ratio>1)

(https://phewascatalog.org/ , accessed August 2022).

I then assessed whether these genesets could be recovered within the HFpEF and HFrEF

gene rankings (Figure 3.16A). Gene sets that were retrieved from experimental data

(Gene expression, PheWAS, GWAS) performed worse in the predictions. Next, I

compared these prediction results with random comorbidity profiles and found that the

HFrEF profile associated with Kegg’s dilated cardiomyopathy (DCM) (z-score AUROC

1.77; z-score PR-AUC 6.7) and DisGeNETs HF genes (z-score AUROC 1.76; z-score

PR-AUC 2.46) (Figure 3.15F). This indicated that the HFrEF comorbidity profile which

was more cardiac centered was within the HFhetnet closer to prior knowledge of HF

genes. In general, well known genes relevant in HF were recovered for both, HFpEF and

HFrEF comorbidity profiles including NPPA, NPPB, TNFa, NOS2, NOS3, CCL2, IL1B,

LMNA, TTN (Figure 3.15E).

The randomization of comorbidity profiles suggest that HF gene sets tend to be rather

close to the disease layer in general. Thus, instead of using the HFpEF probability

ranking to suggest novel candidates I calculated a prioritization score for HFpEF and

HFrEF, which punishes highly ranked genes from both rankings. Thus, genes that are

close to the disease layer in general might be not highly specific for the selected

comorbidity profile and receive a lower prioritization score. More specifically, I

calculated . G is gene prioritization score, P is RW based probability, ΔR𝐺𝑖 =  𝑃𝑖𝑅𝑊 * |Δ𝑅𝑖|
is rank difference between HFpEF and HFrEF rankings for gene i (Figure 3.15C).

I found that MMP1, MHY7 and DAPK1 received the highest scores (Figure 3.16B). Other

candidates included genes functionally involved in fibrosis (e.g. LOX), metabolism

(XDH), transcriptional regulation (ATF6), coagulation (THBD), oxidative stress (NOS1). I
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reviewed potentially interesting candidates for their biological function and possible

association to HF (Table 3.3).

Ra

nk

Gene

symbol Gene name

Functional

group Gene Function

Role in HF

(exemplary or

putative)

Referen

ces

17 PCSK5

Proprotein

convertase

subtilisin/kexin

type 5

Cell

differentiatio

n

Mediates post translational

endoproteolytic processing

Cleaves GDF1, heart

development
234,235

9 NKX2-5 NK2 Homeobox 5

Cell

differentiatio

n

TF expressed in precursor cardiac

cells, involved in cardiac

development

Heart development,

activated in HF involved

in hypertrophy
236,237

31 GATA5

GATA binding

protein 5

Cell

differentiatio

n

TF, involved in embryonic

development of the heart

Possible role in cardiac

hypertrophy, linked to

dilated CM
238

42 GATA3

GATA binding

protein 3

Cell

differentiatio

n

TF, involved in embryonic

development of the heart and

immune cell differentiation

Role in T-cell

recruitment
239,240

67 JAG1

Jagged canonical

Notch ligand 1

Cell

differentiatio

n

Interacts with four receptors in

the mammalian Notch signaling

pathway

Possible protective role

against PAH and diabetic

CM, involved in

regenerative capacity of

the heart
241–243

62

NOTCH

1 Notch receptor 1

Cell

differentiatio

n

Regulates interactions between

physically adjacent cells through

binding of Notch family receptors

to their cognate ligands

Possible protective role

against PAH and diabetic

CM, involved in

regenerative capacity of

the heart
241–243

13 CITED2

Cbp/p300

interacting

transactivator with

Glu/Asp rich

carboxy-terminal

domain 2

Cell

differentiatio

n

TF that controls pluripotency

among others

Cardiomyocyte

pluripotency
244

23 KLKB1 Kallikrein B1 Coagulation Factor XII activation

Interacts with LDL,

possible HF biomarker
245–247

27 TBXA2R

Thromboxane A2

receptor Coagulation

G protein-coupled thromboxane

A2 receptor that induces platelet

aggregation and regulate

Involved in endothelial

homeostasis,

angiogenesis
248–250
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hemostasis

34 THBD Thrombomodulin Coagulation

Endothelial-specific type I

membrane receptor that binds

thrombin.

Angiogenesis and

anticoagulant , possible

HF biomarker
251,252

11 DAB2IP

DAB2 interacting

protein

Endothelial

dysfunction

Ras GTPase-activating protein

(GAP)

Associated with

endothelial dysfunction

in atherosclerosis
253,254

77 ESR1 Estrogen receptor1

Endothelial

dysfunction

Estrogen receptor and

ligand-activated TF

Regulates NOS activity

among many other

effects
255

7 ATF6

Activating

transcription factor

6 ER-stress Unfolded protein response

Activates XBP1 which

modulates ER-stress
256–258

3 MMP1

Matrix

metallopeptidase 1 Fibrosis

Proteases involved in degrading of

ECM

involved in cardiac

fibrosis
259

25 FGFR2

Fibroblast growth

factor receptor 2 Fibrosis

Receptor tyrosine kinases that

promote mitogenic signal

mediators that induce cell

proliferation and survival

Involved in cardiac

fibrosis
260

33 LOX Lysyl oxidase Fibrosis Cross-linking of collagens

Possible role in

myocardial stiffness
261

2 MYH7

Myosin heavy chain

7 Hypertrophy

Part of the thick filament in

cardiac muscle, involved in

contraction

Hypertrophy marker,

also reported in HFpEF
262,263

4 SUZ12

SUZ12 polycomb

repressive complex

2 subunit Hypertrophy

Core PRC2 (polycomb repressive

complex 2) protein

Mediates long non

coding RNA Ahit induced

cardiac hypertrophy
264

65 FSTL1 Follistatin like 1 Hypertrophy Extracellular glycoprotein

Protective against

hypertrophy
265,266

79 RGS5

Regulator of G

protein signaling 5 Hypertrophy

RGS proteins are involved in the

regulation of heterotrimeric G

proteins by acting as GTPase

activators

Protects from cardiac

hypertrophy and fibrosis
267,268

89 CD14

Cluster of

differentiation 14

Inflammatio

n

Membrane glycoprotein primarily

expressed by myeloid cells that

plays a key role in inflammation

Possible HFpEF plasma

biomarker
269

47

SHARPI

N

SHANK associated

RH domain

interactor

Inflammatio

n

Displacing talin from the integrin

cytoplasmic domain

Involved in integrin

Inactivation and NF-κB

Signaling
270,271

90 CD209 Cluster of Inflammatio Expressed by macrophages and Involved in rheumatoid
272
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differentiation 209 n dendritic cells arthritis

36 MVK Mevalonate kinase Metabolism Cholesterol metabolism

Fibrotic effects, Rho

family small GTPase

activity modulation
273,274

1 DAPK1

Death associated

protein kinase 1

Oxidative

stress

Calcium/calmodulin-dependent

serine/threonine kinase

Protection from oxidative

stress in MI
272

18 XDH

Xanthine

dehydrogenase

Oxidative

stress Oxidative metabolism of purines

Linked to nitroso-redox

balance, also possible

plasma marker
275

69 NOS1

Nitric oxide

synthase 1

Oxidative

stress

Synthesizing nitric oxide from

L-arginine

Inhibition possibly linked

to protection of diastolic

dysfunction
276,277

14,1

9

GSTZ1,

GSTT1

Glutathion-S-transf

erases

Oxidative

stress

Catalyzing the conjugation of the

reduced form of glutathione to

xenobiotic substrates for the

purpose of detoxification

Related to oxidative stress

in cardiac tissue
278,279

Table 3.3 Potential HFpEF candidates based on network proximity to comorbidity
profiles.
Genes are sorted by functional groups. Rank indicates prediction rank for HFpEF. TF, transcription

factor; CM, Cardiomyopathy; PAH, pulmonary arterial hypertension. Reprinted from 213.
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Figure 3.16. HFpEF gene prediction.

A) AUROC and AUC-PR for different HF related gene sets in random walk probability vectors based

on HFpEF and HFrEF comorbidity profiles. Prior knowledge gene sets are DisGeNET, Kegg pathway

for dilated cardiomyopathy (DCM), Cardiomyopathy (literature curated). Data based gene sets are

PheWAS, ReHeaT and GWAS variants. B) Prioritizing genes for HFpEF that are close to HFpEF

comorbidity profiles in the HFhetnet and also display high ranking differences when compared to gene

predictions based on HFrEF comorbidity profiles. C) Scheme of experimental design for murine model

of HFpEF by HFD/L-NAME diet. Cardiac ventricles were harvested after 9 weeks and bulk

transcriptomics were collected. D) Volcanoplot displaying gene expression regulation in the murine

HFpEF model compared to control. Labeled genes display HFpEF predicted genes from human

comorbidity profiles. D) Predicted HF genes from comorbidity analysis were enriched in gene-level

t-statistics of murine differentially expression analysis comparing disease with control. Gene set

enrichment p.value. ***p <0.001. **p < 0.01. Reprinted from 213.
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3.5.4 Corroboration of HFpEF gene candidates in independent

experimental data

Finally, I asked whether I could recover candidate genes in a molecular disease signature

relevant for HFpEF derived from orthogonal data. For this I collaborated with Prof.

Johannes Backs and Dr. Mark Pepin. They generated RNAseq data from a murine model

of HFpEF which successfully recapitulated important HFpEF phenotypes including

preserved ejection fraction and diastolic dysfunction 21. I received aligned RNAseq count

data and performed downstream analysis by first characterizing HFpEF transcriptomic

changes, and second comparing the comorbidity based gene prediction.

Figure 3.17 Myocardial gene expression in L-NAME/HFD.
A) Principal component analysis embedding transcriptomes of murine control (CON) and HFpEF
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samples (HFD.LNAME). B) Q-Q plot displaying deviation of gene-level p-values from a null model. C)

Volcanoplot displaying up and down regulated genes. D) Overrepresentation analysis of GO terms,

upper panel GO biological process, lower panel GO molecular function. Enrichment was performed by

selecting up and down regulated genes and enriching them separately by calculating Odds Ratio and

hypergeometric tests within ontology gene sets. For visualization purposes I multiplied the Odds Ratio

by sign of regulation. E) Visualization of the running sum calculated in gene set enrichment analysis

for the comorbidity predicted gene sets. Left panel are top 100 HFpEF predicted genes, right panel

are top 100 HFrEF predicted genes. Gene ranks were ordered by t-statistic values. Reprinted from
213.

I found that variation in the transcriptome associated with the HFpEF model on PC1

and PC2 (Figure 3.17A) and a�er performing differential expression analysis (Figure

3.17B), I found that gene regulation associated with processes involving fibrosis and

inflammation (Figure 3.17C, D).

I then ranked differentially expressed genes and performed enrichment analysis of the

HFpEF and HFrEF gene predictions using different cut-offs (Figure 3.16D, Figure 3.17E).

I found that the top 50 to 100 HFpEF predicted genes displayed significant enrichment

in overexpressed genes in the murine HFpEF model, while the HFrEF predicted genes

were not enriched. Fibrosis related genes like LOX, SMAD9, and PTHL and

hypertrophy related genes like GATA5, GATA3 and MYH7 could be recovered, among

others (Figure 3.16D). This suggested that the genes derived from human HFpEF

comorbidities associate with relevant gene expression patterns in a HFpEF related

disease signature.

3.6 Discussion and Conclusion

In this study I conducted a systems level analysis of comorbidities in a large

retrospective cohort of HF patients. I derived clinically relevant insights by comparing

comorbidity profiles between HFpEF and HFrEF patients, and biological insights by

defining genes associated with HFpEF and HFrEF comorbidity profiles.

Patient clustering has been previously shown to yield novel subgroups of HFpEF

defined by multivariate similarity 9–11. In contrast, the clustering of features (i.e.

comorbidities) can inform about patterns of co-occurring disease groups. Our study

demonstrated that this approach can be useful to interpret comorbidity profiles. The

aggregation of co-occurrence patterns of diseases can help to organize illness into
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different levels of clinical concepts like organs (DC7- Gastrointestinal tract), illness

severity (DC5 - intensive care) or disease categories (DC8 - cancer). This aggregation via

network clustering may also reduce multiple testing burdens and provide insights into

the relevance of low prevalence diseases where comparisons for a single disease may be

problematic.

In the patient classifier, HFpEF was characterized by a larger number of comorbidities

with lesser emphasis on cardiac disorders. This supports the hypothesis of HFpEF as a

comorbidity driven systemic syndrome 2,280. I found that hypertensive heart disease was

the most discriminant feature for HFpEF, which has been viewed as a major etiology for

diastolic HF involving cardiac hypertrophy and myocardial stiffness 281,282. In contrast,

ischemic etiologies including myocardial infarction characterized HFrEF consistent

with other studies 283.

I identified novel disease associations with HFpEF such as neoplastic diseases including

breast cancer. HF related hospitalizations in breast cancer survivors have been recently

associated more with HFpEF than with HFrEF 284, though the reasons for this remain

incompletely elucidated 285. The association to other cancerous diseases remains largely

unexplored and should be addressed in future studies. Another interesting aspect of

HFpEF patient comorbidities were the high similarity to DC6, which contained

rheumatic, osteologic and mental diseases. Systemic inflammatory diseases could be a

driving factor for HFpEF and rheumatic disease could constitute a pathophysiologic

linkage 280,286–288. Bone mineralization also has been reported to be lowered in HFpEF

patients 289 and is a symptomatic link to postmenopausal endocrinology 290. While

mental health has been studied in the context of HF extensively, differences between

HFpEF and HFrEF are largely unexplored. The joint clustering of these disease

complexes and their similarity to female patients provides a potential link between

female sex and HFpEF. Future work should further explore these relationships.

HFpEF and HFrEF clearly displayed distinguishable comorbidity profiles. By contrast,

HFmrEF, introduced as a unique form of HF in 2016 208 appeared to be a combination

of attributes from HFrEF and HFpEF. Thus, from the comorbidity perspective it may be

a transitional state instead of a unique syndrome as suggested before 291.

I predicted an associated genetic profile from data driven HFpEF comorbidity profiles.

This genetic profile indicates that HFpEF comorbidities are associated with recurrent

patterns of genes involved in fibrosis, inflammation, cell differentiation, metabolism and
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oxidative stress. As an example, the Glutathion-S-transferases, NOS1 and Xanthine

dehydrogenase (XDH), were identified by our network. XDH catalyzes the rate limiting

step in purine metabolism producing uric acid 292 and previous literature supports both

the role of serum uric acids in heart failure 275 and plasma XDH activity as relevant for

adverse clinical outcomes in HFpEF 293. Nitric oxide synthase (NOS) has been proposed

to contribute to endothelial dysfunction in HFpEF 276,277 and NOS1 inhibition was

recently associated with recovery of diastolic dysfunction in a murine model resembling

HFpEF294. Glutathione-S-transferases (GSTM1, GSTT1, GSTZ1) are antioxidant enzymes

and polymorphisms of these genes have been reported as potentially relevant to HF and

diastolic dysfunction 278,279. This group of genes could constitute crucial gene candidates

involved in comorbidity based HFpEF pathophysiology.

In general, HFpEF is likely to be a disease in which multiple genes and pathways

contribute to the spectrum of phenotypes. Therefore, instead of using the disease-gene

prediction to identify and validate individual genes, we have corroborated the overall

effect of a spectrum of identified genes in murine gene expression data. In real-world

populations, it is likely that the genetic heterogeneity of the syndrome will be

influenced by the specific comorbidities that are well represented in each population. In

previous disease-gene prediction studies, gene prediction was performed either by

selecting multiple seed genes or single seed diseases 295,296. I propose that our approach

for gene inference based on data driven comorbidity profiles might be suitable for

systemic syndromes where multimorbidity plays an important role like HF, and

especially HFpEF. In addition, several data resources were generated in this study: i)

HFpEF gene predictions, ii) HFhetnet and iii) murine HFpEF transcriptome to help

facilitate future efforts to understand HFpEF related pathophysiology and benefit the

research community.

This study is subject to several limitations. I analyzed routine clinical care data which is

limited to the information captured i) in our hospital system and ii) at the hospital visits

of a patient. Thus, possible non-observed confounders like socioeconomic status or

health related behavior could not be taken into account. Further, I performed a

cross-sectional analysis of comorbidity profiles and future studies are necessary to

delineate different disease trajectories by considering the time of events. Another data

limitation relates to the ICD-10 coding system which does not contain specific codes for

HF subtypes. I determined subtypes using LVEF, which can be error prone 297 and might

not fully provide a sufficient criterion for the HFpEF diagnosis 298. Patients with more

serious conditions will tend to visit a tertiary health care provider more o�en and thus
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could be overrepresented. This seemed to affect the contrast between HFrEF and

HFpEF, as HFrEF patients had higher intubation prevalence and DC5 similarity.

Furthermore, these limitations may have contributed to differences between this study

population and other reports of HFpEF population characteristics. However, given the

known heterogeneity of HFpEF and HFrEF 9–11, I believe these differences are plausible

and a more granular approach to study HFpEF subtypes could be necessary to address

inconsistent patient characteristics 299.

Many open questions remain regarding HFpEF pathophysiology and genetics 12.

Interdisciplinary and translational approaches are needed to account for the cross-organ

disease involvement that is suggested to be critical in HFpEF. The increasing abundance

of routine clinical care data and novel approaches like network medicine can provide

novel insights and guidance for future experimental approaches.
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Concluding Remarks

HF is a puzzling syndrome caused by a complex interplay of a multitude of pathways

subjected to internal and external factors specific to individual patients. To fully

appreciate this complexity, high throughput methods to generate unbiased molecular

profiles together with deeply phenotyped clinical data is necessary. Thus, the analysis of

high-dimensional and complex data has become an integral part of cardiovascular

research. The need for highly interdisciplinary research between experts of

cardiovascular biology, clinical research and bioinformatics is evident. This thesis

attempted to connect these research fields by addressing clinically relevant questions

regarding HF subtype characteristics in diverse biological and clinical data sets with a

toolbox of statistical and machine learning methods.

In chapter I, I provided the first comprehensive review of public data sets of the bulk

transcriptomic era in HF research. While previous meta-analysis o�en compared the

intersections of reported up or downregulated genes, I showed that this strategy is a

fallacy when used to judge the agreement of gene expression between studies. The

consistency can be rather assessed by cross study disease score calculations or methods

that compare transcriptome wide gene expression like gene set enrichment analysis. I

showed that the consistency between HF studies is remarkably high, and further can be

distilled to a gene consensus ranking. This ranking provides a gene expression reference

that might have great translational impact for future experimental investigations that

rely on identification of robust and generalizable targets for biomarkers or therapeutic

approaches. A limitation of this generalization regards the represented limited

heterogeneity of HF patients. Indeed, young, male patients with severe HFrEF were

typically sampled, identifying our current knowledge gap in phenotypically diverging

patient cohorts, including patients suffering from HFpEF.

In chapter II, a murine model was analyzed to address this knowledge gap in HFpEF.

Here, I analyzed the single cell transcriptome of the interstitial cardiac cells of an early

HFpEF mouse and identified fibroblast and macrophage to be key cell types. While

fibroblast activation is a hallmark of HF in general, I compared different HF models to

derive common and distinct patterns of fibroblast activation. I demonstrated that the

typical collagen and extracellular matrix deposition is a feature of all models alike.

However, additional gene regulation patterns characterized each model. In HFpEF, the

metabolic and protein stress was a unique feature, together with basement membrane
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expression. I found that AngII and late post-MI fibroblast patterns displayed high

similarity, supporting my findings in chapter I regarding similarity of DCM and ICM

patients. I connected gene expression patterns to fibroblast phenotypes (i.e. fibroblast

states) and I showed that the typical culprit of cardiac fibrosis, the matrifibrocyte, does

only play a subsidiary role in the onset of fibrosis in HFpEF. Instead collagen deposition

is a task performed by all fibroblast states. Furthermore, I derived that the activation of

fibroblasts in the acute model of MI is driven by state-independent gene expression

while the more chronic AngII and HFpEF models upregulated genes in dependency of

fibroblast states i.e. in a manner of division of labor. Here, a possible difference between

AngII and late post-MI fibroblast was demonstrated. The description of these fibroblast

activation patterns, might be an important step to a more tissue centric understanding

of fibroblast phenotypes contributing to different aspects of remodeling and thus enable

more targeted and better adjusted antifibrotic therapy. For instance, Angtpl4 was

derived as a marker of HFpEF fibroblast activation and could be recovered in human

HFpEF plasma. However, the studied mouse model of HFpEF simplifies the complex

disease etiology by using two pathological stimuli (i.e. HFD diet and L-NAME) and thus

human studies that account for the systems level disorder that characterizes HFpEF are

needed.

In chapter III, I addressed the multi-organ state of HFpEF patients by investigating

comorbidity patterns. By analyzing the recorded disease codes of HF patients, I

demonstrated that HFpEF and HFrEF can be distinguished by their comorbidity profiles

alone. To characterize the distinctive comorbidities, I interpreted a patient classifier that

yielded comorbidity associations of HFpEF including rheumatoid diseases, bone

diseases and neoplasms. Furthermore, by constructing and analyzing a joint network of

HF patient derived comorbidities, I showed that distinct disease groups tend to co-occur

and form disease clusters. These clusters characterized the HFpEF and HFrEF cohort by

capturing and summarizing distinct illness concepts. Thus, I found that HFrEF patients

were more severely ill and suffered from more heart centered comorbidities while

HFpEF patients suffered from more multi-organ diseases. Additionally, I showed that

these comorbidity patterns can be used to infer associated genetic profiles that yielded a

comorbidity based gene signature that aligned with transcriptomic changes in the

mouse model.

In summary, I comparatively analyzed HFpEF and HFrEF on multiple scales by using

diverse data sources gathered from mice and humans. In this work I followed an

analysis strategy of contextualizing findings that I will briefly revisit. When comparing
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healthy with diseased samples, a strong disease signal can o�en be observed e.g. in

transcriptome data, even when randomizing genes. This strength of signal is related to a

diseased organ state affecting i) most of the cells in the tissue and ii) gene expression

with almost genome-wide impact. In the case of HFpEF and HFrEF, the contrasting

analysis enabled me to decipher this strong universal disease signal to detect more

subtype specific patterns. To this end, I routinely incorporated various data sets that

capture different aspects of HF for this task. This approach relied on available data, and

thus might not be applicable in less intensely researched topics. However, even in well

funded HF research, the data availability is highly limited, which relates to the lack of

community standards for data sharing and annotation. While patient privacy concerns

have to be considered, o�en motivation of individual data exploitation prevents open

sharing. Thus, my thesis not only demonstrated the usefulness of integrating diverse

prior knowledge resources and independent data sets, but it also highlighted the

importance for the research community to facilitate data access, possibly by providing

stricter publication rules enforcing or at least encouraging data publication. Besides

improving reproducibility, the analysis of millions of data points is o�en a task that

cannot be performed exhaustively within a single project but should rather be used as a

resource to address diverse research questions.

Outlook

In this section, I will provide a brief outlook on future research efforts at the interface

between data science and HF research. I summarized and reviewed the state of this field

in a peer-reviewed manuscript 22. Extracts and structure of this paragraph are cited from

the review here.

To date, many challenges for HF research remain, as reflected by high mortality and

morbidity rates and limited treatment options. With the acknowledgement of the

heterogeneity of the HF syndrome, a crucial step was taken towards a more complete

comprehension. Nevertheless, HFpEF and HFrEF phenotypes only insufficiently

describe the diversity of pathways leading to HF onset and progression. Hence,

evaluating more ramified patient HF phenotypes will provide valuable insights into

more individualized pathomechanisms, following the notion of so-called personalized

medicine. This might help us to consider more and more factors of a patient's disease

course and bring us much closer to the goal of treating the right patient with the right

treatment at the right time. Thus, the direction that HF research has taken towards (big)

data collection and bioinformatic evaluation promises to advance our knowledge

substantially. However, major issues of this approach include biases in the collection and

128

https://sciwheel.com/work/citation?ids=10973619&pre=&suf=&sa=0


analysis of that data. As we rush to collect ever larger sample sizes, we should pause to

carefully consider whether we are merely enthralled by ever increasing data samples

(so-called data chauvinism 300) or whether the biological question is best answered by

data of the type and quality available. For many omics technologies, the number of

features considered requires large samples, or the noise introduced will result in inferior

model fitting. In other cases, a large sample size can be less informative if the sampling

is of lower quality, for instance if non-probabilistic sampling was applied 122. Thus, many

omic studies, especially those analyzing sparse myocardial tissue, suffer from small

patient cohorts that can not compensate for the biological and clinical variability. A

large-scale effort to acquire and comprehensively characterize relevant tissue samples

with a variety of omics techniques would ameliorate this issue and potentially provide

greater insight into the biology of HF. Such efforts have proven valuable in other areas,

most notably in oncology (e.g. The Cancer Genome Atlas Program (TCGA)). In clinical

data analysis we must balance the desire to find subsets of patients that share

characteristics, with the goal of making sure that all patients benefit from the potential

of precision medicine. Concerns about sampling bias, data missingness, and

measurement error in big data, and especially big clinical data, are all relevant to

research in HF 301–303. These data quality concerns are also important because they will

directly affect the output of machine learning analyses 22,304.

Lastly, despite the excitement about big data analysis and bioinformatics, the ultimate

goal in medicine must always be to improve human health. Physicians should receive

additional training allowing them to appropriately evaluate the potential of novel

algorithmic tools in clinical care 305. To successfully implement precision medicine

approaches based on omics and big data technologies, clinicians will need to understand

the strengths and weaknesses of methodologies and have confidence in their relevance

to disease. The role of data science and bioinformatics in HF prevention and treatment

necessitates a multi-disciplinary discussion where physicians are needed to take a

leading role.
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Glossary

ANOVA Analysis of variance

AngII Angiotensin II

BH Benjamini and Hochberg

CM Cardiomyocyte

DC Disease cluster

ECG echocardiogram

ECM Extracellular matrix

ELISA Enzyme-linked Immunosorbent Assay

GO Gene Ontology

HF Heart failure

HFD High fat diet

HFmrEF Heart failure with mid range reduced ejection

fraction

HFnet Heart failure comorbidity network

HFhetnet Heart failure heterogeneous network

HFpEF Heart failure with preserved ejection fraction

HFrEF Heart failure with reduced ejection fraction

HF-CS Heart failure consensus signature

IFS Integrated fibroblast state

L-NAME N(ω)-nitro-L-arginine methyl ester

LVEF Le� ventricular ejection fraction

MCA Multiple Correspondence Analysis

MI Myocardial Infarction

NYHA New York Heart Failure Association (Classification)

PCA Principal component analysis

PPI Protein-protein interaction

RWR-MH Random walk with restart on multilayer

heterogeneous network

SVES Supraventricular extrasystole

TF Transcription Factor

TAPSE Tricuspid annular plane systolic excursion
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