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Resolving the QCD phase structure

This thesis discusses the quantitative description of the phase structure of Quantum Chromo-
dynamics (QCD). We find that, in strongly correlated theories such as QCD, even a qualitative
investigation of the phase structure can require highly quantitative methods. Hence, the de-
velopment of a method with systematic error control is essential. In the present work, we use
functional renormalisation group (fRG) method to this aim. This work focusses on three ideas:
Firstly, we identify quantitatively dominating and sub-leading scattering-processes in our
approximations. This allows a formulation of low energy effective theories of the four-quark
interaction, as well as the description of gluon condensation. For the former, we present results
for meson and quark masses. The latter provides an estimate of the Yang-Mills mass gap.
Secondly, we further develop the use of highly precise numerical methods from fluid-dynamics
in the fRG. In particular we use Discontinuous Galerkin methods, which are able to capture
shock-development. Shock-waves are found to play a big role in a possible creation-mechanism
of first-order phase transitions. Lastly, we focus on general RG-transformations (gRGt). For
example, they allow a real time formulation of fRG flows and hence give access to spectral
functions. Furthermore, we use them to formulate complex RG-flows, which enables us to
locate Lee-Yang singularities in the complex plane and extrapolate the position of (real) phase
transitions. Finally, we also use gRGts to formulate significant qualitative improvements of
current fRG approximation schemes by means of dynamical field transformations.

Zur Bestimmung der QCD Phasenstruktur

Diese Arbeit befasst sich mit der quantitativen Beschreibung der Phasenstruktur der Quan-
ten Chromodynamik (QCD). Es stellt sich heraus, dass in einer stark korrelierten Theorie,
wie der QCD, sehr präzise Methoden bereits für eine qualitative Erfassung der Phasen-
struktur notwendig sein können. Die Entwicklung einer solchen Methode mit systema-
tischer Fehlererfassung ist daher essenziell. Wir nutzen hierfür Methoden der funktionalen
Renormierungsgruppe (fRG) und verfolgen drei Ansätze in dieser Arbeit: Die Erfassung/Iden-
tifizierung quantitativ dominierender Streuprozesse und solcher, die Korrekturen darstellen.
Dies geschieht im Kontext von effektiven Niedrigenergie-Theorien zu vier-Quark Streu-
prozessen und der Entstehung von Gluon-Kondensaten. Es werden quantitative Ergebnisse für
Meson- und Quarkmassen sowie die Yang-Mills Massenlücke präsentiert. Weiterhin entwickeln
wir die Verwendung von Methoden aus der Fluid-Dynamik beim Lösen der fRG Gleichungen
weiter. Hier verwenden wir insbesondere Diskontinuierliche Galerkin Methoden, welche es
erlauben die Entstehung von Schockwellen zu erfassen. Besonders im Entstehungsmech-
anismus von Phasenübergängen erster Ordnung können diese eine wichtige Rolle spielen.
Zuletzt fokussieren wir uns auf verallgemeinerte RG-Transformationen. Diese ermöglichen
zum Beispiel eine Realzeitformulierung der fRG mit Zugriff auf Spektralfunktionen oder
die Formulierung komplexer RG-Flüsse. Letztere werden zur Bestimmung von Lee-Yang
Singularitäten und den damit einhergehenden Phasenübergängen sowie kritischer Punkte
genutzt. Verallgemeinerte RG-Transformationen bieten auch die Möglichkeit qualitativer
Verbesserungen der verwendeten Näherungen durch dynamische Felddefinitionen.
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CHAPTER 1

Introduction

“What is matter made of?” - Particle physics answers this question with an effective description
by the Standard Model. It comprises three of the four known fundamental forces, strong, weak
and electromagnetic, and uses them to describe the interaction of elementary particles. The
answer to our initial question is an interplay of all the above: three generations of fermionic
matter particles, the quarks and leptons, and their interactions in terms of bosonic force carriers.
So instead, we ask a more nuanced question in this thesis: “How, and under which conditions,
is nuclear matter created?”

Heavy-ion collision experiments, such as RHIC, LHC and STAR to name a few, provide
numerous amounts of data on the state of nuclear matter at high temperatures T and high
baryon chemical potential µB. An interpretation and understanding of these experimental
results is provided by the theory of Quantum Chromodynamics (QCD), which describes the
interactions of quarks and the carriers of the strong force, the gluons [17–26]. QCD has a rich
phase structure, which contains the known states of hadronic matter at low temperatures and
densities and transitions to a quark-gluon-plasma (QGP) with increasing temperatures. Possible
(color-)superconducting states, which might be found in neutron stars, have been predicted at
high densities [27]. The phase transition between hadronic states and the QGP is linked to
two phenomena: color confinement and chiral symmetry breaking. Together they determine a
phase transition line, which starts as a smooth crossover at high temperatures and results in
the conjectured critical endpoint (CEP) with increasing density, after which a first order phase
transition occurs, see the sketch in Figure 1.1.

Many theoretical, ab initio results for QCD have been obtained from lattice calculations and
allow to map out the crossover region. However, this Monte-Carlo based method begins to
suffer from the sign problem at finite density, and extrapolated results are no longer reliable
for µB/T ≳ 2− 3 [28–37]. To date, the lattice has only been able to exclude the location of the
CEP up to this bound [38]. The sparseness of theoretical results at high densities is added to by
the lack of experimental data in this regime, caused by limited detector efficiency in identifying
signatures of phase transitions [39]. The relevance of the CEP arises from its critical long-range
correlations. For example, particle number correlations in heavy-ion experiments are promising
observables for example, see [40].

Due to their non-perturbative nature and lack of a sign problem, functional methods, such as
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Figure 1.1.: A sketch of the QCD phase structure. Figure taken from [41].

the functional renormalisation group (fRG) [42–51] or Dyson-Schwinger equations [19,52–57]
have added significantly to the prediction of the CEP location and reach as far as µB/T ≲ 6.
The fRG, which is inherently a method suited for physics of different scales, is our tool of choice
to investigate the phase structure of QCD: a theory defined by asymptotic freedom, strong
non-perturbative dynamics at low energies and competing order effects. In this work, we make
use of the flexibility of the fRG, which allows to systematically include (and exclude) degrees of
freedom from a given theory to pave the way for a quantitative computation of the QCD phase
diagram at high densities. We focus on three different ways to qualitatively and quantitatively
improve the current state-of-the-art results.

In principle, the fRG has a one-loop structure which accounts for all quantum effects. In
practice however, one has to chose a truncated ansatz to compute the complex field and
momentum dependencies. Here, we can benefit from the modularity of the fRG, where we can
systematically add (and remove) degrees of freedom (DoF) to test their quantitative relevance
to physical observables. This allows e.g. for a systematic inclusion of four-quark scattering
processes and the construction of low energy effective theories (LEFT) of QCD [58–60]. We
investigate LEFTs to study the process of spontaneous chiral symmetry breaking caused by
the formation of fermionic bound states, in the present context the mesons, across the phase
structure. The inclusion of higher mesonic scattering orders allows the prediction of the QCD
phase boundary in the area µB/T ≲ 6, beyond this ratio the LEFT needs to include the formation
of e.g. diquark condensates and vector mesons to remain quantitatively accurate [61–64]. The
phase structure is obtained from an order parameter potential, which tracks the formation of
symmetry breaking condensates [1, 10], see Figure 8.9 for an example in the quark-meson
model. We also apply this procedure to a fRG study of confinement, where we consider
the condensation process of gluons and give a prediction of the gluon mass gap [2]. The
corresponding order parameter potential is shown in Figure 4.1.

An elaborated numerical approach is vital to the quantitative control of the order parameter
potential, especially in the vicinity of the CEP and first order regimes. Here, the strong dynamics
of the RG-flow have the potential to create shocks and discontinuities, which affect the phase
boundary already on a qualitative level and may hint at a hidden mechanism for first order
phase transitions [1,65], see Figure 8.7. Hence, our second technical advance within this work
is the computation of fully field dependent order parameter potentials using Discontinuous
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Galerkin (DG) methods, which are able to accurately track shock development and propagation.
In light of highly dynamic, higher dimensional potentials with multiple condensates or the
inclusion of more elaborate momentum dependencies to our truncation, we also focus on
computational improvements of the numerical evaluation of RG-flows, such as runtime speed
ups and the application of different DG schemes.

Thirdly, we investigate possible improvements or extensions of the flow equations. This is
done by investigating general RG-transformations, first proposed by Wegner [66], which go
beyond the standard formulation in terms of the Wetterich or Polchinski flows [67,68]. These
novel technical developments are tested using the O(N) model. Together with the previously
outlined numerical advances, these developments can also be applied in broader context rang-
ing from condensed matter systems at the smallest momentum scales over Standard model
and Beyond Standard Model physics and QCD at high energy scales, to statistical physics
and quantum gravity. We consider an adaption of generalised RG-flows to complex sources,
allowing to identify the Lee-Yang singularities in the complex plane and thereby extrapolating
a real phase transition, see Figure 6.10a. A future application would be an extrapolation of the
CEP in QCD. Furthermore, we use RG-flows which expand the flow about its ground state by
using a RG-adapted reparametrisation of dynamical, flowing fields. Lastly, we also turn our
focus toward real-time applications of the fRG using the CS-flow to compute spectral functions.

This thesis addresses the above points of improvement. Since they are tightly interwoven in
applications, the thesis is structured as follows: we start with methodological developments,
which we later on apply to QCD. We begin with a short introduction to QCD in Chapter 2 and
its low energy effective theories. Next, we introduce the functional renormalisation group in
Chapter 3, where we also emphasise general RG-reparametrisations of the flow. With these
two ingredients we turn our focus to the computation of a gluon condensate in Chapter 4,
which is directly linked to confinement, the corresponding publication is [2]. In Chapter 5 we
give a brief introduction to Discontinuous Methods and show results for an order potential
of a simple O(N) model. The chapter corresponds to [5], refers also to [6], and gives insight
to the numerical developments which can be openly accessed on GitHub [12]. We proceed
with an investigation of complex functional flows for the Wilsonian and 1PI effective actions,
and the construction of an RG-adapted flow in Chapter 6. These flows are applied to an O(N)
model, which allows to locate (complex) Lee-Yang singularities and their corresponding phase
transition on the real axis. This chapter is based on [4]. It is followed by two more applications
of general RG reparametrisations to the O(N) model in Chapter 7, which we hope to use
for QCD calculations in the future. The content of this chapter is based on [8] and [7]. We
provide a compilation of results on the quark-meson model and its phase structure in Chapter 8,
compare [1,10,11]. Finally, a full QCD computation is presented in Chapter 9, see also [9].
We close with a summary and outlook in Chapter 10.





CHAPTER 2

Quantum Chromodynamics

The experimental discovery of a many different hadronic particle species in the 1950s suggested
a missing ingredient to the understanding of fundamental particles. In fact, sorting these
particles into groups according to their quantum numbers, such as charge or isospin, suggested
an underlying pattern: the existence of three smaller particles inside the hadrons, the quarks.
Quarks are, to our current understanding, the fundamental, fermionic building blocks of
hadronic matter.

The understanding of quark interactions was furthered by the discoveries of the Ω− hyperion
and the ∆++ baryon. It suggested an additional quantum number in the description of quarks,
such that the Pauli exclusion principle is satisfied for the quarks within the hadrons. This
additional quantum number Nc = 3 is called color charge and arises from the local SU(3)
gauge symmetry of quarks and anti-quarks. Their interactions are carried by an octet of vector
gauge bosons, the gluons. This picture is further complemented by different species of quarks
(u,d,s,c,b,t), which are called flavors.

In the following, we introduce the basic concepts and our notation for a quantum field theory
of quarks and anti-quarks with an SU(N) symmetry in Section 2.1. Next, we point out two
mechanisms underlying the (known) phase structure of Quantum Chromodynamics (QCD) in
Section 2.2: confinement and chiral symmetry breaking. We close in Section 2.3 by giving an
overview of the current state-of-the-art computations of the QCD phase structure, as well as an
introduction to low energy effective models, such as the quark-meson model.

2.1. Fundamentals of gauge theories

Quantum Chromodynamics captures the invariance of quark color charge under local SU(Nc)
gauge transformations. In such a theory, the fermionic (quark) fields ψ are invariant under
local transformations,

ψ(x)→ V (x)ψ(x) , with V (x) = exp (iαa(x)ta) , (2.1)

where ta are the N2
c − 1 hermitian generators of the SU(Nc) symmetry group and αa are some

arbitrary functions of the spacetime coordinate x . The fermionic fields ψ are given in the
fundamental representation of SU(Nc), which is a complex Nc-dimensional vector.
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The generators ta form a basis for any infinitesimal group element/transformation of SU(Nc),

V (x)→ 1+ iαa(x)ta +O (α2) , (2.2)

which is possible for any Lie group. In explicit calculations we use ta = λa

2 , where λa are the
Gell-Mann matrices for SU(3) and ta = σa

2 , with the Pauli matrices σa in SU(2). Since the
generators form a basis, we can write their commutator as a linear combination,

[ta, t b] = i f abc t c , (2.3)

where the sum-convention over indices is implied. The f abc are called structure constants. The
structure constants and commutation operation completely define the vector space spanned
by the generators, which forms a Lie Algebra su(Nc). In the present work, we chose the
normalisation of the structure constants as

tr f

�

ta t b
�

=
1
2
δab , (2.4)

in the fundamental representation, with the indices a, b = 1, . . . , N2
c − 1.

2.1.1. Gauge symmetry

All derivations in the present section are performed in Euclidean spacetime. For the construction
of a gauge invariant theory of quarks, we need a derivative that transforms covariantly under
gauge transformations V (x). Hence the concept of a partial derivative ∂µ is extended to the
covariant derivative,

Dµ = ∂µ − igsAµ , with Aµ = Aa
µ(x)t

a . (2.5)

The coupling gs to the gauge field is introduced as a simple rescaling for later convenience.
Aµ is an algebra valued field that arises as a consequence of the local symmetry and is called
comparator. The covariance Dµ(A)→ Dµ(AV ) = V DµV † of the derivative is now ensured by the
transformation of the comparator,

Aa
µ(x)t

a→ V (x)
�

Aa
µ(x)t

a +
i
g
∂µ

�

V (x)† . (2.6)

Hence, the gauge field effectively removes contributions that arise from gauge group trans-
formations in the difference quotient of the fermionic field and Dψ transforms the same as
(2.1).

The gauge field Aµ is a gauge boson and is called gluon in case of SU(3). It is a virtual
particle and the force carriers of the strong interaction. As such, it is part of the algebra and is
commonly indicated in the adjoint representation, which is given by (t c

ad)
ab = i f abc .

The gauge invariant Euclidean classical action for the fermions is now simply obtained by
replacing the plain derivative with the covariant one

SD[ψ, ψ̄, A] =

∫︂

x
ψ̄( /D+mq)ψ , (2.7)

where the integral is performed over d spacetime dimensions
∫︁

x =
∫︁

dd x .
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The description is completed by adding a kinetic term for the gluons, which also needs to
be gauge invariant. A natural candidate is the commutator of the covariant derivative, which
defines the field-strength tensor,

Fµν := F a
µν ta =

i
gs
[Dµ, Dν] , with F a

µν = ∂µAa
ν − ∂νA

a
µ + gs f abcAb

µAc
ν . (2.8)

Equation (2.8) clarifies the difference between Abelian and non-Abelian gauge theories: In
an Abelian symmetry group, the structure constants are all vanishing and the gauge field
cannot interact with itself, such as for example in quantum electrodynamics. However, if the
structure constants are non vanishing, we have a non-Abelian theory, and the theory allows for
self-interactions of the gauge field. This becomes manifest in the last term, which gives rise
to three and four gluon interaction vertices in the classical (Euclidean) action (2.9). Hence,
in the case of a non-Abelian gauge theory, one can also leave out the quarks and consider the
pure interactions of the gauge field, Yang-Mills theory,

SYM[A] =
1
4

∫︂

x
F a
µνF a

µν =
1
2

∫︂

x
tr f F2

µν . (2.9)

This is particularly interesting, since key features of SU(2) and SU(3) Yang-Mills theory are
asymptotic freedom and confinement, whose qualitative effects translate to QCD. We briefly
outline both features in Section 2.1.3 and Section 2.2.1. Moreover we investigate gluon
condensation and its connection to confinement in Chapter 4, see also the related publication
[2].

2.1.2. Quantisation and gauge fixing

After having established the basic ingredients of the classical action of a gauge theory in the
previous section, we proceed with its quantisation. Unlike the fermionic quark field, we face
immediate problems in the quantisation of virtual particles, due to double counting created
by the gauge symmetry. We illustrate this by a consideration of the naive path integral of
Yang-Mills theory,

∫︂

dA exp (−SYM[A]) , (2.10)

where integration over all configurations of the gauge field A are is implied. Due to gauge
invariance, many of these configurations are degenerate and introduce a redundancy to the
counted degrees of freedom in the path integral. More precisely, every configuration belonging
to a gauge orbit {AV }, where V is a transformation of the symmetry group, see (2.1), is physically
equivalent and should only be counted once in the path integral. This means, that the Hilbert
spaceA of all field configurations A is too big and not physical. This is also reflected in the fact,
that the naive two-point function is not invertible, since the canonically quantised conjugate
momentum of A0 is simply

Π0 =
∂LYM

∂ Ȧ0
= 0 . (2.11)

This redundancy can be removed by singling out an element of the gauge orbit {AV }, which is
achieved by introducing a gauge fixing condition F [A] = 0. This gauge fixing condition might
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suffer from the Gribov-ambiguity. That is, it might not be satisfied by any element of the gauge
orbit, or it might be fulfilled by multiple elements, the Gribov copies. In this case, the problem
is fixed by singling out a specific region [69], but we restrict ourselves to the assumption of a
unique solution for now. The aim is now to reformulate the path integral from a simple integral
over configurations inA to an integral over the physical space and an integral over all gauge
transformations.

The integration over gauge transformations V (x) = exp (iαa(x)ta) and the gauge fixing
condition are introduced to the path integral by insertion of a 1, following the procedure of
Faddeev and Popov,

1=

∫︂

dα(x)δ(F [Aα])det
�

δF [Aα]
δα

�

(2.12)

where,

(Aα)aµ ta = exp (iαa ta)

�

Ab
µ t b +

i∂µ
gs

�

exp (−iαc t c) , (2.13)

is the gauge field transformed by (2.6) using the definition of a gauge transformation in (2.1).
Throughout this work, we mostly use variants of the generalised Lorentz gauge,

(F [A])a = ∂µAa
µ −ω

a(x) . (2.14)

where ωa is a Gaussian weight centered around 0, with some width ξ. This covariant gauge
is convenient, since it does not single out a single spacetime direction. As long as the gauge
fixing condition F [A] is linear, the functional derivative δF [Aα]

δα is independent of α. We will
make use of this property in the following.

Inserting (2.12) into the path integral (2.10) and performing the integration over gauge
transformations α yields,
∫︂

dA exp (−SYM[A]) = N(ξ)

∫︂

dAgf det
�

δF [Aα]
δα

�

exp

�

−SYM[A]−
1

2ξ

∫︂

x
(∂µAa

µ)
2

�

, (2.15)

where we now integrate over the physically inequivalent configurations with the gauge fixed
measure dAgf. We remain with some normalisation factor N(ξ) which stems from the Gaussian
weighting. This factor drops out when considering general local and gauge invariant observables
O since,

〈O 〉=

∫︁

dAO [A]exp (−SYM[A])
∫︁

dA exp (−SYM[A])
=

∫︁

dAgf det
�

δF [Aα]
δα

�

O [A]exp
�

−SYM[A]−
1

2ξ

∫︁

x(∂µAa
µ)

2
�

∫︁

dAgf det
�

δF [Aα]
δα

�

exp
�

−SYM[A]−
1

2ξ

∫︁

x(∂µAa
µ)2
� .

(2.16)

The gauge fixing procedure also cures the inversion problem in the propagator and the vanishing
covariant momentum alluded to in (2.11), since it effectively adds a 1

2ξ

∫︁

x(∂µAa
µ)

2 term to the
classical action.

It remains to investigate the determinant in (2.15). Using the expression in (2.14) and the
transformation (2.13) the derivative can be evaluated to,

δ(F [Aα])a

δαb
=

1
gs
∂µDab

µ . (2.17)
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From this equation we can see that in a non-Abelian gauge theory, the Fadeev-Popov determinant
introduces an interaction of the virtual particle. For an easier interpretation in terms of Feynman
rules, this determinant is commonly represented as a functional integral over two artificial
Grassman valued fields ca and c̄a in the adjoint representation,

det
�

1
gs
∂µDµ

�

=

∫︂

dcdc̄ exp

�

−
∫︂

x
c̄a∂µDab

µ cb

�

. (2.18)

The coupling factor is usually absorbed into the ghost and anti-ghost fields c and c̄. The
ghosts should be seen as a tool which fits nicely into the field formalism. Most importantly, as
Grassman-valued Lorentz scalars, they do not agree with the spin-statistics theorem and should
not be considered as particles, hence the name "ghosts".

From (2.18) we can infer the last contribution to the gauge fixed action of Yang-Mills theory,
the ghost action,

Sgh[A, c, c̄] =

∫︂

x
c̄a∂µDab

µ cb . (2.19)

We close the discussion of the quantisation and gauge fixing of Yang-Mills theory by addressing
the manifestation of gauge invariance in the gauge fixed action. For a sensible quantisation of
Yang-Mills theory a gauge fixing was introduced, which enables one to define covariant momenta
and a propagator for the gauge field. In the process of gauge fixing, the gauge invariance is
broken explicitly. However, we still require gauge invariance of physical observables which are
computed from a gauge fixed action. To achieve this, the n-point correlation functions need
to fulfil the Slavnov-Taylor identities (STIs) in non-Abelian gauge theories [70,71]. The STIs
follow by requiring that the effects from carrying out an arbitrary gauge transformation vanish
from the path integral. While these relations encode all information of the gauge symmetry,
the evaluation of the STIs requires the computation of expectation values and is no longer
algebraic on a quantum level. In terms of the action, the remainders of gauge invariance in
the gauge fixed theory are found in BRST-symmetry [72,73]. The underlying transformation
of BRST-symmetry is a combined transformation of the gauge field A, the gauge fixing and
the ghosts c, c̄ and gives a precise relation between the ghosts, anti-ghosts and the unphysical
polarisation states of the virtual particles (gluons). It is a continuous symmetry and is thus, by
Noether’s theorem, linked to a conserved BRST-charge Q. The conservation of Q is then used
to construct the physical Hilbert space, similarly to the physical photon polarisations obtained
from the Gupta-Bleuler formalism in QED.

A rigorous proof of the existence of Yang-Mills theory remains one of the unsolved Millennium
problems to this day [74]. To our current knowledge there is no proof following the axioms
put forward in [75] or [76, 77] of the existence of Yang Mills theory on a four dimensional
Euclidean spacetime and its mass gap, which we comment on in Section 2.2.1.

The gauge fixed QCD action consists of the classical actions for the quarks (2.7) and gluons
(2.9), as well as the ghost action (2.19) and the gauge fixing term yielding,

SQCD =

∫︂

x

§

ψ̄( /D+mq)ψ+
1
4

F a
µνF a

µν + c̄a∂µDab
µ cb +

1
2ξ
(∂µAa

µ)
2
ª

. (2.20)

The fermionic part of the action implies summation over all Nc = 3 colors, as well as N f = 6
flavors which are given by the different quark species up, down, strange, charm, beauty and top
(u,d,s,c,b,t). The quark mass mq term changes for different species. This is important, since the
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Figure 2.1.: Running coupling αs of QCD as a function of scattering momentum transfer Q. The figure
was taken from [79] and is using experimental data from [80–86].

heavy quark flavors (c,b,t) do not contribute to the dynamics in the infrared. Most applications
in the low energy sector of QCD therefore omit the heavy quark flavors (mq > 1 GeV) and focus
the three lighter quarks. The current quark masses of the up and down quark are very small
mu = 1.8− 2.8 MeV and md = 4.3− 5.2 MeV even in comparison to the next lightest quark,
the strange quark with ms = 92− 104MeV [78]. Therefore, model computations often use a
N f = 2 symmetric model considering up and down quarks or a N f = 2+ 1 computation which
adds the strange quark [51]. We discuss low energy effective theories of QCD in Section 2.3,
after having discussed some more general aspects of the theory.

2.1.3. Asymptotic freedom

At quantum level, the scale invariance of a classical theory is broken by the appearance of a
renormalisation scale µ in the couplings. The renormalisation scale is fixed by the renormalisa-
tion conditions, which are in principle arbitrary, but are usually physically motivated and allow
to directly interpret the results. The scale dependence of QCD shows in the running gluonic
coupling αs, which is depicted as a function of scattering momentum transfer in Figure 2.1. As
we can see from the figure, this effect is accessible both theoretically and from experiment.

Since the renormalisation scale µ is not a physical quantity in itself, the renormalised
connected correlation functions Gn(x1, . . . , xn) = 〈Φi(x1) . . .Φ j(xn)〉|conn., where the Φi are
components of the superfield Φ = (Aµ, c̄, c, q̄, q), cannot depend on it. Still, the Gn depend
on renormalised masses and couplings, which in turn depend on the renormalisation scale µ.
Hence, all these µ dependencies must cancel out in the correlation functions. This necessity is
captured by the Callan-Symanzik or renormalisation group equation,

�

µ∂µ + β
(µ)
λi
∂λi
+ n jγ

(µ)
Φ j

�

Gn = 0 . (2.21)

where we sum over all couplings and masses λi, as well as (super)-fields n = (n1, . . . ). The
β-functions are given by, β (µ)

λi
= µ∂µλi as well as the rescaling of the fields γ(µ)Φ j

= µ
2∂µ log ZΦ j

.
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From the Callan-Symanzik equation (2.21), one can compute the β -function perturbatively to
a given loop order by inserting the corresponding expressions for given Gn.

The one-loop β-function of the gauge coupling for a SU(Nc) gauge theory with N f quark
flavors follows as,

µ∂µαs = (2N f − 11Nc)
α2

s

6π
, (2.22)

where the renormalisation scale was identified with the energy scale µ. In the case of QCD
at high energies µ, the running is negative, since Nc = 3 and N f = 6. This implies, that the
(positive) gauge coupling decreases with increasing energies, and that αs → 0 for µ→∞.
This effectively shuts off all interactions and the quarks and gluons become free particles in the
ultraviolet, which is called asymptotic freedom. On the contrary, the gauge coupling increases
with decreasing energy scale µ. Once αs > 1 perturbation theory no longer works and we enter
a strongly correlated, non-perturbative regime requiring non-perturbative methods which are
expanded on in Chapter 3.

We can conclude from this discussion, that QCD behaves vastly different across different
energy scales, making for a rich phase structure across finite temperatures and particle densities.

2.2. Phases of QCD

For an investigation of QCD phases, and later the phase structure, we take a look at the
symmetries of the QCD action (2.20): Firstly, we have the SU(Nc) gauge symmetry and
secondly we have an additional, approximate symmetry of the fermions, called chiral symmetry.
This symmetry arises in the limit of massless light quarks, the chiral limit, where QCD displays
a global U(N f )L × U(N f )R flavor symmetry. Even though chiral symmetry is not realised in
nature, due to the small current quark masses, it is a reasonable approximation for the two
light quarks (N f = 2) and for some applications also the three lightest quarks (N f = 3).

The (spontaneous) breaking of SU(Nc)× U(N f )L × U(N f )R at low temperatures and particle
densities describes two interesting phenomena. Firstly, whereas high energy QCD describes
a theory of free quarks and gluons, low energy QCD shows an interesting feature: all color
charges seem to be confined to composite, color-neutral particles. Secondly, the process of
spontaneous chiral symmetry breaking, accounts for a significant mass generation in bound
states near the vacuum. Here we find that the current quark masses only account for ≈ 1% of
the total mass of the nucleons.

2.2.1. Confinement

Broadly speaking, color confinement is the phenomenon that color charged particles only appear
within composite particles and do not appear as asymptotic states. To date there is still no
rigorous proof of confinement or an explanation that is generally agreed upon [87]. However,
there are signatures of confinement in terms of order parameters and varying confinement
scenarios that we address in the following.

Let us consider pure Yang-Mills theory with static quark sources in a simplified setting. Here,
we can describe the confinement effect in terms of a free energy/potential Vq̄q between a static
quark and anti-quark pair as a function of their distance r. At large energies, where the coupling
is small and the theory perturbative, a Coulomb-type potential is expected. At small energies
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however, confinement is reflected in the linear potential between the quark-anti-quark pair
when pulled apart, to wit

lim
rΛQCD→0

Vq̄q(r)∝
1
r

, and lim
rΛQC D→∞

Vq̄q(r)∝ σr . (2.23)

where ΛQCD is the confinement scale and σ the string tension. Equation (2.23) implies a
constantly growing force between a separating quark pair. In fact, completely separating a
quark pair would require an infinite amount of energy, which is more than simply creating a
new quark-anti-quark pair from vacuum. Hence, we chose to consider a static quark-anti-quark
pair, where such a process cannot take place. In the case of dynamical quarks, such as for
example in collider experiments, one finds many color neutral particles instead of single colored
particles as a result of so called string breaking. The additionally created quark-anti-quark pairs
shield the color force of the original pair and lead to a levelling off of the potential Vq̄q(r) at
finite r.

The static potential Vq̄q(r) can be computed from the Wilson line, which describes a quark-
anti-quark pair in the infinite quark mass limit, that is created, separated to a distance r and
annihilated at some later time along a world-line Cr . The Wilson loop is given by,



trP exp

¨

i

∮︂

Cr

d xµAµ

«

·

∝ exp
�

−Vq̄q(r)
�

, (2.24)

where P is the path-ordering operator and
∮︁

Cr
denotes the integration along the world-

line Cr . The main idea behind (2.24) is the construction of a parallel transporter of gauge
transformations, which allows to define gauge invariant correlation functions of fermionic
fields. At finite temperature, this idea can be transferred to an integration over two loops in
the periodic imaginary time direction, for more details on the finite temperature formalism see
Appendix B.1. This defines the Polyakov loop in finite temperature Yang-Mills theory,

L =
1
Nc

trfP exp{i gs

∮︂

A0(x)} , (2.25)

where the integral
∮︁

is now over x0 ∈ [0, 1/T ] and T denotes the temperature. The expectation
value of the Polyakov loop 〈L〉 is commonly used as an order parameter for quark confinement,
to wit,

〈L〉=

(

0 , confining phase ,

̸= 0 , deconfiningphase .
(2.26)

Most notably, 〈L〉 is not invariant under the center symmetry ZNc
of the gauge group with

L → z L and z ∈ ZNc
, whereas the Yang-Mills action is. This symmetry can be restored by

averaging over the symmetry group, see Appendix B.2.1. To conclude, the Polyakov loop
expectation value links the confinement-deconfinement phase transition to the spontaneous
breaking of center symmetry of the gauge group.

Quark confinement can linked to gluon confinement by computing the Polyakov loop potential
from gauge dependent Greens functions of the gluonic (background) field [88,89]. In this way,
it can be related to the Kugo-Ojima [90] and Gribov-Zwanziger [69,91] confinement scenarios.
Since this work mostly focusses on variants of the Lorenz gauge and the Gribov-Zwanziger
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scenario considers the Coulomb gauge, we refer its discussion to the above literature. Kugo and
Ojima formulate a confinement criterion for the wave function renormalisation factors/dressing
functions of the gauge boson in the Lorenz gauge. Using the conservation of BRST charge in
physical states they found that the absence of colored particles requires the gluon propagator
to develop a mass gap, that is,

m2
gap = p2Z⊥A (p)|p2→0 > 0 , (2.27)

where Z⊥A is the transverse part of the gluon dressing function, see (4.34). Traces of this
mass gap can be found in the correlation functions in the infrared momentum region and are
formulated in terms of the leading momentum behaviour of the dressing functions of the gluon
and ghost, respectively,

Z⊥A (p
2→ 0)≃
�

p2
�κA , and Zc(p

2→ 0)≃
�

p2
�κC , (2.28)

their exact definition follow from the two-point function and we refer to (4.34) and (4.44) in
Chapter 4, where investigate gluon-condensation as a potential mechanism for the creation of
a mass-gap.

The exponents κA and κC distinguish between different infra-red solutions, consistent with
renormalisation group invariance [92]. They differ by an infrared boundary condition for
ZC(0). For the boundary condition ZC(p2→ 0)→ 0 there is a unique scaling solution [93,94],
which is characterised by the sum rule 0 = κA+ 2κC + (4− d)/2, where d is the spacetime
dimension. Even though the precise value of these parameters may value for specific choices of
truncations and method, most functional approaches use,

κA ≈ −1.19 , and κC ≈ 0.595 , (2.29)

see e.g. [95]. These results allow the aforementioned confinement scenarios of Kugo-Ojima
and Gribov-Zwanziger.

Another set of exponents is given if we ask for finite ZC(0). Then (2.27) goes to a constant
in the infrared. This solution is named decoupling solution, since the gluon decouples from the
dynamics as would a massive particle [92,96]. In this case, the scaling exponents are given by,

κA = −1 , and κC = 0 . (2.30)

Both approaches only differ in the deep infrared and are suspected to be linked to different
resolutions of circumventing the occurrence of Gribov copies [92].

2.2.2. Chiral symmetry (breaking)

In the process of constructing the Lorentz invariant representation of Dirac fermions, another
possible symmetry of (massless) fermionic theories becomes apparent. This is most obvious in
the Weyl or chiral representation of the Dirac algebra, where the four-dimensional generators
of Lorentz boosts and rotations are block diagonal. This hints at the reducibility of the Lorentz
group and the (four-dimensional representation of the) fermionic field ψ. In fact, ψ can
be understood in terms of two (two-dimensional) objects ψL and ψR, the left-handed and
right-handed Weyl spinors respectively,

ψ=

�

ψL
ψR

�

. (2.31)
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At vanishing fermionic mass, the chiral limit, the dynamics of the left-handed and right-
handed blocks decouple completely. Thus in a massless fermionic gauge theory, the left-handed
and right-handed components can be rotated separately in flavor-space. In the case of N f
massless fermionic flavors, the action is symmetric under left- and right-handed unitary flavor
transformations U(N f )L × U(N f )R. These transformations can be divided further into vector-
symmetries, which treat left- and right handed parts equally, as well as axial-symmetries, which
do not.

At this point, we simplify the discussion by setting N f = 2, which we use throughout this
work. The N f = 2 flavor case corresponds to the two lightest quarks u and d, which are massless
in good approximation. Heavier quark flavors decouple from the dynamics at low energies.

The flavor rotation symmetry is now written in terms of vector and axial components
U(1)V × U(1)A× SU(2)L × SU(2)R. The U(1)A symmetry is broken anomalously by non-trivial
topological effects of the gauge field and is phenomenologically relevant in the three flavor case
to explain η−η′ mixing in the mesonic mass spectrum [97–99]. For the purpose of this work,
we drop this symmetry. The U(1)V symmetry is linked to baryon number conservation and can
spontaneously be broken and finally the remaining SU(2)L × SU(2)R symmetry is called chiral
symmetry.

At high temperatures and/or particle densities chiral symmetry is approximately realised and
only hampered by the small current quark masses. Near the vacuum, however, chiral symmetry
is spontaneously broken by the formation of a quark-antiquark condensate,

〈q̄q〉= 〈q̄LqR + q̄RqL〉 , (2.32)

in which the mixing of handedness becomes apparent. In the process of spontaneous symmetry
breaking the SU(2)L × SU(2)R is broken to a remaining SU(2)V symmetry called isospin. The
Goldstone bosons of this process form an isospin triplet and are given by the pions (π+,π0,π−).
Since the original chiral symmetry is only approximate, due to the small current quark mass,
the physical scenario predicts pseudo-Goldstone bosons with massive pions. Before discussing
low energy effective models for chiral symmetry breaking in Section 2.3, we close with a
remark on the N f = 3 case, which also takes the strange quark into account. Here, the
flavor symmetry is spontaneously broken, such that only the SU(3)V symmetry remains. The
Goldstone bosons form an octet of mesons with spin 0, comprising the three pions, as well as
the Kaons (K0, K+, K−, K̄0) and η mesons. Additionally to the quark-anti-quark condensate,
spontaneous chiral symmetry breaking also comprises the formation of baryons, where the
U(1)V symmetry is broken additionally.

2.3. Low energy effective theories of QCD

This subsection is based in parts on [1].

Within functional QCD low energy effective theories (LEFT) of bound states emerge naturally
from the momentum scale flow of the theory at momentum or cutoff scales k ≲ 1 GeV, [42,
44,45,48,51,59,102,103]. In this regime, the gluonic degrees of freedom decouple from the
dynamics due to the gluonic mass gap in QCD, for a detailed discussion see [48,51,104].

We have seen in Figure 2.1, that the strong coupling αs increases towards lower energy scales.
This increase of αs translates into two gluon exchange diagrams generating effective four-quark
interaction channels as Γ (4)q̄qq̄q,k∝ α2

k,s. In general, all possible interaction channels, which are
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Figure 2.2.: QCD phase structure computed from functional methods, with a range of validity
µB/T(µB) ≲ 4 of the low energy description in terms of quark-meson interactions. The
figure is taken from [51], with additional data from [100,101].

allowed by the SU(Nc)× U(1)V × SU(2)L × SU(2)R symmetry, are generated. The interaction
strength of particular channels can diverge at some place in the phase diagram, hinting at a
condensation process and the formation of a bound state. These bound states introduce new
dynamic degrees of freedom, which can be captured by bosonising the four-quark channel
using a Hubbard-Stratonivich transformation [105,106], for a discussion of the emergent LEFT
see [103].

In the following, we discuss the validity and emergence of LEFTs in the context of the QCD
phase structure Section 2.3.1, and introduce the basic formalism for the most important one:
the quark-meson model in Section 2.3.2.

2.3.1. Emergent LEFTs and their range of validity

The key ingredient for the emergence of LEFTs is the scale-dependent four-quark scattering,
whose dynamics at large momentum scales is driven by a box diagram with a two-gluon
exchange between quark currents. This box-diagram is represented using a (Fierz-)complete
basis of tensor structures of the allowed SU(Nc)×U(1)V ×SU(2)L ×SU(2)R symmetry. For the
discussion of its low-momentum behaviour we restrict ourselves to the momentum-independent
tensor structures, that is 10 tensor structures in N f = 2 flavor QCD and 28 (32) tensor
structures in N f = 3 flavor QCD, the relevant cases for the discussion of the phase structure
of QCD. It has been shown in [44,48] that in the vacuum the scalar-pseudoscalar channel is
dominating the dynamics by far, both above and below the chiral symmetry breaking scale
of k ≈ 500 MeV: switching of all other channels leads to negligible effects for most physical
observables. Moreover, in [64] is has been shown for N f = 2-flavor QCD in the chiral limit, that
qualitatively this dominance persists up to large densities or chemical potentials, µB/Tc(0)≈ 6,
where Tc(µB) is the chiral crossover or phase transition temperature at a given baryon chemical
potential µB. This highly interesting first dominance study in QCD is based on qualitative
approximations, and a conservative error estimate leads us to µB/Tc(0)≲ 4− 8 for the (total)
dominance regime of the scalar-pseudoscalar channel.
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This supports the computations in [51], where the phase structure of 2- and 2+1-flavor QCD
was computed within a one-channel approximation (scalar-pseudoscalar) to the Fierz-complete
tensor structure for µB/T (µB)≲ 4, see Figure 2.2. Then, dynamical hadronisation takes into
account multi-scattering events of the resonant channels (multi-scatterings of pions and the
scalar σ-mode) that are relevant for the critical dynamics in a regime with second or first
order transitions, which is the model we introduce in Section 2.3.2. In summary we estimate
the reliability regime of the present approximations in functional QCD (see also respective
considerations in DSEs ( [19,56,100]) to be

µB/T (µB)≲ 4 . (2.33)

The critical end point (CEP) computed both within the most recent fRG-computations, µB/T (µB) =
5.59 from [51] and DSE, µB/T (µB) = 5.54 from [100], for the physical case of 2+1-flavor QCD
agree well, which sustains the respective reliability of these estimates. Still it is not within the
regime of quantitative reliability of the current approximation.

Consequently, (2.33) entails that for a quantitatively sound prediction of the CEP the current
approximation to the full first principle QCD-flow has to be improved systematically in two
directions for chemical potentials µB/T(µB) ≳ 4: Firstly, we need to include at least the
dominant tensor structure at large densities, the color-superconducting (csc) - or diquark-
channel. This extension will be considered elsewhere. Secondly, the self-consistent computation
of the order parameter potential set-up in [25] is required. This is done in the present work
within a recently developed numerical approach that also allows the inclusion of the formation
and propagation of shocks [65].

2.3.2. The quark-meson model

The quark-meson model is a Nambu–Jona-Lasinio (NJL)-type model, describing an effective
theory of quark and meson interactions constructed from fermions with chiral symmetry. A
similar example of an effective theory is used to describe the formation of Cooper pairs from
electrons in the BCS theory of superconductivity. In the following, we briefly recapitulate the
fRG-approach to the (Polyakov-enhanced) quark-meson model (QM model). The inclusion of
the dynamical mesons as low energy effective degrees of freedom has to be seen as an efficient
and convenient book-keeping device for the respective resonant interaction channels. In
particular, this substitutes the rather tedious inclusion of the resonant parts of the higher-order
scattering processes of quarks. Still, if used on a quantitative level, even for large UV-cutoff
scales its effective action does not reduce to a simple local classical actions. For more details
and in particular its quantitative properties as an emergent low energy theory in QCD we refer
to [44,45,48,51]. Validity checks, benchmarks and bounds in comparison to QCD have been
provided in [103].

The key ingredient to the QM model is the scalar-pseudo scalar four-quark channel, which is
given by

L (S−P)
(qq̄)2 = −

λ(S−P)

2
Z2

q [(q̄τ
0q)2 − (q̄γ5τq)2] , (2.34)

where τ0 = 1/
Æ

2N f and τ are the normalized generators of flavor U f (1) and SU f (N f ) in

the fundamental representation, respectively. λ(S−P) is coupling of the (S − P) channel and
Zq the quark wave function renormalisation. During the formation of bound states λ(S−P)

diverges. This resonance is directly connected to the formation of mesons, as dynamical
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degrees of freedom, which can be captured in an auxiliary field φ∝ q̄τq. The auxiliary field φ
is introduced to the action via an exact transformation of the fermionic generating functional,
a Hubbard-Stratonivic transformation,

∫︂

Dφ exp

�

−
∫︂

x

�

1
2

m2φ2 + hq̄(τ ·φ)q
�

�

=

∫︂

Dφ exp

�

−
∫︂

x

�

1
2

�

mφ +
h
m

q̄τq
�2

−
h2

2m2
(q̄τq)2
��

=N exp

�∫︂

x

�

h2

2m2
(q̄τq)2
��

,

(2.35)

where N is the remaining Gaussian integral, which is just a number and drops in the normali-
sation. By identifying λ(S−P) = h2

m2 , we find that the (S − P) channel can be rewritten as a mass
term and coupling to the gluons of the auxiliary field. By varying φ in the first term in (2.35),
we find that on a classical level φ = h

m2 q̄τq, which manifests the structure of φ as a quark
bilinear.

For a representation of φ in the N f = 2 case, we make use of the equivalence of SU(2)L ×
SU(2)R ∼= SO(4) to implement chiral symmetry in the mesonic fields. The simplest representa-
tion of the meson fields is thus the O(4)-vector,

φ = (σ,π)t , (2.36)

where σ corresponds to the scalar sigma meson and π to the pseudo-scalar pions. The pions
form an isospin triplet and correspond to the SU(2)V ∼= SO(3) symmetry, which is not broken.
A convenient order parameter for chiral symmetry breaking is thus given by the expectation
value of the sigma meson 〈σ〉.

The chiral phase transition of the QM model, and by extension two flavor QCD, therefore
lies in the O(4) universality class. Moreover, the dynamics that drive chiral symmetry breaking
are determined by the mesonic field φ, whereas the fermions only contribute via the fermionic
determinant. This explains also our interest in O(N) models in general: not only are they
a good testing ground for our methods, but they also provide information about the critical
behaviour of the theory.

We continue by defining the chiral invariant ρ, which is given by,

ρ =
1
2
φ2 =

1
2
(π2 +σ2) . (2.37)

All interactions are indicated in terms of ρ which ensures the chiral symmetry of the ansatz.
Finally, the UV action of the two flavor Quark-Meson model at finite temperature T and quark
density µq = µB/3 is given by

SUV[q, q̄,φ] =

∫︂

x

�

q̄
�

/∂ + hσ (τ0σ+ τπ)− γ0µq

�

q+
1
2

�

∂µφ
�2
+ VUV(ρ)− cσσ

�

, (2.38a)

and the spatial integration at finite temperature reads

∫︂

x
=

∫︂ 1/T

0

d t

∫︂

d3 x ,

∫︂

p
= T
∑︂

n∈Z

∫︂

d3p
(2π)3

. (2.38b)
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We have also introduced the corresponding momentum integration,
∫︁

p, for a detailed derivation
of the finite temperature and density formalism see Appendix B.1. The classical potential VUV(ρ)
includes the mesonic mass term and a φ4 interaction,

VUV(ρ) = m2
φ ρ +

1
2
λφ ρ

2 , (2.38c)

where the φ4 term already introduces local higher order quark scatterings. We have also
introduced an explicit symmetry breaking term cσ, which is linked to a finite quark mass mq at
the level of the UV action. This mass exists in QCD, see (2.20), where we have small current
quark masses for the up and down quarks. The term

∫︁

x q̄mqq can be removed by a redefinition
of the field

σ→ σ−
mq

h
. (2.39)

which results in the linear term with

cσ = m2
φ

mq

h
. (2.40)

This term turns the pions from formerly massless Goldstone-bosons into pseudo-Goldstone
bosons and accounts for a small pion mass.

In its most general form, this ansatz for the quantum effective action comprises ρ and
momentum dependent wave function renormalisations Zq and Zφ , as well as a ρ-dependent
effective potential V (ρ) and Yukawa coupling h(ρ). Since the full field and momentum
dependence of this ansatz is very extensive, we will use various approximations and discuss
their validity in the following chapters.



CHAPTER 3

The functional renormalisation group

In the previous chapter we discussed the classical action of Quantum Chromodynamics. In
particular, we found that, like most quantum field theories, QCD behaves vastly different at
differing energy scales, recall Figure 2.1. The scale dependence of masses and couplings arises
from self-interactions: For example in quantum electrodynamics an electron adds to its effective
mass by emitting and reabsorbing a photon. Similarly, the bare quark masses and couplings
change with energy scale and the theory needs to be renormalised.

Depending on the strength of interaction, we can differentiate between perturbative and
non-perturbative regimes: if the couplings strength αs ≪ 1, a perturbative expansion in the
coupling will converge and we can renormalise by introducing the appropriate counter terms.
However, this is not the case for QCD, where αs > 1 at low energies and we reach a non-
perturbative regime below ≈ 1 GeV. The most prominent approach to compute observables in
strongly correlated, non-perturbative systems is the lattice [107–109]. Lattice QCD simulations
yield quantitative ab initio results in the vicinity of the finite temperature axis, but face the sign
problem at higher baryon densities [110]. For a discussion of the QCD phase diagram using
lattice methods see [111] and for recent developments see e.g. [32–35,37,112–114].

Functional methods stand in contrast with and in addition to the lattice. The sign problem
does not affect functional methods and computations reach up to arbitrarily high densities.
However, to reduce the amount of complexity in order to solve the functional equations,
one needs to chose an approximation/truncation. On one side, this enables us to test which
vertices or dependences are negligible, since they can be readily switched off. On the downside,
one always computes in an approximation and might obtain apparent convergence whilst
neglecting important effects. We expand on systematic expansion schemes and error estimates
in Section 3.2.2. Thus within functional QCD, we aim at reliably reproducing lattice results at
low densities, see Figure 2.2, whilst making new predictions in the high density regime where
the critical endpoint is located. For recent works within with Dyson-Schwinger equations (DSE)
see e.g. [19,26,53,55,56,100,115]. For recent results within the functional renormalisation
group (fRG) see e.g. [50,51,64,104,116–120].

In the following, we introduce our functional method of choice, the functional renormalisation
group (fRG). The fRG uses renormalisation group transformations to establish a link between
different scales of a theory, usually those are momentum scales. The change with the so called
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RG-scale is then tracked in a differential formulation, which we expand on in Section 3.2, after
introducing the functional formulation in Section 3.1. We close this chapter with a discussion
of RG-flows in terms of general RG reparametrisations in Section 3.3, which we use to expand
the functional flow to a complex setting in Chapter 6 or for a dynamical field definition in
Chapter 7. The fRG can also be used in a real time setting in form of the Callan-Symanzik flow,
whose derivation we outline in Section 3.4. In summary, the fRG is a convenient tool to track
QCD observables from high energies, where we have an essentially free theory, to a strongly
correlated regime!

3.1. Generating functionals

This section is based in parts on [4] and [3].

Following the previous section, we use an Euclidean field theory approach with imaginary
time. In an attempt to keep this derivation as general as possible we use the super-field
formalism with the (super) field Φ= (Φ1, ...Φn) containing all fields. For example, in an O(N)
theory we have Φ = (φ1, ...,φN ). In QCD, the super field is given by, e.g., Φ = (Aµ, c, c̄, q, q̄)
with gluons Aµ, ghosts c, c̄, and quarks q, q̄. Accordingly, all other quantities are given in terms
of vectors and matrices corresponding to the indices of the super field.

The starting point of our analysis is the path integral or partition function of the theory, Z[J],
with the current J = (J1, ..., Jn) and the fundamental quantum fields ϕ = (ϕ1, . . . ,ϕn). All
correlation functions in a Euclidean field theory can be obtained from this generating functional.
It is defined by its derivatives,

〈ϕi1(x1) . . .ϕin(xn)〉J =
1

Z[J]
δnZ[J]

δJi1(x1) . . .δJin(xn)
, (3.1)

which are the full normalised correlation functions including their disconnected parts. Addi-
tionally, it also has a (formal) path integral representation,

Z[J] =
1
N

∫︂

[dϕ′]ren exp
�

− S[ϕ′] +

∫︂

x
J ·ϕ′
�

, (3.2)

where S is the classical action,
∫︁

x =
∫︁

dd x implies integration over d Euclidean space-time
dimensions and N a normalisation factor that drops out in the computation of correlation
functions, see (3.1). [dϕ′]ren the renormalised field measure. In principle this explicit form
of the generating functional is not needed for the formalism. The key assumption is that the
path integral exists and its functional derivatives are finite. However, the formulation using the
generating functional will be quite helpful in illustrating the transition between classical and
quantum regimes by means of the flow equation in the following.

While the generating functional Z[J] in (3.2) generates the full correlation functions (3.1)
including their disconnected parts, its logarithm,

W [J] = log Z[J] , (3.3)

generates the full connected correlation functions,

〈ϕi1(x1) . . .ϕin(xn)〉
(c)
J =

δnW [J]
δJi1(x1) . . .δJin(xn)

, (3.4)
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for a given background current J . Here, the superscript refers to the connectedness.
Equation (3.4) includes the external propagators. They can be amputated by using a current

J = S(2)ϕ, that is proportional to the classical dispersion,

S(2)[ϕ0] =
δ2S
δϕ2

[ϕ0] , (3.5)

At some (background) field configuration ϕ0 This leads us to,

Seff[φ] = −W [J = S(2)φ] , (3.6)

which defines the Wilsonian effective action and is the generating functional of amputated
connected correlation functions. In (3.6) we have suppressed the background ϕ0. For scalar
theories it is typically chosen to be the vanishing background, ϕ0 = 0. Derivatives w.r.t. φ lead
to (3.4), where each field is multiplied by S(2), thus removing the classical external propagators.
Moreover, the external current J is now expressed in terms of a background mean field φ.

Finally, one-particle irreducible (1PI) correlation functions are generated by the Legendre
transform of the Schwinger functional, the effective action Γ [Φ],

Γ [Φ] = sup
J

⎡

⎣

∫︂

x

J ·Φ−W [J]

⎤

⎦

= − ln
�

∫︂

[dϕ′]ren exp
�

− S[Φ+ϕ′] +

∫︂

x

ϕ′
δΓ [Φ]
δΦ(x)

��

. (3.7)

where Φ = 〈ϕ〉 is now the mean (super-)field. With this transformation, the degree of re-
dundancy on the correlation functions is decreased by removing those, that can be cut into
correlation functions of the same order. This includes for example successive repetitions of the
same diagram. The 1PI connected correlation functions read,

〈ϕ(x1) . . .ϕ(xn)〉
(1PI)
Φ = Γ (n)[Φ] . (3.8)

All generating functionals, (3.2), (3.3), (3.7), carry the full information about the theory
under investigation with a decreasing degree of redundancy. Importantly, their functional flow
equations, which we derive in Section 3.2, constitute different general diffusion equations
with different properties. This proves advantageous in various applications, since for example,
the effective action is convex by its definition as a Legendre transformation which can create
numerical problems if violated.

By taking a functional derivative with respect to one of the fields Φi of (3.32) we obtain the
one-point function,

δΓ [Φ]
δΦi(x)

= Ji(x)|J=Jsup
. (3.9)

At vanishing background J = 0, (3.9) gives the quantum equations of motion (EOM) in analogy
to the classical equations of motion δS[Φ]

δΦi(x)
= 0.

We note further, that the propagator is given by the full connected two-point correlation
function, which is also the inverse of the 1PI two-point function Γ (2),

G =W (2) =
1
Γ (2)

, (3.10)

which can be understood as a series expansion of the 1PI two-point correlator.
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3.2. The 1PI flow equation and expansion schemes

We derive the flow of the 1PI generating functional, the Wetterich flow, in Section 3.2.1. The
1PI formulation is used as an example, since it carries the smallest degree of redundancy and is
closely connected to the classical action. Consequently, it is most commonly used in applications.
We will focus on more general formulations of the RG equations and their benefits in later
sections. We close this section by discussing expansion schemes and systematic errors of the
functional equations and their applicability to QCD in Section 3.2.2.

3.2.1. The functional renormalisation group equation

We have already seen the main idea behind the renormalisation group in the renormalisation
group equation (2.21), which expresses the scale dependence on a scale µ of a given quantum
theory through a differential equation. This is a consequence of the group property: as µ
varies, the theory is given by a self similar replica of itself and can be inferred from another
(previous) scale µ̃. A conceptual understanding of this property was provided in the ’block spin’
renormalisation group by Kardanoff in 1966 [121]. Here the change of scale µ corresponds
to a grouping of lattice spins into blocks. In this way, an RG transformation (step) allows to
transform a 2D lattice of spins into a coarse grained version of itself with 2× 2 spin tiles, called
block-spins. After enough RG steps, the system is coarse grained enough to have reached a size
on which we can observe, for example predict the overall magnetisation of the solid. For most
computational applications, a formulation in terms of momentum is preferred and we will also
use this approach in this work. The idea was first introduced by Wilson in [122] and consists
of solving the theory via a ’coarse graining’ of momentum shells. In QCD this means that we
start from a free theory at high energies ≫ 1GeV and use the RG to step towards the low
energy regime, where we have a strongly correlated, non-perturbative system. The functional
renormalisation group provides a differential equation, which allows to interpolate between
the classical action of this free theory S at a high momentum scale ΛUV and the full quantum
effective action Γ . Quantum effects are successively included by considering the differential
change in momentum scale k+δk→ k until k = 0 is reached. The aim is now to define the
interpolating Γk, where k ∈ [0,ΛUV ], which gives the effective action for a quantum system
at intermediate energy scales k. Γk then acts as the classical action for all energy scales lower
than k.

The suppression of lower momentum modes is implemented via an infrared cutoff term,
which acts as an artificial mass term and is added to the classical action,

∆Sk[ϕ] =
1
2

∫︂

x
ϕRkϕ , (3.11)

where the matrix Rk is the so called regulator term. The suppression of quantum fluctuations
can be seen from the (formal) path integral,

Z[J] =
1
N

∫︂

[dϕ′]ren exp
�

−∆Sk[ϕ
′]− S[ϕ′] +

∫︂

J ·ϕ′
�

, (3.12)

which turns into a Gaussian in the limit Rk→∞, effectively dropping all quantum fluctuations.
The specific form of regulator is usually chosen to fit the momentum contribution of the two-
point-function and varies with the model. Generally, the regulator needs to fulfil two conditions
to ensure that it does not change the physics of the theory at hand,
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• The introduction of an infrared regularisation, which ensures the suppression of lower
momenta during the interpolation,

lim
p2

k2→0

Rk(p2)
k2

> 0 . (3.13a)

• The physical limit for vanishing cutoff k or UV momentum scales p, where the regulator
needs to vanish,

lim
k2

p2→0

Rk(p2)
k2

= 0 . (3.13b)

Subtleties of regulator optimisation are discussed in Section 3.2.3.
The average effective action Γk at scale k is defined via a Legendre transformation, analogously

to (3.7). We introduce a slight modification and define Γk +∆Sk as the Legendre transformed
of Wk. Thereby, the known cutoff term is removed from the functional

Γk[Φ] = sup
J

�

∫︂

x

J ·Φ−Wk[J]
�

−∆Sk[Φ]

= − ln
�

∫︂

[dϕ′]ren exp
�

− S[Φ+ϕ′]−∆Sk[ϕ
′] +

∫︂

x

ϕ′
δΓk[Φ]
δΦ(x)

��

. (3.14)

The flow of Γk is obtained by taking a derivative with respect to the dimensionless RG-scale
(the RG-time) t = ln(k/Λ). This exact renormalisation group equation of the 1PI effective action
is called the Wetterich equation [67],

∂tΓk[Φ] =
1
2

Tr

��

1

Γ
(2)
k [Φ] + Rk

�

∂tRk

�

=
1
2

Tr
�

(Gk)∂tRk

�

, (3.15)

where Gk is the regularised propagator. The trace implies integration over momentum and
summation over color, flavor, Dirac indices and fields and manifests the one-loop exactness of
the Wetterich equation. By convention, the RG-time is usually defined to flow from 0 to −∞,
but since we use a lot of methods from hydrodynamics this convention changes throughout
this work. A more detailed and general derivation of this equation is discussed in Section 3.3.

We close by pointing out some features of the Wetterich equation: This equation is exact and
non perturbative. In theory, all quantum effects are contained in the full solution but might
not be contained in the model or approximation used, more details are given in Section 3.2.2.
Unlike the full propagator for physical fields Γ (2), the interpolating Γ (2)k can be negative at finite
RG-scales, which causes Γk to lose its convexity during the RG-scale integration. In these cases
the eigenvalues of Γ (2)k + Rk are still positive. Since the regulator was constructed such that it
vanishes at vanishing cutoff, the flow works to restore the convexity of Γk with each RG step.

3.2.2. Systematic expansions and error estimates

This section is based on [8].
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The fRG flow for the effective action Γ [Φ] of a given theory, has a simple one-loop form in
terms of the full field- and momentum dependent propagator. The flows of its nth moments,
the one-particle irreducible correlation functions, are derived from this master equation by
taking n field derivatives of the flow of Γ [Φ],

Γ
(n)
Φi1 ···Φin

[Φ](p1, ..., pn) =
δnΓ [Φ]

δΦi1(p1) · · ·δΦin(pn)
. (3.16)

This leads us to a coupled infinite hierarchy of flows for these moments or correlation functions,
that typically only admits analytical or numerical solutions within a given order of a systematic
expansion scheme of the full system at hand.

One of these systematic expansion schemes is the vertex expansion. Here the effective action
is expanded in terms of its moments, while keeping the full momentum dependences of these
moments,

Γk[Φ] =
∞
∑︂

n=0

1
n!

∫︂

x1,...,xn

Γ
(n)
Φi1 ···Φin

[Φ̄](p1, ..., pn)
�

Φi1(p1)− Φ̄
i1(p1)
�

. . .
�

Φin(pn)− Φ̄
in(pn)
�

.

(3.17)

A complimentary systematic scheme is the derivative expansion, where all moments are taken
into account, but the momentum dependence of Γk[Φ]−S[Φ] is expanded in powers of momenta.
Evidently, these schemes can be combined in a systematic way, leading to mixed schemes.

All expansion schemes have in common, that the respective expansion of the effective
action is linked to an expansion of the theory or its Hilbert space around a state that captures
the essential features of the full ground state. This is most evident within the derivative
expansion where the zeroth order takes into account point like interactions to all orders without
any momentum dependences in form of the effective potential. Then, higher orders include
momentum dependences in powers of p2/m2

gap of the theory. Evidently, such a scheme fails
(or shows a rather slow convergence) in the presence of intricate momentum dependences of
scattering processes. One such example are complicated Fermi surfaces in interacting theories.

In turn, the vertex expansion is an expansion in the full moments of the theory, starting
with the momentum-dependent (inverse) propagator, the full covariance of the theory. Its
implicit expansion parameter is the phase space suppression of higher order interactions for
local interactions, and the one loop form of the Wetterich flow gives an easy access to the
respective error control. While it is amiable towards intricate momentum dependences of
vertices, the convergence of this scheme is slowed down in the presence of long range resonant
interactions or large couplings. This can be treated in terms of emergent dynamical effective
fields that are introduced for resonant interaction channels within the flow equation. For
four-field interactions such as four-quark scatterings in QCD this has been developed in [123].
It is tantamount to a flowing self-consistent Hubbard-Stratonovich transformation and are
simple to implement due to the underlying Gaußian nature of the field transformation.

Systematic expansions in QCD

For an explanation of the tasks at hand we concentrate on QCD at finite temperature and
density, which features the most advanced computations within mixtures of the two systematic
expansion schemes discussed above: In QCD, mixtures of the vertex and derivative expansion
with emergent dynamical fields for resonant channels of the four-quark interactions have been
applied. In most cases the scalar-pseudoscalar channel has been dynamically hadronised,
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leading to emergent pions and σ mesonic fields, see Section 2.3 and the literature [44, 45,
48, 51, 102, 124]. For an additional dynamical hadronisation of the vector channel, leading
to emergent vector mesons, see [59]. The complete structure of emergent hadrons has been
discussed in [60]. Augmented with a full effective potential for the respective mesonic fields,
which includes the point-like scattering of the emergent mesonic fields for small momenta, this
is a rather efficient description of QCD at high and low energies as well as at finite temperature
and density or baryon-chemical potential.

The study of QCD within the systematic vertex expansion with full momentum dependences
has been initiated by studying quenched [44] and unquenched [48] vacuum QCD including
dynamical hadronisation. Dedicated studies in Yang-Mills theory at finite and vanishing tem-
perature, as well as in three dimensions in [47,49,125], are concentrating on the confinement
aspects and its systematic. The respective results have also been used in a mixed scheme appli-
cation to the full phase structure of QCD in [126] and the magnetic equation of state in [117].
Its systematic improvement in terms of higher vertices with full momentum dependences is
work in progress in the fQCD collaboration [13], aiming at apparent convergence of the scheme.

This leaves us with an equally important remaining task, which we focus on in this thesis:
one has to control multi-scattering effects of fundamental and emergent degrees of freedom.
In particular QCD at high density with potentially competing order effects, first order regimes
and mixed phases is highly challenging. There, the very efficient vertex expansion scheme with
dynamical hadronisation has to be augmented with elaborate numerical methods to resolve
a (multi-dimensional) effective potential, as well as the complicated momentum structure of
scattering processes in a dense medium. An important recent technical advance has been the
introduction and adaptation of state-of-the art numerical methods for the solution of general
diffusion equations for the computation of the RG-flow of effective potentials [65], which we
discuss in Chapter 5.

We conclude our brief discussion of systematic expansions and their convergence in QCD
with the remark, that the respective structural results and arguments straightforwardly carry
over to general theories.

3.2.3. Regulators and optimisation criteria

This section is based on [11].

In principle, the flow equation (3.15) is exact for any regulator that implements the infrared
suppression of lower momentum modes and the ultraviolet renormalisation. The full flow
should not depend on the regulator any more. However, in most cases concrete evaluations
are, with very few exceptions, subject to approximations of the full effective action. If a vertex
structure is omitted in an approximation, the regulators effect on that vertex is also missing and
hence any back-coupling of it to the overall flow. In this way, regulator effects may accumulate
for k→ 0 and do not cancel out like they should. Therefore, it is important to chose the an
optimised regulator for a specific approximation. A possible optimisation criterion for operators
in a given truncation is the minimal length of the RG trajectory, compare [127,128]. Here, the
optimal regulator Ropt fulfils

∥p2(G[Φ, Ropt]− G[Φ, 0])∥= min
R∈R(Λ)

∥p2(G[Φ, R]− G[Φ, 0])∥ , (3.18)

where p is the momentum, the regulators R are taken at the UV scale Λ of the theory and
G[Φ, R] is the field dependent propagator. The prefactor p2 is chosen to accommodate for
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a dimensionless quantity and access to massless modes at k = 0. Equation (3.18) defines a
semblance of length of the RG-flow for a monotonous propagator. The norm ∥ · ∥ is given by
the Sobolev norm for an operator ψ

∥ψ∥2 =
∑︂

|α|≤n

n!
(n− |α|)!α1! . . .αd !

∥︁

∥︁

∥︁

∥︁

∂ |α|ψ(p)
∂ pα1 . . .∂ pαd

∥︁

∥︁

∥︁

∥︁

2

L2

, (3.19)

where α ∈ Nd , |α| =
∑︁

i αi and n ∈ N is the highest order momentum dependency in the
truncation scheme. The L2 operator norm is hence taken over the momentum derivatives of
the propagator in (3.18).

The optimisation (3.18) takes the contributions of higher momentum derivatives into account.
In contrast, the zeroth order derivative expansion which we will use frequently throughout this
work, only takes the classical momentum dependence into account. Hence, the derivatives in
(3.19) do not contribute and we can find an optimal, non-analytic regulator [127,129,130].
However, for truncations beyond LPA the non-analytic structure of the flat regulator shows in
the higher momentum derivatives. By comparison, a smooth regulator function gives a much
smaller contribution in the momentum derivatives and is hence the more optimised choice in a
momentum dependent truncation.

3.3. General functional flows

This section is based on [4].

Previously, we have introduced the fRG via the Wetterich flow (3.15), since it is the most
commonly used master equation in QCD applications. In this section, we take a step back and
consider a formulation in terms of general RG transformations, put forward by Wegner in [131].
Wegner’s flow expresses the invariance of fixed points and critical behaviour under a large set
of general differential reparametrisations and RG transformations. In the context of this work,
we use them to optimise our approximation scheme, to simplifying our numerical expressions
and in a real time setting, see Chapter 6 and Chapter 7. Furthermore we encounter them in
the context of dynamical hadronisation in Chapter 9.

For the sake of simplicity, we only consider scalar fields φ = (φ1, . . . ,φn) in the following. All
applications of these concepts are considering scalar O(N) theories. In terms of the Wilsonian
effective action Seff[φ] in (3.6), Wegner’s flow reads

∂t P[φ] +
δ

δφ(x)

�

Ψ[φ] P[φ]
�

= 0 , P[φ] = e−Seff[φ] . (3.20)

The RG-time t is the logarithm of the cutoff scale k,

t = log k/Λ , (3.21)

with some reference scale Λ. The cutoff scale can be both an infrared (IR) or ultraviolet (UV)
cutoff scale or simply the (geodesic) parameter of a general reparametrisation [127]. In the
present work we consider an infrared cutoff scale k for explicit applications. This means that
quantum fluctuations with p2 ≲ k2 are suppressed below this cutoff scale and fluctuations with
p2 ≳ k2 are integrated out (or in).

The exponential P[φ] in (3.20) is nothing but the path integral measure. General reparametri-
sations induced by (3.20) leave the path integral unchanged, which is easily seen by integrating
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(3.20) over all fields: the integral of the right hand side vanishes as the integrand is a total
derivative. The RG kernel Ψ[φ] is typically chosen as

Ψ[φ] =
1
2
C [φ]

δSeff[φ]
δφ

+ γφφ , (3.22)

with the boundary condition that Ψ vanishes at k = 0 if k is an infrared cutoff scale.
The second term on the right hand side of (3.22) with a field-independent γφ entails a

rescaling of the field φ, and has been introduced for convenience. Moreover, a field-dependent
γφ can be considered as a driving term. Both, field-independent and field-dependent anomalous
dimensions are commonly not considered in (3.22).

In turn, for k→∞ the kernel (3.22) should suppress all fluctuations, leading to a simple
initial condition. These two requirements are more easily seen in terms of the flow for Seff, for
which Wegner’s flow reads
�

∂t +

∫︂

φγeff
δ

δφ

�

Seff[φ] =
1
2

Tr C [φ]
�

S(2)eff [φ]− (S
(1)
eff [φ])

2
�

, (3.23a)

where the field-independent term Trγφ was dropped and

γeff[φ] = γφ −
1
2
δC [φ]
δφ

. (3.23b)

In (3.23a) we have also used the common notation

S(n)eff [φ] =
δnSeff[φ]
δφn

. (3.24)

The right-hand side in (3.23a) is the trace of the RG kernelC [φ] contracted with the connected
two-point function of the theory. The left-hand side contains the scale derivative of the
Wilson effective action and a generalised anomalous dimension term. We note that we may
also recast the (S(1)eff [φ])

2 term as part of the generalised anomalous dimension by shifting

φγeff→ φγeff + 1/2S(1)eff [φ] in the first line.
Standard Wilsonian RG transformations are obtained for a field-independent kernel C with

δC /δφ = 0, while field-dependent kernels introduce a reparametrisation of the theory. For
more details and applications, in particular to gauge theories, see [132,133], for a respective
review see [134].

3.3.1. Standard flow for the Wilsonian effective action

Now we briefly describe how the standard Polchinski-type flow [68] for the Wilsonian effective
action is derived from (3.20). Its derivation from the path integral is described in Appendix B.5.1.
In short, we add an infrared cutoff function to the classical action of the theory, analogously to
Section 3.2. Note, that in [68] an ultraviolet regulator was considered, but the structure of the
flow is identical. Then, the RG kernel is given by

C [φ0] = −G(0)k [φ0]∂tRk G(0)k [φ0] , (3.25)

where the propagator G(0)k is the classical propagator of the theory, including the regulator
correction,

G(0)k [φ0] =
1

S(2)k

=
1

S(2)[φ0] + Rk
. (3.26)
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In the path integral this kernel is derived with the current

J =
�

G(0)k

�−1
[φ0]φ , (3.27)

in the Schwinger functional W [J] = log Z[J], see (B.69) in Appendix B.5.1. Accordingly the
anomalous dimension follows as

γφ = −
�

∂tS
(2)
k

�

G(0)k . (3.28)

When inserting the kernel and the anomalous dimension in the general flow (3.23), the
right-hand side line is simply the trace of −1/2∂tRk Gk[φ] with the full propagator

Gk[φ](x , y) = 〈ϕ(x)ϕ(y)〉 −φ(x)φ(y) , (3.29)

with the mean field φ = 〈ϕ〉, for more details we refer to Appendix B.5.1. In most applications
one separates the full two-point function from the Wilsonian effective action,

Seff,k[φ] = Sint,k[φ,φ0]−
1
2

∫︂

x
φ S(2)k [φ0]φ . (3.30a)

This split eliminates the trivial running of S(2)[φ0] from the flow and makes numerical compu-
tations more convenient. Inserting the split (3.30a) and the kernel (3.25) into the Polchinski
flow (3.23a) leads to the flow of the interaction part Sint,k[φ]

∂tSint,k[φ] =
1
2

Tr∂t G
(0)
k

h

S(2)int,k[φ]−
�

S(1)int,k[φ]
�2i

, (3.30b)

where we have dropped the φ-independent term 1/2 G(0)k ∂tS
(2)
k on the right hand side, see

also (B.75). The standard Polchinski equation is given by (3.30) with an ultraviolet regulator.
We emphasise again, that the use of either UV or IR regulators makes no structural difference,
while it does conceptually and practically.

Finally, it can easily be shown that for infrared cutoff kernels such as the Polchinski kernel
(3.25), the decay properties (3.13) of the infrared regulator ensure a finite UV effective
action as the initial condition. The flow of the UV relevant vertices is then governed by RG
consistency, [61,127,128].

3.3.2. General functional flows for the effective action

The 1PI analogue of Wegner’s flow equation (3.20) for the Wilsonian effective action or effective
Hamiltonians was derived in [127]. There, the starting point was the partition function with a
source
∫︁

Jφ φ̂[ϕ] with the fundamental field ϕ, as well as a cutoff term for the composite field

S[ϕ]→ S[ϕ] +
1
2

∫︂

φ̂[ϕ]Rkφ̂[ϕ] , (3.31)

for the composite field φ̂, and possibly also cutoff terms for the fundamental fields. Then the
Legendre transform is taken with respect to all the currents, including Jφ ,

Γk[φ] = sup
Jφ

�∫︂

Jφφ − log Zk[Jφ]

�

−
1
2

∫︂

φ Rkφ , (3.32)
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where we suppressed the potential Legendre transform w.r.t. the original field ϕ for the sake
of simplicity. For example, this general setup includes two-particle irreducible (2PI) actions
(for φ(x , y) = ϕ(x)ϕ(y)), and nPI actions, or density functionals (for φ(x) = ϕ(x)ϕ(x)),
see [127]. The general flow equation for such a 1PI effective action Γk[φ] with φ = 〈φ̂〉 reads

�

∂t +

∫︂

x
φ̇
δ

δφ

�

Γk[φ] =
1
2

Tr Gk[φ]

�

∂t + 2
δφ̇

δφ

�

Rk , (3.33a)

where Gk is now the full propagator of the composite field φ,

Gk[φ](x , y) = 〈φ̂(x)φ̂(y)〉 −φ(x)φ(y) , (3.33b)

that is related to the inverse of the two-point function

Gk[φ] =
1

Γ (2)[φ] + Rk
. (3.33c)

The differential change φ̇[φ], is related to the expectation value of the differential variable
transformation of the integration field φ̂ with

φ̇[φ] = 〈∂tφ̂k〉[φ] . (3.33d)

Equation (3.33d) defines the change of the composite field basis with the RG-flow. We emphasise
that φ itself does not depend on the RG-scale k, as it is the field/variable of the effective action.
The change of the implicit dependence of the effective field φ̂ on the fundamental field ϕ with
the scale is defined via a given function φ̇[φ], for more details see [127], or a discussion of the
special role of field zero modes and respective modifications see [51].

We remark that a variant of (3.33) has been derived in [135], based on (3.32) without
regulators for the composite fields. Then the flow equation is simply the rotation of the
standard flow equation in terms of the propagators of the composite fields, and hence the
Jacobian of the transformation is accompanying all propagators. It can be seen as a special
case of (3.33).

Wegner’s flow equation for the Wilson effective action (3.23) and the general 1PI flow (3.33)
are connected via the relation

Ψ = φ̇ , (3.34)

with an additional RG kernel Ψ. This can readily be checked with a Legendre transform, see
also [136].

Standard flow for the 1PI effective action

We can reduce the general flow (3.33) to the standard flow equation of the 1PI effective action
by using φ̇ = 0. This choice entails that φ = 〈ϕ〉 is the mean value of the fundamental field.
Inserting this choice in (3.33) leads us to the Wetterich equation (3.15),

∂tΓk[φ] =
1
2

Tr Gk[φ]∂tRk (3.35)

see also [137,138].
In summary, Wegner’s flow (3.20) for the Wilson effective action (3.23) and its 1PI analogue

(3.33) constitute the general functional flow framework that accommodates an adaptive setup
of functional flows: the kernel C or the transformation field φ can be adapted to the structure
of the theory at hand.
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3.3.3. Applications of general functional flows: Flowing fields

This section is based on [8].

In the following we discuss two qualitatively different examples of how flowing fields φ̇ ̸= 0
(recall (3.33)) can be used for an RG-adapted expansion scheme. In this context it is convenient
to distinguish three different construction principles behind the choice of flowing fields:

(i) Firstly, we can use flowing fields to adapt the field basis φ to the phase (symmetric or
broken) the theory is in, at a given cutoff scale k. This application of [127] has been
put forward in [139] in an O(N)-theory, and is called Goldstonisation. Naturally, this
optimises a given expansion scheme.

(ii) Flowing fields can be used to enforce the expansion of the effective action about the full
two-point function or covariance of the theory. This powerful idea has been put forward
in [140], for a recent application to complex effective actions see [4], which is included
in Chapter 6. This choice is also enforced by full functional optimisation as put forward
in [127], and is also obtained within the implementation of optimal transport [141],
applied to the Wegner flow [131].

(iii) On the other hand, we can use flowing fields for simplifying the effective action, which
is at the root of the essential RG put forward in [136]. There, these simplifications are
classified in terms of essential and inessential couplings [131]. An explicit application to
an O(N) theory was put forward in [8], and is featured in Section 7.1. This application
also implicitly enforces (ii).

In all these cases, a reparametrisation with flowing fields allows us to expand the theory, or
rather its effective action, about a dynamically adjusted expansion point that is as close as
possible to the scale-dependent ground state of the theory. Note also, that a generic use of
flowing fields, that aims at optimal expansions, is almost inevitably a mixture of (i)-(iii).

The differential flow φ̇ in (3.33) is now at our disposal: For example, we may choose and
explicit field transformation in the class (i), as put forward in [139,142]. Alternatively we may
enforce the class (ii) or (iii) with constraints on the flow, e.g. that of the two-point function or
a specific momentum channel of a four-point function. Structurally, this is given by

φ̇k(φ, k) −→ ∂tΓ
(n)
k [φ](p)≡ 0 , (3.36)

for a specific n and φ ∈ Iφ , p ∈ Ip take values in some intervals or sets Iφ and Ip respectively.
Equation (3.36) entails the differential form of the transformation from the microscopic funda-
mental fields to emergent effective fields. So far, it has been considered for n = 2 in the context
of functional optimisation in [127] and [92] with p > k, in [140] for keeping the covariance of
the theory fixed, and in [136,143] (for p = 0) in the context of essential fRG flows. For n= 4
is has been used in QCD for dynamical hadronisation of momentum channels of the four-quark
scattering vertex, for an application within this work see Chapter 9 or [51,144]. Moreover, it
has been used for dynamical composite dimers in applications to ultracold gases in [145]. We
proceed by illustrating this general framework by discussing two examples in the low-energy
sector of QCD.

For the remainder of this section, we distinguish two different sets of fields (in a slight abuse
of notation). Firstly, we have the untransformed field ϕ, which is directly linked to the mean
value of the fundamental field 〈ϕ〉 with φ̇ = 0 from (3.31), and accordingly ρϕ = ϕ2/2 as
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defined below in (3.37). Secondly, we consider the flowing field φ with the corresponding
invariant ρ = φ2/2. In this notation we have ϕ = φ, if φ̇ = 0 as stated in the derivation of
(3.35).

Flowing fields at work in QCD

We recall the combined expansion scheme for QCD, which was described in Section 3.2.2. There
momentum dependence of scatterings is taken into account within the vertex expansion. This
expansion has been shown to converge rapidly, if all the resonant channels are treated within
dynamical hadronisation: the phase space suppression is very effective and in the absence of
a small parameter this is called apparent convergence. In turn, multi-scattering events get
important in the presence of close massless modes. Prominent examples in QCD are the pion
in the chiral limit or the σ and density modes close a potential critical end point. The slowing
down of the convergence in the chiral limit has been studied in [117]: while for physical pion
masses, mπ ≈ 140 MeV a Taylor expansion of the meson potential Veff(ρϕ) with

ρϕ =
1
2

�

σ2 +π2
�

, and ϕT = (σ,π1,π2,π3) , (3.37)

converges rapidly within 5 - 7 orders of ρϕ, see also [44, 45, 48, 51], far more orders are
required for pion masses mπ ≲ 1 MeV, where also critical scaling sets in. The critical part of
QCD in this regime is the mesonic sector, which is simply described by a (non-local) O(4)-model
after integrating out all other degrees of freedom. This was already outlined in Section 2.3.2,
where we also introduced the effective mesonic potential Veff(ρϕ).

The pivotal correlation function in these regimes is the full two-point function Γ (2)[ϕc](p)
for constant backgrounds ϕc. Space-time or rather momentum-dependent backgrounds are
covered by the higher order correlation functions Γ (n)[ϕc](p1, ..., pn). In the vertex expansion
their importance drops rapidly due to phase space suppression. Moreover, evaluated on the
constant solution of the equations of motion ϕEoM with

δΓ [ϕ]
δϕ

|︁

|︁

|︁

|︁

ϕ=ϕEoM

= 0 , (3.38)

the two point function Γ (2)[ϕEoM](p) in the mixed expansion converges rapidly towards that of
the ground state of the theory, the optimal expansion point.

The full two point function for constant fields is obtained by taking the second πi-derivative
at vanishing π = 0. It reads

Γ (2)π1π1
[ϕ](p) = Zϕ(ρϕ, p)

�

p2 +m2
ϕ(ρϕ)
�

, (3.39)

with the pole mass mϕ(ρϕ) defined by the on-shell condition Γ (2)π1π1
[ϕ](p2 = −mϕ(ρϕ)) = 0.

The wave function Zϕ(ρϕ, p) is the coefficient of the operator (∂µϕ)2 in the effective action
and the evaluation of the derivatives at π = 0 eliminates terms proportional to ϕ-derivatives
of Zϕ and m2

ϕ(ρϕ).
Equation (3.39) leaves us with the particular task of determining the field- and momentum-

dependent wave function Zϕ(ρϕ, p). Importantly, if the latter is non-trivial, this hints at the
field ϕ not being the physical field that leads to a simple description of the ground state and
hence the theory. Moreover, its resolution is then a non-trivial numerical task. This suggests to
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dynamically change the field with the momentum scale such that the dispersion (3.39) takes a
simple classical form, ϕ→ φ(p,ϕ), leading to the dispersion

Γ
(2)
φiφ j
[φ](p) =
�

p2 +m2
φ(ρ)
�

δi j , (3.40)

or variants of it. This transformation can be included in terms of an fRG flow, where the
transformation ϕ→ φ(ϕ, p) can be implemented and monitored successively as a function of
the infrared cutoff scale k with ϕ→ φk(ϕ, p). However, instead of using ϕ→ φk(ϕ, p), one is
using the successive field transformation from the RG-adapted field basis φ at a given scale
k to the RG-adapted field basis at the scale k−∆k, encoded in the flow φ̇k(φ, p). Here, the
argument of φ̇ is the flowing field φ at the scale k.

We emphasise that within this transformation the fields φ are the mean fields in the effective
action and carry no k-dependence. Their relation to the fundamental fields is solely carried by
the k-dependent function φ̇k(φ, p).

• As a first example for (iii), we now choose an RG-adapted field basis with Zφ = 1 for all
cutoff scales,

φ̇k(φ, k) −→ Zφ,k(φ, p)≡ 1 , (3.41)

for all k, see [136]. Equation (3.41) entails the differential form of the transformation
from the microscopic fundamental fields to emergent effective fields with a classical
dispersion. A momentum independent implementation of (3.41) is given in Section 7.1.

• A second example is an application of (i) to scalar O(N) theories, which can be found
in [139]. Here the reparametrisation of the theory in terms of flowing fields has been
used to flow the fundamental fields ϕT = (ϕ1, ...,ϕN ) in a Cartesian basis into polar
coordinates

φT = (ρ,θ) , ϕ =
p

2ρ eiθ a ta

⎛

⎜

⎝

1
0...
0

⎞

⎟

⎠
, (3.42)

Here, the ta with a = 1, ..., N − 1 are the generators of the quotient O(N)/O(N-1), and
the subgroup O(N-1) leaves the vacuum vector (1, 0, ..., 0) invariant.

The field ρ = ϕ2/2 in (3.42) is the radial field, and the phase fields θ a are the Goldstone fields.
In the broken phase, the basis (3.42) is advantageous, because the phase fields describe the
Goldstone fields or rather their fluctuations for all values of the field, while in the Cartesian
basis this only holds true at the expansion point ϕT = (ϕ1 = σ,0). In turn, the polar basis
has a parametrisation singularity for ρ→ 0 and hence in the symmetric phase the Cartesian
basis is more natural. Accordingly, it is suggestive to define a basis that interpolates between
the Cartesian basis in the symmetric phase (or small field values ρ) and the polar basis in the
broken phase (or large field values of ρ). This is linked to an expansion scheme of the theory
about the ground state of the theory, and has been called Goldstonisation in [139]. Notably, in
the large N limit, the flow equation of the effective potential only depends on the Goldstone
wave function Zθ . The compatibility of the results within the interpolating flowing fields with
that in the standard Cartesian basis has been explicitly shown in [139]. The setup, notation and
results have been also used in [142] for an application to the thermodynamics of a Bose gases.
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There are many more applications including non-relativistic theories in and out of equilibrium,
e.g. [146], where a formulation in phase fields is better adapted to the physics phenomena at
play, as one is setting up an expansion in the (dynamical) physical degrees of freedom.

The two examples are complimentary: while defining flowing fields that are adapted to
the different phases of the theory, the formulation in [139,142] does not aim for a classical
dispersion. On the contrary, in the large N limit the whole effective potential is generated from
the field-dependent wave function Zπ(ρ, p) of the Goldstone modes.

A more recent and intriguing application, directly aiming at (3.40), has been put forward
in terms of the essential renormalisation group [136,143] for critical scaling in scalar models
and quantum gravity. In particular, the choice (3.41) has been suggested in [136] and used in
the three-dimensional O(1) model for a refined analysis of the Wilson-Fischer fixed point. In
terms of the essential renormalisation group put forward in [136] the wave function Zφ is an
inessential coupling that can be absorbed in a redefinition of the field. As discussed above in
the context of the O(N) application in [139], in the large N limit the essential effective potential
originates from the inessential wave function alone. This interesting structure and potential
simplifications ask for a more detailed analysis.

All these applications as well as that in [139,142] are guided by the search for the optimal
expansion and parametrisation of the theory about and in terms of the ground state, see
also [140]. This expansion about the full propagator, or covariance of the theory, is also is at
the core of the RG-adapted expansion of the Wilson effective action and the 1PI effective action
put forward in [4] for fRG flows for complex actions. The respective functional optimisation
setting is discussed in [127], and is related but not identical to a distinction of essential and
inessential couplings. For a recent perspective of such a functional optimisation in terms of
optimal transport [141].

The above considerations and in particular the relation of optimal expansions to that about
the ground state or full covariance of the theory also emphasise the importance of physical
constraints for this general reparametrisation setup. For instance, instead of the form (3.40) of
the reparametrised kinetic operator or covariance obtained from Zφ ≡ 1 but unchanged mass
function (in terms of the new field variable φ), we may have chosen (3.40) with m2

φ
(ρ) = 0 or

any other mass function m2
φ
(ρ)≥ 0. While such transformations exist and seemingly remove

a relevant or marginal parameters (in d ≥ 2) from the theory, they encode the expansion of
a theory with pole mass m2

φ
(ρ) about theories with the pole mass m2

φ
(ρ) = 0 or any other

choice. Within the present Euclidean setting this is a smooth transformation. However, while
possible, it is certainly not optimal and functional optimisation in [127] for the full two-point
function shows this manifestly. Moreover, in the real-time or Minkowski version of the O(N)
model, the respective transformation maps the spectrum of a given theory to a different one.
Such a transformation necessarily moves pole and cut positions of correlation functions and
has to be taken with a grain of salt. In any case it is hardly optimal. This concludes our brief
discussion of general reparametrisations and flowing fields.

3.4. Real time fRG

This section is taken from [3].

In this section, we turn our focus toward real-time applications of the fRG. These are required
for the investigation of timelike phenomena, ranging from scattering processes, the formation
and spectrum of bound states to the time evolution of quantum systems close and far from
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equilibrium. For real-time applications of the fRG in a broad variety of research fields, see,
e.g., [147–167].

We begin by discussing the issue of finding a Lorentz invariant, causality preserving cutoff
function for fRG flows in Section 3.4.1. Such a cutoff comes at the prize of the built in finiteness
of the method, hence we present a novel finite renormalised fRG approach in Section 3.4.2. The
renormalisation is transported along with the flow and hence is called flowing renormalisation.
One of its advantages is its manifest finiteness, also for regulators or regularisation schemes
that do not directly implement a UV decay in the loops of the flow equation. This allows for its
application to general non-perturbative truncation schemes.

In particular, this novel fRG setup can be used to derive a spectral fRG approach in real
time, the spectral fRG, which we consider in Section 7.2. Our approach is based on the
spectral representation of correlation functions, and is manifestly finite as well as Lorentz (or
Galilei/Schrödinger) invariant. It builds on the novel functional spectral approach setup [168,
169] which has already been used in [166].

3.4.1. Infrared regularisation and symmetries

To apply the functional flow equation (3.35) in a real-time setting, we first need to discuss
some properties of the flow linked to the choice of regulator.

Firstly, we saw in (3.13) that the regulator implements an IR regularisation through an, in
general momentum-dependent, mass term that effectively suppresses quantum fluctuations
of field modes with momenta p2 ≲ k2. The second property of the regulator is a suppression
of modes with p2 ≳ k2 in the momentum-loop integrals, rendering the flow and all its field
derivatives UV finite.

In addition to these conditions, which guarantee the finiteness of fRG flows, we might want to
impose additional, physically motivated conditions onto the regulators. For relativistic theories
it is desirable that the regulators do not spoil Lorentz/Poincaré invariance. Furthermore, for
studies of real-time properties, i.e. in Minkowski space, causality should also not be violated.
The latter is directly related to the existence of a spectral representation for the propagator of
φ.

To maintain Lorentz invariance, the regulator should be a function of the four-momentum
squared, Rφk (p

2). However, as discussed, e.g., in [149], such regulators might spoil causality
through unphysical poles or cuts in the complex frequency plane. Typically, such regulators
either do not admit a spectral representation or generate fictitious mass poles that only disappear
in the vanishing cutoff limit, for a discussion of the latter see [149,152,156].

A further common choice are regulators that only depend on the spatial momenta, Rφk (p⃗
2).

Clearly, these regulators do not lead to additional poles in the complex frequency plane, but
merely modify the dispersion of the fields. Thus, they admit a spectral representations at the
cost of violating Lorentz invariance. If the system is in a medium, explicit Lorentz symmetry
breaking might seem innocuous, as it is broken anyway. While this has been confirmed in
specific examples [156, 170], it is a priori unclear in general. Especially when considering
limiting cases of a phase diagram such as T → 0, the question becomes much more intricate
than the comparisons in the aforementioned works.

Hence, effectively we either violate (or at least complicate) causality, or we violate Lorentz
invariance. All known examples of regulators rely on the regularisation conditions in (3.13).
However, by relaxing at least one of these conditions, there is a natural choice for a regulator
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which preserves both causality and Lorentz invariance,

Rφk,CS = Zφ k2 , rCS(x) = 1 , (3.43)

which we refer to as the Callan-Symanzik (CS) regulator. It implements IR regularisation
through an explicit mass ∆m2

φ
= Zφ k2. In this case the flow equation (3.35) has been derived

in [171]. To our knowledge, it is indeed the first occurrence of such a closed (and one loop) exact
functional equation for the effective action. The insertion of the CS regulator in (3.35) leads
us to the (inhomogeneous) functional CS equation. However, it violates the second condition
in (3.13). The CS regulator only lowers the UV degree of divergence by two, for example,
quadratically divergent diagrams such as the tadpole diagram in the two point function of the
φ4 theory in d = 4 leads to logarithmically divergent tadpole diagrams in the CS equation.
In short, at each k in the flow, all loop momenta contribute. To render the flow finite, an
additional UV regularisation is required in general.

The structural similarity of the Wetterich equation (3.35) with regulators obeying (3.13) and
the flow with the CS regulator (3.43) is misleading. While the former equation implements
a Wilson-type momentum-shell integration in a fixed underlying quantum field theory, the
CS flow constitutes a flow in the space of theories. To be specific, the need for additional UV
regularisation at different cutoff scales k implies that we have different theories which require
a different renormalisation. Hence, the flow must be re-renormalised; only specifying the
initial effective action Γkinit

does not necessarily lead to a finite renormalised solution of the flow
equation. This renormalisation is typically done with an RG transformation, leading to finite
renormalised loops as well as the β-function and anomalous dimension terms in (3.44). This
can be achieved instead by the introduction of explicit counter terms to the flow, supplemented
with renormalisation conditions which are fixed at a, in general k-dependent, renormalisation
scale µ, as has been done in [3].

3.4.2. Functional flows with flowing renormalisation

In this section we discuss the finiteness of infrared flows and the finiteness of the ultraviolet
limit of the effective action. Both properties are related to the UV renormalisation that is
implicitly or explicitly implemented in the flow equation. This leads us to the concept of flowing
renormalisation.

RG consistency and UV scaling

The underlying RG invariance of the theory at k = 0 implies that the full effective action Γ = Γk=0
obeys the homogeneous renormalisation group equation [127], see also (2.21). This entails the
invariance of the underlying quantum field theory under self-similarity transformations of the
theory. In the presence of RG-adapted regulators the scale invariance, µ dΓ [Φ]

dµ = 0, of the theory
is maintained [3,127]. As a consequence we obtain the general flow equation that comprises
the change of a cutoff scale, here k, as well as an accompanying general RG transformation.
These general reparametrisations (self-similarity transformations) also involve non-linear field
transformations, Φi → φi[Φ], which we have seen in Section 3.3.

Thus a flow equation with reparametrisations at each flow step can be derived [127],
�

s∂s + β
(s)
λi
∂λi
+

∫︂

x
γ
(s)
Φ j
Φ j

δ

δΦ j

�

Γk[Φ] =
1
2

Tr Gk[Φ] (∂t + 2γΦ)R
Φ
k , (3.44)
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where we consider k(s) and µ(s) with

s∂s = µ∂µ + ∂t . (3.45)

The β -functions β (s) and anomalous dimensions γ(s) then encode the full s-scaling of a combined
cutoff (k-) and RG (µ-) flow, including a reparametrisation of the theory,

γ
(s)
Φ Φ= s

dΦ
ds

, β
(s)
λ
= s

dλ
ds

. (3.46)

Furthermore γ(s)Φ = γ
(µ)
Φ +γΦ, and γΦ = −

1
2∂t log ZΦ occurs due to the standard linear reparametri-

sations of the fields. Equation (3.44) including the field-dependent generalisation γΦ is the
general fRG setup for the effective action, see Section 3.3.

For regulators with the second property (UV decay), general reparametrisations encoded
in the anomalous dimensions and β-functions may facilitate the computations or implement
functional optimisation schemes. It is simply a convenience for infrared flows with finite flow
equations, but is a necessity in the absence of ultraviolet finite loops, as is the case for the
CS regulator, (3.43). Then, the rescalings implement the required UV renormalisation via
multiplicative renormalisation. While this is a formally correct procedure, the implementation
of multiplicative renormalisation within non-perturbative truncation schemes is intricate. This
intricacy is present for all diagrammatic methods such as DSEs or 2PI methods, a detailed
discussion is provided in [172].

Functional RG with flowing renormalisation

The generalised flow equation (3.44) can be used with an infrared regulator and an additional
ultraviolet one to derive a flow equation which also incorporates an explicit UV renormalisation
in a manifestly finite approach. This is implemented in terms of a generalised BPHZ scheme
with the subtraction of a flowing counter term action. In contradistinction to multiplicative
schemes this leads to finite loop diagrams by subtraction. Such a construction has the benefit
of a simple and robust numerical implementation.

The flowing (UV) renormalisation of the flow is introduced by tracking a UV scale Λ= Λ(k)
alongside with the infrared flow and subsequently taking the limit Λ→∞. This novel flow
equation, with flowing renormalisation, is derived in [3] and reads,

∂tΓk[φ] =
1
2

Tr Gφ[φ]∂tR
φ − ∂tSct[φ] . (3.47)

Here, the flow of the counter term action (3.48) accounts for the flow of the renormalisation
conditions, as well as the finiteness of the flow itself for infrared regulators Rφ such as the CS
regulator. The counter term action is given by,

∂tSct[φ] := − lim
Λ→∞

�

1
2

Tr Gφk,ΛDk ∂tΛRφk,Λ

�

, (3.48)

where the factor Dk is a relative measure of RG steps in the k- and Λ-direction,

Dk = ∂t logΛ(k) , (3.49)

where tΛ = log(Λ/kref), with a reference scale kref. Rφk,Λ is the UV-regulator term as a function

of the UV-scale Λ. We recover the infrared regulator for limΛ→∞ Rφk,Λ = Rφ .
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In the case of UV-finite regulators Rφ the flow (3.48) reduces to the standard momentum-flow,
since limΛ→∞
�

∂tΛRφk,Λ

�

= 0. In general however, this naive limit can only be taken for infrared
momentum cutoffs that decay sufficiently fast in the ultraviolet. Most importantly, we can
identify the terms∝ Dk as UV-cutoff flows that can be used for a flowing renormalisation
scheme.

The derivation, put forward in [3], holds true for general infrared regulators. For our specific
real time applications we consider regulators Rφk,Λ with

Rφk,Λ(p) = Zφ k2 r(xΛ) , xΛ =
p⃗ 2

Λ2
, (3.50)

where we have used a spatial momentum regulator in order to retain causality in a simple
manner, as discussed in the previous section. For Λ→∞ we require

lim
Λ→∞

Rφk,Λ = Zφ k2 , (3.51)

to recover the CS regulator. Equation (3.51) defines a set of possible shape functions r(x)
The counter term action depends on a finite set of renormalisation parameters and removes

all terms with positive powers Λn as well as logarithms logΛ/kref from the flow. This renders
the infinite UV cutoff limit finite,

lim
Λ→∞

|︁

|︁∂tΓk,Λ[φ]
|︁

|︁<∞ . (3.52)

Accordingly, the amount of renormalisation parameters is equivalent to the number of UV
relevant and marginal directions. Moreover, in the limit Λ→∞ the counter term action takes
a local form for approximations with local vertices that reduce to the classical ones for large
momenta. It can be augmented with general reparametrisations of the theory, leading to a
generalisation of (3.44). We defer this to [3].

This general setup also allows us to monitor and change the renormalisation conditions within
the infrared flow. This generalises the standard fRG setup, in which the (UV) renormalisation
and the respective renormalisation conditions are implicit in the choice of the finite initial
action.

Finite CS flows and flowing renormalisation conditions

In Section 7.2 we use this flow to set up spectral functional flows with the finite CS flows
derived from (3.47). For the CS flow the general equation reduces to

∂tΓk[φ] = Tr Gφ[φ] k
2 − ∂tSct[φ] , (3.53)

where a CS regulator in a manifestly UV finite setting is assumed and the finite limit Λ→∞
can be safely taken. As for the general equation (3.47) the novelty of (3.53) is not its finiteness
per se. Indeed, already the original functional CS equation as derived in [171] can be shown
to be finite order by order in perturbation theory. However, (3.53) is manifestly finite in
general perturbative and non-perturbative truncation schemes with a manifestly finite effective
action. Moreover, the present setup allows for a direct computation of the flow of the counter
term action, only dependent on a set of renormalisation parameters which are in one-to-one
correspondence to the coefficients of the UV marginal and relevant operators.
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The general flow (3.47) and its finite CS limit (3.53) seemingly imply that we are left with
the task of computing the non-trivial scaling factor Dk as well as the Λ-trajectory at each RG
step. This would exact a heavy price for the finiteness (3.52). It is therefore noteworthy that
we do not have to compute ∂tSct[φ] from the flow of Λ(k), since we can fix it completely by
choosing a set of renormalisation conditions. Then, the subtraction ∂tSct[φ] is determined
such that the flow of these conditions vanishes. This choice is practically implemented by
subtracting the t-flow of the correlation functions Γ (n)k (p

2 = µ2), that is the renormalisation
condition from the full t-flow. This renders the functional t-flow finite (if one also subtracts
the zero point function) and guarantees the RG conditions to hold.



CHAPTER 4

Gluon condensation and mass gap

This chapter is based on [2], text and figures are taken from the publication. We begin by investi-
gating the gluon mass gap, which is linked to gluon confinement via the Kugo-Ojima confinement
criterion, see Section 2.2.1. The publication studies mechanisms for the creation of a gluon con-
densate and makes a prediction for the gluon mass gap.

Yang-Mills theory exhibits a mass gap, in spite of the fact that the fundamental degrees of
freedom are massless at the level of the classical action. While perturbation theory is based
on massless gluons, non-perturbative quantum fluctuations lead to exponentially decaying
correlation functions for gauge invariant observables, which are characteristic of massive
excitations. The lightest excitations are glueballs [173,174], and the lightest glueball mass sets
the mass gap or confinement scale. This dynamical emergence of a mass gap in the gauge sector
of QCD has been established by numerous lattice studies, see e.g. [175–179], and continuum
studies, see e.g. [180–188].

In a gauge fixed version of QCD the effects of the mass gap manifest themselves through the
appearance of distinctive patterns in the infrared momentum region of correlation functions.
Most of the related investigations have been performed in Landau gauge QCD. In particular
the infrared behaviour of the gluon propagator in Landau gauge has been explored within
large-volume lattice simulations [189–197] and non-perturbative functional methods, such as
Dyson-Schwinger equations (DSEs) [92,198–201] and the functional renormalisation group
(fRG) [95,104,202,203]. In combination, these investigations have led to a coherent picture:
with exception of the deep infrared regime far below the confinement scale ΛQCD, the results
obtained for the gluon propagator in the non-perturbative domain are in excellent agreement.
In particular, they are found to be well compatible with a description in terms of an effective
gluon mass. Put differently, they show the dynamical emergence of a mass gap in the gluon
propagator, as well as in higher order correlation functions.

The precise relation between the gluon mass in gauge fixed QCD and the physical mass gap
in Yang-Mills theory is still an open question. Nonetheless, in covariant gauges a mass gap in
the gluon propagator is required for quark confinement to occur. This has been established
through the study of the Polyakov loop expectation value in [88,89].

This situation asks for the identification and investigation of potential mechanisms which are
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able to create an effective gluon mass term. Commonly, gauge boson masses are generated by
the formation of condensates, even in the absence of fundamental scalar fields. The textbook
implementation of such a scenario is realised within the theory of superconductivity. There,
the massive photon associated with the Meissner effect is linked to the condensation of the
Cooper pairs, see e.g. [204,205], and references therein. In pure Yang-Mills theory, a potential
connection between the effective gluon mass and gluon condensates of dimension four has
mostly been discussed within the operator product expansion (OPE) [96, 206, 207]. It has
been argued in [208] that a non-perturbative condensate of composite color octets in QCD
leads to a simple description of gluon masses by the Higgs mechanism. In this scenario, the
massive gluons can be identified with the lowest mass vector mesons, with a rather successful
phenomenology [209,210].

The chapter is a first fRG study of a potential dynamical emergence of the effective mass in
the gauge fixed gluon propagator in QCD color condensates. This condensate is computed from
the Euclidean effective potential of a constant field strength Fµν as in [211], with precision
ghost and gluon propagators obtained within the fRG [47]. We find minima and saddle points
for finite non-zero Fµν. The minimum value of Fµν is related to an effective gluon mass, and
the final color blind result is obtained from an average over color directions. Our computation
of the effective gluon mass agrees very well with lattice results and results obtained from
alternative dynamical scenarios within the error bars, despite the qualitative nature of the
computation. The present study serves as a promising starting point for a systematic exploration
of the connection between gluon condensates and gluon mass gap.

4.1. Gluon condensates

Gluon condensation can be described by non-vanishing expectation values of composite opera-
tors, such as the field strength squared, FµνFµν, being a scalar under Lorentz transformations.
In terms of the free energy or effective action of QCD, this entails that quantum effects would
trigger a non-trivial potential in these condensates, with the possibility of capturing also the
dynamics of the respective interaction channel. In this context, the classical action of Yang-Mills
theory, as introduced in (2.9), is the first (trivial) term of such a non-trivial potential.

4.1.1. Color condensates

Color condensates [208, 212–214] could render the gluons massive through a dynamical
realisation of the Higgs mechanism. Note that, strictly speaking, a local gauge symmetry cannot
be broken spontaneously. Nonetheless, as is well-known from the description of the electroweak
sector of the Standard Model, the language of spontaneous symmetry breaking in a fixed gauge
can be particularly useful, and will be employed in what follows.

Below we discuss a color condensate operator, derived from Fµν in the case of the physical
gauge group SU(3). Generally, a possible condensate operator of dimension four is given by
the traceless hermitian Nc × Nc matrices

χAB =
�

FAC
µν F CB

µν −
1
Nc

F C D
µν F DC

µν δ
AB
�

, (4.1)

where A, B, C , D = 1, ..., Nc are color indices in the fundamental representation, FAB
µν = F a

µν(t
a)AB.

The subtraction of the diagonal term makes the operator traceless, χAA = 0, and for Nc = 3 this
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is an octet operator. In terms of the field strength components F a
µν, the condensate in (4.1)

reads,

χAB =
1
2

F a
µνF b

µν

�

{ta , t b}AB −
1
Nc
δabδAB
�

, (4.2)

We note in passing that the above operator is only present for Nc ≥ 3. It vanishes in SU(2), as
the symmetric group invariant vanishes, dabc = tr ta{t b , t c} = 0. This suggests already that, in
a realistic condensation scenario leading to a gluon mass gap, (4.1) should be augmented with
further color condensate operators.

Introducing the composite color condensate field χAB, the quantum effective action Γ will
typically contain an induced kinetic term,

Γχ = Zχ

∫︂

x
(Dµχ)

AB (Dµχ)
BA , (4.3)

with a wave function renormalisation Zχ . For a non-zero expectation value 〈χAB〉, this induces
a mass term for some of the gluons,

m2
A∝ Zχ g2

s 〈χ〉
2 . (4.4)

Mass terms for all gluons in SU(3) require condensates of more than one octet in different
directions since at least a U(1)× U(1)-subgroup remains unbroken, as for example in [208,
212–214]. This argument also applies to higher gauge groups, Nc ≥ 3, and we have already
pointed out in this context that the color condensate operator (4.2) vanishes for Nc = 2. Besides
different mass terms, octet condensates can also induce different effective gauge couplings for
different gluons, due to terms in the effective action, see e.g. [215,216],

∫︂

x
FAB
µνχ

BC F CA
µν . (4.5)

This closes our discussion of the color condensation in Yang-Mills theories.

4.1.2. Color condensates and the field strength tensor

The investigation of flow equations with dynamical composite fields such as the color condensate
field discussed in the last section is well understood. It has been introduced and discussed
in [51,123,127,131,136,217–221], for applications to QCD see [42,45,48,51,59,102] and
the review [104]. However, full computations including the composite field χAB require a
substantial effort, and will be considered elsewhere.

In the present work we restrict ourselves to a qualitative study, whose principal aim is to
gather insights on the possible role of non-singlet condensates in the confining dynamics. This
is done by building on results for the condensation of the field strength tensor within functional
renormalisation group investigations in [211,222,223]. Such a colored expectation value of
Fµν is linked to non-vanishing expectation values of the color condensate operator χ in (4.1)
as well as potential non-vanishing expectation values of further color condensate operators.
Hence, 〈Fµν〉 can be used to describe the dynamical emergence of the effective gluon mass via
color condensates, for details see Section 4.1.3.

We emphasise that a description in terms of Fµν and its expectation value makes it difficult
to include the full dynamics of the color condensate sector as well as the condensation pattern,
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as this requires the computation of the dynamics of higher order terms in Fµν and covariant
derivatives. We also note that such an expansion about 〈Fµν〉 works naturally for observables
or more generally, expectation values of gauge invariant operators. There, singling out a color
direction is simply a means of computation. In turn, for gauge-variant expressions the expansion
about a non-trivial configuration mixes with the gauge fixing, and it is difficult to undo the color
selection quantitatively. This can be done with an additional color averaging 〈·〉av, which can
be implemented systematically. As this concerns the understanding and underlying structure of
our work, we further explain this with two simple examples. While important, it is not in our
main line of reasoning and hence is deferred to Appendix B.2.1.

In any case, while such an averaging is to date always implied in lattice simulations of
gauge fixed correlation functions as well as in most computations in functional QCD using an
expansion about 〈Fµν〉= 0, it is difficult to implement quantitatively in an expansion about a
colored background. It is this current lack of a quantitatively reliable averaging step that makes
the current investigation qualitative and it constitutes our largest source for the systematic
error.

In the present work, we compute the respective gauge invariant effective potential Weff(Fµν)
for constant field strength Fµν from the effective action Γ [A],

Weff(Fµν) =
1
V
Γk[A(Fµν)] , (4.6)

with the space time volume V . Specifically, we choose gauge fields with the following constant
self-dual field strengths:

The components Fµν = 0 for µν ̸= 01,10, 23,32 vanish, and we have

F01 = F23 =
F a

2gs
ta , F a

01 =
F a

2gs
, F a = Fna , (4.7a)

with a constant vector na with nana = 1. The field strength (4.7a) can be generated from the
gauge fields

Aa
µ = −

1
2

F a
µνxν . (4.7b)

Evidently, the configuration is self-dual,

Fµν = F̃µν , with F̃µν =
1
2
εµνρσFρσ , (4.7c)

and is covariantly constant, [Dρ , Fµν] = 0.
The classical action and the classical potential Wcl as well as the color condensate (4.1) is

obtained from the field strength squared, which reads for the configuration (4.7),

FµνFµν =
F2

g2
s
(na ta)2 , F a

µνF a
µν =

1
g2

s
F2 . (4.8)

For example, for the configuration (4.7) with (4.8), the classical potential reduces to

Wcl(F
a) =

1
2

trf F aF b ta t b =
1

4g2
s

F2 , (4.9)

where trf stands for the group trace in the fundamental representation. From now on we only
consider configurations of the type (4.7), and hence Weff will be written as a function of Fna,
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that is Weff(F a) instead of Weff(Fµν). The factor 1/g2
s in (4.8) reflects the RG-scaling of the

field strength, and has been introduced for convenience. Moreover, as both the gauge fields
and the field strength in (4.7b) point in direction na of the algebra, they can be rotated into
the Cartan subalgebra without loss of generality.

Below, we briefly discuss SU(2) and SU(3) gauge groups, the former case as the simplest
example, the latter case for its physical relevance:

In the SU(2) gauge group, the Cartan subalgebra is generated by t3 = σ3/2 and the self-dual
field strength (4.7) is given by

F01 = F23 =
F

2gs
t3 . (4.10)

We have already discussed above that in SU(2) the symmetric group invariant dabc vanishes,
and hence χAB

SU(2) = 0, implying (FµνFµν)AB = 1/2F a
µνF a

µνδ
AB for all configurations. For (4.10)

we find

(FµνFµν)
AB =

F2

2g2
s
δAB . (4.11)

The explicit computation in this work is done for the physical gauge group SU(3) with the
Cartan generators t3, t8. These are related to the Gell-Mann matrices by ta = λa/2, the
respective vector n has the components na = 0 for a ̸= 3,8. A self-dual field strength (4.7) is
given by

F01 = F23 =
F

2gs

�

n3 t3 + n8 t8
�

. (4.12)

The octet condensate operator (4.1) for the configuration (4.12) reads

χAB =
F2

2g2
s

�

nanb {ta , t b}AB −
1
3
δAB
�

=
F2

2g2
s
δAB
�

δA1ν+ +δ
A2ν− +δ

A3ν3

�

, (4.13)

where

ν± =
1
2

�

n8

⎷
3
± n3

�2

−
1
3

, ν3 =
2
3
(n8)2 −

1
3

. (4.14)

where the trace(less) condition, χAA = 0, translates into ν++ν−+ν3 = 0 with (n3)2+(n8)2 = 1.

Non-vanishing octet condensate expectation values are in one to one correspondence to
non-trivial expectation values of its corresponding gauge-invariant eigenvalues. Hence, a
non-trivial expectation value of the field strength triggers one for the octet condensate χAB and
other color condensate operators. Therefore, in Section 4.3, we compute the effective potential
for covariantly constant field strength or rather Weff[Fna] for the field strength amplitude Fna

defined in (4.7a), and the constant algebra element na ta is rotated into the Cartan subalgebra.
The respective effective potential is shown in Figure 4.1 for the physical SU(3) case with the
two Cartan components F01n3 and F01n8. The absolute minima are related by Weyl reflections.

Our explicit computation of the effective gluon mass is based on an expansion about the
minimum 〈F〉(na) in the three-direction with na = δa3. In SU(2) this is the Cartan direction,
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Section 4.2. For the time being we simply assume its existence and consider the higher order
term

ΓF [A] =
ZF

4

∫︂

x
(DµFνρ)

a(DµFνρ)
a , (4.17)

where ZF is the wave function renormalisation of the condensate term. Equation (4.17) is the
lowest order term that generates an effective gluon mass term within an expansion about the
condensate 〈F〉. An obvious generalisation of (4.17) is provided by

1
4

∫︂

x
(DµFσρ)

bZF
ab
ρσαβ(Fµν)(D

b
µFαβ)

a , (4.18)

with ZF
ab
ρσαβ

(0) = ZFδσαδρβδ
ab. In the following we will use the approximation

ZF
ab
ρσαβ(〈Fµν〉)≈ ZF

ab
ρσαβ(0) , (4.19)

hence only considering the term (4.17).
Equation (4.17) leads to an effective gluon mass, but does not contribute to (covariantly

constant) solutions of the equations of motions as its first field derivative vanishes for covariantly
constant field strengths. The relevant contribution to the effective gluon mass term is obtained
by expanding (4.17) in powers of the gauge field, while treating the field strength within the
expansion (4.15). To that end we conveniently recast (4.17) into the form

ΓF [A] = −
ZF

2

∫︂

x
F CB
νρ (D

2)BAFAC
νρ , (4.20)

where the factor 1/2 in (4.17) is now carried by the trace in the fundamental representation.
The O (A2) term is given by

ΓF [A] =
ZF

2
g2

s

∫︂

x
(FνρFνρ)

AB (AµAµ)
BA+ · · · , (4.21)

and we expand (FνρFνρ)AB about the field strength expectation value (4.15). This implies a
non-vanishing condensate expectation value for (4.1) as well as non-vanishing values for other
color condensate operators. The expansion about (4.15) leads us to

(FνρFνρ)
AB =

1
g2

s
〈F〉2[(na ta)2]AB +O (A) . (4.22)

We drop the higher order terms in (4.22) and insert it in (4.21), to wit,

ΓF [A]≃
ZF

2
〈F〉2
∫︂

x
trf(t

3)2A2
µ + · · · , (4.23)

Now we evaluate (4.23) for the configurations (4.7), which leads to our final expression for the
effective gluon mass triggered by an expectation value of the field strength proportional to t3.

We first discuss the simple example of an SU(2) gauge group. There, the configuration (4.15)
leads to an F2

µν that is proportional to the identity tensor 1 in the algebra, as 4(t3)2 = 1. Indeed,
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as discussed below (4.10), general field strength tensors lead to diagonal F2
µν. In summary, in

SU(2), a field strength condensate in the t3-direction leads to

ΓF [A]≃
1
2

m2
3

∫︂

x
Aa
µAa
µ + · · · , m2

3 =
ZF

8
〈F〉2 , (4.24)

with a uniform mass for all gluons. The subscript 3 indicates that, while uniform, the mass
is generated by 〈F a

µν〉 ∝ δa3. Importantly, (4.24) entails that a color condensate leads to
gluons with an effective mass. However, the current procedure with an expansion about a non-
vanishing field strength does not allow to directly infer the full effective gluon mass obtained in
a color blind computation from m2

3 in (4.24). At this state we only can offer estimates, whose
derivation is deferred to the end of the present section.

Before we come to these estimates, we proceed with the SU(3) example. There, we also use
the Cartan-valued configuration (4.15) (with n8 = 0), as one of the absolute minima in the full
effective potential Weff points in this direction, see Figure 4.1. In contradistinction to SU(2),
the square 4(t3)2 is not the identity matrix in the algebra, but a projection onto the first two
colors,

(t3)2 =
1
4
δAB
�

δA1 +δA2
�

. (4.25)

As expected, the expansion about a minimum of the field strength, tantamount to one about
the octet condensate (4.1), breaks color, and indeed, the gluon with the third color is massless
if only considering contributions from ΓF . Hence, while the present expansion shows, that the
gluons acquire an effective mass term∝ δab, the relation of its necessarily color blind strength
m2

A to the color-sensitive masses derived here is not straightforward.
Therefore, in the present work we simply deduce self-consistency constraints for the effective

mass m2
A starting with the gluon mass m2

3, inferred from a field strength in the t3 direction. To
begin with, color symmetry can be restored by averaging over global color rotations as always
implied in lattice simulations as well as in most computations in functional QCD. After this
averaging, all masses are identical and non-vanishing. A color average of (4.23) leads us to

ΓA2[A] =
ZF

2
fav(Nc)〈F〉2
∫︂

x
Aa
µAa
µ , (4.26)

with fav(Nc) encodes the color average of the factor (t3)2 in (4.23),

fav(Nc) = 〈(t3)2〉av . (4.27)

The color average in (4.27) necessarily leads to a color insensitive sum over all generators
squared in the fundamental representation, which is simply the second Casimir C2(Nc) =
(N2

c − 1)/(2Nc) in the fundamental representation times the identity matrix. Moreover, there is
an undetermined prefactor cav(Nc), which leads us to

¬

(t3)2
¶

av
= cav(Nc)

N2
c −1
∑︂

a=1

(ta)2 = cav(Nc)C2(Nc)1 . (4.28)

In the present work we will only provide constraints for cav(Nc) and hence for fav(Nc) in (4.27).
For example, a ’natural’ bound for the averaging factor is unity, cav(Nc)≤ 1.
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In summary we arrive at

m2
A =

ZF

2
fav(Nc) 〈F〉2 , (4.29)

In B.2.2 we will show, that self-consistency of the averaging in the large Nc limit entails that in
this limit fav(Nc)∝ Nc . Indeed, this limit holds true for Nc-independent cav. In particular this
includes the case, where we saturate the ’natural’ bound cav = 1, leading to

fav = (N
2
c − 1)/(2Nc) . (4.30)

For this saturation fav we obtain

m2
A =

ZF

4

N2
c − 1

Nc
〈F〉2 , (4.31)

Equation (4.31) will eventually yield our value of the gluon mass. In Section 4.2, we present the
formalism employed for working with the constant field strength configurations in (4.8). The
computation of the minimum position F a = 〈F〉na is detailed in Section 4.3, and an estimate
of the wave function of the condensate together with the result for the mass gap is presented
in Section 4.4.

4.2. Background field approach

The condensate 〈F〉 for the field strength configuration of (4.12) is given by the minimum
of an effective potential Weff(F na), derived from a gauge invariant effective action Γ [A], see
(4.6). Such an action is defined in the background field approach [224], building on a linear
decomposition of the full gauge field Aµ into a fluctuating and background field. This linear split
is given by Aµ = Āµ + aµ, where aµ denotes the fluctuation field and Āµ the background field.
On the quantum level, this relation has to be augmented with the respective wave function
renormalisations ZĀ = Z−2

gs
for the background field Āµ and Za for the fluctuation field aµ, as

the two fields carry different RG scalings: As indicated above, the background field scales
inversely to the strong coupling, while the fluctuation field carries the RG-scaling of the gauge
field in the underlying gauge without background field. The gauge fixing condition involves
the background field,

D̄µaµ = 0 , (4.32)

with the background covariant derivative D̄ = D(Ā), see (2.5). Note, that (4.32) is invariant
under background gauge transformations,

a→ a+ i [ω, a] , Ā→ Ā+
1
gs

D̄ω , (4.33)

implying a standard gauge transformation for the full gauge field: Aµ → Aµ + (1/gs)Dω.
Consequently, the full gauge-fixed classical action is invariant under (4.33), and so is the full
effective action Γ [Ā, a]. Moreover, the single-field background effective action Γ [A] := Γ [A, 0]
is gauge invariant and can be expanded in gauge invariant operators. For this reason, it also
allows for a more direct access to observables. In what follows we use the potential condensate
background (4.7).
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4.2.1. The background effective action and condensates

The gauge invariance of the background effective action allows us to embed the momentum-
dependent kinetic terms and vertices in an expansion about a vanishing gauge field in full
gauge invariant terms that reduce to the original ones for Aµ→ 0. An important example is
given by the (transverse) kinetic term of the gauge field, see e.g. [88,89,211],

Γ [A]∝
1
2

∫︂

p
Aa
µ(p) ZA(p

2) p2Π⊥µν(p)A
a
ν(−p) , (4.34)

with the abbreviation
∫︁

p =
∫︁

d4p/(2π)4, and the transverse and longitudinal projection opera-
tors

Π⊥µν(p) = δµν −
pµpν
p2

, Π∥µν(p) =
pµpν
p2

. (4.35)

The kinetic operator ZA(p2)p2 is identified as the Aµ→ 0 limit of the second field derivative
of a gauge invariant term in the effective action Γ [A]. This leads us straightforwardly to the
parametrisation

Γ [A] =
1
2

∫︂

trFµν fA,µνρσ(D)Fρσ + · · · , (4.36a)

with the split

fA,µνρσ(D) =
1
2

ZA(∆s)(δµρδνσ −δµσδνρ)

+ Fγδ fA,γδµνρσ(D) . (4.36b)

In (4.36b), we have introduced the spin-s Laplacians

∆0 = −D2 , ∆1,µν = DT,µν = −D2δµν + 2i gs Fµν , (4.36c)

see also (B.20). Equation (4.36b) represents the most general parametrisation for a covariant
function coupled to two field strengths. Since fA,γδµνρσ is a function of the Laplacian D, higher
order terms in the field strength tensor are contained in the second term of (4.36b). For Aµ = 0,
all these decompositions reduce to their the momentum-dependent versions. In particular, the
kinetic term (4.34) is obtained from (4.36b) by taking two gauge field derivatives at A= 0.

A further relevant example is the sum of the classical action and the term ΓF in (4.17) that
generates the effective gluon mass. This combination is obtained with

ZA(−D2) = ZA− ZF D2 , fA,γδµνρσ = 0 . (4.37)

Here, ZA is the constant background wave function renormalisation multiplying the classical
action, which also entails ZA = Z−2

gs
.

The example given in (4.37) is central for two reasons: Firstly, it demonstrates how the
condensate studied in this work emerges from the general, gauge-invariant form of the effective
action (4.36a), which is defined in the next section within the background field formalism.
Secondly, it establishes a link between the wave function renormalisation of the condensate
and the kinetic operator of the gluon field ZA(∆s). More explicitly, due to the generality of the
split (4.36b), (4.37) entails that the wave function renormalisation of the condensate (4.17) is
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simply given by the D2-coefficient of the dressing function of the gluon propagator. In the limit
of vanishing background, this simply corresponds to the p4-term in the gluon propagator.

Note that the use of different ∆s in the split (4.36b) leads to different forms for fµ1···µ6
, thus

modifying the parametrisation of the kinetic term. Still, the different field modes carry different
spin, and the use of the respective Laplacians makes the split in (4.36b) to be the most natural.
Typically, higher order terms within this split are suppressed in the effective action. For example,
the second derivative of the classical Yang-Mills action is given by ∆1 = DT , multiplied by a
covariant transverse projection operator. For covariantly constant fields with [D, F] = 0, we get

δ2

δAρδAσ

1
2

∫︂

x
trF2

µν = DT,ργΠ
⊥
γσ(D) , (4.38)

where the trace is taken in the fundamental representation. Above, we introduced the covariant
transverse and longitudinal projections,

Π⊥µν(D) = δµν −Π
∥
µν(D) , Π∥µν(D) = Dµ

1
D2

Dν . (4.39)

Equation (4.39) defines a decomposition in a covariantly transverse subspace with DµΠ
⊥(D) = 0.

It is complete, Π⊥(D) +Π∥(D) = 1, and trivially orthogonal. Finally, the operators have the
projection property (Π⊥(D))2 = Π⊥(D) and (Π∥(D))2 = Π∥(D).

4.2.2. Gluon and ghost two-point functions

When supplemented by a wave function renormalisation ZA(DT ), (4.38) provides a very good
approximation of the full two-point function of the background gluon. This suggests the split
in (4.36b) with the spin one Laplacian ∆1 = DT for the transverse two-point function, and
with the second term being subleading,

Γ
(2,0)
AA,µν[A, 0] = ZA(DT )DT,µσΠ

⊥
σν(D) + Fγδ∆ fA,γδµσ(D)Π

⊥
σν(D) , (4.40)

where ∆ fA,γδµν is a combination of derivatives of fA,µνρσ fully contracted with powers of the
field strength, see (4.36b), and Ā = A. The transversality of (4.40) follows from the gauge
invariance of the background effective action, as does its covariance. In (4.40) we have used
the notation

Γ
(n,m)
Ān
φi1 ···φim

[Ā,φ] =
Γ [Ā,φ]
δĀn

δφm
, φ = (a, c, c̄) , (4.41)

with φ denoting the ghost and gluon fluctuation field. We shall use the split (4.36b) leading
to (4.40) and similar natural splits for the covariant versions of the momentum dependent
two-point functions, thus going from the Landau gauge to the Landau-DeWitt gauge.

In particular one finds, that a similar line of arguments holds true for the kinetic operator
Za(p2)p2 of the fluctuation field aµ,

Γ (0,2)
aa,µν[0, 0] = Za(p

2) p2Π⊥µν(p) +
1
ξ

p2Π∥µν(p) , (4.42)

where (4.35) was employed, and a diagonal form in the algebra, 1ab = δab, is implied.
Background gauge invariance entails that Γ (0,2)[A, 0] is a covariant operator under the back-
ground gauge transformations (4.32). In consequence, the transverse part of Γ (0,2)

aa [A, 0] can be
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parametrised by the generic form of a background gauge covariant function already employed
in (4.36b), i.e.,

Γ (0,2)
aa,µν[A, 0] = Za(DT )DT,µσΠ

⊥
σν(D)−

1
ξ

D2Π∥µν(D) + Fγδ∆ fa,γδµσ(D)Π
⊥
σν(D) . (4.43)

In (4.43) we have used the spin-1 Laplacian ∆1 = DT defined in (4.36c) in the wave function
renormalisation Za, since the transverse fluctuating gluon is a spin-1 field. For two-flavour QCD,
the validity of such covariant expansions has been confirmed explicitly for the quark-gluon
vertex, whose non-classical tensor structure can be related to higher order gauge-invariant
terms q̄ /Dnq [48].

Finally, in the case of the ghost two-point function we parametrise

Γ
(0,2)
cc̄ [A, 0] = −D2Zc(−D2) + Fµν∆ fc,µν(D) , (4.44)

where the use of the spin zero Laplacian in (4.44) is suggested by the ghost being a spin zero
field. For Aµ = 0, the ghost two point function in (4.44) reduces to that in standard covariant
gauges.

The infrared behaviour of Za(p) in the Landau gauge is an extensively studied subject, both
on the lattice as well as with functional approaches, see e.g. [92,104,197,198,200,201]. In
particular, two types of solutions have emerged:

(i) The scaling solution [90] has an infrared vanishing gluon propagator and a scaling infrared
behaviour,

Za,IR∝ (−D2)−2κ , Zc,IR∝ (−D2)κ . (4.45)

with κ≈ 0.6. In (4.45) we have dropped terms proportional to the field strength. Note that in
this IR solution the ghost is infrared divergent. For the present computations we shall use the
fRG results from [47] within a quantitatively reliable approximation, for respective DSE results
see [225].

(ii) An entire family of decoupling or massive solutions [96], where the gluon propagator and
the ghost dressing function saturate at finite non-vanishing values at the origin, in agreement
with the IR behaviour found in large-volume lattice simulations. Specifically, we have

Za,IR∝
1+ caD2 log
�

−D2

Λ2
QCD

�

−D2
, Zc,IR∝ cc . (4.46)

Note that the fluctuating propagator can be mapped to the background one by means of an exact
identity, characteristic of the Batalin-Vilkoviski formalism, which involves a special two-point
function, see e.g. [200,226].

We emphasise that both types of solutions agree quantitatively for momenta p2 ≳ Λ2
QCD, with

ΛQCD related to the infrared mass gap. As a result, the deviations induced to phenomenological
observables by the use of either type are quantitatively minimal, see e.g. [48, 227]. In fact,
in the present work we will cover all potential solutions listed above, and show that their IR
differences are immaterial to the central question of dynamical condensate formation.

Both types of solutions, (4.45) and (4.46), are infrared irregular, and do not admit a Taylor
expansion about −D2 = 0. Instead, we can expand the wave function renormalisations about
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the infrared asymptotics. Making use of the relation between the condensate and gluon wave
function renormalisation established in (4.37), we arrive at

Za/A(−D2) = Za/A,IR(−D2) + (−D2) Za/A,F +O (D4) , (4.47)

for both Za and ZA with Za/A,IR defined in (4.45) and (4.46), and Za/A,F is the wave function ZF
for fluctuation field and background field respectively. The first term Za/A,IR carries the irregular
infrared asymptotic behaviour, and Za/A,F is the (uniquely defined) constant prefactor of the
linear term in −D2. The expansion (4.47) makes explicit that scaling and decoupling solutions
only differ in the IR leading term Za/A,IR, while coinciding in the expansion in powers of −D2.
This in particular entails that the overlap between gluon propagator and the condensate (4.17)
is independent of the leading IR behaviour of the respective solution, scaling or decoupling.

We are ultimately interested in the physical mass gap mgap of the fluctuation field aµ resulting
from the condensate term (4.17) in the full field A= Ā+ a. The derivation of the fluctuation
field mass gap works analogously to that of (4.29) in Section 4.1.3 leads to a contribution Γgap
in the effective action with

Γgap =
1
2

m2
gap

∫︂

x
ab
µab
µ , (4.48)

where the effective gluon mass of the fluctuation gluon aµ is given by

m2
gap =

Zcond

2
fav(Nc)〈F〉2 . (4.49)

with Zcond = Za,F and the averaging factor fav(Nc) introduced in (4.26) and discussed there. In
particular we have ZF = ZA,F ̸= Zcond. The wavfunction ZF is used in (4.29) for the mass term
in a gauge invariant effective action, and in the present approach this is the background field
effective action. The difference between the wave functions is the ratio of the respective wave
functions of the background and fluctuation gluons.

In (4.37) we observed that the wave function renormalisation Zcond of the condensate studied
here generally appears in the dressing function of the respective gluon propagator, cf. (4.47).
This connection will be utilised in Section 4.1.3 to determine Zcond from the input gluon
propagators [47] employed in the computation of the background effective potential Weff(F a).
Supplemented with the non-trivial effective potential minimum 〈F〉, this procedure eventually
lead to our heuristic estimate of the gluon mass gap in Landau gauge Yang-Mills theory.

4.3. Background effective potential

Now we compute the value of the field strength condensate 〈Fµν〉 discussed in Section 4.1.2.
For this purpose, we update the fRG computation done in [211] to a self-consistent one with
fRG precision gluon and ghost propagators from [47]. In Section 4.3.1 we briefly review the
approach, and in Section 4.3.3 we report on the results for the condensate.

4.3.1. Flow of the background effective potential

For the full computation we resort to the functional renormalisation group approach, for QCD-
related reviews see [104,127,202,203,228,229]. In this approach, an infrared regulator Rk(p)
is added to the classical dispersion. In the infrared, that is p/k→ 0, the regulator endows all
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∂tΓk[Φ] =
1

2
−

Figure 4.2.: Depicition of the flow equation for the effective action, (4.50). Spiralling orange lines depict
the full field-dependent gluon propagator 〈AA〉c = Gaa[Ā,φ], dashed back lines depicted
the full field-dependent ghost propagator 〈cc̄〉c = Gcc̄[Ā,φ], where the subscript stands for
connected part. The circled cross stands for the regulator insertions ∂tRa (gluon loop) and
∂tRc (ghost loop).

fields with a mass, typically proportional to the cutoff scale k. In addition, the regulator Rk(p)
vanishes rapidly as p/k→∞, and the ultraviolet physics is not modified. The change of the
scale dependent effective action, Γk, under a variation of the cutoff scale k is described by the
flow equation. In the background field approach it reads

∂tΓk[Ā,φ] =
1
2

Tr Ra[Ā]Gaa[Ā,φ]− Tr Rc[Ā]Gcc̄[Ā,φ] , (4.50)

where t = log k/Λ is the (negative) RG-time, and GA, Gc are the fluctuation propagators of
gluon and ghost respectively,

Gφ1φ2
[Ā,φ] =

⎡

⎣

1

Γ
(0,2)
k [Ā,φ] + Rk[Ā]

⎤

⎦

φ1φ2

. (4.51)

The traces in (4.50) sum over momenta, Lorentz and gauge group indices, details can be
found in Appendix B.2.4. The regulator function Rk = (Ra, Rc) transforms covariantly under
background gauge transformations, which preserve the background gauge invariance of the
effective action. The current work utilises the propagator data from [47], which requires the
use of the same regulators for our computation of the background effective potential. For
details on the regulators see Appendix B.2.3.

For the derivation of the (background) field strength condensate we solve the equation of
motion stemming from the effective potential Weff(F a of covariantly constant field strength
defined in (4.6). In the fRG approach it is obtained from its scale-dependent analogue,

Wk(F
a) =

1
V
Γk[A(F

a), 0] , (4.52a)

with the full effective potential being defined at vanishing cutoff scale k = 0,

Weff(F
a) =Wk=0(F

a) . (4.52b)

The effective potential Wk is obtained by integrating the flow equation of the background
effective action ∂tΓk[A(F), 0], derived from (4.50) from the initial ultraviolet scale kUV to the
running cutoff scale k. The only input in this flow are the two-point functions Γ (0,2)

aa [A(F), 0]
and Γ (0,2)

cc̄ [A(F), 0], which we can infer from Landau gauge results. This is the background
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Landau-deWitt gauge with Ā = 0. For vanishing background the two-point functions only
depend on momenta, Γ (0,2)

k (p). We use the results from [47], with

Γ
(0,2)
aa,k (p) = p2 Za,k(p

2)Π⊥(p) + p2
�

1
ξ
+ Z∥a,k(p

2)
�

Π∥(p) ,

Γ
(0,2)
cc̄ (p) = p2 Zc,k(p

2) , (4.53)

with the transverse and longitudinal projection operators introduced in (4.35). In (4.53),
1ab = δab is implied in both two-point functions. The longitudinal dressing Z∥a,k signals the
breaking of BRST invariance due to the presence of the regulators, and vanishes in the limit
k→ 0. There, the gluon two-point function in (4.53) reduces to that of (4.42). Moreover it is
absent in the gluon propagator for the Landau gauge, ξ→ 0,

Now we switch on the background field and use the decomposition (4.43) for the transverse
gluon two-point function. Moreover, we drop the second line proportional to ∆ fa comprising
higher order terms. They are associated with non-classical tensor structures and can be shown
to be small in the perturbative and semi-perturbative regimes. In the Landau-DeWitt gauge, only
the gauge-fixing survives in the longitudinal propagator and we can drop the cutoff contribution
Z∥a,k. For the ghost we use (4.44), where we drop the second term proportional to ∆ fc. This
leads us to

Γ
(0,2)
aa,k (p)≃DT Za,k(DT )Π

⊥(−D)−
1
ξ

DµDν ,

Γ
(0,2)
cc̄ (p)≃ − D2 Zc,k(−D2) , (4.54)

valid for covariantly constant field strength with [D, F] = 0. For these configurations, the
transverse projection operator commutes with functions of the Laplacians ∆0 and ∆1.

4.3.2. RG-consistent initial condition

The flow equation (4.52a) of the effective potential Wk(F a) is readily obtained by inserting the
approximations of (4.54) into the flow (4.50). The flow is evaluated for the generic condensate
background (4.7). The details can be found in Appendix B.2.3. Finally, the effective potential
Weff(F a) of Yang-Mills theory is obtained from the integrated flow. We arrive at

Wk(F
a) =WkUV

(F a) +

∫︂ k

kUV

dk′

k′
∂t ′Wk′(F

a) , (4.55)

where WkUV
is well approximated by the classical potential (4.9) for a large initial cutoff scale

kUV. Perturbation theory is valid for these scales, and the background field effective action
ΓkUV
[A] reduces to the classical Yang-Mills action of (2.9), augmented with a wave function

renormalisation ZA,kUV
. All other terms are suppressed by inverse powers of kUV. This amounts

to

WkUV
(F a) =

ZA,kUV

4 g2
s

F2 =
F2

16παs(kUV)
, (4.56)

where

αs(k) =
1

4π

g2
s

ZA(k)
, with ZA(kUV) = 1 , (4.57)
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for the generic field strengths of (4.12). The emergence of a non-trivial minimum is clearly
visible in the non-perturbative regime ≲ 1 GeV, and its position indicated with the black dashed
line in Figure 4.3.

The gauge invariant information of the field strength Fµν is stored in its eigenvalues, which
do not change under (unitary) gauge transformations. In the present case, only the F01 = F23
components and their anti-symmetric counterparts are non-vanishing, and they are proportional
to a combination of the Cartan generators, see (4.12). The traces in the flow equation are in
the adjoint representation, and the six non-vanishing eigenvalues of n3 t3 + n8 t8 are given by

τ
(1)
± = ±n3 , τ

(2)
± = ±
�1

2
n3 +
⎷

3
2

n8
�

, τ
(3)
± = ±
�1

2
n3 −
⎷

3
2

n8
�

, (4.60)

for more details see e.g. [230,231]. The global, degenerate minima in Figure 4.1 are located
in the direction of the eigenvectors. The underlying Weyl symmetry maps the different minima
into each other, and is seen in Figure 4.1.

From (4.59) we determine the expectation values or rather saddle point position of the
condensate in both directions. We find that the expectation value in n3-direction is a global
minimum, while in the n8-direction the EoM singles out a saddle point. Both points are indicated
by the red and blue dots respectively in Figure 4.1. We determine the value of the minimum by
interpolation,

〈F〉2λ3
= 0.98(11)GeV4 , (4.61)

where the error is obtained by a variation of 2% in the initial coupling αs. More details on the
RG-consistency of this procedure are provided in Appendix C.1.1. Equation (4.61) is the result
of an SU(3) computation without the Nc rescaling.

As discussed below (4.12), the minimum in (4.61) is composed by the condensates of both
F2 and F F̃ . In that sense, the value quoted in (4.61) should be interpreted as an upper
estimate for the colorless condensate 〈F2〉. The present first-principle Yang-Mills result (4.61)
corroborates the phenomenological estimates, i.e. 〈F2〉 = 0.854(16)GeV4 [232], as already
remarked in [211]. Indeed, the normalisation procedure used here is similar to that in the
phenomenological computation. In contrast, both (4.61) and the phenomenological estimates
disagree with the lattice estimate 〈F2〉 = 3.0(3)GeV4 [233]. The latter value is extracted
from 〈G2〉= 0.077(7) in [233], and applying 〈F2〉= 4π2〈G2〉. In this context we remark that
the total normalisation may differ, even though all procedures provide RG-invariant results:
for example, one may multiply the respective result by the RG-invariant ratio of couplings at
different momenta, αs(p2

1)/αs(p2
2), resulting in a global factor. This amounts to mapping the

factor αs from one momentum scale to another. While we lack a comprehensive interpretation,
we simply point out that the lattice definition involves αs at a low momentum scale, conversely
to the present procedure, and that used in phenomenological applications.

For comparison we also provide the saddle point value,

〈F〉2λ8
= 0.85(11)GeV4 , (4.62)

which may be used for a further error estimate of the relation between octet and colorless
condensates, as the octet condensate should be averaged over all color directions.

4.4. Gluon mass gap

The aim of this section is to use (4.49) and (4.61) for an estimate of the mass gap. Evidently,
to accomplish this, the determination of the wave function renormalisation Zcond is required.
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Inspecting the condensate generating kinetic term, see (4.17), one finds that its analogue
for the fluctuating gluon also contains contributions of the type

Zcond

2

∫︂

x
aa
µ(∂

2)2Π⊥µν(∂ )a
a
ν + . . . . (4.63)

Hence, the kinetic term for the field strength not only gives rise to the condensate, but also
overlaps with the gluon propagator. More specifically, as can be read off (4.63), the p4-term of
the fluctuation gluon two-point function carries the wave function renormalisation Zcond as a
prefactor, as made explicit in (4.47).

Note that by means of (4.36a) and (4.37), the p4-term must be solely given by (4.63), as ZA
implicitly defined in (4.36b) encodes the full gluon propagator dressing function, see (4.34). In
terms of an operator product expansion, Zcond can be extracted by determining the p4-coefficient
in the origin of the inverse input gluon propagator data from [47], used in the calculation
of the condensate effective potential in Section 4.3. Utilising the knowledge of the analytic
structure in IR for scaling and decoupling scenarios, the p4-coefficient is extracted via a fit.
These fits are given by

Zfit(p
2) = Zas(p

2) + Zp2 + Zcond p2 , (4.64)

where only the infrared asymptotes Zas(p2) distinguish different solutions. A detailed discussion
of the fitting procedure is provided in Appendix C.1.2, and the respective fits Z (scal)

fit and Z (scal)
fit

in comparison to the propagator data from [47] are depicted in Figure 4.4.
Equation (4.64) makes it apparent that scaling and decoupling solutions differ only in the

infrared, where the p4 term is subleading. Hence, determining Zcond from both data sets
separately amounts to two different ways of determining the same quantity. Therefore, we
combine both input propagators to determine the value of Zcond. In doing so, we arrive at the
value for the wave function renormalisation

Zcond = 0.162(7)GeV−2 . (4.65)

Now we us the wave function renormalisation from (4.65), the condensate value 〈F2 (4.30) as
well as the saturation bound (4.30) for the averaging factor fav in the relation for the effective
gluon mass (4.49). This leads us to

mgap = 0.325(20)GeV . (4.66)

Equation (4.66) is the main result of the present work and provides an estimate for the
effective gluon mass in the Landau gauge. The relatively large uncertainty in (4.66) originates
predominantly from the error for Zcond in (4.65). In particular, it does not include a systematic
error estimate, and is solely rooted in the small amount of data points for the gluon propagator
of [47] in the deep IR.

A large source for the systematic error is the current lack of a quantitative color average
as discussed in detail in Appendix B.2.1. Moreover, the field strength condensate (4.61) also
receives contributions from the topological condensate 〈F F̃〉, see the discussion there and below
(4.12). Accordingly, we simply note that inserting the literature value from phenomenological
〈F2〉 estimates [232] reduces the value in (4.66) to mgap = 0.304(25)GeV. The same value is
obtained by the use of the saddle point value (4.62), which we use as an error estimate.
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4.5. Summary and outlook

In the present work we have explored the dynamical emergence of a mass gap in the Yang-Mills
correlation functions via the formation of color condensates, in the physical case with the SU(3)
gauge group one of these condensates is the octet condensate, see (4.1). Such a condensate
may be triggered by a Higgs-type mechanism in low energy QCD, similar and potentially related
to dynamical chiral symmetry breaking in QCD with the pion as pseudo-Goldstone bosons.

In the current work we have carried out a qualitative analysis within the fRG approach to
QCD by computing the minimum 〈F〉 of the effective potential W (F a) in the three direction
of the Cartan sub group. This non-vanishing field strength is related to non-vanishing color
condensates as discussed in Section 4.1.2. We have computed the effective potentialW (F a) for
covariantly constant field strength which develops a non-trivial minimum if quantum fluctua-
tions are successively taken into account with the fRG flow, see Figure 4.1. The condensate
value (4.61) is in good agreement with phenomenological estimates, but both disagree with
lattice results. As discussed in Section 4.3.3, this latter discrepancy may be due to a difference
in the normalisations employed.

The relation between the condensate and the effective mass gap is given by (4.49). We em-
phasise that the mass gap (4.49) triggered by the condensate depends on the RG-condition and
naturally has the RG-properties of a mass function: while the condensate itself is independent
of the RG-condition, the condensate wave function is not and carries the RG-properties of the
inverse gluon propagator. Consequently, the mass gap derived from (4.49) has the RG scaling
of the inverse gluon propagator, as it should. Accordingly, for a comparison of the results for
the mass gap obtained here with that in the literature the potentially different RG-schemes and
conditions have to be taken into account. Most fRG-computations including the present one
are done in MOM2, for a detailed discussion see [227].

These considerations result in our estimate of the gluon mass gap, mgap = 322(34)MeV,
which compares very well to the lattice estimate m(lattice)

gap = 0.3427(8)MeV from [192,194,234]
obtained after matching the momentum scales and the renormalisation point. We have also
compared our result for the mass gap with that obtained with the longitudinal Schwinger
mechanism within the framework of the pinch technique [200], see Appendix C.1.3 and the
very recent analysis see [246]. This analysis leads to m(Schwinger)

gap = 320(35)MeV which is in
excellent agreement with our estimate.

In summary, the findings of the present work suggest that the gluon condensation as a
mechanism for mass generation works well, and the key assumption in the present work, the
direct relation between colorless and octet condensate holds. Beyond improving the systematic
error of the numerical estimate, on theoretical grounds it would be desirable to establish a
deeper connection between the Schwinger mechanism and the condensate formation.

As an outlook, the present computation can be upgraded with the dynamical inclusion of the
composite octet condensate operator, discussed in Section 4.1.1. Then, the octet condensate is
taken into account as an effective low energy degree of freedom, which resolves the underlying
assumption of the current approximation, the equivalence of octet condensate and colorless
condensate. It also allows us to study the relevance of a potentially non-trivial condensate
dynamics. We hope to report on respective results in the near future.



CHAPTER 5

Discontinuous Galerkin methods in the fRG

This chapter is a compilation of [1], [5] and [10]. The general concept of solving RG-flows within
a numerical fluid dynamics setting is introduced at the example of the O(N) model. We discuss
challenges of this formulation and report on technical improvements that were made along the
way.

In this chapter we introduce the computational tools, which we use to investigate the chiral
phase structure of QCD within the fRG. Whilst keeping this specific purpose in mind, we find
that these tools can be used in a much more general context: charting the phase structure of
theories with competing order effects, (multi-)critical endpoints and lines of first and second
order as well as crossover regimes. Even a qualitative access to some of the most eminent
physics of phase transitions requires a firm quantitative grip on the non-trivial dynamics in the
respective regimes. To chart the location of phase boundaries as well as their nature, the task
turns out to be two-fold, with both aspects being deeply interconnected on a technical level:

The first task concerns first order phase transitions, which have recently been linked to
shock formation in field space [65,247]. This implies, that the occurrence of first order phase
transitions or their absence can only be reliably predicted within a numerical implementation
of the fRG approach that captures the emergence and evolution of shocks.

The second task concerns competing order effects, where even small changes in the flow can
have qualitative impact on the resulting ground state. Accordingly, these challenges require
both the resolution of momentum dependences of higher scattering kernels and a quantitative
resolution of full field dependences in the fRG.

Consequently, for an access to the phase structure of generic theories ranging from highest
to lowest momentum momentum scales within a numerical fRG approach, a numerically fully
reliable and versatile framework, that captures the intricacies discussed above, is required.

A common truncation scheme in this case is the derivative expansion, which was briefly
introduced in Section 3.2.2 or for a review see [104] and references therein. In this truncation
scheme, the effective action is expanded in gradients of the field. To leading order, the dynamics
is then encoded by the effective potential, whose flow is governed by a second order PDE,
which we derive as an example in Section 5.1. Hence, solving Partial Differential equations
(PDE) is an important task in the context of phase transitions within the fRG.
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In recent years, this task has been approached by employing a variety of numerical methods
for solving increasingly complex models and approximations. For example, the application of
numerical fluid dynamics to FRG equations has been thoroughly investigated in zero-dimensions
[248–250].

The dynamics of spontaneous symmetry breaking and convexity restoration in dimensions
d > 2 has been tackled by introducing Discontinuous Galerkin methods (DG) in the large-
N limit [65]. An application of its naive extension to higher order derivatives, the direct
DG (dDG) method, to the quark meson model at finite N has provided results for the phase
structure at high temperatures and around the critical point [1], see also Chapter 8 in this
thesis. Moreover, these investigations found the potential for the creation of shock-waves in the
RG-flows, emphasizing the advantage of using inherently discontinuous numerical methods. It
was also found that the dDG, and hence all derived finite element methods, without further
derivative reconstruction, fail to solve the RG-flows at high densities.

At high densities, the dominance of the σ-mode at finite N introduces strong non-linear
diffusive effects to the flow. Such effects lie beyond the scope of dDG methods and necessitate
the introduction of higher order accurate schemes. Thus, the Local Discontinuous Galerkin
(LDG) methods [251] were introduced to the fRG. They properly handle the more subtle
structure of the second order derivatives in these equations, leading to enhanced numerical
stability. Since the implementation of these schemes becomes increasingly complex, we provide
a simple application to an O(N) model, see also [5]. Furthermore, we an open source version
of the code is openly accessible at https://github.com/satfra/dune-FRGDG, combined with a
detailed explanation of the code. The code is written as a module for the high performance
PDE framework DUNE [252].

In the following we introduce the fRG flows for a scalar O(N) model in Section 5.1. These
equations are then used to explain the Discontinuous Galerkin discretisation in Section 5.2. We
close this section by performing some benchmark checks in Section 5.3.

5.1. The O(N) model

This section is based loosely on [5].

In this section we derive the RG-flow of the O(N)-model in vacuum as an example for all
future calculations using the O(N) model and related models. The model is a common test
subject when first considering new methods due to its simplicity. Simultaneously, it has a
large range of applications, ranging from condensed matter physics over cosmology to QCD,
see [104] and references therein.

The O(N) model has been studied extensively within the fRG [130,253–270], ranging from
fixed points to its RG-time evolution in physical systems. Therefore, it constitutes an excellent
toy-model for our purpose. Particularly, it features second order phase transitions and allows,
in principle, for first-order phase transitions.

5.1.1. Model and flow equation

We begin the derivation by introducing an appropriate expansion scheme, the derivative
expansion, see Section 3.2.2. For the O(N)-model, the average effective action reads at first

https://github.com/satfra/dune-FRGDG
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order,

Γk[φ] =

∫︂

dd x
§

1
2

Zk(ρ)(∂µφ)
2 + Vk(ρ)− cσσ

ª

, (5.1)

where d is the space-time dimension and φ = (σ,π)t is an N -component vector. The potential
V only depends on the O(N) invariant ρ = σ2+π2

2 and takes all momentum-independent higher
scattering orders into account. This notation follows the usual applications of the O(N) model
to QCD, see also Section 2.3.2. In a QCD setting, the factor −cσσ corresponds to the explicit
symmetry breaking induced by bare quark masses and decouples from the RG-flow, since it is a
term linear in the field. It only enters when solving the equation of motion after performing
the RG integration and can therefore be ignored in the following. To simplify even further, we
restrict ourselves to the Local Potential Approximation (LPA) and set Zk(ρ) = 1. Thereby our
ansatz only retains the classical momentum dependency.

The RG-flow is derived from the Wetterich equation (3.15), by inserting our ansatz for the
effective action (5.1). The flow is evaluated at constant fields φ(x) = φ, since momentum
dependent quantum corrections are not taken into account within LPA. At constant fields, the
spatial integration on the left-had side of the Wetterich equation simplifies to a volume factor,

∂tΓk[φ] = Vd ∂t V (ρ) , with Vd =

∫︂

dd x , (5.2)

whereas on the other hand

1
2

Tr
�

(Gk)∂tRk

�

=
1
2

∫︂

p
(2π)dδ(0)Gk,i(p)∂tR

i
k =

1
2

∫︂

p
Vd Gi,k(p)∂tR

i
k , (5.3)

where
∫︁

p =
∫︁ dd p
(2π)d and the trace sums over the field components i ∈ {1, . . . , N} and integrates

the momentum loop. The propagator, together with the Regulator derivative, generate a volume
factor, due to their momentum structures at constant fields G(p, q) = G(p)(2π)dδ(p+ q) and
∂tRk(p, q) = ∂tRk(p)δ(p+ q) respectively. This conveniently cancels with the left-hand side
(5.2).

It remains to evaluate the momentum loop in (5.3), which generates one of the standardised
loop-threshold functions. For a simple scalar (bosonic) loop with a single propagator it is a
function of the mass and reads (in vacuum),

B1

�

m2
�

=

∫︂

p

∂tRk(p)

Γ
(2)
k + Rk

=

∫︂

p

∂tRk(p)
Zk p2 + Rk(p) +m2

, (5.4)

where we insert the approximation of the effective action (5.1) to obtain the propagator. The
mass m is generally ρ dependent and follows from the truncation, see (5.6). The threshold
functions are given for a specific choice of regulator Rk(p). The current example we uses the
flat (or Litim regulator) [129], which is given by,

Rk(p
2) = Zk p2 r(p2/k2) , and rflat(y) =

�

1
y
− 1
�

θ (1− y) . (5.5)

where r(y) is called the shape-function. The non-analytic flat regulator is a convenient (and
the optimal) choice in LPA, since it results in analytic threshold functions. We have commented
on the importance of the regulator-choice for specific approximations of the effective action in



72 5. Discontinuous Galerkin methods in the fRG

Section 3.2.3. Generally, the flow equations of higher correlation functions will contain loops
with multiple propagators of different field-species and regulator choices. Their definitions are
given in Appendix B.7.2, usually in a finite temperature and density setting, see Appendix B.1.
We use various regulators throughout this work, which are given in Appendix B.7.1.

We complete our derivation by evaluating the scalar field at the ground state φ0 = (σ,0).
With this parametrisation, the curvature masses are given by

m2
σ = ∂ρVk(ρ) + 2ρ∂ 2

ρ Vk(ρ) ,

m2
π = ∂ρVk(ρ) . (5.6)

Finally, the resulting flow of the effective potential follows as

∂t Vk(ρ) = −
vd kd+2

2(2π)d

�

N − 1
k2 + ∂ρVk(ρ)

+
1

k2 + ∂ρVk(ρ) + 2ρ∂ 2
ρ Vk(ρ)

�

, (5.7)

where the angular integration gives rise to the factor vd =
2πd/2

Γ (d/2)d . Equation (5.7) uses the
(non-standard) convention for the positive RG-time t = ln (Λ/k), since this chapter explicitly
focusses on the parallels to numerical hydrodynamics, where time progresses positively.

5.1.2. A fluid dynamics perspective

With very few exceptions, fully field dependent RG-flows can only be solved numerically. To
find an appropriate method, we look at (5.7) from a numerical hydrodynamics perspective in
terms of convection and diffusion. This idea was first introduced in [65]. First, we observe that
the right-hand side is not dependent on the potential itself, but only on its derivatives. Hence
we eliminate the potential from the equation and introduce its first derivative,

u(ρ) = ∂ρV (ρ) , (5.8)

as a new variable. The RG-flow of u is obtained by taking an additional ρ-derivative of (5.7),
which yields

∂tu= ∂ρ
�

fN−1(u) + f1(u+ 2ρ∂ρu)
�

, with fi(x) = i
Ad k2

k2 + x
, (5.9)

and Ad =
vd kd

2(2π)d . Formally, this is a second-order partial differential equation (PDE) with a
highly non-linear flow. fN−1(u) is a purely convective term. Its effects correspond to a wave-like
transportation of information, albeit non-linear in its propagation amplitude. f1(u+ 2ρ∂ρu)
has a derivative contribution, which creates non-linear diffusive effects of varying strength.
The convective and diffusive contributions to the flow are unbounded from below, due to
having poles at u= −k2 and u+ 2ρ∂ρu= −k2, which is linked to the convexity restoration of
the potential. For specific initial conditions, or driven systems (for example the quark-meson
model), the combination of wave-propagation and convexity restoration has the potential
to create very strong dynamics and shock-waves. Their numerical treatment requires the
utilisation of inherently discontinuous and higher order accurate methods. A very promising
candidate for such an endeavour are the Discontinuous Galerkin methods, which we briefly
introduce in the following section.
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5.2. The Discontinious Galerkin method

Discontinuous Galerkin methods (DGM) have been used for a wide range of hyperbolic, elliptic
and parabolic partial differential equations, for applications see e.g. [271–273], for an introduc-
tion e.g. [274]. In a sense, they combine the main features of finite element (FEM) and finite
volume methods (FVM) and thus compensate for shortcomings of both methods. These features
are the parallelisability, geometric flexibility and inherent discontinuity of FVMs and the higher
order accuracy of FEMs. For specific parameter choices DGMs can be reduced simple to FEMs
or FVMs. Therefore, all converged results obtained by such methods are reproducible with
DGMs. If the DGMs do not converge for a specific computation, one must question if FEMs or
FVMs might only achieve apparent convergence. Examples are pseudo-spectral methods, which
are applicable to FRG equations in the absence of shocks, and have been used successfully
in e.g. [262, 275–278], as well as finite difference methods, which were used, with slight
modifications, in [279–283].

We proceed by introducing the DG discretisation in Section 5.2.1. This is followed by a
discussion of local Discontinious Galerkin methods in Section 5.2.2, which are a necessary
improvement for higher order accuracy in presence of strong diffusive effects. Throughout both
sections, we comment on our implementation within the open source DUNE (Distributed and
Unified Numerics Environment) library [284–289]. For more extensive details on the numerical
implementation see also Appendix A.

5.2.1. Weak formulation and discrete problem

This subsection is based on the initial publication using the DUNE framework [1] and conveys the
basic idea and advantages of DGMs.

Let us first consider a simple conservative partial differential equation given by,

∂tu(x) = ∂x F(u, x) + s(u, x) , (5.10)

where t is the time variable and x the spatial coordinate. We call F the (conservative) flux and
s a source term. This equation is solved on a computational domain Ωh, which is composed of
K disjoint elements, called cells, Dk such that

Ω≃ Ωh =
K
⋃︂

k=1

Dk . (5.11)

Making for the inherently discontinuous nature of the method. For calculations in this work,
we used the Dune-grid YaspGrid, which is contained in the module dune-grid and allows for
n-dimensional cubic grids and parallelised computation. In the case of a one dimensional
grid, the grid-cells are simply disjoint intervals Dk of possibly differing lengths. In a more
general formulation the domain Ωh would be given as an n-dimensional rectangular grid and
the elements Dk would be implemented as cubic grid cells.

The solution in each cell Dk is approximated by a polynomial,

u(t, x)≃ uh(t, x) =
K
⨁︂

k=1

uk
h(t, x) . (5.12)
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Then uk
h(t, x) is the local solution in each cell and the index h denotes the approximation. The

local solution is approximated by a polynomial of degree P = Np − 1 such that,

uk
h(t, x) =

Np
∑︂

p=1

ûk
p(t)ψp(x) , (5.13)

in each element Dk. The local approximation uk
h(t, x) is given by a modal expansion, where

{ψp} is a local polynomial basis with time dependent expansion coefficients ûk
n(t). Thus

the global solution consists of K local polynomial solutions of order P. If we set P = 0, we
obtain a basic FVM, whereas K = 1 corresponds to a spectral method, a one cell FEM. An
intermediate choice of both parameters P and K allows for the parallel computation of FEM
solutions within each cell K, which allows a significant speed-up in large grids. The local
approximation was implemented using the dune-pdelab module, specifically using the class
QkDGLocalFiniteElementMap. In the one-dimensional case, basis functions qn are given by the
Legendre-Polynomials up to order Np. For the purpose of higher dimensional computations the
basis functions are taken from the polynomial space Qk of the Legendre-Polynomials, i.e. they
are given by a tensorial product of one-dimensional bases.

For the convergence of the DG method, we require that the integral over a cell Dk vanishes
for each component ψp of the polynomial basis. We use a locally defined weak formulation of
this requirement,

∫︂

Dk

�

(∂tuh + sh)ψp + Fh∂xψp

�

d x = −
∫︂

∂ Dk

ψp

�

f ∗n̂
�

d x , (5.14)

which is obtained via an integration by parts of the original equation (5.10). The right hand
side of the equation is modified to contain the numerical flux f ∗, which ensures communication
across interfaces. n̂ is the outward pointing normal vector. We chose to use the local Lax-
Friedrichs flux for f ∗, which averages the flux on both sides of boundary and adds an additional
diffusion term smoothing out jumps across the boundary:

f ∗(u+h , u−h ) =
1
2

�

fh(u
+
h ) + fh(u

−
h )
�

+
C
2
[[uh]] , (5.15)

where and the indices + and - denote the outside (neighbouring) and interior element at the
boundary. The brackets denote a jump across the boundary,

[[u]]=
�

n̂−u− + n̂+u+
�

.

C is the local maximal wave speed, which corresponds to the speed of the fastest propagating
mode across the boundary. In one dimensions this corresponds to

C ≥ max
∂ D{i,i+1}

|∂u f (u)| . (5.16)

The local Lax-Friedrichs flux is the most natural extension from the analytic solution of linear
conservation laws to the non-linear case. It relies on the so called Roe condition, which reflects
the assumption that the system is dominated by one strong wave.

This concludes the setup of a direct Discontinuous Galerkin discretisation, which was success-
fully applied to the large-N limit of the O(N) flow in (4.50) and showed impressive convergence
properties [65]. Note, that (5.10) does not contain any second derivatives of u and convergence
is not necessarily maintained if ∂xu is fed back into the flow.
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5.2.2. Local Discontinuous Galerkin

This subsection is based on [5], where we introduce the LDG method with a code example [12].

Originally developed for purely convective hyperbolic equations, such as (5.10), the DG
method has later been adapted for PDEs which are convection-dominated but have a diffusive
component.

In [1] a direct DG extension has been applied to the problem of a quark-meson model, which
gets a non-linear diffusive component through the massive mode that arises when the theory
exhibits spontaneous symmetry breaking. The direct extension consisted of obtaining necessary
derivative terms directly from the solution. This means that the numerical approximation of
the derivative is given by,

∂xuk
h(t, x) =

P+1
∑︂

p=1

uk
p(t)∂xψp(x) . (5.17)

However, this direct definition of a numerical derivative is problematic. In [290] it has been
shown that this formulation may yield errors of O(1) even if it is stable. In the case of [1],
this method has also shown itself to be unstable in the vicinity of the first order regime of the
quark-meson model.

To remedy the shortcomings of this naive extension, we will use the local Discontinuous
Galerkin (LDG) method. It has become one of the most widely used extension of the DG method
in this direction and is particularly suited to solve convection-diffusion equations with possibly
discontinuous solutions, retaining its stability and convergence [291].

The main idea of the LDG method is to reduce a higher order operator, i.e. the flux ∂x F(u,∂xu),
to a system of two equations of first order. We will now present a simple example of an LDG
method based on the formulation in [251], which assumes a term linear in the derivative ∂xu
with a diffusion coefficient a(u)≥ 0,

∂tu− ∂x

�

a(u)∂xu
�

= 0 . (5.18)

We chose this formulation, because the linear diffusion term allows for an interpretation in
terms of diffusive effects in fluid dynamics. With a bit of additional effort, the Wetterich RG-
flows can be reduced to such a structure by taking additional derivatives of the flow equation,
see Appendix B.3.1. The condition a(u)≥ 0 assures the smoothing effect of the diffusion. We
will see examples of RG-flows with negative diffusion in Appendix C.3.3, which are inherently
numerically unstable. The main idea in solving this system is a stationary equation which
captures the additional derivative term by rewriting q =

p

a(u) ∂xu,

∂tu− ∂x

�
Æ

a(u)q
�

= 0 ,

q− ∂x j(u) = 0 . (5.19)

Supplemented by some initial condition for u(t = 0, x). The system now contains an instationary
equation for the RG-time evolution of u and a stationary equation for q. The conservative flux
of the stationary equation given by

j(s) =

∫︂ u

0

Æ

a(u′)du′ , (5.20)
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which follows simply from applying the chain rule
Æ

a(u)∂xu= ∂u j(u)∂xu= ∂x j(u) . (5.21)

The specific mould of the equation given in (5.18) is only applicable to the O(1) model. For
arbitrary N the system is extended by another equation and we refer to Appendix A, as well as
the code example in Appendix A.3.2 or the respective github repository [12].

5.3. Computations and convergence

This section is based on [5], all figures are taken from the publication.

We start in Section 5.3.1, by investigating the zero dimensional case, which provides a
good testing ground for new methods, as it is conceptually rather simple and suits the mould
Equation (5.18). Furthermore, this limit has recently been thoroughly investigated [4,248–250].
It provides an excellent testing ground for method development, since benchmark results can
easily be obtained from a direct evaluation of the generating functional (3.2). Simply put, it
is a simple variant of the O(N)-model, with N = 1 and d = 0, where d is the dimension of
space-time. The flow of the full O(N)-model will be solved in Section 5.3.2. Here, the system
of equations is a bit more extensive, as specified in Appendix A. We benchmark results by
comparing to the (analytic) O(1) case in zero dimensions and the large N limit, where the
system can be solved with the DG method.

5.3.1. Zero dimensional model

For d = 0 and N = 1 it makes sense to rewrite the equations in term of the single scalar field
φ =
p

2ρ. The flow (4.50) then simplifies to,

∂t Vk(φ) = −
k2

k2 + ∂ 2
φ

Vk(φ)
. (5.22)

Here k2 + ∂ 2
φ

Vk(φ) is the regularized propagator, which must be a positive quantity for the
equation. In the current case, this property is conserved [292]. Furthermore, with standard
initial conditions the resulting effective potential is strictly convex for k→ 0 even if m2 < 0.
This is in contrast to higher dimensions, where the resulting effective potential is still convex but
not necessarily strictly convex. This is linked to the absence of spontaneous symmetry breaking
in low dimensions. As a consequence, the minimum of the effective potential is φ0 = 0, while
otherwise a non-zero value would be possible. Due to the convexity of effective potential, a flat
region can emerge Vk=0(φ ≤ φ0) = 0. The absence of such a regime simplifies the numerical
effort considerably. Nevertheless, discretizing the system proceeds in the same fashion, making
lower dimensional systems very attractive to benchmark numerical methods in QFT.

A simple diffusive system

To apply the LDG method from Section 5.2.2 to the formulation in φ, the equation must be
reformulated such that it is a closed expression of the second derivative of the potential, which
we rename v(φ) = ∂ 2

φ
Vk(φ). Similarly to the procedure in [1,65], we take two derivatives with

respect to φ of the flow(5.22) to close the formulation in v(φ) = ∂ 2
φ

Vk(φ). All information
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missing numerical flux to the finite N flow (5.7) is negligible and computations retain their
convergence properties [1]. However, in case of non analyticities, the numerical flux of higher
derivative operators can no longer be neglected, which becomes apparent from the oscillations
around the jump in the large-N computation for k→ 0.

5.4. Outlook

This section is based on [5].

The formulation of the LDG method presented here, which has been adapted from [251], is
of course only one of many. For example, in the case of higher-dimensional systems, replacing
q− ∂x j(u) = 0 with q− ∂xu= 0 and using an alternating flux definition may be desired for a
lower performance impact and simplification of the implementation. This alternative method is
based on [296] and explained in Appendix A.3. It should be noted that usually the integration in
the definition of j(s) can not be performed analytically and thus requires numerical integration.
Hence, other LDG methods may also be desirable, e.g. methods that directly infer∇w by giving
a numerically sensible definition of this quantity, see e.g. [296], thus making the rewriting into
u and v we had to perform in Appendix B.3.1 superfluous. This of course has its drawbacks, as
the stability of the method may become suboptimal.

Additionally, fRG flows seem to be strongly dominated by certain substructures of the
equations. The regulator derivative in the equations forces all changes to be in a narrow region
in momentum space. This property is translated directly to field space, with the exception of
the convexity restoring regime, resulting in the convection dominated nature of the equations.
One direct consequence is the large asymmetry of the diffusive flux, which lead to a breakdown
of the scheme in [1]. This reflects simply the fact that the RG-flow evolves from the UV to
the IR and information gets propagated along these trajectories, c.f. [65,249] for an extensive
discussion. LDG resolves this elegantly, by taking precisely this structural property of the
flow into account. From a physics perspective, this is not the end of the line for potentially
exploitable structures within these equation. One prominent example is the convexity restoring
regime, where the solution approaches zero for a finite domain. In the present equations, its
this is driven by a singularity in the analytically continued equation [292]. Computationally,
this is tightly linked to time-stepping.

Not very surprisingly, for more complex and computationally intensive problems more
elaborate time-stepping schemes must be considered. For example, the fRG flows in the
symmetry-broken phase become stiff and explicit time stepping becomes highly inefficient. A
possible remedy for this problem are implicit time-stepping schemes, see also Appendix A.2.

Most applications in the following chapters make use of different DG methods and time-
integrators of varying elaborateness, since this thesis is a compilation of multiple years with
ever increasing technical developments. Numerical details of specific applications are outlined
in Appendix A and are referred to in the next chapters.



CHAPTER 6

Complex effective actions and phase transitions

This chapter is based entirely on [4], all figures are taken from the publication. It sets up a
formalism to compute complex effective action from the fRG and has the aim to determine the
location of Lee-Yang singularities in the complex plane. We hope to report on an application to
QCD and an extrapolation of the critical endpoint in future works.

The phase structure of interesting relativistic quantum theories such as QCD, or non-
relativistic ones in atomic and condensed matter physics such as graphene or spin-imbalanced
fermionic gases, exhibits many interesting physics phenomena, ranging from critical end points
to competing order regimes. In many cases these phenomena are related to the task of resolving
complex structures in the theories at hand. Most prominently, this concerns partition functions
with complex actions or Hamiltonians that typically lead to sign problems in a statistical ap-
proach. Moreover, constraints for the phase structure can be derived by considering complex
external fields or parameters such as a complex magnetic field in spin systems. The latter
extension gives rise to Lee-Yang zeros [297,298] in the complex (magnetisation) plane. These
singularities restrict the radius of convergence of expansion schemes as well as providing at
the same time much wanted information about the location of singularities on the real axis
such as critical end points. For related works on the lattice, see [299–303], with the functional
renormalisation group this has been studied in [304–307]. A further exciting possibility is the
expansion of quantum field theories in trans series based on the expansion about complex
saddle points.

These investigations require the computation of the partition function or free energy of the
theories at hand at complex couplings or sources. In the present work we discuss functional
renormalisation group approaches to complex action problems. We argue that this task is best
formulated in terms of Wegner’s flow equation [131], see also Chapter 3, for general flows of an
effective Hamiltonian or Wilsonian effective action, or in terms of the general flow for the 1PI
effective action derived in [127]. These flows encompass the standard Polchinski equation [68]
for the Wilsonian effective action and the Wetterich equation [67] for the 1PI effective action
as specific cases. The generality is pivotal for setting up complex action flows adapted to the
theory at hand.

In theories with complex actions and an intricate phase structure as discussed above, the
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solution of functional flows requires the use of advanced numerical methods. Moreover, different
representations of functional flows may have advantages over others for specific problems,
as they yield different types of parabolic equations. More specifically, we obtain parabolic
partial differential equations reminiscent of convective heat equations for Wegner’s flow [131],
reaction-diffusion equations for the Polchinski flow [68], and hyperbolic equations in case of
the Wetterich equation [67]. We solve this broad range of PDEs with the Discontinuous Galerkin
methods which we introduced in Chapter 5. This work now expands these considerations not
only to a more general RG-context, but also to a complex setting.

Specifically we study the flow equation for scalar field theories in d = 0 to 4 dimensions
with a complex source term. The d = 0 case can be solved exactly by other means and hence
offers benchmark tests for our functional flows. We consider flows for the complex one particle
irreducible (1PI) effective action, standard Polchinski flows for the Wilsonian effective action,
as well as RG-adapted flows for the Wilsonian effective action derived from Wegner’s flow
equation. With the present formulation of these approaches, we find that the RG-adapted
flows show best convergence in the complex plane. For the complex 1PI effective action we
set up and discuss a complex Legendre transform. We show that the results obtained from the
complex 1PI flows pass the benchmark tests in d = 0. In higher dimensions it is compatible
with the results for the Wilsonian effective action.

With the results for the effective potential for complex fields we determine the location of
the Lee-Yang zeros as a function of the coupling parameters. We follow these locations towards
their intersection with the real axis at the phase transition of the real theory.

We close this chapter with a discussion of extensions and further applications of the present
setup for complex functional flows, in particular to QCD and the location of its critical end
point.

6.1. Complex functional flows

The phase structure of theories with complex action parameters is quite intricate. In particular,
the partition function may vanish at Lee-Yang zeros or exhibits cuts in the complex plane that
start at the Lee-Yang zeros. As discussed in the introduction, in the present work we aim at
setting up a functional approach that is flexible enough to generically deal with these structures.

While the derivations in this section and the following one, Section 6.1.1, apply to general
theories, they are formulated in terms of a real scalar φ4 theory in d dimensions for the sake
of simplicity. The numerical results in Section 6.2 are also achieved for this theory in zero to
four dimensions. In the smallest dimension, d = 0, the generating functional collapses to a
simple one-dimensional integral and serves as a benchmark case. In turn, d = 4 is the critical
dimension of the theory.

The classical action of the real scalar φ4 theory in d dimensions is given by

S[ϕ] =

∫︂

x

�

1
2
ϕ(x)
�

−∂ 2
µ +m2
�

ϕ(x) +
λ

4!
ϕ(x)4
�

, (6.1)

with the real scalar field ϕ ∈ R, and the real mass and coupling m,λ ∈ R. The d-dimensional
space-time integral in (6.1) is abbreviated with

∫︂

x
=

∫︂

dd x . (6.2)
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The present formulation allows for the computation of complex effective actions deduced from
complex masses and couplings, m,λ as well as complex sources J in the source term

∫︁

x Jϕ.
For the numerical application in the present work we consider consider complex sources J and
keep real masses and couplings.This allows for some numerical simplifications and covers the
interesting case of Lee-Yang zeros. The more general situation will be discussed elsewhere.

In the present work we shall consider complex currents J , which may be interpreted as a
complex magnetic background field. In the presence of such a current and more generally also
complex m,λ, the generating functional Z[J] is also complex, as is the expectation value of the
field and the higher correlation functions. However, it is a function of the complex variable J ,
and does not depend on its complex conjugate J̄ . Moreover, for real m,λ, the complex-valued
generating functional Z[J] and hence also the correlation functions are real functions of the
complex variable J ,

Z[J] = Z[J̄] , m,λ ∈ R . (6.3)

This property of the generating functional Z[J] translates to all derived functionals discussed
in Section 3.1. Here, we make use of the the property that their functional flow equations
constitute different general diffusion equations with different properties. This can be used to
our advantage for the present task of solving them for complex effective actions.

6.1.1. RG-adapted flows

We now employ general RG kernels, introduced in Section 3.3, for the construction of RG-
adapted flows. To begin with, we remark that the kernel of functional flows is given by the
full field-dependent propagator Gk[φ], and hence any expansion scheme always implies also
an expansion about Gk[φ]. This property has been exploited in [140], and within conceptual
considerations and applications on optimisation in functional flows, see [129,130,308]. In
particular this led to functional optimisation as set up in [127, 128] as well as the recent
development of essential RG-flows [136, 309, 310]. This idea has also been picked up for
Machine Learning applications to functional renormalisation in [141].

The above suggests to use RG kernels and currents that are constructed from the full field-
dependent propagator. Here we briefly discuss a natural choice: In analogy to (3.27) we are
led to the implicit definition,

J[φ] = G−1
k [φ]φ , (6.4a)

and generalisations thereof. A respective RG kernel (3.20) is defined by

Ck[φ] = −Gk[φ]∂tRk[φ]Gk[φ] (6.4b)

and generalisations thereof. The latter generalisations are deduced from further optimisation
conditions, that take into account the complex structure of the theory. Such an RG-adapted
choice is very similar in spirit to the dynamical RG setup in [140]. The fully developed conceptual
framework there will be very useful for the computational implementation, which is deferred
to future work.

In this context we remark, that the implicit definition in (6.4) with the field-dependent
propagator introduces a non-linear relation between the current and the field and requires an
iterative solution of the flow. While it is precisely the non-linearity which is at the root of the
optimisation, its practical use asks for a more comprehensive analysis. Hence, a full discussion
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of general optimised RG-flows is deferred to a future publication. There we will also examine
choices of (3.33d) and (6.4), that trigger stabilising positive diffusion terms (see Section 6.2)
in either the flow of the Wilson effective action or the 1PI effective action.

6.1.2. RG-adapted expansion

In the current work we resort to a ready-to-use variant of (6.4): the theory is expanded about
the full propagator on a fixed background. This leaves us with a linear relation between the
current and the field,

J[φ,φ0] = G−1
k [φ0]φ , (6.5a)

with a field-independent infrared regulator Rk and the respective RG kernel

Ck[φ0] = −Gk[φ0]∂tRk Gk[φ0] (6.5b)

For the background φ0 in (6.5a) a convenient choice is a solution to the equations of motion
(EoM). The above definition (6.5) can be understood as an RG-improvement of (3.27): at each
RG-step the respective full propagator is used to define the field φ. This is an RG-adapted
definition of the current or rather an RG-adapted expansion of the field.

With (6.5) we are led to the RG-adapted Wilsonian effective action

Sad,k[φ,φ0] = −Wk

�

G−1
k [φ0]φ
�

, (6.6)

with the fluctuation field φ, being the difference to φ0, for more details see Appendix B.5.2.
From now on we suppress the dependence on the expansion point φ0 in (6.6) and simply write
Sad,k[φ]. This definition entails an expansion of correlation functions and their flow about the
full two-point function, and can be understood as an improvement in the sense of functional
optimisation in [127].

The flow equation for the Wilsonian effective action Sad,k reads
�

∂t +

∫︂

x
φγad,k

δ

δφ

�

Sad,k[φ] =
1
2

Tr Ck

h

S(2)ad,k[φ]−
�

S(1)ad,k[φ]
�2i

, (6.7)

with Ck provided in (6.5a) and the anomalous dimension

γad,k[φ0] = −
�

∂t G
−1
k [φ0]
�

Gk[φ0] = ∂t log Gk[φ0] . (6.8)

The generalised anomalous dimensions γad,k[φ0] is an operator and carries the change of
the full (inverse) propagator with the cutoff scale. In any case, the flow equation (6.7) is
well-defined for all complex fields φ.

The RG-adapted setup with the flow (6.7) admits a natural split of Sad,k in the kinetic part
and the dynamical interaction part with

Sad,k[φ] = Sdyn,k[φ]−
1
2

∫︂

x
φ G−1

k [φ0]φ +S0[φ0] , (6.9)

with the constant part

S0[φ0] =
1
2

k
∫︂

Λ

dk′

k′
Tr∂tRkGk[φ0] + S(2)ad,k[0]-terms . (6.10)
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With the choice (6.10) we have Sdyn,k[0] = 0. Moreover, the RG-adapted field expansion entails

that S(2)ad,k[φ0] is (minus) the full inverse propagator in this background, see also (B.77). Hence,
it follows from (6.9) that,

S(2)dyn,k[0] = 0 . (6.11)

Consequently, if we choose φ0 as a solution to the equation of motion with

S(1)dyn,k[0] = 0 , for φ0 = φEoM , (6.12)

the dynamical interaction part Sdyn,k[φ] is of order φ3 and indeed only carries interactions in
an expansion about φ = 0, and is an expansion about the physical mean field 〈ϕ〉= φ0, the
full field being φ0 +φ.

By inserting the split (6.9) into (6.7) we are led to the final form of the RG-adapted flow,
which is also used for most of the numerical results in the present work. The flow for the
dynamical part of the RG-adapted Wilsonian effective action reads,

�

∂t +

∫︂

x
φγdyn,k

δ

δφ

�

Sdyn,k[φ] +
1
2

∫︂

x
φ ∂tΓ

(2)
k [φ0]φ

=
1
2

Tr Ck

h

S(2)dyn,k[φ]−
�

S(1)dyn,k[φ]
�2i

, (6.13a)

with

γdyn,k[φ0] = − ∂tΓ
(2)
k [φ0]Gk[φ0] . (6.13b)

where ∂tΓ
(2)
k [φ0] is the flow of the two-point function at φ = φ0. This flow can be disentangled

from that of the correlation functions S(n>2)
dyn , see Appendix B.5.2.

6.2. Numerical approach

In Section 3.1 and Section 6.1.1 we have discussed general flows for generating functionals.
They are reminiscent of different types of (functional) partial differential equations (PDE),
i.e. of parabolic and hyperbolic types. In the following, we will use this analogy to those
types of PDEs to better understand the behaviour of the equations. We shall consider the flow
of the generating functional or path integral measure (3.20), the Wilsonian effective action,
(3.30) and (6.13), and the 1PI effective action (3.35). Our main results are achieved with
the RG-adapted flow (6.13) for the Wilsonian effective action. We show in Section 6.3.2 that
within the current approximation and the lack of RG-adapted reparametrisations for the 1PI
effective action, the RG-adapted flow for the Wilsonian effective action is the most stable one
for computing complex effective actions that originate from a complex source term. Thus we
evaluate the stability of the other flows with this as a benchmark.

While the following considerations concerning the type of PDE are independent of the
approximation, it is instructive to consider a simple approximation as a showcase example, the
0th order of the derivative expansion or local potential approximation (LPA). For a detailed
discussion of this approximation scheme see e.g. [104]. This is also the approximation we will
use in the numerics in Section 6.2. In short, the LPA only considers the classical dispersion in
the generating functional under investigation and includes a full effective potential.
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We start with the RG-adapted Wilsonian effective action, which is predominantly used for
the numerical results in the present work. It is given by

Sad,k[φ] =

∫︂

x

�

−
1
2
φ(x)
�

−∂ 2
µ +m2

k + Rk

�

φ(x) + Vdyn,k

�

, (6.14)

where the dynamical part Vdyn,k of the effective potential only contains interaction terms, that
is φn with n≥ 3 in a Taylor expansion about ϕ = 0.

The standard Wilsonian effective action in LPA is a variant of (6.14), where the full mass
term with m2

k is frozen at k = Λ, and hence the remnant effective potential Vint,k also contains
ϕ2 terms,

Seff,k[φ] =

∫︂

x

�

−
1
2
ϕ(x)
�

−∂ 2
µ +m2

Λ + Rk

�

ϕ(x) + Vint,k

�

. (6.15)

For the Wegner flow of the path integral measure we consider exp{−Sad/eff,k[φ]} with the
approximations (6.14) and (6.15) for the exponent. However, the complex Wegner flow has
the issue of highly oscillatory initial conditions at high imaginary fields, see Appendix C.3.4 for
more details.

The 1PI effective action in LPA reads

Γk[φ] =

∫︂

x

�

−
1
2
φ(x)∂ 2

µφ(x) + Veff,k

�

. (6.16)

We emphasise again, that Γk is the Legendre transform of the Wilsonian effective action.
Therefore, the two effective potentials are not identical but are related by a Legendre transform.
Hence, a given approximation of the respective generating functionals does not necessarily
constitute the same approximation for the flows:

The d = 0 dimensional theory lacks the momentum dependence, and the LPA is exact. Hence,
all flows have to agree with the full integral (after the Legendre transform is taken into account),
if the initial conditions describe the same theory.

In turn, for d > 0 the LPA drops the non-trivial momentum-dependence of all terms. Accord-
ingly, in LPA the Wilsonian effective action and the 1PI effective action differ genuinely.

In all cases the flow equations for the effective potential considered, (3.20), (3.30), (6.13),
(3.35), can be formulated as convection-diffusion equations for the φ-derivative of the effective
potential or its interaction part,

u(φ) =
∂ Vdyn/int/eff(φ)

∂ φ
. (6.17)

With (6.17) the generic form of the functional flows is given by

∂tu(z)− ∂z [F (t, z, u(z))− a(t, z, u(z)) ∂zu(z)] = 0 , (6.18)

where t ∈ R is the (negative) RG-time and z ∈ C is the complex field, triggered by a complex
current or magnetisation in the path integral (3.2). In contrast to most of the DG literature,
see [251,274,311,312], our formulation picks up an additional minus sign, due to the negative
RG-time integration. As discussed there, all the generating functionals and hence their flows
are real functions of a complex (field) variable z. The RG-adapted flow in LPA is derived in
Section 6.2, see (6.29) and (6.30). The Polchinski flow and Wetterich flow in LPA can be found
in Appendix B.5.1 and Appendix C.3.3 respectively.
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The convection functional F and the diffusion coefficient a in (6.18) are structurally different
in the functional flows considered here. Hence, already for real generating functionals, each of
these systems of partial differential equations offers different numerical as well as conceptual
challenges. Flows for complex generating functionals and the ensuing numerical evaluation of
real generating functionals for complex fields add yet another layer of complexity.

In Section 6.2.1 we discuss the different types of partial differential equations encountered
for the flows of the different generating functionals. In Section 6.2.2 we provide some details
on the numerical approach with Discontinuous Galerkin (DG) methods. Finally, in Section 6.2.3
we discuss some features of the formation of DG for complex effective actions which allow to
simplify the computation significantly.

6.2.1. Parabolic- and hyperbolic-type functional flows

Here we discuss the different types of partial differential equations (PDEs) we encounter for the
three classes of functional flows put forward in Section 3.1 and Section 6.1.1. The emergent
structure of singularities present in the different types of PDEs not only depends on the given
type but also on the initial conditions. In the case of functional flows the set of allowed initial
conditions is determined by RG-consistency [61,127] and the physics at hand. This is discussed
further in Section 6.3.1.

The flow of the path integral measure (3.20) is discussed in Section 6.2.1, that of the Wilson
effective action (3.30) and the RG-adapted flow (6.13) are discussed in Section 6.2.1, and the
flow for the 1PI effective action (3.35) is discussed in Section 6.2.1.

Parabolic-type flow I: Flow of the path integral measure

The Wegner flow of the path integral measure (3.20) with the typical RG kernel (3.22) is
reminiscent of a linear-parabolic equation. Parabolic differential equations are common in
heat conduction or particle diffusion processes. Generally speaking, real linear heat equations
are well behaved. An initial solution u(x , t0) is smoothened out as the RG-time progresses
and solutions exist for all times t > t0. In an RG context, the diffusion coefficient is usually
dependent on the RG-scale. Thus, the smoothing can freeze out at a certain RG-scale and a
final structure survives. The amount of smoothing is therefore decided by the physical scales in
the system which are introduced via the initial conditions.

Functional flows for the path integral measure on the real axis are showcased in Ap-
pendix C.3.4 as a consistency check. In a complex setting, we find that the main intricacy in this
formulation are the initial conditions. As the complex part increases, the exponential function
shows the characteristic oscillations which need to be resolved at a high numerical cost.

Parabolic-type flow II: Flow of the Wilsonian effective action

General flows for the Wilsonian effective action, and specifically the standard Polchinski flow for
the effective action (3.30) and the RG-adapted flow (6.13) derived in Section 6.1.1 structurally
resemble non-linear parabolic equations of the reaction-diffusion type. Subject to their specific
form and the initial conditions, non-linear parabolic equations can generate so called blow-
ups [311,312]. These blow-ups may result in singularities, shocks or jumps at some finite time
t0 < t1 ≤∞. A prominent example for this flow is the Ricci-flow [313], which has been used
to prove the Poincaré-conjecture.
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We find that the initial conditions within the RG-setting belong to the class of initial conditions
that potentially produce these blow-ups. Again, the RG-scale dependence of coefficients can
prevent the blow up by freezing out the system. Therefore, their occurrence or absence depends
on the the details of the setup, in other words on the physics at hand. For a numerical
investigation of blow-ups within the equations see Appendix C.3.1.

In the complex plane, this formulation is very similar to two-component reaction–diffusion
systems. These types of systems are most prominently used to describe biological pattern
formation, for a review see [314]. An interplay of differing diffusive contributions, as well
additional source terms, can destabilise a homogeneous system, resulting in the formation of a
periodic, static pattern [315]. This effect is primarily found in activator-inhibitor systems [316],
which do not contain any convective contributions. However, these convective contributions
can be found in RG-flows and are given by F in (6.18). We therefore do not expect any static
pattern formation.

Blow-ups in the lower dimensional (d ≤ 2) solutions are directly related to the Lee-Yang
zeroes [297, 298]. They are expected to show up as divergences in the Wilsonian effective
action, simply by their definition as zeroes or cuts of the exponential. We demonstrate in
Appendix C.3.1, that our RG-adapted flow (6.13) allows us to narrow down the position of
the blow-up and leads to a quantitative estimate. Our present numerical scheme is not fully
adapted for resolving such a singularity, and the resolution of this intricacy is subject of ongoing
work in a fully RG-adapted setup.

In higher dimensions, d > 2, the Lee-Yang singularity is directly linked to a physical phase
transition. Here, the singularity is related to a cut in the complex plane, which we cannot
resolve in the present setup, as in the present approximation we enforce holomorphicity within
the flow, see Section 6.2.2. Still, we are able to infer the position of the Lee-Yang in Section 6.4.2,
since it lies at the beginning of the cut. This information is not tainted by our enforcement of
holomorphicity. Numerical inaccuracies linked to a potential smudging out of a cut are also
subject to further investigations.

Hyperbolic-type flow: Flow of the 1PI effective action

General flows for the 1PI effective action (3.33), including the Wetterich flow (3.35), are
qualitatively very different from the previously discussed parabolic equation lookalikes. This
qualitative difference is induced by the Legendre transform that connects the 1PI flows to that
of the Wilsonian effective action and the path integral measure.

The 1PI flows are mostly dominated by strong convective movements and display character-
istics of hyperbolic equations. Specifically, the information flows with a wave-like behaviour
towards the infrared as has been studied in [1,5,65]. This structure of the information flow
induces stabilising properties as does the dependence on the inverse 1PI two-point function.
These stabilising properties are one of the main reasons why to date 1PI flows are used in most
numerical applications. However, 1PI flows display non-linear and even negative diffusive
contributions, which appear at high densities, or large complex fields in the present setting.
For an in depth analysis we refer to Appendix C.3.3.

Wrapup

The above investigation of the properties of the PDEs for the different functional flows suggests
that the RG-adapted flows derived in Section 6.1.1 are very well-suited for the numerical
computation of complex flows. The advantage is a combination of the structure of the PDE and



6.2 Numerical approach 91

the simple implementation of RG-adapted variable changes. We rush to add that this evaluation
is based on the current state of the investigation of functional flows for complex effective
actions. A full comprehensive investigation is deferred to a future work. The general setup
put forward in the present work suggests that it is rather a combination of well-chosen initial
condition and RG-adaptation that is important. We expect that within such a combination all
different functional flows can be used equally well.

In summary, we will predominantly show numerical results obtained with the flow (6.13a)
derived in Section 6.1.1 with the PDE-type discussed in Section 6.2.1. These results are also
used as benchmark for the numerical results obtained with the other functional flows.

6.2.2. Discontinuous Galerkin

Our numerics is done with Discontinuous Galerkin methods, which have been applied in the
context of parabolic blow-ups, e.g. [317]. Therefore, we use the Local Discontinuous Galerkin
method (LDG) [251] and implicit time stepping. This method has been set up for the fRG, and
the corresponding numerical framework using the DUNE-project has been set up in Chapter 5.

In the present chapter we extend this method to complex systems of flow equations. The
explicit form of each of these equations has already been displayed in (6.18). There we have
introduced the complex field variable z = x+ i y , which can be interpreted as a ’spatial’ variable
for the given type of PDEs. The form (6.18) is essential for the convergence of the LDG method.
Importantly, u, F ∈ C are real functions of a complex variable z. This leaves us with a two
component system of PDEs for two one-dimensional variables t, z. It is discussed in detail
in Section 6.2.3 how this property facilitates the numerical implementation. In short, the
one-dimensional spatial coordinate is resolved within a numerical approximation, while the
time dependence is integrated via an implicit time stepping scheme.

The requirement a ≥ 0 ensures a strictly positive diffusion, which is a necessary requirement
for the convergence of the LDG method [251]. Positive diffusion is a very restrictive requirement
on the general form of a system of PDEs. In particular, this requirement is not always met in
the complex 1PI flows. In Appendix C.3.3 the instability of a naive implementation of the 1PI
flow in a complex setting is demonstrated numerically. In turn, the RG-adapted flow (6.13)
was constructed with this property in mind.

6.2.3. Complex structure

The present set-up and in particular the final flow equation (6.18) can be readily applied to
complex action problems with general complex couplings. Then, (6.18) is a partial differential
equation for a general complex function u(z) of a complex variable z. For complex classical
couplings we find

u(z) ̸= u(z) . (6.19)

Accordingly, (6.18) has to be solved for its imaginary and real part, while also implementing
the holomorphicity constraint ∂z̄u(z) = 0.

From now on we restrict ourselves to the case of complex currents. Then, (6.18) is a partial
differential equation in the RG-time t and the complex spatial variable z. In principle, one
could simply use the split of z into its real and imaginary part, z = x + i y , and the respective
split of the derivative, ∂z =

1
2(∂x − i ∂y), for solving the equation on a two-dimensional grid.

However, this is a two-dimensional representation of a one-dimensional system, additionally
necessitating the implementation of the holomorphicity constraint.
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Naturally, it is much more efficient for the numerical implementation to utilise the complex
structure: the generating functional (3.2) and all derived quantities are defined for real field
variables φ. They become complex with φ ∈ R→ φ ∈ C. Thus, we can exploit the fact, that
we compute real functions of a single complex variable z. For the generating function this leads
to (6.3). For a general real function f (z) this simply reads

f
�

z
�

= f
�

z̄
�

. (6.20)

with the real and imaginary part satisfying

Re
�

f (x , y)
�

=
1
2

�

f (x , y) + f (x ,−y)
�

,

Im
�

f (x , y)
�

=
1
2i

�

f (x , y)− f (x ,−y)
�

. (6.21)

The Cauchy-Riemann differential equations allow to reformulate the z derivative as a derivative
of only the real variable x ,

∂zRe
�

f (z)
�

=
1
4

�

f (1,0) + f (1,0) − i
�

f (0,1) − f (0,1)
�

�

=
1
2

�

f (1,0) + f (1,0)
�

,

∂zIm
�

f (z)
�

=
1
4i

�

f (1,0) − f (1,0) − i
�

f (0,1) + f (0,1))
�

=
1
2i

�

f (1,0) − f (1,0)
�

,

where we used ∂z =
1
2(∂x − i∂y). The validity of the Cauchy-Riemann equations is assumed

on the computational grid, which does not contain the blow-ups. Note that this assumption
artificially smoothens out non-analyticities (cuts) around critical regions, since it enforces
holomorphicity.

In summary we can replace ∂z → ∂x without loss of generality if the solution is holomorphic.
After this replacement (6.18) does not contain any dependency on ∂y , which allows for the
computation at constant y . Therefore, the complex plane can be resolved on slices of constant
y, i.e. a one-dimensional numerical grid in x-direction. The y-slices are then put together
after the computation and we interpolate between them. Note that this procedure allows to
resolve the entire RG-time and x dependence for Im[z] ̸= Im[zc], where zc is the position of
the blow-up, whereas the computation of the Im[zc] slice freezes in at t1 <∞. This separation
also illustrates nicely how the extension of the formalism to the complex plane does not affect
the computation on the real axis.

6.2.4. Separating the equations

The real and complex part of (6.18) are now separated, and we use the replacement ∂z → ∂x
as suggested by the previous section. Here, we solely focus on parabolic-type flows, where the
diffusive contribution is completely independent of z and thus a real function a(t) ∈ R. In the
LDG formulation, this translates to system of two instationary and two stationary equations,

∂tux − ∂x

�

Re
�

F
�

t, z, ux , uy

��

− a(t) qx

�

= 0 ,

∂tuy − ∂x

�

Im
�

F
�

t, z, ux , uy

��

− a(t) qy

�

= 0 , (6.22)

and

qx = ∂xux , qy = ∂xuy , (6.23)
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where we used the notation u= ux + i uy and a negative RG-time t. Alternatively, one could
have used the replacement ∂z →−i∂y . The proof for this replacement works analogously to
Section 6.2.3. This procedure maps ∂ 2

z →−∂
2
y , effectively changing the sign of the diffusion

term.
In principle, a mapping of ∂z to a mixed expression of ∂x and ∂y is also possible. In this case

the computation would be performed on certain trajectories in the complex plane instead of
straight lines.

Applying the LDG formulation to the 1PI flow is much more challenging. The diffusion
coefficient a(t, z, u(z)) is not only field-dependent and thus requires an additional numerical
flux, but it is also complex and hence creates mixing terms. For a formulation of the 1PI LDG
formulation in a real setting see [5]. The complex LDG 1PI setup is outlined in Appendix C.3.3.

6.3. Convergence in the complex plane

In this section we present numerical results for the effective potential of the φ4 theory with
a (classical) real scalar field and the action (6.1). The RG-adapted flow equation for the
dynamical part Vdyn of the effective potential is derived in Section 6.3.1, including a discussion
of the initial conditions. The derivation of the standard Polchinski flow and the 1PI Wetterich
flow are deferred to Appendix C.3.2 and Appendix C.3.3 respectively. These appendices also
include further numerical details and results.

A first benchmark test is given by the computation of the effective potential in d = 0 in
Section 6.3.2. In zero dimensions the effective action agrees with the effective potential and LPA
gives the full result. Hence, this analysis provides us with a non-trivial numerical benchmark for
the convergence of the different flows. As a next step, the RG-adapted scheme is investigated
on the real axis and compared with flows for the effective Wilsonian action, as well as the 1PI
results.

6.3.1. Flow of the dynamical potential

As already discussed before, we consider the 0th order derivative expansion or local potential
approximation (LPA), in which the full effective action is approximated by a classical dispersion
term and a full effective potential. This is a low momentum approximation and is well-tested,
see e.g. the recent review [104] for a comprehensive overview. In LPA the Wilsonian and 1PI
effective action take the form (6.14), (6.15) (Wilsonian), and (6.16) (1PI). For the convenience
of the reader we have provided a tabular summary of the different schemes, and where to find
them, in Table 6.1.

Flow equation

In this section we apply the RG-adapted scheme from Section 6.1.1 to the real scalar field
theory in d-dimensions. Solving (6.13a) for a single current J = Gk[φ0]φ requires knowledge
of the full propagator at the expansion point φ0, which is given by

Gk[φ0] =
�

Γ
(2)
k [φ0](p) + Rk(p

2)
�−1
=
�

m2
k + p2 + Rk(p

2)
�−1

, (6.24)

where the regulator Rk is given by a flat cutoff, that is optimised for the 0th order in the
derivative expansion, [127,129,130], see Appendix B.7.1.



94 6. Complex effective actions and phase transitions

Scheme Effective Action (EA) Effective Potential Flow eq. Current

RG-adapted RG-adapted EA (6.6) Vdyn (6.14), m2
k (6.25) (6.29), (6.26) (6.4b)

Polchinski Wilsonian EA (3.6) Vint (6.15) (C.20) (3.27)

1PI 1PI EA (3.7) Veff (6.16) (5.22) (B.88)

Table 6.1.: Summary of the different schemes used throughout this work. We indicate the Effective
Action (EA), the Effective Potential which is used, as well as the respective flow equation,
and definition of the current.

In the RG-adapted scheme, the two-point contribution at the expansion point φ0 is separated
from the field-dependent dynamical potential Vdyn (6.14), see also (6.11). Thus, in the RG-
adapted scheme we have to solve two distinct equations. At every RG-time step, we first compute
the two-point contribution at the expansion point, which is just the RG-time dependent mass
m2

k. Secondly, we solve the field-dependent flow of the dynamical potential Vdyn. To derive the
flow of RG-time dependent mass, we use its direct link to the 1PI two-point function,

m2
k = Γ

(2)
k [φ0](p)|p=0 , (6.25)

which in turn can be inferred from the flow of the RG-adapted effective action. This is evaluated
in Appendix B.5.2 by using the relations for the two-point functions, (B.77), and the flow of
Γ
(2)
k in terms of the RG-adapted effective action, (B.79). The latter is now used to obtain the

flow of the RG-time dependent mass,
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2
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⎫
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=
v(d)kd+2

�

m2
k + k2
�2

�

V (3)dynV (1)dyn − V (4)dyn

�

, (6.26)

where

v(d) =
2πd/2

Γ (d/2)d
(2π)−d . (6.27)

In (6.26), the nth derivatives

V (n)dyn = V (n)dyn,k[φ0] , (6.28)

are the corresponding n-point function of the RG-adapted effective action at the expansion point
φ0. The full solution of Vdyn,k is computed within the Local Discontinuous Galerkin method.
This method captures the field dependence on φ using non-overlapping cells. Within each cell
Vdyn,k is then projected onto a higher order polynomial basis N > 4 (where N is the polynomial
order) around the expansion point. This basis ensures a precise computation of derivatives.
Hence we can infer all vertices up to the four-point functions from the field-dependent potential
with a very high numerical precision. The extraction of higher order derivatives from the full
solution is expanded on in Appendix A.1.3.

The dynamical potential is a real function of a complex variable. We pick φ0 = 0 on the real
axis, in order to ensure that this property is not spoiled by out choice of expansion point φ0.
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The real, positive diffusion coefficient is given by

A(k, d,φ0) = v(d)k2+d 1
�

m2
k + k2
�2 , (6.30b)

and the complex valued convective flux

F[u,φ,φ0, k] = u2 + u′′′(φ0)

�

φ2

2
−

1
�

m2
k + k2
� uφ

�

. (6.30c)

This highlights a convenient property of the RG-adapted expansion for the evaluation of complex
effective potentials or even effective actions: for any expansion point along the imaginary axis
the propagator remains real, i.e. positive diffusion is ensured.

Initial conditions

All dimensionful quantities are measured in powers of the mass at the initial UV scale k = Λ, in
particular implying m= 1. The initial or bare classical coupling at k = Λ is also set to unity, to
wit

m2 = 1 , λ= 1 . (6.31)

The initial conditions are obtained via the Legendre transformation of the classical action, which
is the initial condition for the 1PI flow. Details of this derivation are given in Appendix B.5.3.
Furthermore, the choice of the initial cutoff scale Λ in the UV requires special care: the algebraic
structure of the Wilsonian effective action flow has no built-in suppression at high field values,
as present for the 1PI flows. In fact, the flow of couplings and the mass increases at larger
field values. Moreover, the structure of the flow is such that for d > 2 potential numerical
inaccuracies in this fine-tuning problem are enhanced by powers of the cutoff scale.

In this work, an initial cutoff scale Λ= 5 is used, for which we find coinciding results from
various methods for dimensions d = 0, . . . , 4, see Section 6.3.3.

6.3.2. Benchmark results in d=0

In this section, the numerical convergence of the different functional flows towards the full
result is tested. For this purpose we use the zero-dimensional theory, where the partition
function (3.2) is a simple one-dimensional integral. This integral can be solved numerically,
and in some limiting cases even analytically. For related works for real-valued effective actions
and flows see [248–250]. We remark, that in d = 0 the partition function indeed develops
zeros that are particularly difficult to resolve. In turn, in higher dimensions we expect cuts
which may facilitate the numerical treatment. This has been already observed within lattice
simulations with complex Langevin dynamics [299].

The dynamical potential Vdyn is computed using the flow of the RG-adapted scheme, the
Polchinski flow and the 1PI flow, see Table 6.1 for a summary of relevant equations in the
different schemes. Detailed derivations of the latter two flows are found in Appendix C.3.2 and
Appendix C.3.3 respectively. Computations are, as discussed in Section 6.2.3, performed on
slices of constant φy , using 1d-numerical grid, ranging from φx ∈ [−3, 3]. On each slice a grid
of K = 60 cells is used with a polynomial of order N = 2 in each cell. Afterwards, results need
to be mapped from the fields to the current φ→ J . In the RG-adapted scheme, this is done via
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Finally, we investigate the size of the scaling regime. Scaling fits to data-points from initial
masses m2 > 0.09 yield a higher estimate for m2

c , which hints at a small subleading contribution
to the scaling behaviour (blue and green curves in Figure 6.10a). The relative error between the
scaling-fit and the data-points is depicted in Figure 6.10b. We find a subleading contribution to
the scaling for m2 > 0.14 which grows in importance for higher initial masses m2. At m2 = 1
the relative fit error on the Lee-Yang location is only ≈ 3%. Hence, we deduce a large scaling
regime in d = 4.

6.5. Summary and outlook

In the present work we have set up general fRG approaches for computing complex actions.
To that end we have compared different general fRG flows for the Wilsonian effective action
and the 1PI effective action, based on the general flows for both, (3.20) and (3.33). The
analysis suggests that the construction of adapted fRGs is key to constructing systems of partial
differential equations whose types support flows towards the infrared, see Section 6.2.

The present conceptual results allow for a systematic construction of these flows within the
theory and truncation at hand. Our explicit numerical computations of the effective potential
in scalar theories in zero to four dimensions have aimed at resolving Lee-Yang zeroes, and are
based on the RG-adapted flow for the Wilsonian effective action constructed here. The setup
allowed us to compute the full effective potential in the complex magnetisation plane, see in
particular Figure 6.6. These results give access to the position as well as the mass-dependence
of the Lee-Yang zeroes, see Figure 6.10a.

This evaluation of the mass dependence allowed us to predict the location m2
c of the phase

transition from the symmetric into the broken phase in terms of an extrapolation of the Lee-
Yang singularity and its intersection point with the real axis. It can be seen as a precursor of
a respective computation in QCD, where the present scalar potential or rather scalar sector
is linked to the scalar-pseudoscalar meson sector obtained via dynamical hadronisation in
functional QCD. Then, the dependence of the location of the Lee-Yang zero on the chemical
potential can be used to constrain the location of the critical end point or the onset of new
physics within first principle QCD. We hope to report on the respective investigation in the near
future.



CHAPTER 7

Applications of general RG transformations

In Chapter 3 we have outlined some of the computational challenges of the fRG. Firstly, we
have addressed the issue finding an approximation scheme for the intricate momentum and
field dependence of the generating functional Γ [φ], which allows for a quantitative description
of physics, recall Section 3.2.2. This issue goes hand in hand with finding a regulator that is
optimised for the truncation, see Section 3.2.3. The second challenge becomes apparent in
real-time applications. Ideally, one would like to find a regulator which implements a causal,
Lorentz-covariant theory. Until now, the only regulator which has been found to allow this, fails
to implement UV-finiteness in the RG-flows. This has been discussed in [3] or in Section 3.4.

In this chapter we present two applications of the generalised RG-flow (3.33) to scalar
theories, which address these challenges. The respective works represent an important step in
method development of the fRG. Whilst they are aimed at a quantitative description of QCD,
these developments can also be applied in a broader context.

Section 7.1 aims at an expansion of the theory about the ground state of the theory by
an RG-scale dependent redefinition of the effective mean field φ. This way we are able to
reduce the complexity of the approximation scheme by absorbing part of the RG-flow into the
definition of the field.

Section 7.2 presents an application of the CS-flow introduced in (7.45). Here, the RG-flow
was adapted for the computation of spectral functions.

Previously, in Chapter 6, we have already applied generalised flows to implement an RG-
adapted flow of the Wilsonian effective action, which showed great numerical stability for
computations with complex external fields.

7.1. Optimal RG-flows and flowing fields

This section is based on [8]. We make use of the generalised RG-flow derived in (3.33) to compute
the full wave function renormalisation.

Renormalisation group approaches are ideally suited for resolving the intricate phase struc-
ture of physical systems, ranging from condensed matter and statistical systems over Quantum
Chromodynamics, particle physics, cosmology to quantum gravity. They are set-up for mon-
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where β = 1/T with the temperature T , and a = 1, ..., N . Equation (7.1) corresponds to the
first order of the derivative expansion for the O(N) model.

For N = 4 this model is a simple low energy effective theory for the chiral dynamics in
QCD, and the phase transition is that of strong chiral symmetry breaking, as also discussed in
the last section. The radial scalar σ-mode is obtained from the quark bilinear q̄q. The three
(peudo-)Goldstone bosons are related to the three pseudoscalar pions π obtained from q̄γ5σq
with the Pauli matrices σ = (σ1,σ2,σ3). The masses mπ ≈ 140 MeV of the latter are generated
by an explicit symmetry breaking term linear in the radial field. This simple model emerges
dynamically as part of the full QCD effective action within the fRG approach to first principle
QCD with dynamical hadronisation, for recent works see [51,60] and the reviews [104,126].
While we will use the results of this specific application in a forthcoming QCD related work,
the approach and results here are far more general.

Now we use a transformation, that maps the effective action Γ̂ k[ϕ] to one with a classical
dispersion in terms of the transformed field φ with

Γk[φ] =

∫︂

x

�1
2
(∂µφ)

2 + Vk(ρ)− cσσ
�

, (7.3)

where

φ =

�

σ

π

�

, ρ =
φ2

2
=
σ2 +π2

2
. (7.4)

and πT = (π1, ...,πN−1). In (7.3) we have introduced an explicit linear breaking term for the
radial mode σ. Note that such a term drops out of the flow and only shifts the (constant)
solution φEoM of the equation of motion,

σ∂ρVk(ρ0) = cσ . (7.5)

Accordingly, this linear term is only a spectator in the following derivations and computations.
We emphasise that the form of (7.3) does not signal an approximation with the assumption
Zφ ≈ 1, but a formulation with flowing fields with the constraint

Zφ(ρ)
!
≡ 1 , (7.6)

which is the momentum-independent reduction of (3.41).
We also envisage (7.3) with (7.6) as the intermediate reparametrisation of the theory, before

the Goldstonisation of [139,142] is applied. This combined application is deferred to future
work.

RG-adapted field transformations

It is left to derive the flowing fields φ̇, that absorbs the full field dependence of Zφ,k into the
field φ and leads to

∂t Zφ(ρ) = 0 , (7.7)

where we have dropped the subscript k indicating the k-dependence. To begin with, both
actions, (7.1) and (7.3) are invariant under linear O(N) transformations, so we only have
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to consider field transformations that carry a linear representation of O(N). Consequently, a
general parametrisation of φ̇ is given by

φ̇ = −
1
2
ηφ(ρ)φ , (7.8)

with a general ρ-dependent function ηφ(ρ), which is indeed absorbing the anomalous dimen-
sion of the field, hence the notation.

In order to determine (7.8), we compute the flow of Zφ from that of the two-point function,

∂tΓ
(2)
k [φ](p), the second field derivative of the functional flow with flowing fields, (3.33).

The wave function is directly extracted from the two-point function of the Goldstone fields at
π = 0. The general form of the Goldstone two-point function for constant fields φ = (σ,0)
and ρ = σ2/2 is given by

Γ
(2)
k,πiπ j

[φ](p) = Zφ(ρ, p)
�

p2 +mφ(ρ)
�

δi j . (7.9)

It is diagonal in field space and the mass parameter mφ(ρ) is the pole mass of the theory. While
the pole mass can be accessed within the fRG approach, in particular within spectral flows, see
e.g. [3], we will use an additional approximation in the present work with

Zφ(ρ, p)≈ Zφ(ρ) . (7.10)

With (7.10) the flow of Zφ(ρ) is computed by taking a p2 derivative of ∂tΓ
(2)
k [φ](p) at p = 0,

as all mass terms drop from the flow of (7.9). In combination we arrive at

∂t Zφ(ρ) =
∂

∂ p2
∂tΓ

(2)
k,π1π1

[φ](p)

|︁

|︁

|︁

|︁ p = 0
π = 0

. (7.11)

The details of the explicit computation are deferred to Appendix B.4.1, and the final flow for
p = 0 and π = 0 reads

∂t Zφ =
1
2
∂

∂ p2
Tr

�

G(2),π1π1

�

∂t + 2
δφ̇

δφ

�

Rk

�

−
δ2

δπ1δπ1

�

φ̇ φ
�

ρZ ′φ + Zφ
��

, (7.12)

where Z ′
φ
= ∂ρZφ and G(2)

π1π1 stands for the second derivative of the propagator w.r.t. the
Goldstone π1, and we have in general

G(m)
φiφ j ,φn1

···φnm
(p1, ..., pm+2) =

Gφiφ j
(p1, p2)

δφn(p3) · · ·δφm(pm+2)
. (7.13)

We shall also use the short-hand notation Gφiφ j ,φnφm
, Gi j,nm as well as G,φnφm

and extensions
to more derivatives for the sake of readability.

Using Zφ = 1, due to the constraint imposed in (7.6), at any given k, all derivatives of Zφ
vanish. Moreover, for the choice

δ2

δπ1δπ1
(φ̇ φ) =

1
2
∂

∂ p2
Tr

�

G(2),π1π1

�

∂t + 2
δφ̇

δφ

�

Rk

�

, (7.14)

for p = 0 and π = 0 we obtain ∂t Zφ = 0 and hence (7.6) is sustained for all k. In (7.14), we
have used the short hand notation G(2),π1π1

, where we have dropped the indices that are involved
in the trace.
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Comparing (7.14) with the π1-derivative of (7.8) at p = 0 and π = 0 leads us to

ηφ +ρη
′
φ = −

1
2
∂

∂ p2
Tr
�

G(2),π1π1

�

∂t −ηφ − 2ρη′φ
�

Rk

�

, (7.15)

where η′
φ
= ∂ρηφ. It is worth noting that (7.15) with η′

φ
= 0 is also obtained, if Rk in the

standard fRG approach without flowing fields is augmented with a field-dependent wave
function,

Rk(ρ, p) = Zφ(ρ)R
(0)
k (p) . (7.16)

Equation (7.16) is at the root of the background approximation in scalar theories, gauge
theories and gravity. However, (7.16) leads to higher loop terms in the flow equation. In the
background approximation the higher loop terms are simply dropped. Then we are led to (7.15)
as well as the flow (3.33) with (7.8), where we consistently approximate η′

φ
≈ 0. This holds

true in the limit of slowly varying ηφ , which is analogous to the local density approximation.
Note that while the validity regime of this approximation is difficult to estimate, as the size of
η′
φ

is not the relevant quantity, but rather its impact if fed back to the flow. The latter impact
can be estimated in the fRG within a (linear) self-consistency analysis: we can feed back the
η′
φ

obtained in the η′
φ
≈ 0 approximation into the right hand side of the flow and use the

difference as an error estimate.
Consequently, the fRG approach with flowing fields supports the background field approxima-

tion within the approximation (7.10) in the limit of slowly varying ηφ . Importantly, within the
approach with flowing fields, this approximation can be systematically lifted without leading
to higher order loop terms. In particular, momentum-dependent Zφ(ρ, p) can be implemented
straightforwardly.

The full RG-adapted reparametrisation of the theory in terms of a non-linear transformation
in field space (7.14) is linked to linear ones, if further approximations are used. Already in the
derivation of (7.14) we have dropped the momentum dependence of the wave function. While
not necessary, it simplifies the final transformation (7.14) significantly. A further significant
simplification is achieved if we drop the field dependence in (7.14), which linearises the
RG-adapted transformation and reduces it to a cutoff-dependent rescaling of the field. This
approximation is a commonly used one, the local potential approximation (LPA) with cutoff-
dependent but field-independent wave functions, called LPA′. In contrast, the full RG-adapted
fields with (7.14) encode the full first order of the derivative expansion. However, the flows in
the latter depend on derivatives of Zφ(ρ) which are absent here, due to the RG-adaptation.

The LPA′ approximation is obtained by (7.1) with Zϕ(ρϕ)→ Zϕ(ρ0) with a specific ρ0,

Γ LPA′

k [ϕ] =

∫︂

x

�1
2

Zϕ(ρ0)(∂µϕ)
2 + Vk(ρϕ)− cσσ

�

. (7.17)

Typically, ρ0,k is chosen as the cutoff-dependent solution of the equations of motion (6.36b).
The rescaling of the field is then given by,

φ̇ = −φ
ηφ(ρ0)

2
, ηφ(ρ0,k) = −

∂t Zϕ(ρ0,k)

Zϕ(ρ0,k)
. (7.18)

In short, in LPA′ the flowing fields leading to (7.6) are simply implementing the rescaling φ =
Z (1/2)ϕ (ρ0)ϕ. Conceptually, the difference between the full field-dependent reparametrisation
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and the LPA′ one is the additional assumption, that the field dependence of Zϕ is negligible,
∂ρϕZϕ ≈ 0. This is the analogue of a local density approximation in density functional theory.
This relation of the fRG flows with flowing fields to the well-studied LPA′ approximation
allows us to gauge the impact of fully field-dependent reparametrisations. Consequently, in
Section 7.1.3 we shall compare the full results with that obtained in LPA′.

Flow equations

In the present approximation we are left with two flow equations, one for the effective potential
and that for the flowing field. With the underlying O(N) symmetry we can formulate the flows
in terms of ρ instead of φ. Here we provide the explicit forms of the two flows in the present
setting of a thermal O(N) model. In comparison to the flow of the effective potential in LPA,
the flow carries additional terms proportional to ηφ(ρ) and its ρ-derivative,

∂t Vk −ηφρV ′ = kd+1Ad

�

�

1−
ηφ + 2ρη′

φ

1+ d

�

coth
� εσ

2T

�

2εσ
+
�

1−
ηφ

1+ d

� (N − 1) coth
� επ

2T

�

2επ

�

,

(7.19)

with V ′ = ∂ρV , V ′′ = ∂ 2
ρ V , η′

φ
= ∂ρηφ and

Ad+1 =
2πd/2

(2π)dΓ (d/2)d
. (7.20)

The dispersion relations εσ/π are given by

επ/σ =
r

k2 +m2
π/σ

, (7.21)

and the radial and Goldstone masses

m2
π = V ′ , m2

σ = m2
π + 2ρV ′′ . (7.22)

The RG-adapted flow of the field basis is given by (7.15) and has the explicit form in terms of
ηφ ,

ηφ +ρη
′
φ = 4Ad ρ̄(V̄

′′)2
�

1−
ηφ + 2ρη′

φ

1+ d

�

BB(2,2) , (7.23)

with the dimensionless threshold function BB(2,2) defined in Appendix B.7.2, and dimensionless
fields ρ̄ = kd−2ρ and potential V̄ = kd V . Note that the the right hand side of (7.23) tends
towards zero in the large N limit with N→∞. This is consistent with the vanishing anomalous
dimension in this limit.

We close this analysis with the comment that this setup can be used as a starting point for an
additional transformation of the field basis into polar coordinates in the broken phase, with or
without a consequent absorption of the emergent wave function Zθ (ρ). Such a set-up is fully
adapted to the ground state or covariance of the O(N) theory.
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This error accumulates during the integration (7.26) and is of numerical origin. Figure 7.7b
also shows that the potential V is identical within this error estimate, whenever V > 0.

7.1.5. Summary and outlook

In this work we put forward an application of the generalised flow equation (3.33) to an
O(4) theory, which implements the idea of an expansion of the effective action about the
ground state of the theory. Technically, this is done by reducing the full dispersion with a
field-dependent wave function Zϕ[ϕ] of the fundamental scalar field ϕ to a classical one at
each flow step. This is achieved by a dynamical reparametrisation of the field ϕ → φk(ϕ),
introducing an emergent composite or flowing field via the differential reparametrisation φ̇[φ]
with Zϕ → Zφ ≡ 1 at each RG-step. We have shown that the constraint of a trivial dispersion
does not fix this reparametrisation completely, and we are left with a one-parameter family of
field-reparametrisations. This freedom is used to optimise the numerical implementation of
the flowing fields.

As a first application we have computed the effective potential in the three-dimensional
theory in the broken phase within this optimised expansion scheme. The results have been
compared to the commonly used LPA′ approximation scheme, in which the wave function Zϕ
is only computed on the cutoff-dependent solution of the equation of motion. Our results
provide a non-trivial reliability check of the LPA′ approximation in the broken phase, which
turns out to be quantitatively reliable in the present setup. However, the sizeable deviations of
the solutions away from the equation of motion depicted in Figure 7.2 indicate, that higher
correlation functions may differ in LPA′. For this reasons we also expect inaccuracies of the
LPA′ scheme in the presence of highly dynamical flows. For instance, we hope to report in the
near future on an application of flowing fields to shock-development processes, as e.g. present
at large densities and low temperatures in the QCD phase diagram.

Finally, we have applied the flowing field approach to the thermal phase transition of the four-
dimensional φ4 theory. As for the three-dimensional case we found an impressive reliability of
the LPA′ approximation for the observables considered. For example, the critical temperatures
agreed in both approximations agree within their small respective error. This result has an
immediate consequence for the systematic error estimate of state of the art fRG computations
for the chiral phase transition up to µB/T ≈ 4: the current work supports the quantitative
accuracy of the LPA′ scheme used e.g. in [51] for the chiral part of QCD.

Moreover, we found that the field-dependence of the wave function Zϕ increases towards the
phase transition temperature, see Figure 7.6a. This highlights its importance for quantitative
accuracy for critical exponents and other universal properties, for a respective application
to the O(1) model see [136]. As a self-consistency check of the present approach we have
checked that different field-reparametrisations Zϕ → Zφ ≡ 1 implement the same effective
potential, with slight deviations in the unphysical regime at finite RG-scale k. This is yet another
self-consistency check of the sub-leading nature of truncation artefacts.

The present approach can be readily implemented in the fRG approach to first principles
QCD, leading to a flowing optimised expansion scheme around the cutoff-dependent ground
state in the mesonic sector. This improves the truncation scheme at finite temperature and
density in the quest for quantitative precision for high density QCD. The latter application also
has to take into account potential spatial inhomogeneities such as a moat regime [318,319].
This requires momentum-dependent wave functions, and hence the implementation of a
momentum-dependent flowing field transformation.
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7.2. The spectral functional renormalisation group

This section is based on [7]. We make use of the CS-flow derived in Section 3.4 to compute spectral
functions.

In this section, we set up the spectral functional renormalisation group (fRG) for a scalar
φ4-theory in three spacetime dimensions. The spectral fRG is a non-perturbative functional
real-time approach for the direct computation of correlation functions in Minkowski spacetime.
It is based on the general functional real-time setup introduced in [168,169,320,321], first
applied to Dyson-Schwinger equations (DSE). The approach is based on the Källén-Lehmann
spectral representation [322,323] for the two-point function, which allows to analytically access
the momentum structure of functional diagrammatic expressions. The setup has been extended
to the fRG approach by using a masslike Callan-Symanzik (CS) regulator in [3] and has been
applied to gravity in [166]. The CS regulator sustains spectral representations alongside with
Lorentz invariance, and allows for a spectral renormalisation consistent with all symmetries at
hand; for more details see [3,168]. Moreover, in [3] the concept of flowing renormalisation
has been introduced, which allows for an on-shell renormalisation at each renormalisation
group scale. For further real-time applications of the fRG in a broad variety of research fields,
see e.g., [147–152,154–156,158–167,324].

In the present work, we accompany the conceptual progress made in [3] with a non-
perturbative application to spectral functions in the three dimensional φ4-theory. This al-
lows to directly compare our results with those obtained in [168] within the spectral DSE
approach. Both functional approaches implement different resummation schemes for the
correlators of the given theory through infinite towers of one-loop (fRG) or two-loop (DSE)
exact diagrammatic relations. Within an fRG implementation, the successive momentum-shell
integration of loop momenta p2 ≈ k2 with the infrared cutoff scale k, already provides an
average momentum dependence within simple approximations. Due to their intricate spectral
representation, this is particularly beneficial for including non-trivial vertices into the flow, e.g.,
via momentum-independent but cutoff-dependent approximations.

The organisation is as follows: In Section 7.2.1, we briefly discuss the spectral functional
approach. In Section 7.2.2 we set up its application to the functional renormalisation group for
a scalar theory. We present our results in Section 7.2.3. This includes a detailed comparison to
those obtained with the spectral DSE in [168]. Our findings are summarised in Section 7.2.4.
For technical details we defer to Appendix B.4 and the corresponding publication [7].

7.2.1. Spectral functions and functional equations

One of our main motivations for using the CS flow is that Lorentz invariance and the existence
of spectral representations are manifest, see Section 3.4.1. We exploit in particular the latter
property for defining spectral, Lorentz invariant fRG flows in real time, based on the CS flow
(3.53).

Most of the relations in the present section can be generalised other field theories. For the
sake of simplicity we restrict ourselves to a φ4-theory in (1+ 2) dimensions. Its classical action
reads

S[φ] =

∫︂

d3 x
§

1
2
φ
�

−∂ 2 +µ
�

φ +
λφ

4!
φ4
ª

. (7.34)
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For µ > 0, the minimum of the classical potential is at vanishing field. Then, the mass parameter
can be identified with the classical mass squared, m2

φ
= µ. For µ < 0, the full potential exhibits

non-trivial minima, and the classical mass of the theory is given by m2
φ
= −2µ.

Spectral representation of the propagator

The basic ingredients of spectral fRG flows are the spectral representations of the correlation
functions, and foremost the Källén-Lehmann (KL) spectral representation of the propagator,

G(p0, p⃗) =

∫︂ ∞

0−

dλ
π

λρ (λ, p⃗ )
λ2 + p2

0

, (7.35a)

where 0− ensures that massless poles are integrated over. The spectral function ρ(λ) is the
probability density of creating a Fock state with energy λ from the vacuum in the presence of
the quantum field φ. It is related to the propagator via

ρ(ω, p⃗ ) = 2 Im G
�

p0 = −i(ω+ i0+), p⃗
�

. (7.35b)

where p0 denotes the Euclidean and ω the Minkowski frequency. In this application, the
propagator is a function of p2 due to Lorentz symmetry. Hence we drop any explicit p⃗ -
dependence from now on and identify p2

0 = p2. The spectral function is defined by (7.35b) but
the relation (7.35a) does not always hold.

For the two-point function of asymptotic states, the spectral function is positive semidefinite
and normalised to unity, if the states are normalised. In general this is not the case, since (7.35b)
and (7.35a) are mere statements about the causal propagation of the associated operator. In
the absence of higher order resonances, the spectral function of the φ4-theory is given by

ρ(ω) =
2π
Zφ
δ(ω2 −m2

pole) + θ (ω
2 −m2

scat)ρ̃(ω) , (7.36)

with ρ(ω) = ρ(ω, 0), and ρ̃(ω) = ρ̃(ω, 0) for the scattering continuum ρ̃. The mass m pole in
(7.36) is the pole mass of the full quantum theory, defined by G−1(±m pole, 0) = 0.

The scattering continuum begins at λ2 = m2
scat. In the case of a non-vanishing background

field, the theory admits 1 → 2 scattering (broken phase), and we have m scat = 2m pole.
Figure 7.8a shows the full scattering tail of the propagator as a function of the frequency ω and
spatial momentum |p⃗| in the broken phase. Higher thresholds of 1→ N scattering processes
lead to further discontinuities of the scattering tail and are strongly suppressed.

If the spectral representation (7.35) holds, all non-analyticities of the propagator lie on the
real frequency axis. These non-analyticities are given by either poles or cuts. Poles originate
from asymptotic states that overlap with the propagator of the field φ, while cuts represent
scattering states.

From the normalisation condition we also obtain the relation,

1
Zφ
= 1−
∫︂ ∞

m scat

dλ
π
λρ̃(λ, p⃗ ) . (7.37)

which implies Zφ ≥ 1 on shell, since the scattering tail carries part of the total probability.
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residual spectral integrals; for a general discussion see [168]. In the present work, we apply
this approach to the functional renormalisation group using the CS-flow (3.53). This leads to
one-loop exact relations for correlation functions in terms of full propagators and vertices. In
addition, we use a one-loop closed, resummed Bethe-Salpeter kernel to compute the four-point
function.

As discussed above, the spectral fRG leads to perturbative one-loop momentum integrals in
diagrams, which can be solved analytically. The non-perturbative information of the diagrams
such as pole masses and thresholds is stored in the remaining spectral integrals. For the present
purpose, it is sufficient to consider a single external momentum argument, which is either
that of the propagator or the s-channel momentum of the four-point function. However, the
generalisation to diagrams with several external momenta is straightforward.

We consider diagrams of the general form

D[p] = g

∫︂

q
Vert(p, q)

N
∏︂

j=1

G(l j) with

∫︂

q
=

∫︂

ddq
(2π)d

, (7.40)

and where li = q, q±p are the momenta of the N propagators. Vert(p, q) carries the momentum
dependence of all vertices, which we assume to be either a polynomial or rational function of
p and the li, or to admit a spectral representation. All prefactors are collected in the overall
prefactor g. By inserting the spectral representation (7.35) for each propagator, the momentum
integrals acquire a standard perturbative form, where the masses are the respective spectral
parameters squared, λ2

i . Finally, the spectral parameters are integrated over and weighted by
the respective spectral function,

D[p] = g
N
∏︂

j=1

∫︂

λ j

ρ(λ j)I(λ1, ..,λn, p) , (7.41)

with

I(λ1, ..,λn, p) =

∫︂

q
Vert(p, q)

N
∏︂

j

1

λ2
j + l2

j

. (7.42)

The momentum integral in (7.42) is readily solved and the resulting analytic expression
holds true for p ∈ C. This gives us access to the spectral function (7.35) via the limit p →
−i(ω+ i0+). We remark that in the present spectral fRG approach to the (1+2)-dimensional
scalar theory, all integrals are finite, and we can safely change the order of integration even
prior to renormalisation. In general the interchange of momentum and spectral integration
performed in (7.41) assumes a suitable regularisation of the full integral, which can be done
with spectral renormalisation [168].

The spectral structure of the diagrams allows for a simple discussion of the emergent scattering
thresholds that can be easily tracked within spectral functional approaches. An illustrative
example is given by the contribution of the vacuum polarisation diagram to the spectral function
of a single scalar field: It features a branch cut that opens at the sum of the spectral masses of
the two propagators. The spectral function entering the diagram consists of a mass pole at m pole
and a sum of scattering continua ρN starting at Nm pole with N ≥ 2. It follows straightforwardly
from the analytic structure of that diagram that substituting scattering contributions ρN and
ρM for the two internal lines directly yields a contribution to ρN+M . This demonstrates how
any scattering structure, once seeded, gives rise to higher scattering contributions.
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m2
pole = µ− 3µθ (−µ). In this physical RG scheme the phase transition between the symmetric

and broken phase happens for m2
φ
= 0. Hence, we approach the phase transition both from the

broken and the symmetric phase in the limit µ→ 0, and the flows are taking place in the one
or the other phase, see Figure 7.10. This also avoids flows through the phase transition as are
present in momentum cutoff flows.

In the present work, we consider the flow of the inverse propagator within the spectral
representation. The flow is given by

µ∂µΓ
(2)(p2) =
�

1−
ηφ

2

�

Zφµ
�

D pol(p
2)−

1
2

D tad(p
2)
�

+
�

1−
ηφ

2

�

Zφµ−
1
2
µ∂µS(2)ct , (7.46)

where Dtad and Dpol refer to the tadpole and polarisation diagram, for more details see [7].
Moreover, all quantities in (7.46) depend on the chosen background φ. For general space-time
dependent backgrounds φ(x) this would lead to Γ (2)[φ](p, q). In the explicit computations we
consider the background φ0, which is the constant solution of the equation of motion

δΓ [φ]
δφ

|︁

|︁

|︁

|︁

φ=φ0

= 0 . (7.47)

With this physical choice for the background, the general field-dependent propagator (7.45c)
reduces to the physical propagator G(p2) in the absence of source terms,

G(p2) =
1

Γ (2)[φ0](p2)
. (7.48)

In the symmetric phase, we have φ0 = 0, while φ0 ̸= 0 signals the broken phase. At constant
fields the propagator (7.45c) reduces to G(p, q) = G(p2)(2π)dδ(p + q). Similarly we have
Γ (2)[φ0](p, q) = Γ (2)[φ0](p2)(2π)dδ(p+ q).

In three dimensions the two phases are separated by a second order phase transition in the
Ising universality class. From now on we drop the field argument φ0. It is implicitly understood
that all correlation functions are evaluated at φ = φ0.

In a final step, we substitute µ with ±k2, to keep the relations to standard fRG flows with
momentum cutoffs simple, where k is commonly used. This facilitates the comparison and
benchmarking of the real-time results obtained with the spectral fRG. For example, the three-
dimensional φ4-theory has been studied abundantly within the Euclidean fRG, including
systematic studies of the convergence of approximation schemes, for a recent review see [104].
These results carry over straightforwardly to the present approach, and the Euclidean correlation
functions obtained from the spectral functions can be directly compared. This substitution
leads us to

k2 = |µ| , ∂t = k ∂k = 2µ∂µ , (7.49)

where the (negative) RG-time t = log(k/kref) is measured relatively to a suitable reference
scale or mass.

Spectral on-shell renormalisation

We proceed with discussing the on-shell spectral renormalisation, using the direct access
to Minkowskian momenta. In (1+2)-dimensions, both diagrams in the CS flow (7.46) are
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manifestly finite, and the flow of the counter term action µ∂µSct only guarantees the imple-
mentation of the chosen renormalisation conditions. The (1+2)-dimensional φ4-theory is
super-renormalisable, and one only has the renormalisation condition for the mass. Now we
use on-shell renormalisation to keep the full pole mass on the classical input mass (7.44) with
m2

pole = k2 in the symmetric phase, and m2
pole = 2k2 in the broken phase. This leads us to

1. symmetric phase:

Γ (2)[φ0]
|︁

|︁

|︁

p2=−k2
= 0 , (7.50)

2. broken phase:

Γ (2)[φ0]
|︁

|︁

|︁

p2=−2k2
= 0 . (7.51)

In the symmetric phase the first allowed scattering process is the 1→ 3 scattering, and the
onset of the scattering continuum is located at three times the pole mass. In turn, in the broken
phase with 1→ 2 scattering, the onset of the scattering continuum of the spectral function is
located at twice the pole mass. Thus, the spectral function (7.36) reads

ρ(λ) =
2π
Zφ
δ(λ2 −m2

pole) + θ (λ
2 −m2

scat)ρ̃(λ) , (7.52)

with m scat = 3m pole (symmetric phase) and m scat = 2m pole (broken phase). In Figure 7.9, we
show the scale evolution of the spectral function ρ in the broken phase: in Figure 7.9a we
depict the scattering tail ρ̃, and in Figure 7.9b we depict the amplitude of the pole contribution.
All quantities are measured relative to the coupling λφ .

The spectral tail is rising towards smaller pole masses for a fixed classical coupling, and
in turn the amplitude 1/Zφ of the pole contribution is decreasing. In combination the sum
rule holds during the evolution. The growing importance of the scattering processes can be
understood from the fact that the dynamics of the theory only depends on the dimensionless
ratio λφ/mφ with mφ∝ k. Hence, the effective coupling grows strong for smaller pole masses
and on the other hand the dynamics of the theory are vanishing for asymptotically large pole
masses.

In contrast to the Callan-Symanzik or mass regulator used here, commonly used regulators
in Euclidean flows decay for momenta larger than the IR cutoff k. This provides manifestly
finite flows without the need of further renormalisation. Moreover, for Euclidean momenta,
the respective flows of lower order correlation functions decay faster than for a CS regulator.
In Minkowski space, however, the CS or mass regulator has the welcoming property, that the
one-loop flow of ρ(ω) contains only classical correlation functions and is maximally local.
While this is trivial in the symmetric phase where the one-loop flow only shifts the pole mass
and does not generate a scattering continuum, it is non-trivial in the broken phase. There, the
flow of the scattering continuum is given by a single delta function at the onset of the scattering
spectrum, which originates from ∂t Im Γ (2)∝ δ(ω2 − 4m2

pole). Since the mass pole constitutes
the dominant part of the propagator, the flow of the spectral function at spectral values larger
than the flowing onset 2m pole, which is solely induced by the scattering tail, is sub-leading.
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in [168] within the spectral DSE, see Section 7.2.3. This affirms the reliability of the spectral
functional approach for the non-perturbative computation of fundamental Minkowski spacetime
correlation functions.

In contrast to DSE, the fRG approach captures average momentum dependencies of vertices
via their scale dependence. This allows to include non-trivial vertex dynamics without resorting
to intricate spectral representations of higher correlation functions. Furthermore, the current
spectral fRG approach is straightforwardly and easily extended to include the flow of the full
effective potential. This work represents an important step towards unravelling real-time
correlations in QCD from first principles with spectral functional approaches. We hope to report
on respective results in the near future.



CHAPTER 8

The quark-meson model

This chapter we investigate the quark-meson model, which is essential to a quantitative description
of QCD within functional methods. We present a compilation of results from [1,10,11]. Figures
are taken from [1] unless indicated differently in the respective (sub)section.

In Chapter 2, we pointed out the importance of a Fierz-complete basis of the four-quark
scattering vertex and the importance of quantitative access to the respective order parameter
potentials for homogeneous and inhomogeneous condensates. The latter allows to locate phase
transition lines and discuss the question of the symmetry breaking pattern and the order of
phase transitions. It has been shown in the past decade that functional QCD flows towards QCD-
assisted low energy effective models for energy scales below 1 GeV, for a detailed discussion
see in particular the recent works [51,104] and also Chapter 9. With dynamical hadronisation
[102,123,127,219] the low energy effective theory is the (Polyakov-loop enhanced) quark-
meson model (QM model), see Section 2.3, or more generally the quark-hadron model. For
recent fRG-works with the (P)QM model on the phase structure of QCD relevant for the
present work see e.g. [46,58,118,279,280,306,325–344], for a recent overview see [104].
This emergence of LEFTs from first principle QCD flows is well understood and quantitatively
explored in the vacuum, see [42,44,45,48,102,103]. It entails that the infrared critical dynamics
is dominated by the low energy fluctuations of quarks and hadrons. For small baryon-chemical
potentials, µB/T ≲ 4, the relevant hadronic degrees of freedom are simply the pseudo-scalar
pions and the sigma mode, see [19,51,56,64,100]. In turn, for baryon-chemical potentials
µB ≲ 4/T the situation is less clear, but we expect sizeable diquark contributions, see [64].

In the following we present results which combine two important technical advances from
the past years: The first one was the development of self-consistent approximations for the
computation of order parameter potentials, [58]. The second one was the development of a
numerical approach for solving flow equations that also enables us to discuss discontinuities in
the flows such as shocks that are potentially relevant for the correct description of first and
second order phase transitions, [65] see also Chapter 5. In the present chapter we compute the
phase structure of the quark-meson model (QM model) at finite temperature and density.

An important benchmark is already provided in the large-N f limit with an infinite number of
flavors. It is argued that within an ’t Hooft-type limit we can mimic the two-flavor QM model
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well (or any other flavor), and in particular reproduce well it’s non-universal properties such as
the location of the phase boundary. Moreover, in this limit the numerical approach also allows
for a full computation of higher quark-mesonic scattering processes and allows to gauge therir
quantitative importance in QCD. The respective results are compared with the currently most
advanced approximation (including shocks) to the self-consistent approximation including
the order parameter potentials in [58] for the N f = 2-flavor quark-meson model. The results
include also the regime µB/T ≳ 4.

In Section 8.1 we discuss the QM model in an fRG setting and how this low energy effective
model relates to QCD. This is followed by an investigation of the results, considering only
higher mesonic scattering orders in Section 8.2. Here, we investigate the phase structure and
scaling parameters for both the large-N f limit and at finite N f . The former also sets up the
investigation of higher quark-mesonic scattering orders in Section 8.3. We give a brief summary
in Section 8.4.

8.1. The quark-meson model within the functional
renormalisation group

This section is based on [1,11]. All figures are taken from [1].

We briefly recapitulate the fRG-approach to the (Polyakov-enhanced) quark-meson model
(QM model). In the present chapter, the inclusion of dynamical mesons as low energy effective
degrees of freedom has to be seen as an efficient and convenient book-keeping device for
the respective resonant interaction channels. In particular, this substitutes the rather tedious
inclusion of the resonant parts of the higher-order scattering processes of quarks. Still, if used
on a quantitative level, even for large UV-cutoff scales its effective action does not reduce to
a simple local classical actions. For more details and in particular its quantitative properties
as an emergent low energy theory in QCD we refer to [44,45,48,51] and Chapter 9. Validity
checks, benchmarks and bounds in comparison to QCD have been provided in [103].

Here, we restrict ourselves to qualitative approximations to the effective action. We are
predominantly concerned with the quantitative access to the effective potential of the chiral
order parameter. The systematic inclusion of the present quantitative setup within functional
QCD flows is straightforward due to the modular nature of the fRG-approach and is considered
in Chapter 9.

A careful study of QCD correlation functions, as done in [51,103,345], reveals that the QM
model incorporates QCD fluctuations only below a momentum scale of kUV ≈ 300 MeV: for this
analysis one uses QCD results at a given momentum scale kUV as the UV effective action of the
QM model and compares the results from the model and QCD in the deep infrared. Evidently,
the QM model only incorporates QCD fluctuations if the results agree.

In turn, initiating the QM model at a larger UV scale kUV, the effective action at this scale
has to include part of the QCD gluon fluctuation still present for lower scales. Typically, this
is done in the vacuum at T,µB = 0, and one may estimate that the model can be used as a
low energy effective model for momentum scales kUV ≈ 700 MeV, hence roughly of the order of
1 GeV. However, one has to be aware of the fact that the model does not match full quantitative
QCD even for temperatures and densities that are well below 1 GeV: gluonic fluctuations are
present above k ≈ 300 MeV and they are only modelled well in the vacuum and their thermal
and density modifications are missing. In summary, the QM model gradually looses quantitative
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precision, if T,µB-fluctuations significantly modify the momentum dependence above k ≈ 300
MeV. We shall use these considerations for our evaluation of the regime of validity of the results
obtained here.

The scales of the present (qualitative) LEFT are gauged by the pion decay constant in the
chiral limit. We use fπ,χ = 88 MeV and measure all other scales with these units. We choose
the UV-cutoff scale of the QM model as Λ≈ 700 MeV. We consider this to be a good compromise
between integrating-out as many momentum-fluctuations as possible and stretching the validity-
bound of the LEFT. The momentum fluctuations with momentum scales k ≤ Λ are included
with the functional renormalisation group (fRG). This approach has been used intensively in
the past 25 years for the inclusion of low energy dynamics of the QM model. For the setup of
the flow equation for the effective action, and the derivation of the respective flow equations
for (field-dependent) couplings we refer to the fRG-reviews see [104, 202, 203, 229, 346].
Applications relevant for the present work can be found in [58,64,347], the derivations and
flows for the present approximation can be found in [58].

8.1.1. The local potential approximation

In the zeroth order derivative expansion the effective action Γk[q, q̄,φ] of the N f -flavor QM
model is given by,

ΓLPA,k[q, q̄,φ] =

∫︂

x

¦

q̄(γµ∂µ − γ0µq)q+
1
2
(∂µφ)

2 + hk(ρ) q̄(τ
0σ+ τπ)q+ Vk(ρ)− cσσ

©

,

(8.1)

with τµ being related to the Pauli matrices, τ= 1/2(1, iγ5σ), and the quark-meson coupling
incorporates the SU(2) ∼= SO(3) symmetry of the pseudoscalar subgroup. The O(4)-scalar field
φ and the respective O(4)-invariant ρ are given in (2.36) and (2.37) respectively. We have

also
∫︁

x =
∫︁ 1/T

0 d x0

∫︁

d3 x as an abbreviation for the finite temperature spatial integration.
Here, the Yuakwa coupling hk(ρ) is indicated with a full field dependence. It multiplies

the O(4)-invariant operator q̄τφ q, hence it only depends on the O(4)-invariant ρ. The field-
dependence of the Yukawa-coupling takes into account higher-order point-like scatterings of
the resonant scalar-pseudoscalar channels with the quark–anti-quark pair. The inclusion of
these processes is necessary for a fully consistent zeroth order derivative expansion, and has
been introduced in [58]. For further works in Yukawa models with field-dependent Yukawa
coupling see [341,348–351]. This necessity is easily seen by performing a perturbative one-
loop computation within the QM model. Then, the quark loop with h(ρ) contributes to the
full effective potential. Of course higher terms in the derivative expansion also contribute
to the effective potential, but the Yukawa-term contains no derivatives. Accordingly, its full
field-dependence should be accounted for in a consistent lowest order derivative expansion.

Finally, the scalar effective potential Vk(ρ) takes into account the remaining part of the
higher scattering orders of the mesons. The linear term cσσ introduces explicit chiral symmetry
breaking. Evidently, it drops out on the right hand side of the flow equation and does not run
with the RG-scale. Consequently, the full flow and hence the full effective potential Vk does not
know anything about explicit chiral symmetry breaking.

In the zeroth order derivative expansion, the wave function renormalisations Zq(φ), Zφ(φ)
for quarks and mesons are dropped. Here, we concentrate on the quantitative discussion of the
full effective potential. Hence, with (8.1) we assume implicitly,

Zq,k(ρ) = 1= Zφ,k(ρ) . (8.2)
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The flow equation for the complete set of couplings, hk(ρ), Vk(ρ), and wave function renormal-
isations, can be found in [58]. We use the same setup here, including the choice of regulators,
three-dimensional flat or Litim regulators, [308] or see Appendix B.7.1.

For the effective potential we simply evaluate the flow for Γk[q, q̄,φ] for constant scalar fields
φ and vanishing quark fields, q, q̄ = 0, similarly to the procedure in Section 5.1.1. This leads
us to,

∂t Vk(ρ) =
k5

12π

�

−
4N f Nc

ε
q
k

�

1− n f (ε
q
k +µ)− n f (ε

q
k −µ)
�

+
N2

f − 1

επk

�

1+ 2nB(ε
π
k )
�

+
1
εσk

�

1+ 2nB(ε
σ
k )
�

�

, (8.3)

with ρ-dependent quark- and meson-dispersion relations,

ε
φ

k (ρ) =
r

k2 +m2
φ,k(ρ) , ε

q
k(ρ) =
Ç

k2 +m2
q,k(ρ) , (8.4)

and the (negative) RG-time t = ln k/Λ. The RG-time involves a reference scale in the logarithm,
which we have set to be the initial scale. The masses mq, mφ are obtained by evaluating the
respective two-point functions at constant fields. Note that mq, mφ are the curvature and not
the pole or screening masses of quarks and mesons, for respective definitions and discussions
see [333].

The meson curvature masses are defined with

m2
π,k(ρ) =∂ρVk(ρ) ,

m2
σ,k(ρ) =∂ρVk(ρ) + 2ρ∂ 2

ρ Vk(ρ) , (8.5a)

and hence are curvature-coefficients of the effective potentials. In turn, the quark mass is
proportional to the Yukawa-coupling,

m2
q,k(ρ) = 2hk(ρ)

2ρ . (8.5b)

It is left to discuss the flow equation for the field-dependent Yukawa coupling, for details we
again refer to [58]. We can project the flow for Γk onto the Yukawa coupling h(ρ) by evaluating
the quark two-point function at vanishing quark and pion fields, q, q̄,π = 0, and constant σ.
With (8.1) we arrive at

Γ
(2)
qq̄,k[σ](p)δp,p′ =

δ2Γ [q, q̄,φ]
δq(p)δq̄(p′)

|︁

|︁

|︁

|︁

q,q̄,π=0
≃ i/p− γ0µ+

1
2

hk(ρ)σ− cσσ , (8.6)

where we have dropped the momentum conservation δp,p′ in the last line with δp,p′ =
(2π)4δ(p− p′) in the vacuum.

Equation (8.6) reflects the fact that the Yukawa term simply is the ρ-dependent mass quark
term, mq,k(σ) = hk(ρ)σ/2. Accordingly, the flow of the Yukawa coupling hk(ρ) can be derived
from that of the scalar part of the quark two-point function: it is simply σ/2∂thk(ρ) as ∂t cσ = 0
by definition. Thus we get,

∂thk(ρ) = −
1

4NcN f

1
σ

ReTr Γ (2)qq̄,k[σ](p = 0) . (8.7)
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Figure 8.1.: Diagrammatic representation of the flow of the Yukawa coupling. The circled cross ⊗ depicts
the regulator insertion ∂tRk(p2) and the gray dots denote full vertices. The double lines
depict the mesons, whereas the single line indicates the quark content. The arrows depict
the quark number flow.

In (8.7) we have used that ρ = σ2/2 for π = 0. The flow (8.7) is depicted in Figure 8.1. From
(8.7) and the approximation (8.1) we finally get,

∂thk(ρ) =4v3h3
k(ρ)
�

L(4)(1,1)(m
2
q,k, m2

σ,k; T,µ)− (N2
f − 1)L(4)(1,1)(m

2
q,k, m2

π,k; T,µ)
�

+ 16v3hk(ρ)h
′
k(ρ)ρ
�

hk(ρ) +ρh′k(ρ)
�

× L(4)(1,1)(m
2
q,k, m2

σ,k; T,µ)

− 2v3k2
�

(3h′k(ρ) + 2ρh′′k (ρ))l
(B,4)
1 (m2

σ,k; T ) + (N2
f − 1)h′k(ρ)l

(B,4)
1 (m2

π,k; T )
�

.

with

vd−1 =
1

2d+1π
d
2 Γ
� d

2

�
. (8.8)

The threshold functions l(B,4)
1 originate in the bosonic loops in 4 dimensions. The L(4)(1,1) originate

in the mixed fermionic and bosonic contributions, again in 4 dimensions. Both functions
are defined in Appendix B.7.2. The two four lines from (8.8) are contributions of the first
two diagrams with mixed fermionic and bosonic loops in Figure 8.1, whereas the last line
corresponds to the bosonic loop with the four-vertex.

Similarly to the flow of the effective potential (8.3), the flow of the Yukawa coupling (8.8)
is a non-linear partial differential equation. Contrary to the effective potential however, the
interpretation of the Yukawa flow in terms of fluid-dynamics, compare Section 5.1.2, is not easy.
In fact, we were not able to find a conservative formulation for (8.8) and defer a full solution
of this equation to future work. Hence, we only solve the flow of the Yukawa coupling in the
large-N f limit, see Appendix B.6.1, where we are able to find a stable numerical discretisation
of (8.8) in terms of non-conservative fluxes, see Appendix B.6.1.

Beyond LPA

This subsection is taken from [11].

The reliability of the QM model is not only influenced by its overlap or lack thereof with
full QCD, it also depends on the truncation used. At very low momentum scales p2 ≲ m2

π we
enter the realm of chiral perturbation theory and expansions in orders of k2/m2

π work. For that
reason QCD physics in the deep infrared can be systematically accessed within a derivative
expansion in p2/m2

π, to lowest order this corresponds to LPA.
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Observable Value [MeV] Parameter at ΛUV = 0.65 GeV

mσ 317.1 λΛ = 71.6

mq 310.8 hφ,Λ = 3.6

Table 8.1.: Low energy observables and related EFT couplings at the initial cutoff scale ΛUV = 0.65 GeV.
The scales are fixed with the pion decay constant in the chiral limit fπ,χ = 88 MeV, that is
mσ/ fπ,χ ≈ 3.603 and mq/ fπ,χ ≈ 3.532. In the present approximation we have fπ,χ = σ0,
and in the model the dimensionless ratios are simply mσ/σ0 and mq/σ0. In the chiral limit
we also have mπ = 0.

Within the fRG approach, discussed in Chapter 3, LPA still captures an average momentum
dependence for momenta p ≤ kUV ≈ 700 MeV, but a full momentum resolution of the scalar-
pseudoscalar interaction channel is missing. The momentum truncation could be improved on,
by considering the s-channel momentum dependence of the scalar-pseudoscalar interaction,
which is fully encoded in the momentum dependence of the mesonic two-point functions. The
respective truncation of the effective action Γ [q, q̄,φ] has been suggested in [333]. In summary
the truncation contains two additional independent coefficients, the two momentum dependent
meson dressings. This addition goes in hand with an introduction of smooth regulator functions,
which also allow an analytic continuation to the complex plane and hence access to real-time
physics and spectral functions. This approach is investigated in upcoming work [11].

The inclusion of fully momentum dependent wave function renormalisation can also be
considered in the context of flowing fields, as we have outlined in Section 3.3.3.

8.1.2. Initial conditions and numerical setup

The field dependent flow equations ((8.3), (8.8) and their large-N f limit) are solved using
Discontinuous Galerkin methods. The numerical procedure is analogous to Chapter 5, where
we solve for the first ρ derivative of the potential u(ρ) = ∂ρV (ρ), which corresponds to the pion
mass (8.5). Additionally, we solve for the quark mass w(ρ) = 2ρh2. Details on the derivation
of the large-N f limit of the flows, and the numerical procedure are provided in Appendix B.6.

We initiate the flow at a cutoff scale k = Λ≈ 0.650 GeV with the classical action of the QM
model, see (2.38). Then, the parameter in the initial effective action ΓΛ is the φ4-coupling in
the classical potential (2.38a),

uΛ(ρ) =
λΛ
2
ρ wΛ(ρ) = 2h2

Λρ . (8.9)

as well as the Yukawa coupling hΛ. For the sake of simplicity we use a initial meson quark mass,
m2
φ
= 0. All our scales are measured in the pion decay constant in the chiral limit fπ,χ = 88 MeV.

Within the present approximation of the QM model we have fπ ≈ σ0, and hence we define
σ0 = 88 MeV. Here σ0 is the solution to the equations of motion in the chiral limit, i.e.

∂ρV (ρ)|ρ=σ2
0/2
= 0 . (8.10)

which corresponds to the minimum of the effective potential V (ρ) for vanishing quark masses
at the initial scale Λ. By definition, the pion mass (8.5) on the equations of motion in the
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the fRG-approach see [46,354,355]. This property entails that correlation functions below the
density onset are simply functions of p0∓ iµq for quark and anti-quark frequencies respectively.
Accordingly, observables do not depend on the chemical potential for µq < µq,on, where µq,on
is the onset chemical potential. For µq > µq,on, the medium leads to deformations of the
quark-meson scattering processes, comprised in medium meson-dispersions. In the presence of
thermal fluctuations this onset is washed out with increasing temperature.

Note also, that the onset cutoff scale depends on the field value, as in the present approxima-
tion the onset chemical potential is given by µ2

q,on = k2 +m2
q.

In summary, the results in the asymptotic regimes show the expected physics phenomena.
Moreover, the comparison of the large-N f models with the two-flavor case quantifies the
similarities between the large-N f limit models and the physical two-flavor model.

8.2.2. Chiral phase transition at vanishing density

These similarities are furthered by a study of the chiral phase transition at vanishing density,
µq = 0. In particular we present a detailed comparison of the temperature-dependence of the
chiral order parameterσ0 in the N f = 2-flavor case with the large-N f limits with 3 and 4 degrees
of freedom. The numerical results for σ0(T ) are displayed in Figure 8.5a and Figure 8.5b.

The order parameter σ is obtained by a linear extrapolation as described in Equation (8.12).
The data in proximity of the transition point are compatible with the scaling law,

σ(T ) =

(

ccr|T − Tcrit|β , T ≤ Tcrit

0, T ≥ Tcrit

, (8.13)

where in the large-N f limit we have β = 1/2, the mean field critical exponent. In turn, for
the present LPA-study of the Yuakwa model with the O(4)-universality class we have used the
three-dimensional spatial flat or Litim regulator, [308], for both quarks and mesons. See also
Appendix B.7.2, (B.113), (B.114). This leads us to β ≈ 0.40, see [282] with [356,357] and in
particular the recent work in the QM model, [120]. Note, that more advanced approximations
of the fRG provide β ≈ 0.39 consistent with conformal bootstrap and Monte-Carlo results. For
a recent compilation see [268], for the QM model see [120] that also includes an investigation
of the Z2-universality class.

The respective scaling regimes are already very small in the O(4)-model and even shrink in
the presence of the (driving) fermion loop, see the discussion in [120]. While possible, we
do not aim at a precision estimate of critical exponents here, as we focus on the location of
the phase boundaries. Accordingly, we have simply checked the consistency of the scaling
law (8.13) with β ≈ 0.4 (N f = 2) and β = 1/2 (N f →∞) for small reduced temperatures
1− T/Tc → 0−. This also allows us to determine the respective scaling regimes. Consistent
with the observation above that they should be even smaller as the already small scaling regime
in O(N)-models we find scaling for

0< 1− T/Tc ≲ 2 10−1 . (8.14)

Moreover, a scaling fit with (8.13) in the regime (8.14) allows us to determine Tc as well as
the prefactor ccr.

We see from Table 8.3, that the two-flavor critical temperature agrees well with the large-N f
limit with four degrees of freedom. This is expected from the theoretical analysis and our results
on the asymptotics in Section 8.2.1. This good agreement extends to the full temperature
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• At high densities the suppression of the quark-contribution creates positive meson masses
m2
π,k(ρ) and determines the value of m2

π(ρ0) in the symmetric phase (compare to Fig-
ure 8.4b). The quark contribution dominates initially, but due to the constant Yukawa
coupling it is quickly suppressed with k5, decreasing the effect of the suppression at lower
densities.

• For field values with positive meson masses m2
π,k(ρ) the meson loop in the flow is

suppressed with k5. In turn, for negative meson masses the meson loop is suppressed
with k4. Additionally the flow increases with decreasing values of m2

π,k, which is closely
linked to the restoration of convexity. The mesonic flow contribution is reminiscent of the
spreading of waves in hydrodynamics, where its value corresponds to the wave velocity:
if we consider the solution m2

π(ρ) as a wave packet, it flows with the RG-time in the
direction of smaller field values with a ρ-dependent propagation velocity.

The interplay of both effects leads to the creation of shocks and a first order phase transition
at low temperatures. The increased propagation speed of negative modes is blocked by the
slowed propagation of positive modes. The shock travels towards smaller field values during the
RG-time evolution, but eventually freezes when the shock amplitude is too high. An illustration
of this process can be found in Appendix C.2.

Naturally, the occurrence of shock development depends on the choice of initial conditions,
specifically those that trigger stronger dynamics of the system, for a respective discussion in
the O(1)-model see [65]. With physical initial conditions we find shock development in the
large-N f limit with 3 DoF, whereas the dynamics for 4 DoFs are not strong enough to generate
a shock at finite temperature T > 10 MeV. This is an important observation: we have used the
same initial conditions for all models, fixed within the two-flavor case. As discussed before,
the two models in the large-N f limit only differ by a rescaling of the fields and parameters.
Accordingly, they can be interpreted as the same model with different initial conditions, as we
do not apply any rescaling to the initial condition. However, these changes are marginal, as
can be seen from the small variation of the pion decay constants and σ-masses in the vacuum,
see Table 8.2. In conclusion the physical case is very close to the situation where shocks may
form during the RG-time evolution. Whether or not this also occurs in QCD requires further
investigation:

(i) The embedding of the present model as part of the matter sector will lead to additional
driving forces in the flow. This may be mimicked with a T,µ-dependent change of the
initial conditions here. naturally these changes can go either way, they may support the
shock development or soften it.

(ii) The additional diffusion terms in the finite-N f case structurally soften the RG-time
evolution and remove any shock development from the pion mass m2

π = ∂ρV . However,
an O(N) model study shows that shock development may be transported to higher
derivatives Appendix C.2. Then, the shock appears in the mass of the sigma meson
m2
σ = ∂ρV + 2ρ∂ 2

ρ V .

The resolution of these aspects is crucial for an access to the QCD phase boundary at large
chemical potential and low temperatures. Especially the observation that shock development is
strongly connected to initial conditions, recall the 3 DoF and 4DoF large-N f comparison, hints
at the importance of (i).
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of the phase boundary.
In this limit we found shock-development and propagation in the order parameter potential

in the vicinity of the first order regime at high chemical potential. Since the QM model is an
important ingredient to a functional description of QCD matter even low densities, we cannot
exclude the occurrence of shocks in QCD. Hence it is essential to use numerical methods which
are adapted to shock development in a quantitative study of the QCD phase structure, see
Chapter 9.

Furthermore, we investigated the importance of higher orders of quark mesonic scatterings.
We found that they give already sizeable contributions in the vicinity of the second order regime
and cannot be neglected in the computation of observables.

However, already for smaller ratios µq/T close to the crossover line we have to also improve
the current approximation of the matter sector of QCD. This follows already from [51, 64].
The results there indicate the potential relevance of non-trivial meson dispersions as well as
the diquark channel at larger chemical potentials, µq/T ≳ 4/3. Moreover, in the vicinity of a
potential critical end point we also have to take into account the density channel, that mixed
with the critical σ-mode. This is work in progress and we hope to report on it in the near
future.



CHAPTER 9

Towards quantitative precision in QCD

This chapter is taken from [9]. It is a first application of the technical developments and insights
of Chapter 5 and Chapter 8 to a full computation in QCD.

In the past two decades, functional QCD has been established as a versatile approach for
the description of QCD. Its particular strength is its universal applicability to all research areas
of QCD, ranging from first principle studies of the hadron spectrum over scattering processes
and decays to the phase structure of QCD at finite temperature and density as well as its
non-equilibrium dynamics. This universal applicability is rooted in its diagrammatic, modular
structure. As an analytic method, it does not suffer from the sign problems on the lattice, which
are present for the description of QCD at finite density, as well as real-time processes. This
advantage is paid for with an intricate systematic error control present in all diagrammatic
approaches for strongly correlated systems. The most successful and most used systematic
expansion scheme to date is a combination of the vertex expansion and the derivative expansion,
recall Section 3.2.2. In the vertex expansion, QCD scattering processes are expanded in the
number of single scatterings, including the full momentum dependent distribution functions
of the respective scattering process. In the derivative expansion part, all scattering orders are
taken into account, but their momentum distribution is expanded in powers of momenta. In
the fRG approach this scheme is sustained by the fact, that the theory is solved by integrating
out scattering events momentum-shell by momentum-shell, and momenta can be measured in
the respective infrared cutoff k, the expansion being one in p2/k2.

Both expansion schemes come with their own systematics, which has been tested in a
plethora of different models with intricate dynamics, covering that present in QCD. Moreover,
the combination allows for an almost full scan of the convergence properties.

In the present work we make progress towards the completion of the derivative expansion part
of this combined scheme. Analogously to Chapter 8, we take the full meson field-dependence
of all considered vertices into account using Discontinuous Galerkin methods (DG methods). In
contrast, the momentum dependence is limited to that required for semi-quantitative accuracy.
This was tested and proven in a comparison of functional QCD with full momentum dependences,
[44,47,48], and functional QCD with an emphasis on meson field dependences [42,43,45,51,
59,102,117].
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In this first implementation within the Discontinuous Galerkin framework, recall Chapter 5,
we implement the vertices analogously to the local density approximation of the wave function,
i.e. we neglect the respective mesonic field derivatives. This approximation will be lifted in
a subsequent work. In the following we use this local density approximation to obtain an
estimate on the importance of higher (quark-meson) scattering orders in a full QCD setting.
This is benchmarked with a computation which only considers simple scatterings, i.e. uses
constant couplings, to emphasise quantitative changes.

In Section 9.1 we introduce the derivative expansion part of this combined scheme and
discuss the relevant approximations and quantities. The model and derivations of the flows are
based on [51]. Hence, we refrain from giving a detailed derivation and briefly introduce the
relevant definitions and quantities. We proceed to discuss the novelties of our field dependent
implementation with DG methods in Section 9.2 and present results taking higher quark-
mesonic scattering orders into account. This is benchmarked with a computation at constant
couplings. Finally we close in Section 9.3 with a brief summary and a discussion of the next
steps towards a full quantitative description of the QCD phase structure.

9.1. A functional description of QCD

The classical action of QCD was introduced in (2.20), in terms of the gluon field A, the ghost
fields c̄, c and 6 species of quarks q̄, q with Nc = 3 color charges. This was followed by a
discussion in Section 2.3.2, where we found that the gluonic dynamics decouple at low energies
and the emergence of composite particles, created by resonances of the four-quark interaction,
become the relevant dynamic degrees of freedom.

We identified the scalar-pseudoscalar four-quark scattering, (2.34), as the dominating process.
Its resonance corresponds to the creation of mesons, and consequently the breaking of the
(approximate) chiral symmetry of the two light quark flavors. This scattering was found to
be the dominant and decisive process for chiral symmetry breaking throughout the majority
of temperatures T and baryonic chemical potential µB = 3µq until approximately µB/T ≲ 6.
Hence, for a quantitative investigation of the chiral phase structure within this region, we need
to combine the low energy dynamics of the lightest quark flavors, which we previously studied
in Chapter 8, with the gluonic interactions. In the present setting we consider the superfield Φ
consisting of

Φ=
�

Φ f ,φ
�

, Φ f = (A, c, c̄, q, q̄) , φ = (σ,π) , (9.1)

where the Φ f contains the fundamental fields and φ is the scalar-pseudoscalar mesonic field.
Its introduction is done by dynamical hadronisation and follows along the lines of (2.35). The
current approximation considers the N f = 2 flavor case, which describes (approximate) chiral
symmetry breaking for the two lightest quark flavors. As a next step towards quantitative
precision, future work will consider a N f = 2+ 1 study, where chiral symmetry is investigated
for the light quarks u and d (i.e. a SU(2) flavor symmetry) and the heavier strange quark is only
considered in the flow, but not for the symmetry investigations and formation of condensates.
Since the gluons decouple from the low energy dynamics, we can make use of quantitative
vacuum QCD results for the gluon and ghost propagators [44], which are used as an input to
set the stage for the dynamics in the low energy regime.
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Finally, the Euclidean scale dependent effective action of QCD is approximated by

Γk =

∫︂

x

¦1
4

F a
µνF a

µν +
1

2ζ

�

∂µAa
µ

�2
+

1
2

∫︂

p
Aa
µ(−p)
�

Γ
(2)ab
AAµν (p)− ZAΠ

⊥
µνδ

abp2
�

Ab
ν(p)

+Zc

�

∂µ c̄a
�

Dab
µ cb + q̄Zq

�

γµDµ − γ0µ̂q

�

q−λq(ρ)
�

�

q̄τ0q
�2
+ (q̄τq)2
�

+h(ρ)q̄
�

τ0σ+ τ ·π
�

q+
1
2

Zφ
�

∂µφ
�2
+ V (ρ)− cσσ
©

. (9.2)

With the integration
∫︁

x =
∫︁ 1/T

0 d x0

∫︁

d3 x , where T is the temperature and µ̂q the finite (quark)
density, see also Appendix B.1. The ghost and gluon dynamics are computed in Landau gauge.
They correspond to the first four terms on the left-hand side in (9.2) and contain the field
strength Fµν, a gauge fixing term, the ghost and gluon two-point functions and the respective
dressing functions Zc and ZA. They are purely input in the present work and are part of the
vertex expansion part of the combined scheme. Their adaption to the current setting follows
along the lines of [45]. This setting was further verified in [51], which already provided results
for vacuum masses in agreement with [44].

The last five terms in (9.2) introduce the mesons to the effective action. In the two flavor
case we have τ = 1/2(1, iγ5σ). cσ ̸= 0 is an explicit chiral symmetry breaking term and
corresponds to a finite current quark mass and physical pion masses, recall Section 2.3.2. The
derivative expansion translates to a field dependence of the effective mesonic potential V and

the couplings on the mesonic fields. It is given in terms of the chiral invariant ρ = (σ+π)2
2 ,

following the argumentation in Section 2.3.2. We distinguish between the massive-mode, the
σ-meson and the pseudo-Goldstone bosons, the pions π. In the current approximation, all
couplings to the quarks, i.e. the Yukawa coupling h(ρ), the four-quark coupling λq(ρ) and the
quark-gluon coupling gq̄Aq(ρ) have this field dependency within a local density approximation,
which neglects higher scattering orders of the mesons in the diagrams. This is commented
on in the following. Lastly, we consider the wave function renormalisations of quarks and
mesons Zq and Zφ , which are evaluated at a constant mesonic field ρ0 and are outfitted with
an appropriate momentum dependency specified below (9.12) and (9.13) respectively. In this
approximation we assume ∂ρZφ(ρ) = 0 and hence Zπ = Zσ = Zφ. The higher derivatives of
the wave function renormalisation account for momentum dependent mesonic-self scatterings.
We drop them in this calculation, since these momentum dependent scatterings are heavily
suppressed at low energy scales and at high energies the mesonic dynamics do not factor in at
all.

In the following we comment on the derivation flows in the matter sector and the implications
of the gluonic input within this truncation of the effective action.

9.1.1. Quarks, mesons and dynamical hadronisation

For the derivation of RG-flows in the matter sector, we make use of the generalised flow equation
(3.33). For completeness we state the generalised flow in terms of the super-field Φ and the
RG-transformation φ̇ of the emergent mesonic field φ,

∂tΓk[Φ] +

∫︂

φ̇

�

δΓk[Φ]
δφi

+ cσδiσ

�

=
1
2

Tr [Gk[Φ]∂tRk] + Tr

�

GφΦ j
[Φ]

δφ̇

δΦ j
Rφ

�

, (9.3)

where t = ln(Λ/k) is the RG-time, Gk the propagator and Rk the standard, block-diagonal
regulator matrix, see Appendix B.7.1 for the regulator choice in this work. Equation (9.3) is
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completely cσ independent, which is ensured by the subtraction in the second term on the
left-hand side.

We use the generalised RG-transformations φ̇ in (9.3) to implement dynamical hadronisation,
analogously to [51,144]. In contrast to the application to purely scalar theories in Chapter 7,
the dynamical hadronisation relation for φ̇ is given in terms of the φ and the condensate q̄τq,
which has the same transformation properties,

φ̇ = Ȧkq̄τq+ Ḃkφ . (9.4)

The hadronisation functions Ȧk and Ḃk can, in principle, be chosen freely. Here, they are
used to absorb the flow of the quark four-point λq and the wave function renormalisation Zφ
respectively. In this way, momentum channel of the scalar-pseudoscalar four-quark vertex is
captured entirely by the momentum dependence of the emergent effective field φ. This is done
using constraints on the flow as given in (3.36) and briefly outlined below in (9.21).

Ḃk is used to absorb the wave function renormalisation Zφ,k, at an average momentum
p2 ≈ k2, into the field via the anomalous dimension ηφ,k, which is derived at a later point in
(9.13). It follows

Ḃk = −
1
2
ηφ,k . (9.5)

This effectively implements Zφ ≡ 1, for more detail see Section 7.1 and in particular (7.18) for
wave function renormalisations without field dependence.

With the definition of the effective field φ we are finally able to specify the propagator matrix
Gk in (9.3), which is given by

Gk[Φ] =
�

Γ
(2)
k [Φ] + Rk

�−1
, GΦiΦ j

= (Gk[Φ])ΦiΦ j
. (9.6)

The two point functions Γ (2)k for the quarks and mesons are derived from the full effective
action (9.2). They are evaluated at constant field configuration φ = (

p

2ρ,0) = (σ,0) and
q̄ = q = 0, along the lines of Section 5.1, and are given by

Γ
(2)
q̄q [φ](p) = Zq(p)

�

/p̃+ h̄(ρ)σ
�

,

Γ (2)πiπ j
[φ](p) = δi j

�

p2 + ∂ρV (ρ)
�

Γ (2)σσ[φ](p) = p2 + ∂ρV (ρ) + 2ρ∂ 2
ρ V (ρ) , (9.7)

with the four momentum that already contains the density p̃ = (p0+ iµ,p). We note that due to
(9.5), Zφ is completely absorbed into the field φ and does not appear in the two-point function
of the mesons any more. We have also introduced the renormalised Yukawa coupling

h̄(ρ) =
h(ρ)
Zq

, (9.8)

where we have already used Zφ ≡ 1. The current setup includes the full field dependency of
the mesonic potential V (ρ). This allows to take all orders of momentum independent mesonic
self-scatterings into account. Specific vertices can be computed from the derivatives of the
potential. For example, the mesonic masses are given by

m2
π = ∂ρV (ρ) , and m2

σ = ∂ρV (ρ) + 2ρ∂ 2
ρ V (ρ) . (9.9)

Equation (9.9) already indicates renormalised masses, due to the redefinition of fields (9.4).
However, the definition of physical mesonic masses (pole masses) requires an closer look at the
momentum dependence of the anomalous dimension (9.5), which follows suit.
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Wave function renormalisations and anomalous dimensions

The wave function renormalisations, or their absorption into fields (9.5), are computed from
their anomalous dimensions, which is usually defined by

ηΦi ,k(ρ0, p) = −
∂t ZΦi ,k(ρ0, p)

ZΦi ,k(ρ0, p)
, (9.10)

for any super-field component Φi or, in case of an absorption into flowing fields, recall Sec-
tion 7.1.1. Generally the ηΦi ,k carry a RG-scale dependence, as well as a momentum and field
dependence. The latter is dropped in the current setting: the quality of this approximation was
verified in an O(N) model in Section 7.1. Here, the wave function renormalisation is evaluated
on the scale dependent solution to the equations of motion ρ0,k, which is given by

�

σ∂ρV (ρ)− cσ,k

�

|ρ=ρ0,k
= 0 , (9.11a)

where the RG-scale dependence of the explicit symmetry breaking term is given by

∂t cσ,k =
ηφ,k

2
cσ,k , (9.11b)

and the anomalous dimension ηφ,k is defined in (9.13).
We proceed by discussing the momentum dependences of the anomalous dimensions. The

quark anomalous dimension only carries a small momentum dependence [19,44,48,359] and
we use ηq,k ≈ ηq,k(p0,0), where p0 is a small, non-vanishing frequency accounting for the
lowest fermionic Matsubara mode, see [51] Appendix J. From this we can project onto the flow
of Zq,k via

ηq,k(p0,0) =
1

4Zq,k
Re
�

i
∂

∂ p2
trγ ·p∂tΓ

(2)
q̄q,k[φ](p)
�

p=0
. (9.12)

The full expression of the flow is also given in [51] Appendix J.
Next, we consider the anomalous dimension of the mesons: its full momentum dependence

is given by

ηφ,k(0,p) = −
δi j

3Zφ,k

∂tΓ
(2)
πiπ j
[φ](0,p)− ∂tΓ

(2)
πiπ j
[φ](0,0)

p2
. (9.13)

During the flow, the full momentum dependence of the mesonic wave function renormalisation is
approximated with the averaged momentum dependence p2 ≈ k2. This is a good approximation
during the flow with our current choice of a flat 3d regulator, see Appendix B.7.1.

However, for the evaluation of physical meson masses, we need to introduce a correction
∆Zφ , which accounts for the momentum dependence of the anomalous dimension at the pole of
the propagator. The physical pole mass is situated on the real time axis, hence in an Euclidean
setting it is defined by an extension to the complex plane

Γ (2)πiπi
[φ](p̃0 = i mπ,pol,0) = 0 . (9.14)

The current truncation scheme is not equipped for a continuation of momentum dependencies
to the complex plane. Hence, we use p0 = 0 as an approximation, since the momentum
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dependence of the anomalous dimension is found to be very small at low momentum scales
|p|2 ≲ m2

π,pol, [333]. The corrective factor is then obtained from an integration of

∂t∆Zφ = ηφ,k(0,0)−∆Zφηφ,k(0,p)|p2≈k2 . (9.15)

The explicit expressions for ηφ,k(0,0) and ηφ,k(0,p) are again indicated in [51] Appendix I.
Using (9.15), the mesonic pole masses are evaluated on the equations of motion (9.11) and

are given by

mπ,pol ≈

⌜

⃓

⎷

∂ρV (ρ)

∆Zφ

|︁

|︁

|︁

|︁

ρ=ρ0

, and mσ,pol ≈

⌜

⃓

⎷

∂ρV (ρ) + 2ρ∂ 2
ρ V (ρ)

∆Zφ

|︁

|︁

|︁

|︁

ρ=ρ0

. (9.16)

Yukawa interaction

The constituent quark mass is directly linked to the mesonic field σ, which couples to the
quarks though the Yukawa coupling. In our truncation, its definition can be read off (9.7) and
is given by

mq =
p

2ρh̄(ρ) = σh̄(ρ) . (9.17)

Consequently, the flow of the Yukawa coupling is derived from the quark two-point function,
analogously to (8.7). For a detailed derivation and the full expressions for the flows see [51].
Here we only state the essential steps in the derivation within the current approximation and
discuss the dynamical hadronisation process in the context of (3.36).

The generalised flow (9.3) is projected onto the scalar part q̄τ0q, which corresponds to the
renormalised quark mass, and obtain

∂t h̄ −ηq,kh̄+ h̄Ḃk +m2
πǠk =

1
4NcN f Zq

1
σ

tr
�

∂tΓ
(2)
q̄q

�

. (9.18)

In contrast to (8.7) the flow now also contains the (renormalised and dimensionful) hadroni-
sation function Ǡk and Ḃ. In contrast to (8.7) the flow on the right-hand side of (9.18) now
contains loops with mesonic and gluonic interactions. Furthermore, the field dependency is
evaluated in a local density approximation, hence we use ∂ρh̄ = 0 in the derivation of the
equations. The flow of the quark-two point function is indicated in [51] Appendix K.

Similarly, we deduce the flow for the four-quark coupling, by projecting onto the quark-
bilinear (q̄τq)(q̄τq),

∂t λ̄q(ρ)− 2
�

1+ηq

�

λ̄q(ρ)− h̄Ǡk = Flow
(4)
(q̄τq)(q̄τq) . (9.19)

The renormalised and dimensionless quantities are given by

λ̄q =
λqk2

Z2
q

, Ǡk =
Z1/2
φ

Zq
Ȧkk2 , and Flow

(4)
(q̄τq)(q̄τq) =

k2

Z2
q

Flow(4)(q̄τq)(q̄τq) , (9.20)

and the projected flow can be found in [51] Appendix L. We recall the flowing fields Section 7.1,
where we chose φ̇ such that the flow of the wave function is cancelled out. Now we make a
similarly choice for Ǡ, i.e. we chose it such, that λq ≡ 0 at all RG-scales. It follows that

Ǡ= −
1

h̄
Flow

(4)
(q̄τq)(q̄τq) , (9.21)

which effectively absorbs the momentum dependence of the quark-bilinear (q̄τq)(q̄τq) into
kinetic term (∂µφ)2 of the emergent field φ.
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9.1.2. Gluonic interactions

For the purely gluonic interactions we resort to the efficient expansion scheme that has been set-
up and used in [51,117]. At its heart lies the advantageous flexibility of functional approaches,
that one can use external results as input. This input can either be obtained from other functional
computations or from lattice results. In short, one can outsource part of the computation without
loss of reliability. This external input comes with its own systematic and, in the case of lattice
results, with an additional statistical error. Consequently, the statistical and systematic errors of
such a mixed approach then depend on the quantitative precision and statistical and systematic
errors of the external input as well as the intrinsic systematic error of the given expansion order
of the fRG computation. This scheme has been extended, tested and used in Dyson-Schwinger
equations. In [56,57,100,227], for related earlier work see also [360].

The most straightforward use of external input is to simply substitute correlation functions in
the loops on the right hand side of functional relations by that obtained from other computations.
In the past decades this has often been done with low order lattice correlation functions, mostly
in Yang-Mills theory in the vacuum. Evidently, if the systematic and statistical error of the input
is significantly smaller than that of the approximation level used in the computation at hand,
one does not have to consider it in the error analysis.

Quark-gluon interactions

The flow equation of the coupling gq̄Aq of the classical tensor structure of the quark-gluon
vertex shows a direct ρ-dependence via that of the quark-meson Yukawa coupling and quark
mass function. We will take into account the meson field dependences in all couplings, except
for the Yukawa coupling and the purely mesonic couplings, in the analogue of the local density
approximation: while all couplings such as gq̄Aq are taken to be ρ-dependent we shall neglect
all derivatives, ρ∂ρ gq̄Aq ≈ 0. This approximation certainly holds true for mildly varying ρ-
dependences which is present for most ρ and k. Furthermore, even for ρ∂ρ gq̄Aq ̸= 0 the
respective diagrams are sub-leading or negligible for all cutoff scales and ρ.

It has been discussed in detail in [51], that the current approximation allows for semi-
quantitative accuracy. Key to full quantitative precision is the inclusion of the relevant tensor
structures of the quark-gluon vertex, for a detailed analysis see the fRG and DSE-analyses
in [48,227]. In short, the quark-gluon vertex accommodates three relevant tensor structures,
the chirally symmetric classical one and a further chirally symmetric one as well as one that
breaks chiral symmetry and is only present for a non-vanishing value of the quark mass function.
Importantly, in the fRG approach the dynamics of the non-classical tensor structures is partially
taken into account via the four-quark interactions, and the dominant contribution of the latter is
comprised in the scalar-pseudo-scalar channel. This entails that dropping the direct contribution
from the non-classical tensor structure as well as further four-quark interaction channels is
leading to a small drop in the strength of chiral symmetry breaking. In the present work
we compensate this with a minor infrared enhancement by a few precent of the quark-gluon
coupling strength αAqq̄ in the deep infrared.

This approach follows those used in [45,51] and consists of a phenomenological infrared
enhancement of the classical tensor structure. The flow is enhanced by

∂t ḡ q̄Aq(ρ̄)→ ḡ q̄Aq(ρ̄)∂tζa,b(k)

+ζa,b(k)∂t ḡ q̄Aq(ρ̄) , (9.22a)
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where the infrared enhancing function is given by

ζa,b(k) = 1+ a
(k/b)2

exp[(k/b)2]− 1
. (9.22b)

and the enhancement factors a and b are fitted to suit the constituent quark mass. They depend
on the truncation used and will be indicated with the result. The strength of the enhancement,
encoded in a, lies in the percent range.

In contradistinction, in the DSE-approach the direct contributions to chiral symmetry breaking
from the non-classical parts of the quark-gluon vertex dominate by far, and dropping them
leads to a qualitative drop of the strength of chiral symmetry breaking or even the lack thereof.
Compensating these missing dynamics by an enhancement of the couplings strength gq̄Aq of
the classical tensor structure requires enhancement factors larger than two. Note however,
that including the two most relevant tensor structures in the computation already provides full
quantitative results both in the vacuum and at finite temperature and density, see [57,100].

This qualitative difference between DSE and fRG approaches in the given approximations
originates in the very different resummation schemes both offer in rather similar approximations
to the effective action. Indeed, this fact offers a further systematic error control: if the results
within theses two functional approaches agree quantitatively, this is a highly non-trivial self-
consistency check.

9.2. Systematic errors in QCD computations

The current work has two aims, necessitating differing approximations which are easily imple-
mented in the current setting.

Firstly, we give an estimate for the constituent quark mass in vacuum, using an improved
approximation of the effective action (5.1), by taking higher quark-mesonic scattering orders
into account in a finite density approximation, recall (9.18). Secondly, we provide a numerical
benchmark for computations which only consider the lowest quark-mesonic scattering order.
This benchmark also provides an error estimate for state of the art computations of the QCD
phase structure [51].

These two implementations are discussed in Section 9.2.1 and we present results for the
pole masses in Section 9.2.2 and for the field dependent couplings in Section 9.2.3. Currently,
we only present results in the broken phase, at low temperatures T = 1MeV and vanishing
density µ̂q = 0. A study of the full phase structure is deferred to future work.

9.2.1. Implementation

In the previous section we outlined our current truncation, with an emphasis on notation and
the relevant definitions. Firstly, Section 9.1.1 introduced flows in the matter sector, i.e. the
mesonic masses, the Yukawa coupling to the quarks and their anomalous dimensions. Secondly
Section 9.1.2 gave a brief outline of the gluonic-overhead. The gluon dynamics are completely
input, with the exception of the quark-gluon vertex gq̄Aq, whose field dependence plays a
sub-leading, but important role for quantitative accuracy. To summarise, we give an overview
of all quantities within the current truncation and discuss their numerical implementation.
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Implementation of the mesonic potential V (ρ)

The mesonic potential V (ρ) is used to derive the mesonic masses, see (9.9). Its full field
dependence is implemented using the Discontinuous Galerkin (DG) framework put forward
in Chapter 5, more precisely the local DG method outlined in Appendix A.1.2. By computing
the full field dependence, the current truncation takes all higher purely mesonic scattering
orders into account. This is of great importance for quantitative precision in the chiral limit and
later on in even the qualitative access to the phase structure at high densities. In this regime,
non-analyticities appear in the RG-flow of the potential, as well as in the potential itself at
k→ 0, see e.g. [1] or Chapter 8 for an investigation in the quark-meson model. Thus higher
derivatives of the potential - which correspond to higher mesonic scattering orders - cannot be
neglected. Following the reasoning of Section 5.1.2, the RG-flow is computed in terms of its
first derivative u= m2

π = ∂ρV (ρ). To wit

∂tu= ∂ρ

�

k4

4π2

�

(N2
f − 1)l(B,4)

0 (m̄2
π,k,ηφ,k; T ) + l(B,4)

0 (m̄2
σ,k,ηφ,k; T )

−4NcN f l(F,4)
0 (m̄2

q,k,ηq,k; T,µq)
�

+ηφ,kρu
�

. (9.23)

where the threshold-functions l(B,4)
0 and l(F,4)

0 perform the momentum integration and Matsubara
summation and are given by (B.125) and (B.126)in Appendix B.7.2. The dimensionless masses
are given by m̄i = mi/k.

Implementation: Field dependent couplings

To make a quantitative statement about the importance of higher quark-mesonic scattering
orders in a full QCD setting we consider two different implementations of the Yukawa coupling
h and the quark-gluon vertex gq̄Aq.

(i) Field dependent couplings h(ρ), gq̄Aq(ρ) in a finite density approximation, i.e. ∂ρh≈
0 and ∂ρ gq̄Aq ≈ 0: This approximation allows for different coupling strengths at different
mesonic field values, but does not explicitly take higher scattering processes (diagrams)
into account in the flows. The finite density approximation allows to implement a field
dependence without adding instabilities by introducing a second partial differential equa-
tion. We implement the field dependence by using a Discontinuous Galerkin discretisation,
consisting only of a source term, recall (5.10).

(ii) Couplings constant in the field ρ: Couplings are evaluated on the solution to the
physical equations of motion (9.11), analogously to the anomalous dimensions. This
implementation is identical to state of the art results of the QCD phase structure, see [51],
and is numerically very efficient and stable.

Both approximations are contrasted by the study of the full field dependence of the Yukawa
coupling within the low energy effective model in Section 9.1.1.

Inarguably, the main, novel result in this work is obtained from (i), but we emphasise again,
that (ii) provides an important benchmark to existing results. Furthermore (ii) may be a
desired approximation for computations considering multiple condensates, such as diquarks
and vector-mesons.
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Benchmark results

Table 9.1 gives results for the mesonic and quark masses in both the chiral limit and the physical
case for the benchmark computation (ii) at constant couplings. We use the values of the tuning
parameters from [51], to obtain an estimate on the improvement obtained by using a fully
field dependent potential V (ρ) instead of a Taylor expansion about the equations of motion.
The physical pion mass is nearly identical at mπ = 136 MeV, whereas the quark mass is slightly
increased to mq = 372 MeV. The biggest deviation is in an decreased mass of the sigma meson,
which is at mσ = 490MeV in a fully field dependent setting. This is unsurprising, because
the full field dependent potential is expected to be more precise in the computation of higher
derivatives. In conclusion, this analysis supports the Taylor expansion scheme of the potential
in vacuum. However, it also calls for a more cautious investigation in regimes of the phase
structure where the sigma mode becomes more important, i.e. in the vicinity of the conjectured
critical point.

An additional computation in the chiral limit, i.e. cσ = 0 yields the expected decrease in
masses. In such a scenario, the pion is a real Goldstone boson with mπ = 0MeV, the quark
mass mq = 364 MeV as well as a sigma meson at mσ = 392 MeV. The study of the chiral limit is
especially interesting when investigating scaling properties in critical regions and in the context
of chiral expansion schemes of the magnetic equation of state [57].

Full truncation

We now consider results for field dependent couplings, outlined in (i). We tune the initial
parameters to obtain physical masses [78]. We increase the explicit symmetry breaking term to
cσ = 3.7GeV3 and increase the strength of the IR-enhancement of the quark-gluon coupling
to a = 0.012. We discuss the IR-enhancement at a later point in connection with the field
dependent couplings. With this we obtain the physical pion mass mπ = 137MeV, sigma mass
mσ = 499 MeV, as well as the quark mass mq = 365 MeV. In the chiral limit we obtain a lowered
quark mass mq = 347 MeV as well as a bigger sigma meson at mσ = 404 MeV in comparison to
the evaluation at constant couplings. For a condensed summary of the results see Table 9.2-

The most significant difference between calculations with constant and fully field dependent
couplings is the shift of the onset-scale of chiral symmetry breaking kχ . This is visualised for
both the chiral limit and physical observables in Figure 9.1. An earlier onset of chiral symmetry
breaking in the flow will have a significant effect on the location of the crossover transition at
high temperatures and we suspect to report on an increase of the critical temperature Tc in
future publications.

Observable chiral limit physical EoM Ref. [51] Parameter in ΓΛ

mπ,0 [MeV] 0 136.0 137 cσ = 3.6 GeV3

mσ,0 [MeV] 392.0 490.0 531 -

mq [MeV] 364.4 371.9 367 a = 0.008 b = 2GeV

Table 9.1.: IR-Observables and adjustable parameters for the computation with constant couplings.
Parameters in ΓΛ are used to adjust the pole masses (9.16) and (9.17) on the physical
equations of motion (9.11). The quark mass is adjusted using an enhancement of the quark-
gluon vertex which is indicated in Equation (9.22a). The results correspond to a calculation
in a comparable truncation from [51].
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9.3. Conclusion and outlook

In this chapter, we investigated the dynamics of chiral symmetry breaking in QCD in at low
temperatures and densities. To this aim we used input data for the gluonic interactions from [44],
which were used to compute an order parameter potential in terms of a quark-condensate,
formed by a resonance in the scalar-pseudoscalar four-quark interaction. From this effective
potential we were able to obtain quantitative masses for the mesons and the current quark mass
of the light quarks, see Table 9.2. The field dependence of the order parameter potential was
computed using the Discontinuous Galerkin (DG) framework put forward in Chapter 5. Using
the DG methods, we were able to reproduce the vacuum results from [51] with an improved
truncation scheme.

The result for the current quark mass in vacuum was adjusted by the introduction of an
IR-enhancement of the quark-gluon vertex, to match the Particle data group [78]. This IR-
enhancement accounts for non-classical tensor structures of the quark-gluon vertex, which
were neglected in the current approximation. We plan to include them in future applications
and thereby remove the artificial IR-enhancement.

Furthermore, we considered the quantitative error caused by neglecting higher quark-mesonic
scattering orders, as investigated for the quark-meson model in Chapter 8. In the current work
we make use of a local density approximation for the couplings and find significant quantitative
deviations, most notably a shift in the onset scale for chiral symmetry breaking in comparison
to a computation with constant couplings: In the presence of field dependent couplings, onset
of chiral symmetry breaking occurs at an earlier RG-time in the vacuum, see Figure 9.1. A naive
extrapolation of this argument to the finite temperature transition at low densities, predicts
a higher critical temperature than the one computed in current functional state of the art
computations using constant couplings, see [51] or Figure 2.2.

The current work did not consider computations at finite temperature. To do so in a quanti-
tative way, it remains to include the temperature dependence of the gluonic dynamics, as well
as the interactions with the strange quark, see [51].

The introduction of Discontinuous Galerkin methods was an important step towards the
computation of the QCD phase structure at finite densities. However, there is still a long
path ahead: First and foremost, the current truncation needs to be improved, since the scalar-
pseudoscalar interaction is no longer the dominant four-quark interaction at high densities. We
have discussed this issue in Section 2.3. We aim to include the computation of order parameter
potentials in term of diquark and vector-meson condensates.





CHAPTER 10

Summary, conclusion and outlook

In this work, we investigated nuclear matter and other possible phases of quark-matter. This
was motivated by the interpretation of heavy ion collisions, the physics of the early universe or
neutron stars. To this end, various approaches towards a systematic, quantitative computation of
the underlying first-principle theory Quantum Chromodynamics (QCD) and its phase structure
were explored. In doing so, we have made many methodological developments within the
functional renormalisation group (fRG) which also find application in a broader quantum field
theory context.

In Chapter 2, we gave a brief introduction to QCD and outlined its distinctive features. We
considered the perturbative nature of QCD at high energies, linked to asymptotic freedom.
This stands in contrast to the low energy regime, in which the strong interaction of quarks and
gluons makes for an interesting phase structure across different temperatures and densities.
The phase structure is determined by the confinement/deconfinement transition, as well as
the process of chiral symmetry breaking, both of which we set out to investigate throughout
this thesis. For this purpose, we proceeded to discuss the range of validity of common low
energy effective theories for the four-quark scattering processes. Importantly, we introduced
an effective description of the dynamics in the matter sector of QCD in terms of a scalar O(4)
model. This also explains our general interest in the O(N) model for QCD computations.

The functional renormalisation group was put forward as our method of choice for non-
perturbative computations in the low energy regime of QCD. The general idea behind a
functional formulation in terms of the effective action Γ [Φ] was outlined in Chapter 3, together
with the commonly used functional flows, the Wetterich and Polchinski flows. We commented
on appropriate expansion schemes of the effective action in QCD, also in the context of an
optimisation of the RG-flow. We proceeded with a discussion of general RG reparametrisations in
terms of dynamical ’flowing’ fields in Section 3.3 and possible applications thereof to the process
of Goldstonisation, the improvement of expansion schemes and in the context of dynamical
hadronisation. Lastly, we considered the CS-flow as an important real-time application of
generalised RG-flows in Section 3.4.

A first computation was presented in Chapter 4, where we explored the dynamical emergence
of the Yang-Mills mass gap in terms of spontaneous symmetry breaking. We used the fRG to
compute an effective potential of a colourless gluon condensate. From this we obtained an
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estimate for the mass gap of mgap = 322(34)MeV, which compares very well to the lattice
estimate m(lattice)

gap = 0.3427(8)MeV from [192,194,234]. This estimate should be understood
as an incentive to further investigate this promising mechanism for mass (gap) generation
in Yang-Mills theory. It also highlights a very important feature of the fRG, which we have
continued to explore throughout this thesis: its modular structure, which allows to use external
results for gluonic correlation functions in the computation of an order parameter potential. In
this case, the order parameter was the expectation value of a gluon condensate which indicated
confinement.

We continued to explore the concept of order parameter potentials in Chapter 5, in the context
of scalar O(N) theories and spontaneous symmetry breaking. This chapter developed a rigorous
numerical approach, which was applied to investigate chiral symmetry breaking in Chapter 8
and Chapter 9. The derivative expansion was used to translate the renormalisation group flow
of an effective potential, in terms of the (locally constant) scalar field φ and RG-scale k, into the
language of fluid dynamics and partial differential equations (PDE). To solve the ensuing highly
non-linear PDEs, we introduced the Discontinuous Galerkin method (DGM) to discretise the
field dependence in φ and proceeded to investigate the creation of non-analyticities and shock
waves in the RG-flow of the effective potential. Their occurrence implies the importance of
higher scattering orders of the scalar field and emphasises the necessity of advanced numerical
discretisation schemes in the fRG. This applies not only to achieve quantitative accuracy but
already for qualitative aspects! For this reason, all results in the following chapters of the main
text, with the exception of Section 7.2, make use of DGMs. We also point out the wide range of
applicability of fluid dynamical methods in the context of derivative expansions in the fRG. The
introduction of DGMs in Chapter 5 is accompanied by Appendix A, which discusses technical
details, such as efficient (RG-)time-integration algorithms, and containes a guide to a freely
available implementation on github [12].

In Chapter 6 and Chapter 7 we discussed applications of generalised RG transformations to
O(N) theories. We have not applied them to the matter sector of QCD yet, but aspire to do so
in the future. These chapters contain novel technical developments, which can also be used
in a condensed matter, cosmology or beyond the standard model context, to name a few. In
Chapter 6 we set up functional flows for complex effective actions and compared results for
different formulations in terms of the Wilsonian effective action and the 1PI effective action. We
made use of generalised RG transformations to construct an RG-adapted flow which allowed
to compute the effective potential of an O(1) model in the presence of complex sources, for
example magnetisations. In this setting, we were able to locate Lee-Yang singularities in the
complex magnetisation plane and to investigate their scaling behaviour. We were also able to
precisely extrapolate the phase transition on the real axis from the location of the Lee-Yang
singularities in the complex plane and found a very large scaling regime in our study within
four dimensions. We hope to apply this procedure to the QCD phase structure in the future,
possibly for an extrapolation of the critical endpoint of QCD. Section 7.1 discusses an expansion
scheme of the effective action about its ground state and Section 7.2 an application of the
CS-flow to spectral functions.

The last two chapters focussed on the investigation of chiral symmetry breaking. We studied
the quark-meson phase structure in Chapter 8, using DGMs. We were able to precisely resolve
the competing order effects, which are decisive for the location of phase transition lines within
this low-energy effective theory of QCD. This study provides further proof of the relevance of
higher scattering orders in an investigation of the large-N f limit: We found shock development
in the first order regime at high densities, hinting at the relevance of higher mesonic scattering
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orders. Furthermore, this full implementation of quark-mesonic scatterings emphasised their
quantitative significance in the vicinity of phase transitions.

Lastly, the qualitative improvement by the DGMs was also applied to a full QCD computation
of the mesonic part of the matter sector in approximate vacuum. In Chapter 9, we provided
estimates for the mesonic masses and current quark mass of the light quarks and investigated
the importance of higher quark-mesonic scatterings in this context. Though technically our
estimates are in agreement with the known masses from e.g. the Particle Data group [78], the
computation still contains tuning parameters which are included in the truncation to compensate
for scattering processes that are not accounted for in the truncation yet. Nevertheless, this
tuned vacuum-framework can be applied to make predictions about the phase-structure, as
was done in [51].

The next tasks are obvious: to achieve quantitative precision and predictability, the QCD
setup from Chapter 2 needs to be upgraded with quantitative corrections provided by e.g. the
contributions of non-classical tensor structures of the quark-gluon vertex, which removes the
tuning parameter for the quark mass. Moving away from approximate vacuum, we hope to
use the modular structure of the fRG to extend the QCD setup beyond the mesonic part of the
matter sector at high densities, such as the formation of vector mesons, diquark-condensates
and baryons. The foundation for such an investigation has been laid in this thesis, by the
improvement of the derivative expansion scheme via the general RG transformations and by
an intensive development of the numerical method: DGMs, and fluid dynamical methods
in general, are well suited to solve higher dimensional PDEs, which are inevitable in the
computation of order parameter potentials of multiple condensates. With such a setup, we
are excited to gain insights on the connection between shock-development, first order phase
transitions and the formation of quark-matter at high densities in upcoming years.
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APPENDIX A

Details on Discontinuous Galerkin

In this chapter of the appendix, we outline some numerical details. Appendix A.1 focusses
on different DG methods or extensions of the ones presented in Chapter 5 that were used for
specific problems in other chapters. Appendix A.2 focusses different time-integration schemes
we have used in this work. Finally we give detailed instructions to a simplified version of our
numerical framework in Appendix A.3, at the example of the LDG implementation discussed in
the main text, accompanied by a code which is accessible in [12].

A.1. DG methods: Misc

A.1.1. Non-conservative product

This Appendix is taken from [1].

In this section the extension of direct DG-methods to non-conservative flow equations is set
up. To this end we consider a system of differential equations of the form,

∂tui + ∂x fi(u, x , t) + ai j(u, x , t)∂xu j = si(u, x , t) , (A.1)

where u = (u1, u2)T and i, j ∈ {1,2}. The si are source terms and fi conservative fluxes. In
(A.1) we also allow for non-conservative terms ai .

In the full quark-meson model the flux fi is additionally separated into a convective and
a diffusive contribution depending also on ∂xui. We note that the splitting into conservative
and non-conservative terms is not unique in these equations. Here, we need an additional
expression for ∂xui . We obtain this expression by taking another x derivative of the polynomial
basis functions ψp, compare (5.13).

The presence of the diffusion modifies the numerical flux significantly and is discussed in
Section 5.2.2. However, in the convection dominated regime, and in the absence of a disconti-
nuity, it is possible to neglect this diffusion numerical fluxes and formulate the Discontinuous
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Galerkin method for this equation as follows,
∫︂

Dk

�

(∂tui,h + ai,h∂ρui,h + si,h)ψp + fi,h∂xψp

�

d x = −
∫︂

∂ Dk

ψp

�

f ∗i n̂+D(u+i,h, u−i,h, n̂)
�

d x .

(A.2)

where ai,h, si,h and fi,h are computed form the field ui and their local approximation of the
derivative, no other numerical fluxes are introduced into the numerical scheme. The absence
of numerical fluxes for the extra derivative present in the equation at finite N f , corresponds
to the assumption of continuity of this field and the DG scheme reduces to a pseudo spectral
method. This approximation is acceptable, whenever the flow is rather smooth and no shock
or rarefaction wave are generated during the simulation. In turn, this scheme will fail in the
vicinity of a first order phase transition. There we expect shock-formation and propagation in
the flow equation. In conclusion, for the rest of the phase diagram the present approximation
can be considered as a sufficiently accurate solution of the flow equation due to the local high
order accuracy of the DG scheme.

The additional non-conservative flux across a boundary is given by D. The theory of non-
conservative fluxes was developed in [361,362] and is applied in the context of Finite Volume
and Discontinuous Galerkin schemes [271, 363–370]. To compute this quantity we need to
consider the general form of a flux across an interface. For this purpose we consider a path φi(s)
along the solution ui , with start and endpoint uL

i and uR
i respectively and the parameter s ∈ [0, 1].

The formal definition of the flux along this path for a non-conservative flux contribution ai∂ρu j
(see (A.1)) is then given by:

fi,nc =

∫︂ 1

0

ai(φi(s),φ j(s), s)∂sφ j(s)ds . (A.3)

We remark that in the non-conservative case the flux is dependent on the chosen path.
By choosing the right and left sides of a boundary uR = u+ and uL = u− we are able to

compute the flux from one cell to another. Similar to the numerical flux, D has to satisfy the
jump property for consistency,

D(u+, u−, n̂) +D(u+, u−,−n̂) =
∫︂ 1

0

a(φ(s))n̂
∂ φ

∂ s
ds ,

which implies D(u, u, n̂) = 0 when there is no jump.
This condition can be obtained by integrating the equation around a discontinuity. It gener-

alizes the so called Ranking Huginot Condition for non-conservative systems of equations. The
numerical fluxes are,

D(u+, u−, n̂) =
1
2

∫︂ 1

0

a(φ(s))n̂
∂ φ

∂ s
ds +

1
2

∫︂ 1

0

|a(φ(s))n̂|
∂ φ

∂ s
ds . (A.4)

|a(φ(s))n̂| is intended as the absolute value of the matrix namely |a| = U−1diag(|λ1|, · · · , |λN |)U ,
with λi the eigenvalue of the matrix. It is possible to prove that this choice of flux reduces to
the Lax-Friedrichs flux in the conservative case. If the dominant convection part of the equation
is given by the conservative flux this extra term can be neglected. The non-conservative flux
under this assumption can therefore be computed from

D(u+, u−, n̂) =
1
2

∫︂ 1

0

a(φ(s))n̂
∂ φ

∂ s
ds . (A.5)
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The last remaining degree of freedom are the boundary conditions for the outer boundary of
Ωh. In our case they are given by the in- /out-flowing flux, which is implemented by setting
u+i,h = u−i,h at the outer boundaries, effectively adding an imaginary additional cell. It follows
that the non-conservative flux is not fit for flux-boundary conditions, since the non-conservative
flux vanishes at the outer boundaries due to the jump property. Therefore the equations need
to be reformulated such that the boundary-conditions can be met using the conservative flux.
This is done in Appendix B.6.1.

A.1.2. An alternative LDG formulation

This Appendix is taken from [10].

In contrast and/or in addition to the LDG method presented in Section 5.2.2, this section
focuses on a LDG method using left- and right-sided derivatives as detailed in [371]. The
stability and correctness of the solution has been checked in [371] on the example of various
higher-order convection-diffusion equations. It is a variation of the standard LDG method put
forward in [372], which has already been successfully applied to the fRG in [5]. In contrast
to the standard LDG method, the current method is specifically designed to stabilize second
order derivatives and allows for the computation of large diffusive flows which may be highly
non-linear also in the derivatives. Furthermore, is allows for a more flexible structure of the
equations.

The main idea is to replace the higher-order object F(u,∂ρu,ρ) with a mathematical operator
F (u, gη, wηξ,ρ) which behaves in a more controlled way. We introduce the right and left
derivatives g1 and g2 via the respective numerical flux. From g1 and g2 we can then reconstruct
∂ρu in order to get a well-conditioned derivative. Similarly we use the four second-derivative
terms from the left and right, wηξ, for the second derivative and also to correct errors in ∂ρu.

Spatial discretisation

We introduce additional stationary equations to the standard dDG discretisation (5.14) for new
variables gη and wηξ accompanying the instationary one,

∂tu+ ∂ρF = 0 ,

gη = ∂ρu ,

wηξ = ∂ρ gη , (A.6)

with η,ξ ∈ {1, 2} and the operator F dependent on all variables and to be specified later. We
choose gη and wηξ to be projections of first and second order derivatives of u respectively. The
aim is then to build projections which are in analogy to right- and left-side derivatives and use
them to reconstruct the (continuum) derivative by averaging.

Next, we apply the standard DG spatial discretization to (A.6), i.e. we integrate (A.6) against
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local test functions ψp on each cell and perform a partial integration. From this we obtain
∫︂

Dk

�

(∂tuh + sh)ψp +F (uh, (gη)h)∂xψp

�

= −
∫︂

∂ Dk

FÒ(u−h , u+h ) · n̂ψp ,

∫︂

Dk

(gη)hψp −
∫︂

Dk

uh∂xψp =

∫︂

∂ Dk

gbη(u
−
h , u+h ) · n̂kψp = 0 , η ∈ {1, 2} ,

∫︂

Dk

(wηξ)hψp −
∫︂

Dk

(gη)h∂xψp =

∫︂

∂ Dk

wbηξ((gη)
−
h , (gη)

+
h ) · n̂kψp = 0 , η ∈ {1,2}

(A.7)

for each grid cell Dk separately. Here we have introduced the outward-facing normal vector n̂k
on the cell surface ∂ Dk as well as the value of uh on the cell surface from the inside, u−h and
from the outside u+h . We proceed by specifying the numerical fluxes FÒ , gbη, and wbηξ, which
connect solution variables across cell boundaries and are a crucial ingredient to formulating a
consistent DG method.

In order to get analogons of right- and left-derivatives, the choice of fluxes gηc is to use up-
and downwind fluxes, respectively, and similarly for the second derivatives wbηξ, i.e.

gb1(u
−
h , u+h ) = u+h , gb2(u

−
h , u+h ) = u−h ,

wbη1((gη)
−
h , (gη)

+
h ) = (gη)

+
h , wbη2((gη)

−
h , (gη)

+
h ) = (gη)

−
h . (A.8)

Effectively, this means that g1 is a right-sided derivative and g2 a left-handed one, whereas
the wηξ give all combinations of two either right- or left-sided derivatives. In doing this, we
provide the instationary equation with information on all possible jumps in derivatives between
cell borders. We can now go on to devise a scheme on how to introduce this information to the
flow in a consistent, stabilizing manner.

For the collective flux of F , i.e. FÒ , we utilize the standard Lax-Friedrichs flux,

FÒ = {{F}}+
c
2
[[u]] , (A.9)

where c is the local wavespeed in the system, i.e. the largest eigenvalue of ∂ F
∂ u .

The only thing to complete the picture, is the definition ofF . In order to get a non-oscillatory
derivative contribution to the flow, set it to

F =F
�

u,
g1 + g2

2
,

w12 +w21

2
,ρ
�

+α
�

w11 −w12 −w21 +w22

�

. (A.10)

This choice of derivative ∂ρu ≃ g++g−

2 is elaborated on in [371], where one sees that it can
be viewed as analogous to the central difference derivative operator on a Cartesian grid. The
convergence and stability of this method has been shown and tested in [372] for a set of toy
problems.

The correction term

α
�

w11 −w12 −w21 +w22

�

, (A.11)

that has been added to (A.10) in order to define the numerical operator can be viewed as

αh2

�

w11 −w12 −w21 +w22

�

h2
→ αh2∂ 4

ρu , (A.12)



A.2 Time stepping 177

in the limit of small h. Effectively, this is a source term added to the flow of u which exerts a
force that pushes the second derivatives wηξ onto each other, leading to (local) continuity in
the first and second derivatives of u.

Framed differently, we are approximating our parabolic problem by a fourth-order problem
which reduces to the original equation in the limit of h→ 0. This has been shown to work
well for certain classes of non-linear second-order equations [373], stabilizing their high-order
contributions in a controlled manner. Additionally, (A.11) implements a penalty for jumps in
g+, g−, thus stabilizing the solution at the cell borders.

The choice of α should be such, that α > | ∂ F
∂ (∂ 2

ρ u) |. We will however define it to be constant in

time and by choosing it through experiment: One wants it to be as small as possible, but large
enough to suppress oscillations in the derivatives. We comment that a choice of α= c| ∂ F

∂ (∂ 2
ρ u) |

with some constant c > 1 is possible, but works in numerical experiments worse than choosing
α globally constant.

A.1.3. Higher derivatives around expansion points

This Appendix is taken from [4].

In this section we explain how to extract quantitatively precise higher order derivatives of
the solution, evaluated at an expansion point x0. These terms are directly evaluated from the
solution by taking the n-th derivative of the functional basis,

∂ n
x uk

h(t, x)|x=x0
=

P+1
∑︂

p=1

uk
p(t)∂

n
x ψp(x)|x=x0

, (A.13)

and feed back into the flow in a trivial manner. All computations generating data at the
expansion point are therefore preformed using an appropriately high polynomial order P >
n. For specific, strongly dynamical scenarios, the second procedure may lead to apparent
convergence towards a false solution. In Chapter 6 we test convergence of the derivatives
by making use of some known symmetry properties. The Z2 symmetry of the potential V
requires ∂ n

x V |x=x0
= 0 for odd n, thus we track the numerical values of ∂x V |x=x0

and ∂ 3
x V |x=x0

throughout the d = 0 computation, which displays the highest dynamics and generates the
highest numerical error for this check. We find that

1.02476e− 13≤ |∂x V |x=x0
| ≤ 2.18304e− 12 ,

2.7792e− 10≤ |∂ 3
x V |x=x0

| ≤ 9.13647e− 09 , (A.14)

for a polynomial order P = 6.

A.2. Time stepping

Throughout this thesis we have used various time-stepping schemes, which have continuously
been improved and fitted to the purpose. We begin with a brief explanation of our explicit
time-stepping implementation, before discussing implicit steppers which are more adapted to
the fRG.
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Convexity in the symmetric phase

The pion mass becomes positive at some point during the computation in the symmetric phase
and convexity is restored before k = 0. Positive values of u also significantly decrease the flux
between grid cells as can be seen from Figure A.1 and increase the size of time steps.

A.2.2. The necessity for implicit steppers

This Appendix is taken from [6]. In this work, a plethora of implicit time-stepping schemes was
tested in a simple finite difference implementation using Julia. Here, we only present a brief
summary of the most significant results in the context of this thesis.

The problem concerning the exponential decay of the time-step we outlined in the previous
section, can be solved with a vast landscape of implicit algorithms. In the following, we
benchmark the accuracy and efficiency of different time-stepping schemes for future applications.
For a detailed introduction see e.g., [374,375], here we only state their rough features.

The popular family of Runge-Kutta schemes splits into two different classes. The first and most
commonly used class of algorithms are the Diagonally Implicit Runge-Kutta (DIRK) methods,
it includes well-known algorithms such as Implicit Euler or the Trapezoid/Implicit Midpoint
algorithm used in the Crank–Nicolson scheme. The second class contains the Fully Implicit
Runge-Kutta (FIRK) schemes. While in DIRK schemes for each internal stage the system of
equations can be solved subsequently, in FIRK schemes a coupled system of equations has to
be solved. To be more precise, in explicit RK schemes each stage is obtained from previous
stages only, while in DIRK methods the right-hand side of each stage can contain itself. In FIRK
methods, the right-hand side may contain all stages. As a direct consequence, DIRK schemes
are a lot easier and cheaper to implement and are typically also faster, if they capture the
stiffness of the system. Consequently, DIRK methods are the most commonly implemented
implicit methods in toolboxes for PDEs.

The next big class of algorithms under investigation in this work are the Rosenbrock methods,
including their derived Rosenbrock-W extensions. They incorporate the Jacobian directly in the
timestep update, essentially performing the step of a Newton iteration, and they can be seen
as an extension of the DIRK methods. As a consequence, for non-autonomous equations also
the RG-time gradient of the flux appears in the formula. They show impressive stability and
accuracy properties for a wide range of problems, but their implementation is comparatively
tedious. In schemes collected as Rosenbrock-W, the Jacobian and time gradient are not updated
at every step, but in a lazy manner, depending on the algorithm.

The last big class of implicit algorithms are the implicit multistep schemes. Compared to the
RK schemes, no internal stages are evaluated, but the information from previous steps is used
in the update step. Some of the most used libraries to solve stiff systems of ODEs, including
the SUNDIALS library [376,377] or the ODEPACK package [378], focus on implicit multistep
methods. Both of the aforementioned libraries are also included via their Julia interface [379].
A big advantage of implicit multistep methods is that they easily allow for adaptive choice of
order, greatly improving performance.

Error norms

Both for the purpose of checking if a Newton solver has converged, as well for choosing the
size of an adaptive time-step, an error norm of the residual is used. For large problems, where
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a LU decomposition is not feasible, such a norm is also needed to check if an iterative algorithm
has converged.

To be more explicit, consider absolute and relative precision limits sabs and srel. For a residual
vector r and a solution vector before the iteration (u) and after (ũ) on a grid of size N , we
could define the normalized error using an l2-norm as,

el2 = nl2

∥r∥2
sabs + srel max(∥u∥2,∥ũ∥2)

, (A.16)

with nlp
= N

1
p . Generically, this is the standard kind of error norm implemented in many

discretisation frameworks for finite difference and finite elements. However, such a definition
can allow locally large errors in cases where locally strong dynamics occur, which quickly
destabilize the system.

Therefore, an error-norm which evaluates the relative precision locally is more pertinent,

eloc = nlp

∥︁

∥︁

∥︁

∥︁

ri

sabs + srel max(|ui|, |ũi|)

∥︁

∥︁

∥︁

∥︁

p
. (A.17)

In DifferentialEquations.jl and in the SUNDIALS suite, the error norm (A.17) is imple-
mented with p = 2, which is sufficient for the problems considered in this work. However,
we would like to comment that in the presence of spatially localized phenomena with fast
dynamics we found it necessary to choose p =∞ in order to ensure stability of the evolution.

Work-precision

For solving flow equations in everyday applications, the most important quantity measuring the
performance is the work-precision relation, i.e., how does the accuracy behave with computing
time. Beforehand, a reference solution was generated using the KenCarp58 algorithm. For
this reference solution, the absolute and relative accuracy goals were chosen as 10−15, the
highest accuracy feasible with double-precision floating-point numbers. By comparing different
algorithms, i.e., RadauIIA5, QNDF and Rodas4, at this target accuracy, we found the maximally
actual achievable accuracy to be roughly 10−12, measured in the ℓ2-norm. Therefore, we
excluded all results in the survey with ∥ai − are f

i ∥ℓ2
< 1.25 · 10−12. Slight remnants of the

resulting saturation effect when investigating the work-precision relation are still visible.
In order to investigate the work-precision relation, we scanned all possible combinations of

absolute and relative target accuracies in the range 10−8 . . . 10−12 in steps of one (log10 scale).
We excluded all runs that did not reach the final RG-time t = 6, which was mostly the case at
lower accuracy goals and explains the lower scan range of 10−8. The DIRK algorithms, here we
show the TRBDF2 algorithm, are looking very promising, considering that they are low-order
methods. It is also noteworthy that the popular choices ImplicitEuler and Trapezoid
performed extremely poor.

The Rosenbrock methods are relatively independent of the specific choice of algorithm. While
they do require significantly more time to push the high precision boundary, they shine through
their remarkable stability and over-performance in actually achieved accuracy.

We turn to implicit multistep methods, for the purpose of this discussion, including SUNDIALS’
CVODE_BDF and ODEPACK’s lsoda. While being unable to push toward really small accuracies,
the variable order BDF implementations, i.e., QBDF, QNDF and CVODE_BDF, are attractive due
to their very short run-times. FBDF performed similar, but performed worse than QBDF and
QNDF due to reduced stability, i.e., requiring a significantly smaller minimal allowed step size.
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there is a sharp increase in tmax at a step-size ∆t ≈ 10−3. This sharp increase precisely makes
the difference between breaking down during the flatting of the potential and being able to
properly resolving this essential part of the evolution. We call this notion pseudo stability.
Luckily, a large part of the investigated algorithms, particularly the Rosenbrock and implicit
multistep methods, posses this property. The final RG-time reached by most algorithms in
the standard and mass formulation is limited by double precision in the (non-)linear solver
part. This can be easily seen by estimating the relevant orders of magnitude in their discrete
equations.

Furthermore, for the method RadauIIA5 the jump in the final RG-time is so large, that we
cannot differentiate between pseudo stability and proper stability of the algorithm. One might
suspect that the method is stable, but limited by finite numerical precision.

We would like to note that the generalisation thereof to more complicated theories, e.g.,
a O(N)-theory with N > 1, is ambiguous and has to be worked out. In general, the notion
of pseudo stability hints towards the existence of two different stability criteria. One being
related to stability with respect to non-analyticities, i.e., the kink in the current example. The
other one being related to the existence of a singularity bound and can be circumvented by, for
example, a log formulation, see [6].

A.3. Local Discontinuous Galerkin: An implementation

This section is based entirely on [5], all figures are taken from the publication.

In this section of the Appendix, we describe how to reformulate the O(N) model flow, derived
in Section 5.1 and Appendix B.3.1, such that can be solved with the LDG method of [251].
The numerical discretisation is outlined in Appendix A.3.1. An in depth description of the
implementation is given in Appendix A.3.2, accompanying the Github repository [12].

A.3.1. Assumptions on the form of equations

As a guiding example, let us examine the flow equation for an O(N) system, which we will keep
in mind when explaining the LDG method. An inherent property of the flow is its dependence on
the second derivative of the effective action. This translates to a system of equations containing
convection, as well as diffusion. Instead of directly looking at the effective potential V (x) of
the theory, we take its first derivative and note that the two unknowns of the system are linked
by another derivative

u= ∂x V , and v = ∂ 2
x V . (A.18)

Thus we introduce ∂xu as a further unknown, apart from u

∂xu= v . (A.19)

Having established these definitions we allow for the following general form of the equations

∂tu− ∂x Ft(u, v) = 0 ,

∂t v − ∂x

�

Gt(u, v) + at(s)∂x s|s=u+b(x)v
�

= 0 , (A.20)

where u = u(t, x), v = v(x , t) are the sought after solutions and we have some initial conditions
at t = 0 which we evolve in time. This specific form is motivated by the expressions derived in
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Section 5.3.1 and Section 5.1. It is given at this point to construct the numerical framework in a
general way. u(t, x) is the solution to a purely convective equation with a Lipschitz conservative,
RG-time-dependent flux Ft , whereas the equation for v(t, x) has a convective (Lipschitz) flux
Gt and allows for a diffusive term linear in ∂x v, which inherently depends on the combination
s = u + b(x)v, with a positive prefactor at . For simplicity we drop the (·)t subscript from
now on, which indicates the RG-time dependence of the terms. The diffusive term in ∂x v
prevents the use of direct DG methods discussed previously in [1,65], since there is no sensible
formulation of a numerical flux for higher derivative terms. In general the direct DG method is
still applicable but has possibly non-negligible errors, as discussed above, if its contribution to
the numerical flux is small.

The LDG method, as developed in [251], presents a formulation for this additional diffusive
flux, by solving a second, stationary equation. Afterwards, we discuss the introduction of the
appropriate numerical fluxes. Note, that introducing v = ∂xu as an independent unknown does
not remedy the problem of having a second-order PDE, but it enables us to fit the framework
given by the LDG method and thus construct a convergent and stable scheme for the fRG
equations of such systems. The price to pay is a potentially reduced order of convergence due
to promoting a dependent quantity into an independent one. However, this effect is practically
mitigated by the high order of accuracy the LDG method. Its error is of order O(∆x)P+

1
2 , where

∆x is the grid spacing and P is the maximal order of the trial functions.

The stationary Equation

We will now present the LDG formulation for the system given in (A.20). The main idea here is
to introduce a stationary equation which captures the additional derivative term by rewriting it
as q =
p

a(u+ b(x)v) ∂x(u+ b(x)v)

∂tu+ ∂x(F(u, v)) = 0 ,

∂t v + ∂x

�

G(u, v)−
Æ

a(u+ b(x)v)q
�

= 0 ,

q− ∂x j(u+ b(x)v) = 0 . (A.21)

Supplemented by some initial condition for u(t = 0, x) and v(t = 0, x). Hence the system
(A.20) now contains two instationary equations for the RG-time evolution of u and v and one
additional stationary equation for q. The flux of the stationary equation is in a conservative
form and given by

j(s) =

∫︂ s

0

Æ

a(s′)ds′ , (A.22)

which follows simply from applying the chain rule
Æ

a(s)∂x s = ∂s j(s)∂x s = ∂x j(s) , (A.23)

with s = u+ b(x)v. We note that this particular formulation is insofar different from its original
formulation in [251] as q is dependent on two variables through s, u and v.

Numerical fluxes

In order to numerically solve the system of conservation equations given in (A.21) over an
interval Ω, we introduce a one-dimensional grid over a computational interval Ωh. Ωh is
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separated into K non-overlapping elements Dk, following the notation from [65]. Consider the
full solution to be given by w = (u, v, q)t , then the local, approximate solution wk

h = (u
k
h, vk

h , qk
h)

t

is described by a polynomial of degree P in every cell Dk,

wk
h(t, x) =

P+1
∑︂

p=1

wk
p(t)ψp(x) . (A.24)

Here we also introduce standard notation from the DG literature for the average w and the
jump [w] across a cell boundary. Supposing some solution wk

h on the cell Dk, we label w− as
the solution inside the cell and w+ as the solution in the neighbour cell.

A solution to (A.21) is only defined in a weak sense, and the resulting system of equations
for wk

h(t, x) reads
∫︂

Dk

�

(∂tu
k
h)ψp − F k

h (u
k
h)∂xψp

�

dx = −
∫︂

∂ Dk

hconv,1 · n̂ψp dx ,

∫︂

Dk

�

(∂t v
k
h )ψp −
�

Gk
h(u

k
h, vk

h )−
Ç

ak
h(u

k
h + bk

h(x)v
k
h )q

k
h

�

∂xψp

�

dx = −
∫︂

∂ Dk

�

hconv,2 + hdiff,2

�

· n̂ψp dx ,

∫︂

Dk

�

qk
hψp + jk

h (u
k
h + bk

h(x)v
k
h )∂xψp

�

dx = −
∫︂

∂ Dk

hdiff,3 · n̂ψp dx ,

(A.25)

where n̂ is the outwards facing unit normal vector at a cell boundary.
The numerical fluxes, at the right-hand side of (A.25) have been separated into convective

and diffusive contributions

h(w−,w+) = hconv(w
−,w+) +hdiff(w

−,w+) . (A.26)

For the convective flux we choose the standard LLF-flux, which has already been used in the
direct DG implementations [1,65], given by

hconv(w
−,w+) =

⎛

⎝

F̄
Ḡ
0

⎞

⎠−
Cconv

2
[w] . (A.27)

Cconv corresponds to the speed of information propagation across the interface and is chosen as
the largest eigenvalue (or an approximation thereof) of the Jacobian

J =

�

∂w1
F ∂w2

F
∂w1

G ∂w2
G

�

. (A.28)

It produces an additional diffusive smoothing factor, which enforces the continuity of the
solution between cells.

The diffusive numerical flux, which ensures continuity when a diffusive flow is present, is
given by

hdiff(w
−,w+) =

⎛

⎝

0
− [ j(u+b(x)v)]
[u+b(x)v] q̄

− j(u+ b(x)v)¯

⎞

⎠−
Cdiff

2
[w] , (A.29)
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Here a smoothing across cell boundaries is being applied using a diffusive wave-speed, for
which

Cdiff =

⎛

⎝

0 0 0
0 0 c
0 −c 0

⎞

⎠ , (A.30)

is chosen to emulate the LLF-flux (A.27)and we use the approximate wave-speed c =
⎷

a.

A.3.2. DUNE and the dune-FRGDG module

All results obtained from DG methods have been computed by using DUNE, the Distributed
and Unified Numerics Environment [252], which provides a wide range of tools to solve PDEs
numerically. The method detailed in this work has been implemented within the dune-FRGDG
module, an extension of DUNE specially for solving fRG flows using discontinuous Galerkin
methods. A build containing the models showcased in this work can be freely accessed on the
web [12]. Firstly, we give detailed instructions on the installation of the framework. Next,
the general structure of the module is outlined. This is followed by a discussion of different
components: The simulation set, which allows to specify the general numerical settings of the
calculation, such as the numerical grid or the choice of numerical fluxes. The implementation of
physical models within the framework is discussed next, and we give some additional remarks
on the parameters that can be changed with the .ini files after compiling the programs.

Installation

In the following we give step-by-step instructions to install the dune-FRGDG module:
Before setting up the framework, all dependences of dune-FRGDG need to be available. These
dependences are:

• CMake ≥ 3.13

• Open MPI

• GCC with support for C++17

• pkg-config

• GSL - GNU Scientific Library

The framework itself can be cloned from the public github repository [12],

$ g i t c lone h t tp s :// gi thub . com/ s a t f r a /dune−FRGDG. g i t

Next, the user should run an automatic setup script and to build the framework itself:

$ cd dune−f rgdg
$ bash ./ setup . sh
$ bash ./ bui ld−r e l e a s e . sh

The setup script will clone and modify all necessary DUNE modules for the framework. The
script build-release.sh will run CMake and make on all modules to produce a release
build of the code. Alternatively, if a debug build of dune-FRGDG is needed, the user can run
build-debug.sh instead. The header files, where most of the code is contained in, can be
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dune-FRGDG

dune

FRGDG

models

All model header files

src

CMakeLists.txt

build-cmake

src

all executable files

Figure A.3.: Folder structure of the dune-FRGDG module after initial setup.

found at dune-FRGDG/dune/FRGDG. All source files are at dune-FRGDG/src. After building
the project, the binary executable files can be found in dune-FRGDG/build-cmake/src.
These can be either called single-threaded like

$ ./ anharmonicOsc i l l a tor

or using MPI with

$ mpirun −n 4 ./ anharmonicOsc i l l a tor

where one can replace the number 4 used here by the amount of desired MPI nodes.

Implementation in DUNE

The basic design of the computational framework is outlined. The general structure is built
on the basis of the dune-project [252], more precisely the dune-pdelab module [286]. The
framework is devised such that an end-user is only required to specify equations and some
properties of the DG setup in a template. These specifications are then pieced together and
used by the backend of the code to perform the simulation.

The general structure of the framework itself is shown in Figure A.4a, the folder structure of
the installed module can be seen in Figure A.3. Any simulation consists of the user-specified
simulation set (frontend) where all specifics of the simulation are abstracted, and the driver class
(backend) where the actual simulation is performed. The simulation set contains information
about the chosen grid, finite element space, solver algorithms and the actual DG equations in
the form of the numerical fluxes and a model class. The driver class uses a specified scheme
that defines the way the equations are handled (in our case, the DG scheme and the LDG
scheme) to do time-stepping. Within the schemes the way time-stepping is done is defined, i.e.
for the DG scheme one uses a RK scheme to directly solve one instationary PDE, while the LDG
scheme incorporates the solving of additional stationary equations into the RK scheme.



A.3 Local Discontinuous Galerkin: An implementation 187

Simulation

Simulation Set

Num. Fluxes Model Grid FE Funct. Space

Driver

Scheme

Inst. PDE Stat. PDE

(a) Logical structure of a simulation using the DUNE-FRGDG framework.
The Simulation Set contains user-specifics, while the Driver performs
the execution of all backend code.

main.cc

FRGDG.hh

simulationmgr.hh

simulation.hh

driver.hh

(b) The execution flow of a typi-
cal program using the DUNE-
FRGDG framework, starting
from a file main.cc which con-
tains the main function.

In practice, as any C++ program, the simulation starts with a main-function. Here, we first
define a simulation which uses a specific simulation set (here for a large N-model) and then
start the backend code execution flow by calling Dune::startFRGSimulation.

using SIM = Simulat ion<largeN : : SimSet>;
Dune : : s tartFRGSimulat ion<SIM>(argc , argv , " largeN . i n i " ) ;

The function Dune::startFRGSimulation is found in the header file FRGDG.hh and does
some MPI setup, as well as reading the supplied initialisation file before calling the simulation
manager SimulationMgr:

SimulationMgr<SIM> mgr( ptree , he lper ) ;
mgr . run ( ) ;

In the simulation manager a simulation is created and started from the supplied simulation
template and initialisation parameters:

SIM sim ( ptree , mpihelper . getCommunication ( ) ,0 , log ) ;
sim . s t a r t ( ) ;
sim . f i n i s h ( ) ;

Finally, the simulation itself invokes the driver, which goes on to construct the DG system
and solve it:

DRV<N> d r i v e r (gv , fem , pP , ptree , mpicomm, log ) ;
d r i v e r . Run ( ) ;

The execution flow is shown in Figure A.4b. Although the step through the SimulationMgr
may seem superfluous, the structure is designed to allow extending the SimulationMgr to do
massive parallelisation of simulations and their management.
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Numerical settings

Before implementing a physical model we must specify the numerical setting, i.e. the grid,
the integration scheme or the numerical fluxes. This is done in the SimSet class in the
models/ON.hh header file, which also contains the physical equations.

Generally, LDG methods are defined on a domain of arbitrary dimension composed of K cells,
Ω= ∪K

k=0Dk. Therefore, we must chose an appropriate grid-implementation:

using RF = double ;
s t a t i c constexpr unsigned dim = 1;
using GridCons t ruc tor = CubicYaspGridConstructor<RF , dim>;

Here, we first set all computations to be performed with double precision and then specify
a one-dimensional grid to be used. In principle the grid dimension can be set to any integer
number. Currently, our computations use cubic grids, i.e. rectangular grid cells.
The next step is to specify the test-function space within each grid cell Dk. A numerical
approximation using test-functions ψn, compare (A.24), to the exact solution w of (5.19)
reduces the degrees of freedom of wk

h to a finite number. This test function space is set up in
the following way:

template<in t order>
using FEM = Dune : : PDELab : : QkDGLocalFiniteElementMap<RF , double ,

order , dim , Dune : : PDELab : : QkDGBasisPolynomial : : legendre>;
s t a t i c constexpr s td : : array<int ,4> orders {1 ,2 ,3 ,4} ;

The module dune-pdelab [286] provides the polynomial space Qk, which is spanned by all poly-
nomials up to order k in the according number of dimensions, for example Q1 = {1, x , y, x y} if
dim=2. The Legendre polynomials are chosen as a basis of this test-function space. Also, when
increasing the dimensionality of the grid, an appropriate tensor-product of one-dimensional
function spaces is used. Furthermore the polynomial orders {1,2,3,4} are precompiled into
the program and are available to chose from in the .ini file. We note here that the code can be
used for finite volume computations if the polynomial order is set to 0. Similarly, we recover a
finite element method (FEM) if continuity is enforced between cells.
The numerical approximation from (A.24) is inserted in (5.19) and projected onto the test
function space. This formulation does not account for possible discontinuities at the cell borders.
Worse, the solution is effectively double-valued at the cell borders xk−1

r = xk
l . This necessitates

the introduction of a numerical flux:

using Numflux = u t i l s : : s t a t i c _ s w i t c h<idx , LLFfluxLDG<Model<idx>>,
LLFfluxLDG<Model<idx>>>;

This example uses our standard choice of numerical flux, which is the LLF-flux. Other possible
choices are implemented and can be found in the numericalflux folder, such as up- and
down-winding fluxes, as well as a central flux.

Now, the inside of each cell reduces to a finite element problem where the boundary conditions
are given by the numerical flux. An appropriate solver is the key ingredient to FEMs and is
provided by the dune-istl module [287]. Here we distinguish the solvers given by the LS_stat
and the LS_instat types, for the stationary and instationary equations respectively, in the
LDG setting. The correct interplay of both solvers is ensured by the LDGScheme.
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Model definitions

The DUNE framework, as well as dune-FRGDG, use an object-oriented approach to structuring
the code. Thus, a system of LDG equations is represented by classes which contain methods
and member variables corresponding to the ingredients detailed in Appendix A.3.1.

When setting up the computation of a specific system of equations, we distinguish between
the instationary and stationary equations, contained in the model classes iModel and sModel
respectively. Every model class is derived from a template class, which is contained in the
file models/modelinterface.hh. There, every implemented building block of a model is
predefined and set to fill the equations with zeros. This way the user can redefine all methods
that are needed for a specific physical model in the derived class, whilst everything else defaults
to do nothing. Therefore, first of all, we need to choose the correct template from which we
derive the model class. The signatures of the two model classes thus read

c lass iModel : public Model Inter faceLDGinstat<GV,2 ,1>;
c lass sModel : public ModelInterfaceLDGstat<GV,2 ,1>;

where also the number of components in each class is specified. iModel contains the flow
for the two-component vector Range0 u = (u, v)t and sModel specifies the equation for the
single component vector Range1 q = (q)t - there are two instationary components and one
stationary one, corresponding to the LDG system of the O(N) model in Section 5.1. We will
use the O(N) model from here on as an implementation example. The model can be found
in models/ON.hh. The methods in the model-classes are called for every single element and
interface separately. This enables the parallelisation of the code: if the grid is split into several
sub-grids these only need to communicate on a few interfaces, since in general every cell only
depends directly on its Neighbors due to the numerical fluxes.

Let us focus first on the instationary equations in the iModel class:
First, we implement the initial conditions. The initial parameters in the UV are determined in
the constructor of the model-class, where they are directly pulled from the initialisation file via
ptree (cf. Appendix A.3.2):

iModel (Dune : : ParameterTree ptree_ ) : MI( pt ree_ )
{

l2 = pt ree . get ( " param . l2 " , RF ( 0 ) ) ;
l4 = pt ree . get ( " param . l4 " , RF ( 7 1 . 6 ) ) ;
l8 = pt ree . get ( " param . l8 " , RF ( 7 1 . 6 ) ) ;

}

The method u0 specifies the initial conditions at the beginning of the simulation, as set in
(5.28):

Range0 u0( const E &e , const X &x ) const
{

const X xg = e . geometry ( ) . g loba l ( x ) ;
Range0 u ( 0 . 0 ) ;
u [0] = l2 + xg [ 0 ] l4 + powr<3>(xg [ 0 ] ) l8 ;
u [1] = l4 + 3 . powr<2>(xg [ 0 ] ) l8 ;
return u ;

}

In this example e is a grid parameter, indicating the specific grid cell on which the method is
evaluated, whereas x gives the position within the cell. From this we get the global position
xg, which is a vector in the dimension of the grid.
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To get the code formulation of the flow we insert the ingredients from the physical model
Section 5.1 into the weak formulation of the equations (A.25), after which ingredient in (A.25)
corresponds to a method in the model class. Appendix A.3.1 specified the equations that can be
solved within this framework and we will now identify the components of the general mould
(5.19) and show their counterpart in the model-classes. The following code-snippets abbreviate
the parameter lists of the methods by ’...’, as they become too lengthy to show here and do not
contain important information. We recapitulate the first line of the general mould (5.19)

∂tu+ ∂x F(u, v) = 0 . (A.31)

The DG discretisation of this equation is the first line in (A.25). The only thing we need here is
the definition of the flux F and the numerical flux at the interfaces F∗.

void f l u x ( . . . ) const
{

const X xg = e . geometry ( ) . g loba l ( x ) ;
const RF F = f<N−1>(u [0 ]) + f<1>(u [0] + 2 . xg [ 0 ] u [1 ] ) ;
const RF G = u [1] f<N−1,1>(u [0 ] ) ;

Flux [0 ] [0 ] = F ;
Flux [1 ] [0 ] = G;

}

RF is the type of floating point numbers we wish to use - this is aliased to double in the
implementation shown here.

The numerical flux is implemented in a separate file; the choice is done within the Simulation
Set where all general parameters of the simulation are fixed (e.g. the grid, basis functions,
etc). For specific fluxes one needs additional methods, e.g. for F⋆ being an LLF-flux we need
to implement a method maxeigenvalues whose signature can be found in the base class. In
the above code snippet, we have also implemented the first part of the second instationary
equation, i.e. for the second variable v, as it is also discretized in the standard DG way

∂t v + ∂x

�

G(u, v)−
Æ

a(s)q
�

= 0 . (A.32)

Next, we need to implement the diffusive component −
p

a(s)q of the flow of v. This is done in
the following snippet

void d i f f F l u x ( . . . ) const
{

const X xg = e . geometry ( ) . g loba l ( x ) ;
const RF s = u [0] + 2 . xg [ 0 ] u [1 ] ;

A[1 ] [0 ] = −s td : : s q r t (A_d ( ) ) k/(k2 + s ) q [0 ] ;
}

The variable A corresponds to the diffusive component, where the first index of A labels the
respective component of w = (u, v)t and the second one the ’spatial’ direction of the diffusion.
As we only solve equations on one-dimensional intervals in this work, the second index is
always 0.

The numerical flux (i.e. the flow between neighbouring elements) of the diffusive part is
implemented in the following.
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void numer i ca lD i f fF lux ( . . . ) const
{

const X xg_s = i n s i d e . geometry ( ) . g loba l ( x_ in s ide ) ;
const X xg_n = out s ide . geometry ( ) . g loba l ( x_outs ide ) ;

const RF s_s = u_s [0] + 2 . xg_s [ 0 ] u_s [1 ] ;
const RF s_n = u_n [0] + 2 . xg_n [ 0 ] u_n [1 ] ;
const RF d i f f u s i o n = s td : : s q r t (A_d ( ) ) k 0 . 5 ( 1 / ( k2 + s_n )+1/(k2 + s_s ) ) ;

i f ( ! u t i l s : : i sEqua l ( s_s , s_n ))
A[1 ] [0 ] = −s td : : s q r t (A_d ( ) ) k s td : : log (( k2+s_s )
/(k2+s_n ))/ ( s_s−s_n ) 0 . 5 ( q_s [0] + q_n [0 ] ) ;

else
A[1 ] [0 ] = − d i f f u s i o n 0 . 5 ( q_s [0] + q_n [0 ] ) ;

beta [1 ] [0 ] = d i f f u s i o n ( q_n [0] − q_s [0 ] ) ;
}

Here, the method is given the information of the inside and outside cell at the border on which
it is being called. The first few lines just calculate the quantities at the inside and outside
of the cell border. A now plays the role of the first contribution to the diffusive numerical
flux in (A.29), whereas beta implements the additional smoothing in the numerical flux and
corresponds to Cdiff[w]. A distinction is made for the case when s is identical on both sides of
the cell border, in which case we replace [ j][s] with the derivative ∂ j

∂ s . Since there is no diffusive
flux in the first component u, the entries at A[0][0] and beta[0][0] remain zero.

Lastly, it remains to implement the stationary equation

q− ∂x j(u+ v) = 0 . (A.33)

This is done in the second model class sModel within the same file. First, we need to implement
the flux, analogous to the implementation of the instationary flux

void f l u x ( . . . ) const
{

const X xg = e . geometry ( ) . g loba l ( x ) ;
const RF s = u [0] + 2 . xg [ 0 ] u [1 ] ;

i f ( s > 0)
F [0 ] [0 ] = −s td : : s q r t (A_d ( ) ) k s td : : log (k2 + s ) ;

else
F [0 ] [0 ] = s td : : s q r t (A_d ( ) ) k s td : : log (1 ./ ( k2 + s ) ) ;

}

One more thing is missing: The numerical flux of the stationary equation also contains a
smoothing term. This is implemented in the following

void numer i ca lD i f fF lux ( . . . ) const
{

const X xg_s = i n s i d e . geometry ( ) . g loba l ( x_ in s ide ) ;
const X xg_n = out s ide . geometry ( ) . g loba l ( x_outs ide ) ;

const RF s_s = u_s [0] + 2 . xg_s [ 0 ] u_s [1 ] ;
const RF s_n = u_n [0] + 2 . xg_n [ 0 ] u_n [1 ] ;



192 A. Details on Discontinuous Galerkin

const RF d i f f u s i o n = s td : : s q r t (A_d ( ) ) k 0 . 5 ( 1 / ( k2 + s_n ) + 1/(k2 + s_s ) ) ;

beta [0 ] [0 ] = − d i f f u s i o n (u_n [1] − u_s [1 ] ) ;
}

Here, beta corresponds to the stationary, i.e. third, component of Cdiff[w].
In general, the code is designed to be easily adaptable and can be fitted to any similar

problem. For example, adding another instationary equation for a variable to the system is as
easy as increasing the first index of the class signature by one and adding in the flow of this
third variable in the equations shown here.

The initialisation file

In this subsection we comment on the parameters which can be specified after compiling the
program, in the initialisation file. The initialisation file is a source file and can be found in the
ini folder. Running a build script will automatically copy the initialisation files to the location
of the corresponding executable. The file is divided into several sections, firstly we start with
the grid. Here, it remains to specify the length of the grid, as well as the cell density:

[ gr id ]
o r i g i n = 0
L = 0.03
N = 30
loca lRef inement = 0

All grid parameters need to be specified for each grid dimension, i.e. the input for a two
dimensional grid should be given as N = 30 30. origin specifies the lower left corner of the
grid. L and N denote the grid length and the number of cells respectively.
The localRefinement parameter allows for a finer cell spacing in certain areas of the grid
by bisecting all cells n = localRefinement times. This feature can be used by setting
localRefinement to n> 0 and specifying the additional parameters localRefinement n,
e.g.

[ gr id ]
loca lRef inement = 2
localRef inement0 = 15
localRef inement1 = 10

In this example, all evenly spaced cells of the original grid up to cell 15 are bisected once and
afterwards the cells up to (the original) cell 10 are bisected once again.

Next, the finite element properties, i.e. the inside of single cells, are specified:

[ fem ]
degree = 2
torder = 3

degree sets the polynomial order in each cell. Here, the only available options are those
previously specified in the simulation set. The order for the Runge-Kutta time-stepping method
is set by the torder parameter. The currently available options range from first to fourth order
RK methods.
All input parameters for the physical model are specified within the param section:
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[param ]
Lambda = 0.65
l = 1

Here, all initial UV-parameters, such as the initial cutoff-scale kUV = Lambda or classical values
of the couplings, can be added.
Another important element of the computation is the RG-time integration:

[ time ]
maxTime = 3
maxTimeStep = 3e−3
minTimeStep = 1e−15
s a f e t y f a c t o r = 0.001
timeGrid = 1e−2

Starting from tUV = 0 one would ideally like to integrate up to tfin→ log( 0
Λ) = inf. Since this is

impractical we usually set a maxTime up to which the equations are solved. The final RG-scale
is then given by kIR = Λexp(−maxTime). We limit the maximal step size by maxTimeStep as a
safety precaution. Similarly, we specify a minimal time step (minTimeStep), which causes the
computation to abort if the step-size goes below this value. Usually, uncharacteristically small
time-steps are caused by non-converging solutions. Therefore, we abort the program to avoid
spending a lot of computation time on these computations. Ideally, the code limits the time
step using the Courant-Friedrichs-Lewy (CFL) conditions [380]. In case of diffusive systems the
condition is usually enforced with an additional safety-factor of about safetyfactor≈ 0.001.
Furthermore, we specify the rate at which the computed data should be saved by timeGrid.
Lastly, it is specified how the data should be saved:

[ output ]
name = lN
subsampling = 0

name is prepended to the computation-specific details, which are added to the name of the
output-file in the model class. The subsampling option allows to increase the amount of data
points saved. When setting this to zero, the saved data-points in the output files are minimally
sampled according to the polynomial order. For smoother output this option can be increased.

Simulation Results

The results of any simulation are saved in VTK-files at times specified by the user. These can be
displayed and examined either using the open-source vtk file viewer ParaView, or read into
python or Mathematica scripts using openly available vtk libraries. All results in this thesis
have been processed using Mathematica.





APPENDIX B

Definitions and analytical relations

In this Appendix we discuss formulas and technical derivations which do not fit in the main text.
Sections are sorted by the corresponding publication.

B.1. Finite temperatures and densities

A main focus point of this work is to get insight into the (chiral) phase structure of QCD at
finite temperatures and densities. Therefore we briefly review the concepts behind thermal
quantum field theory and use the close connection of the euclidean path integral in quantum
field theory to statistical mechanics.

The partition function of the grand canonical ensemble is given by,

ZGCE = Trexp
�

−β(Ĥ −µN̂)
�

, (B.1)

which looks very similar to the euclidean path integral in quantum field theory if one can identify
the right operators for the Hamiltonian Ĥ and the particle number operator N̂ . Furthermore,
one needs to introduce the right formulation to include the inverse temperature β = 1/T to
the theory.

Looking at the grand canonical ensemble from an euclidean (imaginary time) setting, one
can directly link the inverse temperature to an imaginary time evolution. Furthermore, the
Wick-rotated Lagrangian density becomes an energy density and can be identified with the
Hamiltonian Ĥ from the statistical mechanics picture. Hence, the finite temperature corresponds
to a finite imaginary time evolution in a euclidean path integral with t ∈ [0,β]. For a correct
inclusion of the spin-statistics the periodicity and anti-periodicity of the bosonic (φ) and
fermionic (ψ) correlation functions, respectively, is used. They read,

〈φ(x1) . . .φ(t i + β , x i⃗) . . .φ(xn)〉= 〈φ(x1) . . .φ(t i , x i⃗) . . .φ(xn)〉 ,

〈ψ(x1) . . .ψ(t i + β , x i⃗) . . .ψ(xn)〉= −〈ψ(x1) . . .ψ(t i , x i⃗) . . .ψ(xn)〉 . (B.2)

The finite spatial integration together with the boundary conditions translates to discrete
frequencies p0,n and an infinite sum in momentum space. Bosonic frequencies are even
p0,n = 2πnT , fermionic ones odd with p0,n = 2π(n+ 1

2)T and n ∈ Z.
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Secondly, we include a fermionic chemical potential to our euclidean field theory. This is
achieved, analogously to the grand canonical ensemble, by adding a term proportional to the
fermionic density µψ times the particle number Nψ to the generating functional (partition

function). Then, the number of particles simply follows as Nψ =
∂ Γ [ΦEOM]
∂ µ . Furthermore, the

number of fermionic particles follows from the integral Nψ =
∫︁

x ψ̄γ0ψ, which is just the quark
number operator. By a comparison with the classical fermionic action in (2.7), it is evident, that
this can be understood as a frequency shift of the time-like momentum to the complex plane,

p0→ p̃0 = p0 + iµψ . (B.3)

To conclude, the finite temperature and density action for the fermions in d + 1 dimensions is
given by,

SD,T [ψ] = i

∫︂ β

0

d t

∫︂

dd x
�

ψ̄(x) · ( /∂ +mψ − γ0µ) ·ψ(x)
�

. (B.4)

We note that the euclidean setting with imaginary time does not describe a real time evolution.
All computations in this thesis investigate physics in equilibrium.

B.2. Formulae: Gluon condensation

This section is taken from [2] and provides analytic relations.

B.2.1. Expansions around condensates and color averages

In this Appendix we discuss the implementation of expansions around non-trivial condensates,
and comment on the subtleties of the color-averaging procedure associated with the central
mass formula in (4.31). In order to illustrates the properties and subtleties, we employ two
simple examples: spontaneous symmetry breaking in a scalar O(N) theory, and (color) center
symmetry breaking in finite temperature Yang-Mills theory.

Let us first consider a scalar field theory with an O(N) field φ (including the discrete Z2
symmetry when N = 1 ) in the symmetric phase. In the symmetric phase, both the effective
action, Γ [φ], as well as expectation values of observables, are typically expanded around
φ = φ0, where

φ2
0 = lim
V→∞

1
V

∫︂

V
〈φ(x)φ(0)〉 , (B.5)

is defined by the order parameter of the theory. The order parameter (B.5) can also be obtained
from

φ0 = lim
J→0
〈φ〉 , (B.6)

where J indicates an external current (or magnetisation) coupled to the field, limJ→0

∫︁

x Jφ,
which is finally removed. Alternatively, within a finite volume one may use boundary conditions
that break the symmetry, and then take the infinite volume limit.

Either way, the effective action Γ is invariant under the full symmetry group of the underlying
theory by definition, whereas the vacuum state (the solution of the equations of motion) breaks
the symmetry.
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Thus, quite importantly, the apparent symmetry breaking in Γ , seemingly induced by the
expansion point, is absent for the full effective action. In turn, a given approximation scheme
may break this symmetry (for example a finite order of a Taylor expansion about φ = φ0). This
symmetry can be restored subsequently by averaging the approximated effective action Γapp[φ]
over the symmetry group, Γ [φ] = 〈Γapp[φ]〉av. Note in this context, that in our example case
of an O(N) theory the averaged expectation value of the field vanishes, 〈φ〉av = 0, as it must.
Moreover, the operator in (B.5) has the full symmetry and hence does not change under the
averaging procedure, while 〈φ〉 does.

In the case of the effective gluon mass, the underlying symmetry is a gauge-symmetry. For
this reason we also consider a second, closer, example, the expectation value of the Polyakov
loop 〈L〉 in finite temperature Yang-Mills theory,

L =
1
Nc

trfP exp{i gs

∮︂

A0(x)} , (B.7)

where the integral
∮︁

in (B.7) is over x0 ∈ [0, 1/T ]. Here, T denotes the temperature and P is
the path ordering operator. The underlying symmetry is the center symmetry ZNc

of the gauge
group with L→ z L and z ∈ ZNc

. We have the order parameter

L2
0 = lim
V→∞

1
V

∫︂

V
〈L(0)L†(x)〉 , (B.8)

which is non-vanishing in the confining disordered low temperature phase. Typically, both in
functional approaches as well as on the lattice, (B.8) is obtained by an infinitesimal explicit
center symmetry breaking in the Cartan direction t3, similar to introducing an infinitesimal
explicit breaking of O(N) symmetry described above. In the t3 direction the Polyakov loop
takes real values and we get

L0 = 〈L(x)〉 , (B.9)

with a real positive L0, which is a non-trivial solution of the equation of motion (of A0) at finite
temperature. The expectation value of the order parameter serves as a physical expansion point
for observables as well as the effective action in functional approaches, both in first principle
QCD computation and low energy effective theories of QCD. In quantitative approximations
the results for observables agree very well with lattice simulations, for the Polyakov loop itself
see [231]: The observables are either color blind in the first place and hence do not require a
color average and are insensitive to it, or, as in the case of the Polyakov loop, a color direction
was singled out for the computation in the first place.

However, the comparison of gauge fixed correlation functions or parts of it is more intricate,
as then the averaging is required and may also affect the gauge fixing, for more details and
further literature see in particular [48,381] and the recent review [104]. This intricacy also
applies in the present situation and makes a direct comparison of the effective gluon mass
difficult.

The lack of a quantitative averaging procedure has forced us to introduce the averaging
factor fav(Nc) in our results, see the definition (4.26) and the definition of the effective gluon
mass (4.29) and (4.49). In the present work we have only determined its Nc-dependence by
resorting to consistency arguments of the large Nc scaling. As mentioned in the main text, the
value of fav(Nc) is the largest source of systematic error for the effective gluon mass.
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B.2.2. Large Nc-scaling and self-consistency

The effective gluon masses m2
A in (4.29) and m2

gap in (4.49) show an explicit 1/Nc-scaling, while
no Nc-scaling is present in the large Nc limit, if the theory is formulated in the ’t Hooft coupling

λ= Nc g2
s . (B.10)

This property serves as a self-consistency check of our computation and specifically our group
average used to derive (4.29), (4.49) and entailed in fav(Nc)

An illustrative and relevant example are the functional relations of the two-point function
Γ (0,2)

aa (p). Cast in a relation for the wave function Za(p), they read

Z(p2) = Zin + g2
s Nc Diags1 +O (N

0
c ) , (B.11)

where the right hand side stands for the typical loop diagrams of e.g. (integrated) fRG flows or
Dyson-Schwinger equations. Here, Zin stands for the input dressing, either the one at the initial
UV cutoff scale (fRG) or the classical dressing (DSE). In most cases the O (N0

c ) term is dropped,
for an exception as well as a respective discussion see [125]. The term Diags1 stands for the
loop integral that depends on the wave functions of all the fields and the full vertex dressings.
Importantly, the functional relations for all other vertex dressings and wave functions have
the same form as (B.11). Accordingly, if dropping the subleading term of the order O(N0

c ),
all functional relations only depend on the ’t Hooft coupling (B.13), and so do all correlation
functions. Respective lattice studies also reveal that the large Nc-limit is achieved already for
Nc ≳ 3 for most correlation functions, for a review see [382].

In summary we deduce, that in the large Nc-limit the only Nc-dependence of the effective
gluon masses m2

A in (4.29) and m2
gap in (4.49) is implicit in the dependence on the ’t Hooft

coupling (B.13). This concludes our brief discussion of the Nc-scaling of correlation functions.
The relations for the effective gluon mass, (4.29), (4.49), show an even more direct scaling

consistency: ZF is an expansion term in the two-point function of the fluctuating gluon. More-
over, in the presence of the condensate this two-point function approaches the effective gluon
for vanishing momentum,

lim
p→0
Π⊥µν(p)Γ

(0,2)
aa,µν(p) = 3 m2

gap . (B.12)

Accordingly, both Zcond and mgap have the same Nc-scaling (only dependent on the ’t Hooft
coupling in the large Nc-limit) as well as the same RG-scaling. In conclusion, the ratio Zcond/m

2
gap

is manifestly RG-invariant as well as Nc-independent in the large Nc-limit. This implies already,
that the RG-invariant information in the effective gluon mass is given by fav(Nc) 〈F〉2. The
value of the mass itself depends on the RG-condition and should not be confused with the gluon
mass gap. The latter can be defined as the inverse screening length of the gluon propagator
which is indeed RG-invariant.

In summary, fav(Nc) 〈F〉2 should be Nc-independent in the large Nc-limit. This fixes the
Nc-scaling of fav(Nc), given that of 〈F〉2. The Nc-scaling of the latter is obtained by an Nc-
analysis of the effective potential, whose explicit computation is detailed in Section 4.3 and
Appendix C.1.1. Here we only need that it consists out of an ultraviolet classical piece of the
form (4.9) and a term that depends on Nc F2,

Weff(F
a) =

1
4g2

s
F2 +∆Weff(Nc F2) , (B.13)
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see Section 4.3.2. In (B.13), g2
s is the strong coupling at a large momentum scale kUV, and we

will use kUV = 20 GeV for this scale later on. We now absorb Nc into the field strength squared
amplitude F2, i.e. F̄2 = Nc F2. With (B.10) this leads us to

Weff(F
a) =

1
4λ

F̄2 +∆Weff(F̄
2) , (B.14)

and consequently

〈F̄〉= F̄min(λ) −→ 〈F〉=
1
p

Nc
F̄min(λ) . (B.15)

The 1/Nc-scaling for 〈F〉2 derived in (B.15), is confirmed numerically in Appendix C.1.1. There,
the effective potential and its minimum is computed in a leading order Nc approximation and
hence shows the asymptotic 1/Nc scaling even for Nc = 2. This Nc-scaling is rooted in the
adjoint representation trace of na ta appearing the definition of the covariantly constant field
strength in (4.7), cf. (B.22). We have confirmed its numerical presence in a comparison of
Nc = 2,3.

B.2.3. Flow equation for the effective potential

Here we provide some details of the computation of the integrated flow (4.55) of the effective
potential, (4.52a) from the flow equation (4.50) and the propagators (4.53). Inserting the
latter into (4.50) yields,

∂tWk(F
a) =

3
2

Tr
∂tR
⊥
a (DT )

DT Za,k(DT ) + R⊥a (DT )
+

1
2

Tr
∂tR
∥
a(−D2)

−D2 + R∥a(−D2)

+
1
2

Tr P0
∂tR
⊥
a (−D2)

−D2 Za,k(−D2) + R⊥a (−D2)
− Tr

∂tRc(−D2)
−D2Zc,k(−D2) + Rk,c(−D2)

−
3
2

Tr
∂tR
⊥
a (p

2)

p2 Za(p2) + R⊥a (p2)
−

1
2

Tr
∂tR
∥
a(p

2)

p2 Za(p2) + R∥a(p2)
− Tr

∂tRc(p2)
p2 Zc,k(p2) + Rk,c(p2)

(B.16)

where the contributions in the first line are the glue contributions, and P0 denotes the projection
on the zero-mode. The traces in (B.16) sum over momenta or space-time, as well as internal
and Lorentz indices of the respective field modes. We have three covariant transverse modes
and one covariant longitudinal mode, the trivial gauge mode. The term in the second line is
the ghost contribution, and the field-independent subtraction in the third line normalises the
potential to Wk(F a = 0) = 0. We choose the regulator in consistency with the input data. The
regulators in [47] are defined as,

Ra,k(p) = p2 r(x)
�

Z̃a,kΠ
⊥(p) +Π∥(p)
�

,

Ra,k(p) = p2 r(x)Z̃ c,a . (B.17)

with the projection operators Π⊥,∥ defined in (4.35). In (B.17), x is the dimensionless momen-
tum variable, x = p2/k2, and the shape function r(x) used in [47] is given by,

r(x) =
�

1
x
− 1
�

1

1+ e
x−1

a

, a = 2× 10−2 . (B.18)
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The shape function (B.18) is a smoothened version of the Litim shape function, [129]. The
cutoff dependent prefactors Z̃a/c are given by

Z̃a,k = Za,k([k
n + k̃

n
]1/n) , Z̃ c,k = Zc,k(k) , (B.19)

with k = 1 GeV. The choice (B.19) ensures that the regulators have the same (average) momen-
tum scaling as the two-point functions, regulators proportional to the respective wave function
renormalisations of the fields are RG-adapted, see [127]. Moreover, the scale k = 1 GeV is
introduced for computations convenience; it leads to a gluon regulator, that does not diverge
at p = 0 for k→ 0. While even a singular regulator choice at p = 0 does not contribute to the
momentum integral, it complicates the numerics.

In [48] the regulator was used as it optimises fully momentum dependent approximations,
see [127]. However, the resolution of (B.16) requires the computation of TrF (−D2) and
TrF (−DT ) in terms of the discrete Eigenvalues or spectrum of the Laplacians −D2 and DT .
The spectral properties of the Laplacians are discussed in Appendix B.2.4. see also [211].

The optimisation of the approximation in terms of its momentum dependence as used in [48]
comes at the price that soft but sharp regulators delay the onset of the asymptotic ultraviolet
scaling in the presence of a discrete momentum spectrum, see [383]. Here, asymptotic UV
scaling entails, that the effective action reduces to the classical one with a running prefactor, see
(4.56). Indeed, for non-analytic regulators such as the Litim regulator or the sharp regulator
the asymptotic UV scaling. In Appendix C.1.1 we investigate the asymptotic UV scaling in the
present set up as well as the regulator (in)dependence of our results.

B.2.4. Spectral properties of Laplace-type operators

In this section we will comment on the background-covariant Laplacians, which were used
for the momentum dependence of the Landau-gauge propagators in (4.50) and (B.16). Their
explicit form follows from the gauge-invariant background field effective action [384] and is
given by

DT µν = −D2δµν + 2i g Fµν , DLµν = −DµDν , (B.20)

and Dgh = −D2. The transverse Laplacian also contains the spin-1 coupling to the background
field.

The traces over the Laplace-type operators in (B.16) can be evaluated upon introduction
of Laplace transforms using standard heat-kernel techniques. The subtleties arising from the
presence of a self-dual background are discussed in-depth in e.g. [222,385,386]. Here, we just
quote the relevant spectra in self-dual backgrounds from [211],

Spec
¦

− D2
©

= Fl(n+m+ 1), n, m= 0, 1,2, . . .

Spec
¦

DT

©

=

�

Fl(n+m+ 2) , multiplicity 2
Fl(n+m) , multiplicity 2

,

(B.21)

where Fl = |νl |F/
⎷

2, where dividing by
⎷

2 accounts for the multiplicity in a self-dual formu-
lation of Fµν and νl are the eigenvalues to the adjoint color matrix na ta. The covariant spin-1
Laplacian DT has a double zero mode for n = m = 0 which is due to the symmetry between
colour-electric and colour-magnetic field. The spectral problem of the longitudinal Laplacian
DL can be mapped onto that of −D2, such that (B.21) is sufficient for the calculation in the
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main part of the paper, see e.g. [222,385,386]. The trace Tr′ is defined as that without the
zero mode, and for a general function F we get,

Tr′F (DT) =2
N2

c −1
∑︂

l=1

�

Fl

4π

�2
(

∞
∑︂

n,m=0

F
�

Fl(n+m+ 2)
�

+
∞
∑︂

n=0

∞
∑︂

m=1

F
�

Fl(n+m)
�

+
∞
∑︂

n=1

F
�

nFl

�

)

=4
N2

c −1
∑︂

l=1

�

Fl

4π

�2 ∞
∑︂

n,m=0

F
�

Fl(n+m+ 1)
�

= 4 TrxcF (−D2), (B.22)

where the trace Tr sums over momentum or space-time, internal indices and Lorentz indices
of the respective field mode. Equation (B.22) displays an isospectrality relation between −D2

and the non-zero eigenvalues of DT. As a consequence, all gluon and ghost modes except for
the two zero modes couple in the same fashion to the selfdual background. This allows us to
compute (B.16).

B.3. Formulae: O(N) model in LDG

This section is taken from [5] and provides the reformulation of the flow to fit the LDG-scheme.

B.3.1. Linearising the diffusion

The flow equation of the O(N) model (5.23) is a highly non-linear convection diffusion equa-
tion. Therefore, an application of the LDG method presented in Section 5.2.2 requires a few
manipulations of the equation. Linearity in the second derivative is achieved by computing
the RG-flow of the first potential derivative ∂ρVk(ρ) and separately of the second ∂ 2

ρ Vk(ρ),
introducing artificially a second instationary equation. An according manipulation of the flow
is detailed in the following.

Starting from the flow of the O(N) model (5.7), we obtain the flow of the pion mass
u= ∂ρVk(ρ) = m2

π by taking a ρ derivative

∂tu=∂ρ( fN−1(u) + f1(u+ 2ρv)) , (B.23a)

where the bosonic flux is given by fi(x) = Ad
i

1+ x
k2

and the prefactor Ad =
vd kd

2(2π)d . The diffusive

contribution is captured in v = ∂ 2
ρ Vk(ρ), which appears in (B.23a) in a non-linear way. We can

solve this issue by deriving a flow equation for v explicitly. Taking an additional ρ derivative of
(B.23a) yields

∂t v =∂ρ∂tu= ∂ρ
�

∂ρ( fN−1(u) + f1(u+ 2ρv))

=∂ρ
�

v ∂u fN−1(u) + ∂ρs∂s f1(s)|s=u+2ρv

�

. (B.23b)

The last line now contains a simple convective flux and a second term which suits the LDG
scheme presented in Section 5.2.2. Furthermore, the correct diffusive behaviour, i.e. a flattening
and not a steepening of slopes, is ensured by the requirement 0 > 2ρ∂s f1(s). For a more
throughout discussion see [387] and in a fRG context [4]. In our case, the fulfilment of this
requirement is always given since

∂s f1(s) = −
Ad k2

(k2 + s)2
. (B.24)
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We continue by computing the flux of the stationary equation in (5.20), where the integral can
be computed analytically

j(u+ 2ρv) =

∫︂ u+2ρv

0

ds
A1/2

d k

(k2 + s)
= A1/2

d k log(k2 + (u+ 2ρv))− const . (B.25)

The constant drops out, since j is a flux. Hence only the derivative, or differences of j are
evaluated in the computation. The argument of the logarithm in (B.25) is always positive, due
to the convexity restoring properties of the equation and therefore k2 + (u+ 2ρv) > 0 at all
times during the flow [292].

B.4. Formulae: Applications to general RG-flows

The following section gives technical details for Chapter 7 and are taken from [7,8].

B.4.1. Diagrammatics of the modified flow equation

In this section we outline the derivation of the modified flow of the wave function. The full
flow of the two-point function reads with Rk,i j = Rδi j ,

∂tΓi j =∂tΓi j|φ̇=0 +

�

Gnm,i jφ̇n,m + Gnm,iφ̇m,n j + Gnm, jφ̇m,ni + Gnmφ̇m,ri j

�

R

−
�

φ̇nΓni j + φ̇n,iΓn j + φ̇n, jΓni + φ̇n,i jΓn
�

, (B.26)

where we used the short-hand notation introduced for the propagator derivatives in (7.13) and
below as well as

φ̇
(m)
i,φn1
···φnm

=
δφ̇ i

δφn1
· · ·δφnm

, (B.27)

as well as the short hand notation φ̇ i,n1···nm
. In (B.27) we have dropped the momentum

arguments. Note also that all quantities in (B.26) depend on k.
The first contribution is the standard 1PI Wetterich flow of the two-point function. The next

line can also be thought of in terms of diagrams: the terms correspond to the 2-, 1- point-

function and potential flows respectively, but the regulator term is replaced by ∂tRk→ φ̇
(m)

Rk,

where the superscript denoted the derivative and m = 1,2,3. φ̇
(2)

has one outer leg, φ̇
(3)

two. We can use this picture to drop some of the terms. Since the reparametrisation φ̇

has no external momentum dependence, the diagram containing φ̇
(3)

drops after taking the
momentum derivative.

Furthermore, all φ̇,φπi
contributions drop when evaluated at the expansion point φ0 =

(⎷ρ,0). We can see this by a symmetry argument: The left hand side of (B.26) is a function

of the invariant ρ. Thus the right hand side is necessarily too, which implies that φ̇
(1)

is a

function of ρ, whereas φ̇ and φ̇
(2)

are odd in φ. Using the relation

∂φi
f (ρ) = φi ∂ρ f (ρ) , (B.28)

for an arbitrary function f (ρ), we find that

φ̇φπi
|φ=φ0

= πi ∂ρ
δφ̇

δφ
|φ=φ0

= 0 . (B.29)
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B.4.2. Evaluation of the RG-adapted flow φ̇

The ρ−dependent anomalous dimension is obtained from (7.23) by integration. However, in
order to highlight the sole occurrence of ρηφ(ρ), we rewrite (7.23) accordingly,

(ρηφ)
′ =

�

ρ +
(ρηφ)

d + 1

�

Tηφ (V̄
′, V̄ ′′;ρ, T ) , (B.30)

where Tηφ (V̄
′, V̄ ′′;ρ, T ) is the resummed threshold function

Tηφ (V̄
′, V̄ ′′,ρ) =

4Ad (V̄
′′)2BB(2,2)

1+ 8Ad ρ̄(V̄
′′)2BB(2,2)

, (B.31)

with the threshold function BB(2,2)(m̄2
σ, m̄2

π; T ) defined in Appendix B.7.2 and

m̄2
π = V̄ ′(ρ̄) , m̄2

σ = m̄2
π + 2ρ̄V̄ ′′ρ̄) , (B.32)

the dimensionless versions of the masses (5.6), with the dimensionless fields ρ̄ = kd−2ρ and
potential V̄ = kd V . Solving (B.30) for ρηφ instead of solving (7.23) for ηφ also reduces the
error on the numerical integration. Both equations can be solved by using the variation of
constants method as (7.23) and (B.30) have the form,

∂ρ̄ y(ρ̄) = c(ρ̄) y(ρ̄) + d(ρ̄) . (B.33)

The solutions of (B.33) are given by

y(ρ̄) =C (ρ̄) [c0 +D(ρ̄)] , (B.34a)

with the integrated ’constants’

C (ρ̄) = exp

¨

∫︂ ρ̄

0

dρ̄′ c(ρ̄′)

«

, D(ρ̄) =
∫︂ ρ̄

0

dρ̄′
d(ρ̄′)
C (ρ̄′)

. (B.34b)

and the integration constant c0. The constant c0 can be used to tune boundary conditions for
ηφ(ρ), for example for ρ = 0 or for ρ =∞.

For the solution of (B.30) we read off the three functions y(ρ̄), c(ρ̄), d(ρ̄) with

y(ρ̄) = ρ̄ ηφ(ρ̄) , c(ρ̄) =
1

d + 1
Tηφ , d(ρ̄) = ρ̄Tηφ , (B.35)

with the resummed threshold function Tηφ (V̄
′, V̄ ′′,ρ) defined in (B.31). Then, (B.35) is inserted

in (B.34b), leads to the solution (B.34a) for ρ̄ ηφ(ρ̄).
The boundary condition c0 in (B.34a) can now be used for different purposes. Below we

discuss some prominent choices.

LPA′ from flowing fields

Firstly, we could use the equation to obtain LPA′ within the current approximation with ηφ(ρ):
in LPA′ the wave function or rather the anomalous dimension is taken to be constant and is
evaluated at the flowing expansion point, the solution of the equation of motion ρ0,k. Now we
chose c0,k such that

η′φ(ρ0,k) = 0 , (B.36)

which implies that corrections to a constant Zφ are of order (ρ−ρ0,k)2. With the choice (B.36),
the flows (7.23) and (B.30) reduce to the flow of the standard LPA′ scheme at ρ = ρk,0.
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1. ηφ,1 is the only solution which remains finite at ρ = 0 ((green) in Figure B.2). Its focus
point ρmax,1 is dependent on k and decreases monotonously during the integration after
starting at very high field values at k = Λ. Most importantly, ρmax,1 enters the flat regime
of the potential, i.e. the unphysical field values ρ, where ∂ρVk>0 < 0, for computations
in the broken phase. Here, the flow remains finite as k→ 0 and the flat region around
ρmax,1 is infinitely zoomed in.

2. ηφ,2 is the solution which focusses the region around the equations of motion, i.e.
ρmax,2 = ρ0 in (6.36b) ((red) in Figure B.2). By focussing on the equations of motion
we smooth out the well known non-analyticity of the potential at V (ρ0) as k→ 0. This
comes at the cost of ηφ,2 → −∞ as ρ → 0, which can be understood as a coordinate
singularity, see Appendix B.4.2.

Neither ηφ,1 nor ηφ,2 are optimal for every computation: ηφ,1 has an infinite magnification of
the unphysical region in the broken phase, whereas ηφ,2 is difficult to implement numerically
and cannot resolve ρ = 0 due to a diverging flow. The (blue) solution in Figure B.2 combines
both of these issues. In practice we use a hybrid of both ηφ,1 and ηφ,2: ηφ,1 is used whenever
ρmax,1 > ρ0, this comprises the entirety of computations which result in the symmetric phase at
k→ 0, see Figure 7.1b. A continuous transition to ηφ,2 is implemented once ρmax,1 ≤ ρ0, i.e.
once the focus point ρmax,1 of ηφ,1 slips into the flat regime, we switch to ηφ,2 and continue
to zoom in on the equations of motion ρmax,2 = ρ0. This switch occurs in the broken phase
and shows up as a kink in the k dependence of ηφ, compare Figure 7.1a. For a numerical
implementation of ηφ,2 we cut off the diverging flow around ρ = 0, this procedure is described
in Appendix B.4.3. The RG-time dependence of the anomalous dimension, together with its
magnification point on the equations of motion is ρ0 is visualised in Figure B.3.

B.4.5. Flowing with the minimum

In general, the CS-flow equation (7.45a) can be evaluated for arbitrary values of the external
field φ, which requires the computation of the full effective potential. Here, we simply evaluate
the flow on the solution φ0 of the equation of motion. This is a commonly used truncation and
gives access to the physical correlation functions. In the broken phase, the minimum of the full
effective potential depends on k, and the total mass flow of the two-point function is given by
the flow diagrams originating from the CS equation, ∂tΓ

(2)[φ0](p) and a term proportional to
the mass flow of φ0,

d
d t
Γ (2)[φ0](p) = ∂tΓ

(2)[φ0](p) +
�

∂tφ0 Γ
(3)[φ0]
�

(p) . (B.42)

The novel ingredient in the present setup originates in the tree-level k-dependence of φ0 ≈
Æ

6k2/λφ +O (λφk), where the second term comprises the loop contributions. This tree-level
dependence is usually absent in the flow of the minimum of standard momentum-shell flows.
There, ∂tφ0 only comprises the effects of the momentum shell integration and is inherently
one-loop and beyond. The tree-level k-dependence of φ0 in the present case triggers a tree-
level k-dependence of ∂tφ0Γ

(3)(p) and the tree-level flow of the physical two-point function
considered here reads

d
d t
Γ (2)
|︁

|︁

|︁

tree-level
= −2k2 + ∂tφ0S(3)[φ0] = 4k2 , (B.43)
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trivial, tree-level running of inverse propagator. It consists of the running of the mass parameter
and the classical part of the three-point function, connected to the flow of the minimum. Its
mean-field value cannot be altered by the renormalisation condition and is, analogue to the
respective term in Ṙ , crucial to recover the correct sign of the flow, see (B.43). A detailed
evaluation of (B.45a) can be found in Appendix B of [7].

B.4.6. Approximations and real-time flows in the symmetric and broken
phase

In the following section, we discuss the approximations used for the higher correlation functions,
which lead to non-trivial spectral flow-equations in both phases. This enables us to write down
the renormalised flow equations for the two-point function and evaluate them on the real
frequency axes.

In theφ4-theory, correlation functions of an odd number of fields, Γ (2n+1)[φ], are proportional
to the mean field φ. In the present approximation we only consider three- and four-point
functions, setting all the higher correlation functions to zero:

Γ (n>4) ≈ 0 . (B.46)

Then, the three-point function is proportional to a product of the four-point function and φ0.
This closes our approximation.

For constant vertices, the tadpole diagram only provides a constant contribution to the flow of
the two-point function. This contribution is absorbed completely in the on-shell renormalisation
condition (7.51) and (7.50), for the broken and symmetric phase respectively. In the symmetric
phase of the theory with φ0 = 0, the tadpole is the only contribution to the flow of the two-point
function. Hence, the scattering tail originates only from the non-trivial momentum dependence
of the four-point function. In a first but important step towards the full momentum dependence
of Γ (4)(p1, ..., p4) we use an s-channel resummation of the full four-point function,

Γ (4)(p2) =
λφ

1+
λφ
2

∫︁

q G(p+ q)G(q)
. (B.47)

In (B.47), p2 = s = (p1 + p2)2 is the s-channel momentum, and we choose vanishing t and u
channels to perform the resummation: (p3− p1)2 = (p1− p4)2 = 0. This approximation admits
the simple spectral representation (7.38) of the four-point function, see also [168].

We emphasise that (B.47) only holds true in the symmetric phase. In contrast, in the broken
phase the flow or BSE for the four-point function contains additional diagrams with two or four
three-point vertices. Their combined contributions are readily estimated and are suppressed by
a factor 1/8. Hence, they are dropped in the following computation. Accordingly, we use (B.47)
in both phases.

Note also, that the four-point function exhibits a bound state pole below 2m pole close to
the phase transition. This is discussed for example in [388] in terms of a Bethe-Salpeter
equation, and indeed seen in lattice and fRG calculations, see [389–391]. The present s-
channel resummation for the four-vertex does not include the resonant channel. A full bound
state analysis and the systematic inclusion of other channels will be considered elsewhere.

It is left to specify the three-point function Γ (3)(p1, p2, p3) in (B.45a). In contrast to the pivotal
importance of the momentum dependence of the four-point function, that of the three-point
function is averaged out in the vacuum polarisation and the fish diagram. For the sake of
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simplicity, we therefore approximate the full vertex by its value at vanishing momenta, pi = 0
for i = 1,2,3. There, the three-point function is given by the third derivative of the effective
potential on the equations of motion, V (3)eff (φ0). The effective potential Veff(φ) is the quantum
analogue of the classical potential, and is nothing but the effective action Γ [φ], evaluated for
constant fields φc ,

Veff(φc) =
1
V
Γ [φc] , V =

∫︂

d3 x . (B.48)

Due to the Z2-symmetry of the φ4-theory under φ→−φ, the effective potential is symmetric,
Veff(−φ) = Veff(φ). Moreover, it admits an expansion about the solution to the equation of
motion, φ2 = φ2

0 , which is valid for φ2 ≥ φ2
0 . The latter constraint on the modulus of (φ2−φ2

0)
originates from the fact that the classical effective potential is the double Legendre transform
of the classical potential. In the case of a non-convex potential it is simply the convex hull.
We shall consider the expansion up to (φ2 −φ2

0)
2, dropping higher order terms in accordance

with (B.46), and discuss the symmetric and broken phase separately in Appendix B.4.6 and
Appendix B.4.6 below.

Symmetric phase

In the symmetric phase with φ0 = 0 in (7.47), we use a Taylor expansion about φ2 = 0 for the
effective potential,

Veff(φ) =
∞
∑︂

n=1

λn

2n!
φ2n . (B.49)

The first two couplings, λ1 and λ2 are related to the correlation functions Γ (2) and Γ (4) consid-
ered here. Hence, the coupling λ1 agrees with the curvature mass squared in the symmetric
phase, where the curvature mass is defined as

m2
curv = V (2)eff (φ0) = Γ

(2)[φ0](p = 0) , (B.50)

in both phases. Moreover, the coupling λ2 is nothing but the full four-point function, evaluated
at vanishing momentum. In summary we have

λ1 = m2
curv , λ2 = Γ

(4)(p = 0) . (B.51)

For the initial UV pole mass m pole = Λ, the curvature mass and the pole mass agree, λ1 = Λ2,
and the initial coupling is the classical one, λ2 = λφ. Hence, the initial effective potential
V UV(φ) at k = Λ reads

V UV(φ) =
1
2
Λ2φ2 +

1
4!
λφφ

4 . (B.52)

With the above approximations, all higher correlation functions are fixed and the flow equation
of the two-point function on the real frequency axes reads

∂tΓ
(2)(ω+) = −

Zφ
�

2−ηφ
�

k2

2
Ddyn

tad (ω+) + 2k2 − ∂t Ŝ
(2)
ct , (B.53)
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where the retarded limit is given by ω+ = −i(w+ i0+). Ŝ
(2)
ct is given schematically by

Ŝ
(2)
ct = diagramms

�

p2 = −k2
�

. (B.54)

We denoted the counterterm action with a tilde since we already dropped constant terms in
the flow of order λφk. Hence, only the dynamic part of the tadpole D dyn

tad contributes. It arises
from the scattering tail of Γ (4)(p) and carries the spectral structure of the polarisation diagram.

Broken phase

In the broken phase with φ0 ̸= 0 we use a Taylor expansion about φ2 = φ2
0 for the effective

potential,

Veff(φ) =
∞
∑︂

n=2

λn

2n!

�

φ2 −φ2
0

�n
. (B.55)

At vanishing momentum and constant fields, the correlation functions derived from the effective
action Γ [φ0] coincide with the moments of the effective potential. We consider n-point functions
for n≤ 4 with

Γ (2)[φ0] (p = 0) =
1
3
λ2φ

2
0 ,

Γ (3)[φ0] (p = 0) = λ2φ0 +
λ3

15
φ3

0 ,

Γ (4)[φ0] (p = 0) = λ2 +
2
5
λ3φ

2
0 +

1
105

λ4φ
4
0 , (B.56)

In contrast to the symmetric phase discussed in Appendix B.4.6, also higher order terms up
to order n with couplings λn contribute due to φ0 ̸= 0. For this reason we have indicated
the φ0-dependence of Γ (n) in (B.56).We generically drop the φ0-dependence for the sake of
readability, it is implicitly assumed that all expressions are evaluated at φ0.

As a consequence of (B.46), all expansion coefficients λn with n≥ 3 vanish. The three and
four-point couplings are then given by

Γ (3)(0) = Γ (4)(0)φ0 , λ2 = Γ
(4)(0) . (B.57)

With (B.50) we can express the minimum of the effective potential in terms of the curvature
mass and λ2, yielding

φ2
0 =

3m2
curv

Γ (4)(0)
, (B.58)

Using (B.58), the three-point function is expressed in terms of the full two- and four-point
functions at vanishing momentum,

Γ (3)(0) =
Æ

3 Γ (4)(0)m curv . (B.59)

Evidently, in the classical limit with Zφ = 1 and ρ̃k = 0, the curvature mass agrees with the
pole mass. This limit is approached for asymptotically large pole masses, where the effective
coupling λφ/m pole tends towards zero. Hence, the ultraviolet effective potential V UV(φ) with
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k = Λ→∞ is augmented with a classical dispersion with µ= −Λ2 and the initial (classical)
coupling λ2 = λφ ,

V UV(φ) =
1
4!
λφ
�

φ2 −φ2
0

�2
, φ2

0 =
6Λ2

λφ
, (B.60)

for φ2 ≥ φ2
0 . The initial curvature and pole mass are given by

m2
pole = m2

curv = 2Λ2 . (B.61)

With these approximations, the real-time flow of the two-point function in the broken phase
reads.

∂tΓ
(2)(ω2

+) = Ṙ
�

D pol(ω
2
+)−

1
2

D dyn
tad (ω

2
+)
�

+ AD fish(ω
2
+) + 4k2 − ∂t Ŝ

(2)
ct , (B.62)

The prefactors are given in Appendix B of [7] and Ŝ
(2)
ct is given by

Ŝ
(2)
ct = diagramms

�

p2 = −2k2
�

. (B.63)

Additionally to the polarisation topology, we note that flow equation in the broken phase differs
from that in the symmetric phase. The constant part of (B.62) carries an additional factor of 2.
This resembles the additional factor 2 of the squared pole-mass in the broken phase compared
to its symmetric phase counterpart. Also the prefactor of the tadpole diagram deviates from the
symmetric case, since it includes the implicit k-dependence of the internal lines via the flowing
physical minimum.

Resumé

In both phases, we have a positive curvature mass m curv > 0 on the equation of motion φ0. Its
value is related to the pole mass m pole = k in the symmetric, and m pole = 2k in the broken
phase. The difference between the flows is the existence of vertices Γ (2n+1) in the broken
phase. They are proportional to sums of powers of φ0, see (B.56), and hence vanish in the
symmetric phase. Specifically, the flow of the two-point function in the broken phase contains
the diagrammatic topology of a vacuum polarisation.

This leads us to the following structure: the CS flows are initiated deep in the symmetric
and deep in the broken phase for large pole masses and a given classical coupling λφ, see
(B.52) and (B.60) respectively. For the broken phase this entails, that also the field expectation
value at the initial scale is large as it scales with Λ, see (B.58) and (B.60). Then, the pole
mass is successively lowered and for k = 0 one reaches the phase transition point from both
sides. In particular, the flows do not leave the broken or symmetric phase. This is in seeming
contradiction to the standard fRG picture in a scalar theory, where flows in the broken phase
may end up in the symmetric phase, and those in the symmetric phase end up deeper in the
symmetric phase. This apparent contradiction is resolved by the fact, that φ0 in the standard
fRG is defined from the subtracted EoM. There, the trivial cutoff flow, which is∝ k2φ, is
subtracted from the effective potential, and one recovers physics only in the limit k→ 0.
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B.5. Formulae: Functional flows for complex effective
actions

This section is taken from [4] and provides additional technical details which compliment the main
text.

B.5.1. The Polchinski flow

In this Appendix we briefly recapitulate the derivation of the Polchinski equation [68] for a
scalar theory. All correlation functions in Euclidean field theory can be obtained from the
generating functional. The generating functional is defined by its derivatives, see Equation (3.1).
It can, however, also be linked to an explicit path integral representation;

Zk[J] =

∫︂

dϕ e−S[ϕ]− 1
2

∫︁

x ϕRkϕ+
∫︁

x J(x)ϕ(x) , (B.64)

for a given theory of the real scalar field, ϕ ∈ R. In accordance with the general procedure of
the functional renormalisation group, we have already introduced the (infrared) cutoff term
in (B.64). The cutoff term Rk suppresses all contributions with p2 < k2 to the generating
functional. The correlation functions, derived from the generating functional Z[J], are the full
ones including their disconnected parts. The connected parts are derived from the Schwinger
functional

Wk[J] = log Z[J] . (B.65)

Important examples are given by the mean field in a given background current,

φ[J] =
δWk[J]
δJ

, (B.66)

and the propagator,

Gk = 〈ϕ(x)ϕ(y)〉c =W (2)
k [J] , (B.67)

where the subscript c stands for connected. The flow of Wk[J] is given by

∂tWk[J] = −
1
2

Tr ∂tRk

�

W (2)[J] +
�

W (1)[J]
�2�

. (B.68)

Equation (B.68) and its generalisations are the master equations for the derivation of flow
equations for the Wilsonian effective action (generating functional of amputated connected
correlation functions), the 1PI effective action (generating functional of one particle irreducible
correlation functions), functional symmetry identities, and further generating functions.

The derivation of the Wilsonian effective action continues, by using the inverse classical
propagator in the current. This removes (amputates) the external legs from the Schwinger
functional Wk[J],

J = S(2)k φ , with S(2)k = S(2)[φ0] + Rk , (B.69)

with a given background φ0, which can be chosen conveniently. The respective generating
functional,

Seff,k[φ] = −Wk[S
(2)
k φ] , (B.70)
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is the generating functional of amputated connected correlation functions. This amputation is
elucidated at the example of the one- and two-point functions,

S(2)k

δWk[J]
δJ

= −
δSeff,k[φ]

δφ
,

S(2)k

δ2Wk[J]
δJ2

S(2)k = −
δ2Seff,k[φ]

δφ2
. (B.71)

The flow equation for the Wilsonian effective action Seff,k[φ] can be obtained by inserting
(B.70) or rather (B.71) into the master-equation (B.68). It is given by
�

∂t +

∫︂

x
φ S(2)k ∂t G

(0)
k
δ

δφ

�

Seff,k[φ] =
1
2

Tr ∂t G
(0)
k

h

S(2)eff,k[φ]−
�

S(1)eff,k[φ]
�2i

, (B.72)

with the classical propagator

G(0)k =
1

S(2)k

=
1

S(2)[φ0] + Rk
. (B.73)

This is Wegner’s flow (3.20) with the kernel (3.25) and the anomalous dimension (3.28) as
discussed in Section 3.3.1.

Note that for cutoff-dependent (evolving) backgrounds φ0 the t-derivative in ∂tS
(2)
k also

hits the field. When expanding the Wilsonian effective action about its classical (or rather
UV) counter part Sk[φ], the trivial flow for the cutoff term is apparent. Already in the case
of real external fields, we find some inconveniences with this formulation. For example in
the investigation of chiral symmetry breaking, G(0)k runs into a singularity at some k > 0, thus
necessitating a formulation in evolving backgrounds. This observation motivates the choice of
an expansion about an RG-adapted propagator (see Section 6.1.1), already in a real setting.

Continuing with the derivation of the classical expansion of the Polchinski flow, we separate
the full two-point function from the effective action,

Seff,k[φ] = Sint,k[φ,φ0]−
1
2

∫︂

x
φ S(2)k [φ0]φ , (B.74)

This split eliminates the trivial running of S(2)[φ0] from the flow and makes numerical compu-
tations more convenient. Inserting (B.74) into the Polchinski flow (B.72) leads us to the flow
of the interaction part Sint,k[φ]

∂tSint,k[φ] =
1
2

Tr ∂t G
(0)
k

h

S(2)int,k[φ]−
�

S(1)int,k[φ]
�2i

+
1
2

G(0)k ∂tS
(2)
k , (B.75)

where the second line is φ-independent, but φ0-dependent.

B.5.2. Field expansion and flows of n-point functions of the RG-adapted
flow

This Appendix contains some technical details of the derivation of the RG-adapted flow derived
in Section 6.1.2. With (6.6), the one-point function is simply

φ̄ = −Gk[φ0]S
(1)
ad,k[0] , with φ̄ = 〈ϕ〉J=0 . (B.76)
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This entails that the one-point function encodes the information about the expectation value φ̄
of the field (up to the propagator). The latter is given by the two-point function,

S(2)ad [0,φ0] = −G−1
k [φ0] = −
�

Γ
(2
k [φ0] + Rk

�

, (B.77)

with the 1PI effective action Γk[φ]. We emphasise that (B.77) entails that the argument φ of
S(2)ad,k is the difference field to φ0, the possibly k-dependent expansion point. We have

Sad[φ] = −
1
2

∫︂

(φ + φ̄)G−1
k [φ0](φ + φ̄) +∆Seff[φ, φ̄] . (B.78)

Finally, the higher n-point functions S(n>2)
eff,k encode the interactions. We now disentangle the

flow of the latter from that of the propagator Gk[φ0] or rather Γ (2)k [φ0]. This is the crucial
ingredient of the RG-adapted flow for Sdyn, (6.13a) in Section 6.1.2, and reads

∂tΓ
(2)
k [φ0] =

1
2

Tr Ck

�

S(4)dyn,k[0]− 2S(1)dyn,k[0]S
(3)
dyn,k[0]
�

. (B.79)

In (B.79) the vertices S(3,4)
dyn,k[0] enter as well as the one-point function. The latter is given by

(B.76) with the flow

�

∂t + γdyn,k

�

S(1)dyn,k[0] =
1
2

Tr Ck S(3)dyn,k[0] . (B.80)

Finally, the flow of the interaction part,

Sint,k[φ] = Sdyn,k[φ]− S(1)dyn,k[0]φ , (B.81)

is given by
�

∂t +

∫︂

x

�

φγdyn,k +Dk

� δ

δφ

�

Sint,k[φ] =
1
2

Tr Ck

h

Ŝ
(2)
int,k[φ]−
�

S(1)int,k[φ]
�2i

, (B.82)

with

Dk =CkS(1)dyn,k[0] ,

Ŝ
(2)
int,k[φ] =S(2)int,k[φ]− S(3)int,k[0] ·φ −

1
2

S(4)int,k[0] ·φ
2 . (B.83)

The definition of the Schwinger functional in the complex plane suggests an ambiguity in the
definition of the complex part of (B.82) due to the complex logarithm.

B.5.3. Large cutoff limit

To begin with, one can easily convince oneself that for Rk →∞ in the limit k→∞, where
the path integral gets approximately Gaußian, to wit

Seff,k[φ]
k→∞
−→ −

1
2

∫︂

x
φ
�

S(2)k + Rk

�

φ +O(φ3) . (B.84)
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The Wilsonian effective action tends towards the classical Wilsonian action, including the cutoff
term, in the UV. This property is essential in deriving the initial conditions. Strictly speaking
it tends towards the UV-relevant part of the Wilsonian effective action. This holds true for
sufficiently small fields.

The case of general fields is resolved in a indirect way. We utilise that the flow of the effective
action Γk decays for large fields and only the primitively divergent terms in the action flow.
This leaves us with the limit

Γk→∞[φ̄]→ Scl[φ̄] . (B.85)

This implies that the relation between the current and the (mean 1PI) field φ̄ is given by

J =
δΓk

δφ̄
+ Rkφ̄ . (B.86)

For the classical action

Scl[φ̄] =
1
2

∫︂

φ̄S(2)φ̄ +
λ

4!
φ̄

4
, (B.87)

we arrive at

J =
�

S(2) + Rk

�

φ̄ +
λ

6
φ̄

3
, (B.88)

which entails that the 1PI mean field φ̄ and the Wilsonian field φ in (B.69) agree up to the
interaction piece. We have

φ = φ̄ +
λ

6
G(0)k φ̄

3
. (B.89)

Evidently, for sufficiently small field we have φ ≈ φ̄ and the Wilsonian action tends (B.84). In
turn, for large fields φ→∞ we have

φ ≈
λ

6
G(0)k φ̄

3 −→ φ̄ ≈
�

6
λ

S(2)k φ

�
1
3

. (B.90)

In any case we have for k→∞,

Wk[J]→
1
2

∫︂

φ̄S(2)k φ̄ +
λ

8

∫︂

φ̄
4

, (B.91)

and hence

Seff,k[φ]→−
1
2

∫︂

φ̄S(2)k φ̄ −
λ

8

∫︂

φ̄
4

, (B.92)

where φ̄[φ] solves (B.89).
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First, we check if our results are holomorphic: to this aim we integrate along the red and
blue path in Figure B.5 and compute their relative error given by

∆I =
Ired − Iblue

Ired
. (B.96)

The Cauchy-Riemann equations are used to obtain the respective y derivatives. The relative
error remains below 10−3 for all schemes up until φ = 2. From there on, a small numerical
error is generated, which stems from the interpolation of steep structures in post-processing.

Generally, all integrated results are obtained by integration along the red path. Although
ideally both paths should yield the same result, the numerical precision along the red path is
superior: The numerical grid, and thus the high numerical precision, follows the real direction.
Therefore, the biggest contribution to the path should follow from a horizontal line, whereas
the vertical contribution should, preferably, be small. The red path is now favoured by two
observations:

• Symmetry dictates, that either the real or imaginary part of the function f is zero on the
imaginary axis, i.e. the vertical red path.

• The imaginary part on the real axis is zero, i.e the horizontal, imaginary blue path does
not contribute at all.

B.6. Formulae: The quark-meson model

This section is taken from [1] and provides additional technical details which compliment the main
text.

B.6.1. The large-Nf limit

Some of the numerical results in Chapter 8 are obtained in the large-N f limit of the flows, as it
simplifies the numerical treatment significantly: it eliminates the second derivative terms in
the sigma meson mass term. We are left with only the pion loops as well as the quark loop.
The pion loops constitute the flow of a pure O(N)-theory in the large-N f limit as considered
in [65] with discontinuous Galerkin methods. Such a non-linear first order system is solved
using approximate Riemann solvers. These solvers rely on the assumption that the solution is
dominated by one strong wave, for more details see Appendix A. This assumption holds if the
flow is dominated by contributions of the pion and quark loops, which is always ensured in the
large-N f limit.

This simplification is also helpful when considering systems of multiple differential equations.
However, it will also be instructive to make a comparison between both the finite N f case and
the large-N f limit in the case with constant Yukawa coupling. Moreover, we can simulate the
physics case, N f = 2 and Nc = 3, with a suitable chosen large-N f limit:

To begin with we keep the ratio of color and flavour fixed to that of the N f = 2 quark-meson
model in QCD,

Nc

N f
=

3
2

. (B.97a)

With (B.97a) we keep the flavour-colour balance of QCD intact. This ensures that the contri-
butions of the quark-loop are not suppressed by 1/N f . Moreover, the flavour-colour ratio is
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certainly of crucial importance for e.g. the question of the existence and size of a quarkyonic
phase. Finally, we consider the following generic rescaling of ρ, Vk(ρ) and hk(ρ),

ρ→
N2

f − 1

Nπ
ρ , Vk(ρ)→

N2
f − 1

Nπ
Vk(ρ) , hk(ρ)→

⌜

⃓

⎷

Nπ
N2

f − 1
hk(ρ) . (B.97b)

The factor Nπ in (B.97b) is introduced to simulate the flows of a quark-meson model with Nπ
pions instead of one sigma meson and three pions. Both cases are relevant for the physics of
two-flavor QCD or the two-flavour QM-model.

In the chirally symmetric phase for large temperatures and cutoff scales, the pions and the
sigma are degenerate on-shell at ρ = 0. The second derivative term vanishes 2ρV ′′(ρ)

|︁

|︁

ρ=0 = 0,
and the on-shell σ-propagator agrees with the pion one, and the (on-shell) flow equation
resembles that with four pions.

In turn, in the broken phase, the σ-mode develops a mass and quickly decouples from the
dynamics of the system. Then, the (on-shell) dynamics of the theory is driven by the three
(massless or light) pions. From previous fRG investigations of the quark-meson model as well
as QCD we know that the mesonic dynamics in the broken phase is of sub-dominant importance
for not too large chemical potential. This suggests that the N = 4 case should mimic the
two-flavour case best. A full discussion of the comparison is provided in Section 8.2.1 and
Section 8.2.2.

With the limit N f → ∞ and (B.97) we derive the flow equations for large-N f Yukawa
coupling, hlN

k (ρ), and effective potential, V lN
k (ρ),

∂t V
lN
k (ρ) =

k5

12π2

¦Nπ
επk
(1+ 2nB(ε

π
k ))−

4× 2× 3

ε
q
k

(1− n f (ε
q
k +µ)− n f (ε

q
k −µ))
©

, (B.98)

and

∂th
lN
k (ρ) = − 4Nπv3(h

lN
k (ρ))

3 L(4)(1,1)(m
2
q,k, m2

π,k; T,µ)− 2Nπv3k2(hlN
k (ρ))

′l(B,4)
1 (m2

π,k; T ) .
(B.99)

This concludes our derivation of the set of flow equations in LPA. Numerical results for finite
N f and the large-N f limit are presented in Section 8.2.

Flows in the large-N f limit

In this section the quark-meson model flows in the large-N f limit are reformulated to simplify
their numerical treatment. Equation (8.3) and (B.98) are rearranged following the idea of
Section 5.1.2. Here, the dependency on the first derivative can be eliminated by introducing it
as a new variable, which coincides with the pion mass squared,

uk(ρ) = ∂ρVk(ρ) = m2
π,k . (B.100)

The flow of the Yukawa coupling at finite N is given by a highly non-linear equation of second
order. Since it can not be made to fit the form given in (A.1), it is not solved within the direct
DG framework. However, the expression simplifies significantly in the large-N f limit and (B.99)
can be written to suit the formalism. Equation (B.99) is rewritten in terms of the quark mass
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squared m2
q(ρ), as we are primarily interested in physical observables. Thus, a new variable is

introduced,

wk(ρ) = 2hk(ρ)
2ρ = m2

q,k . (B.101)

Appendix B.6.1 explains how the ambiguity in splitting the conservative and non-conservative
contributions to the flux are used to accommodate boundary conditions. For completeness the
final form of the equations is stated,

∂tuk =∂ρ fu(uk, wk) ,

∂t wk =∂ρ(a(uk)wk)− (wk∂ua(uk))∂ρuk + s(uk, wk) . (B.102)

This version of the equation has the advantage that the non-conservative product is rather
small in comparison to the conservative part.

Explicit equations

The flow equation of the pion mass is obtained by taking a ρ derivative of the effective potential.
In case of the large-N f model this is given by,

∂tu
lN
k (ρ) =∂ρ

�

k5

12π2

�

Nπ
επk

�

1+ 2nB(ε
π
k )
�

−
4× 2× 3

ε
q
k

�

1− n f (ε
q
k +µ)− n f (ε

q
k −µ)
�

«�

.

(B.103)

The flow equation of the Yukawa coupling in (B.99) is rewritten in terms of the quark mass
squared m2

q(ρ). To this aim, we multiply the original flow equation by 4h(ρ)ρ, which gives

∂t wk =4hkρA(uk)∂ρhk + 4ρh4
kB(wk, uk) = 2ρA(uk)∂ρh2

k + 4ρh4
kB(wk, uk)

=A(uk)∂ρwk − 2h2
kA(uk) + 4ρh4

kB(wk, uk)

=A(uk)∂ρwk +
wk

ρ

�

wkB(wk, uk)− A(uk)
�

,

(B.104)

where

A(m2
π,k; T,µ) = −2Nπv3k2l(B,4)

1 (m2
π,k; T ) , (B.105)

corresponds to the contribution of the pion tadpole diagram and

B(m2
q,k, m2

π,k; T,µ) = −4Nπv3 L(4)(1,1)(m
2
q,k, m2

π,k; T,µ) , (B.106)

to the mixed contribution in Figure 8.1. The explicit form of the threshold functions is given in
Appendix B.7.2.

Calculation of the non-conservative numerical Flux

The flow equation for the Yukawa coupling (B.99) was reformulated in Appendix B.6.1 to suit the
general form of the partial differential equations given in (A.1) and contains a non-conservative
flux term and a source term s,

∂t wk = A(uk)∂ρwk + s(uk, wk) . (B.107)
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The exact definition and derivation of the appearing terms is given in (B.104).
The formulation requires the computation of a non-conservative flux, using the integral

derived by the jump condition in Appendix A in (A.5). We chose a straight path across an
interface,

w(s) =w− + s(w+ −w−) ,

u(s) =u− + s(u+ − u−) .

We note again that this is a path along the solutions u and w and not a path in the ’spatial’
coordinate ρ. The straight path was chosen because it is often the simplest choice for the
evaluation of the integral. In our case the expression simplifies so much that it can be evaluated
analytically, due to the explicit form of the equations, where the non-conservative flux is given
by

A(u(s)) = ∂u g (u(s)) =
1

u+ − u−
∂s g (u(s)) . (B.108)

This gives

D(u+, u−, w+, w−, n̂) =
1

2(u+ − u−)

∫︂ 1

0

n̂
∂ g(u(s))
∂ s

∂ w(s)
∂ s

ds+ C[[w]]

=
n̂

2
g(u+)− g(u−)

u+ − u−
(w+ −w−) + C[[w]] , (B.109)

where we used in the last equality that ∂sw is a constant expression. Instead, the constant C is
simply the absolute value of the jacobian matrix.

C =

∫︂ 1

0

|A(u(s))n̂| ds . (B.110)

Often, it can be approximated as the maximal characteristic speed of the non conservative
product. Note that for constant u across the interface g(u+)−g(u−)

u+−u− = A(u), such that we recover
a conservative flux for constant u. There is a large set of paths across the interface that lead
to the same value in the integral, due to the fact that A can be written as a derivative of u.
This hints at the possibility that there might be a conservative formulation for the system of
equations.

Since this formulation only allows flux boundary conditions for conservative fluxes a partial
integration is performed,

A(uk)∂ρwk = ∂ρ(A(uk)wk)−wk∂ρA(uk) . (B.111)

We now have a conservative flux A(uk)wk the proper in-/out-flow boundary conditions for wk
and a very small non-conservative flux contribution D′ accounting for jumps in uk,

D′ =D − [A(u+k )w
+
k − A(u−k )w

−
k ] . (B.112)

This contribution is very small when uk is smooth and only contains small jumps across
interfaces. It obviously vanishes at the outer boundary since there we have u+k = u−k . Thanks to
this formulation of the equation the maximal wave speed of the non conservative product is
rather small and can be neglected in practice. In the general case however the inclusion of this
term is important especially if the non conservative product are the only convective term in the
equation, since it introduce the necessary numerical dissipation to make the numerical scheme
stable.
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B.7. Expressions for the flat regulator

This section is taken in parts from [1] and [9].

Many of the current applications use a 3d or 4d flat cutoff, since it is the optimal choice in the
commonly used local potential approximation. In the following, we summarise the expressions
for the regulator Appendix B.7.1 and give the explicit expressions for the momentum integrated
loop-diagrams in Appendix B.7.2 for this explicit regulator.

B.7.1. Regulators

In the present work we often use the flat or Litim regulator, see [308]. The flat bosonic regulator
is given by,

RB(p) = ZB,kp2 rB(x) , rB(x) =
�

1
x
− 1
�

θ (1− x) , (B.113)

with x = p2/k2, and the fermionic one reads

RF = ZF,k/p rF (x) , rF (x) =
�

1
⎷

x
− 1
�

θ (1− x) . (B.114)

ZB,k and ZF,k indicate the wave functions evaluated on some background, for the corresponding
particles. The specific choice is indicated with the application. For example in LPA we set Z = 1.
Furthermore the gluon regulator is given by

�

RA
k

�

µν
(q0,q) = ZA,k(ρ0)q

2 rB

�

q2/k2
�

�

δµν −
qµν
q2

�

+
q2

ξ
rB

�

q2/k2
�

�qµν
q2

�

, (B.115)

in the Landau gauge with ξ→ 0.
At finite temperatures, we resort to a spatial cutoff (usually three-dimensional), where

we replace the p = (p0,p) dependence in the regulator with a purely spatial momentum
dependence p and accordingly x = p2/k2→ p2/k2.

The flat cutoff is optimised for the 0th order in the derivative expansion, which is used
throughout this work, [127,129,130].

B.7.2. Common threshold functions

This section is a compilation of threshold functions. First we perform the Matsubara summation
and secondly we perform the momentum integration. Since we are surrently considering a
flat regulator, the momentum dependence drops from the denominator and both steps can be
neatly separated. This is different when smooth regulators are used.

Matsubara summation

The threshold functions are computed in terms of the scalar parts of the propagators with the
flat cutoff, see Appendix B.7.1. The bosonic and fermionic ones are given by,

Gb(q, m̄2) =
1

(q0/k)
2 + 1+ m̄2

, (B.116)

G f (q, m̄2) =
1

�

(q̃0 + iµq)/k
�2
+ 1+ m̄2

, (B.117)
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respectively. The Matsubara frequencies read q0 = 2 jπT , with j ∈ Z for the Bosons and
q̃0 = (2 j + 1)πT , with j ∈ Z for the Fermions. With renormalised dimensionless masses
m̄= m/k.

The threshold functions, in which we perform the Matsubara summation, are defined in the
standard way. Firstly, we consider fermionic and bosonic loops that contain n1, n2, . . . fermionic
and bosonic particles, that is

B(n)(m̄
2; T ) =

T
k

∑︂

j

�

Gb(q, m̄2)
�n

,

F(n)(m̄
2; T,µq) =

T
k

∑︂

j

�

G f (q, m̄2)
�n

, (B.118)

for loops with a single particle. For multiple particle loops they follow the scheme

FB(n1,n2)(m̄
2
f , m̄2

b; T,µq) =
T
k

∑︂

j

�

G f (q, m̄2
f )
�n1 �

Gb(q, m̄2
b)
�n2 ,

BB(n1,n2)(m̄
2
b1, m̄2

b2; T ) =
T
k

∑︂

j

�

Gb(q, m̄2
b1)
�n1
�

Gb(q, m̄2
b2)
�n2 . (B.119)

The n+ 1-th function can be inferred from the n-th by taking a derivative with respect to m̄2

P(n+1)(m̄
2) = −

1
n
∂m̄2 P(n)(m̄

2) , (B.120)

where P ∈ {B, F}. Naturally, (B.120) generalises to multiple particle loops, i.e. FB(n1, n2) are
obtained in a similar fashion. This follows simply by taking the structure of the scalar part of
the propagator (B.116) into account. Therefore it suffices to compute the lowest threshold
function with n= 1 for which the Matsubara summation reads

B(1)(m̄
2; T ) =

coth
� E k

2T

�

2E
,

F(1)(m̄
2; T,µq) =

tanh
�

(E−µq) k
2T

�

+ tanh
�

(E+µq) k
2T

�

4E
, (B.121)

where the dispersion relation is given by Ex =
q

1+ m̄2
x . We note, that we chose to indicate

the threshold functions in terms of hyperbolic functions instead of the conventional choice of
thermodynamic distributions. The definitions are equivalent to the expressions used in [51,58].
The notation is changed to accommodate the need for higher numerical precision in a field
dependent formulation. The loops containing a fermionic and a bosonic species each are
evaluated to

FB(1,1)(m̄
2
f , m̄2

b; T,µq) = k2/4

� tanh
� E f k−µq

2T

�

/E f

k2(m2
b −m2

f ) + (πT + iµq)2 − 2kiE f (πT + iµq)
+
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� E f k+µq

2T

�

/E f

k2(m2
b −m2

f ) + (πT + iµq)2 + 2kiE f (πT + iµq)

+
coth
�

Eb k
2T

�

/Eb

−k2(m2
b −m2

f ) + (πT + iµq)2 + 2kiEb(πT + iµq)
+

coth
�

Eb k
2T

�

/Eb

−k2(m2
b −m2

f ) + (πT + iµq)2 − 2kiEb(πT + iµq)

�

.

(B.122)
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Furthermore, we have loops with two boson species, with masses m̄2
b1 and m̄2

b2, and one fermion
given by,

FBB(1,1,1)(m̄
2
f , m̄2

b1, m̄2
b2; T,µq) = k2/4

+

� k2 tanh
� E f k−µq

2T
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/E f
�
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2T
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/E f
�
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�
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(B.123)

Loops containing only bosons from different species are evaluated to

BB(1,1)(m̄
2
b1, m̄2

b2; T ) = −
1

2(m2
b1 −m2

b2)

⎡

⎣

coth
�

kEb1
2T

�

Eb1
−

coth
�

kEb2
2T

�

Eb2

⎤

⎦ . (B.124)

Momentum integration

With the flat regulator function the momentum integrations ia somewhat trivial, since the
denominator of the propagators is completely momentum independent. In the presence of
an anomalous dimension however, we obtain differing prefactors. To this aim we define the
threshold functions l(B/F,d)

0 in d space-time dimensions. They are related to bosonic/fermionic
loops and are defined as follows

l(B,d)
0 (m̄2

φ,k,ηφ,k; T ) =
2

d − 1

�

1−
ηφ,k

d + 1

�

B(1)(m̄
2
φ,k; T ) , (B.125)

and

l(F,d)
0 (m̄2

ψ,k,ηψ,k; T,µ) =
1

d − 1

�

1−
ηψ,k

d

�

F(1)(m̄
2
ψ,k; T,µ) , (B.126)

where the Matsubara sums B(1), F(1) are given in (B.121). Higher threshold functions l(B/F,d)
n

are again obtained by the respective derivatives (B.120).
Similarly, the momentum integration over mixed fermionic/bosonic loops yields

L(d)(1,1)

�

m̄2
ψ,k, m̄2

φ,k,ηψ,k,ηφ,k; T,µ
�

=
2

d − 1

h�

1−
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d + 1

�

FB(1,2) +
�

1−
ηψ,k

d

�

FB(2,1)

i

.

(B.127)



APPENDIX C

Side notes

C.1. Additional material: Gluon condensate

C.1.1. UV Asymptotics of the effective potential and regulator
independence

The present work utilises the ghost and gluon propagators from [47]; which has been obtained
within a quantitative approximation to the full Yang-Mills system. There, and in respective
works in QCD, [44,48,125] it has been checked that the choice of the regulator is of subleading
importance for the propagators at vanishing cutoff scale, which is one of the self-consistency
checks that goes into an estimate of the systematic error.

As mentioned at the end of Appendix B.2.3, the relatively sharp regulator here delays the
onset of UV asymptotics and hence the onset cutoff scale k ≳ kon of the regime in which the
effective potential reduces to the classical form (4.56). For the sake of convenience we recall it,

Wk(F
a)

k≳kon−→
F2

16παs(k)
, αs(k) =

1
4π

g2
s

ZA(k)
. (C.1)

In this regime the flow is simply a linear function in F2 with the slope ∂t1/(16παs). Hence, for
large cutoff scales we have,

∂tWk(F
a)→−

∂tαs(k)
αs(k)

1
16παs(k)

F2 . (C.2)

The coupling αs in (C.1) is the background coupling which has the same (two-loop) universal
β-function as the fluctuation coupling αs,fluc = g2

s /(4πZa Z2
c ) computed in [47]. However,

the equivalence of the perturbative β-functions still allows for a global rescaling αs = γ̄αs,fluc
whose value is checked by comparing the two flows for k→ kUV,

γ̄= lim
F2→0

16πα2
s,fluc

∂tαs,fluc

∂tWk

F2
≈ 1 . (C.3)

This fixes our initial condition, and in Figure C.1b we show both, the respective integrated
flow, Figure C.1a, and the full cutoff dependent effective potential that also involves the initial
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to the gluon wave function Za(p2) in the momentum regime

p ∈ [pmin , pmax] , (C.8)

with

pmin ∈ [0.77,1.27]GeV , pmax ∈ [1.95,2.23]GeV , (C.9)

where the range of values for pmin is adapted to the data points of the sparse fRG data.
The upper bound pmax is chosen such, that the interval sustains a Taylor expansion while

containing a sufficient amount of data points for fitting, also adapted to the fRG data points.
Its maximum value is further constrained by the UV boundary of the lattice data from [234],
which are used for comparison as well as the error estimate, together with the lattice data
from [194].

The constants Zm, Zp2 and Zcond in (C.7) are fit parameters. Here Zm takes care of the infrared
gapping dynamics, and Zp2 related to a standard (infrared) wave function renormalisation.
Both parts carry the details of the IR behaviour of the propagator and may vary largely for
different solutions. In turn, the coefficient Zcond should not.

We perform the fits for different values of the lower fitting interval bound pmin. For every fit,
pmax is varied between the points in the pmax interval, comp. (C.9). In addition, we transform the
lattice and fRG data sets into the respective (inverse) dressing function and inverse propagator,
and fit those with the respective fit functions corresponding to (C.7). This provides us with a
Zcond(pmin) given as the average over the single fit results for the different values of pmax and
representations of the data set, with uncertainty given by the standard deviation.

Eventually, we extract the wave function renormalisation Zcond at p = 0 via a limiting
procedure as

Zcond = lim
pmin→0

Zcond(pmin) . (C.10)

The limit is obtained within an extrapolation of the Zcond(pmin) discussed below. We extract
Zcond from both the scaling fRG data of [47] as well as the lattice solution [234], see Figure C.4
and Table C.1 for the numerical values. We also provide Zcond from a lattice-type fRG decoupling
solution for comparison in Table C.1. When lowering the lower fit interval bound pmin, the
results for Zcond differ more and more. This can be attributed to the different infrared behaviour
of the two data sets. Accordingly, we exclude as many incompatible data points as possible
from the extrapolation fit regime while keeping enough data for a meaningful prediction of
Zcond(p = 0).

As the data from [47] are relatively sparse and hence the respective Zcond(pmin) and the
extrapolation show large error bars, we support this extrapolation with one obtained from
dense fRG data provided in [392]. While the approximation used in the latter computations is
not as sophisticated as that used in [47], it allows for a relatively quick production of dense
data. The scaling solution yields Zcond = 0.166(33), which agrees extremely well with the
scaling solution estimate of [47], comp. Table C.1.

Our final estimate for Zcond is obtained by averaging the scaling fRG and lattice result, yielding

Zcond = 0.149(19) . (C.11)

The error bars are given by the separate extrapolation results for scaling fRG and lattice data
in order to incorporate systematic uncertainties such as the influence of the different infrared
behaviours.
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Figure C.5.: Left panel: Diagrammatic representation of (C.15). Right panel: the momentum depen-
dence of C(q2) and C (q2).

C.1.3. Schwinger mechanism

In order to facilitate the comparison with the literature, in this Appendix we modify the notation
employed in the main body of the article, denoting by ∆(q2) and D(q2) the gluon and ghost
propagators, respectively, and by Z (q2) and F(q2) their dressing functions: Z (q2) := q2∆(q2)
and F(q2) := q2D(q2).

According to one of the main approaches put forth in a number of works [246,393–396],
the generation of an effective gluon mass proceeds through the non-Abelian implementation
of the well-known Schwinger mechanism [397–400]. Within this scenario, the fundamental
vertices that enter in the DSE of the gluon propagator, ∆(q2), contain longitudinally coupled
massless poles, which eventually trigger the result ∆−1(0) := m2

gap.

In particular, the three-gluon vertex, IΓµαβ(q, r, p), and the ghost-gluon vertex, IΓµ(q, r, p) ,
are composed by two distinct types of terms, namely

IΓµαβ(q, r, p) = Γµαβ(q, r, p) +
qµ
q2

gαβC1(q, r, p) + · · · ,

IΓµ(q, r, p) = Γµ(r, p, q) +
qµ
q2

C(q, r, p) , (C.12)

where the terms Γµαβ(q, r, p) and Γµ(q, r, p) contain all pole-free contributions, which may
diverge at most logarithmically as q → 0 [401]. The ellipses in the first relation of (C.12)
denote terms proportional to rα/r2 or pβ/p2, which are annihilated when contracted with the
transverse (Landau gauge) gluon propagators inside the relevant diagrams of the DSEs, or
tensorial structures that are subleading in the limit q→ 0.

A detailed analysis [402] based on the Slavnov-Taylor identities satisfied by the above vertices
reveals that

C1(0, r,−r) = C(0, r,−r) = 0 . (C.13)
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Therefore, the Taylor expansion of C1(q, r, p) and C(q, r, p) around q = 0 yields

lim
q→0

C1(q, r, p) =2(q · r)
�

∂ C1(q, r, p)
∂ p2

�

q=0
⏞ ⏟⏟ ⏞

C(r2)

+O (q2) , (C.14)

lim
q→0

C(q, r, p) =2(q · r)
�

∂ C(q, r, p)
∂ p2

�

q=0
⏞ ⏟⏟ ⏞

C (r2)

+O (q2) .

Thus, inserting the vertices of (C.12) into the DSE of the gluon propagator and taking the limit
q→ 0, one arrives at (see Appendix C.1.2) [395]

m2
gap =

3CAαs

8π

∫︂ ∞

0

d yZ 2(y) [6παsCAY (y)− 1]C(y) +
CAαs

8π

∫︂ ∞

0

d y F2(y)C (y) . (C.15)

In the above formula, αs = g2
s /4π, defined at the renormalisation point µ where the ingredients

of (C.15) have been renormalised, within the momentum subtraction (MOM) scheme; the
renormalisation point has been chosen at µ= 4.3 GeV. Moreover, CA is the Casimir eigenvalue
of the adjoint representation with CA = Nc for SU(N). Finally, Z (y) and F(y) denote the
dressing functions of the gluon and ghost, respectively, and Y (k2) is an appropriately projected
contribution of the sub-diagram shown in Appendix C.1.2.

The functional form of the pole residues C(k2) and C (k2) is determined from the linear
homogeneous system of coupled Bethe-Salpeter equations that they satisfy. This system is
derived from the corresponding DSEs governing the dynamics of IΓµαβ(q, r, p) and IΓµ(q, r, p),
in the limit q→ 0; for further details, see [395].

The resulting eigenvalue problem yields non-trivial solutions for C(k2) and C (k2), for a
specific value of the coupling αs, which depends on the details of the ingredients that enter in
the kernels of the Bethe-Salpeter system. It is important to emphasise that the homogeneity and
linearity of the equations leaves the overall scale of the corresponding solutions undetermined.
The scale setting is implemented by solving the vertex DSEs for general kinematics, using as
input the particular αs that was singled out by the eigenvalue condition. Then, from the general
3-D solution the particular slice that corresponds to C(k2) and C (k2) is identified, furnishing
precisely the correctly rescaled version of the solutions obtained from the system. The final
form of the scale-fixed pole residues is shown in Appendix C.1.2.

The next step consists in substituting into (C.15) the scale-fixed C(k2) and C (k2), and
use refined lattice data [234] for the gluon and ghost dressing functions, Z (k2) and F(k2).
The lattice propagators have been normalised at the point µ = 4.3 GeV, namely the highest
momentum scale available in this simulation. For the purpose of the comparison with the
results computed in the present work we match the scales of the lattice data in [234] with that
in [47], which leads us to

m(Schwinger)
gap = 0.320(35)GeV . (C.16)

Equation (C.16) is in excellent agreement with the estimate mgap = 0.322(34)GeV obtained
in the present work, see (4.66). Both compare rather favourably to the central lattice value
∆−1/2(0) = 0.354 GeV. The predominant source of error in the calculation using the Schwinger
mechanism originates from the uncertainties in the non-perturbative structure of the pole-free
vertex Γµαβ(q, r, p), which affects both the determination of the function Y (k2) in (C.15), as
well as the kernels of the Bethe-Salpeter equations that determine the functions C(k2) and
C (k2).
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C.3.1. The parabolic blow-up

In Section 6.3.2 and Section 6.4 we compute the dynamical potential Vdyn,k(φ), and thus the
Schwinger functional W [J], in the complex plane. Convergence is achieved until some critical
value of the current Jc . For |Jy |> Jc the numerical solution displays a blow-up, i.e. it develops
a singularity at some finite k > 0. This possibility was discussed in Section 6.2.1. The existence
of complex poles in the potential of the Schwinger functional follows from the analytic structure
of the equation, see [264, 403]. In d = 0 the blow up can directly be associated with the
zero of the generating functional. In any case, the numerical blow-up is the final slice, for
which the expansion around φ0 in the RG-adapted scheme still applies. The last converging
computation in d = 4 is at φy = 3.25 (J ≈ 3.35). Although we are not at the pole position yet,
there is a premature blow up in the equations due to the numerical approximation scheme.
The occurrence of oscillations around discontinuities is expected in numerical schemes using
polynomials and is generally accounted for in the numerical fluxes. In the close proximity of
a blow up, the arising oscillations create negative diffusion, which causes an instant failure
of the computation, or prematurely triggers a blow-up. These issues can be dealt with using
positivity preserving LDG-schemes, see [317], but is not within the scope of this work.

The converged slices are interpolated in φy direction. To resolve the real direction we use a
grid from φx ∈ [−3, 3] with a polynomial order N = 2 and a cell number K = 200, to further
reduce the occurrence of oscillatory behaviour. In Figure C.9 we show the raw data from the
evaluation of the RG-adapted flow (6.29). The build up of the singularity is clearly visible, all
other structures of the potential vanish in comparison.

We are now interested in obtaining the exact position of the divergence from the derivative
of the effective interaction potential. We make use of the Cauchy-Riemann equations to obtain
the expression for the real part of the dynamical potential,

Re[Vdyn(0,φy)] =

∫︂ φy

0

dφ′y
∂ Re[Vdyn]

∂ φ′y
(0,φ′y) = −
∫︂ φy

0

dφ′y
∂ Im[Vdyn]

∂ φ′x
(0,φ′y) .

Furthermore, we obtain the full potential of the Schwinger functional from (6.34). Since we
are investigating a zero of the generating functional, we use a logarithm as a fit function.
To accommodate the overall structure of the potential, we add a mass parameter c, which
significantly improves the stability of the fit. This choice is further supported by previous

Fit param. a b Jc c

d = 0 0.388(90) 1.0008(55) 3.002104(65) −0.281(12)
d = 4 9.7(88) 1.24(41) 3.3659(42) −0.99(91)

Table C.2.: Fit parameters to the fit in (C.18) and plotted with the data-set in Figure C.9. The error to
the fit parameters in d = 4 is given by removing/adding the last 10 data-points from/to
the fit. The d = 0 fit only uses the data-points left of the singularity. Here, errors were
obtained by adding 25 data-points to the fit interval (generated from the numerical integral).
Surprisingly, we find that the fit allows for big deviations in the parameters a, b and c. The
position of the singularity, however, is barely affected by adding/removing data points from
the fit.
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analyses [403], which suggest a simple, purely imaginary pole in the first derivative of the
potential. The fit-function is given by,

Re[w(0, Jy)] = c J2
y + a+ b log(Jc − Jy) , (C.18)

where Jc is the position of the singularity. To check if this function is able to fit the position
correctly, we perform a benchmark check in d = 0, additionally to the d = 4 data. In d = 0 we
evaluate the integral (3.2) directly, as discussed in Section 6.3.3. The fit parameters are given
in Table C.2. The fit error is determined by adding/removing data points from the fit-interval,
as indicated in Figure C.9. The blow-up is located at Jc = 3.3659(42)i and contains only a very
small error from the fit.

C.3.2. Polchinski flow

Additionally to the RG-adapted scheme, we explore the approach using a classical propagator
in Appendix B.5.1, which is simply the Polchinski flow. In this scheme, the effective interaction

potential also carries the change to the classical mass term Vint,k(φ) = Vdyn,k(φ) +
m2−m2

k
2! φ2.

Following the derivation we define the current via the classical propagator at the expansion
point φ0 = 0, to wit

J =
�

G(0)k [φ0]
�−1
φ =
�

m2 + p2 + Rk(p
2)
�

φ . (C.19)

The insertion in (B.75) yields:

∂t Vint,k(φ) =
1
2

∫︂

p

⎧

⎨

⎩

�
�

V (1)int,k(φ)
�2
− V (2)int,k(φ)
�

∂tRk(p2)

(m2 + p2 + Rk (p2))2

⎫

⎬

⎭

= v(d)
k2+d

(m2 + k2)2

h
�

V (1)int,k(φ)
�2
− V (2)int,k(φ)
i

, (C.20)

where the trace is evaluated over momentum space. Additionally, a flat cutoff is used, for
details see Appendix B.7.1.

The choice φ0 = 0 ensures the prefactor k2

(m2+k2)2
is real and positive, which is not trivial for

arbitrary complex fields φ0. Since it is the simplest numerical scenario, we present results for
the φ0 = 0 case. For the sake of comparison we use the same initial conditions as given in
Section 6.3.1. With the classical mass m2 = 1, we have Jk = (1+ k2)φ, i.e. J0 = φ at k = 0.

Computations are performed on slices of constant φy . To this aim we use:

• Values of φy spaced by 0.1.

• A 1d-numerical grid, ranging from φx ∈ [−3, 3] containing K = 60 cells and a polynomial
of order N = 2 in each cell.

Figure 6.1 shows the comparison to the analytic result. The current cell density allows to
resolve the potential up to φy = 2.4, the pole is situated at φy = 3. Numerical computations
break down due to the pole building up in the numerical expressions for (6.23). This can be
improved slightly by increasing the cell density of the grid, but not infinitely.

Naively, we could try to improve the numerical scheme by chose a different expansion point,
closer to the pole position. However, in Section 6.2 we discussed the necessity of real, positive
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accompanied by increasingly strong oscillations. Resolving the initial conditions already requires
a very high cell density. So whilst this formulation is not tailored to perform computations at
big imaginary fields, we find that it makes for a useful check of convergence close to the real
axis.

First we focus on reformulating the Polchinski flow (B.75) in terms of exp(−Sint,k[φ]).
Multiplying the equation with −exp(−Sint,k[φ]) yields

∂te
−Sint,k[φ] =

1
2

Tr ∂t G
(0)
k

�

δ2

δφδφ
e−Sint,k[φ]

�

−
1
2

G(0)k ∂tS
(2)
k e−Sint,k[φ] . (C.30)

To simplify the equation further we replace e−Sint,k[φ]→ Nke−Sint,k[φ], where Nk is an RG-time
dependent constant in φ. Introducing Nk does not affect physics, since the physical correlation
functions are normalised by definition. This results in

∂te
−Sint,k[φ] = A(k)

�

δ2

δφδφ
e−Sint,k[φ]

�

− B(k) e−Sint,k[φ]− ∂t(ln(Nk))e
−Sint,k[φ] , (C.31)

after dividing by Nk and A, B can be read off of (C.30). Now we discuss possible options to
determine Nk: the obvious choice would be fixing some normalisation, i.e.

∫︁

dφ Nke−Sint,k[φ] =
1. Another, numerically much more convenient choice would be to impose ∂t(ln(Nk)) = −B(k),
and thereby dropping the last line of (B.75). We chose the normalisation Nk such that Sint[0] =
0.

Let us now consider the RG-adapted flow (6.13a). Multiplying by e−Sdyn,k[φ] yields
�

∂t +

∫︂

x
φγdyn,k

δ

δφ

�

e−Sdyn,k[φ]−
1
2

∫︂

x
φ ∂tΓ

(2)
k [φ0]φ e−Sdyn,k[φ]

=
1
2

Tr Ck

�

δ2

δφδφ
e−Sdyn,k[φ]

�

. (C.32)

Again, all terms ∝ e−Sdyn,k[φ] can be dropped by introducing an appropriate normalising
condition. The RG kernel C is given by the RG-adapted kernel (6.4b).

The flows are now solved in terms of the potentials Vint and Vdyn. Their relation to the
interaction part Sint and the dynamical part Sdyn of the effective action follows immediately
from their respective definitions (6.15) and (6.14), to wit

V(int/dyn) = S(int/dyn)/Vd and Vd =

∫︂

dd x . (C.33)

Dimension 0 1 2

Classical Prop. 2.5 10−4 3.1 10−4 4.4 10−4

RG-adapted Prop. 5.9 10−5 5.9 10−5 6.0 10−5

Table C.3.: Absolute value of the difference in solutions∆e−Vx , computed by the exponential formulation
and the formulation in Vdyn/int, see Section 6.3 and Appendix C.3.2. The error is computed
using (C.34). We take this as an estimate of the error generated by the flux-boundary
conditions.
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In our approximation, the volume Vd drops out of the equations. Finally, (C.30) and (C.32) are
solved for varying dimensions d = 0, to d = 2 on the real axis. The results in d = 0 are depicted
in Figure C.13. Figure C.13a clearly shows the development of a φ2 contribution to Vint in
the Polchinski flow. In contrast, Figure C.13b demonstrates the lack of a φ2 contribution to
Vdyn in the RG-adapted scheme. This is in accordance with (6.11) and beautifully emphasises
the reduced degree of redundancy of the scheme. Table C.3 gives the error ∆e−Vx between
solutions computed by the exponential formulation and the formulation in V(int/dyn) at φ = 2,
to wit

∆e−Vx = e−Vx
h (φ)− e−Vx ,h(φ)|φ=2 , (C.34)

where x = int/dyn. The index h indicates the numerically computed object. The field value
φ = 2 is chosen, because it displays the most dynamics in the RG-time evolution and also
generates the biggest overall error. The error values in Table C.3 are satisfyingly small, with a
slight superiority of the RG-adapted scheme.
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