
INAUGURAL – DISSERTATION

submitted
to the

Combined Faculty of Mathematics, Engineering,
and Natural Sciences

of
Heidelberg University, Germany

Put forward by
M.Sc. Anja Kleebaum

Born in Zwickau

Oral examination: .

Continuous Rationale Management

Supervisors: Prof. Dr. Barbara Paech Heidelberg University

Prof. Dr. Bernd Bruegge Technical University of Munich

Abstract

Continuous Software Engineering (CSE) is a software life cycle model open to frequent changes
in requirements or technology. During CSE, software developers continuously make decisions on
the requirements and design of the software or the development process. They establish essential
decision knowledge, which they need to document and share so that it supports the evolution and
changes of the software. The management of decision knowledge is called rationale management.
Rationale management provides an opportunity to support the change process during CSE.

However, rationale management is not well integrated into CSE. The overall goal of this
dissertation is to provide workflows and tool support for continuous rationale management. The
dissertation contributes an interview study with practitioners from the industry, which investigates
rationale management problems, current practices, and features to support continuous rationale
management beneficial for practitioners. Problems of rationale management in practice are
threefold: First, documenting decision knowledge is intrusive in the development process and
an additional effort. Second, the high amount of distributed decision knowledge documentation
is difficult to access and use. Third, the documented knowledge can be of low quality, e. g.,
outdated, which impedes its use. The dissertation contributes a systematic mapping study on
recommendation and classification approaches to treat the rationale management problems.

The major contribution of this dissertation is a validated approach for continuous rationale
management consisting of the ConRat life cycle model extension and the comprehensive ConDec
tool support. To reduce intrusiveness and additional effort, ConRat integrates rationale man-
agement activities into existing workflows, such as requirements elicitation, development, and
meetings. ConDec integrates into standard development tools instead of providing a separate
tool. ConDec enables lightweight capturing and use of decision knowledge from various arti-
facts and reduces the developers’ effort through automatic text classification, recommendation,
and nudging mechanisms for rationale management. To enable access and use of distributed
decision knowledge documentation, ConRat defines a knowledge model of decision knowledge
and other artifacts. ConDec instantiates the model as a knowledge graph and offers interactive
knowledge views with useful tailoring, e. g., transitive linking. To operationalize high quality,
ConRat introduces the rationale backlog, the definition of done for knowledge documentation,
and metrics for intra-rationale completeness and decision coverage of requirements and code.
ConDec implements these agile concepts for rationale management and a knowledge dashboard.
ConDec also supports consistent changes through change impact analysis.

The dissertation shows the feasibility, effectiveness, and user acceptance of ConRat and ConDec
in six case study projects in an industrial setting. Besides, it comprehensively analyses the
rationale documentation created in the projects. The validation indicates that ConRat and
ConDec benefit CSE projects. Based on the dissertation, continuous rationale management
should become a standard part of CSE, like automated testing or continuous integration.

i

Zusammenfassung

Agile Softwareentwicklung muss mit häufigen Änderungen in den Anforderungen oder Technolo-
gien umgehen können. Während der Softwareentwicklung treffen die Beteiligten kontinuierlich
Entscheidungen, zum Beispiel hinsichtlich der Anforderungen an die Software, ihres Entwurfs
oder des Entwicklungsprozesses. Sie eignen sich wichtiges Entscheidungswissen an, das sie
dokumentieren und teilen müssen, damit die Software weiterentwickelt und geändert werden
kann. Rationale-Management beschäftigt sich mit der Verwaltung des Entscheidungswissens.

Allerdings ist Rationale-Management nicht hinreichend in den Entwicklungsprozess integriert.
Das übergeordnete Ziel dieser Dissertation ist es, Arbeitsabläufe und Werkzeugunterstützung für
kontinuierliches Rationale-Management bereitzustellen. Die Dissertation umfasst eine Interview-
studie mit Fachkräften aus der Industrie, die Probleme des Rationale-Management sowie aktuelle
Abläufe untersucht und Anforderungen an kontinuierliches Rationale-Management erhebt. Die
Studie hat drei Probleme identifiziert: 1) Die Dokumentation von Entscheidungswissen greift
in den Entwicklungsprozess ein und stellt einen zusätzlichen Aufwand dar. 2) Die große Menge
an verteilter Wissensdokumentation ist schwer zugänglich und nutzbar. 3) Das dokumentierte
Wissen kann von geringer Qualität sein, was die Nutzung erschwert. Die Dissertation beinhaltet
eine systematische Literaturstudie über Empfehlungs- und Klassifizierungsansätze zur Behandlung
der Probleme des Rationale-Management.

Der Hauptbeitrag dieser Dissertation ist ein validierter Ansatz für das kontinuierliche Rationale-
Management, bestehend aus der ConRat-Prozessbeschreibung und der umfassenden ConDec-
Werkzeugunterstützung. Um den Aufwand gering zu halten, integriert ConRat Rationale-Manage-
ment-Aktivitäten in bestehende Arbeitsabläufe, wie Anforderungserhebung, Implementierung
und Besprechungen. ConDec erweitert bestehende Entwicklungswerkzeuge, anstatt ein separates
Werkzeug bereitzustellen. ConDec ermöglicht die leichtgewichtige Erfassung und Nutzung
von Entscheidungswissen ausgehend von verschiedenen Softwareartefakten. Es reduziert den
Aufwand von Rationale-Management durch automatische Textklassifikation, Empfehlungs- und
Anreizmechanismen. Um die verteilte Dokumentation zu unterstützen, definiert ConRat ein
Wissensmodell mit Entscheidungswissen und anderen Softwareartefakten. ConDec instantiiert
dieses Modell und bietet interaktive Wissensansichten mit nützlichen Anpassungsmöglichkeiten,
z.B. durch transitive Verknüpfungen. Um hohe Qualität zu gewährleisten, führt ConRat das
Rationale-Backlog, Abnahmekriterien für Wissensdokumentation sowie Metriken für die Intra-
Rationale-Vollständigkeit und Entscheidungsabdeckung von Anforderungen und Code ein. ConDec
implementiert die auf Rationale-Management übertragenen agilen Konzepte sowie ein Wissens-
Dashboard. ConDec unterstützt konsistente Änderungen durch Änderungsauswirkungsanalyse.

Die Dissertation zeigt die Einsetzbarkeit, Effektivität und Benutzerakzeptanz von ConRat
und ConDec in sechs Fallstudien in der Praxis. Sie beinhaltet eine umfassende Analyse der
in den Projekten erstellten Wissensdokumentation. Ausgehend von dieser Dissertation sollte
kontinuierliches Rationale-Management ein fester Bestandteil von Softwareentwicklung werden.

iii

Acknowledgements

First and foremost, I would like to thank my first supervisor Professor Barbara Paech for making
it possible for me to become a doctoral student and be a part of her Software Engineering
Group at the Combined Faculty of Mathematics, Engineering, and Natural Sciences of Heidelberg
University. I thank Barbara for providing continuous and very valuable feedback while supervising
my thesis and supporting me in learning many things during my work at University. Among
others, I am grateful for her selection of a very interesting seminar about sustainable digitalization
called Bits & Bäume, for initiating collaboration with the Heidelberg Institute for Geoinformation
Technology, and for her teaching me always to think software development from the users.

My sincere thanks go to my second supervisor Professor Bernd Bruegge, who contributed
valuable feedback. I admire Bernd’s mindset that everything is possible, especially how he
inspires others to adopt the same attitude. I am thankful that Barbara and Bernd initiated
the Continuous Usage- and Rationale-based Evolution Decision Support (CURES) project that
shaped my thesis topic. Special thanks go to Jan Ole Johanssen, who also worked on the project,
for supporting me in many situations and continuously motivating my research and thesis writing.
Jan indeed showed me what it means to be an early adopter, and it would require an additional
appendix to my thesis to thank him appropriately. The CURES workshops and discussions are
truly unforgettable and generated many incentives for my thesis. I am grateful to have had the
chance to present and validate ConRat and the ConDec tool support in the iPraktikum and the
Project Organization and Management course at the Technical University of Munich.

I thank my colleagues at the Software Engineering Research Group at Heidelberg University
for valuable discussions and feedback. I thank them for preparing guidelines and templates and
for doing teaching work, while I could perform my research. I thank Marcus Seiler for being an
excellent onboarding guide in Heidelberg and having a wonderful time in Lisbon at the Software
Engineering and Knowledge Engineering conference. I thank Professor Christian Kücherer for
always bringing a good mood to the office, sometimes even topped by bringing his dog, and for
proofreading parts of my thesis. I thank Paul Hübner for motivating me at least 42 times and
rescuing the world. I thank Thomas Quirchmayr for constructive criticism and for leaving his
printed theses as perfect templates. I thank Astrid Rohmann for sharing her knowledge, e. g.,
about Android development, and outstanding traveling pictures with me. I thank Michael Anders
for contributing to my research with his master’s thesis and managing teaching activities and
events after me. I thank Leon Radeck for daily research support, excellent team-building skills,
and always being ready for lunch. I thank Rumyana Proynova for her ability for spontaneous
activities and for being so open-minded. I thank Tom-Michael Hesse for laying the foundation
for my work in the project on Usage- and Rationale-based Evolution Decision Support and for
initiating the first version of the ConDec Jira and Confluence plug-ins. I thank Thorsten Merten
for the yogi and sustainable lifestyle inspirations and for reflecting on supply chains.

v

Table 1.: Bachelor and master theses contributing to the dissertation.

Master Theses

J. Clormann (2018). “DecXtract: Dokumentation und Nutzung von Entscheidungswissen in Jira-Issue-
Kommentaren”. Master Thesis. Heidelberg University. doi: 10.11588/heidok.00026059

L. Wisniowski (2019). “Quality assurance of documented decision knowledge in feature branches”.
Master Thesis. Heidelberg University
I. Hamma (2019). “Unterstützung der konsistenten Dokumentation von Entscheidungen im Software
Engineering”. Master Thesis. Heidelberg University
M. Anders (2020). “Comprehensive and Targeted Access to and Visualization of Decision Knowledge”.
Master Thesis. Heidelberg University. doi: 10.11588/heidok.00029025

P. de Sombre (2020). “Verlinkungsunterstützung und Duplikaterkennung von Wissenelementen”.
Master Thesis. Heidelberg: Heidelberg University
K. Yan (2021). “Unterstützung der Analyse von Änderungsauswirkungen auf Graphen von Wissenele-
menten”. Master Thesis. Heidelberg University
P. Zubrod (2021). “Vorschlagsmechanismus für Lösungsoptionen zu Entscheidungsproblemen in der
Softwareentwicklung”. Master Thesis. Heidelberg University

Bachelor Theses

P. Zubrod (2017). “Dokumentation und Nutzung von Entscheidungen in Git”. Bachelor Thesis.
Heidelberg University
M. Seiler (2017). “Dokumentation und Nutzung von Entscheidungen in Code”. Bachelor Thesis.
Heidelberg University
V. Aman (2019). “Unterstützung der Konsistenz zwischen Entscheidungen und ihrer Umsetzung durch
Zusammenfassung von Codeänderungen”. Bachelor Thesis. Heidelberg University
L. Tralle (2019). “Visualisierung und Verwaltung von Entscheidungswissen in Jira”. Bachelor Thesis.
Heidelberg University
K. Nizenkov (2019). “Design and implementation of a developer-centric quality web application”.
Bachelor Thesis. Heidelberg University
T. Kuchenbuch (2019). “Darstellung der Evolution von Entscheidungswissen”. Bachelor Thesis.
Heidelberg University
F. Gronert (2019). “Unterstützung der Erstellung von Release-Beschreibungen durch dokumentiertes
Entscheidungswissen”. Bachelor Thesis. Heidelberg University
Ö. Boz Kumru (2019). “Analyse und Klassifikation von Entscheidungswissen in Jira-Issues”. Bachelor
Thesis. Heidelberg University
C. Otchere (2020). “Die Rolle von Qualitätsattributen während der Dokumentation und Nutzung von
Entscheidungswissen”. Bachelor Thesis. Heidelberg University
R. Gerner (2020). “Entwicklung eines Rationale Backlogs”. Bachelor Thesis. Heidelberg University
J. Baum (2021). “Support for Rationale Management with Nudging”. Bachelor Thesis. Heidelberg
University
M. Boerner (2021). “Qualitätssicherung von dokumentiertem Wissen mithilfe der Erhebung der
Entscheidungsabdeckung”. Bachelor Thesis. Heidelberg University
L. Bendl (2022). “Change Impact Analysis for Issue Tracking Systems”. Bachelor Thesis. Heidelberg
University

vi

https://doi.org/10.11588/heidok.00026059
https://doi.org/10.11588/heidok.00029025

A big thank you goes to Doris Keidel-Müller for in-depth conversations and proofreading all our
publications. A sincere thank you goes to Willi Springer for letting me learn many things about
IT operations and immediately having the proper backup in an emergency. I thank Stephanie
Sokoll for her support during the final sprint of my thesis and for helping organize the defense. I
thank Professor Andrea Hermann, who enabled me to present my research in her course and
is an admirable expert in many fields. I thank Eckhart von Hahn and Heiko Koziolek for the
valuable discussions and feedback.

My gratitude goes to the members of the Chair of Applied Software Engineering at the Technical
University of Munich. My visits to Garching were unforgettable, with a warm atmosphere making
me feel like a part of the team immediately. I thank Dominic Henze and Jan for applying ConDec
during the iPraktikum and collecting feedback. My profound thanks go to Rana Alkadhi, who
shared her data and expertise and is a very inspiring and intelligent researcher. I thank Professor
Stephan Krusche for providing Rugby as an essential life cycle modeling foundation for my work
and valuable feedback. I thank Matthias Linhuber, Florian Angermeier, and Helma Schneider
for installing ConDec and providing technical support.

I very much thank all the talented students who supported my dissertation through their
master’s and bachelor’s theses (Table 1), in practical work, or as scientific assistants: Ewald
Rode, Frederic Born, Tim Kuchenbuch, Paul Zubrod, Jochen Clormann, Lukasz Wisniowski,
Martin Seiler, Ines Hamma, Vita Aman, Lars Tralle, Katherina Nizenkov, Edgar Brotzmann,
Fabian Gronert, Zhaobin Zhu, Özlem Boz Kumru, Rafael Gerner, Colin Otchere, Philipp de
Sombre, Markus Boerner, Silas Hauk, Dominik Hirsch, Klaus Yan, Julia Baum, Marvin Ruder,
Maximilian Hartmann, Lukas Bendl, and Michael Anders, who kept working in the group as a
doctoral student. I hope all of them will continue being open-minded researchers.

I sincerely thank my family and friends for always supporting me during my life and doctoral
studies. I thank Dominik Pieper for storing me as Dr. in his address book long before I moved
to Heidelberg and believing in me to write a doctoral thesis one day. I very much thank him for
giving me stability in the fast-living world of academia and for all the support throughout my
dissertation, for instance, by continuously delivering me coffee and food. I very much thank my
parents, who endured that I moved in again for weeks when writing my thesis. Among others, I
thank my dad for building my own computer and introducing me to computer science at a very
young age and my mum for always caring about my work-life balance. I thank Monika Viehmann
for her valuable feedback twenty-four-seven and her great personality. I thank Linda Menger
and Barbara Glaser for our extraordinary hiking adventures and continuous support. I thank
many people who very much supported me in the past and who I want to see more often in the
future, for example, Sophie, Paula, Franzi, Florian, Stefan, Yrneh, Vreni, Franzi, Caro, Laura,
Carsten, Michi, Ilka, Milan, Eva, Sina, and Maja. I thank the Ashtanga Yoga Institute and the
Villa Sportiva in Heidelberg for helping me stay healthy despite working in front of the computer.

I thank the German Research Foundation (DFG) for granting the CURES project as part
of the SPP1593 priority program. I thank the Graduate Academy of Heidelberg University,
which granted me a fellowship for finishing my thesis funded through the Baden-Württemberg
Landesgraduiertenförderung. I sincerely thank the anonymous reviewers who spent their precious
time reading and commenting on our papers and helped improve this work. I thank the Aufbau
Unstrut-Finne foundation for their support during my master’s studies. My gratitude goes to
Professor Klaus Bitzer, Professor Holger Lange, Professor Christina Bogner, Stefan Holzheu, and
Professor Matthias Korch for having opened the way for me to become a researcher.

vii

Contents

Abstract i

Zusammenfassung iii

Acknowledgements v

List of Acronyms xv

I Preliminaries 1

1 Introduction 3
1.1 Motivation . 3
1.2 Problem Context . 5
1.3 Research Methodology . 7
1.4 Research Goals . 11
1.5 Contributions . 14
1.6 Structure of the Thesis . 15
1.7 Previous Publications . 17

2 Background 19
2.1 Continuous Software Engineering (CSE) . 19

2.1.1 Stairway to Heaven . 19
2.1.2 DevOps and BizDevOps . 21
2.1.3 Rugby CSE Life Cycle Model . 21

2.2 Rationale Management . 24
2.2.1 Types of Knowledge and Knowledge Management 24
2.2.2 Implicit versus Explicit Knowledge and Decision Making Strategies 24
2.2.3 Knowledge Formalization versus Personalization 25
2.2.4 Rationale Representation . 25

2.3 Development Tools and Systems . 28
2.4 Continuous Usage- and Rationale-based Evolution Decision Support (CURES) . 28

II Problem Investigation 31

3 State of the Practice: Rationale Management during CSE 33
3.1 Study Design . 34

3.1.1 Research Questions . 34
3.1.2 Interview Study Procedure . 37
3.1.3 Participants . 37
3.1.4 Research Perspectives . 37

ix

Contents

3.2 Results and Discussion . 38
3.2.1 As-is State of CSE in Industry . 38
3.2.2 As-is State of Rationale Management during CSE in Industry 42
3.2.3 Practitioners’ Assessment of Ideas for Continuous Rationale Management 47

3.3 Related Work . 50
3.4 Threats to Validity . 53
3.5 Conclusion . 54

4 State of the Art: Classification and Recommendation for Rationale Management 55
4.1 Study Design . 55

4.1.1 Research Questions . 55
4.1.2 Literature Study Procedure . 56

4.2 Results and Discussion . 59
4.2.1 Overview of Approaches and Publications 59
4.2.2 Support for Software Practitioners . 63
4.2.3 Machine Learning Techniques and Rules Applied in the Approaches . . . 65
4.2.4 Evaluation of Approaches . 66

4.3 Threats to Validity . 67
4.4 Conclusion . 68

III Treatment Design 69

5 Overview of Continuous Rationale Management and its Support with ConDec 71
5.1 Usage of ConDec to Support Continuous Rationale Management 71
5.2 High-Level Decision Problems and Decisions . 73

5.2.1 Treatment of Intrusiveness and Effort Problem 74
5.2.2 Treatment of High Amount of Distributed Knowledge Problem 76
5.2.3 Treatment of Low Documentation Quality Problem 77

6 Life Cycle Modeling of Continuous Rationale Management 79
6.1 Knowledge Model . 79

6.1.1 Knowledge Elements and Associations . 79
6.1.2 State of Rationale Elements . 82
6.1.3 Demonstration Project . 84

6.2 Extended Rugby Life Cycle Model . 85
6.2.1 Metrics for Rationale Documentation . 85
6.2.2 Definition of Done for Knowledge Documentation 86
6.2.3 Rationale Backlog . 87
6.2.4 Overview of a Life Cycle Model Extended with ConRat 88
6.2.5 Parallel Workflows: Roles and Their Tasks 90
6.2.6 Starting and Finishing CSE Practices . 94

6.3 Conclusion . 95

7 Supporting Continuous Rationale Management with ConDec 97
7.1 Requirements . 97

7.1.1 Rationale Documentation . 98
7.1.2 Exploitation of Rationale Documentation 100
7.1.3 Decision Making . 101
7.1.4 Quality Assurance . 103
7.1.5 Setting Up Rationale Management . 104

x

Contents

7.2 Design of ConDec . 105
7.3 Rationale Documentation in Various Locations 108

7.3.1 Entire Tickets . 108
7.3.2 Description and Comments of Tickets . 109
7.3.3 Commit Messages . 109
7.3.4 Code Comments . 110
7.3.5 Chat Messages, Wiki Pages, and Pull Requests 110

7.4 Views on the Knowledge Graph . 111
7.4.1 Node-Link Diagram (V1) . 111
7.4.2 Knowledge Tree View (V2) . 111
7.4.3 List View (V3) . 113
7.4.4 Adjacency and Criteria Matrix View (V4) 113
7.4.5 Chronology View (V5) . 115
7.4.6 Metrics View (V6) . 115
7.4.7 Detail View of Knowledge Element (V7) 115

7.5 Features of the Knowledge Graph Views . 116
7.5.1 Filtering (F1) . 116
7.5.2 Transitive Linking (F2) . 117
7.5.3 Change Execution (F3) . 118
7.5.4 Specifying the Level of Detail (F4) . 119
7.5.5 Navigation (F5) . 119

7.6 Nudging Mechanisms and Recommendation Systems 119
7.6.1 Facilitate Nudges (N1) . 120
7.6.2 Ambient Feedback and Friction Nudges (N2) 121
7.6.3 Just-in-Time Prompts (N3) . 121
7.6.4 Quality Checking (RS1) . 122
7.6.5 Change Impact Analysis (RS2) . 123
7.6.6 Decision Guidance (RS3) . 125
7.6.7 Link Recommendation and Duplicate Detection (RS4) 125
7.6.8 Automatic Text Classification (RS5) . 125
7.6.9 Summarization of Source Code Changes (RS6) 129

7.7 Rationale Backlog . 130
7.8 Knowledge Dashboard . 131

7.8.1 Dashboard Item for Rationale Coverage 131
7.8.2 Dashboard Item for Intra-Rationale Completeness 131
7.8.3 Dashboard Item for General Metrics . 132
7.8.4 Dashboard Item for Metrics on Rationale in Code, Commits, and Branches 133
7.8.5 Dashboard Item for Metrics about Decision Types 134
7.8.6 Filtering and Navigation from Knowledge Dashboard to Details 134

7.9 Decision Grouping . 135
7.9.1 Assignment, Filtering, and Overview . 135
7.9.2 Decision Grouping as a Definition of Done Criterion 136

7.10 Stand-up Table with Decision Knowledge . 137
7.11 Release Notes with Decision Knowledge . 137
7.12 Knowledge Export . 138
7.13 Related Work . 139

7.13.1 Tools for Low-Intrusive, Lightweight Rationale Management 139
7.13.2 Tools Supporting a High Amount of Distributed Knowledge 140
7.13.3 Tools Supporting High Documentation Quality 141

7.14 Conclusion . 142

xi

Contents

IV Treatment Validation 145

8 Overview of Evaluation Studies 147
8.1 Evaluation Projects . 148

8.1.1 iPraktikum . 148
8.1.2 Information Systems Engineering Projects 149
8.1.3 ConDec Project . 150

8.2 ConDec Plug-Ins and Features Applied in Evaluation Projects 151
8.3 Evaluation Methods . 153

9 Analysis of Knowledge Documentation 155
9.1 Study Design . 155

9.1.1 Research Questions . 155
9.1.2 Data Acquisition . 158
9.1.3 Analysis of Code and Trace Links to Tickets 158
9.1.4 Coding of Decisions with Decision Types 159

9.2 Results and Discussion . 160
9.2.1 Feasibility of Documenting Decision Knowledge with ConDec 161
9.2.2 Feasibility of Documenting a High Amount of Knowledge with ConDec . 171
9.2.3 Feasibility of Documenting High Quality Knowledge with ConDec 173

9.3 Related Work . 177
9.4 Threats to Validity . 179
9.5 Conclusion . 179

10 Effectiveness of Automatic Text Classification 181
10.1 Study Design . 181

10.1.1 Research Questions . 181
10.1.2 Ground Truth Data . 182
10.1.3 Evaluation Metrics . 183
10.1.4 Evaluation Procedure . 185

10.2 Results and Discussion . 186
10.2.1 Effectiveness For Ground Truth From Single Project 188
10.2.2 Effectiveness For Cross-Project Validation 189
10.2.3 Effectiveness For Combined Ground Truth From Different Projects 189
10.2.4 Effectiveness Of Different Supervised Machine Learning Algorithms 190

10.3 Related Work . 191
10.4 Threats to Validity . 194
10.5 Conclusion . 194

11 User Acceptance of ConDec Plug-Ins 197
11.1 Study Design . 197

11.1.1 Research Questions . 197
11.1.2 Participants . 198
11.1.3 Indicators for Acceptance and Research Methods 199

11.2 Results and Discussion . 200
11.2.1 Acceptance of Benefits for Decision Making 200
11.2.2 Acceptance of Knowledge Documentation Features 201
11.2.3 Acceptance of Knowledge Exploitation Features 205
11.2.4 Acceptance of Quality Assurance Features 211

11.3 Threats to Validity . 214
11.4 Conclusion . 215

xii

Contents

12 Dissemination of ConRat and ConDec Plug-Ins 217
12.1 Syllabus on Rationale Management . 217
12.2 Results of the First Instantiation . 224
12.3 Related Work . 226
12.4 Conclusion . 228

V Conclusion 229

13 Summary 231

14 Future Work 235

VI Appendix 237

A Digital Appendix for Tools and Data 238

B Supplementary Material of Interview Study on State of the Practice 239
B.1 Interview Statements by Practitioners from Industry 239

B.1.1 Statements regarding As-is State of CSE in Industry 239
B.1.2 Statements regarding As-is State of Rationale Management during CSE . 247
B.1.3 Statements regarding Ideas for Continuous Rationale Management 262

B.2 Description of Related Work . 265

C Supplementary Material of Systematic Mapping Study 269

D Supplementary Material of Knowledge Documentation Analysis 271
D.1 Description of Knowledge Documentation of Validation Projects 271
D.2 Additional Plots of Knowledge Documentation Analysis 277

E Supplementary Material of Text Classifier Validation 285

F Supplementary Material of User Acceptance Study 289
F.1 Questionnaire for Collecting the User Feedback 289
F.2 Detailed Ratings by Study Participants . 299

Bibliography 321

List of Figures 323

List of Tables 327

List of Equations 329

xiii

List of Acronyms

ACM Association for Computing Machinery . 57
ADDSS Architecture Design Decision Support System . 140
ADeX AMELIE Decision Explorer . 140
ADvISE Architectural Design Decision Support Framework 64
AMELIE Architecture Management Enabler for Large Industrial Software 139
API Application Programming Interface . 107
A-REACT Automated Rationale ExtrAction from Communication arTifacts 126
BERT Bidirectional Encoder Representations from Transformers 65
BizDevOps Business, Development, and IT Operations 21
CoCoADvISE Constrainable Collaborative ADvISE . 64
ConDec Continuous Management of Decision Knowledge 5
ConRat Continuous Rationale Management . 5
CSEPM Continuous Software Engineering Process Metamodel 21
CSE Continuous Software Engineering . 3
CSS Cascading Style Sheets . 172
CURES Continuous Usage- and Rationale-based Evolution Decision Support 28
DecDoc Tool for Documenting Design Decisions Collaboratively and Incrementally 139
DevOps Development and IT Operations . 21
DFG German Research Foundation . 28
GATE General Architecture for Text Engineering . 191
GloVe Global Vectors for Word Representation . 127
HTML Hypertext Markup Language . 172
HTTP Hypertext Transfer Protocol . 138
IE Implementation Evaluation . 8
IEEE Institute of Electrical and Electronics Engineers . 57
IoT Internet of Things . 150

xv

ISE Information Systems Engineering . 148
IT Information Technology . 37
JSON JavaScript Object Notation . 138
LOC Lines of Code . 132
LR Logistic Regression . 185
MADR Markdown Architecture Decision Record . 177
MEKA Multi-Label Extension to WEKA . 193
NB Naïve Bayes . 185
NLP Natural Language Processing . 127
NLTK Natural Language Toolkit . 193
NoSQL originally non-SQL or non-relational database, sometimes called Not only SQL . 42
ODAKS On-demand Architectural Knowledge Systems 235
PI Problem Investigation . 8
REST REpresentational State Transfer . 107
RQ Research Question . 16
SAFe Scaled Agile Framework . 240
SEURAT Software Engineering Using Rationale . 85
SD Standard Deviation . 225
SHA Secure Hash Algorithm . 72
REACT Rationale ExtrAction from Communication arTifacts 177
SMILE Statistical Machine Intelligence and Learning Engine 128
SMOTE Synthetic Minority Over-Sampling Technique . 185
SQL Structured Query Language . 42
SVM Support Vector Machine . 128
SVN Apache Subversion Version Control System . 245
TD Treatment Design . 8
TF-IDF Term Frequency-Inverse Document Frequency . 127
TI Treatment Implementation . 8
TV Treatment Validation . 8
UI User Interface . 136
UML Unified Modeling Language . 22
URL Uniform Resource Locator . 160
VSCode Visual Studio Code Integrated Development Environment 105
WEKA Waikato Environment for Knowledge Analysis . 193
XML Extensible Markup Language . 172

Part I.

Preliminaries

1

Chapter 1
Introduction

“Rationale is only useful if the developers actually use it. If the
rationale support tools are integrated into tools already used by the
developers then it might be possible to present the rationale exactly
when it is needed without extra effort from the developer.”

—Burge and D. C. Brown, 2008a

This chapter gives an introduction to the topic of continuous rationale management. Section 1.1
introduces continuous software engineering and the importance of decision knowledge and its
management, i. e., rationale management. It motivates two opportunities the integration of
rationale management into continuous software engineering offers: 1) a high expected benefit
for the frequent changes and 2) a relatively low expected effort when integrating the rationale
management into the current practices and tools. Section 1.2 describes the problems that
impede rationale management, which this thesis aims to treat. Section 1.3 describes the research
methodology. Section 1.4 sets the goals of this thesis, and Section 1.5 describes the respective
contributions. Section 1.6 outlines the structure of the thesis. Section 1.7 lists previous scientific
publications that contain parts of this thesis.

1.1. Motivation

Continuous Software Engineering (CSE) is an agile software development process model that
enables developing, releasing, and learning from software in very short and rapid cycles (Bosch,
2014). CSE supports the incremental implementation of requirements and involves activities
such as continuous integration, continuous delivery, and continuous deployment (Shahin et al.,
2017). The term continuous is not interpreted in a strict mathematical sense; still, it means that
an activity is done constantly, in small increments over time, rather than once in a big bang.
CSE emerged due to a growing need for flexibility and rapid adaption in the current software
environment (Fitzgerald and Stol, 2017). The CSE process model and its support are in flux; for
example, Johanssen (2019) added a facility to provide timely validation through user feedback.

CSE allows developers to collaboratively implement and deliver many increments, which
involves decision making, such as decisions on the requirements to be implemented, the design,
implementation, and test, or the software development process. The knowledge of the developers
about these decisions is called rationale or decision knowledge (Dutoit et al., 2006). Decision
knowledge is the knowledge about the decision problems, i. e., issues to solve , solution
alternatives , decisions , and justifications in terms of criteria, pro- , and con-arguments .

3

1. Introduction

Decision knowledge is communicated within a development team so that every developer
knows and considers existing decisions (Brunet et al., 2014). When developers evolve software,
they must reflect and build on former decisions. Otherwise, inconsistent decisions are likely
to contribute to the erosion of the software architecture or introduce other quality problems
(Cleland-Huang et al., 2013; Capilla et al., 2016). Reflecting on former decisions is particularly
important for long-living software systems for which many decisions build on one another.

Besides decision knowledge communication, the documentation of decision knowledge, i. e., its
externalization from the developers’ minds and its preservation, is also essential for several reasons:
First, different developers might be involved at different times. They cannot communicate directly
and rely on documented decision knowledge to understand former decisions. Documenting decision
knowledge prevents knowledge vaporization (Capilla et al., 2016). Decision knowledge vaporizes
quickly, i. e., if developers do not capture it immediately, it is often not captured at all and thus
unavailable later (Jansen and Bosch, 2005). Second, the documentation of decision knowledge
makes alternatives and criteria for the decisions explicit that might otherwise be overlooked. This
promotes a more rational decision-making process, better decisions, and better design (Tofan
et al., 2013; Weinreich et al., 2015). Third, documented decision knowledge is valuable to support
future changes. It supports change impact analysis, requirements validation and verification,
architecture review, and long-term maintenance, and keeps developers informed about underlying
design decisions (Bratthall et al., 2000; Cleland-Huang et al., 2013; Tang and Lau, 2014).

Recently, several summarization techniques were used to reconstruct decision knowledge by
mining written text from informal sources such as chat messages (Alkadhi, 2018). These techniques
for automatic text classification, also called extractive summarization (Nazar et al., 2016), help
to identify decision knowledge. However, the knowledge may be incomplete, outdated, or hard
to access later. In other cases, the knowledge is not captured but resides in the developers’
heads as tacit knowledge. Tacit decision knowledge enlarges the risk of misunderstandings
and errors during evolution or maintenance. Researchers attempt to infer tacit knowledge
by abstractive summarization of software artifacts such as source code changes (Cortés-Coy
et al., 2014). However, Robillard et al. (2017) describe that it is unlikely to infer complex
information such as rationale by the mechanical extraction of facts from software artifacts. For
instance, non-existence decisions, which state that an element does not appear in the design or
implementation, are not traceable to and from the software artifacts (Kruchten, 2004; Kruchten,
2009). Such decisions can neither be inferred nor justified without explicit decision knowledge
documentation. Therefore, summarization techniques only partially help to reconstruct decision
knowledge in case they are applied retrospectively. Decision knowledge needs to be explicitly
documented to preserve it. Various approaches exist to support the documentation through
recommendations (Zimmermann and Miksovic, 2013; Miesbauer and Weinreich, 2012; Bhat et al.,
2017a; Zimmermann et al., 2015). It is important to note that easy exploitation of the decision
knowledge motivates developers to document it, as the developers themselves profit from the
documentation (Burge and D. C. Brown, 2008a).

Rationale management demands that developers document their decision knowledge and exploit
the documentation, to support explicit decision making (Dutoit et al., 2006). It is a method for
justifying and supporting change (Bruegge and Dutoit, 2010). Its systematic integration is met
with resistance as it requires additional effort (Rogers et al., 2015). Section 1.2 will describe
the issues that complicate systematic rationale management. CSE offers two opportunities for
integrating rationale management: 1) CSE and current software development tools minimize the
overhead of the documentation of decision knowledge. Developers usually manage code, issues,
and other development knowledge in a version control system and an issue tracking system (Saito
et al., 2017). These systems offer lightweight opportunities for capturing decision knowledge,
such as ticket comments, commit messages, and code comments used in established practices such

4

1.2. Problem Context

as managing requirements and development tasks or committing code. 2) Rationale management
supports developers in frequently communicating, making, and changing decisions.

The term process is used interchangeably with the term life cycle. A life cycle describes the “evo-
lution of a system, product, service, project, or other human-made entity from conception through
retirement” (ISO/IEC/IEEE 24774, 2021). A life cycle model or process model “represents all the
activities and work products necessary to develop a software system” (Bruegge and Dutoit, 2010).

To summarize, a rationale management approach for developers in CSE is beneficial. This thesis
presents a validated approach consisting of the Continuous Rationale Management (ConRat)
life cycle model extension and tool support. ConRat is based on a knowledge model and
integrates rationale management activities into CSE: collaborative, incremental, and rational
decision making, documentation, exploitation, and quality assurance of decision knowledge.
ConRat is supported by the views and features of the Continuous Management of Decision
Knowledge (ConDec) plug-ins. The long-term vision of this thesis is an on-demand decision
documentation as part of the on-demand developer documentation suggested by Robillard et al.
(2017), which means that developers continuously capture and reflect decision knowledge.

1.2. Problem Context

This section describes three rationale management problems that ConRat and its support through
the views and features of ConDec aim to treat.

Tool support to manage decision knowledge can be characterized by its intrusiveness in the
software development process (Dutoit et al., 2006). Tools that do not fit into the development
context are intrusive and are less likely to be used (Kruchten et al., 2009) because they require
additional effort, e. g., for installing or starting, and are thus not lightweight. For example,
suppose developers have to capture decisions in a text document, e. g., in an architecture log file,
or a particular tool. In that case, they must navigate to the document or tool and externalize
the decisions and related decision knowledge. The Agile Manifesto values working software over
comprehensive documentation (Beck et al., 2001). In agile software development, productivity is
measured by the amount of working software, and documentation might even be considered a
waste (Theunissen et al., 2022). Besides, the documented decision knowledge is hard to access
and exploit for developers as it is separate from the software artifacts. We summarize the first
problem as follows:

Intrusiveness and Effort Problem: Developers do not document decision knowledge if the
techniques and tools are intrusive, i. e., do not integrate into development workflows and
require too much effort. It requires additional effort for the developers to document the decision
knowledge and exploit the knowledge documented by other developers when needed, e. g.,
during software evolution.

Software engineering is a knowledge-intensive process (Babar et al., 2009; Robillard and Walker,
2014; Paech et al., 2014; Saito et al., 2017). The documented knowledge tends to contain many
knowledge elements and links in distributed documentation locations, such as in the issue tracking
system, version control system, or wiki system. It hinders the exploitation if the distributed
decision knowledge is not traceable from the software artifacts such as requirements. The dynamic
nature of CSE aggravates the second problem. There is a vast amount of data available in
CSE that has the potential to support decision making (Svensson et al., 2019). Large software
systems require many decisions to be made, and various stakeholders make them (Tang and Lau,
2014). The high amount of documented knowledge can cause information overload (Codoban
et al., 2015). Making rationale accessible to all concerned parties without causing information
overload is difficult (Bruegge and Dutoit, 2010). The rationale documentation is only helpful

5

1. Introduction

if it is tailored to the developers’ needs, i. e., if the developers can easily access the part of the
documented knowledge that is useful for their current development task. We summarize the
second problem as follows:

High Amount of Distributed Knowledge Problem: Software development is knowledge-
intensive, and the documented knowledge is complex with many knowledge elements in dis-
tributed documentation locations. Tailoring the documented knowledge to the developers’ needs,
preventing information overload, and offering knowledge access and exploitation is difficult.

To exploit documented decision knowledge, it must be of high quality (Thurimella et al.,
2017). Quality attributes for software documentation are accessibility, traceability, completeness,
consistency, correctness, up-to-dateness, uniqueness, information organization, format, spelling
and grammar, readability, accuracy, trustworthiness, and author-related aspects (Zhi et al., 2015).
This thesis focuses on 1) completeness and 2) consistency, correctness, and up-to-dateness as
important quality aspects.

First, the documentation must be complete in the sense that important decision knowledge is
captured. While there is a need for decision knowledge documentation, this is often not performed
(Alexeeva et al., 2016). This problem is called the capture problem (Dutoit et al., 2006). CSE
is short-term focused and, initially, short-term software development tasks can be achieved
without documenting important decision knowledge. However, the knowledge disappears over the
following iterations with changing context, new requirements, and new developers (Theunissen
et al., 2022). In practice, decisions are often made and documented in a naturalistic way (Zannier
et al., 2007; Hesse et al., 2016b). This means that only a part of the decision knowledge—often
only the decision—is documented, which impairs rational decision making. Humans overlook what
is missing and are subject to cognitive biases (Maule, 2010; Razavian et al., 2016). Furthermore,
other developers might not understand or be convinced if the arguments for the solution decision
are not documented. Practitioners are often unsure how to capture rationale and what to capture
(Schubanz, 2014; Thurimella et al., 2017). They must decide whether to capture rationale in
natural language text or with a rationale model as a more systematic approach. A rigorous
approach to capturing rationale might lead to analysis paralysis, which means that the actual
development is postponed or never accomplished (W. H. Brown et al., 1998). It is challenging
to document the proper amount of rationale since the relevance of rationale depends on the
exploitation scenario and the developers’ needs (Burge, 2008). The documentation of decision
knowledge often only pays off after a long time. Patterns for reusing rationale need to be clear
(Thurimella et al., 2017).

Second, the decisions must be consistent a) with former decisions and b) with the artifacts, e. g.,
with the requirements, architectural software design (Tang et al., 2011), and code. Consistency
means that the documented decisions are realized in the artifacts they relate to. Maintaining
consistency is facilitated if the decisions are linked to these artifacts. For example, a decision to
apply a design pattern should be linked to the code that implements the design pattern. Then,
developers can reflect on this decision when they change the code. Developers need to reflect
on former decision knowledge during decision making so that the decisions are consistent and
correct. There are two types of decision knowledge: First, general decision knowledge, such
as design patterns, is documented in external knowledge bases. Correctness means that the
documented decision knowledge does not conflict with such factual information (Zhi et al., 2015).
Second, new decisions build on previous decision knowledge specific to the software development
project. Documented decision knowledge might be invalidated during software evolution and
needs to be updated. The rapid change aggravates the documentation quality problem regarding
inconsistency: Decisions can rapidly be changed, which might lead to inconsistent and outdated
documentation. We summarize the third problem as follows:

6

1.3. Research Methodology

Low Documentation Quality Problem: The decision knowledge documentation can be
incomplete because developers do not document decision knowledge at all or only partly. If
the decision knowledge is documented, it might be inconsistent with other decision knowledge
or software artifacts because it can be outdated. Such decision knowledge cannot be exploited.

Table 1.1 summarizes how CSE aggravates the rationale management problems based on the
challenges regarding software documentation reported by Theunissen et al. (2022): informal
documentation is hard to understand, documentation is considered a waste, productivity is
measured by the amount of working software only, documentation is out-of-sync with the software,
and the short-term focus leading to knowledge vaporization.

Table 1.1.: Rationale management problems and their aggravation through CSE.
Problem Aggravation in CSE

Intrusiveness and effort
problem

Productivity is measured by the amount of working software. Documen-
tation might even be considered a waste. ⇒ Effort for documentation
needs to be particularly low. Otherwise, it is not spent.

High amount of distributed
knowledge problem

Much decision knowledge accumulates in distributed documentation
locations, e. g., in the issue tracking system and version control system.
⇒ Accessing the knowledge is particularly hard.
The documentation is informal and, thus, hard to understand.

Low documentation quality
problem

Short-term focus aggravates incomplete documentation. Rapid change ag-
gravates inconsistent documentation that is out-of-sync with the software
or with other decision knowledge, i. e., outdated.

1.3. Research Methodology
The research project conducted during this thesis follows the design science methodology described
by Wieringa (2014). Design science deals with the design and investigation of artifacts in context.
An artifact can be an algorithm, a method, a notation, a technique, a tool, or a conceptual
framework. Researchers of a design science research project iterate over two activities and thereby
address two categories of research goals (Figure 1.1): On the one hand, the researchers design
an artifact to improve a problem context for stakeholders. Stakeholders are people in the social
context who may affect the project or may be affected by it. The respective research goal of the
first task is an artifact design goal, or, synonymously, a technical research goal. On the other
hand, the researchers aim to achieve knowledge goals. A knowledge goal can be to empirically
investigate one or more artifacts in a given context or describe and explain phenomena. The
UML activity diagram in Figure 1.1 does not contain a start node because a design science
project can start with both activities.

The design science research goals are refined to make them achievable, similar to the goal
question metric approach (Basili et al., 1994). The technical research goal is refined into sub-goals,
and the knowledge goals are refined into knowledge questions, i. e., research questions. The
achievement of a knowledge goal can be supported by an instrument design goal, which defines
that the researchers need a research instrument to answer a knowledge question (Wieringa, 2014).

The design science approach consists of five tasks: Problem investigation, treatment design,
treatment validation, treatment implementation, and implementation evaluation. During the
problem investigation, researchers aim to understand the current state of research and practice,
refine the understanding of the problem context, and review existing solutions (i. e., treatments)
for the problems. Based on the current state, artifacts are identified for the treatment design

7

1. Introduction

Contribute to technical research goal(s)
by designing artifacts to improve a problem context,

i. e., by solving design problems

Contribute to knowledge goal(s)
by answering knowledge questions

about the artifact(s) in context
or about phenomena

Artifacts and contexts
to investigate

Knowledge and
new design problems

TD

PI

TV

TI

IE

Figure 1.1.: Two major activities that researchers of a design science research project iteratively
perform as a UML activity diagram based on Wieringa (2014). The activities
contribute to the two categories of research goals, i. e., to the technical research
goals and the knowledge goals. The tasks Problem Investigation (PI), Treatment
Design (TD), Treatment Validation (TV), Treatment Implementation (TI), and
Implementation Evaluation (IE) are mapped to the activities.

phase. During the treatment validation, researchers validate whether the artifacts treat the
problems in a simulated, yet realistic problem context. In addition, during the last two tasks,
treatment implementation and implementation evaluation, researchers apply and evaluate the
artifacts in a real problem context, i. e., in an industrial setting. Collections of these tasks
are referred to as cycles as researchers iterate over the tasks many times in a research project.
The five tasks form the engineering cycle, whereas the first three tasks (problem investigation,
treatment design, treatment validation) form the design cycle.

Figure 1.2 shows the design cycle of this thesis along with a forward reference to the respective
research goal that each task aims to achieve. Section 1.4 will detail the research goals.

Design Cycle:
Continuous Rationale Management

Study Rationale Management
in Practice

(→ Knowledge Goal 1)

PI
Study Existing Support for

Rationale Management with
Classification or Recommendation

(→ Knowledge Goal 2)

PI

Model ConRat
and Develop ConDec Plug-Ins
(→ Technical Research Goal)

TD

Disseminate ConRat and ConDec
(→ Instrument Design Goal)

TV

Perform Case Studies
with ConRat and ConDec

TV

Validate Feasibility
(→ Knowledge Goal 3)

TVValidate Effectiveness
(→ Knowledge Goal 4)

TV

Validate User Acceptance
(→ Knowledge Goal 5)

TV

Figure 1.2.: Design cycle of the thesis as a UML activity diagram with reference to the research
goals and the tasks Problem Investigation (PI), Treatment Design (TD), and Treat-
ment Validation (TV).

The problem investigation consists of an interview study and a literature study. The interview
study investigates rationale management in practice during CSE in the industry. The literature
study analyzes the state of the art of rationale management support with classification and
recommendation. The results of the problem investigation are the basis for the treatment design,
namely the modeling of ConRat and the development of the ConDec plug-ins that support
ConRat with views and features. For its validation, the treatment is applied in six case studies
and improved. Before a case study, ConRat and ConDec are disseminated to the case study
participants. Three different aspects are validated: 1) the feasibility through the analysis of
the knowledge documentation created during the case studies, 2) the effectiveness of particular
ConDec support, and 3) the acceptance of ConDec by the case study participants.

8

1.3. Research Methodology

Different terms for software engineering research and validation aspects are used in the literature.
Figure 1.3 groups the validation aspects by their reference and relates the aspects.

Quality in Use Aspects by Wieringa Technology Acceptance Model

Effectiveness

Efficiency

Satisfaction

Freedom from Risk

Context Coverage Feasibility

Usability

Utility

Ease of Use

Intention to Use in Future

Usefulness

determines

determinesenables
validation

enables validation

enables
validation

Figure 1.3.: Validation aspects examined in this thesis (UML package diagram).

Feasibility defines whether stakeholders can apply the treatment and is the primary aspect
that the treatment needs to fulfill to validate the other aspects. In design science, the treatment
is evaluated by its utility for the stakeholder goals and its usability (Wieringa, 2014). Utility is
satisfied if the stakeholders can use the treatment to achieve their stakeholder goals. Usability
is satisfied if the treatment is easy to use (and also fulfills other usability requirements such
as understandability and ease of learning). The treatment validation aims to learn about the
treatment’s utility and usability in a real-world context (Wieringa, 2014). Similarly, the quality
in use model of the ISO/IEC 25010 (2011) standard defines five characteristics to determine the
degree to which users can use a product or system (here the treatment) to meet their needs:
Effectiveness, efficiency, satisfaction, freedom from risk, and context coverage. Effectiveness
defines the accuracy and completeness with which users achieve specified goals, i. e., how well a
goal can be achieved with the product or system. Efficiency defines the time to complete the
task, i. e., how efficiently a goal can be achieved with the product or system. Satisfaction defines
the degree to which user needs are satisfied when a product or system is used. Freedom from
risk defines the degree to which a product or system mitigates the potential risk to economic
status, human life, health, or the environment. Context coverage defines whether the product
or system can be used in contexts beyond those initially explicitly identified. According to the
ISO/IEC 25010 (2011) standard, usability is defined as a subset of quality in use consisting of
effectiveness, efficiency, and satisfaction. While the ISO/IEC 25010 (2011) standard does not
use the term utility, quality in use relates to utility (Figure 1.3). This thesis does not validate
freedom from risk and context coverage, so these validation aspects are grayed out in Figure 1.3.
Another term used in the validation of treatments is user acceptance as defined by Davis et al.
(1989) and Marangunić and Granić (2015) in the Technology Acceptance Model. The model
consists of the three variables ease of use, usefulness, and the intention to use in the future.
The ease of use and usefulness are determinants of the intention to use. Usefulness is also a
sub-characteristic of satisfaction in the ISO/IEC 25010 (2011) standard. It defines the degree
to which a user is satisfied with their perceived achievement of goals, including the results and
consequences. The validation aspects are interchangeable, e. g., user acceptance with utility and
usability (Figure 1.3).

The treatment can also be used to answer empirical knowledge questions, which do not depend
on stakeholder goals. Answers to such knowledge questions are evaluated by truth (Wieringa,
2014). However, we can never be sure to have actually found the answer to an empirical knowledge
question. The answer can be falsified as illustrated with the “all swans are white” example by
Popper (1959). Just one observation of a black swan falsifies this proposition.

9

1. Introduction

Stol and Fitzgerald (2018) define eight research strategies to conduct primary research: Field
study, field experiment, experimental simulation, laboratory experiment, judgment study, sample
study, formal theory, and computer simulation. This thesis applies four research strategies: sample
study, field experiment, judgment study, and laboratory experiment. The research strategies
are distinguished by their level of obtrusiveness and generalizability. Obtrusiveness refers to the
extent to which researchers intrude on the research setting or whether they unobtrusively make
observations. Generalizability refers to the extent to which researchers can draw conclusions
from a study for other contexts or systems. Figure 1.4 arranges the primary empirical studies
of this thesis along their level of obtrusiveness and generalizability. The literature study of the
problem investigation is not included since it is a secondary study.

Generalizability increasingly
more universal
contexts and systems

O
bt

ru
siv

en
es

s

more
obtrusive
research

Sample study on rationale management in practice (→ Chapter 3)
PI

Sample study on knowledge documentation
to validate feasibility (→ Chapter 9)

Judgment study
to validate user acceptance (→ Chapter 11)

TV
Field experiments

with ConRat and ConDec
(→ Chapter 8)

TV

Laboratory experiment
to validate effectiveness of

automatic text classification (→ Chapter 10)

TV

Figure 1.4.: Empirical studies along their level of obtrusiveness and generalizability. The studies
are part of the Problem Investigation (PI) and Treatment Validation (TV).

In a case study, the researchers study a specific case, in contrast to a sample from a population.
However, the term case study is used for a broad range of studies in software engineering
(Runeson et al., 2012). The six case studies of this thesis are field experiments. A field experiment
is conducted in a realistic research setting, which makes it less obtrusive than a laboratory
experiment. It aims to investigate, evaluate, or compare techniques, practices, processes, or
approaches. The term experiment is interpreted in a broad sense rather than in a strictly
scientific sense (Stol and Fitzgerald, 2018). A typical research method applied during field
experiments is action research. When performing action research, the researchers solve a problem
and observe the effects of solving the problem (Easterbrook et al., 2008). That means that the
researchers intrude into the research setting, i. e., action research is obtrusive in contrast to a
purely observational case study. Wieringa and Moralı (2012) describe the usage of action research
in design science, “which starts with an artifact, and then tests it under conditions of practice by
solving concrete problems with them”.

The thesis includes two sample studies. The first sample study is the interview study as part
of the problem investigation. The second sample study is part of the treatment validation and
analyzes the knowledge documentation created during the field experiments. When performing
a sample study, researchers aim to achieve generalizability over a population of actors, e. g.,
practitioners, or software artifacts (Stol and Fitzgerald, 2018). Researchers do not intrude on
the research setting, i. e., they do not manipulate any variables during data collection. Thus,
sample studies do not allow to infer causal relationships. Sample studies involve surveys and the
mining of software repositories. With surveys, researchers aim to “identify the characteristics of
a broad population of individuals” (Easterbrook et al., 2008). In software engineering research,
the term survey is also used as a synonym for literature review (Stol and Fitzgerald, 2018). The
data collection is usually done with questionnaires or interviews (Ralph et al., 2020). During an

10

1.4. Research Goals

interview, the researcher asks the participant, i. e., the interviewee, a series of questions (Wohlin
and Aurum, 2015). The purpose of interviews is to collect historical data from the interviewees’
memories and opinions or impressions about a topic (Seaman, 1999). An advantage of interviews
is that the researcher can follow up on the topic with the interviewees. There are different types
of interviews: structured, unstructured, and semi-structured. In unstructured interviews, the
researcher does not have a predefined questionnaire. Instead, the interviewee provides both
questions and answers. In contrast, structured interviews demand a questionnaire, which does
not allow to add additional questions. Semi-structured interviews involve predefined questions,
but the researcher can also collect unexpected information (Seaman, 1999). Semi-structured
interviews are most frequently used (Myers and Newman, 2007).

The thesis includes a judgment study to validate the user acceptance of ConDec. During a
judgment study, the researchers are actively involved by adding a stimulus, e. g., applying a
treatment. Experts, i. e., the study participants, rate or discuss a given topic of interest. When
performing a judgment study, the researchers aim to achieve generalizability over the responses
rather than generalizability to a population of actors (Stol and Fitzgerald, 2018). Similar to
sample studies, researchers often use surveys and interviews as research methods.

This thesis includes a laboratory experiment to validate the effectiveness of automatic text
classification as a particular ConDec support. During a laboratory experiment, the researchers
conduct a controlled experiment. Controlled experiments enable determining a cause-effect
relationship between the variables (Easterbrook et al., 2008). Laboratory experiments are
conducted in a contrived (artificial) setting to minimize biases through confounding factors and
extraneous conditions (Stol and Fitzgerald, 2018). The findings of a laboratory experiment are
limited in their generalizability since the contrived setting is simplified compared to a realistic
research setting, i. e., a real-world software development environment. Laboratory experiments
are obtrusive because the researchers must set up a contrived setting.

This thesis uses the words evaluation and validation interchangeably, while Wieringa (2014)
distinguishes them by the degree of the realism of the settings in which the treatment is applied.

1.4. Research Goals
This section describes two stakeholder goals as well as the goals of the researchers, i. e., the
research goals of the thesis. Figure 1.5 depicts the goal structure of the design science research
project conducted in the thesis. The research goals of this thesis include one technical research
goal, five knowledge goals, and one instrument design goal.

The main stakeholders in this thesis are software developers or stakeholders of related roles who
contribute to the software development, e. g., requirements engineers, product owners, architects,
and testers. For simplification, software developers are used as examples of different roles, also
called practitioners. The stakeholder goal of a software developer is:

Developer Goal: Develop and evolve software consistent with former decisions by making the
best new decisions.

Other stakeholders are the software users since this thesis aims to improve the product for
the software users by improving the software development process through ConRat. However,
software users are stakeholders with rather no awareness of the rationale management problems
and their possible treatments. The stakeholder goal of a software user is:

User Goal: Use software that fulfills functional and quality requirements.

This thesis aims to support the developer goal and, thus, indirectly support the user goal.

11

1. Introduction

Social Context: Stakeholder Goals

User Goal: Use software that fulfills functional and quality requirements.

Developer Goal: Develop and evolve software consistent with former decisions by making the best
new decisions.

enables

Design Science Research Goals
Technical Research Goal: Design a life
cycle model and tool support for continuous
rationale management that treats the
problems of 1) intrusiveness and effort,
2) high amount of distributed knowledge,
and 3) low documentation quality. The goal
is to support a) collaborative, incremental,
and rational decision making,
b) documentation, c) exploitation, and
d) quality assurance of decision knowledge.

Knowledge Goal 1:
Understand the current
practices, problems, and
practitioners’ improvement
ideas regarding rationale
management in CSE.

Knowledge Goal 2:
Understand the current state
of the art regarding rationale
management support with
classification or
recommendation.

Knowledge Goal 3: Show
that it is feasible to
document a high amount of
high-quality rationale during
ConRat with the ConDec
plug-ins. Describe the
outcome of knowledge
documentation in practice.

Knowledge Goal 4:
Show the effectiveness of
automatic text
classification from the
researchers’ perspective.

Knowledge Goal 5: Show
the acceptance of the
ConDec plug-ins from the
software practitioners’
perspective.

Instrument Design Goal: Disseminate ConRat and the ConDec plug-ins to developers
and show the acceptance of the dissemination.

contributes to

TD

PI PI

TV

TV
TV

TV

Figure 1.5.: Goal structure of the thesis. An arrow between two goals indicates that one goal’s
fulfillment contributes to the other’s fulfillment. The Problem Investigation (PI),
Treatment Design (TD), or Treatment Validation (TV) addresses the goals.

The first knowledge goal of this thesis aims to deepen the understanding of the rationale
management practices and problems during CSE and to elicit improvement ideas:

Knowledge Goal 1 (Investigation): Understand the current practices, problems, and practi-
tioners’ improvement ideas regarding rationale management in CSE.

Literature overviews of knowledge management support exist, e. g., by Ding et al. (2014),
Alexeeva et al. (2016), Capilla et al. (2016), Weinreich and Groher (2016), and Hesse (2020).
To narrow down the topic, the second knowledge goal of this thesis is to describe existing
support that treats the rationale management problems in Section 1.2 with classification or
recommendation. The first focus is on techniques that treat the intrusiveness and effort problem
by automating parts of the documentation with text classification. The second focus is put on
techniques that treat the problems with recommendations. Recommendation systems provide
information to software engineers estimated to be valuable for their tasks in a given context. For
example, recommendation systems can help developers to navigate through and reuse source
code, discover tickets, find persons to contact, or assign a ticket (Robillard and Walker, 2014).

Knowledge Goal 2 (Investigation): Understand the current state of the art regarding rationale
management support with classification or recommendation.

12

1.4. Research Goals

The technical research goal of this thesis is to treat the rationale management problems
in Section 1.2 and integrate rationale management activities into CSE and support them.
The treatment should enable naturalistic decision making but encourage the developers to
collaboratively and incrementally reflect on decisions made. This way, the decisions and their
documentation evolve from naturalistic to more rational. The first and second knowledge goals’
results are a basis for achieving the technical research goal. That means the treatment should
integrate practitioners’ improvement ideas and provide state-of-the-art support with classification
and recommendation. The technical research goal is addressed by modeling a life cycle with
continuous rationale management called ConRat and developing the ConDec plug-ins.

Technical Research Goal: Design a life cycle model and tool support for continuous rationale
management that treats the problems of 1) intrusiveness and effort, 2) high amount of dis-
tributed knowledge, and 3) low documentation quality. The goal is to support a) collaborative,
incremental, and rational decision making, b) documentation, c) exploitation, and d) quality
assurance of decision knowledge.

As described in the previous section, this thesis includes six case studies to validate whether
the technical research goal was achieved. Developers, i. e., case study participants, need to know
how to capture rationale and exploit the documentation during ConRat and using the ConDec
views and features. The dissemination is, therefore, the instrument design goal:

Instrument Design Goal: Disseminate ConRat and the ConDec plug-ins to developers and
show the acceptance of the dissemination.

Based on the case studies, the following three knowledge goals address the treatment validation.
The thesis validates the achievement of the technical research goal from different perspectives
by investigating the three aspects of feasibility, effectiveness, and user acceptance. The third
knowledge goal is to validate that it is feasible to treat the problems of a high amount and low
documentation quality with ConRat and ConDec by analyzing the knowledge documentation of
the six case studies. Next to the validation, the goal is to investigate rationale documentation in
realistic projects to contribute to the body of knowledge.

Knowledge Goal 3 (Validation and Investigation): Show that it is feasible to document a
high amount of high-quality rationale during ConRat with the ConDec plug-ins. Describe the
outcome of knowledge documentation in practice.

The fourth knowledge goal is to show the effectiveness of automatic text classification integrated
into ConDec, thereby showing the treatment of intrusiveness and effort. The knowledge goal is
addressed in a laboratory experiment from the researchers’ point of view and using the rationale
documentation created in the case studies.

Knowledge Goal 4 (Validation): Show the effectiveness of automatic text classification from
the researchers’ perspective.

The fifth knowledge goal is to validate the acceptance of the ConDec plug-ins from the
developers’ point of view, i. e., the participants of the judgment study. This study is particularly
important since it directly involves the main stakeholders of the thesis and validates the treatment
of the three rationale management problems. The goal is to understand the developers’ attitude
toward the views and features of ConDec by asking for their perceived usefulness, ease of use,
and intention to use in the future and monitoring their usage behavior.

Knowledge Goal 5 (Validation): Show the acceptance of the ConDec plug-ins from the
software practitioners’ perspective.

13

1. Introduction

1.5. Contributions

This thesis makes seven contributions to software engineering practitioners and researchers.
First, the main contribution is the validated approach for continuous rationale management

consisting of the ConRat life cycle model extension and the ConDec plug-ins (Chapter 5, ad-
dressing the technical research goal). Adopting continuous rationale management is particularly
interesting for practitioners since managing rationale has many positive effects, such as improved
decision-making and change process, knowledge sharing, reuse, and accountability. ConRat shows
how practitioners can integrate rationale-management activities into their current workflows
(Chapter 6). Practitioners can easily extend their tools and systems with the views and features
of the ConDec plug-ins (Chapter 7). ConRat and ConDec are also interesting for researchers as
a basis for empirical studies on rationale management and further development.

Second, the thesis contributes an interview study with practitioners from the industry (Chap-
ter 3, addressing knowledge goal 1). The interview study describes the current state of CSE as the
context of the current rationale management. It contributes anecdotal evidence on the types of
decisions worth capturing for practitioners, how they capture decision knowledge (documentation
locations, techniques, tools, linked artifacts, evolution history of decisions, capturing practices
and frequencies), what benefits they see in capturing decision knowledge, what hinders them
from capturing decision knowledge, how they share decision knowledge and avoid knowledge
vaporization, and how they deal with change. The interview study also contributes features for
continuous rationale management beneficial for practitioners. The results of the interview study
are interesting for practitioners to compare their current practices and to reflect on the necessity
for adopting ConRat and ConDec. The interview study is also interesting for researchers, e. g.,
when performing future interview studies to compare their results.

Third, the thesis contributes a systematic mapping study of rationale management support
with classification and recommendation (Chapter 4, addressing knowledge goal 2). The study
contributes an overview of four approaches helpful for rationale management: Automatic text
classification, automatic linking, decision guidance, and consistency support. The approaches
were a basis for developing ConDec’s recommendation systems. The overview is valuable for
researchers to guide future systematic literature reviews and primary studies.

Fourth, this thesis contributes an empirical study on the analysis of the knowledge documenta-
tion of six case study projects (Chapter 9, addressing knowledge goal 3). This study validates
the feasibility of ConRat and ConDec and contributes to understanding decision knowledge
documentation in practice. The study reports and discusses various metrics on the knowledge
documentation: a) types and numbers of decision knowledge elements at the end of the project
and over time, b) documentation locations of decision knowledge, c) decision types and their
correlation with other decision types and documentation locations, d) ratios between the number
of decisions to requirements and code, e) intra-rationale completeness, f) states of issues and
decisions, and g) links between code and tickets and decision coverage calculated on the links from
requirements or code to decisions. The study is interesting as it shows how to operationalize the
quality of knowledge documentation. Practitioners can reflect on the knowledge documentation
quality of their projects using the metrics. The study is interesting for researchers as a basis for
further work on developing guidelines and tool support for high-quality rationale documentation.

Fifth, this thesis contributes an empirical study of the effectiveness of automatic text classifica-
tion (Chapter 10, addressing knowledge goal 4). The study reports precision, recall, and F-scores
of experiments with various data sets and machine-learning algorithms. The results indicate the
effectiveness, but researchers can further improve ConDec’s automatic text classification in the
future and use the study results as a benchmark.

Sixth, this thesis contributes an empirical study on the user acceptance of ConDec (Chapter 11,
addressing knowledge goal 5). The study contributes feedback and improvement ideas for

14

1.6. Structure of the Thesis

the views and features of the ConDec plug-ins by software developers. The results show the
acceptance and the improvement ideas are interesting for researchers as a basis for future work.

Seventh, this thesis contributes a syllabus for the dissemination of ConRat and ConDec
(Chapter 12, addressing the instrument design goal). The syllabus consists of exercises where
students perform rationale management activities using the ConDec views and features. It is
interesting for practitioners as a starting point to adopt ConRat and ConDec.

1.6. Structure of the Thesis
This thesis is structured in five parts and 14 chapters. Table 1.2 shows an overview of the
structure of the thesis. Part I introduces this thesis and describes the knowledge context. Part II
contains the problem investigation that addresses the knowledge goal 1 and the knowledge goal 2.
Part III describes the treatment design that addresses the technical research goal. Part IV
describes the treatment validation that addresses the knowledge goal 3, the knowledge goal 4,
and the knowledge goal 5. This part also describes the syllabus for the dissemination of ConRat
and ConDec that addresses the instrument design goal. Part V provides a summary and an
outlook of future work.

15

1. Introduction

Table 1.2.: Structure of the thesis, including research goals and research questions (RQ).
Preliminaries Chapter

Part I Introduction 1
Background 2

Problem Investigation

Part II

State of the Practice: Rationale Management during CSE
Knowledge Goal 1: Understand the current practices, problems, and practitioners’
improvement ideas regarding rationale management in CSE.
RQ: How do practitioners apply CSE during software evolution?
RQ: How do practitioners manage decision knowledge during CSE?
RQ: How can rationale management in CSE be improved according to practitioners?

3

State of the Art: Classification and Recommendation for Rationale
Management
Knowledge Goal 2: Understand the current state of the art regarding rationale man-
agement support with classification or recommendation.
RQ: What are the characteristics of (semi-)automatic classification and recommenda-
tion approaches to support rationale management?

4

Treatment Design

Part III

Technical Research Goal: Design a life cycle model and tool support for continuous
rationale management that treats the problems of 1) intrusiveness and effort, 2) high
amount of distributed knowledge, and 3) low documentation quality. The goal is to
support a) collaborative, incremental, and rational decision making, b) documentation,
c) exploitation, and d) quality assurance of decision knowledge.
Sub-Goal: Support low-intrusive decision making, documentation, and exploitation
Sub-Goal: Support high amount of distributed knowledge
Sub-Goal: Support high-quality decision knowledge documentation
Overview of Continuous Rationale Management and its Support with
ConDec 5

Life Cycle Modeling of Continuous Rationale Management 6
Supporting Continuous Rationale Management with ConDec 7

Treatment Validation

Part IV

Overview of Evaluation Studies 8
Analysis of Knowledge Documentation
Knowledge Goal 3: Show that it is feasible to document a high amount of high-
quality rationale during ConRat with the ConDec plug-ins. Describe the outcome of
knowledge documentation in practice.
RQ: Is it feasible to document decision knowledge in practice with ConDec?
RQ: Is it feasible to document a high amount of knowledge in practice with ConDec?
RQ: Is it feasible to create high-quality knowledge documentation in practice with
ConDec?

9

Effectiveness of Automatic Text Classification
Knowledge Goal 4: Show the effectiveness of automatic text classification from the
researchers’ perspective.
RQ: How effective is the automatic text classification of ConDec at identifying
rationale elements?

10

D
es

ig
n

C
yc

le

User Acceptance of ConDec Plug-Ins
Knowledge Goal 5: Show the acceptance of the ConDec plug-ins from the software
practitioners’ perspective.
RQ: Do developers accept the ConDec support for decision making?
RQ: Do developers accept the ConDec support for knowledge documentation?
RQ: Do developers accept the ConDec support for knowledge exploitation?
RQ: Do developers accept the ConDec support for quality assurance?

11

Dissemination of ConRat and ConDec Plug-Ins
Instrument Design Goal: Disseminate ConRat and the ConDec plug-ins to developers
and show the acceptance of the dissemination.
RQ: Do developers accept the dissemination?

12

Conclusion
Part V Summary and Future Work 13, 14

16

1.7. Previous Publications

1.7. Previous Publications
Several results of this dissertation have already been published. Table 1.3 lists the publications
in chronological order, including a reference to the corresponding chapters of the thesis.

Table 1.3.: Previous publications sorted by publication date.

Publication Chapter

Johanssen
et al.,
2017a

J. O. Johanssen, A. Kleebaum, B. Bruegge, and B. Paech (2017a). “Towards a
Systematic Approach to Integrate Usage and Decision Knowledge in Continuous
Software Engineering”. In: 2nd Workshop on Continuous Software Engineering.
Hannover, Germany, pp. 7–11

2

Johanssen
et al.,
2017b

J. O. Johanssen, A. Kleebaum, B. Bruegge, and B. Paech (2017b). “Towards
the Visualization of Usage and Decision Knowledge in Continuous Software
Engineering”. In: 5th IEEE Working Conference on Software Visualization
(VISSOFT 2017). Shanghai, China, pp. 104–108. doi: 10.1109/VISSOFT.
2017.18

7

Johanssen
et al.,
2018

J. O. Johanssen, A. Kleebaum, B. Paech, and B. Bruegge (2018). “Prac-
titioners’ Eye on Continuous Software Engineering: An Interview Study”.
In: International Conference on Software and System Process. ICSSP ’18.
Gothenburg, Sweden: ACM, pp. 41–50. doi: 10.1145/3202710.3203150

3

Kleebaum
et al.,
2018a

A. Kleebaum, J. O. Johanssen, B. Paech, R. Alkadhi, and B. Bruegge (2018a).
“Decision knowledge triggers in continuous software engineering”. In: 4th
International Workshop on Rapid Continuous Software Engineering - RCoSE
’18. Gotheburg, Sweden: ACM Press, pp. 23–26. doi: 10.1145/3194760.
3194765

6

Kleebaum
et al.,
2018b

A. Kleebaum, J. O. Johanssen, B. Paech, and B. Bruegge (2018b). “Tool
Support for Decision and Usage Knowledge in Continuous Software Engineer-
ing”. In: 3rd Workshop on Continuous Software Engineering, pp. 74–77. doi:
10.11588/heidok.00024186

7

Johanssen
et al.,
2019b

J. O. Johanssen, A. Kleebaum, B. Paech, and B. Bruegge (2019b). “The Eye
of Continuous Software Engineering”. In: Software Engineering and Software
Management (SE). Bonn, Germany: Gesellschaft für Informatik e.V., pp. 67–68.
doi: 10.18420/se2019-17

3

Kleebaum
et al.,
2019a

A. Kleebaum, J. O. Johanssen, B. Paech, and B. Bruegge (2019a). “Teaching
Rationale Management in Agile Project Courses”. In: 16. Workshop Software
Engineering im Unterricht der Hochschulen (SEUH). Bremerhaven, Germany,
pp. 125–132. doi: 10.11588/heidok.00026358

12

Kleebaum
et al.,
2019b

A. Kleebaum, J. O. Johanssen, B. Paech, and B. Bruegge (2019b). “How
do Practitioners Manage Decision Knowledge during Continuous Software
Engineering?” In: 31st International Conference on Software Engineering
and Knowledge Engineering. SEKE’19. Lisbon, Portugal: KSI Research Inc.,
pp. 735–740

3

Johanssen
et al.,
2019c

J. O. Johanssen, A. Kleebaum, B. Paech, and B. Bruegge (2019c). “Continuous
software engineering and its support by usage and decision knowledge: An
interview study with practitioners”. In: Journal of Software: Evolution and
Process (JSEP) 31.5, e2169. doi: 10.1002/smr.2169

3

Continued on next page

17

https://doi.org/10.1109/VISSOFT.2017.18
https://doi.org/10.1109/VISSOFT.2017.18
https://doi.org/10.1145/3202710.3203150
https://doi.org/10.1145/3194760.3194765
https://doi.org/10.1145/3194760.3194765
https://doi.org/10.11588/heidok.00024186
https://doi.org/10.18420/se2019-17
https://doi.org/10.11588/heidok.00026358
https://doi.org/10.1002/smr.2169

1. Introduction

Publication Chapter

Kleebaum
et al.,
2019c

A. Kleebaum, J. O. Johanssen, B. Paech, and B. Bruegge (2019c). “Sharing and
Exploiting Requirement Decisions”. In: Fachgruppentreffen Requirements Engi-
neering (FGRE). Heidelberg, Germany: Gesellschaft für Informatik, pp. 19–20.
doi: 10.11588/heidok.00028596

7

Kleebaum
et al.,
2019d

A. Kleebaum, M. Konersmann, M. Langhammer, B. Paech, M. Goedicke, and
R. Reussner (2019d). “Continuous Design Decision Support”. In: Managed
Software Evolution. Ed. by R. Reussner, M. Goedicke, W. Hasselbring, B. Vogel-
Heuser, J. Keim, and L. Märtin. Cham: Springer International Publishing.
Chap. 6, pp. 107–139. doi: 10.1007/978-3-030-13499-0_6

6

Kleebaum
et al.,
2020

A. Kleebaum, J. O. Johanssen, B. Paech, and B. Bruegge (2020). “Continuous
Management of Requirement Decisions Using the ConDec Tools”. In: 26th
International Conference on Requirements Engineering (REFSQ20) Workshops,
Doctoral Symposium, Live Studies Track, and Poster Track. Pisa, Italy: CEUR-
WS.org, p. 6. doi: 10.11588/heidok.00028230

5, 7

Kleebaum
et al.,
2021a

A. Kleebaum, J. O. Johanssen, B. Paech, and B. Bruegge (2021a). “Continuous
Rationale Management Using the ConDec Tools”. In: Software Engineering
2021 Satellite Events. Ed. by S. Götz, L. Linsbauer, I. Schaefer, and A.
Wortmann. Braunschweig/Virtual: CEUR-WS, pp. 1–2. doi: 10.11588/
heidok.00029976

7

Kleebaum
et al.,
2021b

A. Kleebaum, B. Paech, J. O. Johanssen, and B. Bruegge (2021b). “Continuous
Rationale Identification in Issue Tracking and Version Control Systems”. In:
REFSQ-2021 Workshops, OpenRE, Posters and Tools Track, and Doctoral
Symposium. Essen/Virtual: CEUR-WS.org, p. 9. doi: 10.11588/heidok.
00029966

7, 10

Kleebaum
et al.,
2021c

A. Kleebaum, B. Paech, J. O. Johanssen, and B. Bruegge (2021c). “Continuous
Rationale Visualization”. In: Working Conference on Software Visualization
(VISSOFT). Luxembourg: IEEE, pp. 33–43. doi: 10.1109/VISSOFT52517.
2021.00013

7, 11

18

https://doi.org/10.11588/heidok.00028596
https://doi.org/10.1007/978-3-030-13499-0_6
https://doi.org/10.11588/heidok.00028230
https://doi.org/10.11588/heidok.00029976
https://doi.org/10.11588/heidok.00029976
https://doi.org/10.11588/heidok.00029966
https://doi.org/10.11588/heidok.00029966
https://doi.org/10.1109/VISSOFT52517.2021.00013
https://doi.org/10.1109/VISSOFT52517.2021.00013

Chapter 2
Background

“Formalizing knowledge is costly. One way to reduce cost is to
formalize it incrementally—essentially transforming a semiformal
representation to a formal one.”

—J. Lee, 1997

This chapter introduces important terms used in this dissertation. Section 2.1 presents contin-
uous software engineering as the software development process underlying Continuous Rationale
Management (ConRat). Section 2.2 provides an overview of the topic of rationale management.
Section 2.3 introduces relevant development tools and systems mentioned throughout this disser-
tation and extended by the ConDec plug-ins. Section 2.4 describes the CURES research project
and the CURES prototype to improve rationale and usage knowledge management during CSE.
The CURES prototype was a basis for the interview study described in the following chapter.

2.1. Continuous Software Engineering

The term software engineering was introduced in 1968 at a conference where issues related to
software were addressed, and best practices for software development were established (Naur
and Randell, 1968). The vision was to understand how software is developed and to define a
software life cycle model (Mahoney, 1990). Lehman (1980) stated that the continual change to
a software system, i. e., its evolution and never-ending maintenance, is necessary because of a
changing environment and new and changing stakeholder requirements. Continuous Software
Engineering (CSE) describes a family of agile software development processes. This thesis uses
the terms process and life cycle interchangeably.

Section 2.1.1 presents the CSE process model called Stairway to Heaven. Section 2.1.2 presents
the CSE process model called BizDevOps. Both models are a foundation for the interview
study described in Chapter 3. Section 2.1.3 presents the Rugby CSE process model, which is a
foundation for ConRat described in Part III of the thesis.

2.1.1. Stairway to Heaven

The transition from the waterfall-model-style software development to CSE is described in four
steps, metaphorically named the Stairway to Heaven. In the first step, the process involves agile
practices such as working with sprints, but feedback loops with the customers still take long
(six months or more). The second step employs the frequent integration of work, daily builds,
and fast commit of changes. The third step adopts continuous deployment to release software

19

2. Background

Table 2.1.: Continuous ∗ activities and their definitions by Fitzgerald and Stol (2017).
Activity Description (see Fitzgerald and Stol (2017) for original references)

Business strategy and planning

Continuous
planning

Holistic endeavor involving multiple stakeholders from business and software functions whereby
plans are dynamic, open-ended artifacts that evolve in response to changes in the business
environment and thus involve a tighter integration between planning and execution.

Continuous
budgeting

Budgeting is traditionally an annual event during which an organization’s investments, revenue,
and expense outlook are prepared for the coming year. The Beyond Budgeting model suggests
that budgeting becomes a continuous activity to facilitate changes during the year.

Development

Continuous
integration

A typically automatically triggered process comprising inter-connected steps such as compiling
code, running unit and acceptance tests, validating code coverage, checking coding-standard
compliance, and building deployment packages. While some form of automation is typical,
the frequency is also important because it should be regular enough to ensure quick feedback
to developers. Finally, any continuous integration failure is also an important event that may
have several ceremonies and highly visible artifacts that help to ensure that problems leading
to integration failures are solved as quickly as possible by those responsible.

Continuous
delivery

Continuous delivery is the practice of continuously deploying good software builds automati-
cally to some environment but not necessarily to actual users.

Continuous
deployment

Continuous deployment implies continuous delivery and ensures that the software is continu-
ously ready for release and deployed to actual customers.

Continuous
verification

Adoption of verification activities, including formal methods and inspections throughout the
development process rather than relying on a testing phase towards the end of development.

Continuous
testing

A process typically involving some automation of the testing process, or prioritization of test
cases, that helps to reduce the time between the introduction of errors and their detection
and eliminate root causes more effectively.

Continuous
compliance

Software development seeks to satisfy regulatory compliance standards continuously, rather
than operating a big-bang approach to ensuring compliance just before the release of the
overall product.

Continuous
security

Transforming security from being treated as just another non-functional requirement to a
key concern throughout all phases of the development life cycle and even post-deployment,
supported by a smart and lightweight approach to identifying security vulnerabilities.

Continuous
evolution

Most software systems evolve during their lifetime. However, a system’s architecture is
based on a set of initial design decisions that were made during the system’s creation. Some
assumptions underpinning these decisions may no longer hold, and the architecture may not
facilitate specific changes. Technical debt is incurred when an architecture is unsuitable for
facilitating new requirements, but shortcuts are made.

Operations

Continuous
use

Recognizes that the initial adoption versus continuous use of software decisions are based on
different parameters and that customer retention can be a more effective strategy than trying
to attract new customers.

Continuous
trust

Trust developed over time as a result of interactions based on the belief that a vendor will act
cooperatively to fulfill customer expectations without exploiting their vulnerabilities.

Continuous
run-time
monitoring

As the historical boundary between design-time and run-time research in software engineering
is blurring, in the context of continuously running cloud services, run-time behaviors of all
kinds must be monitored to enable early detection of quality-of-service problems, such as
performance degradation, and also the fulfillment of service level agreements.

Improvement and Innovation

Continuous
improvement

Based on lean principles of data-driven decision making and waste elimination, which lead
to small incremental quality improvements that can have dramatic benefits and are hard for
competitors to emulate.

Continuous
innovation

A sustainable process responsive to evolving market conditions and based on appropriate
metrics across the entire life cycle of planning, development, and run-time operations.

Cont. experi-
mentation

A software development approach based on experiments with stakeholders consisting of
repeated build-measure-learn cycles.

20

2.1. Continuous Software Engineering (CSE)

functionality to the customers frequently. The fourth step allows acting on customer feedback
immediately. Software deployment is now the starting point for continuous tuning rather than
delivering a final product (Olsson et al., 2012; Bosch, 2014).

2.1.2. DevOps and BizDevOps

DevOps was introduced to emphasize the collaboration between development and operations
(Ebert et al., 2016; Leite et al., 2019). DevOps requires the automation of software development
(e. g., quality assurance) and delivery to enable frequent software releases (Ebert et al., 2016).
Fitzgerald and Stol (2017) introduced the term BizDevOps to add business to development and
operations. They define 16 CSE practices listed in Table 2.1 grouped into four categories: The
business strategy and planning category contains continuous planning and continuous budgeting
activities and emphasizes the need for integrating the business strategy and the development. The
development category contains software development activities of analysis, design, coding, and
testing. The operation category includes software usage and run-time monitoring activities. The
improvement and innovation category contains activities related to software process improvement
and encouraging new ideas to create value for customers.

2.1.3. Rugby CSE Life Cycle Model

Krusche and Bruegge introduced the Continuous Software Engineering Process Metamodel
(CSEPM) and the Rugby process model as an instance of the CSEPM (Krusche et al., 2014;
Krusche, 2016; Krusche and Bruegge, 2017). The Rugby process combines concepts from Scrum
(Schwaber and Beedle, 2002) and the Unified Process (Jacobson et al., 1998). Figure 2.1 shows a
dynamic view of the Rugby process model.

Sprint N

Project Start Kickoff
Meeting Sprint 0 Sprint 0

finished

Sprint 0
finished

Product
Backlog
revised

Revised
Product
Backlog

Revise
Product
Backlog

Feedback
Report

Sprint Planning
Meeting

Create Sprint
Backlog

Sprint
Backlog N

Development
done?

Create Time-
based Release

Release N
(Product

Increment)

Time-based
Release

Sprint Review
Meeting

Project finished?

Develop
Backlog Item
(Requirement)

Stand-up
Meeting

Need Feedback?
Create Event-
based Release

Release
Request

Event-based
Release

Use ReleaseFeedback

Project
End

Time-based
Release

Feedback

Feedback
Report

yes

no

yesno

yes

no

1

2

3

4

5

6

7

8

Figure 2.1.: Rugby CSE process model as a UML activity diagram by Krusche (2016) and Krusche
and Bruegge (2017).

21

2. Background

The model is represented using the Unified Modeling Language (UML) specified by the Object
Management Group (2017). It is an activity-centered life cycle model, which also shows the
entities produced and consumed by the activities and actions (Bruegge and Dutoit, 2010).

The Rugby process consists of parallel workflows that are activated and interrupted through
change events. The parallel workflows are modeled as UML activity diagrams, and the change
events are represented using UML signals. The incoming event activates a workflow and the
outgoing event notifies other workflows about the finished work.

When performing Rugby, the developers start a project with a kickoff meeting and perform the
sprint 0 as an upfront project phase. The goals of sprint 0 are to 1) provide a common basis of
communication for all the developers, 2) elicit initial project requirements in the product backlog
and make high-level architectural decisions, and 3) set up the workflows for reviews, releases,
and feedback. The sprint 0 ends with the outgoing event sprint 0 finished (Figure 2.1- 1), which
triggers the respective incoming event (Figure 2.1- 2). Afterward, every sprint starts with a
sprint planning meeting, in which the developers create a sprint backlog. The sprint backlog
contains requirements elicited from the customer and will be implemented by the developers.
Because the requirements can only be vaguely specified at the beginning of the sprint, developers
detail the requirements specification during the sprint while they implement the backlog items
(Figure 2.1- 3). Like in Scrum, the team discusses the status, impediments, and promises
regarding the backlog items in daily stand-up meetings. At the end of each sprint (Figure 2.1- 4),
the developers create a time-based release for the product increment. In a parallel workflow, the
product owner uses the product increment and provides feedback (Figure 2.1- 5). The sprint
review meeting marks the end of the sprint (Figure 2.1- 6). During the sprint review meeting, a
feedback report can trigger a revision of the product backlog (Figure 2.1- 7). The revised product
backlog is then used for the next sprint planning meeting. Rugby–different from Scrum—allows
to create event-based releases (Figure 2.1- 8), which will enable users to provide feedback even
during the sprint (Krusche, 2016; Krusche and Bruegge, 2017).

Figure 2.2 shows the six parallel workflows in Rugby and their synchronization through change
events. The flow final node models that a workflow is set to sleep. The workflows are a
requirements elicitation workflow, a development workflow, a review workflow, a release workflow,
a feedback workflow, and a usage workflow.

Workflows can be seen as threads of work practices, which means that they model the tasks of
the roles in a project. The role involved in the requirements elicitation workflow (Figure 2.2-
1) is the product owner who prioritizes new backlog items, i. e., requirements, and specifies

acceptance criteria so that the requirement is ready for development. In the development workflow
(Figure 2.2- 2), the developers analyze, design, implement, and test in parallel to produce changes
in the source code and documentation. If the developers need feedback during the work on
the backlog item, they request a release. After finishing a backlog item, they request a merge.
The merge request activates the review workflow (Figure 2.2- 3). If the quality criteria are met,
the reviewer accepts the changes resulting in the backlog item finished event. Otherwise, the
reviewer requests improvements, which reactivates the development workflow. The release request
activates the release workflow (Figure 2.2- 4), which results in an event-based release. Releases
can be delivered to test environments before the end users can use them. The event-based release
activates the usage workflow (Figure 2.2- 5). If the users want to provide feedback, they create a
feedback report. The feedback report or any external change request activates the feedback/change
management workflow (Figure 2.2- 6) and provides developers with the task to change an existing
functionality or a new backlog item, i. e., new requirement.

The CSEPM allows tailoring the CSE process model. The development team can add new
workflows or customize the Rugby workflows shown in Figure 2.2. In Chapter 6, Rugby is tailored
with ConRat, i. e., extended with explicit rationale management.

22

2.1. Continuous Software Engineering (CSE)

Requirements Elicitation Workflow 1
New

Backlog Item
(Requirement)

Prioritize

Specify Acceptance
Criteria

Backlog Item
ready for

Development

Development Workflow 2

Change to
existing

Functionality

Backlog Item
ready for

Development

Improvement
Request

Analyze

Design

Implement

Test

Changes
Check in
Changes

to Branch

Request
Merge

Merge
Request

Release
Request

no

yes

yesno

Backlog Item
(Requirement) realized?

Need Feedback?

Review Workflow 3

Merge
Request

Review
Changes

Quality of Changes ok?

Accept
Changes

Merge
Changes

Request
Improvements

Improvement
Request

Backlog Item
finished

yes

no

Release Workflow 4
Release
Request Create Release Release Event-based

Release

Usage Workflow 5
Event-based

Release
Use

Release
Has Feedback?

Create
Feedback
Report

Feedback
Report

Feedback
Report

yes

no

Feedback/Change Management Workflow 6

Change
Request

Feedback
Report

Analyze
Change
Request

Analyze
Feedback
Report

Convert to
Backlog Item

Backlog
Item

Change to
existing

Functionality

Add to
Sprint

Backlog

Add to
Product
Backlog

New
Backlog Item
(Requirement)

yes

no

yes

no yes

no

Is
relevant?

Is new
Requirement?

Integrate
Feedback directly?

Figure 2.2.: Dynamic view of the synchronization of Rugby’s parallel workflows through change
events by Krusche (2016) and Krusche and Bruegge (2017) as UML activity diagrams.

23

2. Background

2.2. Rationale Management
This section provides the foundations of rationale management. Section 2.2.1 describes its
relationship to knowledge management and other knowledge types as a foundation for the
knowledge model described in Chapter 6. Section 2.2.2 describes the naturalistic and rational
decision-making strategies. ConRat and ConDec support both strategies. Section 2.2.3 describes
the formalization and personalization knowledge-management strategies. ConRat and ConDec
focus on the formalization strategy. Section 2.2.4 introduces the rationale model used in this
thesis in a historical context.

A thorough introduction to rationale management is also provided by Dutoit et al. (2006),
Burge et al. (2008), Bruegge and Dutoit (2010), Alkadhi (2018), and Hesse (2020).

2.2.1. Types of Knowledge and Knowledge Management

Decision knowledge, also referred to as rationale (Babar et al., 2009), is built up by requirements
engineers, product owners, developers, and other stakeholders of other roles while they elicit,
prioritize, document, validate, manage, implement, and verify requirements. For example, the
stakeholders make decisions regarding the software development process, the existence and
non-existence of software artifacts from all phases of software development, or the software
quality (Kruchten, 2004). That means the stakeholders’ decision knowledge, i. e., their rationale,
justifies why a software system or a process is the way it is. Rationale is the motivation behind a
decision (Bruegge and Dutoit, 2010).

Rationale management is a type of knowledge management because the stakeholders document
and use decision knowledge (Dutoit et al., 2006; Burge et al., 2008).

Another type of knowledge management is architectural knowledge management, which ad-
dresses the management of architectural knowledge (Babar et al., 2009; Capilla et al., 2016).
Architectural knowledge covers both the outcomes of a design and the major architectural
decisions—also referred to as architectural design decisions—that led to it and their rationale
(Bass et al., 2003; Kruchten et al., 2006). The architectural design decisions describe the software
architecture (Jansen and Bosch, 2005). Historically, much software engineering research focused
on architectural design decisions as these decisions are difficult to change in the future and thus
very important. In this thesis, we use the term rationale to express software engineering rationale,
i. e., we do not restrict the type (Dutoit et al., 2006; Burge et al., 2008).

Paech et al. (2014) distinguish three types of knowledge: system knowledge, project knowledge,
and decision knowledge. To set architectural knowledge in context: architectural knowledge
comprises system and decision knowledge regarding software architecture. System knowledge
concerns the software itself, e. g., requirements, design, code, and test cases. Project knowledge
involves the knowledge about the software development and process in a project, e. g., development
tasks (work items), commits, and pull requests. Among these types of knowledge, decision
knowledge is the most complex information the stakeholders generate, and thus, is the most
difficult to maintain and update (Bruegge and Dutoit, 2010).

Knowledge is also distinguished into design-time and run-time knowledge. The stakeholders
build up design-time knowledge when creating a software system while they build up run-time
knowledge when operating it. Usage knowledge is a type of run-time knowledge that is particularly
important during CSE to continuously validate the requirements against users’ needs (Johanssen,
2019). Usage knowledge is the stakeholders’ knowledge of how users apply software.

2.2.2. Implicit versus Explicit Knowledge and Decision Making Strategies

Implicit knowledge (also called tacit knowledge) is difficult to articulate and write down (Nonaka
and Takeuchi, 1995; Kruchten et al., 2006). Similar to skills such as riding a bicycle, it is

24

2.2. Rationale Management

acquired through personal experience (Hansen et al., 1999). When using implicit knowledge,
the stakeholders make decisions in a naturalistic way (Zannier et al., 2007) because they are
unaware of the decisions (Kruchten et al., 2006). Naturalistic decision making is more of an art
than a craft because the reasoning process is rather ad-hoc (Capilla et al., 2016). Kahneman
(2011) defines the concept of system one thinking, which involves shortcuts in thinking that make
complicated problems tractable. Naturalistic decision making is related to system one thinking
and can involve cognitive biases (Maule, 2010). Examples of cognitive biases are anchoring and
confirmation bias as human issues that can lead to decisions that incur debt (Razavian et al.,
2016; Soliman et al., 2021). Naturalistic decision making represents the dominant strategy in
informal rationale documentation as observed by Hesse et al. (2016b).

Explicit knowledge is built up if stakeholders make a decision for a particular reason (Kruchten
et al., 2006). Rational decision making means that stakeholders are aware of the decision, solution
alternatives, and arguments (Zannier et al., 2007). Kahneman (2011) defines the concept of
system two thinking, which involves rational decision making and explicit knowledge.

2.2.3. Knowledge Formalization versus Personalization

Formalized knowledge is documented and organized in a systematic way (Nonaka and Takeuchi,
1995; Kruchten et al., 2006). Hansen et al. (1999) distinguish two strategies for knowledge
management: codification, i. e., formalization, and personalization. Hansen et al. (1999) also
refer to the knowledge formalization as the “people-to-documents approach”. When applying the
personalization strategy, the stakeholders rely on experts’ implicit knowledge and face-to-face
communication for knowledge sharing. While the software engineering research community
focuses on the formalization strategy, the practitioners often use a personalization strategy
(Babar et al., 2007). Rationale management aims to make implicit decision knowledge explicit
and formalizes it so stakeholders can share it without misunderstanding. The stakeholders should
only formalize what is subsequently valuable for persons who exploit the knowledge because
the effort of documenting rationale can outweigh its benefits. The benefits are felt later or
by others (Kruchten et al., 2006). Rationale can also be captured informally, e. g., as natural
language text, using drawings, and in video or audio recordings (J. Lee, 1997). The formal
representation has the advantage that later access and exploitation are easier; for example, a
tool can quickly provide an overview of the documented decisions. However, formal rationale
documentation requires additional effort, and it is unnatural to break one’s thoughts into discrete
units (Jarczyk et al., 1992). A wicked problem is a decision problem that cannot be solved
algorithmically but needs discussion and creativity (Rittel, 1972). Many decision problems in
software engineering are wicked, as can be illustrated with the problem of this thesis How
to design tool support for continuous rationale management?, which cannot be easily solved.
Formalizing wicked problems and the related rationale is difficult. To benefit from the lightweight
capture of an informal representation and the easier exploitation of a formal representation, an
informal rationale representation can be formalized incrementally (J. Lee, 1997).

2.2.4. Rationale Representation

This section describes rationale models to document rationale in a formalized way. It presents
three historical models and the model used in the thesis. A rationale model represents decision
knowledge comparable to how a system model represents a system (Bruegge and Dutoit, 2010).
An instance of a rationale model is a graph of rationale elements, i. e., vertices, and edges that
represent the elements’ associations. Rationale models differ in the types of rationale elements
and associations they prescribe. In some cases, the types only differ by name but represent the
same content, e. g., position, alternative, proposal, and option.

25

2. Background

Kunz and Rittel (1970) introduced the Issue-Based Information System model. It consists of
three types of rationale elements: The issue describes the problem that needs to be solved, one
or more positions describe options to solve the issue, and arguments. Various associations exist
between these rationale elements; for example, an argument can support or object to a position.
MacLean et al. (1991) introduced the Questions, Options, and Criteria model. It consists of
four types of rationale elements: The question describes the problem that needs to be solved,
and options are possible solutions. These element types equal the issue and position types in
the Issue-Based Information System model, respectively. The model also contains arguments.
The fourth and new type of rationale element is the criterion. The Questions, Options, and
Criteria model consists of similar associations as the Issue-Based Information System model plus
additional associations involving the criterion. Associations express whether options are assessed
negatively and positively against criteria. At the same time, J. Lee (1991) presented the Decision
Representation Language that contains goals, claims, and procedures for answering questions as
new types of elements.

Knowledge Element

Decision

Decision Component

Question

Issue

Goal

Solution

Alternative

Claim

Context

Assumption

Constraint

Implication

Argument

Assessment

contains
contains

Figure 2.3.: Decision Documentation Model by Hesse and Paech (2013) and Hesse (2020) as a
UML class diagram without attributes.

The Decision Documentation Model by Hesse and Paech (2013) and Hesse (2020) contains
the rationale element types of the Issue-Based Information System, the Questions, Options,
and Criteria, and the Decision Representation Language models. The Decision Documentation
Model does not prescribe a fixed template for decision documentation and supports incremental
documentation of decisions. Any part of the decision knowledge can be captured as soon as
it is available. The Decision Documentation Model documents decision knowledge as Decision
Components, which can be nested and referred to other knowledge. Nesting enables retrospectively
reconstructing rationale in natural language discussions. Other Knowledge Elements are software
artifacts of project or system knowledge, such as, requirements, architectural design, code,
and test cases. Figure 2.3 shows the decision components of the Decision Documentation
Model. The Decision Component is an abstract class that can only be instantiated through
its sub-classes. Decision components are the Question, i. e., decision problem, to be solved
(Issues or Goals), Solution (Alternatives or Claims), Context information (Assumptions, Constraints,
or Implications), and Arguments (Assessments). The Decision Documentation Model supports
incremental documentation of decisions, in particular, naturalistic and rational decision making.
Parts of the decision knowledge can be captured as soon as they are available. In addition,

26

2.2. Rationale Management

stakeholders, such as developers, architects, and requirements engineers, can collaborate while
documenting decisions. Each stakeholder contributes that part of the decision knowledge they
know best. The requirements engineer can, for example, add constraints, which must be reflected
for a particular solution. The Decision Documentation Model has been applied in an empirical
study on Firefox issue reports, which showed that the model could reflect the decision knowledge
captured in issue tracking systems (Hesse et al., 2016b). The dominance of naturalistic decision
making in the results of this study confirms the need for incremental and collaborative decision
documentation. In addition, the Decision Documentation Model has been applied in a case
study on design session transcripts, which confirmed that the model reflects decision making
in a team (Hesse and Paech, 2016). The instantiation of the model made complex decision
knowledge structures in the design sessions explicit, with decisions containing more than 20
decision knowledge elements.

In addition to the different types of rationale elements, various types of decisions exist. Kruchten
(2004) introduced a decision taxonomy: An existence decision indicates that some element or
artifact will exist in the system. Existence decisions are divided into two subgroups: Structural
decisions lead to the implementation of new components or subsystems. Behavioral decisions
describe the interaction of elements, e. g., The client shall communicate with the backend
via REST API! Existence decisions are the least important to capture as they are the most
visible in a system. However, Kruchten argues that it is still important to document existence
decisions, as they can relate to less obvious decisions or alternatives. A ban or non-existence
decision states that a particular element does not appear in the system, e. g., The system does
not use a relational database for data storage! These decisions must be captured because they
cannot be reconstructed from the system. A property decision concerns the system’s quality
and can be guidelines, design rules, or constraints. It is either positively expressed (rules and
guidelines) or negatively expressed (constraints). Property decisions are hard to trace to specific
software artifacts because they are often cross-cutting concerns. An example is The classifier
must have a precision over 0.42! An executive decision concerns the software development
process, technologies, or applied tools. It does not directly relate to software artifacts or their
underlying qualities. For example, a process decision is that The change control board must
approve changes! Executive decisions often have a high impact since they constrain existence and
property decisions. van der Ven and Bosch (2013) classify decisions according to their level: High
level decisions affect the whole product. Medium level decisions concern specific components
or frameworks and are relatively expensive to change. Realization level decisions concern the
structure of the code or other specific aspects, such as API usage. Kruchten introduced association
types between decisions with different semantic meanings: enables, constrains, forbids, comprises,
subsumes, overrides, conflicts with, and relates (Kruchten, 2004; Kruchten et al., 2006; Kruchten,
2009). For example, a decision Implement the algorithm in C++! could override the decision

Implement the software in Java!

Decisions and other rationale elements have several attributes (Kruchten, 2004; Kruchten,
2009; van Heesch et al., 2012; van der Ven and Bosch, 2013). The epitome of a rationale element
describes its content. The state attribute expresses whether a solution option is an idea, decided,
or rejected or whether an issue is solved or unsolved. The author attribute represents the person
who made the decision. The time-stamp and history attributes capture when the decision was
documented and the sequence of changes. The attributes group or category organize decisions
according to concerns. The scope or decision level attributes express the granularity of a decision.
Other attributes are cost and risk. Risk combines impact and likelihood factors.

27

2. Background

2.3. Development Tools and Systems
Developers capture rationale in various documentation locations, for example, in the issue
tracking system (Rogers et al., 2015; Hesse et al., 2016b; Bhat et al., 2017b), the version control
system (van der Ven and Bosch, 2013), the wiki system, and using their integrated development
environment. Issue tracking systems are widely applied to manage requirements, bug reports,
and development tasks. They contain various information types such as functionality or quality
requests and as-is descriptions (Merten et al., 2015). Version control systems are used to track
software version history and for collaborative work on branches. A widely used version control
system is git (Chacon and Straub, 2014). Wiki systems are collaborative writing tools that can
be applied for various purposes, such as meeting management and requirements elicitation (Solis
and Ali, 2010). Integrated development environments support software developers in writing
code in the source code editor and provide valuable tools, such as debuggers and local test
environments. A popular open-source integrated development environment is Eclipse.

2.4. Continuous Usage- and Rationale-based Evolution Decision
Support (CURES)

Continuous Usage- and Rationale-based Evolution Decision Support (CURES) was a research
project that was part of the Priority Programme 15931 of the German Research Foundation (DFG).
To investigate the management of decision knowledge and usage knowledge during CSE, the
CURES project was conducted between the years 2016 to 2019. The topic of this dissertation
arose from the CURES project. CSE supports the developers in building up usage knowledge
through the rapid release of new increments. For example, continuous deployment enables users
to give feedback on the latest software version constantly.

As part of the CURES project, a prototype was developed to investigate the integration of
decision and usage knowledge (Johanssen et al., 2017a; Johanssen et al., 2019c; Johanssen, 2019).
The prototype models a CSE infrastructure with knowledge exploitation and documentation.
The basic idea was to handle the evolution of documented knowledge like code evolution. Besides
the individual benefits of decision and usage knowledge, the prototype expects synergies in their
combination: in particular, to track the evolution of decisions based on user feedback.

Figure 2.4 depicts the stakeholders and components of the prototype. Developers and Users
are the main stakeholders. Developers create feature branches in the CSE Infrastructure to add
product increments in the form of code commits. Each feature branch can be released to users,
allowing the delivery of different proposals for one feature simultaneously. Feature branches can
be merged into the master branch containing the final software product. The Monitoring and
Feedback component enables developers to examine usage information mapped to individual
releases. They can apply A/B testing to decide between different software increments. The
Knowledge Repository stores all information related to the development and monitoring process.
In particular, it maintains decisions related to feature branches. The rationale can be accessed,
visualized, and analyzed using a Dashboard component. For instance, the claimed solution to an
issue could be compared to an alternative solution based on the impact of a feature branch in
the context of previous decisions. This enables the developer to interact and reflect on collected
decision and usage knowledge. For example, a feature F1 is developed based on a proposal P1.
After providing the release R1 to users and analyzing feedback FB1, the developer makes decision
D1 and merges F1 into the master branch. In the same manner, different proposals P2a and P2b
for a feature F2 are evaluated in A/B testing. Feedback FB2 stops the work on P2a, while FB3
leads to decision D2.

1SPP1593 website: http://www.dfg-spp1593.de

28

http://www.dfg-spp1593.de

2.4. Continuous Usage- and Rationale-based Evolution Decision Support (CURES)

Knowledge Repository CSE Infrastructure

P1

D1

FB1

P2a P2b

FB2 FB3

D2

Dashboard

Master Branch

Feature Branch 1

Feature Branch 2a

Feature Branch 2b

P2b

P2a

P1 D1

D2

R1 R2 R3

FB1 FB2 FB3

Developer

monitors
usage

creates
branch,
commit,
release

interacts, reflects

analyzes, visualizes

uses release gives feedback

F1 F2

User

Release in Operation

Monitoring and Feedback

Figure 2.4.: Design of the CURES prototype (Johanssen et al., 2017a; Johanssen et al., 2019c;
Johanssen, 2019).

29

Part II.

Problem Investigation

31

Chapter 3
State of the Practice: Rationale Management
during Continuous Software Engineering

“Architectural decisions are like material floating in a pond. When
not touched for a while, they sink and disappear from sight. These
sunken decisions are the most difficult to change at a later stage.
In particular, during evolution one may stumble upon these design
decisions, try to undo them or work around them, and get into
trouble when the change turns out to be very costly if not
impossible. The future evolutionary capabilities of a system can be
better assessed if these assumptions were explicit.”

—Roeller et al., 2006

This chapter contributes to the knowledge goal 1 of the thesis: Understand the current practices,
problems, and practitioners’ improvement ideas regarding rationale management in CSE. It
presents a semi-structured interview study with practitioners from 17 companies using CSE.
First, the study describes the current state of CSE in general to describe the context of the
current rationale management. Second, the study describes the current practices and problems
of the rationale management in CSE. The Agile Manifesto suggests preferring working software
over comprehensive documentation as well as individuals and interactions over processes and
tools (Beck et al., 2001). This study contributes insights on which types of decisions practitioners
think are important to capture, how they capture decision knowledge, what benefits they see
in capturing decision knowledge, what hinders them from capturing decision knowledge, how
they share decision knowledge, and how they deal with change. Third, the study describes the
experts’ opinions on improving the rationale management during CSE, i. e., on how to treat the
rationale management problems.

Section 3.1 describes the study design. Section 3.2 provides and discusses the results of the
interview study. Section 3.3 compares related empirical work on decision knowledge management
in practice. Section 3.4 discusses threats to validity. Section 3.5 concludes this chapter.

Parts of the interview study were published: The results regarding RQ1 were published by
Johanssen et al. (2018), Johanssen et al. (2019c), and Johanssen (2019). The results regarding
RQ2 were published by Kleebaum et al. (2019b). Results regarding RQ3 were published by
Johanssen et al. (2019c) and Johanssen (2019). This chapter describes the features and obstacles
for continuous rationale management in more detail and omits the usage knowledge-specific
results. Appendix B provides an excerpt of anonymized interview statements by the practitioners.

33

3. State of the Practice: Rationale Management during CSE

3.1. Study Design

Section 3.1.1 introduces three research questions. Section 3.1.2 describes the interview study
and Section 3.1.3 provides descriptive data of the CSE practitioners, i. e., the interviewees.
Section 3.1.4 discusses the research perspective.

3.1.1. Research Questions

The knowledge goal 1 of the thesis is refined into three research questions with sub-questions
(Table 3.1). The sub-questions were used as the interview questions in the questionnaire, except
that they addressed the practitioners. In the following, we describe the questions.

Table 3.1.: Research questions of the interview study.
Research Question

RQ1 How do practitioners apply CSE during software evolution?

RQ1.1 How do practitioners define CSE?
RQ1.2 Which elements of CSE are perceived as most relevant by practitioners?
RQ1.3 What are practitioners’ experiences with CSE?
RQ1.4 What are practitioners’ future plans for CSE?

RQ2 How do practitioners manage decision knowledge during CSE?

RQ2.1 Which decisions are captured by practitioners during CSE, why, and how?
RQ2.1a Which types of decisions do practitioners capture?
RQ2.1b Where do practitioners capture the decisions, with which techniques and tools?
RQ2.1c Do practitioners link decisions and rationale to other software artifacts and if so, how?
RQ2.1d How do practitioners preserve the evolutionary history of decisions?
RQ2.1e When and how often do practitioners capture decisions?
RQ2.1f Why do practitioners capture decisions, i. e., what are the benefits and what do they do with

the captured decisions?

RQ2.2 Which important decisions are not captured during CSE, why not, and would it be beneficial
to capture these decisions?

RQ2.2a Which important decisions do practitioners not capture during CSE?
RQ2.2b Why do practitioners not capture these decisions?
RQ2.2c What would be the benefits if practitioners captured these decisions?

RQ2.3 How do practitioners share decision knowledge during CSE?
RQ2.3a What are the knowledge sources from which practitioners retrieve necessary information for

decisions that are not captured?
RQ2.3b How do practitioners share knowledge to avoid knowledge vaporization?

RQ2.4 How do practitioners deal with changing decisions during CSE?

RQ3 How can rationale management in CSE be improved according to practitioners?

RQ3.1 Which tool features for continuous rationale management do practitioners perceive as benefi-
cial and why?

RQ3.2 What obstacles do the practitioners perceive regarding the CURES prototype toward contin-
uous rationale management?

34

3.1. Study Design

RQ1 How do practitioners apply CSE during software evolution?

The first research question aimed to investigate the current state of CSE practice, in particular,
how the practitioners define and apply CSE. We aim to understand the context of the current
state of rationale management. We identified a set of elements that are typical for CSE based on
the CSE descriptions presented in Section 2.1, in particular, the Stairway to Heaven (Olsson et al.,
2012; Bosch, 2014) and the continuous star activities (Fitzgerald and Stol, 2017). We grouped
the CSE elements into CSE categories. To address the involvement of users, we introduced
user as a CSE category that refers to both customers and end-users. Software management
includes practices concerning the overall software process. The development category contains
development activities, such as requirements engineering and design, excluding implementation
and quality assurance. The code category includes implementation-related activities, such as
version control and branching strategies. Activities such as audits and pull requests were bundled
in the quality category. The knowledge category was introduced to deal with practices supporting
(decision) knowledge management. Table 3.2 shows the CSE elements and CSE categories used
in the interview study.

Table 3.2.: CSE categories and CSE elements derived from Olsson et al. (2012), Bosch (2014),
and Fitzgerald and Stol (2017).

CSE Category CSE Elements

User Involved users and other stakeholders; learning from usage data and feedback;
proactive customers

Software
Management

Agile practices; short development sprints; continuous integration of work;
continuous delivery; continuous deployment of releases

Development Continuous planning activities; continuous requirements engineering; focus on
features; modularized architecture and design; fast realization of changes

Code Version control; branching strategies; fast commit of code; code reviews;
code coverage

Quality Automated tests; regular builds; pull requests; audits; run-time adaption
Knowledge Sharing knowledge; continuous learning; capturing decisions and rationale

The first research question is refined into four questions:

RQ1.1 How do practitioners define CSE? We aim to learn about the practitioners’ perception
of CSE. Further, we want to know whether practitioners define a threshold that needs to be
passed before a company can claim to practice CSE.

RQ1.2 Which elements of CSE are perceived as most relevant by practitioners? To understand
the perception of CSE in more detail, we asked the practitioners about the three CSE elements
most relevant to them of the elements listed in Table 3.2.

RQ1.3 What are practitioners’ experiences with CSE? This research question aims to reveal
positive, neutral, and negative experiences with the CSE elements. This is particularly interesting
to other practitioners who plan to adopt them.

RQ1.4 What are practitioners’ future plans for CSE? We asked for planned short- and long-term
additions to understand trends of future CSE elements adoption.

35

3. State of the Practice: Rationale Management during CSE

RQ2 How do practitioners manage decision knowledge during CSE?

The second research question investigates the current state of rationale management during CSE.
It is also refined into four questions:

RQ2.1 Which decisions are captured by practitioners during CSE, why, and how? This question
investigates approaches to capture decisions and rationale during CSE within companies explicitly.
In particular, we include interview questions regarding techniques for linking and preserving
evolutionary history to understand how practitioners deal with the distributed knowledge
documentation and decision changes during CSE, respectively. Interview questions are: Which
types of decisions do practitioners capture? Where do practitioners capture the decisions, and
with which techniques and tools? Do practitioners link decisions and rationale to other software
artifacts, and if so, how? How do practitioners preserve the evolutionary history of decisions?
When and how often do practitioners capture decisions? Why do practitioners capture decisions,
i. e., what are the benefits, and what do they do with the captured decisions?

RQ2.2 Which important decisions are not captured during CSE, why not, and would it be
beneficial to capture these decisions? This question aims to find types of implicit decisions and
reasons why they are not captured. Interview questions are: Which important decisions do
practitioners not capture during CSE? Why do practitioners not capture these decisions? What
would be the benefits if practitioners captured these decisions?

RQ2.3 How do practitioners share decision knowledge during CSE? We want to investigate
how practitioners share decision knowledge during CSE with these questions: What are the
knowledge sources from which practitioners retrieve necessary information for decisions that are
not captured? How do practitioners share knowledge to avoid knowledge vaporization?

RQ2.4 How do practitioners deal with changing decisions during CSE? We aim to investigate
how practitioners identify parts of the system affected by new or changed decisions.

RQ3 How can rationale management in CSE be improved according to practitioners?

The third research question investigates improvement ideas for rationale management during
CSE according to the practitioners. It aims to identify ideas for the treatment design, i. e.,
for continuous rationale management as introduced in Chapter 1. To initiate this part of the
interview and to encourage discussions, we presented the CURES prototype to the practitioners
described in Section 2.4. The third research question is refined into two questions:

RQ3.1 Which tool features for continuous rationale management do practitioners perceive as
beneficial and why? This question aims to identify tool features to support rationale management
during CSE. This includes the features that the CURES prototype already covers and new
features suggested by the practitioners. Interview questions are: What are the benefits of the
CURES prototype perceived by practitioners? How could the CURES prototype be extended to
improve its benefits and feasibility or to overcome the obstacles to its implementation? What
are potential additions to the CURES prototype according to practitioners?

RQ3.2 What obstacles do the practitioners perceive regarding the CURES prototype toward
continuous rationale management? By asking the practitioners for major obstacles of the CURES
prototype, we detailed the feasibility of the proposed approach. Responses help to understand
practitioners’ problems. We aim to strengthen and identify problems of rationale management.

36

3.1. Study Design

3.1.2. Interview Study Procedure
We performed a semi-structured interview study consisting of a design and planning, data
collection, and data analysis phase (Runeson et al., 2012). Two researchers were equally involved.

During the design and planning phase, we prepared a questionnaire. Its first part addresses the
practitioners’ background and working context. Furthermore, it contained the interview questions
listed below the respective research questions in Section 3.1.1. The interviews also included
research questions that were not addressed in this thesis. They are presented by Johanssen et al.
(2019a) and Johanssen (2019). We contacted companies that, to our knowledge, apply CSE.

During the data collection phase, we conducted 20 interviews between April and September
of 2017, either in person or via phone. The interviews took 70 minutes on average and were
audio-recorded with the permission of the interviewees. We transcribed the audio recordings
and sent the transcripts to the interviewees to correct misunderstandings. We guaranteed the
anonymity of the practitioners by publishing only aggregated results.

In the data analysis phase, we analyzed the transcripts (Saldaña, 2009). We utilized a
qualitative data analysis software to apply two stages. During the first stage, we allocated
answers to an interview question. Hereafter, we performed a fine-grained coding stage. To answer
the interview questions concerning the types of decisions captured and not captured, we used
Kruchten’s taxonomy (Kruchten, 2004; Kruchten, 2009). This taxonomy distinguishes between
existence decisions, non-existence decisions (bans), property decisions, and executive decisions
(Section 2.2.4). For the remaining interview questions, we identified emerging topics and coded
the answers regarding these topics. We analyzed the results quantitatively. If two interviewees
participated in an interview, we treated their answers as one subject.

3.1.3. Participants
During 20 interviews, we interviewed 24 practitioners from 17 companies. Four companies are
small or medium-sized enterprises with a maximum number of 250 employees.1 Of the remaining
companies, eight have up to 2000 employees, two have around 50 000 employees, and three have
100 000 or more employees. While seven companies provide consultancy services, ten develop
software products. We grouped the 24 practitioners into five categories: CSE specialists (5), e. g.,
a continuous deployment manager or a DevOps engineer, developers (6), project managers (6),
technical leaders (6), and one executive director. On average, the practitioners have worked two
years in the respective role, ten years in IT projects, and in 19 IT projects.

3.1.4. Research Perspectives
Researchers are influenced by different philosophical stances when performing empirical studies
(Easterbrook et al., 2008; Runeson et al., 2012; Wohlin and Aurum, 2015). The stance of
positivists and constructivists influences the interview study.

Positivists infer knowledge from basic observable facts. They are also called reductionists
because they use simplification and abstraction, e. g., by neglecting the human context. When
performing the interview study from the positivist stance, we aim to infer a generalizable as-is
state of rationale management in practice by interviewing various practitioners. The aim to
maximize the generalizability characterizes the study as a sample study (Stol and Fitzgerald,
2018). A modern form of positivism is called dataism. Dataists believe they can make perfect
simulations and predictions of any aspect of the world if the data set is big enough (Harari, 2016).
However, this is unlikely for human behavior such as decision making (Spiekermann, 2019).

Constructivists think that scientific knowledge cannot be separated from its human context
and aim to understand human activities in a specific situation. In this study, we report subjective

1http://ec.europa.eu/growth/smes/business-friendly-environment/sme-definition

37

http://ec.europa.eu/growth/smes/business-friendly-environment/sme-definition

3. State of the Practice: Rationale Management during CSE

opinions of practitioners as anecdotal evidence, i. e., findings that might not be generalizable to
provide rich qualitative data. Thus, the study has also characteristics of a field study.

3.2. Results and Discussion

The following sections present and discuss the results of the interview study with industry
practitioners. Section 3.2.1 describes the as-is state of CSE, Section 3.2.2 presents the as-is
state of rationale management during CSE. Section 3.2.3 describes the practitioners’ ideas for
continuous rationale management. Appendix B provides an excerpt of anonymized interview
statements by the practitioners.

3.2.1. As-is State of CSE in Industry

This section describes the results for the research question How do practitioners apply CSE during
software evolution? (RQ1). The subsections describe 1) practitioners’ definition of CSE, 2) most
relevant CSE elements, 3) experiences, and 4) future plans for CSE. In the last subsection, we
discuss the results. Figure 3.1 and Figure 3.2 show the results of the quantitative analysis of the
CSE elements and categories that we identified within the practitioners’ answers.

In
vo

lv
ed

us
er

s
an

d
ot

he
r

st
ak

eh
ol

de
rs

Pr
oa

ct
iv

e
cu

st
om

er
s

Le
ar

ni
ng

fro
m

us
ag

e
da

ta
an

d
us

er
fe

ed
ba

ck

O
pe

n-
m

in
de

d
m

en
ta

lit
y

Co
nt

em
po

ra
ry

&
co

nt
in

uo
us

ly
ev

ol
vi

ng
sk

ill
s

Co
m

pl
y

w
ith

sh
ar

ed
ru

le
se

t

Se
lf-

re
fle

ct
io

n
an

d
di

sc
ip

lin
e

M
an

ag
em

en
t

co
m

m
itm

en
t

Ap
pr

op
ria

te
pr

od
uc

t
id

ea

Co
nt

in
uo

us
pl

an
ni

ng
ac

tiv
iti

es

Co
nt

in
uo

us
re

qu
ire

m
en

ts
en

gi
ne

er
in

g

M
od

ul
ar

ize
d

ar
ch

ite
ct

ur
e

an
d

de
sig

n

Fo
cu

s
on

fe
at

ur
es

Lo
gg

in
g

an
d

m
on

ito
rin

g

Re
us

ab
le

in
fra

st
ru

ct
ur

e

Co
nv

en
ie

nt
se

tu
p

St
ag

in
g

en
vi

ro
nm

en
ts

Sh
ar

in
g

kn
ow

le
dg

e

Co
nt

in
uo

us
le

ar
ni

ng

Ca
pt

ur
in

g
de

ci
sio

ns
an

d
ra

tio
na

le

Ag
ile

pr
ac

tic
es

Co
nt

in
uo

us
in

te
gr

at
io

n
of

wo
rk

Co
nt

in
uo

us
de

liv
er

y

Co
nt

in
uo

us
de

pl
oy

m
en

t
of

re
le

as
es

Au
to

m
at

ed
te

st
s

Re
gu

la
r

bu
ild

s

Ru
n-

tim
e

ad
ap

tio
n

Pu
ll

re
qu

es
ts

Au
di

ts

Ve
rs

io
n

co
nt

ro
l

Br
an

ch
in

g
st

ra
te

gi
es

Co
de

co
ve

ra
ge

Co
de

re
vi

ew
s0

1
2
3
4
5
6
7
8
9

10
User Developer Business Development Operation Knowledge Software Mgmt Quality Code

4

0

6

0

1

2

0

3 3

6 6

2

4

0 0 0 0

1

0 0

8

9

4

8

5

1

0 0 0

3

2

1

2

7

1

2

4 4

7

1

2

1

4

3

0 0

1

3 3 3

2

1 1

3

5

3 3

10

4

1

3

1

4

1 1

2

0

1 1

0

1 1

0 0 0 0 0 0 0

1 1 1 1

0 0

1

2 2

3

2

7

2

3

2

3

0

1

0

2

N
um

be
r

of
in

te
rv

ie
w

s
in

w
hi

ch
CS

E
el

em
en

t.
..

. . . was used to define CSE (RQ1.1) . . . was recognized as relevant for CSE (RQ1.2) . . . was planned as future addition (RQ1.4)

Figure 3.1.: Number of interviews in which the practitioners mentioned a CSE element. The
left-hand bars (blue) indicate the number of interviews in which the respective CSE
element was used for defining CSE (RQ1.1). The middle bars (yellow) indicate the
number of interviews in which the respective CSE element was recognized as relevant
for CSE (RQ1.2). The right-hand bars (green) indicate CSE elements intended as
future additions (RQ1.4). The CSE categories group the CSE elements. Adapted
from Johanssen et al. (2018), Johanssen et al. (2019c), and Johanssen (2019).

38

3.2. Results and Discussion

Practitioners’ Definition of CSE

This section presents the results for the question How do practitioners define CSE? (RQ1.1).
Since the term CSE was relatively new, we asked the practitioners to define CSE from their
point of view. We coded their answers using the CSE elements. If a practitioner mentioned a
CSE element not part of Table 3.2, we recorded it as a new CSE element, sometimes with a
new CSE category. The quantitative results are shown in the left-hand bars (blue) in Figure 3.1.
Table B.1 in Appendix B provides examples for CSE definitions by practitioners.

To define CSE from their point of view, the practitioners most frequently mention the CSE
elements continuous integration of work, agile practices, continuous deployment of releases,
learning from usage data and user feedback, continuous planning activities, and continuous
requirements engineering.

We made the following observations: 1) Out of the 24 practitioners interviewed, 13 used the
term CSE as part of their active vocabulary. About two-thirds of all interviewees defined their
understanding of CSE. Notably, 75 % of the interviewees working in small or medium-sized
enterprises both gave a definition and actively used the term CSE. For some practitioners, CSE
is still ambiguous. 2) The practitioners emphasize the importance of short and ongoing iterations
and that CSE makes changes instantly visible to users. As a result, user feedback can be elicited
and used to match the software to the requirements. 3) According to the practitioners, CSE
allows developers to focus on their tasks and creates a safe development environment. Tasks
such as infrastructure management are automated and, as such, removed from the developers.
However, developers get increased responsibility since they can deploy releases anytime. 4) The
practitioners characterize CSE as the blending of different phases of software engineering, such as
development, deployment, and operation. According to their perception, this makes long-living
systems easier to maintain. 5) Six practitioners (developers and CSE specialists) make particular
use of tool descriptions when defining CSE, i. e., they have a tool perspective. 6) The product
determines whether CSE can be applied. For instance, the product cannot be developed using
CSE if its deployment requires specific manual steps. For some products, continuous deployment
is prohibited by safety regulations.

Practitioners’ Relevant Elements of CSE

This section presents the results for the question Which elements of CSE are perceived as most
relevant by practitioners? (RQ1.2). We asked the practitioners to list the three CSE elements
that are most relevant. The middle bars (yellow) of Figure 3.1 show the quantitative results.

The practitioners perceive CSE elements from three categories as most relevant: quality, i. e.,
automated tests, user, i. e., involved users and other stakeholders, and developer, i. e., compliance
with a shared ruleset. The practitioners mention more CSE elements: In particular, the developers
consider elements from the code category, such as version control, as obligatory, pivotal, and
indispensable to further steps in CSE. This strengthens the first stair in the Stairway to Heaven
model by Olsson et al. (2012).

We made the following observations: 1) The practitioners perceive the users’ commitment to
actively participating in the development process as a relevant aspect of CSE. 2) The practitioners
perceive an open-minded team mentality that complies with a shared set of rules as the basis of
successful CSE teams. Management commitment is indispensable. 3) The practitioners perceive
a high maturity level of automatization as essential for CSE. This is enabled by well-defined
steps that form a non-linear process model.

39

3. State of the Practice: Rationale Management during CSE

Practitioners’ Experience with CSE

This section presents the results for the question What are practitioners’ experiences with CSE?
(RQ1.3). We asked the practitioners about positive, neutral, and negative experiences with CSE
elements. Figure 3.2 shows the results grouped by their respective categories. Note that not
every practitioner provided an experience report. Table B.2 in Appendix B provides an excerpt
of practitioners’ experiences. When a practitioner responded to more than one CSE element,
the answer is shown multiple times. We coded responses as either positive or negative in cases
in which indicators by the practitioners were provided, for instance, if the practitioners used
phrases such as “we had problems with implementing <CSE element>” or “we could not work
without <CSE element>”.

The practitioners reported 19 positive, 56 neutral, and 17 negative experiences with CSE
elements. Notably, more than 50 % of the positive experiences are stated by small or medium-sized
enterprises, while forming roughly a quarter of the interviewee sample. Categories with many
positive experiences, as in code and software management, are an indicator for CSE elements
that can serve as an entry point to CSE since they may be easy to implement. Few positive
mentions, as is the case with knowledge, business, and user, indicate immature CSE elements.
Neutral responses indicate that the practitioners explore various CSE elements in the field. Many
negative experiences, as with the developer category, are a sign of challenging CSE elements.

0246
Code

Quality
Software Management

Knowledge
Operation

Development
Business

Developer
User

1

3

2

1

2

1

6

1

Number of CSE elements with Negative Experience Neutral Experience Positive Experience

0 2 4 6 8 10 12 14 16 18 20 22
8

1

6

1

1

1

1

13

10

15

3

4

3

6

2

Figure 3.2.: Number of negative, neutral, and positive experiences that the practitioners reported
per CSE category (RQ1.3). Adapted from Johanssen et al. (2018), Johanssen et al.
(2019c), and Johanssen (2019).

We made the following observations: 1) The practitioners find it challenging to comply with
shared rulesets and to evolve their skills continuously, i. e., to keep an open-minded mentality.
2) From the practitioners’ experience, CSE does not solely build on the developers’ skills but also
on their ability to reflect on their work and sense of responsibility. 3) While the practitioners
are willing to apply CSE, their company’s current tools keep them from fully adopting CSE.
Furthermore, requirements in regulated domains hinder the implementation of CSE. 4) The
practitioners state that the successful implementation of CSE requires the ability to set up a
new project without major cost or time penalties. 5) The practitioners attest that CSE elements
related to software management, such as agile practices or continuous integration of work, are
widely and successfully adopted in their projects. 6) The practitioners have not yet created
processes that interact with users in a way similar to well-established practices such as continuous
integration. This is mainly because users’ responses to ongoing changes are difficult to record,
trace, and assess. 7) The practitioners have had varying experiences with quality elements during
CSE but still invest in improvements.

40

3.2. Results and Discussion

Practitioners’ Future Plans for CSE

This section presents the results for the question What are practitioners’ future plans for CSE?
(RQ1.4). We asked practitioners which CSE elements they plan to add to discover future trends in
CSE. The quantitative results are shown in the right-hand bars (green) in Figure 3.1. Table B.3
in Appendix B provides an excerpt of the plans.

Practitioners’ plans are vague and mainly distributed across elements. Nineteen CSE elements
received only one, two, or three mentions by the practitioners in the interviews. One CSE element
stood out with seven mentions: automated tests. We found that most practitioners described
plans that span multiple CSE categories.

We observed the following strategies in the practitioners’ answers: 1) The practitioners aim to
introduce more automatization, i. e., they aim for a fully automated loop. For example, seven
practitioners mentioned automatization in the context of quality as one of their major plans for
the short and long term. While automated tests are applied for some parts of the products, they
should be made available for all. Another example is the plan to automatize the deployment of
software components by applying container technology. 2) The practitioners aim to apply recently
established CSE elements, such as continuous integration or delivery, to other project areas or
similar products. 3) The practitioners improve their CSE process dependent on events that call
for action. In general, they state that a process needs to be performed several times manually
before they consider its automatization. They postpone decisions for further enhancements and
additions of CSE elements to later.

Discussion: How do practitioners apply CSE during software evolution?

Based on the practitioners’ answers for RQ1 (How do practitioners apply CSE during software
evolution?), we added the developer, business, and operation categories, including new CSE
elements, to the CSE elements and categories in Table 3.2. The Eye of CSE model consists of
the final set of CSE elements and categories (Johanssen et al., 2018; Johanssen et al., 2019c;
Johanssen, 2019). Figure 3.3 depicts this model. A well-established CSE process, as demanded
by the CURES prototype (Section 2.4), incorporates all of the CSE elements.

CSE

User

Developer

Involved users and other stakeholders

Proactive customers

Learning from usage data and feedback

Open-minded mentality

Self-reflection and discipline

Comply with shared ruleset

Contemporary and continuously evolving skills

Business Management commitment
Appropriate product idea

Development
Continuous planning activities

Continuous requirements engineering

Modularized architecture and design

Focus on features

Operation Logging and monitoring
Reusable infrastructure

Convenient setup
Staging environments

Knowledge

Sharing knowledge

Continuous learning

Capturing decisions and rationale

Software
Management

Agile practices

Continuous integration of work

Continuous delivery

Continuous deployment of releases

Quality

Regular builds

Automated tests

Run-time adaption

Pull requests

Audits

Code
Code reviews

Code coverage

Branching strategies

Version control

Figure 3.3.: Model Eye of CSE published by Johanssen et al. (2018; 2019c) and Johanssen (2019).

The contributions of the results regarding RQ1 for this thesis are threefold: First, next to
the description of CSE in literature (Section 2.1), the results help the reader to understand the
as-is state of CSE, i. e., the context of continuous rationale management. Second, the knowledge
category received only a few answers regarding the practitioners’ experiences (RQ1.3) and plans

41

3. State of the Practice: Rationale Management during CSE

(RQ1.4). The few answers indicate that practitioners do not perceive rationale management as a
mature CSE workflow, motivating this thesis’ design science project. Third, continuous rationale
management should learn from advanced CSE elements well-known to the practitioners, such as
agile practices, automated tests, and continuous integration. For example, this thesis presents
how test coverage measuring, checking, and enforcing transfers to decision coverage. The thesis
also introduces a definition of done, standard in agile practices, for knowledge documentation.

3.2.2. As-is State of Rationale Management during CSE in Industry
This section describes the anecdotal results for the research question How do practitioners manage
decision knowledge during CSE? (RQ2). The subsections describe 1) decision types formalized
and documentation approaches, 2) important decision types that remain implicit, reasons, and
potential benefits if captured, 3) knowledge sharing approaches, and 4) change management
approaches. In the last subsection, we discuss the results.

Decisions Captured during CSE

This section presents the results for the question Which decisions are captured by practitioners
during CSE, why, and how? (RQ2.1). In three interviews, the practitioners stated not to capture
decisions at all. In these cases, we started with the interview questions for RQ2.2.

Practitioners capture executive and existence decisions regarding the software architecture and
feature implementation. They capture decisions in wiki and issue tracking systems in informal
discussions and rely on techniques for establishing trace links and version control that come with
these systems. Practitioners capture decisions as part of regular practices, such as code reviews
and meetings, and during development. They mention improved decision making, accountability,
knowledge sharing, and reuse support as benefits. However, the benefits and exploitation of the
decision knowledge are unclear for some.

The following paragraphs detail the answers to the interview question of RQ2.1. Table B.4 – B.9
in Appendix B provide anonymized answers by practitioners.

Types of Captured Decisions Twelve practitioners capture executive decisions concerning
the software development process, technologies, or applied tools. Such decisions impact the
entire project or several projects. The executive decisions can be made by a steering committee.
However, one practitioner highlights that CSE enables developers in making high-level decisions.
As examples for executive decisions, practitioners mention to capture the decision to use a certain
branching strategy or regarding setting up continuous delivery. One practitioner mentions to
capture decisions on the definition of done of development tasks and on when a build can be
deployed to the users. Existence decisions state that some elements will appear in the software
(Kruchten, 2004). Thirteen practitioners capture existence decisions concerning requirements,
architecture, implementation, test cases, and bug reports. Six practitioners capture decisions
related to the elicitation, prioritization, and effort estimation of requirements for features. Eight
practitioners capture architecture decisions and nine practitioners capture decisions regarding
the implementation of features, e. g., on why a class was created. Non-existence decisions or bans
state that some elements will not appear in the software (Kruchten, 2004). Five practitioners
capture possible alternatives to solve a decision problem during their decision-making process.
After evaluating the alternatives against the criteria, they pick one alternative as the decision.
The alternatives they discard are documented non-existence decisions. One practitioner captures
decisions regarding the prioritization of test cases and bug-fixing activities based on risk assessment.
Property decisions concern the quality of the system and can be guidelines, design rules, or
constraints (Kruchten, 2004). One practitioner mentions the issue on how to deal with data
inconsistency after replacing the relational database with a NoSQL database.

42

3.2. Results and Discussion

Documentation Locations, Techniques, and Tools Practitioners use various documentation
locations, techniques, and tools to capture decisions during CSE. Eight practitioners capture
decisions in external documents and tools such as Word files, architecture design documents, or
project reports. Only one practitioner uses a dedicated architecture management tool (Enterprise
Architect). Thirteen practitioners capture decisions in a wiki system, such as Confluence.
One practitioner uses a dedicated template page. Ten practitioners capture decisions in an
issue tracking and project management system, such as Jira or Redmine, as part of the ticket
description and its comments. One practitioner indicates decisions to be made using discovery
tickets. Similarly, another practitioner marks tickets that contain an unsolved decision problem
with a tag. One practitioner highlights that in their opinion pull requests are the best place to
capture decisions to implement features. They create feature branches for a requirement and
create a pull request directly afterward to discuss the feature implementation within the pull
request. Another practitioner documents decisions as part of the code in comments and in code
reviews. Code reviews can be done in pull requests, issue comments, or using dedicated code
review systems, such as gerrit. Three practitioners capture decisions in commit messages and
another three in informal communication systems, e. g., chat tools like Slack, and emails.

Linked Artifacts None of the practitioners uses a particular technique to establish links between
captured decision knowledge and software artifacts. However, some practitioners use built-in
techniques of the systems offering the documentation locations. For example, practitioners
trace decisions captured in the issue tracking system to the respective tickets, such as user
stories, and to artifacts linked to the tickets, e. g., software components and code. In addition,
some practitioners tag separate documents or wiki pages: for instance, version numbers can
enable traceability between decisions and software builds. Practitioners find it hard to keep the
documentation of decisions and software artifacts in a consistent state. The practitioner using
the architecture knowledge management tool criticizes that there are no links between the design
models and the wiki system where they also capture decisions. They insert snapshots of the
models into the wiki page, which they rate as highly unusable, especially when the models get
changed. Another practitioner suggests capturing decisions as close to the code as possible.

Evolutionary History of Decisions Preservation of the evolutionary history is supported in
those documentation locations that offer version control, e. g., in git and issue tracking systems.
One practitioner describes a technique to mark a rejected decision and to preserve and link it
with the new decision. However, the practitioner admits to having never used the technique.

Capturing Practices and Frequency The practitioners capture decisions during the practices
related to documentation locations, e. g., in commit messages when committing changes, in the
issue tracking system when working with tickets such as user stories, or in pull requests when
working with feature branches. Six practitioners mainly capture decisions on demand, e. g., when
planning bigger updates. One practitioner only captures decisions when discussion is needed,
i. e., for controversial issues. Seven practitioners capture decisions as part of regular practices
such as code reviews, meetings, and retrospectives. The practitioner reporting about the tag to
mark an open decision states that the product owner regularly filters for such tagged tickets.

Benefits and Exploitation Five practitioners document decisions for improved decision making
and better decisions due to clear criteria. Eight practitioners capture decisions and rationale
for accountability reasons, e. g., as proof of why a particular feature has been developed and to
avoid misunderstandings. One practitioner stresses that decisions help to recover former software
versions. Three practitioners capture decisions for knowledge sharing. One practitioner highlights

43

3. State of the Practice: Rationale Management during CSE

that it is necessary to share where a new decision needs to be made, i. e., also to share issues.
Two practitioners capture decisions to support reuse in the future and avoid duplicated work.

We asked the practitioners to rate the statement The explicit capturing of decisions benefits
our software development process with one answer from a five-point Likert scale. In thirteen
interviews, the practitioners rated this statement: one disagreed, three were neutral, and nine
agreed (Figure 3.4). The practitioners, who disagreed and were neutral, emphasized that if the
utilization of the captured knowledge was more clear, they would give a higher rating.

The explicit capturing of decisions . . .

The explicit capturing of decisions...

Number of answers

… would benefit our software development process.

… benefits our software development process.

0 5 10

strongly disagree disagree neutral agree strongly agree

Figure 3.4.: The practitioners’ attitude towards capturing decisions (above) and towards capturing
decisions currently not captured (below).

Decisions not Captured during CSE

This section presents the results for the question Which important decisions are not captured
during CSE, why not, and would it be beneficial to capture these decisions? (RQ2.2). Although
some practitioners capture executive, existence, non-existence, and property decisions, others
either a) do not capture the same type of decisions or b) provide other examples for decisions not
captured. Decisions regarding the CSE process, prioritization, alternatives that are not selected
(non-existence decisions), and the underlying rationale stay implicit. Practitioners do not capture
decision knowledge because they fear intrusiveness and inconsistency, and they miss clear use
cases for exploitation as well as techniques and tools. They see a potential benefit in supporting
software evolution through captured non-existence decisions and decisions for code.

The following paragraphs detail the answers to the interview question of RQ2.2. Table B.11 –
B.13 in Appendix B provide anonymized answers by practitioners.

Types of Decisions not Captured Seven practitioners provide examples for executive decisions
regarding the CSE process not captured but important to capture. They state that the decisions
on the continuous integration and deployment pipeline and the respective stages, e. g., the develop,
test, and production stages, stay implicit. The practitioners capture the result of the prioritization
of requirements based on cost estimation, test cases based on risk estimation, and bug-fixing
activities. However, the rationale is not captured, especially if it comes to reprioritization. Two
practitioners do not capture configuration decisions, e. g., which compiler or framework versions
they use. Eleven practitioners do not capture certain existence decisions. Such decisions relate
to features, software architecture, implementation, and tests. For example, one practitioner
documents APIs between microservices using Swagger but does not capture decisions for the
design of such interfaces and the underlying rationale. Three practitioners criticize not capturing
the rationale behind decisions and why they discarded alternatives, i. e., non-existence decisions
or bans stay implicit. Two practitioners have a common understanding of certain property
decisions, e. g., about the coding style, but do not document property decisions. One practitioner
provides the example of not having captured the decision on whether to use synchronous or
asynchronous inter-service communication between microservices. Such kinds of decisions are
made very quickly and then get reused by others but are neither discussed nor captured.

44

3.2. Results and Discussion

Reasons why Decisions are not Captured Two practitioners report that the decisions on how
to deploy the software used to be captured in external documents but are no longer captured
since the deployment is now automated. However, they still keep the former documents to
externalize this knowledge. Four practitioners see a problem in rapidly changing decisions
that lead to outdated decisions, i. e., to inconsistency between the captured decisions and
their implementation. One practitioner associates the waterfall process with capturing decision
knowledge. Five practitioners report that they lack appropriate techniques or tools to capture
decisions and rationale. Three of them state that their process is not mature enough to involve
decision management. Six practitioners do not capture decisions because they lack techniques for
easy retrieval and exploitation of the captured decisions. Eight practitioners fear the overhead
and the intrusiveness of capturing decisions and rationale. They could not spend the effort and
do not have enough time. One practitioner mentions that the cost-benefit ratio would be too high
if they captured more decisions than they currently do according to the 80/20 rule. However,
the practitioners admit that the effort could be reduced by applying better capturing techniques.

Potential Benefits if Captured As for the captured decisions, practitioners see potential benefits
in establishing accountability, improving decision making and knowledge sharing, as well as
a support of reuse and maintenance activities. They also stress that capturing decisions and
rationale would support continuous learning as part of the CSE process. Two practitioners see
a potential benefit in retrieving decisions and rationale for code when evolving code. In their
opinion, this could ease the understanding of code. Three practitioners state that it would be
useful to know about alternatives for a decision and the rationale why they were not selected
during software evolution. One practitioner mentions disaster recovery as an example of why
knowledge sharing and capturing decisions were important.

We asked the practitioners to rate the statement The explicit capturing of decisions would
benefit our software development process regarding the decisions they currently do not capture.
Practitioners of eleven interviews rated this statement: three disagreed, one was neutral, and
seven agreed (Figure 3.4). The practitioners, who disagreed or were neutral, feared that the
extra effort would outweigh the benefits.

Sharing of Decision Knowledge during CSE

This section presents the results for the question How do practitioners share decision knowledge
during CSE? (RQ2.3). Practitioners strongly rely on face-to-face communication, i. e., colleagues’
knowledge, to recover implicit decisions. To share knowledge equally they apply techniques such
as pair programming and inviting all team members as reviewers to pull requests. However, they
also try to recover implicit decisions using reverse engineering.

The following paragraphs detail the answers to the interview question of RQ2.3. Table B.15
and B.16 in Appendix B provide anonymized answers by practitioners.

Alternative Knowledge Sources Six practitioners state that they try to do reverse engineering
to recover knowledge from code and issue tracking systems. Ten practitioners mention that they
ask colleagues, which has the disadvantage that both the inquiring person and the respondent need
to interrupt their current activity. One practitioner reports that they have an emergency mobile
phone that is carried by one knowledgeable project member for a period of time; afterwards,
it is passed to the next project member. Two practitioners report that it can be hard to scan
through many emails and pull requests to recover a decision. Thus, this decision was somehow
documented but hard to retrieve. Another practitioner enforces that decisions are hard to retrieve
in communication channels using the slogan “if it happens in [chat tool], it did not happen”.

45

3. State of the Practice: Rationale Management during CSE

Avoidance of Knowledge Vaporization The practitioners try to avoid knowledge vaporization
by sharing knowledge between project members. One practitioner states that in larger teams
it is both necessary to share the knowledge within and across team boundaries. Knowledge
management should address both the intra- and inter-team scope. Within teams, the practitioners
try to share knowledge between all members as homogeneously as possible. They strongly rely on
face-to-face communication. Further, one practitioner mentions that they always invite all team
members as reviewers for pull requests and also do pair programming to distribute knowledge.
One practitioner states that they encourage team members to always share their notes with
others, e. g., by using a wiki system, instead of “writing diaries” in a notebook. Two practitioners
mention having a dedicated process to onboard new project members. Generally, practitioners
state that if a project member is about to leave the company, they would have a period during
which this person tries to share and capture their knowledge.

Managing Changing Decisions during CSE

This section presents the results for the question How do practitioners deal with changing
decisions during CSE? (RQ2.4). Overall, we received only a few responses from practitioners
regarding the management of changing decisions during CSE. Table B.17 in Appendix B provides
anonymized answers by practitioners. Practitioners apply cost estimation, risk estimation, and
prioritization before integrating (changing) decisions. They depend on implicit knowledge and
team communication to identify parts of the system affected by new or changed decisions. They
rely on automated tests to detect side and ripple effects. None of the practitioners report a
technique or tool to identify parts of the system affected by new or changed decisions. One
practitioner reports about their change management process. For a change request, the project
leader needs to decide whether the change will be integrated, and—if so—the developers estimate
the cost for the change, define a priority, and break it down into tasks. Other practitioners
emphasize the importance of automated tests to detect side and ripple effects as well as risk
management. One practitioner of a consulting company criticizes that workflows often do not
scale when the project and the respective team sizes increase. Change impact analysis would
be critical for larger projects. However, it is not integrated since it was not necessary when the
project was initially small.

Discussion: How do practitioners manage decision knowledge during CSE?

The results of RQ2 (How do practitioners manage decision knowledge during CSE?) provide
anecdotal evidence on decisions captured and implicit decisions. Some practitioners mentioned
capturing decisions that others do not capture and vice versa. The answers towards RQ2.1 and
RQ2.2 provide examples of decisions practitioners consider important to be captured and for which
purposes. Interestingly, many practitioners find executive decisions regarding the CSE process
important to be captured. A reason might be that CSE involves continuous process improvement
that comes with continuous decision making. The CSE process contains many defined workflows
that developers need to decide on and need to have a common understanding (Figure 3.3).

The findings of the study confirm the rationale management problems described in Section 1.2.
In 19 interviews, the practitioners mentioned that their decision-capturing method needs to be
improved and that it is far from perfect. Only in one interview, a practitioner in the quality
manager role states that they are very focused on capturing decisions. The degree of formalization
of decision making and documentation in practice seems to be relatively low. The practitioners
mainly capture decision knowledge informally in wiki and issue tracking systems. In the interviews,
only five practitioners mention capturing alternatives for a decision, i. e., non-existence decisions.
However, it is very important to capture non-existence decisions as they are not visible in the
software artifacts and cannot be recovered using reverse engineering (Kruchten, 2004). Also, the

46

3.2. Results and Discussion

underlying rationale for solution decisions is not captured systematically. The practitioners use
both a codification strategy, i. e., capturing the knowledge, and a personalization strategy (Babar
et al., 2007; Hansen et al., 1999): They partly capture the decision knowledge (codification)
but rely on experts’ implicit and tacit knowledge and face-to-face communication as alternative
knowledge sources (personalization). The practitioners argue not to capture decisions since the
rapid change would make them outdated soon. Further, the practitioners state that using too
many tools for capturing decisions can be frustrating. For reasons they list a) redundancy, i. e.,
they need to document knowledge in more than one tool, which means twice the effort and might
result in inconsistent documentation, and b) a workflow interruption, i. e., they have to change
their working context for documentation purposes, which means intrusiveness.

Although the practitioners confirm to document decision knowledge in typical documentation
locations, e. g., the issue tracking system, the opportunities of CSE for improved decision
knowledge management are not yet exhausted. The practitioners stress that utilizing the
captured decision knowledge is not clear to them and that it is not appropriately exploited. They
also highlight having difficulties finding and retrieving the decisions—especially if captured in
informal communication channels such as Slack.

3.2.3. Practitioners’ Assessment of Ideas for Continuous Rationale Management
This section describes the results for the research question How can rationale management in
CSE be improved according to practitioners? (RQ3). We wanted to understand the practitioners’
thoughts on the CURES prototype (Section 2.4). The subsections describe 1) features beneficial
to practitioners and 2) obstacles they see. In the last subsection, we discuss the results.

Practitioners’ Assessment of Features for Continuous Rationale Management

This section presents the results for the question Which tool features for continuous rationale
management do practitioners perceive as beneficial and why? (RQ3.1). We asked the practitioners
about important features or other additions of a CSE infrastructure extension to improve the
management of decision and usage knowledge.

From the practitioners’ responses, we identified eight functional features for tool-based rationale-
management support during CSE: decision-making support, decision knowledge documentation,
change execution, knowledge presentation, filtering and searching, metrics calculation and report-
ing in dashboard, change impact analysis, and navigation. Further, we identified the following
non-functional features: integration, interoperability, and traceability as well as automation.

The following paragraphs describe the rationale management-related features beneficial to
practitioners and explain why they are important. Table B.18 in Appendix B provides an excerpt
of the anonymized answers by practitioners.

Decision-Making Support The practitioners request a decision-making support. First, the
practitioners appreciate the possibility to discuss decisions collaboratively and to comment on the
decisions made since “several stakeholders are usually involved in the decision-making process”.
One practitioner states that “it should be possible that you can also discuss the decisions again
or ask: OK, there is a decision, but I have a completely different opinion about it”. Second, two
practitioners request a voting possibility for decision making, e. g., to record that “four people
were in favor and three against” a solution option. Third, the practitioners acknowledge the idea
to support the developers in making decisions based on user feedback and usage data, such as
whether to continue improving functionality only used by a minority of users. One practitioner
states that incorporating usage knowledge “would simplify the argumentation in many places
because I can then discuss with other stakeholders at the beginning what is most important in
terms of user feedback and customer satisfaction”.

47

3. State of the Practice: Rationale Management during CSE

Decision Knowledge Documentation The practitioners request functionality for decision
knowledge documentation. It relates to the decision-making support feature but focuses on
what, where, and how to capture decision knowledge. First, the practitioners elaborate on what
to capture: Besides the documentation of the solution decision, this feature should enable to
capture various types of decision knowledge elements. One practitioner emphasizes that the
documentation of alternatives for a decision should be supported. According to this practitioner,
“alternatives do not have to be completely worked out, but you at least have to say: we could
have done it that way. You do not have to write much code for that, but if you already have ideas
about how to do something alternatively, then chances are that someone else will come up with
that idea at some point. And then it would be good to say why it wasn’t done that way”. Second,
the practitioners elaborated on where to capture the decision knowledge. They suggest capturing
decision knowledge in documentation locations typical for CSE, such as ticket comments, commit
messages, and pull requests. One practitioner states that “the most important thing is that it
is close to the developer” and provides the example “if it’s a Word document in a Sharepoint,
that’s so far away from the developers that when in doubt, nobody looks in there. If it’s in
the wiki, it’s slightly closer to the developers. The supreme discipline would be integrating this
information into a pull request”. That means that documenting decisions within the development
context, i. e., close to developers, leads to easy retrievability and is better than collecting the
information in separate documents. Third, the practitioners discussed how to enable the decision
knowledge documentation. According to practitioners, the decision knowledge documentation
feature should support the capturing of informal discussion between the developers and other
stakeholders. One practitioner is willing to apply a dedicated language or syntax to capture
decisions knowledge when committing code—even if that means an additional workload at that
stage. One practitioner emphasizes the importance of storing meta-information for a documented
decision, such as its discussants: “Simply a decision is probably not yet sufficient as atomic
information. It must also be recorded who was involved in the decision-making process.”

Change Execution Next to the initial capturing of decision knowledge, the practitioners request
a change execution feature to change decision knowledge and related software artifacts. One
practitioner states that “the knowledge repository is suitable for recording why certain business
processes are changed”. Another practitioner requests from the tool support that “it automates
everything that can be automated. I can always edit it afterward”. For this practitioner, change
execution is a must-be requirement taken for granted (Kano, 1984; Sauerwein et al., 1996).

Knowledge Presentation The practitioners request knowledge presentation functionality for
the retrieval and (re)use, i. e., exploitation of the knowledge documentation. Decision knowledge
should be presented in context to other software artifacts. One practitioner states that “the
dependencies between the features should be shown, and one should be able to trace decision
paths. It is crucial that you see the points that you want/must see at that moment. If everything
is documented, it quickly becomes a lot. It is also vital to present this data in a concentrated
way”. Another practitioner states that it is “essential to see all possible alternatives”.

Filtering and Searching Related to the knowledge presentation feature, the practitioners request
functionality for filtering and searching. Two practitioners state that a powerful search would be
the essential feature for them “because if you document something and then cannot find it, then
it also brings nothing”. One practitioner discusses a solution idea, i. e., the feature’s design, as “I
do not know how one would imagine that currently. Somehow it has to be searchable by text.
That’s what I would find most difficult but also most important”.

48

3.2. Results and Discussion

Metrics Calculation and Reporting in Dashboard The practitioners acknowledge the idea of
having the dashboard component as part of the CURES prototype, i. e., of having a feature for
metrics calculation and reporting in dashboard. One practitioner states: “The most important
feature for me would be the different metrics I get from monitoring usage and other technical
metrics.” The dashboard and the metrics could be used for quality assessment and reporting. For
example, one practitioner suggests that “the dashboard can directly generate suggestions and
warnings”. Another practitioner suggests showing run-time information in the dashboard, e. g.,
“for a project team to know which feature is productive at all”. The practitioner also emphasizes
that developers should get “quick access to log data from production. This is mostly missing”.

Change Impact Analysis Another feature beneficial to practitioners is change impact analysis.
One practitioner describes it as “when a piece of information (like a decision) is recorded, you
also know what is meant by it and that you see the impact, i. e., on which other artifacts this
decision still has an impact”.

Navigation The practitioners request a navigation feature for ubiquitous linking. One prac-
titioner requests a “link to the code so that you also get from the code to the decisions”. The
practitioner discusses how to achieve the navigation between decisions and code: “You can go
the way we are using now. If I want to know what has changed in the code, IntelliJ or Eclipse
annotates the class, i. e., shows to the left of each line when it last changed by whom and in
which commit. We also include the Jira ticket identifier in every commit message. This gives
me a reasonably quick understanding of the context in which this class was touched.” Another
practitioner states: “I do not want to link it individually, but it should be obtained from the
data I have across all my systems, whether in Jira or git, so that it can be linked automatically.”

Integration, Interoperability, and Traceability The integration and interoperability with
the tools developers usually use, and the automatic creation of trace links are important for
practitioners. For instance, one practitioner states “you know how it is: the better the tool
integration, the easier it is for you.” Another practitioner states that “integration with the tools
people usually use is very important. As soon as you have to document twice, nobody does it
from experience.” One practitioner requests that “there must be interfaces. Developers like to
work close to the hardware. Reading and writing with markdown and YAML should be possible.”

Automation Another essential feature to the practitioners is that tool support for continuous
rationale management should be highly automated. One practitioner emphasizes that “a high
degree of automation would be a prerequisite”. As soon as one aspect that could be automated
requires effort, such a system is difficult to establish; one practitioner justifies the need for
automation because—if there is just one aspect that needs to be done manually—the data will
turn inconsistent over time.

Practitioners’ Assessment of Obstacles to Continuous Rationale Management

This section presents the results for the question What obstacles do the practitioners perceive
regarding the CURES prototype toward continuous rationale management? (RQ3.2). We asked
the practitioners for impediments to implementing the CURES prototype in their company.
Table B.19 in Appendix B provides an excerpt of the practitioners’ answers. From the practitioners’
responses, we identified the following obstacles that tool support for continuous rationale
management needs to treat: overhead and intrusiveness of manual documentation, lack of
techniques for easy retrieval and exploitation, inconsistency, and high amount of distributed
documentation. We found similar obstacles to the obstacles that already hinder the practitioners

49

3. State of the Practice: Rationale Management during CSE

from performing rationale management during CSE (RQ2.2). Besides, the practitioners mentioned
that the high amount of distributed documentation is an obstacle to the implementation of the
knowledge presentation and filtering and searching features. One practitioner states that “over
time, the database will become huge because many features will be developed. I think it is not
so easy to implement a meaningful search.” Another practitioner states that “the knowledge
repository already exists in parts in the form of ticketing systems, e. g., Redmine already does
this. The problem, however, is that you always have to search in two places.”

Discussion: How can rationale management in CSE be improved according to practitioners?

The capturing and exploitation of decision knowledge need to be better integrated into the daily
practices of developers. The contribution of RQ3 (How can rationale management in CSE be im-
proved according to practitioners?) is twofold: First, it contributes functional and non-functional
features of support for continuous rationale management beneficial for the practitioners from
the industry: Decision-making support (support for collaborative discussion, voting possibility,
based on user feedback and usage data), decision knowledge documentation in documentation
locations typical for CSE, such as ticket comments, commit messages, and pull requests, change
execution, knowledge presentation, filtering and searching (support for recovering decision docu-
mentation from various sources), metrics calculation and reporting in a dashboard, change impact
analysis, navigation through traceability, integration, interoperability, and automation. Second,
it contributes obstacles to continuous rationale management that validate the three rationale
management problems of intrusiveness and effort, high amount of distributed knowledge, and
low documentation quality (Section 1.2). The features and obstacles constitute the basis of this
thesis’s treatment design consisting of the ConRat life cycle model extension and the ConDec
plug-ins described in Part III.

3.3. Related Work
This section discusses related empirical studies investigating the as-is state of decision knowledge
management in the industry and the improvement ideas suggested by practitioners. It discusses
related work regarding the research questions RQ2 and RQ3, but also for non-CSE environments
(meaning that the practitioners of the related studies might not have performed relevant CSE
practices, such as automated testing and continuous integration). We included interview studies
and written surveys with practitioners, i. e., primary sample studies, which—similar to our
study—aim to maximize the generalizability to a population. Table 3.3 provides an overview of
these studies and the rationale-management aspects that they investigate.

Section B.2 describes and compares the individual studies with ours. We make three conclusions
from the comparison: 1) The results of the related studies enrich the results of our research. For
example, we did not investigate influence factors during decision making as done by Tang et al.
(2006) and Weinreich et al. (2015). 2) Our study confirms the results of the related studies, e. g.,
many documentation locations for decision knowledge, the problems, and (potential) benefits of
rationale management. 3) Our study contributes new insights regarding rationale management
during CSE. Some aspects of rationale management were not addressed in the related studies, in
particular, artifacts linked to the documented decision knowledge, techniques to preserve and use
the evolutionary history of decisions, techniques for decision knowledge sharing, and techniques
to identify change impacts. Table 3.4 summarizes the findings from our study and the related
studies. Our study contributes new findings regarding the aspects of rationale management
investigated by other studies, highlighted in italics in Table 3.4. For example, we identified pull
requests as a documentation location for decision knowledge.

50

3.3. Related Work

Table 3.3.: Rationale management aspects investigated in the related studies with practitioners.
This Thesis Tang

et al.,
2006

Weinreich
et al.,
2015

Capilla
et al.,
2016

Schubanz,
2021

Data Collection Method Interview Written
Survey

Interview Interview Written
Survey

#Participants 24 from 17
companies

81 25 from 22
companies

6 102

Aspects regarding Decision Making

Influence Factors (Forces, Drivers) ✗ ✓ ✓ ✗ ✗

Aspects regarding Decision Knowledge Documentation

Types of Captured Decisions ✓(RQ2.1 a) ✓ ✓ (✓) ✓

Documentation Locations, Techniques, Tools ✓(RQ2.1 b) ✓ ✓ ✓ ✓

Linked Artifacts ✓(RQ2.1 c) ✗ ✗ ✗ ✗

Evolutionary History of Decisions ✓(RQ2.1 d) ✗ (✓) ✗ ✗

Capturing Practices and Frequency ✓(RQ2.1 e) ✗ ✓ ✗ ✓

Benefits and Exploitation ✓(RQ2.1 f) ✓ ✓ ✓ ✓

Aspects regarding Implicit Decision Knowledge

Types of Decisions not Captured ✓(RQ2.2 a) ✓ ✓ ✓ (✓)
Reasons why Decisions are not Captured ✓(RQ2.2 b) ✓ ✓ ✓ ✓

Potential Benefits if Captured ✓(RQ2.2 c) ✗ ✗ ✓ ✗

Aspects regarding Decision Knowledge Sharing

Alternative Knowledge Sources ✓(RQ2.3 a) ✗ ✗ ✗ ✗

Avoidance of Knowledge Vaporization ✓(RQ2.3 b) ✗ ✗ ✗ ✗

Aspects regarding Changing Decisions

Techniques to Identify Change Impacts ✓(RQ2.4) ✗ ✗ ✗ ✗

Aspects regarding Improvement of Decision Knowledge Management

Features for Tool Support ✓(RQ3.1) (✓) ✓ ✓ ✗

Guidelines and Social Aspects ✗ ✓ ✓ ✓ ✗

Table 3.4.: Findings of our and related studies with practitioners. Findings only mentioned in
our study are highlighted in italics.

Aspect Overall Findings from our Study and Related Studies

Aspects regarding Decision Knowledge Documentation

Types of
Captured
Decisions

Existence decisions (e. g., regarding architecture, design, feature implementation and
refinement, user experience), non-existence decisions (by evaluating multiple alternatives
against criteria, selecting one as the decision, and preserving the discarded alternatives),
executive decisions (e. g., regarding CSE process such as for branching strategy, deployment,
and definition of done, tools, feature prioritization, team, to-do-items), property decisions
(e. g., regarding quality such as avoidance of data inconsistency when using a server
cluster), solution-oriented vs. driver-oriented, classified according to level, granularity,
scope, and impact

Continued on next page

51

3. State of the Practice: Rationale Management during CSE

Aspect Overall Findings from our Study and Related Studies

Documentation
Locations and

Tools

Wiki, issue tracking system, text document (Word file), pull/merge request, commit
message, code, meeting minute (protocol), diagram, presentation, email, agile backlog,
(UML) modeling tool such as e. g., Enterprise Architect, chat message, architecture design
document, project report

Techniques Informal capturing in natural language text vs. formal capture using rationale model
(templates), marking the status of a decision problem in tickets using a tag (solved/unsolved),
usage of discovery ticket type for discussing and solving decision problems

Linked Artifacts Decisions captured in the issue tracking system can be traced to the respective tickets,
such as user stories, and also to artifacts that are linked to these tickets, e. g., software
components and code

Evolutionary
History of
Decisions

Usage of built-in version control of documentation locations such as git and issue tracking
systems, marking rejected decisions

Capturing
Practices and

Frequency

During the practices that are related to certain documentation locations, e. g., in commit
messages when committing changes, working with tickets such as user stories, or in pull
requests when working with feature branches, during code reviews, meetings, retrospectives,
sprint planning, backlog refinement, and on demand

Benefits and
Exploitation

Improving/systematizing/supporting decision making, accountability (arguing with cus-
tomers during development, preparation for later audits), resolving production problems
(disaster recovery), support maintenance and modification tasks, impact analysis, knowl-
edge sharing (training of new employees, preventing knowledge vaporization, continuous
learning, ease the understanding of code), reuse, compliance with legal regulations

Aspects regarding Implicit Decision Knowledge

Types of
Decisions not

Captured

Some practitioners capture executive, existence, non-existence, and property decisions
during CSE, while others either a) do not capture the same type of decisions or b) provide
other concrete examples for decisions that they do not capture: existence decisions (e. g.,
regarding design of microservices and the APIs between them), non-existence and ban
decisions, executive decisions (e. g., regarding (re-)prioritization of feature development,
CSE development process, decisions which version to use of a framework, tools), property
decisions (e. g., regarding whether to generally use synchronous or asynchronous inter-
service communication between microservices)

Reasons why
Decisions are not

Captured
(Barriers,

Obstacles,
Problems)

Lack of time or budget (documentation of design decisions is often too time- and cost-
intensive), unawareness of the need and usefulness of documenting design rationale, lack
techniques for easy retrieval and exploitation, unclear cost/benefit ratio when documenting
decisions, a lack of a formal review process, rapidly changing decisions (dynamic nature
of technology and solutions makes it useless to document design rationale, outdated
documentation, and redundancies that lead to inconsistencies) difficulty in finding a
documented decision or determining whether a specific decision is documented or not,
difficulty in deciding what to document and how best to document the knowledge, lack
of motivation or incentive, lack of adequate techniques or tools, uncertainty of what to
capture, overhead and intrusiveness (disrupting the design flow, effort in capturing), lack
of stakeholder understanding, process is not mature enough, high amount is hard to handle

Potential Benefits
if Captured

Same benefits and exploitation scenarios as for captured decisions, e. g., explanation of
why the software was designed in a certain way (accountability), improved decision making
and knowledge sharing, support of reuse and maintenance activities, alternatives for a
decision and the rationale why they were not selected would be useful during software
evolution, ease the understanding of code

Aspects regarding Decision Knowledge Sharing

Alternative
Knowledge

Sources

Software system (recovering of existence decisions using reverse engineering), colleagues’
knowledge (asking them during work, usage of an emergency mobile phone), informal
written communication (for example, reading emails and pull requests)

Continued on next page

52

3.4. Threats to Validity

Aspect Overall Findings from our Study and Related Studies

Avoidance of
Knowledge

Vaporization

Sharing knowledge between project members (within and across team boundaries) through
face-to-face communication, inviting all team members as reviewers for pull requests, pair
programming, using shared platforms such as wiki systems, process to onboard new and
offboard leaving project members

Aspects regarding Changing Decisions

Techniques to
Identify Change

Impacts

Reliance on implicit knowledge and team communication to identify parts of the system
affected by new or changed decisions, execution of automated tests to detect side and ripple
effects after change execution, risk assessment

Aspects regarding Improvement of Decision Knowledge Management

Features for Tool
Support

Decision-making support (support for collaborative discussion, voting possibility, based on
user feedback and usage data), decision knowledge documentation (documentation locations
typical for CSE, such as ticket comments, commit messages, and pull requests), change
execution, knowledge presentation, filtering and searching (support for recovering decision
documentation from various sources), metrics calculation and reporting in dashboard, change
impact analysis, navigation through traceability, integration, interoperability, automation

3.4. Threats to Validity

This section discusses four validity criteria of primary empirical studies as defined by Easterbrook
et al. (2008) and Runeson et al. (2012):

Construct validity focuses on whether the theoretical constructs are measured and interpreted
correctly. The practitioners might have interpreted the interview questions differently from what
we intended. To reveal misinterpretations, we allowed them to ask questions at any time and
conducted two interviews with colleagues we discussed afterward. We used open-ended questions
to elicit as much information as possible.

Internal validity concerns whether the results we draw really follow from the data, e. g., whether
confounding factors influence the results. The practitioners might have provided answers that do
not fully reflect their daily work since they knew the results would be published. We guaranteed
the anonymity of interviewees and companies to address this. The interpretation of answers might
be biased by the authors’ a priori expectations, which we addressed by coding the transcriptions
and discussing the codes.

External validity addresses the generalizability of the study results. We contacted companies
we already knew, which might result in a selection bias. It is mitigated by the fact that two
researchers from two universities had different industrial contacts that they contacted. Interviews
are subjective since they rely on the practitioners’ statements. We conducted 20 interviews with
24 practitioners to reduce subjectivity and acquire broader opinions. However, a major threat to
the external validity is that most of the evidence collected in this study is anecdotal. For parts of
the results, we reported the number of practitioners who gave a response. The sample size of 24
practitioners is too small to generalize. Still, similar answers by multiple practitioners can hint
at standard practices, e. g., ten practitioners capture decisions in an issue tracking system. We
also reported subjective opinions of individual practitioners that might not be generalizable to
provide rich qualitative data, and the results should be interpreted from a constructivist stance.

Reliability validity concerns the study’s dependency on specific researchers. After we conducted
coding training and checked intercoder reliability, two researchers individually coded different
transcripts. We addressed this threat by discussing questions during coding. In addition, the
supervisors of this thesis supported the interview analysis.

53

3. State of the Practice: Rationale Management during CSE

3.5. Conclusion
This chapter reported findings from an interview study on how practitioners define and perform
CSE and manage rationale during CSE. It reported ideas on how practitioners would improve
the rationale management. The contributions to the remainder of the thesis are the following:

The interview study contributed the Eye of CSE model that represents a well-established CSE
process. The model helps to understand the context of continuous rationale management and
contributes to the description of CSE in literature (Section 2.1). Besides, the study identified
advanced CSE elements well-known to the practitioners, such as agile practice, automated tests,
and continuous integration. Continuous rationale management adopts concepts from these
well-known CSE elements; for example, measuring, checking, and enforcing decision coverage
similar to test coverage and a definition of done for knowledge documentation.

The interview study contributed insights into rationale management practices and problems,
complementing related work. The results indicate that rationale management is not systematically
integrated into CSE. The practitioners capture decision knowledge informally, for example, in
natural language discussions in issue tracking systems. For them, capturing rationale has many
positive effects, such as improved decision-making and change processes, accountability, knowledge
sharing, and reuse. However, the practitioners lack systematic techniques and tools for rationale
management. The reported challenges confirm and illustrate the rationale management problems
in Section 1.2: 1) Documenting rationale is seen as an overhead and intrusive. 2) It is not clear
how to access and exploit the decision knowledge documentation when needed during software
evolution. 3) Rapid changing decisions lead to outdated documentation, i. e., inconsistency
between the captured decisions and their implementation. Even if the decision knowledge is
captured, e. g., in the issue tracking system, it is difficult to access in the context of requirements,
code, and other software artifacts.

The interview study contributed functional and non-functional features for continuous rationale
management that benefit practitioners and obstacles, confirming the rationale management
problems. The treatment described in Part III of the thesis builds upon the features and treats
the problems. It consists of the ConRat life cycle model extension and the ConDec plug-ins. A
non-functional aspect frequently requested by the practitioners is that rationale management
should be well integrated into CSE rather than treating it separately. An important decision
for the treatment is the integration of ConRat and ConDec into the existing workflows and
tools by the developers to minimize the intrusiveness. ConDec offers comprehensive support
for collaborative decision knowledge documentation in various documentation locations close to
artifacts, such as requirements, code, and feature branches. ConDec enables explicit, formalized
documentation in the description and comments of tickets, commit messages, and code comments.
It does not restrict the type of decisions. Developers can capture executive, existence, non-
existence, and property decisions. The documentation builds on lightweight annotations that
are automated with ConDec’s automatic text classification. It supports knowledge presentation
with interactive views, with functionalities for filtering, searching, navigation, and change impact
analysis. ConDec also offers comprehensive support for metrics calculation and reporting in a
dashboard. ConRat and ConDec support decision making by making decision knowledge explicit.
In addition, ConDec supports decision making with the criteria matrix view, decision guidance
recommendation system, rationale backlog, meeting agenda with decision knowledge, and nudging
mechanisms to indicate where a decision needs to be made.

The study results are interesting for practitioners to compare their current practices and to
reflect on the necessity for adopting ConRat and ConDec. The interview study is also interesting
for researchers, e. g., when performing future interview studies to compare their results.

54

Chapter 4
State of the Art: Classification and
Recommendation for Rationale Management

“We learn best from mistakes, but who said all these mistakes have
to be our own ones?”

—Zimmermann, 2011

This chapter contributes to the knowledge goal 2 of the thesis: Understand the current
state of the art regarding rationale management support with classification or recommendation.
It presents a systematic mapping study contributing an overview of approaches to treat the
rationale management problems described in Section 1.2. The study contributes to the problem
investigation, and the overview of the approaches is a basis for the treatment design of ConRat
and ConDec described in Part III of the thesis.

Section 4.1 describes the study design, including research questions and the publication search.
Section 4.2 presents and discusses the results of the systematic mapping study. Section 4.3
discusses threats to validity. Section 4.4 concludes this chapter.

4.1. Study Design
Section 4.1.1 introduces the research questions. Section 4.1.2 describes the procedure of the
literature study, including the publication search and the search results.

4.1.1. Research Questions
The knowledge goal 2 is refined into a research question with sub-questions (Table 4.1):

RQ1 What are the characteristics of (semi-)automatic classification and recommendation
approaches to support rationale management?

The research question asks for the characteristics of rationale management support with classi-
fication and recommendation. A result of the interview study in Chapter 3 is the automation
request; thus, the question asks for (semi-)automatic approaches. To create a standardized
description of the approaches, the research question is refined into four questions:

RQ1.1 Which (semi-)automatic classification and recommendation approaches for rationale
management exist? This question identifies the existing types of approaches and the respective
publications. It also investigates the frequency of published approaches over time to see trends.

55

4. State of the Art: Classification and Recommendation for Rationale Management

Table 4.1.: Research questions of the systematic mapping study.
Research Question

RQ1 What are the characteristics of (semi-)automatic classification and recommendation approaches
to support rationale management?

RQ1.1 Which (semi-)automatic classification and recommendation approaches for rationale manage-
ment exist?

RQ1.2 How do the approaches support software practitioners?
RQ1.2a Which rationale management problems are treated?
RQ1.2b Which rationale management activities are supported?
RQ1.2c Are the approaches supported with tools, and how do the tools integrate into the process?

RQ1.3 How do the approaches internally work?

RQ1.4 Which evaluation aspects are investigated?

RQ1.2 How do the approaches support software practitioners? We aim to understand how
the approaches can support software practitioners in performing rationale management. This
question investigates the user’s perspective on the approaches. It investigates the problems
treated by the approach described in Section 1.2 (intrusiveness and effort, high amount of
distributed documentation, or low documentation quality), the supported activities (decision
making, documentation, exploitation, or quality assurance) and the implementation in tools.

RQ1.3 How do the approaches internally work? We aim to understand the functioning of the
approaches. Classification and recommendation approaches make predictions based on heuristics
(also called features). These heuristics can be 1) based on human intuition about the problem,
2) based on data mining to identify patterns, or 3) machine learning-based (Robillard and Walker,
2014). This thesis refers to the 1) and 2) techniques as rule-based. We aim to investigate the
heuristics used in classification and recommendation approaches for rationale management.

RQ1.4 Which evaluation aspects are investigated? Empirically evaluations can investigate
various aspects, and literature uses different terms. The primary aspect an approach needs to
fulfill is feasibility. On top, researchers evaluate more advanced aspects described in Section 1.3.
With this question, we aim to understand which of the following aspects the researchers validate:
1) user acceptance by interviewing or surveying software practitioners, e. g., asking for ease of
use, usefulness, or satisfaction, 2) effectiveness or efficiency, or 3) feasibility in another way.

4.1.2. Literature Study Procedure

Two methods for systematically studying literature exist: systematic mapping study and systematic
literature review. Both methods are used in secondary studies to provide an overview of the
primary studies in a research area. They help in preventing selection bias and incompleteness in
the research. A systematic mapping study (also called scoping study) aims to provide a wider
overview with broader research questions than a systematic literature review. A systematic
mapping study is used to examine a research area. In contrast, the systematic literature review
is a well-defined methodology to identify, analyze, and interpret all available evidence related
to a research question. A systematic mapping study is used to identify evidence clusters to
guide future systematic literature reviews and identify evidence deserts lacking primary studies
(Kitchenham and Charters, 2007; Petersen et al., 2008).

56

4.1. Study Design

Both methods require the researchers to document the search procedure so that readers can
repeat the search and assess the rigor and completeness. Researchers can search in online
databases using a search string or via a manual search, e. g., in conference proceedings. Snow-
balling is a manual search strategy that starts from specific publications. When performing
backward snowballing, researchers scan the references of a publication. When performing forward
snowballing, researchers identify new publications that cite a specific publication (Wohlin, 2016).

Search with keywords
in online databases

ACM: #found = 73
IEEE: #found = 225

Inspect references of
literature overviews

Hesse (2020): #references = 21
Weinreich and Groher (2016): #references = 33

Capilla et al. (2016): #references = 95
Alexeeva et al. (2016): #references = 94

Select publications that
fulfill criteria

ACM: #used = {P12,P24,P27,P32,P35}
IEEE: #used = {P2,P4,P7,P8,P17,P27}

Hesse (2020): #used = {P21}
Weinreich and Groher (2016): #used = {P13,P27,P32,P34,P26,P36,P31}

Capilla et al. (2016): #used = {P29}
Alexeeva et al. (2016): #used = {P25,P33,P34,P21,P22,P29}∑

first
= 20

Perform forward and
backward snowballing
and select publications

that fulfill criteria

#backward = {P1,P3,P5,P6,P11,P14,P15,P16,P23}
#forward = {P3,P6,P9,P10,P18,P19,P20,P28,P30,P37}∑

total
= 37

Identify
approaches

Figure 4.1.: Search procedure and results of the systematic mapping study on classification and
recommendation approaches for rationale management (UML activity diagram).

The literature study in this thesis is a systematic mapping study because it aims to provide a
broad overview of the existing approaches that support rationale management with classification
or recommendation. The systematic mapping study follows the guidelines by Kitchenham and
Charters (2007). Figure 4.1 visualizes the search procedure as a UML activity diagram including
the search results as object nodes. We identified the relevant publications in two ways:

First, we performed backward snowballing on existing literature overviews regarding decision
knowledge management. We inspected the references of the literature overview by Hesse (2020),
who studied existing approaches and tools for decision knowledge documentation. We also
inspected the references of the three most recent literature overviews collected as related work
by Hesse (2020): Alexeeva et al. (2016), Capilla et al. (2016), and Weinreich and Groher (2016).

Second, we performed a keyword search by querying online databases using a search string.
We searched two prominent scientific databases on software engineering research: ACM and
IEEE Xplore. The search string consists of search terms reflecting the research question Which
(semi-)automatic classification and recommendation approaches for rationale management exist?
The final search string was as follows:
1 ("rationale" OR "decision") AND ("manage*" OR "document*" OR "knowledge")
2 AND ("classif*" OR "recommend*")
3 AND ("approach" OR "technique" OR "method" OR "support" OR "system")
4 AND ("software")

The first line identifies publications of rationale management and related terms such as decision
knowledge, decision documentation, or rationale documentation. The second line narrows down
the topic to classification or recommendation. The third line specifies that we are searching
for approaches instead of purely empirical studies. The fourth line narrows down the topic
to software. The search string was applied in the publication title and abstract to find only
publications focused on the topic. Appendix C contains the resulting database queries.

57

4. State of the Art: Classification and Recommendation for Rationale Management

From all publications found by the keyword search or snowballing, we selected the publications
that fulfill the inclusion and exclusion criteria listed in Table 4.2. We read the title and abstract
to decide if a publication fulfills the criteria. In ambiguous cases, we also read the publication
content. The exclusion criteria E1 to E3 are commonly used in systematic mapping studies
and literature reviews (Kitchenham and Charters, 2007). Capilla et al. (2016) divide tools for
architectural knowledge management into three generations. We decided to exclude first- and
second-generation publications published before 2010. The tools of the first and second generations
focus on must-be requirements for knowledge management, such as capturing, representing,
and sharing knowledge. In contrast, this study systematizes (semi-)automated classification
and recommendation support that goes beyond. The criterion E3 excludes publications that
did not go through a peer-review process, such as dissertations. After applying E1 to E3, we
checked the fulfillment of the inclusion criterion, which reflects the research question Which
(semi-)automatic classification and recommendation approaches for rationale management exist?
The criterion E4 excludes approaches that cannot support developers during software development,
such as medical decision support approaches. The criterion E5 excludes approaches to improve
management decisions in terms of cost, time, and recommendations of human resources. While
management decisions are important, this study focuses on decisions related to system knowledge
(e. g., requirements and code) to narrow down the topic. The criterion E6 excludes approaches
that solely work with non-decision knowledge artifacts, such as approaches on automatically
identifying requirements in text. It excludes text mining approaches with results different from
decisions and other typical rationale elements. For example, Pan et al. (2021) identify problems,
information, technical discussions, and task progress in chat messages but no decisions. Zhu et al.
(2015) guide developers in deciding where to include logging statements in source code. The
approach is excluded because the input and output are code snippets without rationale. The
criterion E6 also excludes approaches to recommend experts, such as by Bhat et al. (2018). We
are interested in (semi-)automatic approaches that can help to treat intrusiveness and effort. The
criterion E7 excludes approaches that developers perform manually, i. e., without (prototypical)
implementation, such as the approach for analyzing design meetings by Pedraza-García et al.
(2015). The criterion E8 excludes approaches that are early ideas without empirical validation.

Table 4.2.: Exclusion criteria En and inclusion criterion I to identify publications on classification
and recommendation approaches for rationale management.

Criterion Description

E1 publication is published before 2010
E2 publication is not written in English
E3 publication is not peer-reviewed

I publication describes a (semi-)automatic approach to support rationale management with
classification or recommendation

E4 publication describes an approach for an application domain outside software development
E5 publication describes an approach solely focusing on executive decisions
E6 publication describes an approach solely for or resulting in non-decision knowledge artifacts
E7 publication describes a manual approach
E8 publication describes an approach without empirical validation

The backward snowballing on existing literature overviews resulted in 12 publications (#used
in Figure 4.1). Three publications (P21, P34, P29) are referenced in different literature overviews.
The keyword search resulted in 10 publications (March 1, 2023). One publication (P27) is part

58

4.2. Results and Discussion

of both databases. We identified 21 publications in the first search iteration (∑
first). Two

publications (P27, P32) are the results of the literature overviews and keyword search.
We then performed one iteration of forward and backward snowballing on the results to ensure

the completeness of the search, again applying the inclusion and exclusion criteria. We used
Google Scholar to perform forward snowballing. We only included new publications not found
so far, i. e., removed duplicates. The forward and backward snowballing resulted in 17 new
publications (#backward and #forward in Figure 4.1). Two publications (P3, P6) are results
of both forward and backward snowballing. In total, we found 37 relevant publications (∑total).

In the last step, we identified approaches by considering the supported rationale management
activities and the internal functioning of the approaches reported in the publications.

4.2. Results and Discussion

The following sections present and discuss the results of the systematic mapping study. Section 4.2.1
presents the identified approaches and the publications. Section 4.2.2 describes the users’ per-
spective on the approaches. Section 4.2.3 presents the machine-learning techniques and rules
applied to understand the functioning. Section 4.2.4 describes the approach evaluation.

4.2.1. Overview of Approaches and Publications

This section presents the results for the question Which (semi-)automatic classification and
recommendation approaches for rationale management exist? (RQ1.1). We grouped the 37
publications into four approaches supporting rationale management: Automatic text classification,
automatic tracing, decision guidance, and consistency support. Four publications (P4, P29 –
P31) present two approaches, and the other publications present one approach. The following
subsections introduce the approaches and list the publications. Figure 4.2 shows the timeline
of the number of approaches (above) and the extrapolated proportion (below) published per
year. The four publications with two approaches are counted twice. The timeline shows a
shift in research interests over time: In 2011 and 2012, automatic linking was researched, but

0

2

4

6

8

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023

Year of Publication

#P
ub

lic
at

io
ns

Approach

Automatic Linking

Automatic Text Classification

Consistency Support

Decision Guidance

0%

25%

50%

75%

100%

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023

Year of Publication

P
ro

po
rt

io
n

of
 P

ub
lic

at
io

ns

Approach

Automatic Linking

Automatic Text Classification

Consistency Support

Decision Guidance

Figure 4.2.: Number (above) and proportion (below) of approaches published per year.

59

https://scholar.google.de

4. State of the Art: Classification and Recommendation for Rationale Management

not afterward. From 2020 onward, we only found publications on automatic text classification.
Automatic text classification is often machine learning-based (Section 4.2.3). In recent years,
machine learning-based approaches have gained interest due to improved computing power, which
might be the reason for this shift.

Automatic Text Classification

Approaches for automatic text classification aim to identify decision knowledge in informal
discussions to generate extractive summaries of the decisions made. The approaches involve text
mining from various sources such as chat messages, issue tracking systems, and mailing lists.
Table 4.3 lists the 20 relevant primary publications on automatic text classification.

Table 4.3.: Primary publications on automatic text classification.
ID Primary Publication on Automatic Text Classification

P1 R. Alkadhi, T. Laţa, E. Guzman, and B. Bruegge (2017b). “Rationale in Development Chat Messages:
An Exploratory Study”. In: 14th International Conference on Mining Software Repositories. MSR ’17.
Buenos Aires, Argentina: IEEE Press, pp. 436–446. doi: 10.1109/msr.2017.43

P2 R. Alkadhi, M. Nonnenmacher, E. Guzman, and B. Bruegge (2018). “How do developers discuss
rationale?” In: 25th International Conference on Software Analysis, Evolution and Reengineering (SANER).
Campobasso, Italy: IEEE, pp. 357–369. doi: 10.1109/saner.2018.8330223

P3 M. Bhat, K. Shumaiev, A. Biesdorf, U. Hohenstein, and F. Matthes (2017b). “Automatic Extraction
of Design Decisions from Issue Management Systems: A Machine Learning Based Approach”. In: 11th
European Conference on Software Architecture (ECSA’17). Ed. by A. Lopes and R. de Lemos. Cham,
Switzerland: Springer, pp. 138–154. doi: 10.1007/978-3-319-65831-5_10

P4 M. Bhat, C. Tinnes, K. Shumaiev, A. Biesdorf, U. Hohenstein, and F. Matthes (2019). “ADeX: A Tool
for Automatic Curation of Design Decision Knowledge for Architectural Decision Recommendations”. In:
International Conference on Software Architecture Companion (ICSA-C). Hamburg, Germany: IEEE,
pp. 158–161. doi: 10.1109/ICSA-C.2019.00035

P5 M. Dhaouadi, B. J. Oakes, and M. Famelis (2022). “End-to-End Rationale Reconstruction”. In: 37th
IEEE/ACM International Conference on Automated Software Engineering. Rochester, MI, USA: ACM,
pp. 1–5. doi: 10.1145/3551349.3559547

P6 L. Fu, P. Liang, X. Li, and C. Yang (2021). “A Machine Learning Based Ensemble Method for Automatic
Multiclass Classification of Decisions”. In: Evaluation and Assessment in Software Engineering. Trondheim,
Norway: ACM, pp. 40–49. doi: 10.1145/3463274.3463325

P7 A. Josephs, F. Gilson, and M. Galster (2022). “Towards Automatic Classification of Design Decisions
from Developer Conversations”. In: 19th International Conference on Software Architecture Companion
(ICSA-C). Honolulu, HI, USA: IEEE, pp. 10–14. doi: 10.1109/ICSA-C54293.2022.00009

P8 Z. Kurtanović and W. Maalej (2017). “Mining User Rationale from Software Reviews”. In: 25th IEEE
International Requirements Engineering Conference (RE). ed. by A. Moeira and J. Araújo. Lisbon,
Portugal: IEEE, pp. 53–62. doi: 10.1109/RE.2017.86

P9 Z. Kurtanović and W. Maalej (2018). “On user rationale in software engineering”. In: 23.3, pp. 357–379.
doi: 10.1007/s00766-018-0293-2

P10 M. Lester, M. Guerrero, and J. Burge (2020). “Using evolutionary algorithms to select text features for
mining design rationale”. In: Artificial Intelligence for Engineering Design, Analysis and Manufacturing
34.2, pp. 132–146. doi: 10.1017/S0890060420000037

P11 Y. Liang, Y. Liu, C. K. Kwong, and W. B. Lee (2012). “Learning the “Whys”: Discovering design rationale
using text mining — An algorithm perspective”. In: Computer-Aided Design 44.10, pp. 916–930. doi:
10.1016/j.cad.2011.08.002

P12 X. Li, P. Liang, and Z. Li (2020). “Automatic Identification of Decisions from the Hibernate Developer
Mailing List”. In: Evaluation and Assessment in Software Engineering. December. Trondheim, Norway:
ACM, pp. 51–60. doi: 10.1145/3383219.3383225

P13 C. López, V. Codocedo, H. Astudillo, and L. M. Cysneiros (2012). “Bridging the gap between software
architecture rationale formalisms and actual architecture documents: An ontology-driven approach”. In:
Science of Computer Programming 77.1, pp. 66–80. doi: doi.org/10.1016/j.scico.2010.06.009

Continued on next page

60

https://doi.org/10.1109/msr.2017.43
https://doi.org/10.1109/saner.2018.8330223
https://doi.org/10.1007/978-3-319-65831-5_10
https://doi.org/10.1109/ICSA-C.2019.00035
https://doi.org/10.1145/3551349.3559547
https://doi.org/10.1145/3463274.3463325
https://doi.org/10.1109/ICSA-C54293.2022.00009
https://doi.org/10.1109/RE.2017.86
https://doi.org/10.1007/s00766-018-0293-2
https://doi.org/10.1017/S0890060420000037
https://doi.org/10.1016/j.cad.2011.08.002
https://doi.org/10.1145/3383219.3383225
https://doi.org/doi.org/10.1016/j.scico.2010.06.009

4.2. Results and Discussion

ID Primary Publication on Automatic Text Classification

P14 B. Rogers, J. Gung, Y. Qiao, and J. E. Burge (2012). “Exploring techniques for rationale extraction from
existing documents”. In: 2012 34th International Conference on Software Engineering (ICSE). Zurich,
Switzerland: IEEE, pp. 1313–1316. doi: 10.1109/ICSE.2012.6227091

P15 B. Rogers, Y. Qiao, J. Gung, T. Mathur, and J. E. Burge (2015). “Using Text Mining Techniques to
Extract Rationale from Existing Documentation”. In: Design Computing and Cognition ’14. Springer,
pp. 457–474. doi: 10.1007/978-3-319-14956-1_26

P16 B. Rogers, C. Justice, T. Mathur, and J. E. Burge (2017). “Generalizability of Document Features
for Identifying Rationale”. In: Design Computing and Cognition ’16. Cham: Springer International
Publishing, pp. 633–651. doi: 10.1007/978-3-319-44989-0_34

P17 A. Shahbazian, Y. Kyu Lee, D. Le, Y. Brun, and N. Medvidovic (2018). “Recovering Architectural Design
Decisions”. In: International Conference on Software Architecture (ICSA). Seattle, WA: IEEE, pp. 95–104.
doi: 10.1109/ICSA.2018.00019

P18 P. N. Sharma, B. T. R. Savarimuthu, and N. Stanger (2021). “Extracting Rationale for Open Source
Software Development Decisions — A Study of Python Email Archives”. In: 43rd International Conference
on Software Engineering (ICSE). Madrid, Spain: IEEE, pp. 1008–1019. doi: 10.1109/ICSE43902.2021.
00095

P19 P. N. Sharma, B. T. R. Savarimuthu, and N. Stanger (2023). “How are decisions made in open source
software communities? — Uncovering rationale from python email repositories”. In: Journal of Software:
Evolution and Process November 2022, pp. 1–29. doi: 10.1002/smr.2526

P20 L. Shi, Z. Jiang, Y. Yang, X. Chen, Y. Zhang, F. Mu, H. Jiang, and Q. Wang (2021). “ISPY: Automatic
Issue-Solution Pair Extraction from Community Live Chats”. In: 36th IEEE/ACM International Confer-
ence on Automated Software Engineering, ASE 2021, pp. 142–154. doi: 10.1109/ASE51524.2021.9678894

Automatic Linking

Tracing between decisions and other artifacts, such as requirements, architecture, and imple-
mentation, is essential for rationale exploitation. Approaches for automatic linking, also called
automatic tracing or link recommendation, automate the manual linking between decisions and
other artifacts. Table 4.5 lists the two relevant primary publications on automatic linking.

Table 4.4.: Primary publications on automatic linking.
ID Primary Publication

P21 G. Buchgeher and R. Weinreich (2011). “Automatic Tracing of Decisions to Architecture and Implementa-
tion”. In: Ninth Working IEEE/IFIP Conference on Software Architecture (WICSA). Boulder, CO, USA:
IEEE, pp. 46–55. doi: 10.1109/WICSA.2011.16

P22 C. Miesbauer and R. Weinreich (2012). “Capturing and Maintaining Architectural Knowledge Using
Context Information”. In: Joint Working IEEE/IFIP Conference on Software Architecture and European
Conference on Software Architecture (WICSA/ECSA). Helsinki, Finland: IEEE, pp. 206–210. doi:
10.1109/WICSA-ECSA.212.30

Decision Guidance

Decision guidance approaches support software practitioners in decision making using a knowledge
base. The knowledge base contains general decision knowledge, such as regarding design patterns,
or reusable decision models generated from other projects. Decision guidance approaches
distinguish between the problem and solution space. The problem space anticipates decisions
to be made along with their solution options for a domain. For example, the problem space
of the technical domain of cloud computing collects decision problems and solution options for
migrating applications to the cloud. The solution space contains the decision problems, decisions,
and related decision knowledge relevant to a specific project. The solution space is a tailored

61

https://doi.org/10.1109/ICSE.2012.6227091
https://doi.org/10.1007/978-3-319-14956-1_26
https://doi.org/10.1007/978-3-319-44989-0_34
https://doi.org/10.1109/ICSA.2018.00019
https://doi.org/10.1109/ICSE43902.2021.00095
https://doi.org/10.1109/ICSE43902.2021.00095
https://doi.org/10.1002/smr.2526
https://doi.org/10.1109/ASE51524.2021.9678894
https://doi.org/10.1109/WICSA.2011.16
https://doi.org/10.1109/WICSA-ECSA.212.30

4. State of the Art: Classification and Recommendation for Rationale Management

problem space, i. e., trimmed down to the decision knowledge for the project (Zimmermann et al.,
2015). Thirteen primary publications present a decision guidance approach (Table 4.5).

Table 4.5.: Primary publications on decision guidance.
ID Primary Publication on Decision Guidance

P23 M. Bhat, K. Shumaiev, A. Biesdorf, M. Hassel, U. Hohenstein, and F. Matthes (2017a). “An ontology-
based approach for software architecture recommendations”. In: Twenty-third Americas Conference on
Information Systems (AMCIS). Boston, Massachusetts, USA, p. 10

P4 M. Bhat, C. Tinnes, K. Shumaiev, A. Biesdorf, U. Hohenstein, and F. Matthes (2019). “ADeX: A Tool
for Automatic Curation of Design Decision Knowledge for Architectural Decision Recommendations”. In:
International Conference on Software Architecture Companion (ICSA-C). Hamburg, Germany: IEEE,
pp. 158–161. doi: 10.1109/ICSA-C.2019.00035

P24 K. Brandner and R. Weinreich (2019). “A Recommender System for Software Architecture Decision
Making”. In: 13th European Conference on Software Architecture (ECSA). vol. 2. Paris, France: ACM,
pp. 22–25. doi: 10.1145/3344948.3344959

P25 Z. Durdik and R. H. Reussner (2013). “On the Appropriate Rationale for Using Design Patterns and
Pattern Documentation”. In: 9th International ACM SIGSOFT Conference on the Quality of Software
Architectures (QoSA). Vancouver, BC, Canada: ACM, pp. 107–116. doi: 10.1145/2465478.2465491

P26 P. Gaubatz, I. Lytra, and U. Zdun (2015). “Automatic Enforcement of Constraints in Real-time Col-
laborative Architectural Decision Making”. In: Journal of Systems and Software 103, pp. 128–149. doi:
10.1016/j.jss.2015.01.056

P27 S. Gerdes, M. Soliman, and M. Riebisch (2015). “Decision Buddy: Tool Support for Constraint-Based
Design Decisions during System Evolution”. In: 1st International Workshop on Future of Software
Architecture Design Assistants (FoSADA). Montreal, QC, Canada: ACM, pp. 13–18. doi: 10.1145/
2751491.2751495

P28 S. Haselböck, R. Weinreich, and G. Buchgeher (2019). “Using Decision Models for Documenting Mi-
croservice Architectures: A Student Experiment and Focus Group Study”. In: International Conference
on Service-Oriented System Engineering (SOSE). San Francisco, CA, USA: IEEE, pp. 37–3709. doi:
10.1109/SOSE.2019.00016

P29 I. Lytra, H. Tran, and U. Zdun (2013). “Supporting Consistency between Architectural Design Decisions
and Component Models through Reusable Architectural Knowledge Transformations”. In: Software
Architecture: 7th European Conference, ECSA 2013, Montpellier, France, July 1-5, 2013, Proceedings.
Ed. by K. Drira. Vol. LNCS 7957. Lecture Notes in Computer Science. Montpellier, France: Springer,
pp. 224–239. doi: 10.1007/978-3-642-39031-9_20

P30 I. Lytra and U. Zdun (2014). “Inconsistency Management between Architectural Decisions and Designs
Using Constraints and Model Fixes”. In: 23rd Australian Software Engineering Conference. Milsons Point,
NSW, Australia: IEEE, pp. 230–239. doi: 10.1109/ASWEC.2014.33

P31 I. Lytra, H. Tran, and U. Zdun (2015). “Harmonizing Architectural Decisions with Component View
Models using Reusable Architectural Knowledge Transformations and Constraints”. In: Future Generation
Computer Systems 47, pp. 80–96. doi: 10.1016/j.future.2014.11.010

P32 I. C. Lopes Silva, P. H. S. Brito, B. F. dos S. Neto, E. Costa, and A. A. Silva (2015). “A decision-making
tool to support architectural designs based on quality attributes”. In: 30th Annual ACM Symposium on
Applied Computing (SAC). Salamanca, Spain: ACM, pp. 1457–1463. doi: 10.1145/2695664.2695928

P33 W. Wang and J. E. Burge (2010). “Using Rationale to Support Pattern-Based Architectural Design”.
In: ICSE Workshop on Sharing and Reusing Architectural Knowledge - SHARK ’10. Cape Town, South
Africa: ACM, pp. 1–8. doi: 10.1145/1833335.1833336

P34 O. Zimmermann, L. Wegmann, H. Koziolek, and T. Goldschmidt (2015). “Architectural Decision
Guidance across Projects: Problem Space Modeling, Decision Backlog Management and Cloud Computing
Knowledge”. In: 12th Working IEEE/IFIP Conference on Software Architecture (WICSA ’15). Ed. by L.
Bass, P. Lago, and P. Kruchten. Montréal, Québec, Canada: IEEE, pp. 85–94. doi: 10.1109/WICSA.2015.29

Consistency Support

Approaches for consistency support help software practitioners in performing consistent changes
and maintaining consistent documentation. They either support the consistency among decisions

62

https://doi.org/10.1109/ICSA-C.2019.00035
https://doi.org/10.1145/3344948.3344959
https://doi.org/10.1145/2465478.2465491
https://doi.org/10.1016/j.jss.2015.01.056
https://doi.org/10.1145/2751491.2751495
https://doi.org/10.1145/2751491.2751495
https://doi.org/10.1109/SOSE.2019.00016
https://doi.org/10.1007/978-3-642-39031-9_20
https://doi.org/10.1109/ASWEC.2014.33
https://doi.org/10.1016/j.future.2014.11.010
https://doi.org/10.1145/2695664.2695928
https://doi.org/10.1145/1833335.1833336
https://doi.org/10.1109/WICSA.2015.29

4.2. Results and Discussion

(P35) or between decisions and other artifacts (P29, P30, P31, P36, P37). The linking (integration)
and visualization of decision knowledge with other artifacts help to estimate the impact of changes
and to detect inconsistency (Cleland-Huang et al., 2013; Manteuffel et al., 2015). The approaches
in this section go beyond the mere integration of decisions with other artifacts and knowledge
visualization. Table 4.6 lists the six relevant primary publications on consistency support.

Table 4.6.: Primary publications on consistency support.
ID Primary Publication on Consistency Support

P35 C. Carrillo and R. Capilla (2018). “Ripple Effect to Evaluate the Impact of Changes in Architectural
Design Decisions”. In: 12th European Conference on Software Architecture (ECSA’18). Madrid, Spain:
ACM, pp. 1–8. doi: 10.1145/3241403.3241446

P36 I. Lytra, H. Tran, and U. Zdun (2012). “Constraint-Based Consistency Checking between Design
Decisions and Component Models for Supporting Software Architecture Evolution”. In: 16th European
Conference on Software Maintenance and Reengineering. Szeged, Hungary: IEEE, pp. 287–296. doi:
10.1109/CSMR.2012.36

P29 I. Lytra, H. Tran, and U. Zdun (2013). “Supporting Consistency between Architectural Design Decisions
and Component Models through Reusable Architectural Knowledge Transformations”. In: Software
Architecture: 7th European Conference, ECSA 2013, Montpellier, France, July 1-5, 2013, Proceedings.
Ed. by K. Drira. Vol. LNCS 7957. Lecture Notes in Computer Science. Montpellier, France: Springer,
pp. 224–239. doi: 10.1007/978-3-642-39031-9_20

P30 I. Lytra and U. Zdun (2014). “Inconsistency Management between Architectural Decisions and Designs
Using Constraints and Model Fixes”. In: 23rd Australian Software Engineering Conference. Milsons Point,
NSW, Australia: IEEE, pp. 230–239. doi: 10.1109/ASWEC.2014.33

P31 I. Lytra, H. Tran, and U. Zdun (2015). “Harmonizing Architectural Decisions with Component View
Models using Reusable Architectural Knowledge Transformations and Constraints”. In: Future Generation
Computer Systems 47, pp. 80–96. doi: 10.1016/j.future.2014.11.010

P37 L. Zhang, Y. Sun, H. Song, F. Chauvel, and H. Mei (2011). “Detecting Architecture Erosion by Design
Decision of Architectural Pattern”. In: 23rd International Conference on Software Engineering and
Knowledge Engineering. Skokie, IL, USA: Knowledge Systems Institute Graduate School, pp. 758–763

4.2.2. Support for Software Practitioners

This section presents the results for the question How do the approaches support software
practitioners? (RQ1.2). First, it describes the treatment of rational management problems and
the support for activities. Second, it presents the tool support. Third, it discusses the results.

Rationale Management Problems Treated and Activities Supported

This section presents the results on Which rationale management problems are treated? and
Which rationale management activities are supported? Table 4.7 shows the problems treated and
the activities supported by the approaches. A checkmark ✓ indicates a focus, whereas a cross ✗

indicates no focus. A checkmark in brackets (✓) indicates that some publications have a focus,
but not all. All the approaches treat the problem of intrusiveness and effort since they aim to
reduce developers’ manual work. Still, the intrusiveness depends on whether developers can use
the tool support within their workflows, as discussed in the next section. All the approaches treat
the problem of a high amount of distributed knowledge since they support rationale management
activities that become demanding or exhausting when the amount of knowledge is increased. All
the approaches treat the problem of low documentation quality to some extent by completing the
documentation. In particular, consistency support helps maintain consistent documentation.

Decision making is supported by the decision guidance approach and—to some extent—by
consistency support for deciding whether changes are integrated based on change impact analysis.
Rationale documentation is supported by decision guidance through the creation of the solution

63

https://doi.org/10.1145/3241403.3241446
https://doi.org/10.1109/CSMR.2012.36
https://doi.org/10.1007/978-3-642-39031-9_20
https://doi.org/10.1109/ASWEC.2014.33
https://doi.org/10.1016/j.future.2014.11.010

4. State of the Art: Classification and Recommendation for Rationale Management

Table 4.7.: Rationale management problems treated and activities supported by the approaches.
Approach Automatic

Text
Classification

Automatic
Linking

Decision
Guidance

Consistency
Support

Rationale Management Problems

Intrusiveness and effort (✓) (✓) (✓) (✓)
High amount of distributed knowledge ✓ ✓ ✓ ✓

Low documentation quality (✓) (✓) (✓) ✓

Rationale Management Activities

Decision making ✗ ✗ ✓ (✓)
Rationale documentation (✓) (✓) ✓ ✗

Rationale exploitation ✓ ✓ (✓) ✗

Rationale quality assurance (✓) (✓) (✓) ✓

space model. The automatic text classification and linking approaches could help to document
new decision knowledge elements and links during development. However, automatic text
classification and linking are mainly intended for retrospective rationale exploitation in the
publications. Decision guidance supports exploiting external knowledge from other projects or
knowledge bases. The approaches support rationale quality assurance by treating the problem of
low documentation quality.

Tool Integration

This section presents the results on Are the approaches supported with tools, and how do the tools
integrate into the process? Of the 37 publications, 12 (32.4 %) present plug-ins for commonly
used development tools (Figure 4.3). The plug-ins are less intrusive than separate tools since
they directly integrate into the development process. Most publications present Eclipse plug-ins
(Table 4.8). Only two publications present extensions for other tools, namely for Slack (P7) and
for the Enterprise Architect (P34).

Table 4.8.: Approach implementation into tools. Publications presenting the same tool are
comma-separated. Publications presenting different tools are semicolon-separated.

Automatic Text
Classification

Automatic
Linking

Decision Guidance Consistency
Support

Plug-Ins for
Commonly
Used Tools

Slack: P7 Eclipse:
P21, P22

Eclipse: P25; P29, P30,
P31 (ADvISE); P33
(SEURAT_Architect);
Enterprise Architect:
P34 (ADMentor)

Eclipse: P36, P29,
P30, P31 (ADvISE);
P37

Separate
Tools

P1, P2 (A-REACT); P3,
P4 (ADeX); P5; P6; P8,
P9; P10; P11; P12; P13
(TReX); P14, P15, P16;
P17 (RecovAr); P18, P19
(Rationale Miner); P20

P23, P4 (ADeX); P24;
P26 (CoCoADvISE); P27
(Decision Buddy); P28;
P32

P35

Of the 37 publications, 26 (68.4 %) publications present separate (research) tools (Table 4.8).
Note that separate tools can have interfaces to commonly used development tools, for example,

64

4.2. Results and Discussion

ADeX in publication P4 by Bhat et al. (2019). ADeX offers the SyncPipe component to extract
data from various systems, such as Jira, GitHub, Microsoft Project, and Enterprise Architect.
The document-classifier component of ADeX offers automatic text classification.

Most existing approaches apply the automatic classification retrospectively on a ground truth
that the researchers created. Only a few approaches integrate automatic text classification into
tools and workflows for software development. As part of their future work, Rogers et al. (2015)
and Lester et al. (2020), i. e., the authors of P15 and P10, plan to integrate text classification into
existing knowledge management tools. Lester et al. (2020) work on text classification integration
into the C_SEURAT tool for Collaborative Software Engineering Using Rationale. Rogers et al.
(2015) aim to integrate automatic text classification into a wiki system.

Discussion: How do the approaches support software practitioners?

The approaches help software practitioners to perform rationale management activities and
overcome problems. However, only a few approaches are implemented as plug-ins for current
development tools. Most tools are separate, requiring software practitioners to use additional tools
and making them intrusive. The results indicate a research gap in developing and investigating
classification and recommendation support for rationale management that directly integrates into
the tools used by software practitioners, such as issue tracking systems, version control systems,
wikis, chat systems, and integrated development environments (as identified in Chapter 3).

4.2.3. Machine Learning Techniques and Rules Applied in the Approaches
This section presents the results for the question How do the approaches internally work? (RQ1.3).
Figure 4.3 shows the number of publications per approach fulfilling a synthesis criterion. The
publications P4, P29 – P31 are counted twice since they contribute to two approaches.

While 16 (80 %) of the publications on automatic text classification contribute a machine
learning-based approach, all approaches for automatic linking, decision guidance, and consistency
support are rule-based (Figure 4.3). Machine learning-based approaches apply machine-learning
algorithms to preprocessed data with classification features. All identified approaches are super-
vised and, thus, need a labeled ground truth for the learning. The preprocessing and extraction
of classification features result in vectors and can involve the following techniques: Sentence
splitting, tokenization, stop-word removal, sentence length filtering, stemming, lemmatization,
term-frequency inverse document frequency, Word2Vec, part-of-speech tagging, bag-of-words,
skip-gram, n-grams, or data balancing. Algorithms applied are, for instance, Naïve Bayes,
Logistic Regression, Support Vector Machine, Decision Tree, K-Nearest Neighbors, Random
Forests, or Convolutional Neural Networks. The approaches in P7 and P20 apply the pre-trained
machine-learning technique Bidirectional Encoder Representations from Transformers (BERT).

Of the 41 approaches, 25 (61 %) are rule-based (Figure 4.3). Rule-based automatic text
classification is presented in P13, P17, P18, P19. The automatic text classification approach in
P13 uses ontologies and text mining techniques to recover rationale from plain-text documents.
The RecovAr approach in P17 maps architectural changes to tickets in Jira to extract the
decisions. The Rationale Miner in P18 and P19 uses language term patterns containing specific
words, such as idea or proposal, proximity-based heuristics based on the dates and location of
sentences in paragraphs, and other heuristics. The automatic linking approach in P21 creates
interaction logs by observing developers during architecture design and implementation work
and determines potential links to currently active decisions. The automatic linking approach in
P22 calculates an indicator for the relation of two architectural elements using various metrics
(called context information providers), such as the textual similarity between two elements,
documentation time, author, and existing trace links. The decision guidance approach in P23
and P4 queries the external knowledge base DBPedia to retrieve alternatives for decisions and to

65

4. State of the Art: Classification and Recommendation for Rationale Management

20

16

20

1

1

4

13

13

8

4

7

2

2

2

1

6

6

5

5

Evaluation of User Acceptance

Evaluation of Effectiveness or Efficiency

Rule-based

Machine Learning-based

Plug-In for Commonly Used Tool

#Publications

A
ut

om
at

ic
 T

ex
t C

la
ss

ifi
ca

tio
n

A
ut

om
at

ic
 L

in
ki

ng

D
ec

is
io

n
G

ui
da

nc
e

C
on

si
st

en
cy

 S
up

po
rt

Figure 4.3.: Number of publications per approach (x-axis) and synthesis criterion (y-axis).

guide their implementation. The decision guidance approaches in P25, P26, and P29 – P31 apply
questionnaires based on reusable decision models to guide design decisions. For example, the
ADvISE tool assists architectural decision making by presenting a set of questions along with
potential options for design issues. The approach in P29 – P31 transforms the decisions selected
through the questionnaire into an architecture component model. The consistency support in P35
estimates the ripple effect, i. e., how a change in a design decision may affect other decisions by
traversing and weighing dependencies between decisions by their type. The consistency support
in P29 – P31, P36, and P37 maps decisions onto components and uses constraints for consistency
checking between architectural design decisions and component models.

The publication P4 presents a machine learning-based approach for automatic text classification
and a rule-based decision guidance approach.

4.2.4. Evaluation of Approaches

This section presents the results for the question Which evaluation aspects are investigated?
(RQ1.4). The researchers of the publications validated various aspects, such as scalability or
reusability. This study investigates the following aspects defined in the Quality in Use and
Technology Acceptance models (Section 1.3): Feasibility defines whether stakeholders can apply
the treatment. Effectiveness defines how well the approach can achieve a goal. Efficiency defines
how efficiently the approach can achieve a goal (ISO/IEC 25010, 2011). User acceptance expresses
the users’ attitude toward the approach (Davis et al., 1989; Marangunić and Granić, 2015).

Of the 37 publications, five (13.5 %) are only validated through the description of illustrative
examples, e. g., of the tool usage, to demonstrate the feasibility (Table 4.9).

66

4.3. Threats to Validity

Table 4.9.: Evaluation aspects investigated in the primary studies per approach.
Automatic Text
Classification

Automatic
Linking

Decision
Guidance

Consistency
Support

Feasibility
Only

P22 P27; P32; P33 P37

Effectiveness
or Efficiency

P1, P2; P3, P4; P5; P6; P7; P8,
P9; P10; P11; P12; P13; P14,
P15, P16; P17; P18, P19; P20

P23, P4; P24; P26;
P28; P29, P30, P31

P35; P36, P29,
P30, P31

User
Acceptance

P4 P21 P4; P25; P28; P34

The remaining 32 (86.5 %) publications provide a more thorough evaluation. Five (13.5 %)
of the 37 publications investigate the user acceptance, e. g., by implementing the approach
in a case study with practitioners and interviewing or surveying their attitude (Figure 4.3,
Table 4.9). Of the 37 publications, 29 (78.4 %) investigate the effectiveness, in terms of accuracy
or completeness, or the efficiency in terms of time spent (Figure 4.3, Table 4.9). Various
publications on automatic text classification measure precision, recall, and F-scores for the
effectiveness evaluation, synthesized later in the thesis in Section 10.3. In other publications, the
researchers compare the results (effectiveness) or time spent (efficiency) for a development task
that practitioners using the approach achieved with those of a control group. Two publications
P4 and P28 validate both user acceptance and effectiveness or efficiency.

The results reveal a research gap in validating the user acceptance of the approaches. In
particular, only one of the 20 publications on automatic text classification (P4) reports on a user
study, but the description of results is very brief.

4.3. Threats to Validity

This section discusses three validity criteria of secondary studies (Ampatzoglou et al., 2020):
Study selection validity concerns the publication search and selection with criteria. A threat is

to miss out on relevant publications. For the initial search, we performed backward snowballing
on existing literature overviews of rationale management approaches and queried two online
databases. To find adequate publications in the online databases, we constructed the search
string systematically considering the terms in the research question. However, the study defines
recommendation approaches broadly, which might not be reflected in the search string. The study
also includes approaches that guide and support software developers, e. g., through automatic
linking and change impact analysis. While the two online databases ACM and IEEE Xplore
are commonly used in secondary studies in software engineering, we could have queried more
databases, such as Springer, Scopus, and Science Direct. We performed forward and backward
snowballing on the initial results to mitigate the threat of missing relevant publications.

Data validity concerns data extraction and analysis. A threat is that the results of the
systematic mapping study might be biased from inaccurate results reported in the primary
studies. To mitigate the threat of invalid primary studies, we only included peer-reviewed
publications and publications that present an empirical validation of their approach.

Research validity concerns the study design. The thesis author conducted the publication
search, selection, data extraction, and analysis, and the supervisors reviewed the procedure. A
threat is that the study might not be repeatable because other researchers might select other
publications as relevant. To support repeatability and make the search and selection procedure
transparent, Appendix A contains a protocol with the found and excluded publications.

67

4. State of the Art: Classification and Recommendation for Rationale Management

4.4. Conclusion
This chapter presented a systematic mapping study to investigate the state of the art of
(semi-)automatic rationale management support with classification and recommendation. It
contributed an overview of four approaches for automatic text classification, automatic linking,
decision guidance, and consistency support.

The study identified the following future research directions for primary studies: 1) More
classification and recommendation approaches for rationale management should be integrated
into easily usable tools for software practitioners, e. g., as plug-ins for standard development
tools, such as issue tracking systems, version control systems, wikis, chat systems, and integrated
development environments. 2) Different rule-based and machine learning-based techniques could
be combined. 3) The approach evaluation should be done from different perspectives; user
acceptance should be studied. We argue that the approaches can only be adopted in practice if
researchers integrate them into tools for practitioners and if they validate user acceptance.

The remainder of the thesis builds on the study results and addresses the identified research
directions. ConDec’s recommendation systems implement the approaches: Automatic text
classification (Section 7.6.8), decision guidance (Section 7.6.6), link recommendation (Section 7.6.7)
implementing automatic linking, and change impact analysis (Section 7.6.5) implementing
consistency support. The contribution of ConDec is the integration of the approaches into
the issue tracking system so that software practitioners can easily use them in CSE. The
thesis validates ConDec from different perspectives. Chapter 10 investigates the effectiveness of
automatic text classification, and Chapter 11 validates the user acceptance of the approaches
implemented into ConDec.

This study gave an overview of the existing approaches. A follow-up systematic literature
review could further detail the approaches’ internal functioning and evaluation in the future.
Section 10.3 will synthesize automatic text classification in more detail.

68

Part III.

Treatment Design

69

Chapter 5
Overview of Continuous Rationale Management
and its Support with ConDec

“Rationale models help us deal with change. Unfortunately,
rationale is itself subject to change when we revise decisions.”

—Bruegge and Dutoit, 2010

This part of the thesis describes the realization of the technical research goal: Design a life
cycle model and tool support for continuous rationale management that treats the problems of
1) intrusiveness and effort, 2) high amount of distributed knowledge, and 3) low documentation
quality. The goal is to support a) collaborative, incremental, and rational decision making,
b) documentation, c) exploitation, and d) quality assurance of decision knowledge. This chapter
presents an overview of the treatment design. The treatment consists of the Continuous Rationale
Management (ConRat) life cycle model extension (detailed in Chapter 6) and the ConDec plug-ins
that support ConRat (detailed in Chapter 7).

Section 5.1 describes a scenario where software developers perform ConRat and use the ConDec
plug-ins. It illustrates the perspective of practitioners, who are the main stakeholders of the
thesis. The scenario provides a first overview of the integration of ConRat and ConDec into
existing workflows and tools. Section 5.2 provides an overview of the design of ConRat and
ConDec. It refines the technical research goal into sub-goals and presents decision problems and
decisions in the design of ConRat and ConDec.

Parts of the treatment design were published: A first version of the ConRat knowledge model
and the integration of rationale management into short-cycled CSE practices was published in
Kleebaum et al. (2018a; 2018b; 2019d). An overview of the ConDec plug-ins and their application
for rationale management was published in Kleebaum et al. (2019c; 2020; 2021a). Ideas for
visualizing decision and usage knowledge were published in Johanssen et al. (2017b). The
ConDec views and their features were published in Kleebaum et al. (2021c). The automatic text
classification was published in Kleebaum et al. (2021b).

5.1. Usage of ConDec to Support Continuous Rationale Management
This section describes a scenario to illustrate how software practitioners in the roles of developers
and requirements engineers perform ConRat and use the ConDec plug-ins. In Figure 5.1, the
requirements engineer creates the user story As a user, I want to choose a password so that I
can securely log in to the system and captures the issue whether passwords should pass a security
check as well as the decision to integrate a library for it. The requirements engineer creates

71

5. Overview of Continuous Rationale Management and its Support with ConDec

1

2

3

4

Figure 5.1.: Left: Decision knowledge captured in the description of a Jira user story.
Right: The user story 1 , development tasks 2 , 3 , and decision knowledge visualized
as a tree. The summary of the unsolved issue 4 is highlighted with red font. The
knowledge tree is interactive, e. g., via a context menu and drag & drop possibility.

the following development tasks that split the requirement: Enable to persist passwords and
Implement password strength checking. The developer assigned to the first development task

captures the issue How to encrypt the password? in a comment. The developers discuss the
issue collaboratively during their work. ConDec provides various means to support the decision
making: ConDec automatically integrates this issue into the knowledge graph, offering multiple
visualizations. For instance, the developers see the knowledge tree, including the unsolved issue
(Figure 5.1- 4), when working on the user story, a related development task, or the linked code.
ConDec also provides a rationale backlog that lists unsolved issues to support the discussion.
During a meeting, the requirements engineer and developers spot unsolved issues from the
meeting agenda (Figure 5.2, left). They orally decide to hash passwords with the SHA1 algorithm
but do not document it. The developer implements the first development task on a feature

Figure 5.2.: Left: Macro to create a meeting agenda as part of the ConDec Confluence plug-in.
Right: Merge check for fulfilling the definition of done (decision coverage and
intra-rationale completeness) in the ConDec Bitbucket plug-in.

branch. The branch cannot be merged to the mainline until the issue is solved (Figure 5.2, right).
The developer makes a commit on this branch with the decision Encrypt the password with
the SHA1 algorithm being part of the commit message (Figure 5.3, left). The text classifier
automatically identifies the decision in the commit message. Since the branch and the commits
are linked to the development task, ConDec automatically relates the decision to the issue. The
issue is marked as solved, and the red highlighting is removed (Figure 5.3, right). The developer
can merge the branch back to the mainline, as the documentation is complete in that both the
issue and the decision are documented, i. e., it fulfills the definition of done.

72

5.2. High-Level Decision Problems and Decisions

developer@conrat /home/dev0/myproject (CONDECDEMO-42.pw.storage)
$ git commit –a
Encrypt the password with the SHA1 algorithm

Figure 5.3.: Left: Commit message containing a design decision. The developer works on a
branch related to a development task.
Right: Subtree of the knowledge tree in Figure 5.1 with the design decision as a
new leaf node. The formerly open issue is now solved.

5.2. High-Level Decision Problems and Decisions

This section refines the technical research goal into three sub-goals treating the three rationale
management problems intrusiveness and effort, high amount of distributed knowledge, and low
documentation quality. It gives an overview of issues for the design of ConRat and ConDec,
the key decisions, and solution alternatives if considered. The following chapters detail and
explain the decisions. Figure 5.4 depicts the rationale management problems and the treatment
through the ConRat life cycle model extension and the ConDec plug-ins. The ConRat life cycle
model extension and the ConDec plug-ins are in a task and support relationship. ConRat defines
the rationale management activities, i. e., tasks, that the developers perform. ConDec supports
these tasks through tool features. The thesis uses the notations of Task and Object-oriented
Requirements Engineering to specify tasks and the ConDec support (Paech and Kohler, 2004).

Rationale-Management Problems

Quality Attributes

ConRat Life Cycle Model Extension
ConDec Plug-Ins

Knowledge Model

Extended Rugby Life Cycle Model

Intrusiveness and Effort

High Amount of Distributed Knowledge

Low Documentation Quality

Accessibility, Traceability

Completeness

Consistency, Correctness, Up-to-Dateness

Uniqueness

Information Organization, Format

Spelling, Grammar, Readability, Accuracy

Trustworthiness, Author-Related Aspects

Rationale in Distributed Documentation Locations

Requirements, Code, and Other Artifacts with Trace Links

linked to

CSE Life Cycle Model

Rugby Rationale Management Decorator

Metric

Intra-Rationale Completeness Decision Coverage

Definition of Donesets
threshold Rationale Backlogshows

violations

Rationale Management Activities Integrated into Existing Workflows

fills
and

grooms

Rationale Documentation

Knowledge Visualization

Filtering and Searching

Nudging and Recommendations

Rationale Backlog

Knowledge Dashboard

Decision Grouping

Stand-Up Table with Rationale

Release Notes with Rationale

works with
due to violation of

treats

implement
or

support

Figure 5.4.: Rationale management problems, quality attributes for software documentation (Zhi
et al., 2015), and key decisions of the treatment through ConRat and the ConDec
plug-ins (UML package diagram).

The ConRat life cycle model extension directly treats the rationale management problems.
The ConDec plug-ins indirectly treat the problems by supporting ConRat or by implementing
important concepts, such as metrics, a definition of done for knowledge documentation, and the
rationale backlog. A high-level decision was to use the Rugby CSE life cycle model (Section 2.1.3)
as the basis for the extension with explicit rationale management. Rugby is a CSE life cycle

73

5. Overview of Continuous Rationale Management and its Support with ConDec

model that models the workflows by the CSE roles. In Figure 5.4, the decision to extend Rugby
is modeled by the usage of the decorator design pattern in the package Extended Rugby Life
Cycle Model. The decorator design pattern consists of the abstract class CSE Life Cycle Model
extended by Rugby. ConRat tailors Rugby by adding rationale management activities, which
are modeled by the abstract class Rationale Management Decorator. The extending classes of
Rationale Management Decorator are concrete decorators.

The following sections describe how ConRat and ConDec treat the three rationale management
problems, outlined in Table 5.1, and detail further entities and relationships of Figure 5.4.
Section 5.2.1 presents the treatment of the problem of intrusiveness and effort. Section 5.2.2
presents the treatment of the high amount of distributed knowledge. Section 5.2.3 presents the
treatment of the low documentation quality.

Table 5.1.: Rationale management problems and their treatment through ConRat life cycle model
extension and ConDec plug-ins.

Problem Treatment through ConRat and ConDec

Intrusiveness
and effort

problem

ConRat: Rationale Management Activities Integrated into Existing Workflows
ConDec: Integration into existing tools as ConDec Plug-Ins, support for easy Rationale
Documentation in various distributed documentation locations, access to Knowledge
Visualization from various tools and artifacts, Nudging and Recommendations (auto-
matic text classification, summarization of source code changes), support for easy
exploitation, e. g., in Stand-Up Table With Rationale and Release Notes With Rationale

High amount
of distributed

knowledge
problem

ConRat: Knowledge Model with Rationale in Distributed Documentation Locations
and Requirements, Code, and Other Artifacts with Trace Links
ConDec: Instantiation of knowledge model as a knowledge graph, interactive Knowl-
edge Visualization integrated into existing tools and accessible from various artifacts,
Filtering and Searching (transitive linking), Decision Grouping

Low documen-
tation quality

problem

ConRat: Operationalization of knowledge quality through Decision Coverage and
Intra-Rationale Completeness metrics, Definition of Done, Rationale Backlog
ConDec: Implementation of metrics, definition of done, and Rationale Backlog,
Nudging and Recommendations (quality checking, change impact analysis, decision
guidance, link recommendation), Knowledge Visualization, Knowledge Dashboard

5.2.1. Treatment of Intrusiveness and Effort Problem

The first goal is to support a) collaborative, incremental, and rational decision making, b) docu-
mentation, c) exploitation, and d) quality assurance of decision knowledge with low intrusiveness.
It addresses the problem of intrusiveness and effort. A rationale management activity is low
intrusive if developers perform the activity in a lightweight way as part of their development
practices, i. e., integrated into existing workflows. A rationale management activity is lightweight
if developers only require a little effort. The thesis interchangeably uses the terms little effort,
lightweight, and easy. Four issues are related to the treatment:

When should the developers perform the rationale management activities? A solution
option would be to introduce new workflows for performing rationale management activities. For
instance, the developers could document decision knowledge solely at the end of a sprint. However,
this would result in a big-bang documentation that requires a lot of effort from developers at
a particular time. A non-functional aspect requested by practitioners is the integration of
rationale management into CSE rather than treating it separately (Chapter 3). For this reason,
ConRat low-intrusively integrates the collaborative, incremental, and rational decision making,

74

5.2. High-Level Decision Problems and Decisions

documentation, exploitation, and quality assurance of decision knowledge into the short-cycled
CSE workflows, for example, into working with requirements in the issue tracking system,
implementing code, or working with branches in the version control system. During ConRat, the
developers perform rationale management constantly in small increments over time instead of
only once. ConDec integrates into existing tools as plug-ins rather than providing a separate
tool. ConDec enables developers to document and exploit the knowledge during their workflows
from various tools and CSE artifacts. For example, developers exploit the knowledge during
meetings for rationale-based meeting management, when working on a requirement or other
ticket, and when implementing requirements from code. The class Rationale Management Activities
Integrated into Existing Workflows in Figure 5.4 models the decision. While ConRat integrates
rationale management into CSE workflows, it also integrates lightweight, agile practices into
rationale management, such as filling and grooming a rationale backlog and a definition of done
for the knowledge documentation. The Rationale Backlog, Definition of Done for the knowledge
documentation, and the abstract class Metric are concrete decorators of Rugby in Figure 5.4.

Where can developers document decision knowledge so that intrusiveness is low? A solution
option to this issue would be creating a new software system for decision knowledge documentation,
such as an external web-based platform. However, developers would need extra effort to install
a new software system and change their development context for the documentation, which is
too intrusive. The interview study with practitioners (Chapter 3) contributed documentation
locations for decision knowledge. ConDec makes it possible to capture decisions and related
decision knowledge in the documentation locations developers already use, e. g., in the issue
tracking system, integrated development environment, and during committing in the version
control system. Thus, developers are not required to change their development context to capture
decision knowledge. In Figure 5.4, the Knowledge Model package bundles key decisions for the
knowledge documentation. The class Rationale in Distributed Documentation Locations represents
the decision to document decision knowledge in various places.

How can the developers easily formalize the decision knowledge? ConDec offers lightweight
annotations to mark text as decision knowledge. ConDec supports the annotation through
automatic text classification to reduce the documentation effort. Automatic text classification is
based on the respective approach identified in the systematic mapping study (Chapter 4) and
the practitioners’ request for automation in the interview study (Chapter 3). In Figure 5.4,
the classes Rationale Documentation and Nudging and Recommendations in the package ConDec
Plug-Ins model the decisions.

How to motivate the developers to document decision knowledge despite additional effort?
ConDec motivates the developers through exploitation support, recommendations, and nudging:
The developers need to know when and how to exploit the decision knowledge documentation as
incentives for the documentation. The ConDec plug-ins offer various exploitation features, such
as an interactive knowledge visualization, a Stand-Up Table with Rationale for easy knowledge
sharing during meetings, and a feature for semi-automatic creation of Release Notes with Rationale.
ConDec provides recommendation systems that implement the four approaches identified in the
systematic mapping study (Chapter 4): Automatic text classification, decision guidance, link
recommendation implementing automatic linking, and change impact analysis implementing
consistency support. ConDec also offers nudging mechanisms to motivate the developers. The
respective classes of package ConDec Plug-Ins in Figure 5.4 model the features for exploitation,
Nudging and Recommendations. A further motivation mechanism currently not implemented is
gamification. Gamification can be seen as a nudging mechanism incorporating game elements,
such as points and badges (García et al., 2017; Cursino et al., 2018). It has not yet been

75

5. Overview of Continuous Rationale Management and its Support with ConDec

implemented into ConDec because it often incorporates tracking individual developers’ (players’)
history, which requires careful ethical considerations. It is conceptually more complicated than
the current nudging mechanisms that solely work on knowledge documentation.

5.2.2. Treatment of High Amount of Distributed Knowledge Problem

The second goal is to support a high amount of distributed knowledge. It addresses the problem
of the high amount of distributed knowledge. Three issues are related to the treatment:

What constitutes high amount of knowledge, i. e., how to quantify it? The thesis considers
the amount of system knowledge (requirements and code) and decision knowledge. Defining
threshold values for a high number of requirements and lines of code is challenging as there seem
to be no definitions in the literature. The thesis considers the system knowledge documented in
the validation projects in industrial settings, with a duration of about six months, a high amount.
These projects resulted in between 27 to 68 documented requirements and code bases of 10 000
to 50 000 lines of code (Chapter 9). There do not appear to be definitions of a high amount
of decision knowledge in the literature. The thesis considers the following threshold for a high
number of decisions: at least one decision is documented for each requirement. In the validation
projects, at least 27 to 68 decisions must be documented to consider the number as high. For
each decision, an issue and at least one alternative, one pro-argument, and one con-argument
must be documented. Thus, at least 135 to 340 rationale elements must be documented to
consider the number as high in the validation projects.

How can the distributed knowledge be made accessible from various CSE artifacts? ConRat
defines a knowledge model that builds on lightweight traceability between typical CSE artifacts
and formalized decision knowledge documentation, represented by the Knowledge Model package
in Figure 5.4. The lightweight traceability enables the developers to access and exploit the
distributed knowledge. The knowledge model integrates decision knowledge from various dis-
tributed documentation locations, in particular, from the issue tracking system, commit messages,
and code comments in the version control system, modeled by the class Rationale in Distributed
Documentation Locations. The knowledge model enables the developers to access the relevant
parts of the documentation from the artifacts they work on, modeled by the class Requirements,
Code, and Other Artifacts with Trace Links. The ConDec plug-ins implement and visualize the
knowledge model, modeled by the Knowledge Visualization class. Since the decision knowledge is
documented in the issue tracking and version control systems, it has the same accessibility as
tickets, commits, and code. Developers can access the documented decision knowledge when using
Filtering and Searching functionalities provided by ConDec and the built-in search functionalities
in the issue tracking system, version control system, and integrated development environment.

How can the high amount of knowledge be exploited without information overload? The
practitioners of the interview study (Chapter 3) considered filtering and searching functionalities
essential to reduce the amount of knowledge. ConDec offers Filtering and Searching functionalities
that enable developers to customize, i. e., tailor, the knowledge visualizations. A contribution
of ConDec is called transitive linking. Transitive linking is helpful for distributed knowledge
documentation in combination with other filters. For instance, developers can examine decisions
directly or indirectly linked to a particular requirement or code file, filtering out development
tasks. Besides, ConDec offers the Decision Grouping feature that enables developers to filter for
specific decision types, such as only process or design decisions.

76

5.2. High-Level Decision Problems and Decisions

5.2.3. Treatment of Low Documentation Quality Problem

The third goal is to support the high quality of the documented decision knowledge. It addresses
the problem of low documentation quality. Nine issues are related to the treatment:

What constitutes high documentation quality? Zhi et al. (2015) collected quality attributes
for software documentation in a systematic mapping study: accessibility, traceability, complete-
ness, consistency, correctness, up-to-dateness, uniqueness, information organization, format,
spelling and grammar, readability, accuracy, trustworthiness, and author-related aspects. High
documentation quality means that all of these attributes are fulfilled. Figure 5.4 contains the
Quality Attributes package with classes for related attributes. The quality attributes are defined
as follows: Accessibility describes how easily practitioners can find the documented decision knowl-
edge. Traceability means that practitioners can trace the decision knowledge to and from the
related requirements, code, and other software artifacts. Traceability can be established through
direct links or indirect links within a specific number of connections. Completeness describes how
comprehensive the decision knowledge documentation is in supporting developers in their tasks.
Consistency means that the decision knowledge has no conflict with other knowledge. Correctness
means that the decision knowledge does not conflict with factual information. Up-to-Dateness
means that the knowledge is kept updated during the evolution of software systems. Uniqueness
addresses whether parts of the documentation are duplicated. Information organization concerns
the organization of the documentation and Format addresses the writing style. The attributes
Spelling, Grammar, Readability, and Accuracy refer to the correctness of spelling, grammar, and
ease of reading the documentation. Readability describes how easily documents can be read. Ac-
curacy represents the preciseness of documentation content. Trustworthiness means that software
practitioners perceive the documents as reliable. Author-related aspects are traces of who created
the documents and author collaboration.

What general concepts support high quality? ConRat integrates knowledge quality checking
and enforcement into the CSE workflows similar to checking and enforcing unit test coverage. This
decision is inspired by automated testing, which is an important CSE element to practitioners
(Section 3.1.2). This decision also treats the intrusiveness and effort problem and is modeled
by the class Rationale Management Activities Integrated into Existing Workflows in Figure 5.4.
ConRat decorates the Rugby CSE life cycle model with the abstract class Metric as well as the
classes Definition of Done and Rationale Backlog to support high quality. The rationale backlog
lists the knowledge elements that violate the definition of done and is also a decision-making
support (Chapter 3). The definition of done sets the thresholds that the metrics must exceed
and the development teams can tailor it. The ConDec plug-ins implement the concepts and a
Knowledge Dashboard that calculates and plots metrics, as requested by practitioners with the
feature metrics calculation and reporting in dashboard (Chapter 3). During ConRat, reviewers
check the quality of the rationale documentation, for instance, before accepting a merge request.

How do ConRat and ConDec support accessibility and traceability? As described in Sec-
tion 5.2.2, ConRat establishes accessibility and traceability using the Knowledge Model consisting
of Requirements, Code, and Other Artifacts with Trace Links and Rationale in Distributed Docu-
mentation Locations. ConDec provides tool support through Knowledge Visualization, Filtering
and Searching including transitive linking, and Decision Grouping. Knowledge exploitation is
impeded if trace links are incomplete or wrong. ConDec enables linking knowledge elements
and marking wrong links, modeled with the Rationale Documentation class. Two mechanisms
improve traceability in terms of complete links: 1) A criterion of the Definition of Done is that
requirements and code files need to have a certain Decision Coverage (modeled as a concrete

77

5. Overview of Continuous Rationale Management and its Support with ConDec

Metric in Figure 5.4). ConDec offers mechanisms to check and enforce decision coverage, modeled
by the Nudging and Recommendation and the Knowledge Dashboard classes. 2) ConDec offers the
link recommendation feature that helps developers to access and link related issues and decisions.
Link recommendation builds on the automatic linking approach identified in the systematic
mapping study (Chapter 4) and is modeled as part of the Nudging and Recommendation.

How do ConRat and ConDec support completeness? ConRat and ConDec support two types
of completeness: First, important decisions regarding eliciting and implementing requirements,
code, and other artifacts must be made explicit. As with accessibility and traceability, the
measurement and enforcement of the Decision Coverage metric as part of the Definition of Done
and link recommendation support completeness between artifacts and decisions. Besides, ConDec
offers the decision guidance feature, which implements the approach identified in the systematic
mapping study (Chapter 4). It completes the documentation by making recommendations taken
from external knowledge sources. Link recommendation and decision guidance are modeled as
part of the Nudging and Recommendation class in Figure 5.4. Second, the decision knowledge
must be completely documented, which is addressed by the Intra-Rationale Completeness metric
as part of the Definition of Done.

How do ConRat and ConDec support consistency, correctness, and up-to-dateness? The
Knowledge Visualization of ConDec visualizes instances of the Knowledge Model called knowl-
edge graph. The visualization lets developers access the decision knowledge documentation
from requirements, code, and other artifacts during their daily work. Developers continuously
reflect on whether there are outdated, inconsistent knowledge elements or links and improve
the documentation. On top of the mere presentation, ConDec offers change impact analysis,
which implements consistency support identified in the systematic mapping study (Chapter 4).
The decision guidance feature supports correctness by making recommendations from external
knowledge sources. Change impact analysis and decision guidance are modeled as part of the
Nudging and Recommendation class in Figure 5.4.

How do ConRat and ConDec support uniqueness? ConDec supports the identification of
duplicates in the knowledge documentation as part of the link recommendation system, which is
modeled as part of the Nudging and Recommendation class in Figure 5.4.

How do ConRat and ConDec support information organization and format? The Knowledge
Model organizes the knowledge documentation for consistent Information Organization and Format.
ConDec enables configuring the types of rationale elements and links used in the rationale model
to support Information Organization and Format. ConRat demands that rationale elements are
phrased in a specific way, e. g., issues as questions ending with a question mark and decisions
ending with an exclamation mark. This criterion supports a coherent writing style and is part of
the Definition of Done. The fulfillment is checked in reviews.

How do ConRat and ConDec support spelling, grammar, readability, and accuracy? ConRat
demands the coherent phrasing of rationale elements to support readability. The coherent
phrasing is part of the Definition of Done, and reviewers check the fulfillment.

How do ConRat and ConDec support trustworthiness and author-related aspects? During
ConRat, reviewers check the trustworthiness, but ConDec does not offer particular features.
Author-related aspects can be examined from the decision knowledge documentation, e. g., to
identify developers who are experts or accountable for certain decisions. Accountability is a
benefit of rationale management frequently mentioned by practitioners (Table 3.4).

78

Chapter 6
Life Cycle Modeling of
Continuous Rationale Management

“We should not confuse the outcome of the design process with the
process itself. The outcome of the design process is a ‘rational
reconstruction’ of that process.”

—Dingsøyr and van Vliet, 2009

This chapter presents a CSE life cycle model with Continuous Rationale Management (ConRat).
ConRat extends the Rugby CSE life cycle model described in Section 2.1.3 by adding rationale
management activities: collaborative, incremental, and rational decision making, documentation,
exploitation, and quality assurance of decision knowledge. ConRat is based on a knowledge
model describing the knowledge developers consume and produce during the activities.

The sections of the chapter explain the entities of the ConRat Life Cycle Model Extension
in Figure 5.4. Section 6.1 presents the ConRat knowledge model for knowledge elements and
their associations in CSE. The section explains different types of states for decision knowledge.
It describes a demonstration project to exemplify ConRat. Section 6.2 presents the rationale-
management extension of the Rugby CSE process model. The section provides metrics, the
definition of done for the knowledge documentation, and the rationale backlog. It describes the
roles involved in continuous rationale management, their tasks as workflows, and short-cycled
CSE practices that include rationale management activities. Section 6.3 concludes the chapter.

6.1. Knowledge Model

The ConRat knowledge model consists of a graph of knowledge elements and associations between
them and a dynamic model describing the states of the knowledge elements. Section 6.1.1
introduces the types of elements and associations. Section 6.1.2 describes the different types of
states. Section 6.1.3 presents the instantiation of the knowledge model for an example project.

6.1.1. Knowledge Elements and Associations

Figure 6.1 shows the ConRat knowledge model including typical CSE artifacts. The knowledge
elements and the associations can be of various types. High-level types of knowledge elements
are decision knowledge/rationale, system knowledge, and project knowledge (Section 2.2). The
CSE artifacts are also called knowledge elements because they model the knowledge by the
stakeholders who created them.

79

6. Life Cycle Modeling of Continuous Rationale Management

contains
contains

FeatureTask

WorkItem

Commit

FeatureBranch MergeRequest

Feature Code

Issue

DecisionComponent

Decision Alternative Criterion Argument

Pro

Con

linked to linked to

refers
to

refers
to

refers
to

Legend:

System Knowledge

Project Knowledge

Decision Knowledge/Rationale

refers to
refers to

concerns concerns
concerns

concerns

concerns

Figure 6.1.: ConRat knowledge model with CSE artifacts and associations: Features, tasks
to implement a feature (feature tasks), work items, short-lived feature branches,
commits, code, merge requests, and decision knowledge (UML class diagram).

The model focuses on Features and Code as essential system knowledge elements. Features
represent both functional and quality requirements. They can be split into sub-features or
contained in bigger features. Tasks that developers fulfill to implement a software feature are
called Feature Tasks. A feature task is a development-related Work Item. Other work items
unrelated to software features exist, such as setting up the CSE infrastructure. Short-lived
Feature Branches encapsulate the development work (Krusche et al., 2014). A feature branch
contains one or more Commits that refer to code files that were changed in the commit. A Merge
Request handles whether a branch can be merged and supports that only high-quality code
changes are integrated into the main code base. Work items, feature tasks, feature branches,
merge requests, and commits are types of project knowledge.

The ConRat knowledge model is based on the Decision Documentation Model by Hesse
(2020) to represent the decision knowledge in relation to project and system knowledge. The
decision knowledge types are adopted from the Issue-Based Information System model: Issue ,
Alternative , Decision , Pro- and Con-argument . The Issue is the top element to emphasize
that a decision should be made based on an issue, i. e., decision problem or question, and so that
issues are linked to the system and project knowledge elements. As in the Questions, Options,
and Criteria model, the ConRat knowledge model contains the Criterion type for decision making.

The ConRat model also supports other entities produced and consumed during the CSE
workflows described in Section 6.2, in particular, user feedback reports, product backlogs, sprint
backlogs, and releases. Additional documentation locations for decision knowledge exist, for
instance, wiki pages, pull requests, chat messages, text files, and diagrams (Table 3.4). The
artifacts in Figure 6.1 are the core set of CSE knowledge artifacts that enable lightweight tracing
to make distributed documentation accessible. The ConRat model supports tracing between the
system, project, and decision knowledge elements. Tracing can be accomplished either using
a) textual annotations such as decision annotations (Hesse et al., 2015), b) feature task identifiers
in the commit messages, c) distinctly documented trace links, e. g., within a table, and d) trace
retrieval techniques (Cleland-Huang et al., 2013). Tracing is a prerequisite for developers to
ensure the consistency of documented decision knowledge. Tracing enables developers to reflect
decision, system, and project knowledge simultaneously. Developers can explore code and decision
knowledge that evolved during the implementation of a feature. Likewise, developers can explore
decision knowledge and features relevant to a specific code.

The implementation of the ConRat knowledge model is as follows: Work items, feature tasks,
and features are stored in the issue tracking system, whereas code, commits, and merge requests

80

6.1. Knowledge Model

Table 6.1.: Synonymous names for knowledge elements in the ConRat knowledge model. For the
decision knowledge elements, states and their synonyms are listed.

Name in Model Synonymous Names

System Knowledge

Feature Functionality, software quality, (functional or quality) requirement, epic and user stories
(that the epic is broken down into), use case and scenarios, user task and sub-tasks

Project Knowledge

Feature task Action item, work item, backlog item, development task, to-do, ticket, can also describe
bug fixing task based on bug report or task based on change or improvement request

Merge request Pull request
Feature branch Topic branch, short-lived branch, feature task branch, i. e., branch related to a task to

implement (parts of) a feature

Decision Knowledge/Rationale

Issue Decision problem, question; States: open, un(re)solved or closed, (re)solved
Decision Solution, resolution; States: decided or challenged or rejected

Alternative Solution option, option, proposal, position; States: idea or discarded

are stored in the version control system git (Chacon and Straub, 2014). Note that some types of
knowledge elements in the knowledge model have synonymous names listed in Table 6.1 used
throughout this thesis. For example, feature tasks are often called tickets (Saito et al., 2017),
work items (Paech et al., 2014), action items (Bruegge and Dutoit, 2010), or development tasks. In
the issue tracking system, developers capture decision knowledge elements linked to the respective
features and feature tasks—either by textually capturing them in the description and comments of
the features and feature tasks or by creating entire tickets for the decision knowledge elements. In
the version control system, developers textually capture decision knowledge in commit messages
and code. Developers mark it as such knowledge using decision annotations as suggested by
Hesse et al. (2015). Trace links between tickets in the issue tracking system and code files in the
version control system are created and maintained. The linking is commonly done commit-based
using ticket identifiers in commit messages (Rath et al., 2018; Hübner and Paech, 2020). A
good commit message expresses the rationale of the change and is linked to a ticket (Codoban
et al., 2015; Al Safwan et al., 2022). Also, the tickets in the issue tracking system are linked.
For example, a feature is linked to its feature tasks or—when using a hierarchical requirements
model—epics are linked to user stories. In ConRat, developers use decision annotations, ticket
identifiers in the commit messages, and distinctly documented trace links to establish tracing.

Instances of the knowledge model form a graph data structure called knowledge graph. The
nodes and edges of the knowledge graph are the knowledge elements and associations, respectively.
The knowledge graph tends to become big with many nodes and edges. Edges are also called
links or relationships. Developers usually work with knowledge subgraphs, i. e., parts of the graph
related to, for example, a specific feature. Knowledge subgraphs allow developers to consider
previous decisions when working on a feature. Figure 6.1 omits attributes of the knowledge
elements. However, knowledge elements and associations can have various attributes, such as a
documentation location illustrated in Figure 6.2 or states described in Section 6.1.2. Figure 6.5
and Figure 6.15 later in this chapter show a knowledge subgraph at two different points in time.

The ConRat knowledge model is not the first to link features, work items, commits, and code,
as shown in Figure 6.1. For example, Saito et al. (2017) and Rastkar and Murphy (2013) use a
similar model. However, this is the first model to show how decision knowledge refers to the
artifacts and to suggest decision annotations in commit messages.

81

6. Life Cycle Modeling of Continuous Rationale Management

:Feature

issue1 : Issue
documentationLocation

= “issue tracking system”

decision1 : Decision
documentationLocation

= “issue tracking system”

concerns

:Feature Task

issue2 : Issue
documentationLocation

= “issue tracking system”

decision2 : Decision
documentationLocation

= “issue tracking system”

concerns

:Commit

issue3 : Issue
documentationLocation
= “commit message”

decision3 : Decision
documentationLocation
= “commit message”

concerns

:Code

issue4 : Issue
documentationLocation

= “code comment”

decision4 : Decision
documentationLocation

= “code comment”

concerns

refers
to

refers
to

Figure 6.2.: Schematic illustration of a knowledge subgraph, i. e., an instance of the knowledge
model (UML object diagram). Decisions 1 and 2 are documented in the feature
and feature task description or comments, respectively. Decision 3 is captured in a
commit message, and decision 4 is documented in code comments.

6.1.2. State of Rationale Elements
ConRat distinguishes the decision-making state, documentation state, and implementation state.
The following subsections describe these states.

Decision-Making State

Figure 6.3 shows the decision-making states of issues, alternatives, and decisions and their
transitions as used in ConRat. Issues (decision problems) can either be unsolved/open or
solved/closed (Bruegge and Dutoit, 2010). For decisions and alternatives, ConRat uses a subset
of the states suggested by Kruchten (2004), Kruchten et al. (2009), and van Heesch et al. (2012):
Alternatives can either be an idea or discarded. Decisions can be decided, challenged, or rejected.
Table 6.1 lists the possible states of issues, decisions, and alternatives along with their synonyms.

Decision needs to be made

Issue
unsolved/open

Alternative
idea Decision

challenged

Decision
rejected

Alternative
discarded

discard

undiscard challenge
reject

Decision was made

Issue
solved/closed

Decision
decided

decide
challenge

decide
reject

decide

solve
1

2

3

4

5

Figure 6.3.: Decision-making states of issues, alternatives, and decisions and their transitions
(UML state machine diagram with parallel regions). Decision making and (collabo-
rative) discussions are needed for the states on the left side. The decision was made
for the states on the right side but could be changed.

The initial state of an issue is to be unsolved (Figure 6.3- 1), while the initial state for a
solution option (alternative) is to be an idea (Figure 6.3- 2). An alternative that has never
been a decision, i. e., was never incorporated in the system, can be discarded. The issue is
solved (Figure 6.3- 3) if the stakeholders decide on an alternative. The former alternative then
becomes a decision with state decided (Figure 6.3- 4). The UML state machine diagram does

82

6.1. Knowledge Model

not contain a final state because the stakeholders can change the decision. If a stakeholder raises
a concern about a previously decided decision, the decision becomes challenged (Figure 6.3- 5).
The decision can be rejected, that is, in a state also referred to as dropped (Dragomir et al., 2014).
While its implementation is removed from the system, the rejected decision is saved with the
reason it was rejected. The respective issue becomes once again unsolved (Figure 6.3- 1).

Documentation State

The developers’ decision knowledge can be tacit, i. e., implicit, or explicit (Section 2.2). Tacit or
implicit decision knowledge is based on experience and is difficult for developers to articulate.
The documentation of decision knowledge can either be informal, i. e., unstructured in natural
language texts, or formalized using the rationale model in Figure 6.1.

decision knowledge is
tacit/implicit,

i. e., not documented

decision knowledge is
informally captured

and distributed
in various locations

decision knowledge is
explicit, formalized,

integrated and consistent
with other knowledge

start

capture informally, e. g., in issue tracking system,
version control system, chat, . . .

finish/package

start/consider
consistency

finish/make
explicit

1

2

3

4

5

6

Figure 6.4.: Documentation states of decision knowledge (UML state machine diagram). The
state on the lower right side is the preferred state.

Figure 6.3 shows the documentation states of decision knowledge. At the beginning of the
work, decision knowledge is often tacit or implicit in the head of a few developers (Figure 6.4-
1). Tacit knowledge is likely to vaporize and is hard to understand by others; thus, this first
state is not preferred in ConRat. If decisions are not tacit, they are often discussed informally,
captured partly and in a distributed manner (Figure 6.4- 2), such as in ticket comments (Hesse
et al., 2016b), commit messages, merge requests (Brunet et al., 2014), wikis, emails, chat
messages (Alkadhi, 2018), or another documentation location (Table 3.4). Such knowledge is
called distributed decision knowledge. Informally captured, distributed decision knowledge is hard
to access later and might even be outdated, i. e., inconsistent with artifacts or other decision
knowledge. Therefore, informally captured, distributed decision knowledge is also not preferred
in ConRat. ConRat wants important decision knowledge to be explicit, formalized, as well as
integrated and consistent with the software artifacts and other decision knowledge (Figure 6.4- 3).
ConRat encourages the developers to reach this preferred state when finishing their current work,
e. g., when finishing the work on a feature task. Two ways exist to reach the preferred state:
First, developers can make the tacit decision knowledge explicit and directly document it in a
formalized way integrated with other knowledge (Figure 6.4- 4). Second, developers can formalize
the informally captured distributed decision knowledge and integrate it with other knowledge
by linking it to the corresponding feature, feature task, code, or commits. The formalization
and integration is called packaging (Figure 6.4- 5). When the developers start new work, e. g., a
new feature task, they use the documented knowledge to make new decisions consistent with
the former ones, i. e., they consider consistency (Figure 6.4- 6). The trace links in Figure 6.1
determine relevance: For instance, relevant decisions are those from other feature tasks of the
same feature. Transitions between these states frequently occur during CSE, while some decision
knowledge is in the tacit or informally captured state and other decision knowledge is in the
formalized state. For this reason, the UML state machine diagram has no final state.

83

6. Life Cycle Modeling of Continuous Rationale Management

:Feature
title = “Image Matching”

:Feature Task
title = “Implement Image Matching”

:Decision
epitome = “Implement image matching

based on zero normalized cross correlation!”
status = decided

:Issue
epitome = “How to detect homologous

points on stereo images?”
status = resolved

:Alternative
epitome = “Use OpenCV library!”

status = idea

:Pro
epitome = “Less implementation effort”

:Con
epitome = “Users might not have installed this library.”

double average(NumericMatrix img , int u, int v, int n) {
double avg = 0;
for (int i=-n-1; i<n; i++) {

for (int j=-n-1; j<n; j++) {
avg += img(u+i, v+j);

}
}
return(avg /((2*n+1)*(2*n+1)));

}

double zeroNormalizedCrossCorrelation(NumericMatrix master ,
NumericMatrix slave , int u1, int v1, int u2, int v2, int n) {
...

concerns

Figure 6.5.: Image-matching decision as an example instance of the knowledge model (UML
object diagram). The status attribute refers to the decision-making state.

Implementation State

Decisions also have an implementation state, e. g., envisioned and applied/incorporated (Hesse,
2020). In ConRat, the implementation state of decisions is the same as for the linked work item.
Thus, it is not tracked separately.

6.1.3. Demonstration Project

This chapter uses a radargrammetry project to demonstrate ConRat: Imagine the development
of software that computes three-dimensional surface models of the earth from satellite stereo
images1. The idea behind this software is the following: An image matching algorithm detects
pixels belonging to the same object—homologous points—on the stereo images. The distance
between the homologous points—the disparity—is then used to calculate the relative height of
the object, e. g., of a mountain. Thus, image matching is one essential feature of the software. In
this example, developers decide how to implement the image-matching feature.

A developer opens a feature task in the issue tracking system to implement image matching,
indicated by the start transition in Figure 6.4- 1 . The developers discuss image-matching
algorithms informally in chat messages and comments of the feature task and, thus, get into the
state decision knowledge is informally captured and distributed in various locations (Figure 6.4- 2).
One developer proposes to implement a standard image-matching algorithm based on detecting
the maximum zero normalized cross correlation. A second developer proposes to take advantage
of algorithms provided by the open-source computer vision library (OpenCV), which they think
comes with less implementation effort. However, this also introduces third-party code. Users will
have a higher installation effort since they must ensure their operating system correctly provides
the library. Finally, the developers decide to implement a custom image-matching algorithm and
create a feature branch in the version control system. When merging this branch back to the
mainline, they perform a finish practice and package the distributed knowledge (Figure 6.4- 5).
That means the developers document the decision knowledge in a formalized way in the issue
tracking system and make sure that it is linked to the feature task and consistent with the
implemented code (Figure 6.4- 3). Figure 6.5 shows the instance of the knowledge model.

1Radargrammetry R package

84

https://github.com/kleebaum/ragram

6.2. Extended Rugby Life Cycle Model

6.2. Extended Rugby Life Cycle Model

Continuous rationale management is not a single task by a single role but integrates into existing
tasks by the CSE roles. Rugby is a CSE life cycle model that describes the workflows, i. e.,
the tasks by the roles (Section 2.1). ConRat extends the Rugby life cycle model by tailoring
the existing workflows and adding new workflow descriptions. ConRat adds explicit rationale
management to Rugby: collaborative, incremental, and rational decision making, documentation,
exploitation, and quality assurance of decision knowledge.

Section 6.2.1 describes metrics for the knowledge documentation, Section 6.2.2 the definition
of done, and Section 6.2.3 the rationale backlog. These concepts are means to operationalize the
quality of knowledge documentation. Section 6.2.4 describes the life cycle model and Section 6.2.5
parallel workflows. Section 6.2.6 presents CSE practices ideal for breaking down rationale
management into small, manageable pieces.

6.2.1. Metrics for Rationale Documentation

A software life cycle model can be characterized by its level of maturity. The capability maturity
model distinguishes five levels: 1) initial, 2) repeatable, 3) defined, 4) managed, and 5) optimized
(Paulk et al., 1993). A software process has only reached the fourth level if it defines and
measures metrics for its activities (workflows) and deliverables (entities produced and consumed
during the workflows). The following subsections define two metrics regarding the rationale
documentation: intra-rationale completeness and rationale coverage. Both metrics are concerned
with the structure of the knowledge documentation and, thus, are syntactic metrics. They help to
look for information that is missing (Burge and D. C. Brown, 2008a), which means they support
the completeness of the knowledge documentation.

Intra-Rationale Completeness Metrics

The intra-rationale completeness assesses whether a single decision or a single decision problem
is completely documented so that the decision-making process can be better understood. That
means it assesses whether all decision knowledge elements are documented that justify a decision.
ConRat judges intra-rationale completeness using the following criteria (formulated as questions):
1) Is the decision problem solved, i. e., is a decision documented? 2) Is the decision problem for the
decision documented? 3) Is there at least one alternative documented for the decision problem,
i. e., are at least two solution options (decision and alternative) documented? 4) Is there at least
one pro-argument documented for the decision? 5) Is there at least one con-argument documented
for the alternative? 6) Does the decision have more pro-arguments than its alternatives?

ConRat’s intra-rationale completeness criteria were inspired by the syntactic inferences that
the Software Engineering Using Rationale (SEURAT) tool supports (Burge and D. C. Brown,
2008a; Burge and D. C. Brown, 2008b; Malloy and Burge, 2016). SEURAT produces warnings if
it detects incompleteness, e. g., if an alternative has more pro-arguments than the decision.

In the example in Figure 6.5, the criteria of the intra-rationale completeness are evaluated
as follows, where ✗ indicates that the rationale documentation is incomplete according to the
criterion: 1) The decision problem is solved. ✓ 2) The decision problem for the decision is
documented. ✓ 3) At least one alternative is documented for the decision problem. ✓ 4) At least
one pro-argument is documented for the decision. ✗ 5) At least one con-argument is documented
for the alternative. ✓ 6) The decision has more pro-arguments than its alternatives. ✗

85

6. Life Cycle Modeling of Continuous Rationale Management

Rationale Coverage

Coverage metrics are commonly used for quality assessment. For instance, test coverage measures
the percentage that code or requirements are tested, and clone coverage measures duplication
of source code (Wagner et al., 2015; Martinez-Fernandez et al., 2018). We introduce the
rationale coverage to measure the amount of documented rationale traceable from a software
artifact, e. g., from a feature or a code file, within a certain link distance (number of hops). The
rationale coverage supports the completeness, accessibility, and traceability of the knowledge
documentation. In particular, the decision coverage is a type of rationale coverage that measures
the number of traceable decisions. The issue coverage measures the number of traceable issues.

In the example in Figure 6.5, the decision coverage of the image matching feature is one,
since the decision Implement image matching based on zero normalized cross correlation! is
documented in the link distance of three from the feature. The issue coverage is also one.

6.2.2. Definition of Done for Knowledge Documentation

The definition of done defines the criteria developers need to fulfill so that a work item, feature,
or sprint is finished (Kopczyńska et al., 2022). ConRat introduces a definition of done regarding
the rationale documentation. Table 6.2 shows the definition-of-done checklist and its intended
influence on the quality requirements for the rationale documentation. The checklist is designed
to cover all quality requirements: The development team fulfills the definition of done if the
requirements are met. As introduced in Section 5.2.3, the high quality is also supported by the
ConDec plug-ins, e. g., through knowledge visualization, nudging, and recommendations.

Table 6.2.: Influence of the definition of done on quality requirements for the rationale documen-
tation. Criteria 1 – 4 demand documentation properties, criterion 5 is a task to be
performed, and criterion 6 defines exclusion from checking.

Quality Requirements for Documentation according to Zhi et al. (2015)

Criteria of
Definition of Done

Accessibility,
Traceability

Complete-
ness

Consistency,
Correctness,

Up-to-
Dateness

Uniqueness Information
Organiza-

tion,
Format

Spelling,
Grammar,

Readability,
Accuracy

1) intra-rationale
completeness

✗ ✓ ✗ ✗ ✗ ✗

2) decision coverage ✓ ✓ ✗ ✗ ✗ ✗

3) phrasing of
rationale elements

✗ ✗ ✗ ✗ ✓ ✓

4) assignment to
decision types

✓ ✗ ✗ ✗ ✗ ✗

5) review of rationale
documentation

✓ ✓ ✓ ✓ ✓ ✓

6) exclusion criteria:
test code, small files

✗ ✗ ✗ ✗ ✗ ✗

In ConRat, the criteria of the definition of done are: 1) The intra-rationale completeness
is fulfilled, i. e., decisions are completely documented. 2) Features and code files are covered
with a certain number of decisions, e. g., one decision in a trace link distance of three (decision
coverage). 3) Rationale elements are phrased in a specific way, e. g., issues as questions ending
with a question mark and alternatives ending with an exclamation mark. This criterion supports
a coherent writing style, i. e., format, and easy-to-understand rationale documentation, i. e.,
readability. 4) The attributes of the rationale elements fulfill specific rules, e. g., the assignment

86

6.2. Extended Rugby Life Cycle Model

to decision types as introduced in Section 2.2.4. This enables accessibility to—for example—all
architecture or process decisions. 5) The definition of done also requires that the rationale
documentation is reviewed by at least one other developer who assesses the semantic content.
The reviewer checks whether the knowledge documentation fulfills all quality requirements for
documentation. 6) Finally, rules can exclude artifacts from definition-of-done checking. For
example, test and small code files with only a few lines do not need to fulfill the decision coverage.

The development team can tailor the definition of done to their needs. For instance, they can
decide which intra-rationale completeness criteria they require for their rationale documentation,
the minimum number of decisions, and the maximal link distance for the decision coverage.

In the example in Figure 6.5, the checking of the criteria 1) – 6) described above leads to
the following result: 1) The intra-rationale completeness is violated due to the criteria at least
one pro-argument is documented for the decision and decision has more pro-arguments than its
alternatives. 2) The definition of done requires at least one decision within a link distance of
three from features and code. The decision coverage is fulfilled. 3) The rationale elements are
phrased correctly. 4) The criterion is fulfilled if a decision type is assigned, here, design decision.
5) A reviewer must check the rationale documentation before integrating the feature branch.
Thus, the criterion that requires a review is fulfilled. 6) The code file in Figure 6.5 is included in
definition-of-done checking because it is no test code file and has enough lines of code.

6.2.3. Rationale Backlog

The ConRat life cycle model is an issue-based life cycle model (Bruegge and Dutoit, 2010). In
an issue-based life cycle model, all issues are stored in an issue base accessible to the project
participants. The issue base contains both unsolved and solved issues. The rationale backlog only
includes unsolved issues, similar to the notation of a product and sprint backlog. The rationale
backlog can be a part of the product and sprint backlog. The number of unsolved issues in the
backlog can be used to assess the status of the project or sprint: The fewer unsolved issues, the
closer the project or sprint to being finished.

In ConRat, the rationale backlog contains unsolved issues, challenged decisions (Figure 6.3),
and other knowledge elements that do not fulfill the definition of done for the documentation
(e. g., because the decision coverage is too low). By listing all unsolved issues and challenged
decisions, the rationale backlog serves as an agenda for what the development team must discuss
and decide collaboratively. It also helps to improve documentation quality.

The rationale backlog was inspired by the literature: Yang et al. (2019) surveyed agile practices
that can be integrated into architectural assumption management, which is related to rationale
management: Backlog, iterative and incremental development, refactoring, continuous integration,
effective communication, and just enough work. The idea of managing a decision backlog was
suggested by Hofmeister et al. (2007), Dingsøyr and van Vliet (2009), Hoorn et al. (2011), and
Zimmermann et al. (2015). The SEURAT tool by Burge and D. C. Brown (2008a) and Burge
and D. C. Brown (2008b) shows errors and warnings about the rationale in a rationale task list.

In the example in Figure 6.5, the issue How to detect homologous points on stereo images?
does not appear in the rationale backlog because it is solved. However, the rationale backlog
contains other unsolved issues, e. g., How to import radar images?, How to bring radar
images to the correct location?, How to get the incidence angle for every image pixel?, How
to calculate the relative height of an object using incidence angles?, and Which digital terrain
model to subtract from the digital surface model? The rationale backlog also contains the decision

Implement image matching based on zero normalized cross correlation! because there is
no pro-argument for it, which is a criterion to assess the intra-rationale completeness (if the
definition of done is not tailored to exclude this criterion).

87

6. Life Cycle Modeling of Continuous Rationale Management

6.2.4. Overview of a Life Cycle Model Extended with ConRat
This section explains the integration of ConRat into the Rugby life cycle model. Life cycle models
can be represented with the same techniques used for modeling software systems (Bruegge and
Dutoit, 2010). Figure 6.6 shows a functional model that describes the tasks by the roles using
a UML use case diagram. The outer system models Rugby and the inner system models the
extension through ConRat. The ConRat activities are collaborative, incremental, and rational
decision making, documentation, exploitation, and quality assurance of decision knowledge.
Besides, Figure 6.6 includes the definition of done and rationale backlog. ConRat introduces the
role of the rationale manager, responsible for rationale quality management and dissemination.

Rugby
Rugby

ConRat
ConRat

<<extend>>

Create Product
Backlog and

Sprint Backlogs

Elicit Requirements
and Incorporate

Feedback

Develop Software

Review Changes

Use Software and
Give Feedback

Manage Meetings
(e. g., Stand-up,
Sprint Review)

Manage Releases

Fill and Groom Rationale Backlog

Make Decisions in a
Collaborative, Incremental,

and Rational Way

Document Rationale

Exploit Rationale Documentation

Assure Rationale Quality
(according to Definition of Done

and using Rationale Backlog)

Product Owner

Developer

Architect

Tester

Reviewer
Rationale Manager

Meeting Manager

Release Manager

User

Figure 6.6.: Rugby workflows and ConRat activities (UML use case diagram). The workflows
include the ConRat activities (stereotypes are omitted for readability).

Figure 6.7 shows an object model as a UML class diagram with classes and associations
involved in the ConRat life cycle model extension. Figure 6.7 is based on the notation of the
ISO/IEC/IEEE 24774 (2021) standard but adapted to the terms used in the description of
Rugby by Krusche (2016) and in the Unified Process (Jacobson et al., 1998). A Life Cycle Model
consists of Workflows that the CSE Roles perform in parallel. The workflows describe the tasks
by the CSE roles. The workflows are performed during consecutive Sprints, which can also be
called cycles as done in the Unified Process. Each workflow contains activities modeled by the
Activity class. Activities are also referred to as sub-tasks. The activities can be refined into
further (sub-)activities or into Actions. The refinement is modeled using the composite design
pattern with the abstract superclass Practice in Figure 6.7. The actions produce or consume the
Knowledge Elements of the ConRat knowledge model (Figure 6.1).

* performed during
**

performs

*
*

*

produces/consumes

Life Cycle Model

SprintRole Workflow

Activity

Practice

Action Knowledge Element

Figure 6.7.: Classes and associations involved in life cycle modeling (UML class diagram).

88

6.2. Extended Rugby Life Cycle Model

Figure 6.8 depicts an excerpt of a respective UML object diagram with eight parallel workflows
and two hierarchical levels of rationale management activities. Roles, sprints, activities, and
actions of Rugby, such as Design, Implement, Test, and Check in Changes to Branch, as well as
knowledge elements and other involved entities, such as backlogs, are omitted for simplification.
The gray-colored objects are added through ConRat.

Rugby + ConRat : Life Cycle Model

Requirements
Elicitation
: Workflow

Development
: Workflow

Review
: Workflow

Release
: Workflow

Usage
: Workflow

Feedback/Change
Management
: Workflow

Meeting
: Workflow

Rationale Quality
Management and

Dissemination
: Workflow

Collaborative, Incremental, Rational
Decision Making : Activity

Rationale Documentation
: Activity

Exploitation of Rationale
Documentation : Activity

Assurance of Rationale Quality
: Activity

Rationale Sharing
: Activity

Former Decision
Understanding : Activity

Figure 6.8.: Instances and associations involved in the extended Rugby life cycle model (UML
object diagram). The diagram only shows activities belonging to ConRat.

Figure 6.9 shows a dynamic model of the life cycle including activities and actions , the entities
produced and consumed, as well as incoming and outgoing change events. The Rugby
life cycle model and its parallel workflows provide the basis (Section 2.1.3). ConRat adds the
rationale management activities, including the definition of done and the rationale backlog. The
rationale management-related additions are indicated in the following with brown color.

During sprint 0 (Figure 6.9- 1), the development team fills the rationale backlog with unsolved
issues. Besides, the development team makes high-level decisions. The team captures and
discusses these decisions along with the respective issue , alternatives , pro- , and
con-arguments , i. e., with explicit rationale. The development team also fills the rationale
backlog with unsolved issues when creating the sprint backlog and continuously during the sprint
(Figure 6.9- 2). While they work on the software features (Figure 6.9- 3), the team makes
decisions by solving issues in the rationale backlog. They explicitly capture rationale elements
directly in their development tools. Besides, they exploit the knowledge documentation during
development, e. g., by reflecting on the decisions made in the past. The team discusses the
unsolved issues in the rationale backlog and recently made decisions in the daily stand-up
meetings (Figure 6.9- 4). At the end of the sprint, when the development is done, the team
must ensure that the rationale documentation is of high quality (Figure 6.9- 5). That means the
rationale backlog must only include unsolved issues but no other knowledge elements violating
the definition of done. In ConRat, a product increment goes along with an increment of the
(explicit and formalized) rationale documentation (Figure 6.9- 6). The team also reflects on the
rationale documentation of the sprint in the sprint review meeting (Figure 6.9- 7). Feedback
reports can trigger the development team to revise the rationale backlog (Figure 6.9- 8). The
revision means adding new issues and updating the rationale documentation, e. g., by rejecting a
former decision and linking it to the new one.

89

6. Life Cycle Modeling of Continuous Rationale Management

Sprint N

Project Start Kickoff
Meeting

Sprint 0 including Creation of
Rationale Backlog and Decision Making

Sprint 0
finished

Sprint 0
finished

Product
and Rationale

Backlog revised

Revised Product
and Rationale

Backlog

Revise Product
and Rationale

Backlog

Feedback
Report

Sprint Planning
Meeting

Create Sprint
Backlog and Fill

Rationale Backlog

Sprint and
Rationale
Backlog N

Development
done and

Rationale Quality ok
(fulfills Definition of Done)?

Create Time-
based Release

Release N (Pro-
duct Increment
and Rationale)

Time-based
Release

Sprint Review
Meeting

Project finished?

Develop Feature
and Solve

Decision Problems

Stand-up
Meeting

Need Feedback?
Create Event-
based Release

Release
Request

Event-based
Release

Use ReleaseFeedback

Project
End

Time-based
Release

Feedback

Feedback
Report

yes

no

yesno

yes

no

1

2

3
4

5

6

7

8

Figure 6.9.: Dynamic view of the Rugby life cycle model extended with rationale management
(UML activity diagram).

6.2.5. Parallel Workflows: Roles and Their Tasks

This section describes seven parallel workflows tailored or added by ConRat. ConRat tailors the
Rugby workflows except for the usage workflow (Figure 2.2) because users do not work with
the rationale documentation when using the software. ConRat adds collaborative, incremental,
and rational decision making, documentation, exploitation, and quality assurance of decision
knowledge. ConRat also adds two new workflows for conducting meetings and for the rationale
manager role. The roles are shown in the top right corner of the workflows. The section explains
the workflows using the demonstration project introduced in Section 6.1.3.

In the requirements elicitation workflow (Figure 6.10), the requirements engineer or product
owner adds and prioritizes a new backlog item, captures acceptance criteria, and rationale. In the
project in Section 6.1.3, the requirements engineer creates the image matching feature task. The
requirements engineer captures the following rationale based on informal discussions: How to
detect homologous points on stereo images? with the alternatives Implement image matching
based on zero normalized cross correlation! and Use OpenCV library!

Requirements Elicitation Workflow
with Rationale Management

Roles: Requirements Engineer, Product Owner

New
Backlog Item
(Requirement)

Prioritize

Specify Acceptance
Criteria

Document and
Exploit Rationale
for Requirement

Backlog Item
ready for

Development

Figure 6.10.: Requirements elicitation workflow with explicit rationale management.

90

6.2. Extended Rugby Life Cycle Model

The end of the requirements elicitation workflow provides the event requirement ready for
development, which starts the development workflow (Figure 6.11). The roles involved are the
architect, developer, and tester. They analyze the requirement (or a development task to change
existing functionality or an improvement request) along with the documented rationale. Then,
they design, implement, and test the requirement. During their tasks, they solve decision problems
(collected in the rationale backlog) by making decisions and documenting further rationale. In
the example, they make and document the decision Implement image matching based on
zero normalized cross correlation! They work on a feature branch and check in their changes,
including the changed and new rationale documentation to this branch. The development is an
incremental, iterative process. If the developers want to get user feedback, they request a release.
They request a merge if the requirement is realized, i. e., it fulfills all acceptance criteria, and if
the rationale is documented and fulfills the definition of done for the rationale documentation.

Development Workflow with Rationale Management Roles: Architect, Developer, Tester

Change to
existing

Functionality

Backlog Item
ready for

Development

(Rationale)
Improvement

Request

Analyze and Exploit
Rationale

Documentation

Design

Implement

Test

Document
Rationale for

Design,
Implementation,

and Tests

Changes
Check in
Changes

to Branch

Request
Merge

Merge
Request

Release
Request

no

yes

yesno

Requirement realized?
Rationale fulfills Definition of Done?

Need Feedback?

Figure 6.11.: Development workflow with explicit rationale management.

The merge request, or pull request, is the event that starts the review workflow (Figure 6.12).
The responsible role is the reviewer, who is an experienced developer. In addition to reviewing
the changes in the requirements specification, design, code, and tests, the reviewer inspects the
rationale documentation. The requirement and related rationale documentation are finished if
the reviewer accepts the changes. If the rationale documentation violates the definition of done,
the reviewer requests improvements. In the example, the reviewer criticizes that the decision
cannot be understood without arguments. That means the documentation is (intra-rationale)
incomplete. Thus, the review workflow ends in a rationale improvement request.

Review Workflow with Rationale Management Roles: Reviewer (Experienced Developer, Change Integrator)

Merge
Request

Review Changes

Review Rationale
Documentation Quality of Changes

and Rationale Documentation ok (fulfills Definition of Done)?

Accept Changes Merge Changes

Request
Improvements

(Rationale)
Improvement

Request

Backlog Item
finished

yes

no

Figure 6.12.: Review workflow with explicit rationale management.

The rationale improvement request again starts the development workflow. The developers add
pro- and con-arguments to the rationale documentation. For instance, they add the pro-argument

Works on gray-scale images for the decision.

91

6. Life Cycle Modeling of Continuous Rationale Management

The release request is the event that starts the release workflow (Figure 6.13). A new, rationale
management-related task of the release manager is to create release notes including relevant
rationale to explain the changes made in the release. Not all users will be interested in the
decisions made, however, the audience of release notes can differ with different interests (Klepper
et al., 2016). In the example, the release manager creates a release together with the release
notes that explain to the users that a new feature for image matching was implemented and that
the developers made the decision to implement the zero normalized cross correlation algorithm.

Release Workflow with Rationale Management Role: Release Manager

Release
Request Create Release

Create Release
Notes with Explicit

Rationale

Release and
Release Notes

including Rationale

Event-based
Release

Figure 6.13.: Release workflow with explicit rationale management.

The users use the software in the usage workflow (Figure 2.2) and provide user feedback. Feed-
back reports or change requests trigger the feedback/change management workflow (Figure 6.14).
The responsible role, e. g., the product owner, analyzes the change request or feedback report
and—if relevant—converts it to a backlog item (feature task) with the help of the rationale
documentation. That means they exploit and update the rationale documentation.

Feedback/Change Management Workflow with Rationale Management Roles: Product Owner, Project Manager

Change
Request

Feedback
Report

Analyze
Change
Request

Analyze
Feedback
Report

Convert to
Backlog Item
with help of
Rationale

Backlog Item
and updated

Rationale

Change to
existing

Functionality

Add to
Sprint

Backlog

Add to
Product
Backlog

New
Backlog Item
(Requirement)

yes

no

yes

no yes

no

Is
relevant?

Is new
Requirement?

Integrate
Feedback directly?

Figure 6.14.: Feedback/change management workflow with explicit rationale management.

In the example, the users provide explicit feedback stating that image-matching takes a long
time to process new high-resolution satellite images. Figure 6.15 shows the updated knowledge
documentation: Based on the user feedback report (Figure 6.15- 1), a developer attaches the
contra argument to the image-matching decision. After that, the developers create a new feature
task to improve image matching (Figure 6.15- 2), which again starts the development workflow.
By reflecting on the former decision knowledge, the developers remember the alternative that
they could use the OpenCV library, which offers image-matching methods. Therefore, they reject
their former decision (Figure 6.15- 3) and implement the new code.

To emphasize that decisions should be discussed and made collaboratively, ConRat adds
the meeting workflow to Rugby (Figure 6.16). The meeting workflow is triggered whenever
the project participants meet, for example, during stand-up meetings and sprint reviews. The
meeting manager creates an agenda for the meeting with unsolved issues, i. e., questions to solve,
and decisions that need to be shared and discussed. When the project participants conduct
the meeting, they discuss the decision problems and decisions. In the example, the decision
to Implement image matching based on zero normalized cross correlation! could also be
made in a daily meeting. A reporter captures new rationale or improves the existing rationale
documentation to be exploited in the requirements elicitation and development workflows.

92

6.2. Extended Rugby Life Cycle Model

:Feature
title = “Image Matching”

:Feature Task
title = “Implement Image Matching”

:Feature Task
title = “Improve Image Matching”

:Decision
epitome = “Implement image matching

based on zero normalized cross correlation!”
status = rejected

:Decision
epitome = “Use an image matching algorithm

provided by OpenCV library!”
status = decided

:Issue
epitome = “How to detect homologous points on stereo images?”

status = resolved

:Pro
epitome = “Less implementation effort”

:Con
epitome = “Users might not have

installed this library.”

:Pro
epitome = “Works on gray-scale images”

concerns concerns

:Con
epitome = “Takes too long for
high-resolution stereo images”

:User Feedback
Users report performance problems.

based on

#include "opencv2/highgui.hpp"
#include "opencv2/imgproc.hpp"

#include <iostream >
#include <stdio.h>
...

double zeroNormalized
CrossCorrelation (...

1

2

3

Figure 6.15.: Image-matching decision after employing usage knowledge (UML object diagram).
The former decision is rejected and replaced with the former alternative.

Meeting Workflow with Rationale Management Roles: Meeting Manager and all Participants

Meeting (e. g.,
Stand-up,

Sprint Review)
Scheduled

Create Meeting
Agenda with

Explicit Rationale

Conduct Meeting:
Discuss Unresolved
Decision Problems

and Decisions Made New Decisions,
Alternatives, or

Decision Problems discussed?

Document
Rationale

New and/or
Improved
Rationale

Documentation
yes

no

Figure 6.16.: Meeting workflow with explicit rationale management.

Quality management is the “process of establishing and directing a quality policy, quality
objectives, quality planning, quality control, quality assurance, and quality improvement for
an organization” (Spillner and Linz, 2021). The second workflow that ConRat adds to the
parallel workflows of Rugby concerns quality management for the rationale documentation. It is
called rationale quality management and dissemination workflow and performed by the rationale
manager (Figure 6.17). The rationale manager is the role whose task is to set up rationale
management, e. g., by defining the definition of done for the knowledge documentation. The
rationale manager disseminates how to document and exploit decision knowledge (Chapter 12)
and monitors the documentation, inspects it, and assures its high quality. For example, the
rationale manager checks that the documented decision knowledge is complete, consistent, and
linked to other knowledge. That means that this task of the rationale manager is similar to
the reviewer’s task in the review workflow. In contrast to the reviewer in the review workflow,
the rationale manager inspects the rationale documentation from a global point of view for the
entire project rather than regarding a single development task and merge request. The rationale
manager can create a rationale improvement request. Besides, the rationale manager can schedule
a meeting to discuss and disseminate how to document and exploit the rationale. For instance,
the meeting can be a regular stand-up meeting or sprint review to improve the CSE process.

93

6. Life Cycle Modeling of Continuous Rationale Management

Rationale Quality Management and Dissemination Workflow Role: Rationale Manager

Rationale
Documentation

Inspect Rationale
Documentation

Quality Problems
of Rationale

Documentation

Rationale
Improvement

Request

Meeting
Scheduled

no

yes

no

yes

Quality
of Rationale Documentation

ok (fulfills Definition of Done)?

Needs
Discussion?

Figure 6.17.: Rationale quality management and dissemination workflow.

In summary, all of the roles contribute to the evolution of a software system by making
decisions, e. g., on requirements, design, tests, or the process, and they reflect on decisions already
made. Thus, they produce and consume decision knowledge. In particular, during ConRat, they
document their decision knowledge and exploit the documented knowledge. For simplification,
the thesis uses developers as examples of the different roles.

6.2.6. Starting and Finishing CSE Practices

CSE involves implementing and delivering many small increments. The practices advancing these
increments indicate that developers start or finish work (Section 6.1.2, Figure 6.4). Table 6.3
lists starting and finishing practices that developers regularly perform.

Table 6.3.: CSE practices of different granularity. After the starting practices, developers exploit
the knowledge documentation and consider consistency of new decisions. Before the
finishing practices, developers make tacit decisions explicit and package the distributed
informal decision knowledge, i. e., formalize and integrate it into the knowledge graph.

Starting Practice Finishing Practice ConRat Workflow

Start sprint (event: e. g., sprint
0 finished)

Finish sprint, sprint review,
create time-based release

Overall life cycle model
(Figure 6.9)

Schedule and start conducting a
meeting

Post-process meeting by docu-
menting rationale

Meeting workflow (Figure 6.16)

Specify new feature (event: new
backlog item)

Finish specification of new
feature (event: backlog item
ready for development)

Requirements elicitation
workflow (Figure 6.10)

Start feature task (events: back-
log item ready for development,
change to existing functionality,
improvement request)

Finish feature task Development workflow
(Figure 6.11) and review
workflow (Figure 6.12)

Create feature branch (action:
check in changes to branch)

Accept merge request, merge
branches

Development workflow
(Figure 6.11) and review
workflow (Figure 6.12)

Start working on code Commit code (activity: check in
changes to branch)

Development workflow
(Figure 6.11)

Start creating release (event:
release request)

Finish creation of release and re-
lease notes with explicit rationale

Release workflow (Figure 6.13)

Start handling change request or
feedback report

Finish handling change request
or feedback report with feature
task and rationale update

Feedback/change management
workflow (Figure 6.14)

94

6.3. Conclusion

The starting and finishing practices are part of the life cycle model and its parallel workflows.
For instance, short-cycled CSE practices that indicate start are opening a feature task and
creating a feature branch. Practices that indicate finish are to commit code, merge a feature
branch, or close a feature task. When developers perform a starting practice, they use and build
upon the existing decision knowledge. They make new decisions and must ensure that they are
consistent with the former ones, i. e., they consider consistency between old and new decisions.
Before performing a finishing practice, developers might have made important decisions. During
ConRat, the developers document the decision knowledge explicitly and formally before the
finishing practice. The developers must ensure the decision knowledge is formalized, integrated
into the knowledge graph, and consistent with other documented knowledge. The developers’
work needs to fulfill the definition of done to ensure the high quality of the decision knowledge
documentation. The starting and finishing practices help to break down rationale management
into small, manageable pieces to avoid big-bang documentation.

In the radargrammetry project, another open issue in the rationale backlog is the following:
How to bring radar images to the correct location? Radar images need to be oriented before

image matching can be performed. The developers specify a feature called image orientation,
i. e., perform a starting practice. They solve the issue by deciding to Use an image orientation
algorithm provided by the OpenCV library! The new decision is consistent with the former decision
to apply the OpenCV library for image matching (Figure 6.15). The developers document the
decision and related rationale before they finish the feature.

6.3. Conclusion
This chapter presented the ConRat life cycle model extension that integrates explicit rationale
management into CSE. First, it presented a knowledge model that formalizes decision knowledge
and links it to common CSE artifacts, in particular, features, work items, commits, merge requests,
and code. It introduced three types of states, i. e., a decision-making state, a documentation state,
and an implementation state. Subsequently, the chapter presented the rationale management
extension of the Rugby CSE life cycle model. It introduced metrics, a definition of done for the
rationale documentation, and a rationale backlog as essential concepts. Finally, this chapter
described short-cycled starting and finishing practices intertwined with rationale management.

The chapter made four contributions: First, it presented the ConRat knowledge model as the
first model combining decision knowledge with CSE artifacts. The model lays the basis to support
the high amount of distributed knowledge in CSE. Decision knowledge can be documented and
exploited from different artifacts using the model. Second, the chapter presented the first life
cycle model with explicit rationale management. Including rationale management activities is a
contribution to life cycle modeling. The chapter illustrated how life cycle models are tailored to
include ConRat. ConRat could also extend other life cycle models analogously, such as Scrum.
Development teams can tailor and extend the life cycle model presented in this chapter to their
needs. Third, the chapter presented a treatment for the problems of intrusiveness and effort
and low documentation quality. The treatment consists of integrating rationale management
activities into existing workflows and concepts to operationalize the documentation quality,
including metrics, the definition of done, and the rationale backlog. There is a trade-off between
a lightweight life cycle and ensuring high quality. However, the continuous reflection of the
rationale documentation and the integration of quality checking based on the definition of
done into the various finishing practices help to keep the effort developers need to spend on
quality-improvement tasks low. Fourth, the concepts and workflows described in this chapter
are the basis for automation and tool support. The following chapter will describe the ConDec
plug-ins that support the rationale management activities through views and features.

95

Chapter 7
Supporting Continuous Rationale Management
with ConDec

“Any sufficiently advanced technology is indistinguishable from
magic.”

—Clarke, 1962

This chapter presents the Continuous Management of Decision Knowledge (ConDec) plug-ins
that support continuous rationale management through views and features. While ConRat
models the rationale management activities and concepts, ConDec is a model for tool support.

The sections of the chapter explain the entities of the ConDec Plug-Ins in Figure 5.4. Section 7.1
presents requirements in the form of task and support descriptions and functional models.
Section 7.2 describes the system and object design of ConDec. The following sections detail the
ConDec views and features, from must-be features for rationale documentation and exploitation
to more advanced features. Section 7.3 describes explicit decision knowledge documentation
features. Section 7.4 and Section 7.5 present the visualization of the knowledge graph data
structure and features to customize the views to specific purposes, e. g., through transitive linking
for targeted access. Section 7.6 describes how ConDec motivates the developers to perform
rationale management using nudging mechanisms and recommendation systems continuously.
Section 7.7 presents the implementation of the rationale backlog. Section 7.8 describes the
knowledge dashboard. Section 7.9 provides a feature to group and filter decisions by their types.
Section 7.10 presents the support for meeting agendas and Section 7.11 presents the support
for release notes. Section 7.12 describes the knowledge export feature. Section 7.13 discusses
related work and Section 7.14 concludes this chapter. This chapter provides examples from the
case study projects performed for the treatment validation (Part IV).

The ConDec plug-ins are open source and available in Appendix A.

7.1. Requirements

Continuous rationale management involves activities for collaborative, incremental, and rational
decision making, documentation, exploitation, and quality assurance of decision knowledge
(Section 6.2.4). This section details the rationale management activities and specifies tool
support with task and support descriptions and functional models. The rationale management
activities are sub-tasks of the CSE workflows. The sub-tasks can have variants (a, b, c, . . .)
representing another way to do the task. Problems (p, p1, p2, . . .) are specified that need
to be eliminated (Lauesen, 2002; Lauesen and Kuhail, 2012). The problems refine the three

97

7. Supporting Continuous Rationale Management with ConDec

rationale management problems of the thesis (Section 1.2). A functional model describes the
system’s functionality from the user’s point of view (Bruegge and Dutoit, 2010). The specification
includes activities mentioned in the rationale management literature (Section 1.1), practices by
practitioners (Table 3.4), and the tailored Rugby workflows (Section 6.2.5). The tool support
includes features requested by practitioners (Section 3.2.3) and rationale management approaches
with classification and recommendation (Chapter 4).

Section 7.1.1 specifies the task and support for documenting rationale. Section 7.1.2 specifies
the task and support for exploiting the rationale documentation. Section 7.1.3 specifies the task
and support for collaborative, incremental, and rational decision making. Section 7.1.4 specifies
the task and support for the quality assurance of the rationale documentation. Section 7.1.5
specifies the task and support for setting up rationale management.

7.1.1. Rationale Documentation
Figure 7.1 shows the functional model related to rationale documentation, referencing views and
features of ConDec. Developers are an example of different roles because the documentation
support is the same for all the roles contributing to the development, e. g., architects or testers.

ConDec
ConDec

<<extend>>

<<extend>>
<<extend>>

Document Rationale in Jira →
Section 7.3.1, Section 7.3.2

Document Rationale in Git →
Section 7.3.3, Section 7.3.4

Capture Rationale in Chat System
and Export it to Jira → Section 7.3.5

Execute Changes in
Views → Section 7.5.3

Mark Links as
Wrong or Useless

Group Decisions → Section 7.9

Use Recommendation System
and View Nudges → Section 7.6

Use Automatic Text
Classification → Section 7.6.8

Use Quality Checking
→ Section 7.6.4

Use Decision Guidance
→ Section 7.6.6

Use Link Recommendations
→ Section 7.6.7

View Summary of Code Changes
to Make Tacit Decisions
Explicit → Section 7.6.9

Product Owner

Developer

Architect

Tester

Reviewer

Figure 7.1.: Functional model of ConDec’s support for documenting rationale (UML use case
diagram).

Table 7.1 provides the task and support specification for rationale documentation. The system
functions detail the support. Product owners (requirements engineers) elicit, document, change,
and manage requirements for the software. Product owners and developers document decision
knowledge in the issue tracking system Jira. They also discuss decision problems, capture decision
knowledge, and collaboratively make decisions in chat messages. Developers implement the
requirements in code files stored in the version control system git. Thereby, they document
decision knowledge in commit messages and code comments. Product owners and developers
group the decisions to enable targeted access to specific decisions. To support the documentation,
they use recommendation systems and nudging mechanisms.

98

7.1. Requirements

Table 7.1.: Task and support specification for documenting decision knowledge.
Sub-task, Variants, and Problems ConDec Support

Document decision knowledge element
with typical data like description
(epitome), knowledge type, and status.
Change or delete an existing element.
Create or delete links between elements.

Rationale documentation (Section 7.3) and change ex-
ecution (Section 7.5.3): Create decision knowledge element;
Change knowledge element; Delete knowledge element; Link
knowledge elements; Unlink knowledge elements

a Document decision knowledge elements
as entire Jira tickets.

Rationale documentation as entire tickets (Section 7.3.1)

b Document decision knowledge elements
in the text of Jira tickets.

Rationale documentation in description or comments
of tickets (Section 7.3.2)

c Capture decision knowledge elements in
commit messages.

Rationale documentation in commit messages (Sec-
tion 7.3.3): Post a git commit for a Jira ticket into the ticket
comment and automatically add annotated decision knowledge
from the commit message into the knowledge graph

d Document decision knowledge elements
in code comments.

Rationale documentation in code comments (Sec-
tion 7.3.4): Automatically add code files from a git repository
into the knowledge graph; Automatically add and link deci-
sion knowledge from comments in code files into the knowledge
graph

e Discuss decision problems and make deci-
sions in chat.

Rationale documentation in chat messages (Section 7.3.5):
Manually mark text as decision knowledge in Slack and export
it to Jira

f Group decisions to enable targeted access. Decision grouping (Section 7.9)

p1 The decision knowledge documentation
contains mistakes.

Quality checking (Section 7.6.4): Check the quality of knowl-
edge documentation according to definition of done; Enforce
definition of done fulfillment before finishing, e. g., of a work
item or feature branch (Merge check)
Nudging (Section 7.6): Show just-in-time prompts with rec-
ommendations when starting or finishing, show friction and
ambient feedback nudges

p2 Manual documentation is not done
(capture problem).

Automatic text classification (Section 7.6.8)
Decision guidance (Section 7.6.6): Accept or discard solution
recommendations, undo discard
Summarization of source code changes (Section 7.6.9):
Show summarized code changes to nudge the developers in
retrospectively making tacit decisions explicit

p3 Links are not created between related
knowledge elements.

Link recommendation (Section 7.6.7): Accept or discard
link recommendations, undo discard

p4 The knowledge was already documented.
Duplicated documentation can become
inconsistent.

Duplicate detection (Section 7.6.7): Manually resolve dupli-
cate or discard duplicate recommendation, undo discard

p5 The documentation is outdated. Change execution (Section 7.5.3): Change an existing knowl-
edge element instead of deleting it: Improve it by changing its
description or state. A decision is set to the state challenged or
rejected instead of deleting it.

p6 The code changes are tangled, i. e., are
(partly) unrelated to what is written in
the description of the development task,
which hinders exploitation.

Marking links as wrong or useless (Section 7.5.3)
Show probability of correctness of a link between a work item
and a changed file (Section 7.6.9)

99

7. Supporting Continuous Rationale Management with ConDec

7.1.2. Exploitation of Rationale Documentation
Figure 7.2 shows the functional model related to knowledge exploitation, referencing views and
features of ConDec. Developers are an example of different roles using exploitation support.

ConDec
ConDec

<<extend>>

<<include>>

<<include>>

Analyze Change Impacts
→ Section 7.6.5

View Knowledge Graph
to Understand Former
Decisions and Software

Evolution → Section 7.4

Tailor View by Filtering,
Transitive Linking, Specifying

the Level of Detail, or
Navigation → Section 7.5

View Chronology
→ Section 7.4.5

Create Meeting Agenda
(Stand-up Table) with
Decision Knowledge

→ Section 7.10

Read Meeting Proto-
cols with Decision

Knowledge → Section 7.10

Export Knowledge (Man-
ually or Automatically)

for Knowledge Shar-
ing → Section 7.12

Create and Publish Release
Notes with Decision

Knowledge → Section 7.11

Read Release Notes with
Decision Knowledge

→ Section 7.11

The meeting manager can optionally use
the manual export to create the agenda.
The meeting manager can optionally use
the manual export to create the agenda.

Product Owner

Developer

Architect

Tester

Reviewer

Meeting Manager

Release Manager

Figure 7.2.: Functional model of ConDec’s support for exploiting rationale documentation (UML
use case diagram).

Table 7.2 provides the task and support specification for exploiting the rationale documentation.
It distinguishes three sub-tasks. Developers perform the first sub-task. The second and third
sub-tasks are performed by the meeting manager and release manager, respectively. When
developers start working on a project, they must understand the decisions made in the past to
make new decisions consistently. They must know the major decisions that shaped the evolution
of the software and the related requirements, rationale, and code. To understand former decisions
and software evolution, developers use the views on the knowledge graph, particularly the
chronology view. They read meeting protocols and release notes, including decision knowledge.
Developers analyze the impact of the changes to estimate the effort required to accomplish the
change, make decisions consistent with former decisions, and keep the documented knowledge
consistent. Developers inform other stakeholders about decisions and the problems to be solved for
knowledge sharing and to support collaborative decision making. They use ConDec’s functionality
for manual or automatic knowledge export. The release manager creates and publishes release
notes at the end of a sprint or for an event-based release, including decision knowledge relevant
to the release. The meeting manager creates an agenda, including a stand-up table with relevant
decision knowledge to prepare for the meeting.

100

7.1. Requirements

Table 7.2.: Task and support specification for the exploitation of the knowledge documentation.
Sub-task, Variants, and Problems ConDec Support

1 Exploit the knowledge documentation, for
example, to understand former decisions
and evolution history for a project.

Knowledge graph views (Section 7.4): Show evolution of
knowledge over time as chronology (Section 7.4.5)
Features for view tailoring (Section 7.5): Filter knowledge
graph; Exploit transitive links; Specify the level of detail; Navi-
gate between elements

1a Analyze the impact that it has to change
a knowledge element.

Change impact analysis (Section 7.6.5): Color nodes in the
views on the knowledge graph according to the likelihood that
the change impacts them; Explain impact value

1b Read meeting protocols, including explicit
decision knowledge.

Stand-up table with decision knowledge (Section 7.10)

1c Read the release notes, including explicit
decision knowledge.

Release notes with decision knowledge (Section 7.11):
Show release notes; Filter release notes

1d Share decision knowledge. Inform other
stakeholders about recently made deci-
sions and open issues to be solved.

Knowledge export (Section 7.12)
Rationale information channel in chat system: Post open
issues and recently made decisions into chat

2 Create a meeting agenda for a stand-up
meeting, sprint review, or another meet-
ing with recently made decisions and is-
sues to be solved.

Stand-up table with decision knowledge (Section 7.10):
Import decision knowledge into a meeting agenda as a stand-up
table

3 Create and publish release notes at the
end of a sprint

Release notes with decision knowledge (Section 7.11)

7.1.3. Decision Making
Documenting and exploiting the rationale described in the previous sections benefits decision
making because the decision knowledge is made explicit, which helps its reflection and discussion.
This section specifies additional support for collaborative, incremental, and rational decision
making. Figure 7.3 shows the functional model related to decision making, referencing views and
features of ConDec. Developers are an example of different roles using decision-making support.
Table 7.3 provides the task and support specification for collaborative, incremental, and rational
decision making. While eliciting and implementing requirements, the developers solve decision
problems by considering solution options, weighing them against criteria, and choosing an option
as the decision. The developers use non-functional requirements as decision-making criteria.
Non-functional requirements describe user-level requirements not directly related to functionality
(Bruegge and Dutoit, 2010). A quality requirement demands that a quality attribute is present
in the software. Quality attributes include maintainability, security, performance efficiency,
compatibility, usability, reliability, or portability (ISO/IEC 25010, 2011). A constraint limits
the solution space beyond what is necessary to fulfill the functional and quality requirements
(Pohl and Rupp, 2016). Constraints are also called pseudo requirements and can relate to
implementation, interface, operations, packaging, and legal aspects (Bruegge and Dutoit, 2010).
Non-functional requirements include quality requirements and constraints. To support the
decision making, developers use the decision guidance recommendation system. The developers
discuss open issues and challenged decisions listed in the rationale backlog. During meetings,
the developers discuss open issues and recently made decisions using the stand-up table. The
meeting manager guides the discussion and is also the reporter who logs the meeting minutes
and captures the decision knowledge. ConDec provides nudging mechanisms to indicate open
issues, challenged decisions, and recommendations to accept or discard.

101

7. Supporting Continuous Rationale Management with ConDec

ConDec
ConDec

<<include>>

<<include>>

<<include>>

<<include>>

<<include>>

<<include>>

View Knowledge Graph for
Decision Making → Section 7.4

Tailor View by Filtering,
Transitive Linking, Specify-
ing the Level of Detail, or
Navigation → Section 7.5

Document rationale incrementally
→ Section 7.3, Section 7.5.3

View Nudges
→ Section 7.6

Assess Solution Options against
Criteria → Section 7.4.4

Use Decision Guidance to Find New
Solution Options → Section 7.6.6

Discuss Open Issues and
Challenged Decisions in

Rationale Backlog → Section 7.7

Discuss Open Issues and Recently
Made Decisions in Meetings Using

Stand-up Table → Section 7.10

Product Owner

Developer

Architect

Tester

Reviewer

Manager

Figure 7.3.: Functional model of ConDec’s support for decision making (UML use case diagram).

Table 7.3.: Task and support specification for collaborative, incremental, and rational decision
making.

Sub-task, Variants, and Problems ConDec Support

Solve a decision problem by considering
possible solution options, weighing them
against criteria, and choosing the optimal
option as the decision (rational decision
making). Capture the decision knowledge
incrementally.

Knowledge graph views (Section 7.4) and features for
tailoring (Section 7.5): Show criteria matrix (Section 7.4.4)
Rationale documentation (Section 7.3) and change
execution (Section 7.5.3): Incrementally document rationale
Nudging (Section 7.6.2): Color unresolved decision problems

a Already made decisions can be challenged.
They need further discussion and might
be rejected.

Nudging (Section 7.6.2): Color challenged decisions in the
views on the knowledge graph

b Decisions can be rejected, and alterna-
tives can be discarded, which means that
the developers no longer need to focus on
them during decision making.

Nudging (Section 7.6.2): Gray out rejected decisions and
discarded alternatives in the views on the knowledge graph

p1 Developers do not know which decision
problems are unsolved and do not discuss
solution options collaboratively.

Rationale backlog (Section 7.7): Show unsolved issues and
challenged decisions for collaborative discussion
Stand-up table with decision knowledge (Section 7.10):
Show unsolved issues, challenged decisions, and recently made
decisions in meeting agenda for collaborative discussion

p2 Developers do not know all the solution
options and anchor on the first solution
option that comes to mind. They do not
make optimal decisions.

Decision guidance (Section 7.6.6): Recommend solution op-
tions for a decision problem (issue); Calculate a confidence score
for recommended solution options and sort them according to
this score; Accept recommended solution option; Discard/reject
recommended solution option; Show all discarded recommenda-
tions; Undo the discarding of a recommended solution option
Nudging (Section 7.6.2): Indicate recommendations

102

7.1. Requirements

7.1.4. Quality Assurance

The documentation support in Section 7.1.1 introduced the recommendation systems and
nudging mechanisms to support high-quality documentation during the development. This
section introduces the support for the rationale manager and reviewer roles. Figure 7.4 shows
the functional model related to quality assurance of rationale documentation, referencing views
and features of ConDec. Table 7.4 provides the task and support specification for the quality
assurance of the rationale documentation. The rationale manager and reviewers check and
maintain the quality of the documented decision knowledge and other knowledge to be of high
quality according to the definition of done. Reviewers conduct code reviews to check if the code

ConDec
ConDec

<<include>>

<<include>>

<<include>>

<<include>>

<<include>>

View Rationale Back-
log → Section 7.7

View Knowledge Dash-
board → Section 7.8

Inspect Knowledge Subgraph
for a Work Item, Requirement,

Code File, or Other Knowl-
edge Element → Section 7.4

Tailor View by Filtering,
Transitive Linking, Specifying

the Level of Detail, or
Navigation → Section 7.5

Find Knowledge Elements
Violating the Definition
of Done → Section 7.6.4

View Nudges
→ Section 7.6

Reviewer

Rationale Manager

Figure 7.4.: Functional model of ConDec’s support for the quality assurance of rationale docu-
mentation (UML use case diagram).

Table 7.4.: Task and support specification for the quality assurance of the documented knowledge.
Sub-task, Variants, and Problems ConDec Support

Assure that developers correctly docu-
ment rationale in the context of require-
ments, code, and other artifacts.

Quality checking (Section 7.6.4): Check the quality of knowl-
edge documentation according to definition of done
Knowledge dashboard (Section 7.8): Show general metrics,
intra-rationale completeness, rationale coverage, metrics for the
decision types, and feature branch-related metrics
Knowledge graph views (Section 7.4)

a Check a subset of the documented knowl-
edge or documented for a specific knowl-
edge element.

Features for view tailoring (Section 7.5): Filter knowledge
graph; Exploit transitive links; Specify the level of detail; Navi-
gate between elements; Filter dashboard (Section 7.8.6)

p The decision knowledge documentation
contains quality problems.

Rationale backlog (Section 7.7): Show requirements, code
files, and rationale elements violating the definition of done
Nudging (Section 7.6): Color knowledge elements violating the
definition of done; Show just-in-time prompts with knowledge
elements violating the definition of done
Integrated navigation (Section 7.5.5, Section 7.8.6): Nav-
igate from plots in the dashboard to knowledge element to
improve the documentation; Create work item for improvement

103

7. Supporting Continuous Rationale Management with ConDec

and the knowledge documentation that another developer created for a specific development
task or requirement are complete and consistent. The rationale manager inspects the rationale
documentation from a global point of view for the entire project. The reviewer inspects the
rationale documentation for a single development task, merge request, or requirement.

7.1.5. Setting Up Rationale Management

Table 7.5 provides the task and support specification, and Figure 7.5 shows the functional model
for setting up rationale management, referencing configuration features of ConDec.

Table 7.5.: Task and support specification for setting up rationale management.
Sub-task, Variants, and Problems ConDec Support

Define how developers should capture,
manage, and exploit rationale.

Enable or disable the plug-in for a Jira project

a Define which types of decision knowl-
edge/rationale and which link/edge/re-
lationship types should be documented
by the developers.

Configure rationale model; Configure criteria in the criteria
matrix/decision table (quality requirements or constraints)

b Define where developers should document
decision knowledge/rationale.

Documentation in Jira ticket description and comments is pos-
sible by default; Enable or disable whether decision knowledge
elements can be documented as entire Jira tickets; Configure
decision knowledge extraction from git (commit messages and
code comments)

p1 Developers are reluctant to capture deci-
sion knowledge. The coverage of require-
ments and code with documented decision
knowledge is low. Parts of the decision
knowledge might be missing (e. g., only
the issue is captured, not the decision).

Configuration of quality checking (Section 7.6.4, Fig-
ure 7.24): Configure definition of done for the knowledge docu-
mentation, including the configuration of nudging mechanisms;
Enable or disable enforcement of rationale completeness in pull
requests

p2 Developers implicitly capture decision
knowledge in natural language text but
do not explicitly mark it as such. The de-
cision knowledge is hard to exploit when
only captured implicitly.

Configuration of automatic text classification (Sec-
tion 7.6.8): Enable or disable text classifier to identify decision
knowledge elements in the text; Train classifier

p3 Developers might not know all solution
options and anchor on the first solution
option that comes to their mind. They
might make sub-optimal decisions.

Configuration of decision guidance (Section 7.6.6): Config-
ure solution option recommendation from external knowledge
sources, including the configuration of nudging mechanisms

p4 Developers do not know the knowledge
elements documented by others or in the
past. Thus, they do not link new to ex-
isting elements or document duplicates.

Configuration of link recommendation and duplicate
detection (Section 7.6.7): Configure linking support and du-
plicate detection, including the configuration of nudging mech-
anisms

p5 Developers are not aware of the impact of
their changes and introduce inconsistency.

Configuration of change impact analysis (Section 7.6.5):
Configure support for change impact analysis by setting default
values for rules

p6 Developers do not know the decision
knowledge documented by others and
thus do not use it.

Configuration of knowledge export (Section 7.12): Config-
ure automatic knowledge export to external system/stakehold-
ers for knowledge sharing
Configuration of release notes with decision knowledge
(Section 7.11): Configure semi-automatic release notes creation

104

7.2. Design of ConDec

The rationale manager sets up rationale management for the project. For this purpose, the
rationale manager defines the decision knowledge types, link types, documentation locations, the
definition of done, the support through recommendation systems, and how the developers should
share their knowledge, e. g., through automatic knowledge export and release notes.

ConDec
ConDec

Configure Rationale Model

Configure Quality Checking → Section 7.6.4

Configure Automatic Text Classification → Section 7.6.8

Configure Decision Guidance → Section 7.6.6

Configure Link Recommendation and
Duplicate Detection → Section 7.6.7

Configure Change Impact Analysis → Section 7.6.5

Configure Automatic Knowledge Export → Section 7.12

Configure Release Notes → Section 7.11

Rationale Manager

Figure 7.5.: Functional model of ConDec’s support for setting up rationale management (UML
use case diagram).

7.2. Design of ConDec

Software development activities include requirements elicitation, analysis, system design, object
design, implementation, and testing (Bruegge and Dutoit, 2010). The ConRat knowledge model
(Section 6.1), life cycle model (Section 6.2), and the functional models in the previous section
are products of the requirements elicitation and analysis. This section provides an overview
of the system and object design of ConDec. System design starts with defining design goals,
which include performance, dependability, cost, maintenance, and end-user criteria (Bruegge and
Dutoit, 2010). The technical design goal of the thesis is to support rationale management with
low intrusiveness (Chapter 5), and it constrains ConDec’s system design. From the system design
perspective, design goals are to reduce the deployment cost, i. e., the cost of installing the system
and training the users, and to achieve usability and high performance. ConDec is open source
and must thus only integrate freely available, open-source components. The development and
maintenance costs must be low since developers are involved for a limited time or voluntarily.

To address the design goals of low deployment cost and high usability (i. e., low intrusiveness),
ConDec integrates into multiple standard development tools or systems rather than providing a
standalone tool. Figure 7.6 shows a component diagram of the ConDec plug-ins. The ConDec
plug-ins are subsystems of ConDec. They have interfaces to the underlying development tools or
systems and each other. Every component represents one ConDec plug-in. ConDec consists of
ConDec Jira as an extension for an issue tracking system, ConDec Bitbucket as an extension for a
web-based git-client, ConDec Eclipse and ConDec VSCode as extensions for integrated development
environments, ConDec Confluence as an extension for a wiki system, and ConDec Slack as an
extension for a chat system. The ConDec Integrated Development Environment component is
abstract and realized both through ConDec Eclipse and ConDec VSCode. Figure 7.6 includes
the Git Version Control System component because developers can document decision knowledge

105

7. Supporting Continuous Rationale Management with ConDec

ConDec JiraConDec Jira

Git Version Control SystemGit Version Control System

ConDec BitbucketConDec Bitbucket ConDec Integrated Development EnvironmentConDec Integrated Development Environment

ConDec EclipseConDec Eclipse ConDec VSCodeConDec VSCode

ConDec ConfluenceConDec Confluence

ConDec SlackConDec Slack

Rational Documentation as Tickets

Rationale Documentation in Ticket Text

Knowledge Visualization

Filtering and Searching

Nudging and Recommendations

Rationale Backlog

Knowledge Dashboard

Decision Grouping

Release Notes with Rationale

Knowledge Export

Rationale Documentation in Code

Rationale Documentation in Commit

Rationale View in Merge Request

Merge Check

Navigation to Rationale for Code Stand-Up Table with Rationale

Rationale Capture and Export to Jira

Rationale Information Channel

JGit

Git Commands

Knowledge Exploitation Decision Knowledge Documentation

Figure 7.6.: ConDec plug-ins and the features they offer as classes (UML component diagram).

using every git client in commit messages and every editor in code comments. The ConDec Jira
plug-in accesses git via the JGit library. The ConDec Bitbucket plug-in and the plug-ins for the
integrated development environments also access git via Git Commands (Chacon and Straub,
2014). The classes in the components represent the features specified in Section 7.1.

The following paragraphs present issues and decisions related to system design, object design,
and implementation. The remainder of this chapter also contains decisions for the design
of particular features. The decisions in the thesis only provide an overview and often omit
alternatives and justification for simplification. The decision knowledge documentation of
ConDec is available in Appendix A.

Which development systems and tools should ConDec integrate into? Deciding which tools
to integrate ConDec into is a hardware/software mapping issue (Bruegge and Dutoit, 2010). As
already answered above, ConDec integrates into Jira, Bitbucket, Eclipse, VSCode, Confluence,
and Slack, using git as the version control system. ConDec integrates into these tools because
they are standard development tools practitioners use (Chapter 3). However, other development
tools exist that ConDec should extend in the future, e. g., the IntelliJ development environment
or GitHub and GitLab as web-based git-clients.

How to distribute the views and features among ConDec plug-ins? Section 7.1 derived
features of ConDec from the rationale management activities and problems. During system
design, it needs to be decided which of the ConDec plug-ins offers which feature. A trade-off exists
between the design goals of high usability and low development and maintenance costs. From the
ConDec users’ view, accessing the same features directly within their development tools would
be usable. For example, they could directly use ConDec’s comprehensive knowledge visualization
in the wiki system, integrated development environment, and issue tracking system. However,
implementing the features redundantly in multiple tools is costly. ConDec avoids redundancy
and integrates most features into the issue tracking system through ConDec Jira (Figure 7.6).

106

https://www.eclipse.org/jgit

7.2. Design of ConDec

Some features are integrated into the other plug-ins because they would not make sense in the
issue tracking system. For instance, the ConDec Confluence plug-in integrates the Stand-Up Table
with Rationale for meetings into the wiki because meeting protocols are managed there in practice.
All ConDec plug-ins let the user navigate to the Knowledge Visualization in Jira. The navigation
functionality is part of many features. For example, the Stand-Up Table with Rationale lets the
user navigate to the documentation location of the knowledge elements. The ConDec Jira plug-in
offers services for Knowledge Exploitation and Decision Knowledge Documentation. The other
ConDec plug-ins use these services.

Where to persist and how to synchronize knowledge from different locations? This issue is
a data management issue (Bruegge and Dutoit, 2010). ConDec uses Jira and git as the central
decision knowledge repositories so that the decision knowledge can easily be traced from and
to requirements and code. Decision knowledge from other locations, such as chat messages, is
exported to Jira and then maintained there—close to and traceable from the requirements and
code. An alternative would be integrating decision knowledge captured in chat messages, wiki
pages, pull requests, and other distributed locations directly into the knowledge graph without
exporting it to Jira. However, this would require storing trace links between different systems
in a separate database table. Setting up this new database table would contradict the system
design goals of low deployment, development, and maintenance costs.

How to persist decision knowledge captured in Jira ticket text? This issue is also a data
management issue. To enable the explicit capturing of decision knowledge in the description
and comments of Jira tickets and their linking with other knowledge elements, the ConDec Jira
plug-in introduces two new database tables for knowledge elements and links managed through
object-relational mapping. The database table for knowledge elements stores their start and end
positions in the Jira ticket text. The database tables to capture decision knowledge in Jira ticket
text are lightweight because they manage data within an individual system rather than across
systems. They do not require additional deployment costs.

How to represent the knowledge graph of requirements, code, rationale, and other artifacts?
This issue is an object design issue (Bruegge and Dutoit, 2010). The knowledge graph is
represented with the jGraphT library, as also done by Carrillo and Capilla (2018). Next to the
data structure, the jGraphT library offers graph algorithms. For instance, ConDec uses the
algorithm for finding the shortest path for transitive linking. An alternative to jGraphT is the
guava library, which was discarded because it does not offer algorithms. The knowledge graph
is a singleton object and is only updated by changes, e. g., when a new element is added. The
alternative would be to recreate the entire knowledge graph for every user interaction, which
is inefficient and leads to long response times. Recreation would contradict the design goal of
high performance. For graph visualization, ConDec uses the jsTree, treant, vis.js network, vis.js
timeline, and Apache ECharts JavaScript libraries as they are open source.

How can the knowledge be exchanged between the ConDec plug-ins? This issue is also an
object design issue addressing the interfaces between the ConDec plug-ins. REpresentational State
Transfer (REST) Application Programming Interfaces (APIs) are extensively used throughout
all the plug-ins for communication. The ConDec Eclipse plug-in uses the Jira REST Java client
library to access Jira’s REST API. The ConDec Jira plug-in offers a REST API to document
and access decision knowledge. For example, this REST API is used in the ConDec Slack plug-in
to export decision knowledge elements from Slack to Jira.

107

https://jgrapht.org
https://github.com/google/guava
https://www.jstree.com
http://fperucic.github.io/treant-js
https://visjs.org
https://visjs.org
https://visjs.org
https://echarts.apache.org

7. Supporting Continuous Rationale Management with ConDec

How to create and maintain the links defined in the ConRat knowledge model? This issue
is also an object design issue. The ConRat knowledge model is an application domain model
(Figure 6.1). During system and object design, it needs to be refined and translated into the
solution domain (Bruegge and Dutoit, 2010). In ConDec, associations can be established between
all types of knowledge elements in the knowledge graph to support flexible linking. The developers
can manually link knowledge elements, but ConDec also offers mechanisms for automatic link
creation and maintenance: 1) ConDec automatically links tickets in Jira with code in git if the
code was changed in a commit that contains the ticket identifier in its commit message. ConDec
maintains the links based on recent changes when calling the git fetch command. 2) ConDec
automatically links decision knowledge elements documented in Jira ticket text (description or
comments), commit messages, and code comments to related elements. For example, ConDec
automatically links a decision problem to the respective ticket it was documented in. It links the
solution options to the decision problem and arguments to solution options according to their
sequential order in the text. Association types between solution options can be the following
as suggested by Kruchten (2004): enables, constrains, forbids, comprises, subsumes, overrides,
conflicts with, and relates (Section 2.2.4). In addition, pro-arguments support solution options,
whereas con-arguments attack solution options. The rationale manager can add custom element
types and link types, which makes the knowledge model flexible.

Which programming languages to choose? This issue is an implementation issue. The
programming languages for implementing ConDec are constrained by the respective plug-in
frameworks underlying each ConDec plug-in. Due to the constraints, the ConDec plug-ins are
mainly written in Java, JavaScript, and other languages for web development.

7.3. Rationale Documentation in Various Locations

ConDec supports developers in documenting decision knowledge in different documentation loca-
tions. This enables developers to document decision knowledge within their current development
context. Developers document decision knowledge when they 1) capture it, i. e., write it down, 2)
annotate it, and 3) link it to other knowledge elements in the knowledge graph. This section
introduces four documentation locations supported by ConDec: entire tickets (Section 7.3.1),
description and comments of tickets (Section 7.3.2), commit messages (Section 7.3.3), and code
comments (Section 7.3.4). These documentation locations enable decisions to be traced to
requirements and other tickets in the issue tracking system and code in the version control system
and can be used interchangeably. As specified in the ConRat knowledge model (Section 6.1),
trace links between tickets and code exist, and tickets are linked. Because of the traceability, it
is only a minor difference whether a decision is documented within the issue tracking system or
version control system. In either location, the decision can be accessed from the requirement.
Section 7.3.5 presents that ConDec also supports capturing decision knowledge in chat messages
and outlines other locations currently not implemented.

7.3.1. Entire Tickets

Like requirements, work items, or bug reports, developers can document rationale elements as
Jira tickets with particular types for issues, alternatives, arguments, and decisions. Figure 7.7
shows the ticket types available in a Jira project. Arguments documented as entire tickets are
unpositioned if they are not linked. An unpositioned argument becomes a pro- or a con-argument
if it is linked to a solution option (alternative or decision) with the link type supports or attacks.

108

7.3. Rationale Documentation in Various Locations

Figure 7.7.: Left: Jira ticket types available in a project. The four lower types are for rationale
elements. Right: Decision knowledge captured in the description of a work item.

7.3.2. Description and Comments of Tickets

Developers can annotate text in Jira tickets, such as in requirements and work items, as decision
knowledge elements to make the decision knowledge explicit. The developers can annotate text
parts as decision knowledge elements in two ways: 1) They can use a markup syntax, e. g.,
{decision} ... {decision}. This markup syntax is similar to other built-in annotations offered
by Jira. 2) They can annotate the sentences containing the decision knowledge elements with the
decision knowledge icons similar to Alkadhi et al. (2017a) and Alkadhi (2018) in chat messages.
Figure 7.7 shows a work item with decision knowledge captured in its description.

7.3.3. Commit Messages

In commit messages in git, developers can annotate text parts as decision knowledge elements
using a markup syntax, e. g., [decision] ... [/decision]. Commit messages are different from
the other three documentation locations as they are permanent. They could be changed using
reword rebasing, but this should not be done for commits that exist in the remote repository

Figure 7.8.: Commit message with explicit decision knowledge that ConDec automatically tran-
scribed into a Jira ticket comment.

109

https://github.com/cures-hub/cures-condec-jira/commit/c828dae348404a7731db402ca73d1834238bd399

7. Supporting Continuous Rationale Management with ConDec

and that people may have based work on (Chacon and Straub, 2014). To enable changing and
annotating commits retrospectively, ConDec transcribes, i. e., posts commit messages into Jira
ticket comments. For every commit message, ConDec creates a new comment for the Jira ticket
mentioned in the commit message. Developers can annotate the text and improve the decision
knowledge documentation in the Jira ticket comment. Figure 7.8 shows an example of a decision
captured in a commit message of the ConDec Jira plug-in.

7.3.4. Code Comments

In code comments, developers annotate text parts as decision knowledge elements using a
Javadoc-like syntax, e. g., @decision, in the integrated development environment (Hesse et al.,
2015; Hesse, 2020). Figure 7.9 shows an issue discussed in the comment of a Java method
and displays the resulting excerpt of the knowledge graph with the code file being the selected
knowledge element. This issue is taken from the ConDec project. Developers can document
decision knowledge in code through annotations in all integrated development environments.

/**
* @issue Who should be the author of the new

Jira ticket comment that a commit messages
was posted into?

* @decision The user "GIT -COMMIT -COMMENTATOR"
creates the Jira ticket comment that a
commit messages was posted into!

* @pro It is clear that the comment originated
from a commit message.

* @alternative The user that opens the Jira
ticket could be the creator of the Jira
ticket comment that a commit messages was
posted into.

* @con It would be confusing to users if they
see that they posted something that they
did not write.

* @alternative The git user could be the
creator of the Jira ticket comment that a
commit messages was posted into.

* @con Git user names can be different to Jira
user names and it is hard to match them.

*/
private ApplicationUser getUser () {

Figure 7.9.: Left: Decision knowledge captured in a code comment using annotations in the
class CommitMessageToCommentTranscriber of the ConDec project.
Right: Node-link tree diagram with the class being the root knowledge element.

7.3.5. Chat Messages, Wiki Pages, and Pull Requests

The ConDec Slack plug-in enables developers to annotate chat messages with decision knowledge
icons (Alkadhi et al., 2017a; Alkadhi, 2018) and to export the decision knowledge to Jira so that
it can be accessed from tickets and code. After the developers annotate a message, a chatbot
supports them in integrating the decision knowledge into the knowledge graph. The developers
choose whether they want to add the decision knowledge from Slack as a comment to an existing
Jira ticket (Section 7.3.2) or whether they want to create a new Jira ticket (Section 7.3.1).
Similarly, the developers could apply decision annotations in other CSE artifacts (Table 3.4),
e. g., in pull requests or wiki pages.

110

https://github.com/cures-hub/cures-condec-jira/blob/master/src/main/java/de/uhd/ifi/se/decision/management/jira/git/CommitMessageToCommentTranscriber.java

7.4. Views on the Knowledge Graph

7.4. Views on the Knowledge Graph

An instance of the ConRat knowledge model is called a knowledge graph (Section 6.1). ConDec
provides seven different views (V1 – V7) on the knowledge graph, which are common views for
graphs in software visualization: Section 7.4.1 presents the node-link diagram. Section 7.4.2
introduces tree views. Section 7.4.3 presents list views. Section 7.4.4 shows matrix views.
Section 7.4.5 presents the chronology view. Section 7.4.6 introduces metrics views. Section 7.4.7
presents knowledge element detail views. The views usually show only a part of a project’s
knowledge graph data structure, called knowledge subgraph.

7.4.1. Node-Link Diagram (V1)

ConDec visualizes the knowledge (sub-)graph as a node-link diagram. Figure 7.10 shows an
example of a node-link diagram of a realistic, yet rather small knowledge subgraph. The node-
link diagram shows an epic, six user stories, code, and decision knowledge elements. This
visualization illustrates the problem of a high amount of distributed knowledge by showing that
knowledge tends to become complex. In the knowledge subgraph, code files are linked to work
items, and the work items are linked to user stories. In Figure 7.10, work items are omitted for
simplification, and code files are transitively linked to user stories. ConDec explicitly presents
the decision knowledge elements in addition to the requirements.

Figure 7.10.: Node-link diagram (V1) showing the context of the epic Search Processing in the
center. The subgraph shows user stories, code, and decision knowledge traceable
from the epic in a link distance of 3 in the knowledge graph. Transitive links
between user stories and code replace filtered-out work items (development tasks).

7.4.2. Knowledge Tree View (V2)

ConDec visualizes knowledge subgraphs as a tree starting from a selected knowledge element as the
root. ConDec provides two different visualizations: indented outline (V2ind) and node-link tree
diagram (V2nld). Figure 7.11 shows an indented outline starting from a user story. Figure 7.12
shows a node-link tree diagram starting from a decision problem (issue).

Knowledge graphs can contain cycles. These cycles need to be removed when converting the
graph into a tree by duplicating knowledge elements in the tree views. Figure 7.16 shows an
example where a cycle is established because the solution option Standard Parser for the issue
Which Solr query should we use? has two con-arguments linked to the same quality requirement.

111

7. Supporting Continuous Rationale Management with ConDec

Figure 7.11.: Knowledge tree view (V2ind) with a user story being the root element. The user
story is linked to an epic (E), work items (WI), and decision knowledge. Decision
knowledge is indirectly connected to the user story via the link to the work item.

Figure 7.12.: Knowledge tree view (V2nld) starting from a decision problem (issue). The decision
problem is linked to a user story. The user story is also linked to further knowledge
elements, but the subtree is collapsed.

112

7.4. Views on the Knowledge Graph

7.4.3. List View (V3)

ConDec visualizes (parts of) the knowledge graph as a list of knowledge elements. The list
view can be integrated as a stand-up table into meeting agendas in the wiki using the ConDec
Confluence plug-in so that developers can discuss recently made decisions and open decision
problems during meetings (Section 7.10). The ConDec Bitbucket plug-in lists the issues and
decisions related to a feature branch within the pull request view. ConDec supports the creation
of release notes, including explicit decision knowledge for knowledge sharing (Section 7.11).
Besides, ConDec offers a dedicated view for the knowledge in git, which lists commits, code files,
and decision knowledge documented in commit messages and code comments (Figure 7.13).

Figure 7.13.: View on knowledge in git for a specific Jira ticket highlighting quality problems to
nudge the developers to improve the quality.

7.4.4. Adjacency and Criteria Matrix View (V4)

ConDec visualizes (parts of) the knowledge graph as an adjacency matrix. For decision problems,
ConDec shows the solution options, arguments, and criteria as a criteria matrix. Figure 7.14
shows an adjacency matrix (V4adj) for decision knowledge elements. A matrix cell is colored if
a directed link exists from a knowledge element in the row to another element in the column.
Link type colors are fixed for default link types such as attacks (red) and supports (green). To
allow adaptable link types, such as Epic-Story Link, ConDec uses the hash value of the link type
names as the color. However, these colors are sometimes hard to distinguish.

Figure 7.15 shows a criteria matrix (V4cri) for a decision problem. This view visualizes criteria
used during decision making as columns. Criteria can be quality requirements or constraints
such as the implementation effort. Developers can then use the node-link diagram (V1) or tree
view (V2) to see all decisions that support or attack a certain quality requirement (Figure 7.16).

113

https://github.com/cures-hub/cures-condec-confluence
https://github.com/cures-hub/cures-condec-confluence
https://github.com/cures-hub/cures-condec-bitbucket

7. Supporting Continuous Rationale Management with ConDec

Figure 7.14.: Adjacency matrix view (V4adj) for a decision problem. The matrix cells are
colored if there is a directed link (direction matters). The color indicates the
link/relationship/edge type in the knowledge graph.

Figure 7.15.: Criteria matrix view (V4cri) for a decision problem, including solution options
(alternative and the decision), arguments, and criteria.

Figure 7.16.: Left: Knowledge tree view (V2ind) for decision knowledge linked to a quality
requirement, which was one criterion for decision making in Figure 7.15.
Right: Metrics view (V6) box plot to present the number of comments per Jira
ticket and pie chart to give an overview where rationale elements are documented.

114

7.4. Views on the Knowledge Graph

7.4.5. Chronology View (V5)
ConDec visualizes the knowledge elements of the knowledge graph in chronological order depending
on their creation time or time of last change/update. Figure 7.17 shows decisions documented at
the beginning of the ISE 20/21 case study project in chronological order. The chronology view
can also plot other knowledge elements at their creation date or last update, e. g., requirements,
code files, or other rationale elements. Filters specify if the elements are placed on a specific date
(as shown in Figure 7.17) or range from their creation date to the last update of the last update.

Figure 7.17.: Chronology view (V5) of decisions made at the beginning of the ISE 20/21 case
study project. The x-axis shows the documentation date of the decisions. On the
y-axis, the decisions are grouped according to the developers (anonymized) who
documented them. Filtering criteria are shown at the top.

7.4.6. Metrics View (V6)
ConDec visualizes metrics calculated on the knowledge graph data structure in a dashboard, e. g.,
using pie charts and box plots. Figure 7.16 shows a box plot and a pie chart as an excerpt of
the ConDec dashboard. The metrics help to assess the documentation quality or are merely
informative to provide an overview of the amount of knowledge in a project.

7.4.7. Detail View of Knowledge Element (V7)
The detail view shows a specific knowledge element with its attributes. Attributes include the
author, description, status, time of creation, and last update. For detail views, the developers
use the views of the tools that ConDec extends, e. g., the Jira ticket view (Figure 7.7) or the
code editor of the integrated development environment.

115

7. Supporting Continuous Rationale Management with ConDec

7.5. Features of the Knowledge Graph Views
ConDec allows adapting the views on the knowledge graph through filtering, interaction, and
highlighting. This section describes the basic features (F1 – F5): Section 7.5.1 describes filtering
functionality. Section 7.5.2 presents transitive linking as a special filtering introduced by ConDec.
Section 7.5.3 describes possibilities for change execution. Section 7.5.4 presents possibilities to
specify the level of detail. Section 7.5.5 presents the navigation functionality.

Table 7.6.: Features (F1 – F5) available in knowledge graph views (V1 – V7). The knowledge
graph views include and highlight the results of recommendation systems (RS).

View/Feature Filte
rin

g,
F1

Tran
sit

ive
lin

kin
g,

F2

Cha
ng

e ex
ecu

tio
n,

F3

Sp
eci

fyi
ng

lev
el

of
de

tai
l, F4

Nav
iga

tio
n,

F5

Qua
lity

hig
hli

gh
tin

g,
RS1

Cha
ng

e im
pa

ct
hig

hli
gh

tin
g,

RS2

Node-link diagram, V1 ✓ ✓ ✓ ✓ ✓ ✓ ✓

Tree, V2 ✓ ✓ ✓ ✓ ✓ ✓ ✓

List, V3 ✓ ✓ ✓ ✗ ✓ ✓ ✓

Adjacency matrix, V4adj ✓ ✓ ✓ ✗ ✓ ✓ ✓

Criteria matrix, V4cri ✓ ✗ ✓ ✗ ✓ ✓ ✗

Chronology, V5 ✓ ✗ ✓ ✓ ✓ ✓ ✗

Metrics, V6 ✓ ✓ ✗ ✓ ✓ ✓ ✗

Detail, V7 ✗ ✗ ✓ ✗ ✗ ✓ ✗

The features are must-be features in software visualization, except for transitive linking, a
new feature useful for distributed knowledge documentation. Section 7.6 will introduce nudging
mechanisms and recommendation systems. Developers see the results of the recommendation
systems in the knowledge graph views. ConDec highlights quality problems and change impacts
through colors. The goal was to support the same features in all views so that the developers do
not have to change their working context for knowledge management. However, differences exist
due to the nature of the view (Table 7.6). For example, developers cannot perform changes in
metrics plots because metrics plots report measurement results.

7.5.1. Filtering (F1)
Developers filter the knowledge graph using various filter criteria. For instance, filter criteria
are the knowledge type, status (e. g., resolved, unresolved, decided, rejected), documentation
location (Jira ticket, Jira ticket text, commit message, code comment), number of hops/link
distance, node degree (min and max number of links), textual content, time, and decision types.
These basic filtering possibilities are the same for all views that show more than one element,
but some views provide additional filter criteria, e. g., the chronology view (V5). Figure 7.11,
Figure 7.17, and Figure 7.19 show filtering possibilities.

116

7.5. Features of the Knowledge Graph Views

7.5.2. Transitive Linking (F2)
Developers exploit transitive links between knowledge elements. For example, they examine all
decisions made in the context of an epic. The decisions can be documented in user stories,
work items, commit messages, and code files traceable from the epic. Figure 7.18, Figure 7.10,
and Figure 7.19 illustrate filtering of knowledge elements combined with transitive linking.
ConDec only creates new transitive links for unconnected elements. The transitive links in the
knowledge graph do not necessarily create a transitive closure (Figure 7.18). Algorithm 1 shows
the pseudocode of the transitive linking. Transitive linking is supported in all views, except for
V5 and V7 because they show no links.

:Feature

issue1 : Issue
documentationLocation

= “issue tracking system”

decision1 : Decision
documentationLocation

= “issue tracking system”

concerns

:Feature Task

issue2 : Issue
documentationLocation

= “issue tracking system”

decision2 : Decision
documentationLocation

= “issue tracking system”

concerns

:Commit

issue3 : Issue
documentationLocation
= “commit message”

decision3 : Decision
documentationLocation
= “commit message”

concerns

:Code

issue4 : Issue
documentationLocation

= “code comment”

decision4 : Decision
documentationLocation

= “code comment”

concerns

refers
to

refers
to

transitive

transitive

transitive

(no transitive closure
because issue4 is already
traceable via the code file)

✗

Figure 7.18.: Schematic illustration of transitive linking (UML object diagram). The faint
knowledge elements and links are filtered out. The transitive links replace filtered-
out elements. The dashed line indicates a link necessary to create a transitive closure,
which ConDec does not create because all the elements are already traceable.

Algorithm 1: Replacing filtered-out knowledge elements on graph path with transitive links.
Input: graph, selectedElement, linkDistance, filterCriteria
Result: filtered graph in that filtered-out knowledge elements (nodes/vertices) are replaced with transitive links

(edges/relationships)
1 singleSourcePaths ← findAllShortestPaths(graph, selectedElement, linkDistance) // find all shortest paths starting

from the selected element in the unfiltered knowledge graph within link distance using Dijkstra
2 filteredGraph ← createFilteredGraphThatMatchesFilterCriteria(graph, filterCriteria) // filter knowledge graph

according to filter criteria, e. g., element type, status, documentation location, node degree, decision type
3 for element : filteredGraph.vertexSet() do // iterate over the remaining elements in the filtered graph
4 path ← singleSourcePaths.getPathTo(element) // get path in the unfiltered knowledge graph
5 lastUnfilteredElementOnPath ← selectedElement // remember visited element on path that is not filtered out
6 for elementOnPath : path.getVertexList() do // iterate over elements on the path in the unfiltered graph
7 if !filteredGraph.vertexSet().contains(elementOnPath) then // element on the former path is filtered out
8 continue // keep on walking along the path until we find an element not filtered out
9 else // the element on the former path is still existing in filtered graph

10 if !filteredGraph.containsEdge(lastUnfilteredElementOnPath, elementOnPath) then // no link yet?
11 transitiveLink ← new Link(lastUnfilteredElementOnPath, elementOnPath, LinkType.TRANSITIVE)
12 filteredGraph.addEdge(transitiveLink) // add new transitive link between elements on same path

13 lastUnfilteredElementOnPath = elementOnPath // remember visited element on path not filtered out

117

7. Supporting Continuous Rationale Management with ConDec

7.5.3. Change Execution (F3)
Developers create, update, and delete knowledge elements and links within the views of the
knowledge graph. To maintain high-quality knowledge documentation, developers must correctly
document the knowledge elements and links. They can add new decisions for implementing a
requirement using a context menu as shown in Figure 7.19. The context menu lets developers
change the type of a rationale element, for example, to pick an alternative as the decision.
ConDec automatically changes the annotations if the decision knowledge element is documented
in the text. The following paragraphs detail the functionalities of the change execution feature.

Figure 7.19.: Epic with decision problems (issues) and decisions transitively linked to the epic
within the link distance 7 in the knowledge graph data structure. Filtering possibil-
ities and the context menu are shown.

Linking Developers link decision knowledge elements to other knowledge elements to be accessed
within the knowledge graph. Explicit decision knowledge elements are nodes in the knowledge
graph that can only be accessed from other nodes (knowledge elements) if they are linked. For
this purpose, ConDec supports manual linking between all knowledge elements. The developers
can add and delete links, as well as update link types using drag and drop or by clicking a matrix
cell (V4). Some visualization libraries such as vis.js offer additional manipulation possibilities.

Attribute Assignment to Elements Developers add, update, and delete attributes for knowledge
elements. Similar to requirements, rationale elements have attributes for metadata. For example,
attributes can be the state, e. g., idea, decided, rejected (Section 6.1.2), or a decision type
(Section 7.9). ConDec stores attributes for text parts via object-relational mapping.

118

https://visjs.org

7.6. Nudging Mechanisms and Recommendation Systems

Marking Links as Wrong or Useless Developers mark links that are wrong or useless during
knowledge exploitation. Trace links between Jira tickets and code can be wrong (Hübner and
Paech, 2020). A reason for wrong links can be that a commit linked to a Jira ticket contains
tangled changes (Herzig and Zeller, 2013). Tangled changes are unrelated changes. For instance,
a commit linked to a feature task for improving a specific feature is tangled if it also contains
a bug fix for a different feature. Tao and Kim (2015) empirically found that 29 % of commits
in four open source projects were tangled, i. e., leading to wrong links. Wrong links hinder
the exploitation of the knowledge graph in change impact analysis or in using transitive links.
ConDec enables developers to mark links as wrong as follows: If developers delete a link that
involves a code file, ConDec sets the type of the link to wrong instead of completely deleting it.
Otherwise, the links would be recreated when ConDec creates the knowledge graph. In the same
way, developers can mark useless transitive links as wrong. In Figure 7.19, the issue How shall
we implement pagination? is transitively linked to the epic Search Processing but is unrelated
and, thus, marked as wrong. Links marked as wrong are filtered-out, i. e., not shown in the views
on the knowledge graph, and not traversed during change impact analysis and transitive linking.

7.5.4. Specifying the Level of Detail (F4)

Developers change the level of detail to either understand the big picture (e. g., how knowledge
elements relate to each other) or to see details (e. g., a summary of a particular knowledge
element). The node-link diagram (V1) and chronology view (V5) allow specifying the level
of detail by zooming in and out. Besides, parts of the view can be collapsed in the node-link
diagram (V1), tree (V2, Figure 7.12), and metrics (V6) views.

7.5.5. Navigation (F5)

Developers navigate to other parts of the knowledge graph and different knowledge graph views. For
example, the navigation is enabled through the context menu (Figure 7.19), through hyperlinks
on user interface elements, such as menu items and matrix headers (V4), or by clicking on data
points in the metrics plots (V6). ConDec also provides extensions for integrated development
environments (Eclipse and Visual Studio Code) that enable to navigate from code files to the
knowledge graph views in Jira with the code file being the selected element.

7.6. Nudging Mechanisms and Recommendation Systems

This section describes three nudging mechanisms (N1 – N3) and six recommendation systems
(RS1 – RS6) for rationale management. They are combined into one section because recommen-
dation systems typically involve nudging mechanisms, and recommendations can be seen as a
nudging mechanism themselves (Jesse and Jannach, 2021). ConDec’s nudging mechanisms and
recommendation systems are inspired by the approaches identified in the systematic mapping
study (Chapter 4) and practitioners’ request for automation (Section 3.2.3).

The integration of capturing possibilities and views on the documented knowledge in the
developers’ tools motivates them to perform rationale management because they are frequently
presented with the knowledge documentation. Knowledge graph views enable tailored access to
the part of knowledge related to the requirements or code that developers work on. Developers
can spot quality problems, e. g., inconsistency and incompleteness, and improve the knowledge
documentation without changing their working context in a low-intrusive way. Nevertheless,
the documentation of decision knowledge is still a task that developers must manually perform.
Furthermore, developers make decisions in a naturalistic way (Zannier et al., 2007; Hesse et al.,
2016b) and can be subject to cognitive biases (Section 2.2.2). When influenced by cognitive

119

https://github.com/cures-hub/cures-condec-eclipse
https://github.com/cures-hub/cures-condec-vscode

7. Supporting Continuous Rationale Management with ConDec

biases, developers might not pick the best solution to a decision problem but cling to the solution
that comes first to their mind (Razavian et al., 2016; Razavian et al., 2023). In addition, the
decision documentation is hard to understand for others if alternatives and arguments are missing.
Thus, continuous rationale management can benefit from 1) a further reduction of manual
documentation work and 2) support to overcome cognitive biases if potentially harmful, such as
anchoring, and 3) exploiting cognitive biases, such as the status-quo bias.

The term nudging was introduced by Thaler and Sunstein (2008). Nudging means to alter
people’s behaviors in predictable ways by subtly changing the choice architecture. The concept
of nudging originates from behavioral economics but is also used in human-computer interaction.
Nudging mechanisms—or short nudges—aim to guide the “users towards desired choices and
behaviors”. Nudging mechanisms can help developers to adopt software engineering activities
(C. Brown, 2019). Caraban et al. present a framework for technology-mediated nudging that
contains 23 distinct nudging mechanisms grouped into six categories (Caraban et al., 2019; 2020).

Section 7.6.1 presents facilitate nudges. Section 7.6.2 describes ambient feedback and friction
nudges. Section 7.6.3 presents just-in-time prompts. Section 7.6.4 describes quality checking. Sec-
tion 7.6.5 presents change impact analysis. Section 7.6.6 describes decision guidance. Section 7.6.7
presents link recommendation and duplicate detection. Section 7.6.8 describes automatic text
classification. Section 7.6.9 introduces the summarization of source code changes.

7.6.1. Facilitate Nudges (N1)

ConDec offers several nudging mechanisms to reduce the effort for tool usage. It implements
default options and opt-out policies as facilitate nudges. They are motivated by the observation
that humans generally take the path of least resistance, which leads to the status-quo bias
(Caraban et al., 2019). An example of the default options nudge in ConDec is the following: A
new issue has the state unresolved per default. ConDec automatically changes the state of the
issue to resolved if a decision is linked to the issue. Opt-out policies can be found throughout the
configuration features of ConDec. For instance, the decision guidance from DBPedia (RS3) is
activated per default but could be deactivated by the rationale manager.

Figure 7.20.: Decision guidance view with three recommendations generated from DBPedia. The
colored menu items indicate whether action is needed.

120

7.6. Nudging Mechanisms and Recommendation Systems

7.6.2. Ambient Feedback and Friction Nudges (N2)

ConDec colors graphical user interface elements, such as menu items, according to the number
of recommendations that have not been accepted or discarded by the developers. The ambient
feedback and friction nudging mechanism indicates if recommendations regarding rationale
management exist and motivates the developers to consider the recommendations. Figure 7.20
shows colored menu items of four recommendation systems: Quality checking (RS1), decision
guidance (RS3), link recommendation and duplicate recognition (RS4), and automatic text
classification (RS5). For quality checking, no recommendations exist if the definition of done
is fulfilled. For the other recommendation systems, all recommendations must be accepted or
discarded by the developers. If there are no recommendations, menu items are colored green
to give ambient feedback. If there are many recommendations, menu items are colored red, and
if there are a few, menu items are colored orange. This is a way to create friction to nudge
the developers to take action. Besides, ConDec highlights the knowledge elements violating the
definition of done with red text in the knowledge graph views to indicate quality problems (RS1).

7.6.3. Just-in-Time Prompts (N3)

ConDec shows a just-in-time prompt to the developers when they change the state of a Jira ticket,
e. g., when they start or finish a requirement. Figure 7.21 shows a just-in-time prompt with
recommendations generated by the following recommendation systems: Quality checking (RS1),
decision guidance (RS3), link recommendation and duplicate recognition (RS4), and automatic
text classification (RS5). The rationale manager can activate or deactivate the events for that
just-in-time prompts are shown. The events are activated per default for opt-out nudging (N1).

Figure 7.21.: Just-in-time prompt (N3) showing the status of the quality check (RS1), decision
guidance (RS3), link recommendation (RS4), and text classification (RS5).

121

7. Supporting Continuous Rationale Management with ConDec

7.6.4. Quality Checking (RS1)
ConDec checks if the knowledge documentation fulfills the definition of done. Developers see which
knowledge elements violate or fulfill the definition of done. If the definition of done is not fulfilled,
they see which definition of done criteria are violated. ConDec implements the definition of
done for knowledge documentation (Section 6.2.2). It supports and partly automates reviewing
the rationale documentation demanded in ConRat. ConDec checks whether the definition of
done is fulfilled for knowledge elements in the knowledge graph and visualizes the check results
to trigger developers to improve the quality.

Figure 7.22.: Quality check view showing the quality check results for the selected decision. The
decision and the linked knowledge elements fulfill the definition of done.

ConDec displays the result of the quality checking in six ways to confront the developers
with the quality often and to nudge improvements: 1) ConDec displays the result of the quality
checking in the quality check view accessible from every knowledge element in the knowledge
graph (Figure 7.22). The menu item to access the quality check view is colored in green if the
definition of done is fulfilled, orange if some but not all definition of done criteria are fulfilled, or
red if no definition of done criterion is fulfilled. 2) ConDec highlights the knowledge elements that

Figure 7.23.: Knowledge tree view (V2ind) with knowledge elements violating the definition of
done and quality highlighting. The decision problem (issue) is colored in red because
it is unresolved, i. e., a decision needs to be made. The alternative is colored in red
because no arguments are linked, i. e., a criterion for intra-rationale completeness is
violated (as indicated by the tooltip). Three work items (WI) and one code file
(searchHandler.ts) are colored red because their decision coverage is too low.

122

7.6. Nudging Mechanisms and Recommendation Systems

violate the definition of done with red text within the knowledge graph views (Figure 7.23) to
indicate quality problems. Tooltips explain which definition of done criteria are violated. ConDec
indicates quality problems through text coloring in the node-link diagram, tree, list, matrix,
and chronology views (V1 – V5). 3) ConDec displays the result of the quality checking in a
just-in-time prompt (N3, Section 7.6.3) that is shown during status changes, e. g., when finishing
a requirement (Figure 7.21). 4) ConDec offers the rationale backlog, which is a dedicated view
for knowledge elements that violate the definition of done (Section 7.7). 5) ConDec displays
the result of the quality checking in metric plots in the knowledge dashboard (Section 7.8).
6) ConDec offers the merge-check in pull requests (Figure 5.2): The developers can only accept
a pull request if the linked knowledge fulfills the definition of done.

ConDec checks the fulfillment of the following criteria automatically: 1) ConDec checks the
criteria of the intra-rationale completeness for decision knowledge elements, e. g., if a pro-argument
is linked to the decision. The rationale manager can configure the criteria of intra-rationale
completeness. 2) ConDec checks the decision coverage for every knowledge element, i. e., if a
minimum number of decisions is traceable within a certain link distance in the knowledge graph.
The rationale manager can configure the required number of decisions and the maximum link
distance. 3) ConDec checks the assignment to decision types (Section 7.9). 4) It checks specific
aspects (number of lines of code, test code) for code files. 5) ConDec also propagates definition
of done violations to neighbor elements in the knowledge graph to motivate the developers to
improve the legacy knowledge documentation. If a neighbor knowledge element of the checked
element violates the definition of done, the checked element will also violate the definition of
done. Figure 7.24 shows the view to configure the criteria for the definition of done.

Figure 7.24.: Configuration view for the definition of done for the knowledge documentation.

7.6.5. Change Impact Analysis (RS2)

ConDec recommends knowledge elements impacted by a change. When changing a knowledge
element, developers see which other elements need to be changed. The systematic mapping study
(Chapter 4) contributed consistency support that goes beyond the integration of decisions with
other artifacts and knowledge visualization. ConDec implements parts of this consistency support

123

7. Supporting Continuous Rationale Management with ConDec

in the recommendation system for change impact analysis. ConDec focuses on lightweight decision
capturing in informal communication channels and does not currently support integrating decisions
with architectural component models. For this reason, ConDec does not support consistency
between decisions and architectural component models through constraints as suggested by
Lytra et al. (2015). Change impact analysis is “the activity of identifying what to modify to
accomplish a change, or of identifying the potential consequences of a change” (Arnold and
Bohner, 1993). ConDec recommends knowledge elements affected by a change and thus helps
identify potential consequences of a change. The node-link diagram, tree, list, and matrix views
(V1 – V4) can be used for change impact analysis since these knowledge graph views show linked
knowledge elements. That means that the knowledge graph views support the developers to
make new decisions consistent with the requirements, code, and former decisions. The knowledge
element(s) selected by the developer form the starting impact set, i. e., the input for change
impact analysis. The other knowledge elements in the knowledge graph view form the estimated
impact set. Besides, ConDec colors the knowledge elements in these views according to their
estimated impact value, i. e., to the likelihood that they are affected by a change in the starting
impact set (Figure 7.25). Darker elements have a high estimated impact value, whereas bright
elements have a low impact value. Developers can see an explanation for the impact value on
each knowledge element via a tooltip.

Figure 7.25.: Indented outline (V2ind) with change impact highlighting. Issues and decisions are
shown that a change in the root element (starting impact set) might impact. The
color indicates the likelihood of change impacts: A change probably impacts darker
elements more. The tooltip explains the estimated impact value.

The change impact analysis is traceability- and rule-based. The rules are inspired by the rules
of automatic linking identified in the systematic mapping study (Chapter 4). For instance, a rule
is that a higher impact value is assigned to the knowledge elements that are textually similar
to those in the starting impact set. Another rule is that the relationship type between two
knowledge elements influences the change propagation as inspired by Carrillo and Capilla (2018).
For example, relationships with the type enables are stable, whereas constrains relationships
are unstable. The following decisions of the ConDec project illustrate the different stability:

ConDec integrates the vis.js library! enables ConDec visualizes the knowledge graph as a
node-link diagram! If we changed the library decision from vis.js to D3.js, the enabled decision
would be unaffected since ConDec could still visualize node-link diagrams. In contrast, constrains
relationships are unstable, as illustrated by the following decisions: ConDec is implemented with
the JavaScript programming language! constrains ConDec integrates JavaScript visualization
libraries, such as vis.js! If we decided on a different programming language, the second decision
would be affected since ConDec could no longer integrate JavaScript libraries. Thus, the estimated
impact value is higher for constrains than for enables relationships.

124

7.6. Nudging Mechanisms and Recommendation Systems

7.6.6. Decision Guidance (RS3)
ConDec recommends solution options for decision problems from external knowledge sources.
Anchoring means that developers give undue weight to experiences, information, or ideas and
may restrict them from arriving at a more appropriate design solution (Razavian et al., 2023).
The decision guidance recommendation system addresses the anchoring bias by presenting
developers with solution options that they might not have considered. External knowledge
sources can be DBPedia (Bhat et al., 2017a) or the decision knowledge documentation of other
software development projects (Zimmermann et al., 2015). Figure 7.20 shows the decision
guidance view with three recommendations generated from DBPedia for the decision problem

Which framework should we use for the web crawler? The developers can accept or discard
the recommendations. ConDec adds the solution option and arguments to the knowledge graph
if they accept a recommendation. The score represents the predicted relevance of how likely the
developers are to accept the recommendation and is used for ranking.

7.6.7. Link Recommendation and Duplicate Detection (RS4)
ConDec recommends new links between knowledge elements and tries to identify duplicated
knowledge elements. For example, ConDec recommends potentially relevant decisions for a
requirement from the same project. The developers can accept or discard the recommendations.
If they accept a recommendation, the respective knowledge elements get linked. ConDec offers
a view for link recommendation and duplicate detection (Figure 7.26). Besides, developers see
the link recommendations directly in the knowledge graph views, linked with the recommended
link type. The example in Figure 7.26 shows two issues In which file format do we export the
team data? and In which file format do we export the player data? that have the duplicated
decision We export it as a .csv file! If the developers decide to support a different export
format than .csv files for both team and player data they would need to change both decisions.
To avoid inconsistency, the duplicated decisions must be merged into one decision.

Figure 7.26.: Link recommendation view showing link recommendations and a potential duplicate
marked with the x for a decision problem.

This feature identifies related knowledge elements using the context information of knowledge
elements as done by Miesbauer and Weinreich (2012).

7.6.8. Automatic Text Classification (RS5)
ConDec predicts whether the textual parts in the Jira ticket description, comments, or commit
messages are relevant decision knowledge elements, and—if yes—it annotates the parts accordingly.
Automatic text classification generates extractive summaries of the text that developers wrote
by identifying the decision knowledge in the text. It supports the developers in formalizing
informally captured decision knowledge.

125

7. Supporting Continuous Rationale Management with ConDec

ConDec implements the respective approach identified in Chapter 4. Section 10.3 will compare
the effectiveness of work on automatic text classification. ConDec’s automatic text classification is
mainly inspired by Automated Rationale ExtrAction from Communication arTifacts (A-REACT)
by Alkadhi (2018), which has been shown to be effective for developers’ conversations.

This section describes the functionalities for the automatic identification of rationale and their
integration into the development process. Then, it introduces the ground truth used for training
and evaluation, the preprocessing, the classifiers, and implementation details. Lastly, it illustrates
the usage of ConDec’s automatic text classification in a scenario.

Functionalities of ConDec’s Automatic Text Classification to Identify Rationale

The following paragraphs describe the functionalities of ConDec’s automatic text classification.

Automatic Annotation The classifier predicts whether the textual parts in the Jira ticket
description, comments, or commit messages are relevant decision knowledge elements, and—if
yes—it annotates the parts accordingly. The classifier supports developers in making decision
knowledge elements explicit, i. e., it automates the annotation. ConDec automatically annotates
the text of the Jira ticket description and comments when developers save textual changes.
ConDec does not automatically classify code comments because they are unlikely to be used as
locations for natural language discussions. Automatic annotation is part of daily development.
Besides, it can be applied retrospectively to existing projects.

Easy Training Developers train the classifier on training data from other projects and the decision
knowledge documented for their current development project. The text classifier is supervised,
i. e., it needs training data to learn how to make predictions. ConDec provides a default training
file to classify text of new or existing projects without explicit rationale management. The
training is performed in Jira. Online training is possible, i. e., newly documented knowledge
elements are directly used for training. Besides, developers can create training data files from
their development projects and import and export them. The preprocessing is automatically
performed.

Easy Evaluation Developers evaluate the classifier on the data of their current development
project or other projects. The evaluation is directly possible in Jira. The training data can also
be used for evaluation but split via k-fold cross validation.

Figure 7.27.: Text classification view with three sentences not yet manually approved/validated.

126

7.6. Nudging Mechanisms and Recommendation Systems

Manual Approval Developers manually approve the classification result, i. e., developers decide
whether the annotations are correct. Developers validate the classification result, edit it, or set a
text part that ConDec wrongly classified as decision knowledge (false positive) as irrelevant. For
this purpose, ConDec offers a view for text classification (Figure 7.27). The text classification
view shows whether there are recommendations regarding the text classification to be approved
by the developers. The manual approval of classified text parts is important to determine which
text parts can be used as training and evaluation data, i. e., as the ground truth. Only the text
parts correctly annotated or identified as irrelevant are used as the ground truth.

Ground Truth Data

The ground truth, also called gold standard, consists of text parts with correct annotations. It
is required for training and evaluating the text classifier. The text parts are either relevant
decision knowledge elements or irrelevant. Each text part is associated with a binary and a
fine-grained label for its relevance and decision knowledge type, respectively. Five types are
distinguished: issue, decision, alternative, pro-, and con-argument. As one preprocessing step
for the classification is sentence splitting, the text classifier predicts new classifications (labels)
for single sentences. However, the developer could manually annotate sub-sentences or multiple
sentences as one decision knowledge element. Then, the respective training data entry, i. e., the
text part, consists of a sub-sentence or multiple sentences. Table 7.7 shows a subset of the default
training data in the ConDec Jira plug-in.

Table 7.7.: Binary and fine-grained labeled text parts in ConDec’s default training data.
Binary Label Fine-grained Label Text Part (Sentence)

Irrelevant - Here’s a small screenshot of the current state.
Relevant Issue (Decision Problem) What configuration possibilities should users have?
Relevant Decision (Solution) We decided to allow the following configuration . . .
Relevant Alternative The user could configure the classifier algorithm.
Relevant Pro This will improve the performance.
Relevant Con I think this may confuse the user.

The text parts in the training data are taken from Jira ticket text (description and comments),
commit messages, and code comments. Code comments only contribute relevant decision
knowledge elements. One decision problem in ConDec is how to deal with text parts from
different documentation locations: Should ConDec use the same classification model for Jira
ticket text and commit messages? ConDec treats the documentation locations equally for
simplification. In the future, it needs to be evaluated whether two different classifiers for Jira
ticket text and commit messages would perform better than one unique classifier.

Preprocessing

ConDec uses the following preprocessing steps: 1) sentence splitting, 2) conversion of sentences
to lowercase, 3) tokenizing, 4) vector representation of words via Global Vectors for Word Repre-
sentation (GloVe), 5) n-gram generation (with n=3). These preprocessing steps are commonly
applied in Natural Language Processing (NLP) applications for requirements engineering (Zhao
et al., 2020) except for step 4: GloVe aims to represent the semantics of words (Pennington et al.,
2014) and is similar to Word2Vec (Zhao et al., 2020). The conversion of words into numerical
vectors is necessary for the machine learning classifier to work with them. An alternative tech-
nique for converting words to vectors is Term Frequency-Inverse Document Frequency (TF-IDF),

127

7. Supporting Continuous Rationale Management with ConDec

as used in A-REACT by Alkadhi (2018). ConDec uses GloVe instead of TF-IDF because GloVe
enables online learning more easily than TF-IDF. Before online learning, the changed ground
truth would require the recalculation of TF-IDF, while GloVe is independent of the words in the
ground truth. ConDec does not apply stemming and stop-word removal because the words in
GloVe are not stemmed and because stop words might be important parts of rationale (Rogers
et al., 2015; Alkadhi, 2018; Li et al., 2020).

Classifiers and ConDec Implementation

ConDec uses two classifiers in a row, as done by Alkadhi (2018): one for binary predictions and
one for fine-grained predictions. If the binary classifier predicts a sentence as relevant, it serves
as the input for the fine-grained classifier. ConDec integrates the Statistical Machine Intelligence
and Learning Engine (SMILE) library because SMILE is implemented in Java and provides
online-learning capabilities. For the preprocessing, ConDec uses the SMILE NLP component.
ConDec offers a settings page for automatic text classification to train and evaluate the binary and
fine-grained classifiers. ConDec allows to choose the machine learning algorithm, e. g., Logistic
Regression, Naïve Bayes, and Support Vector Machine (SVM). For the fine-grained Logistic
Regression classifier, ConDec implements Multinomial Logistic Regression. For the fine-grained
Naïve Bayes and SVM classifiers, ConDec implements the one-versus-one strategy to reduce the
problem of multiclass classification to multiple binary classification problems.

Example for Explicit Rationale Automatically Identified by ConDec

The following decision problem was solved for the implementation of the text classifier: Which
library should we choose to implement the classifier? This decision problem could be documented
in each of the four documentation locations in the issue tracking system or version control system
(Section 7.3). Figure 7.28 shows that it is documented in a Jira ticket comment of the requirement

1

2

3

4

5

Figure 7.28.: Left: Decision knowledge captured in the comments of a requirement in Jira. 1 is
a commit message that ConDec automatically transcribed into the new comment.
Right: Knowledge tree visualization (V2nld) with the requirement 2 being the
root element. The subtree 3 on the right shows decision knowledge documented
for a later development task. The decision 4 replaces the former decision 5 .

128

https://haifengl.github.io
https://haifengl.github.io

7.6. Nudging Mechanisms and Recommendation Systems

Automatically identify decision knowledge within the text of Jira issues (Figure 7.28- 2). The
discussion on how to solve this decision problem is scattered in further comments and a commit
message (Figure 7.28- 1) for the requirement as well as in a linked development task (Figure 7.28-
3). ConDec automatically classified, i. e., annotated the decision knowledge elements in the
discussions, and the developers manually approved, i. e., validated them. The state of the
first decision (Figure 7.28- 5) is rejected as it was replaced by a new decision (Figure 7.28- 4)
documented during the implementation of the development task.

Figure 7.29 shows a different tree view than in Figure 7.28. The developers filtered this view
to see decisions and their arguments concerning the requirement. ConDec supports feature F2
by enabling to replace filtered-out knowledge elements with transitive links (Section 7.5.2).

Figure 7.29.: Filtered knowledge tree visualization (V2ind) for the requirement so that only the
decisions and their arguments are shown. The rejected decision is colored in gray.

7.6.9. Summarization of Source Code Changes (RS6)

ConDec presents summarized source code changes to nudge developers in making tacit decisions
explicit. Many decisions remain tacit. They are not captured anywhere but are already
incorporated into the software. By presenting abstractive summaries, ConDec aims to trigger
developers in making tacit decisions explicit, i. e., in reconstructing decision knowledge. When
developers finish a ticket, ConDec posts a summary of source code changes into a new ticket
comment. Besides, ConDec offers a view for the code summary related to a knowledge element
developers can access throughout their work (Figure 7.30). ConDec extracts change sets for

Figure 7.30.: Left: Context menu to access the code summary view showing correct linkage
probability. Right: Code files linked to the Jira ticket with a probability that a
file is correctly linked.

129

7. Supporting Continuous Rationale Management with ConDec

the commits linked to a feature task by comparing the code before and after the changes and
lists the code files in the change set (Figure 7.30, right). These change sets are the basis for
generating more advanced abstractive summaries, e. g., as suggested by Cortés-Coy et al. (2014).

To suggest meaningful abstractive summaries, it is essential that developers only commit
small changes—instead of code bombs (Tao and Kim, 2015). CSE supports this since it involves
techniques for work breakdown and encourages developers to commit changes often and merge
branches (Krusche et al., 2014). In addition, code changes must be atomic (untangled) only to
address the respective feature task. ConDec offers a mechanism to detect wrong links through
tangled code changes, similar to Dias et al. (2015). ConDec support feature F3 by enabling the
developers to mark links as wrong (Section 7.5.3).

7.7. Rationale Backlog

ConDec implements the concept of the rationale backlog described in Section 6.2.3. The rationale
backlog contains the knowledge graph views with special filtering. It shows open decision
problems for which a decision still needs to be made or documented, challenged decisions, and
all knowledge elements that violate the definition of done. Figure 7.31 shows an example of
the rationale backlog. The red text color indicates that action for improvement is needed as
a nudging mechanism (N2). In the example in Figure 7.31, all knowledge elements violate
the definition of done. However, there are cases in which the subgraphs on the right contain
knowledge elements fulfilling the definition of done, which would have black text color. Next to

Figure 7.31.: Rationale backlog listing knowledge elements violating the definition of done on the
left side. The right side shows the context of an issue in the node-link tree diagram
(V2nld).

rationale elements, ConDec also shows other knowledge elements, e. g., requirements, work items,
and code files, that violate the definition of done in the rationale backlog. These other knowledge
elements are part of the rationale backlog if they 1) fall below the minimum required decision
coverage or 2) are linked to any other knowledge element that violates the definition of done.
ConDec propagates definition of done violations to neighbor elements in the knowledge graph
to increase the developers’ awareness of quality problems. These are differences between the
rationale backlog of ConDec to the decision backlogs suggested in the literature (Section 6.2.3).

130

7.8. Knowledge Dashboard

7.8. Knowledge Dashboard

ConDec presents metrics calculated on the knowledge graph data structure in a knowledge
dashboard. The rationale manager uses the metrics to evaluate the quality of documentation or
to get an overview of the documented knowledge, and to assess the developers’ engagement in
documenting rationale. The dashboard consists of five dashboard items: Section 7.8.1 presents
the rationale coverage. Section 7.8.2 presents the intra-rationale completeness. Section 7.8.3
provides other general metrics. Section 7.8.4 presents metrics on decision knowledge documented
in the version control system. Section 7.8.5 provides the dashboard item for decision types.
Section 7.8.6 describes the filtering and navigation functionality.

7.8.1. Dashboard Item for Rationale Coverage

The dashboard item for rationale coverage shows the coverage of requirements, code, and other
software artifacts with issues and decisions as introduced in Section 6.2.1. For example, this
dashboard item shows how many decisions are traceable from a requirement or a code file within
a certain link distance in the knowledge graph (Figure 7.32).

Figure 7.32.: Rationale coverage dashboard item showing the issue coverage and decision coverage
using boxplots and pie charts.

7.8.2. Dashboard Item for Intra-Rationale Completeness

The dashboard item for intra-rationale completeness presents metrics regarding the intra-rationale
completeness as introduced in Section 6.2.1 (Figure 7.33) to answer the following questions:
a) How many issues are solved by a decision? How many issues are not solved by a decision? b) For
how many decisions is the issue documented? For how many decisions is no issues documented?
c) How many decisions have at least one pro-argument documented? How many decisions have no
pro-arguments documented? d) How many decisions have at least one con-argument documented?
How many decisions have no con-arguments documented? e) How many alternatives have at least
one pro-argument documented? How many alternatives have no pro-arguments documented?
f) How many alternatives have at least one con-argument documented? How many alternatives
have no con-arguments documented? The metrics plots either help to find incomplete elements
or are merely informative. Merely informative metrics are the number of decisions with and
without con-arguments (d) and alternatives with and without pro-arguments (e).

131

7. Supporting Continuous Rationale Management with ConDec

Figure 7.33.: Intra-rationale completeness dashboard item showing the metrics using pie charts.

7.8.3. Dashboard Item for General Metrics

The dashboard item for general metrics gives an overview of the amount of knowledge and
supports assessing the traceability between tickets and code and the fulfillment of the definition of
done. The dashboard item presents the following metrics (Figure 7.34): a) Number of comments
per Jira ticket. b) Number of commits per Jira ticket. c) Number of linked Jira tickets per code
file (via commits with a ticket key in the commit message), number of unlinked code files that are
not traceable from Jira tickets. The metric helps to find code files and tickets with missing trace
links, which hinders knowledge exploitation. d) Number of Lines of Code (LOC) per code file
and the total number of lines of code. e) Number of code files and requirements in the project.
f) Number of rationale elements per documentation location. g) Number of comments with and
without decision knowledge. h) Number of decision knowledge elements per decision knowledge

Figure 7.34.: General metrics dashboard item showing metrics using boxplots and pie charts.

132

7.8. Knowledge Dashboard

type. i) Number of knowledge elements fulfilling and violating the definition of done. The metrics
involving code files work on those files added to the knowledge graph. The rationale manager
can configure which file types (e. g., java, js, ts, . . .) to include in the knowledge graph.

7.8.4. Dashboard Item for Metrics on Rationale in Code, Commits, and Branches

This dashboard item presents metrics on the knowledge documentation related to branches,
code, and commits in the version control system (Figure 7.35). The dashboard item helps the
rationale manager to monitor the rationale documentation on feature branches to ensure that
only high-quality documentation is integrated into the mainline. It also gives an overview of
the amount of knowledge documented in code and commits to assess the acceptance of these
documentation locations. The following metrics are shown: a) Quality status of git branches:
incorrect branches violate the definition of done, branches with the status good fulfill the definition
of done, or branches having no rationale documented in code comments and commit messages.
b) Quality problems in git branches to explain the definition of done violations, e. g., Issue does
not have a valid decision. c) Number of issues in code comments and commit messages of a
branch. d) Number of decisions in code comments and commit messages of a branch. e) Number
of alternatives in code comments and commit messages of a branch. f) Number of pro-arguments
in code comments and commit messages of a branch. g) Number of con-arguments in code
comments and commit messages of a branch. h) Overview of Jira tickets related to git branches.

Figure 7.35.: Dashboard item showing metrics about the knowledge in git.

Figure 7.36.: Dashboard item showing metrics about the decision levels and decision groups.

133

7. Supporting Continuous Rationale Management with ConDec

7.8.5. Dashboard Item for Metrics about Decision Types

This dashboard item presents an overview of the decision types that the decisions documented
within a project belong to (Figure 7.36) to answer the questions Which types of decisions are
documented in the project? How many decisions are documented per decision type? The following
metrics are shown: a) Number of knowledge elements per decision level. b) Number of knowledge
elements per decision group. c) Number of decision groups assigned to the knowledge elements.

7.8.6. Filtering and Navigation from Knowledge Dashboard to Details

ConDec supports feature F1 by allowing filtering in the knowledge dashboard (Section 7.5.1).
ConDec offers and persists filter settings for every dashboard item (Figure 7.37). They filter the
knowledge graph underlying the metrics. For example, the status filter specifies whether issues
are resolved or unresolved. Per default, resolved and unresolved issues are included. Similarly, the
filter settings can be used to specify that the coverage of decisions should only include decisions
with the status decided and no decisions with the status rejected or challenged.

Figure 7.37.: Filter settings for rationale coverage dashboard item.

Figure 7.38.: Navigation dialog with elements violating the definition of done.

134

7.9. Decision Grouping

ConDec supports feature F5 by allowing developers to navigate to the detail views of the
knowledge elements or git branches underlying the metrics (Section 7.5.5). There, developers
can fix violations of the definition of done. The metric plots are interactive, and the developers
can click on data points in the plots. When clicking on a plot, ConDec presents a dialog with
hyperlinks to the detail views of the respective knowledge elements or git branches (Figure 7.38).

7.9. Decision Grouping

To enable targeted access to specific decisions, ConDec enables grouping decisions and related
knowledge elements by one or more decision types, also called decision groups. Developers can
group decisions according to predefined levels high, medium, and realization (Section 2.2.4). They
can also define custom groups, such as executive decisions, quality-driven decisions, functionality-
driven decisions, user interface decisions, and testing decisions. Chapter 9 of the thesis will
introduce and explain a coding scheme for decision types and analyze the decision types used in
practice. Note that the issue tracking system Jira offers a labeling mechanism, enabling grouping
tickets. Differences between the decision grouping of ConDec and the Jira labeling mechanism
are: 1) In ConDec, tickets and decision knowledge elements from various documentation locations,
such as documented in comments and commit messages, can be gathered in decision groups.
Developers can access e. g., a user-interface decision documented in code from a knowledge graph
view in Jira through decision group filtering. 2) The group assignment is inherited within the
decision knowledge. For example, if a developer assigns a decision to the decision group process,
the linked decision problem and alternatives will inherit this group.

Section 7.9.1 describes how developers can assign and filter for decision types in ConDec and
provides an overview of the decision types documented in a project. Section 7.9.2 details quality
checking related to decision types.

7.9.1. Assignment, Filtering, and Overview

ConDec supports feature F3 by allowing developers to assign decision levels and custom groups
using the context menu on a specific knowledge element in a knowledge graph view (Section 7.5.3).
Figure 7.39 shows how a decision and the related rationale to apply a specific git workflow is
classified as a process decision.

Figure 7.39.: ConDec dialog to assign a level and custom groups to a decision.

135

7. Supporting Continuous Rationale Management with ConDec

ConDec supports feature F1 by allowing developers to filter for decision levels and groups
(Section 7.5.1). For example, developers can filter only to see decisions for the user interface or
process decisions (Figure 7.40).

Figure 7.40.: Issues and decisions of user interface (UI) decision group in ISE 2021/22 project.

ConDec offers an overview of a project’s decision levels and decision groups. In this overview,
the developers can rename and delete decision groups via a context menu on group names
(Figure 7.41). They can also navigate to the details of the decisions and change the decision
group/level assignment via a context menu on the decisions. As described in Section 7.8.5,
ConDec also offers a dashboard item for decision levels and groups.

Figure 7.41.: Decision groups overview with context menu to rename or delete a group.

7.9.2. Decision Grouping as a Definition of Done Criterion

The rationale manager can enforce that developers assign decision problems and solution options
to decision types by making the assignment a criterion of the definition of done. Suppose a
decision problem or solution option is not assigned to a decision type. In that case, the quality
check fails, and ConDec highlights the respective element in the knowledge graph views with red
color as means of nudging (Section 7.6.4). The quality check view and the tooltip explain which
criteria of the definition of done are fulfilled or violated (Figure 7.42).

136

7.10. Stand-up Table with Decision Knowledge

Figure 7.42.: Decision problem violating the definition of done since no decision level and no
custom decision group is assigned to it. Developers can see an explanation for the
definition of done violation in the quality check view and the tooltip.

7.10. Stand-up Table with Decision Knowledge
During stand-up meetings, sprint reviews, or other meetings, developers collaboratively discuss
recently made decisions and decision problems that need to be solved. For this purpose, the
ConDec Confluence plug-in enables integrating decision knowledge into meeting agendas. It
enables the meeting manager to filter for decision knowledge to be shown in the meeting agenda.
For example, it enables the meeting manager to filter for decision knowledge created and relevant
for the last sprint. The developers get an overview of which issues need to be solved during the
upcoming sprint and were solved during the last sprint (Figure 7.43).

Figure 7.43.: Stand-up table (V3) as part of a meeting agenda. The open issue is highlighted to
nudge the developers to make and document a decision collaboratively.

7.11. Release Notes with Decision Knowledge
The ConDec Jira plug-in supports the release manager in creating release notes including explicit
rationale semi-automatically (Figure 7.44). The plug-in offers a view for release notes creation,
management, and export. The release manager creates new release notes by choosing a time
range—either manually or by selecting a sprint or release. The plug-in creates the release notes
content including the decision knowledge elements linked to the Jira tickets. The release notes
content is written in a markdown language so that it can be imported into other systems.

137

7. Supporting Continuous Rationale Management with ConDec

Figure 7.44.: Release notes editor with two work items finished during the sprint and the linked
rationale documentation.

7.12. Knowledge Export

For knowledge sharing, ConDec enables exporting decision knowledge and related knowledge
elements, such as requirements, code, and work items. Three export formats are supported:
Word, JavaScript Object Notation (JSON), and Markdown. ConDec supports feature F1 by
enabling to filter the knowledge to be exported using the same filter criteria as in the knowledge
graph views, e. g., by knowledge type, status, and decision types (Section 7.5.1). The user chooses
the export format in the export dialog (Figure 7.45). In addition to the manual export, ConDec
enables the automatic knowledge export. For automatic export, ConDec provides a webhook
sending new or changed decision knowledge to a receiver system via HTTP post requests.

Figure 7.45.: Dialog to export the knowledge subgraph offering the same filter criteria as in the
views on the knowledge graph.

138

7.13. Related Work

7.13. Related Work

This section discusses related tools for the management of decision knowledge. It compares
ConDec with tools found in the systematic mapping study in Chapter 4 and in the literature
overviews by Hesse et al. (2016a), Capilla et al. (2016), Weinreich and Groher (2016), and
Alexeeva et al. (2016). Many other tools focus on documenting architectural design decisions as
they are difficult to change in the future. ConDec allows capturing and visualizing a wide range
of decision types important to practitioners (Table 3.4), including design decisions, requirements
elicitation and prioritization decisions, and decisions related to the development process.

ConDec is inspired by Unicase DecDoc (Hesse et al., 2016a; Hesse, 2020). Both tools, ConDec
and DecDoc, support developers in documenting decision knowledge in a structured, collaborative,
and incremental way based on the Decision Documentation Model. ConDec transfers concepts
from the Eclipse-based research prototype Unicase DecDoc to other widely used tools, such as
the issue tracking system Jira and the wiki Confluence, to fulfill the goal of low intrusiveness.
DecDoc supports capturing distinct decision knowledge elements and implementation decisions as
annotations in the code. ConDec offers features of DecDoc and more features, such as capturing
decision knowledge in commit messages, recommendation systems, and nudging mechanisms.
Thurimella et al. (2017) suggested customizing Jira to support rationale guidelines. The ConDec
Jira plug-in is the first tool to explicitly capture decision knowledge in Jira.

The remainder of the section compares tool support treating the rationale management
problems: Section 7.13.1 compares support treating the problem of intrusiveness and effort.
Section 7.13.2 compares support treating the problem of the high amount of distributed knowledge.
Section 7.13.3 compares support treating the problem of low documentation quality.

7.13.1. Tools for Low-Intrusive, Lightweight Rationale Management

This section discusses related tools supporting rationale management activities with low intru-
siveness. To support low intrusiveness, tool support integrates into standard development tools
rather than providing a standalone tool. For example, SEURAT (Burge and D. C. Brown, 2008b),
Archie (Cleland-Huang et al., 2013), ADvISE (Lytra et al., 2015), and DecDoc (Hesse et al.,
2016a) integrate into Eclipse. The Decision Architect (Manteuffel et al., 2015) and ADMentor
(Zimmermann et al., 2015) integrate into Enterprise Architect. The ADeX tool by Bhat et al.
(2019) retrieves decision knowledge from Jira, GitHub, Microsoft Project, and Enterprise Ar-
chitect. ADeX uses the architecture knowledge management system AMELIE as the central
repository and viewpoint for requirements, architectural elements, and decisions. ConDec uses
Jira and git as repositories for decision knowledge, requirements, and code so that developers are
not required to install a new tool and to enable lightweight tracing of the decision knowledge
from and to requirements and code. Unlike other tools, ConDec integrates into multiple standard
development tools and enables capturing decision knowledge in various locations, such as ticket
comments, commit messages, and code comments. The developers either directly document
decision knowledge in Jira or git or transcribe it there supported by ConDec, e. g., from chat
messages. In addition, ConDec enables access to the documentation from within the various
tools so that the developers do not have to change their development environment. Decision
annotations represent a lightweight approach to mark text as decision knowledge. Hesse et al.
(2015) use decision annotations to capture decision knowledge in code. Alkadhi et al. (2017a)
capture decision knowledge in chat messages using annotations. ConDec also uses decision
annotations in commit messages since empirical evidence exists that commit messages contain
rationale (van der Ven and Bosch, 2013). ConDec combines annotations to important artifacts
like code or commit messages with explicit decision models, as the former ease the capture and
the latter eases the understanding of decisions.

139

7. Supporting Continuous Rationale Management with ConDec

Classification and recommendation approaches reduce the developers’ effort to document
decision knowledge. However, only a few approaches are implemented in development tools, which
hinders their usage (Chapter 4). ConDec is the first tool integrating multiple recommendation
systems and nudging mechanisms into Jira. While most existing approaches apply automatic
text classification retrospectively on a ground truth that researchers created, ConDec integrates
automatic text classification into the daily work in addition to using it retrospectively.

7.13.2. Tools Supporting a High Amount of Distributed Knowledge

This section discusses related tool support for a high amount of distributed knowledge. While
no clear thresholds for what constitutes a high amount exist, documented knowledge tends to
contain many knowledge elements and links. This section discusses related work on decision
knowledge visualization as an essential feature for exploitation. Shahin et al. (2010) provide
an overview of tools that support the visualization of architectural design decisions. Of the 58
approaches systematized by Alexeeva et al. (2016), five focus on the visualization of documented
decisions. ConDec supports targeted access to and comprehensive visualization of decision
knowledge. Table 7.8 compares the ConDec views with views of other tools.

The tool by L. Lee and Kruchten (2008) shows not only a list of elements (V3) but also a list
of relationships. In ConDec, the adjacency matrix and the node-link diagram show relationships.
While the change impact analysis view by L. Lee and Kruchten (2008) is separate, ConDec offers
change impact highlighting as an option in the knowledge graph views.

The Architecture Design Decision Support System (ADDSS) and Decision Architect tools
provide views for the stakeholder involvement. While ADDSS depicts different architecture views
for various stakeholders (Capilla et al., 2010), the Decision Architect shows the actions of the
stakeholders involved in the decision-making process (Manteuffel et al., 2015). ConDec enables
filtering for decisions that specific stakeholders documented, and the chronology view (V5) groups
the decisions documented by stakeholders.

The AMELIE Decision Explorer (ADeX) tool by Bhat et al. (2019) and Bhat (2020) offers
three views currently not supported by ConDec: An expert matrix view depicting the expertise of
architects and developers for architectural elements, an expert recommender view recommending
experts for open issues, an architectural elements view visualizing the relevance of architectural
elements in the project. ADeX shows a quality attributes view listing the number of decisions
per quality attribute. ConDec’s rationale coverage dashboard item (Section 7.8.1) is filterable to
show the number of decisions per quality attribute.

SEURAT offers a quality profile showing the number of occurrences of a specific argument
regarding software quality, which ConDec provides in the knowledge dashboard. SEURAT offers a
requirements traceability matrix that shows solution options and code files linked to requirements.
The ConDec users get the information when selecting a requirement in the node-link diagram,
tree, list, or adjacency matrix view.

The ontology-driven visualization tool by de Boer et al. (2009) offers an effect matrix to display
all solution options that affect a quality requirement. The ConDec users get the information
when they select a quality requirement in either the node-link diagram, tree, list, or adjacency
matrix view. The tool by de Boer et al. (2009) shows the overall negative, respectively positive
effects of a solution option on all quality requirements, using scaled color bars. This helps the
developers to make a decision and could be added to ConDec’s criteria matrix (V4) in the future.

The tools DecDoc (Hesse, 2020), ADeX (Bhat et al., 2019) and ADDSS (Capilla et al., 2010)
enable grouping decisions by their type (also called classification or category). On top, ConDec
offers a comprehensive decision grouping feature that allows targeted access to and managing
decision types (Section 7.9). It is the first tool to support filtering (F1) in combination with
transitive link visualization (F2) to reduce the high amount of knowledge documentation.

140

7.13. Related Work

Table 7.8.: Rationale management tools and their views.

Tool Nod
e-l

ink
, V1

Tree
, V2

List
, V3

Matr
ix,

V4

Chro
no

log
y,

V5

Metr
ics

, V6

Deta
il,

V7

Other Views/Specific Purpose

ConDec ✓ ✓ ✓ ✓ ✓ ✓ ✓ rationale backlog, knowledge
dashboard, change impact
visualization, . . .

Architectural Design Decision Ontology Tool
(L. Lee and Kruchten, 2008)

✓ ✗ ✓ ✗ ✓ ✗ ✓ relationship list, change impact
view

ADDSS (Capilla et al., 2006; Capilla et al.,
2008; Capilla et al., 2010)

✓ ? ✓ ? ✓ ✗ ✓ stakeholder involvement

ADeX (Bhat et al., 2019; Bhat, 2020) ✗ ✗ ✓ ✗ ✗ ✓ ✓ quality attributes, expert matrix,
expert recommender,
architectural elements view

Compendium-based Architectural Design
Decision Tool (Shahin et al., 2010; Shahin

et al., 2011)

✓ ✗ ✗ ✗ ✗ ✗ ✓

DecDoc (Hesse et al., 2016a; Hesse, 2020) ✓ ✓ ✗ ✗ ✗ ✓ ✓

Decision Architect (Manteuffel et al., 2015)
and ADMentor (Zimmermann et al., 2015)

✓ ✓ ✓ ✓ ✓ ✗ ✓ stakeholder involvement,
decision backlog

Ontology-Driven Visualization Tool (de Boer
et al., 2009)

✗ ✓ ✗ ✓ ✗ ✗ ? effect matrix

SEURAT (Burge and D. C. Brown, 2008a;
Burge and D. C. Brown, 2008b)

✗ ✓ ✗ ✓ ✗ ✓ ✓ quality profile, rationale task list,
requirements traceability matrix

Visualizing rationale in context to other knowledge is closely related to traceability visualization.
Filho and Zisman (2017) present the D3TraceView tool, which offers similar views as ConDec
(matrix, list, and tree), but also a radial tree and sunburst view. Bacher et al. (2016) develop
different tree visualizations for source code comprehension, in particular, a circular tree map and
an icicle tree. Kugele and Antkowiak (2016) use the metaphor of an impact city to visualize results
of change impact analysis. Unlike ConDec, these works do not focus on rationale. ConDec’s
views can also be used for general traceability visualization.

ConDec’s views on the knowledge graph represent flexible building blocks tailorable for many
purposes. ConDec adapts the views on the knowledge graph for specific purposes, such as for the
rationale backlog, the knowledge dashboard, change impact analysis, a view on the knowledge in
git, a stand-up table in meeting agendas, and release notes with rationale. It offers many filter
criteria to give targeted access and cope with the high amount of documentation.

7.13.3. Tools Supporting High Documentation Quality

This section discusses related tools supporting the high quality of the documented decision
knowledge. Of the 58 approaches systematized by Alexeeva et al. (2016), 21 aim to facilitate
traceability between design artifacts by decision documentation. Twelve approaches aim to enable
architecture consistency or compliance checks. For example, Lytra et al. (2015) present an
approach using architectural knowledge transformations to support the consistency between
design decisions and component models and code. In contrast, ConDec builds on lightweight
traceability and easily accessible knowledge visualization for consistency.

The ADeX tool offers decision guidance with recommendations generated from DBPedia (Bhat
et al., 2017a). The ADMentor by Zimmermann et al. (2015) is a plug-in for the Decision Architect,

141

7. Supporting Continuous Rationale Management with ConDec

which offers decision guidance and a decision backlog view (Table 7.8). ConDec is the first tool
that integrates decision guidance into the issue-tracking system, allowing multiple knowledge
sources and problem space models (knowledge documentation of other software development
projects) to generate comprehensive recommendations.

Carrillo and Capilla (2018) present an algorithm for change impact analysis on decision graphs.
ConDec extends this algorithm by adding further rules inspired by approaches for automatic
linking (Buchgeher and Weinreich, 2011; Miesbauer and Weinreich, 2012). In addition, ConDec
applies change impact analysis on knowledge graphs with decisions and other artifacts. ConDec
also offers link recommendation and duplicate detection and enables performing change impact
analysis on documented and recommended links.

SEURAT offers metrics to infer whether the rationale documentation is complete and produces
warnings if it detects incompleteness in a rationale task list (Burge and D. C. Brown, 2008a;
Burge and D. C. Brown, 2008b; Malloy and Burge, 2016). ConDec uses similar intra-rationale
completeness metrics but newly introduced the decision coverage metric to support completeness
and traceability between decisions and other artifacts. In addition to the rationale task list,
ConDec’s rationale backlog also shows requirements, code, and other artifacts that violate the
definition of done, for example, since the decision coverage is too low or a linked issue is unresolved.
Besides, new features of ConDec are the definition of done checking before finishing work (for
example, as part of the merge-check in pull requests), the knowledge dashboard, and the nudging
mechanisms to motivate the developers to improve the documentation quality.

7.14. Conclusion
This chapter presented the ConDec plug-ins that support continuous rationale management
through views and features. First, it presented requirements by describing tasks of the roles
involved in CSE, deriving tool support, and providing functional models. The requirements
specification is complete in that it derives all existing ConDec features from rationale management
activities and problems. Chapter 14 will discuss future work. Second, the chapter provided an
overview of the design of ConDec, including decision problems and decisions. Third, it presented
the views and features of ConDec and highlighted new aspects by discussing related work.

The contribution of ConDec for supporting CSE is the following. To minimize intrusiveness
and additional effort, ConDec integrates into multiple standard development tools rather than
providing a standalone tool. ConDec enables capturing decision knowledge using lightweight
annotations in various documentation locations typical for CSE, in particular, ticket description
and comments, commit messages, and code comments. To enable the exploitation of the high
amount of distributed knowledge, ConDec provides comprehensive knowledge visualizations that
developers can access from various tools and artifacts. ConDec offers various views on the
knowledge graph (V1 – V7) and features to tailor the views for specific purposes (F1 – F5). These
views are the building blocks for advanced features, such as the rationale backlog, knowledge
dashboard, decision grouping feature, a stand-up table for meetings, and release notes with
decision knowledge. ConDec implements concepts to operationalize rationale quality. It is the
first tool that supports high-quality rationale documentation with a definition of done and the
decision coverage metric that counts decisions traceable from requirements and code. ConDec
offers a rationale backlog showing knowledge elements violating the definition of done. It offers a
knowledge dashboard presenting the decision coverage and other metrics. ConDec reduces the
developers’ manual work and motivates them using recommendation systems (RS1 – RS6) and
nudging mechanisms (N1 – N3). First, the quality checking recommendation system indicates
violations of the definition of done with friction nudges and in just-in-time prompts. Second,
change impact analysis highlights decisions and other artifacts affected by a change in the views
on the knowledge graph to support consistent changes. Third, decision guidance recommends

142

7.14. Conclusion

solution options to decision problems from other software development projects and external
knowledge sources. Fourth, the link recommendation system detects missing links and duplicates
within the knowledge graph. Fifth, ConDec supports developers in explicitly capturing decision
knowledge through automatic text classification. So far, automatic text classification has only
been applied retrospectively. ConDec is the first rationale management tool that integrates
automatic text classification into the ongoing development during CSE. Sixth, the summarization
of source code changes helps to make tacit decisions explicit.

143

Part IV.

Treatment Validation

145

Chapter 8
Overview of Evaluation Studies

“The scientist builds in order to study. The engineer studies in
order to build.”

—Brooks, 1996

This part of the thesis 1) validates ConRat and the ConDec plug-ins and 2) answers empirical
knowledge questions beyond the validation. This chapter provides an overview of the empirical
studies. Section 8.1 describes six evaluation projects. Section 8.2 introduces the ConDec plug-ins
and features applied in the projects. Section 8.3 gives an overview of the evaluation methods.

The treatment validation addresses this thesis’s third, fourth, and fifth knowledge goals and the
validation of the instrument design goal introduced in Section 1.4. Table 8.1 presents an overview
of the empirical studies, their goals, the validation aspects, and whether the study contributes
empirical knowledge beyond the validation, i. e., answers empirical knowledge questions, which
do not depend on stakeholder goals.

Table 8.1.: Overview of the empirical studies in the following chapters, the goals they address, the
validation aspects, and if they contribute empirical knowledge beyond the validation.

Chapter Addressed Goal
Validation

Aspects
Beyond

Validation?

Analysis of Knowledge
Documentation (Chapter 9)

Knowledge goal 3: Show that it is feasible to
document a high amount of high-quality
rationale during ConRat with the ConDec
plug-ins. Describe the outcome of knowledge
documentation in practice.

feasibility ✓

Effectiveness of Automatic Text
Classification (Chapter 10)

Knowledge goal 4: Show the effectiveness of
automatic text classification from the
researchers’ perspective.

effectiveness ✗

User Acceptance of ConDec
Plug-Ins (Chapter 11)

Knowledge goal 5: Show the acceptance of the
ConDec plug-ins from the software
practitioners’ perspective.

user
acceptance

✗

Dissemination of ConRat and
ConDec Plug-Ins (Chapter 12)

Instrument design goal: Disseminate ConRat
and the ConDec plug-ins to developers and
show the acceptance of the dissemination.

user
acceptance

✗

Chapter 9 addresses the knowledge goal 3 of this thesis: Show that it is feasible to document
a high amount of high-quality rationale during ConRat with the ConDec plug-ins. Describe
the outcome of knowledge documentation in practice. It validates feasibility and contributes
empirical knowledge beyond the validation. Chapter 10 addresses the knowledge goal 4 of this

147

8. Overview of Evaluation Studies

thesis: Show the effectiveness of automatic text classification from the researchers’ perspective.
Chapter 11 addresses the knowledge goal 5 of this thesis: Show the acceptance of the ConDec
plug-ins from the software practitioners’ perspective. Chapter 12 addresses the instrument design
goal: Disseminate ConRat and the ConDec plug-ins to developers and show the acceptance of the
dissemination. While the dissemination was necessary for introducing ConRat and its support
through ConDec in the case studies, it is the last chapter of this part of the thesis because the
other chapters contribute more empirical knowledge.

8.1. Evaluation Projects

Table 8.2 provides an overview of the case study projects. We applied ConRat supported through
the ConDec views and features in five projects with industrial settings and while developing
the ConDec plug-ins. The following sections describe the projects. Section 8.1.1 describes
two iPraktikum projects, Section 8.1.2 describes three Information Systems Engineering (ISE)
projects, and Section 8.1.3 describes the ConDec project.

Table 8.2.: Characteristics of the evaluation projects: developed product, customer, number of
developers (#Dev), and the time when the project took place.

iPraktikum ISE 19/20 ISE 20/21 ISE 21/22 ConDec

Product Workplace
Control App

Car Charging
App

IoT Platform Web Search
Engine

Soccer App ConDec
Plug-Ins

Customer Carnegie
Mellon
University

Company A
from industry

Company B
from industry

Heidelberg
University

Voluntary
soccer trainer

None
(dissertation
project)

#Dev 9 9 7 5 6 26 (over time)
Time 10/2018 – 02/2019 10/2019 –

03/2020
10/2020 –
03/2021

10/2021 –
03/2022

since 2016

8.1.1. iPraktikum

The iPraktikum is a multi-project course at the Technical University of Munich in which up
to 100 students work in eight to ten teams on real problems provided by an industry customer
(Bruegge et al., 2015). In particular, in the first half of the semester, the practical character of
the course is supported by theoretical yet interactive lectures. During these lectures, the students
learn the basic concepts of agile development, release and merge management, modeling, and
usability engineering. For the iPraktikum in the winter semester of 2018/2019, the lecture on
rationale management described in Chapter 12 was added. After the rationale management
lecture, which all students participating in iPraktikum attended, two teams performed ConRat
and applied ConDec views and features in their projects in the winter semester of 2018/2019. We
introduced the role of the rationale manager, who also had the tasks of the meeting manager. The
rationale manager is responsible for checking and improving the rationale quality, i. e., they make
sure that important elements are documented and consistent. Further, the rationale manager
imports issues and decisions important for the last sprint into the meeting agenda in Confluence.
They update and add rationale elements after the meeting in Jira. One student per team takes
the role of the rationale manager. The role is passed on after a week to a different student, i. e.,
it is an interchanging role. The following subsections describe the two projects.

148

8.1. Evaluation Projects

Workplace Control App

The first project dealt with smart device management for an intelligent workplace at Carnegie
Mellon University. The customer was a professor from Carnegie Mellon University. Nine students
participated in the project. The goal was to create a mobile app that enables workplace users to
control smart devices, e. g., lamps, in this workplace. The app users can aim at a device with their
smartphone camera and control the device with a tap on their screen. This way, the users can
manage a large number of devices intuitively. Besides, the mobile app tracks energy consumption
to raise energy awareness and motivate users to reduce it. Energy reports can be analyzed within
the app to raise awareness of energy consumption and identify opportunities to improve one’s
ecological footprint. High-level requirements of the workplace-control app are 1) track energy
consumption, 2) utilize location awareness, 3) add new devices to an intelligent environment,
and 4) discover devices using augmented reality. The project also contributed to the dissertation
project by Henze (2020) called Dynamically Scalable Fog Architectures. The technology of Fog
Computing was applied. Fog Computing enables to offload of computational-intense tasks from a
mobile device with little computational power to near components with higher computational
power. Components such as mobile devices can join and leave a so-called Fog Architecture
at runtime. For example, Fog Computing can be beneficial for dynamic vehicles, smart grids,
distributed sensor networks, and intelligent environments (Henze, 2020).

Car Charging App

The goal of the second project was to develop a mobile app that supports owners of electric cars
to share access to charging stations. For example, the app suggests new charging stations in the
user’s area. High-level requirements of the car charging app are 1) charging station management,
2) intelligent home interaction, 3) gamification, and 4) intelligent scheduling. The customer was
a company from the industry. Nine students participated in the project.

8.1.2. Information Systems Engineering Projects

The ISE project is an agile course at Heidelberg University, performed every winter semester.
Like the iPraktikum, the students taking part in the ISE project work on real problems provided
by a customer. We applied ConDec in three consecutive ISE projects during the winter semesters
2019/2020, 2020/2021, and 2021/2022. Each project started in October and finished in March of
the following year. Each project had two block courses at the beginning and end of the project,
lasting fourteen days, respectively. During these block courses, the students worked full-time
on the project. Like in the iPraktikum, we introduced the students to rationale management
and the ConDec plug-ins using the lecture on rationale management at the beginning of the
project (Chapter 12). During the semester, the students worked part-time on the project. The
project followed the Scrum process extended with ConRat, with sprints lasting from two weeks
during the block courses to four weeks during the semester. During every sprint, one student
took the role of the Scrum Master and was responsible for the sprint review held at the end of
every sprint. At the same time, this student also took the role of the rationale manager. All
other students took the role of developers. Process requirements regarding rationale management
were (Section 6.2): 1) The rationale manager’s task was to present explicit decision knowledge,
i. e., decisions made and open decision problems during the sprint review. For that purpose,
the developers should document decision knowledge during the sprint using ConDec. 2) The
rationale backlog should only include unresolved decision problems at the end of the sprint but
no other knowledge elements that violate the definition of done so that the documentation quality
is high. 3) The students should include a stand-up table with decision knowledge into agendas
and protocols of their meetings. They should create release notes with decision knowledge at the

149

8. Overview of Evaluation Studies

end of every sprint. The students used the issue tracking system Jira to document requirements,
work items (development tasks), and bug reports. They committed code to work items or to
bug reports mentioning the respective ticket identifier in the commit messages. The following
subsections describe the three projects.

ISE 2019/2020: IoT Platform

The first ISE project aimed to develop an Internet of Things (IoT) platform to manage IoT
devices and their delivered data. The users of the IoT platform can get an overview of the devices
and see the details of each device. They can create tags and master data to group the devices.
The platform also includes an analytical service to detect device data anomalies. Seven students
were involved in the project. The project’s customer was a company from the industry.

ISE 2020/2021: Web Search Engine

The goal of the second ISE project was to develop a web search engine for the websites of
Heidelberg University. Five students were involved in the project. The customer of the project
was a professor from Heidelberg University.

ISE 2021/2022: Soccer App

The goal of the third ISE project was to develop a mobile app that supports the trainers of
soccer teams in organizing training sessions and other events, choosing training exercises, and
evaluating teams and players. In particular, the app should support voluntary trainers who did
not receive a thorough education in training teams and who train children or amateur players
rather than professional teams. Six students were involved in the project. The customer was a
voluntary soccer trainer.

8.1.3. ConDec Project
While developing the ConDec plug-ins, we documented decision knowledge in Jira and git. That
means that we applied the ConDec plug-ins during their development. In total, 26 developers
were involved in developing ConDec between 2016 and 2022. The developers were students
performing practicals, their bachelor’s or master’s thesis, or a part-time job. Thus, the time
these developers contributed to the ConDec plug-ins was limited to a few months. The thesis
author also worked as a developer in all ConDec projects. In particular, the following number of
developers were involved in the respective ConDec plug-in development projects: 22 developers
for ConDec Jira, three developers for ConDec Confluence, four developers for ConDec Eclipse,
two developers for ConDec VSCode, two developers for ConDec Bitbucket, and three developers
for ConDec Slack. Since the ConDec plug-ins are part of this dissertation project, various
stakeholders exist, in particular, the thesis supervisors. However, there is no dedicated customer
for ConDec. The ConDec plug-ins are available in Appendix A.

150

8.2. ConDec Plug-Ins and Features Applied in Evaluation Projects

8.2. ConDec Plug-Ins and Features Applied in Evaluation Projects
Table 8.3 shows which ConDec plug-ins were applied in the validation projects. The ConDec
Jira plug-in was applied in all projects but with a varying number and maturity of features
(Table 8.4). The ConDec Confluence plug-in that supports rationale-based meeting management
was applied in all projects starting from the ISE 19/20 project. During the iPraktikum 18/19,
the students also conducted rationale-based meetings but created the stand-up table that lists
relevant decision knowledge using a built-in import macro for Jira tickets. The ConDec Bitbucket
plug-in that adds a view for decision knowledge in pull requests and the merge check was applied
in the ISE 19/20 project. The other projects did use different git servers, namely Gitolite,
GitHub, or GitLab, or—in the ISE 21/22 project—did not work with pull requests. The ConDec
Slack plug-in enables capturing decision knowledge in chat messages and offers an information
channel in that recent decision knowledge is posted. This plug-in was applied in the ISE 19/20
project. The ConDec plug-ins for integrated development environments that enable viewing
decision knowledge for code were partly used in the ISE 21/22 and ConDec projects.

Table 8.3.: ConDec plug-ins applied in the validation projects
ConDec
Plug-In

Underlying System iPraktikum ISE
19/20

ISE
20/21

ISE
21/22

ConDec
Project

ConDec Jira Issue tracking system ✓ ✓ ✓ ✓ ✓

ConDec
Confluence

Wiki system ✗ ✓ ✓ ✓ ✓

ConDec
Bitbucket

Version control system ✗ ✓ ✗ (✓) ✗

ConDec Slack Chat system ✗ ✓ ✗ ✗ ✗

ConDec Eclipse
and VSCode

Integrated development
environment

✗ ✗ ✗ ✓ ✓

Table 8.4 shows which ConDec views and features were investigated in the validation projects.
Some views and features support multiple rationale-management activities because they support
different user sub-tasks specified in Section 7.1. The checkmarks in brackets (✓) denote that
a view or feature was immature, i. e., only recently introduced or still developing, during the
time of the project. The configuration features of ConDec were applied to set up ConRat, but
we did not assess the study participants’ attitudes toward these features. The same holds for
the facilitate nudges, such as the opt-out policies for feature configuration. We validated the
feasibility of the knowledge export feature by exporting the knowledge documentation of all
validation projects retrospectively for the documentation analysis in Chapter 9.

151

https://gitolite.com

8. Overview of Evaluation Studies

Table 8.4.: Overview of the application of ConDec views and features in the validation projects
and their support of the four course-grained rationale-management activities: decision
making (DM), documentation (D), exploitation (E), and quality assurance (Q).

ConDec View or Feature Description iP
ra

ktik
um

IS
E

19
/2

0

IS
E

20
/2

1

IS
E

21
/2

2

Con
Dec

Pro
jec

t

Acti
vity

Rationale Documentation in Various Locations in . . .

Entire Jira tickets Section 7.3.1 ✓ ✓ ✓ ✓ ✓ D, DM
Description and comments of tickets Section 7.3.2 ✗ ✓ ✓ ✓ ✓ D, DM

Commit messages Section 7.3.3 ✗ (✓) (✓) ✓ ✓ D, DM
Code comments Section 7.3.4 ✗ (✓) (✓) ✓ ✓ D, DM
Chat messages Section 7.3.5 ✗ ✓ ✗ ✗ ✗ D, DM

Views on the Knowledge Graph

Node-link diagram, V1 Section 7.4.1 ✗ ✓ ✓ ✓ ✓ E
Tree, V2 Section 7.4.2 ✓ ✓ ✓ ✓ ✓ E

View for rationale in pull requests, V3 Section 7.4.3 ✗ ✓ ✗ ✗ ✗ E, Q
View for rationale from git in Jira, V3 Section 7.4.3 ✗ ✗ ✗ ✓ ✓ E, Q

Adjacency matrix, V4adj Section 7.4.4 ✗ ✗ ✓ ✓ ✓ E
Criteria matrix, V4cri Section 7.4.4 ✗ ✗ ✓ ✓ ✓ E, DM

Chronology, V5 Section 7.4.5 ✗ ✓ ✓ ✓ ✓ E

Features of the Knowledge Graph Views

Filtering, F1 Section 7.5.1 (✓) (✓) (✓) ✓ ✓ E
Transitive linking, F2 Section 7.5.2 ✗ ✗ (✓) ✓ ✓ E

Changing elements and links, F3 Section 7.5.3 (✓) (✓) ✓ ✓ ✓ D
Linking arguments to criteria in

criteria matrix, F3
Section 7.4.4,
Section 7.5.3

✗ (✓) (✓) ✓ ✓ D, DM

Marking links as wrong or useless, F3 Section 7.5.3 ✗ ✗ ✗ ✓ ✓ Q
Integrated navigation, F5 Section 7.5.5 ✗ (✓) (✓) ✓ ✓ E

Nudging Mechanisms and Recommendation Systems

Facilitate nudges, N1 Section 7.6.1 internally validated D
Ambient feedback and friction nudges, N2 Section 7.6.2 ✗ ✗ ✗ ✓ ✓ Q, DM

Just-in-time prompts, N3 Section 7.6.3 ✗ ✗ ✗ ✓ ✓ Q
Quality checking, RS1 Section 7.6.4 ✗ ✗ ✗ ✓ ✓ Q

Change impact analysis, RS2 Section 7.6.5 ✗ ✗ ✗ ✓ ✓ E
Decision guidance, RS3 Section 7.6.6 ✗ ✗ ✗ ✓ ✓ D, DM

Link recommendation and
duplicate detection, RS4

Section 7.6.7 ✗ ✗ ✗ ✓ ✓ D

Automatic text classification, RS5 Section 7.6.8 ✗ ✓ ✓ ✓ ✓ D
Summarization of source code changes, RS6 Section 7.6.9 ✗ ✗ (✓) (✓) (✓) D, Q

Other Views and Features

Rationale backlog Section 7.7 ✗ ✗ ✓ ✓ ✓ Q, DM
Knowledge dashboard, V6 Section 7.8 ✗ (✓) ✓ ✓ ✓ Q

Decision grouping Section 7.9 ✗ (✓) (✓) ✓ ✓ D
Stand-up table with rationale, V3 Section 7.10 (✓) ✓ ✓ ✓ ✓ E, DM

Release notes with rationale, V3 Section 7.11 ✗ ✓ ✓ ✓ ✓ E
Knowledge export Section 7.12 validated through retrospective export E

Configuration Table 7.5 internally validated –

152

8.3. Evaluation Methods

8.3. Evaluation Methods
Table 8.5 provides an overview of the evaluation methods applied during the six case studies.
Since the same evaluation methods in both iPraktikum projects were used, Table 8.5 contains
one column for the iPraktikum. The evaluation covers four types of studies: 1) field experiment,
2) sample study, 3) laboratory experiment, and 4) judgment study. The six case studies were
field experiments in that the study participants applied ConRat and ConDec. We observed
the study participants, collected and discussed feedback, e. g., in meetings, email, and chat,
and made field notes. During the last two ISE projects, we logged the usage of the different
ConDec views on the knowledge graph to compare their acceptance. In addition, we collected
qualitative feedback systematically with surveys and semi-structured interviews. The thesis
author conducted semi-structured interviews in two ISE projects. Before the interviews, the
study participants were asked to fill out a survey questionnaire. The results of surveys and
interviews are part of the judgment study. We mined and analyzed the knowledge documentation
of the six case studies in a sample study. Besides, we used the knowledge documentation to
assess the effectiveness of ConDec’s automatic text classification in a laboratory experiment. The
following chapters will detail the study design.

Table 8.5.: Overview of evaluation methods used in the case study projects and the respective
study type classification according to Stol and Fitzgerald (2018).

Evaluation Method iPraktikum ISE
19/20

ISE
20/21

ISE
21/22

ConDec
Project

Study
Type

Observation, informal
discussions, and field notes

✓ ✓ ✓ ✓ ✓
Field
experimentUsage logging ✗ ✗ ✓ ✓ ✗

Survey ✓ (✓) ✗ (✓) ✗ Judgment
studySemi-structured interview ✗ ✓ ✗ ✓ ✗

Mining and analysis of
knowledge documentation

✓ ✓ ✓ ✓ ✓ Sample
study

Usage of knowledge
documentation for text
classification evaluation

✓ ✓ ✓ ✓ ✓
Laboratory
experiment

153

Chapter 9
Analysis of Knowledge Documentation

“We claim that architectural design decisions and architecturally
significant requirements are really the same; they’re only being
observed from different directions. [...] In a way, architecturally
significant requirements and architectural design decisions seem to
accumulate in some kind of a ‘magic well’. Observers peering into
the well see what they wish for.”

—de Boer and van Vliet, 2009

This chapter contributes to the knowledge goal 3 of this thesis: Show that it is feasible to
document a high amount of high-quality rationale during ConRat with the ConDec plug-ins.
Describe the outcome of knowledge documentation in practice. It validates the feasibility of the
treatment through the rationale documentation that the software developers created in the six
validation projects (Section 8.1). The chapter also adds to the empirically-gained knowledge
regarding decision making and documentation in software development projects. The contribution
is a comprehensive description of rationale documentation in relation to requirements and code
produced by software developers in an industrial setting. In total, the developers of the six
projects documented 957 issues, 1146 decisions, and 2165 arguments with the help of ConDec.

Section 9.1 describes the study design. Section 9.2 presents and discusses the results of the
knowledge documentation analysis. Section 9.3 presents related empirical work on analyzing
decision knowledge documented during software development projects. Section 9.4 discusses
threats to validity. Section 9.5 concludes this chapter. Appendix A provides the data and analysis
scripts. Appendix D describes the knowledge documentation of the six validation projects and
provides additional material.

9.1. Study Design
Section 9.1.1 introduces three research questions. Section 9.1.2 describes the data acquisition.
Section 9.1.3 provides metrics for the analysis of code in the version control system git and
trace links to the issue tracking system Jira to investigate the connectivity of the knowledge
documented in both systems. Section 9.1.4 describes the coding of decisions with types.

9.1.1. Research Questions
The knowledge goal 3 is refined into three research questions with sub-questions (Table 9.1).
This section presents the questions, including the indicators for feasibility and the metrics to
describe the outcome of knowledge documentation in practice.

155

9. Analysis of Knowledge Documentation

Table 9.1.: Research questions and metrics of the empirical study on the rationale documentation.
Research Question Metrics

RQ1 Is it feasible to document decision knowledge in practice with ConDec?

RQ1.1 Which and how many decision knowledge ele-
ments were documented and when were they
documented?

Types and numbers of decision knowledge el-
ements at the end of the project and over
time

RQ1.2 Where were the decision knowledge elements
documented, i. e. in which documentation
locations, and when?

Numbers of decision knowledge elements per
documentation location at the end of the
project and over time

RQ1.3 How many rationale elements were updated
after their first documentation?

Comparison of dates of creation and last up-
date of decision knowledge elements

RQ1.4 What types of decisions are documented and
when? Were specific types of decisions docu-
mented at specific points in time?

Numbers of decisions per decision type at the
end of the project and over time

RQ1.5 Are decision types often or never assigned to
the same decisions?

Correlation of decision types with other deci-
sion types

RQ1.6 Are there decision types that often or never
are documented in specific documentation lo-
cations?

Correlation of decision types with documen-
tation locations

RQ2 Is it feasible to document a high amount of knowledge in practice with ConDec?

RQ2.1 Which and how many requirements and other
tickets are documented?

Types and numbers of requirements and other
tickets in the issue tracking system Jira

RQ2.2 Which and how many code elements were
created?

Types and numbers of code elements in the
knowledge graph, lines of code

RQ2.3 What are the ratios between decision knowl-
edge and system knowledge elements?

Ratios between number of decisions to require-
ments and code

RQ3 Is it feasible to create high-quality knowledge documentation in practice with ConDec?

RQ3.1 How well is the knowledge documented in git
linked to the knowledge documented in Jira?

Proportion of commits with valid ticket iden-
tifier in their commit message, code elements
linked to at least one ticket

RQ3.2 Is the decision knowledge completely docu-
mented?

Numbers of 1) issues with at least one alter-
native, 2) decisions with an issue, 3) decisions
with at least one pro-argument, 4) alternatives
with at least one con-argument

RQ3.3 What are the states of the issues and deci-
sions?

Proportion of unsolved issues, proportion of
rejected decisions

RQ3.4 How many decisions are traceable from re-
quirements and code, i. e., what is the decision
coverage?

Decision coverage calculated as the number
of traceable decisions from requirements and
code in a maximal link distance of 3

RQ1 Is it feasible to document decision knowledge in practice with ConDec?

The first research question is to show that ConDec supports decision knowledge documentation.
The feasibility is indicated if developers documented decision knowledge during their projects
with ConDec. The first research question consists of six sub-questions detailing the indicator:

RQ1.1 Which and how many decision knowledge elements were documented and when were
they documented? The question asks for the number of elements per rationale type at the end

156

9.1. Study Design

of the projects and over time. We aim to show that it is feasible to document rationale 1) of
different types and 2) continuously, i. e., in small increments over time instead of only once.

RQ1.2 Where were the decision knowledge elements documented, i. e. in which documentation
locations, and when? The question investigates the amount of rationale per documentation
location at the end of the projects and over time. We aim to show that it is feasible to document
rationale in the four documentation locations in the issue tracking and version control systems.

RQ1.3 How many rationale elements were updated after their first documentation? With this
question, we aim to show that it is feasible to change the rationale elements with ConDec.

RQ1.4 What types of decisions are documented and when? Were specific types of decisions
documented at specific points in time? The question asks for the decision types (Section 7.9).
We aim to show that it is feasible to document various types of decisions with ConDec, i. e., not
only architectural design decisions. In the state-of-practice study (Chapter 3), the practitioners
frequently mentioned executive decisions as important. It is interesting to see whether executive
decisions were frequently documented in the validation projects. We aim to investigate whether
certain types of decisions were documented at specific points in time, e. g., executive decisions at
the beginning of the project to set up the development process.

RQ1.5 Are decision types often or never assigned to the same decisions? The question asks
for correlations among decision types. A decision can be assigned to more than one type. The
correlation amongst decision types is interesting to reveal relations between the decision types in
the data, e. g., whether testing decisions are often executive decisions, and to reveal disjunctive
decision types.

RQ1.6 Are there decision types that often or never are documented in specific documentation
locations? The question asks for correlations between decision types and documentation locations.
Developers can interchangeably use the documentation locations in the issue tracking and version
control system since ConDec integrates all decision knowledge in the knowledge graph. They can
access the decision knowledge from requirements and code. Nevertheless, the correlation between
decision types and documentation locations is interesting to reveal if certain types of decisions
are often or never documented in certain places. For instance, executive decisions might not be
documented in code comments because they do not concern a specific implementation.

RQ2 Is it feasible to document a high amount of knowledge in practice with ConDec?

The second research question is to show that ConDec supports a high amount of knowledge
documentation (Section 5.2.2). Indicators for the high amount are the exceedance 1) of an
absolute number of requirements and code elements and 2) of a relative number of rationale
elements compared to requirements and code. Three sub-questions detail the indicators:

RQ2.1 – 2.2 Which and how many requirements and other tickets are documented? and Which
and how many code elements were created? The questions aim to descriptively analyze the types
and numbers of system knowledge and project knowledge elements, i. e., of the non-decision
knowledge elements. This is interesting because requirements, other tickets, and code elements
are part of ConDec’s knowledge graph. There are no clear thresholds that the absolute number
of requirements, lines of code, and rationale elements need to exceed to be considered high. We
consider the numbers measured in the projects with a duration of about six months as high.

157

9. Analysis of Knowledge Documentation

RQ2.3 What are the ratios between decision knowledge and system knowledge elements? With
this question, we aim to show that it is feasible to document a high amount of rationale related
to the requirements and code with ConDec. We assume that at least one decision, including
the issue, alternative, and arguments, should be documented per requirement and code file as a
threshold for a high number of decisions.

RQ3 Is it feasible to create high-quality knowledge documentation in practice with ConDec?

The third research question is to show that ConDec supports high-quality knowledge documenta-
tion (Section 5.2.3). Indicators of high quality are the 1) traceability between code in git and
tickets in Jira, 2) completeness of decision knowledge, 3) low number of unsolved issues, and
4) accessability of decisions from requirements and code. Four sub-questions detail the indicators:

RQ3.1 How well is the knowledge documented in git linked to the knowledge documented in
Jira? The question investigates the quality of trace links between code and tickets via commits
to validate the knowledge model in Section 6.1. High-quality trace links between code and tickets
are important for exploitation, e. g., for knowledge visualization and change impact analysis.

RQ3.2 Is the decision knowledge completely documented? The question quantifies the number
of rationale elements that fulfill the criteria of the intra-rationale completeness (Section 6.2.1).
This helps to assess how well others can understand the rationale documentation.

RQ3.3 What are the states of the issues and decisions? The question asks for the decision-
making states (Section 6.1.2). A low number of unsolved issues indicates high quality since it
complies with the agile principle of just enough work (Yang et al., 2019). In the state-of-practice
study (Chapter 3), the practitioners mentioned that decisions could frequently be changed during
CSE. Quantifying the amount of rejected decisions investigates this hypothesis.

RQ3.4 How many decisions are traceable from requirements and code, i. e., what is the decision
coverage? With this question, we aim to determine how many decisions are documented in the
context of requirements and code. The higher the decision coverage, the better the accessibility
of the decision knowledge from tickets and code, but there can be wrong links.

9.1.2. Data Acquisition
Every validation project has a Jira project that we mined to obtain the data for the analysis.
Besides, we mined the respective git repositories—if available—to acquire the code elements
and the decision knowledge from commit messages and code comments. We used the views
and features of the ConDec Jira plug-in for the mining, in particular, the knowledge dashboard
(Section 7.8) as well as the filter functionality of the issue tracking system Jira. We exported
the decision knowledge documentation of the validation projects via the export feature of the
ConDec Jira plug-in. We created an R script for the data analysis (R Core Team, 2022). The
decision knowledge data and the R script are available in the Appendix A.

9.1.3. Analysis of Code and Trace Links to Tickets
The metric #CommitsL counts the number of commits with a valid ticket identifier in their
commit message so that the code changes bundled in the commit are linked to the respective
ticket. The metric #Codegraph counts the number of code elements integrated into the knowledge
graph. ConDec only integrates code files of selected file types into the knowledge graph to
exclude files without decision knowledge elements in comments, such as binary files (e. g., jar).

158

9.1. Study Design

The project participants selected the types of code files to be integrated into the knowledge
graph. For example, they excluded particular files with little abundance, such as shell scripts.
The metric #LOCgraph counts the lines of code with comments without blank lines (Schroeder,
1999). The metric #CodecomL counts the code elements integrated into the knowledge graph
linked to at least one ticket via one or more commits, i. e., traceable from tickets.

9.1.4. Coding of Decisions with Decision Types

ConDec represents decision types (i. e., decision groups) using decision levels and custom decision
types (Section 7.9). In four of the six validation projects, the developers assigned decision levels
and custom types to the decisions. We provided examples of decision types when disseminating
ConDec, and the development teams could also choose further types. We prescribed using
the decision levels high, medium, and realization. We noticed that the grouping into levels is
sometimes ambiguous and subjective, such as for the executive decision on a git branching
strategy. Thus, this section only reports the results regarding the other decision types.

After the end of the projects, we created a unique coding scheme using the decision types by
Kruchten (2004; 2009), the types collected in the interview study in Table 3.4, and the types
introduced by the developers. We aimed for disjunctive decision types to make the coding
unambiguous. However, some decision types overlap. Thus, decisions can be assigned to more
than one type. We did not introduce a code for non-existence or ban decisions because they are
partly documented as alternatives for decisions and rejected decisions. The author of this thesis
applied the coding scheme to the decisions of the six projects. The following paragraphs define the
codes, i. e., the decision types, and provide example decisions taken from the projects. For every
decision, we list other decision types assigned or explain the assignment in brackets. Appendix A
provides the 1146 coded decisions and the related issues, alternatives, and arguments.

Executive Decisions Executive decisions concern the software development process, technologies,
or tools. They include prioritization and deployment decisions, which are important to practition-
ers (Chapter 3). Technology decisions concerning the entire system are executive. Technology
decisions regarding the backend and data storage, frontend, API, or external frameworks are
assigned to the respective group described below. Examples are: Create feature branches for
work items and squash all commits if the pull request passed the review! (process) Use nyc
and mocha to display the test coverage in the frontend! (tool, testing) We create separate git
repositories for frontend and backend! (process, technology) Use GitHub actions for continuous
integration! (process and tool) We no longer support Jira version 7! (technology) Use Java
Development Kit version 11 to compile the plug-in! (technology)

Quality-Driven Decisions Quality-driven decisions concern eliciting and implementing quality
requirements related to the quality attributes maintainability, security, performance efficiency,
compatibility, usability, reliability, or portability (ISO/IEC 25010, 2011). Synonyms are prop-
erty decisions (Kruchten, 2004) and driver-oriented decisions (Weinreich et al., 2015). They
include decisions for design guidelines, such as naming conventions. Examples are: We use
under_score names in the API! (maintainability, API) We separate HTML and JavaScript
code! (maintainability) We include third-party JavaScript libraries by manually copying them!
(maintainability, external frameworks) Do not always make “git pull” calls to improve the
performance of the GitClient! Create isPullNeeded() method! (efficiency, backend)

Functionality-Driven Decisions Functionality-driven decisions concern the elicitation and
implementation of requirements for functional features and should be discussed and made
together with the customer of the software product. Examples from the validation projects

159

9. Analysis of Knowledge Documentation

are: Players and teams are created in a player pool administrated by one or more coaches!
Exercises are recommended based on the difficulty that varies by age group! Mail addresses

are not immediately displayed when searching for a person! A configurable definition-of-done
criterion is that a decision needs to have at least one pro-argument linked! The plug-in is
disabled per default (opt-in policies) and can be manually activated by the rationale manager!

Frontend Decisions All the products developed in the validation projects consist of frontend and
backend components. We introduced the respective decision groups because the developers used
these groups during the projects. Frontend decisions cover decisions for a software application’s
user interface and the client side. Examples are: We use Angular as a frontend framework!

Unresolved issues and challenged decisions are colored crimson red! Discarded alternatives
and rejected decisions are colored in gray! We support a browser app! (executive) Integrate
the reverse proxy into the frontend! We use a “Welcome” dialog to create an initial player
pool by starting the app for the first time! We use a paginator to show just a few events on
one page! We don’t use breadcrumbs! We implement a date picker!

Backend and Data Storage Decisions Backend and data storage decisions concern the server
side of a software application and the database. They partly overlap with technology (executive)
decisions but bundle other decisions regarding the backend and storage components. Examples
are: We use Java and Spring Boot as a backend technology! (executive) We store the
knowledge graph as a singleton object in random-access memory and work with knowledge
subgraphs! (quality-driven for better performance) We use the PostgreSQL database!

Application Programming Interface (API) Decisions Decisions regarding the API of microser-
vices were mentioned as important in the interview study in Chapter 3. We include this decision
type in the coding scheme because we collected various examples in the projects: We use get,
post, and delete methods in the REST API! Use JSONFilter annotation above getter methods
to determine the properties of serialized objects! The path of the REST API for knowledge
management is: base-URL/rest/condec/latest/knowledge/service!

External Library and Framework Decisions This decision type concerns third-party frameworks
or libraries. It emerged as easy to classify and was used in the projects. It partly overlaps with
executive, backend, and frontend decisions. Examples are: We use the jgit library to access git
repositories, commits, and code! (backend) We use jQuery’s contextMenu! (frontend)

Testing Decisions Testing decisions concern the quality assurance of the software. They are a
special executive decision if they concern the testing process or tools. They are non-executive if
they concern mock objects that simulate the software or the selection of test data. We introduced
this decision group because the developers frequently used it in the validation projects. Examples
are: The plug-in should have coverage with unit tests of at least 85 %! (executive) We
create at least 30 test cases each! We create at least one test case per user story! (executive)

We use Jasmine to test the frontend service! (executive, not frontend decision because
it is not an existence decision concerning the software structure or behavior) We add the
MockPluginSettings.java class to mock the default plug-in configuration! (not executive)

9.2. Results and Discussion
The following sections present and discuss the results of the knowledge documentation analysis.
Section 9.2.1 describes the results to show that it is feasible to document decision knowledge in

160

9.2. Results and Discussion

practice with ConDec. Section 9.2.2 describes the results to show that it is feasible to document
a high amount of knowledge. Section 9.2.3 describes the results to show that it is feasible to
create high-quality knowledge documentation. To answer the research questions, this section
draws conclusions from 1) the iPraktikum and ISE projects since they had a similar duration
and number of developers and 2) the ConDec project (Section 8.1). Table 9.2 provides decision-
knowledge examples. The entire decision knowledge is available in Appendix A. Table 9.3
presents knowledge-documentation metrics of the projects.

9.2.1. Feasibility of Documenting Decision Knowledge with ConDec

This section presents the results for the research question Is it feasible to document decision
knowledge in practice with ConDec? (RQ1). The subsections describe 1) the numbers and
types of decision knowledge elements, 2) the documentation locations, 3) whether the decision
knowledge was changed after the first documentation, and 4) the decision types as well as their
correlation 5) with each other and 6) with the documentation locations. For these aspects, we
draw conclusions from the metrics in Table 9.3. In the last subsection, we answer the RQ1.

Decision Knowledge Types and Numbers

This section presents the results for the question Which and how many decision knowledge
elements were documented and when were they documented? (RQ1.1). The number of decision
knowledge elements varies between 99 and 774 for the iPraktikum and ISE projects (Table 9.3
on page 164). The ConDec developers documented 2732 decision knowledge elements. The
developers of the three ISE projects documented a similar number of decision knowledge elements
(590 – 774). As discussed in the following subsection, the ISE projects resulted in more elements
than the iPraktikum projects might be due to the different documentation locations used.

The arguments are either documented as pro- , con- , or unpositioned arguments . An
unpositioned argument becomes a pro- or a con-argument if linked to a solution option with
the link type supports or attacks, respectively. The number of pro-arguments is higher than
the number of con-arguments. The ratios between the number of rationale elements of different
types vary between the projects (Table 9.3). The ratios between issues and decisions range from
0.6 (workplace-control app) to 1.9 (car charging app). A number higher than one means that
more issues than decisions are documented. The ratios between the number of decisions and
alternatives range from 0.4 (car charging app) to 3.5 in the (workplace-control app). A number
higher than one means that more alternatives than decisions are documented. The ratios between
the number of arguments and solution options (decisions and alternatives) range from 0.4 in the
workplace-control project and 2.23 in the ISE 21/22 project. A number higher than one means
more arguments than solution options are documented. Numbers below one indicate incomplete
documentation, which Section 9.2.3 will further analyze.

Figure 9.1 shows the number of rationale elements documented per date in the validation
projects. While there are times with little to no rationale documentation, the rationale elements
were documented during the entire project. Notably, many rationale elements were documented
at the end of the ISE 19/20 project. The developers documented many decisions during the final
sprint to consolidate the rationale documentation. In contrast, in the ISE 20/21 project, many
rationale elements were documented at the beginning of the project. In general, there seems to
be increased rationale documentation before sprint reviews since the developers consolidated the
rationale documentation of the sprint.

161

9. Analysis of Knowledge Documentation

Table 9.2.: Decision knowledge documentation examples of the validation projects. The entire
decision knowledge documentation is available in Appendix A. The status of the
issues and decisions is shown in brackets if it deviates from resolved or decided.

Project Decision Knowledge Types and Summaries Decision
Types

Quality
Problems

iPraktikum
Workplace

How should we discover devices?
Discover devices using the User Datagram Protocol!

API no pro-argument(s),
no alternative(s)

Control How do we handle user stories/story points?
Client and server tasks in the same user story

executive no pro-argument(s),
no alternative(s)

iPraktikum
Car
Charging

Which transition should be used between UserClass – HouseClass –
SmartDeviceClass?

Aggregation
House/Smart devices can exist without the car owner.
In our case, it would make no sense if they exist without the car
owner.

Composite between UserClass – HouseClass – SmartDeviceClass

backend
and data
storage

relation of
arguments to
decision not clear

How to coordinate preferences of different users within the rec-
ommendation algorithm? (unsolved)

functionality-
driven

no alternatives,
really unsolved?

ISE
2019/20

Which database should we use?
MongoDB

JSON objects would be in use in the back- and frontend
Queries and joins are more difficult

We will use PostgreSQL!
Already in use and required by the customer.
Stiffer development practice - harder to iterate

backend
and data
storage

relation of
arguments to
opposite solution
option not clear

How do we display the test coverage for the frontend?
Use nyc and mocha to display the test coverage in the frontend!
(rejected)

Additional libraries have to be installed.
Use the Jest library with an in-built coverage tool to display the
test coverage!

everything in one library and good vue and typescript support

testing,
executive

–

ISE
2020/21

When should we use a synonym filter?
During indexing

Adding new synonyms leads to reindexing the documents
During querying

New synonyms can be added without the need of reindexing the
documents

quality-
driven
(efficiency),
backend
and data
storage

–

Which technology shall the backend use?
Use NodeJS!

We have more experience with NodeJS than with Flask.
Flask

We have some experience with Flask.

backend
and data
storage,
ext. lib or
framework

naturalistic
arguments, might
not be the best
solution

ISE
2021/22

How can a client of the app communicate with its various com-
ponents (backend and frontend)?

We could use a forward proxy to enable a client of the app to
access the backend and frontend.
We use the reverse proxy server nginx to enable a client of the
app to access the frontend!

API no pro-argument(s)
for decision, no
con-argument(s)
for alternative

How should we filter the exercises by the number of players?
We could use a single number.
We use a range.

The coach doesn’t always know the exact number of players that
will participate in training

frontend relation of
argument to
alternative not
clear

ConDec Which library to use to determine textual similarity between two
texts?

Use Apache Commons text library to determine textual similarity
between two texts!

It is easier to use an external library than to implement the
mechanism to determine textual similarity ourselves.

external
framework

no alternative(s)

How can we create coverage reports?
Use the jacoco-maven-plugin to create coverage reports!
Use the cobertura-maven-plugin to create coverage reports!

The cobertura-maven-plugin is incompatible with java 11.

testing,
executive

no pro-argument(s)
for decision

162

9.2. Results and Discussion

0

5

10

15

20

25

2018-12-01 2019-01-01 2019-02-01

Creation Date

#R
at

io
na

le
 E

le
m

en
ts iPraktikum

Workplace
Control

Argument

Alternative

Decision

Issue

0

10

20

2018-12-01 2019-01-01 2019-02-01

Creation Date

#R
at

io
na

le
 E

le
m

en
ts iPraktikum

Car Charging

Argument

Alternative

Decision

Issue

0

40

80

120

2019-10-01 2019-11-01 2019-12-01 2020-01-01 2020-02-01 2020-03-01

Creation Date

#R
at

io
na

le
 E

le
m

en
ts

ISE
19/20

Issue

Decision

Alternative

Argument

Pro

Con

0

20

40

60

80

2020-11-01 2020-12-01 2021-01-01 2021-02-01 2021-03-01

Creation Date

#R
at

io
na

le
 E

le
m

en
ts ISE

20/21

Issue

Decision

Alternative

Pro

Con

0

10

20

30

40

2021-10-01 2022-01-01 2022-04-01

Creation Date

#R
at

io
na

le
 E

le
m

en
ts ISE

21/22

Issue

Decision

Alternative

Pro

Con

0

10

20

30

40

2018-01-01 2019-01-01 2020-01-01 2021-01-01 2022-01-01

Creation Date

#R
at

io
na

le
 E

le
m

en
ts

ConDec

Issue

Decision

Alternative

Argument

Pro

Con

Figure 9.1.: Number of rationale elements documented per date in the validation projects.
The gray dashed vertical lines indicate sprint reviews.

163

9. Analysis of Knowledge Documentation

Table 9.3.: Knowledge documentation of the six validation projects: 1) requirements and other
tickets in Jira, 2) commits and code in git and their trace links to Jira, and 3) decision
knowledge in Jira and git. The numbers in brackets either denote the numbers for
test code or the respective percentage.

iPraktikum 18/19 ISE 19/20 ISE 20/21 ISE 21/22 ConDec

Product Workplace
Control App

Car Charging
App

IoT
Platform

Web Search
Engine

Soccer App ConDec
Plug-Ins

Requirements and other Tickets in Jira

Requirements
Specification

11 epics, 35
user stories

31
scenarios

7 epics, 53
user stories,
8 quality
attributes

3 epics, 13
user stories,
6 quality
require-
ments, one
user role, 4
personas

4 epics, 33
user stories,
7 quality re-
quirements,
2 user roles,
4 personas

5 user roles, 5 user
tasks, 14 sub-
tasks, 98 system
functions,
48 workspaces,
14 quality
requirements

Other Tickets 172 devel-
opment
tasks, 309
develop-
ment sub-
tasks, 50
bug reports

62 develop-
ment tasks,
593 devel-
opment
sub-tasks,
57 bug
reports

27 develop-
ment tasks,
129 devel-
opment
sub-tasks,
35 bug
reports

131 work
items, 34
bug reports

179 work
items, 39
bug reports

494 work items,
151 bug reports,
50 system test
cases, 5 test
execution
tickets

#Tickets 557 743 259 191 268 999

Commits and Code in git

#Repositories 5 1 2 6
#Commits 998 185 983 2033

#CommitsL 192 (19 %) 145 (78 %) 474 (48 %) 1658 (82 %)
Code Types in

Knowledge Graph
ts, vue, js,
xml, scss,
conf, html

ts, html,
xml

java, ts, js,
xml, css, conf,
html, yaml

java, js, xml,
vm, soy, ts

#Codegraph (Test) 101 (24) 658 (12) 292 (26) 944 (463)
#LOCgraph (Test) 10553 (1730) 141266 (1724) 19268 (3355) 293151 (29337)

#CodecomL 56 (56 %) 658 (100 %) 284 (97 %) 940 (99.5 %)

Decision Knowledge Documentation in Jira and git

#Issues 33 21 111 81 73 638
#Decisions 56 11 116 116 76 771

#Alternatives 16 29 94 118 84 336

Ra
tio

na
le

Ty
pe

s

#Arguments 26 38 184 ,
113 , 1

262 ,
197

203 ,
154

516 , 453 ,
18

/# 33
56 = 0.6 21

11 = 1.9 111
116 = 0.96 81

116 = 0.7 73
76 = 0.96 638

771 = 0.8
/# 56

16 = 3.5 11
29 = 0.4 116

94 = 1.2 116
118 = 0.98 76

84 = 0.9 771
336 = 2.3

#(+ +)/#(+) 26
72 = 0.4 38

40 = 0.95 298
210 = 1.4 459

234 = 1.96 357
160 = 2.23 987

1107 = 0.9Ra
tio

s

with 10 (30.3 %) 12 (57.1 %) 66 (59.5 %) 64 (79 %) 69 (94.5 %) 282 (44.2 %)
with 42 (75 %) 10 (90.9 %) 116 (100 %) 116 (100 %) 76 (100 %) 771 (100 %)
with 9 (16.1 %) 1 (9.1 %) 85 (73.3 %) 109 (94 %) 74 (97.4 %) 310 (40.2 %)
with 3 (18.8 %) 13 (44.8 %) 67 (71.3 %) 90 (76.3 %) 80 (95.2 %) 224 (66.7 %)In

tr
a-

Ra
tio

na
le

Co
m

pl
et

en
es

s

#Rationale Elements 131 99 619 774 590 2732

#Elements as
Tickets

131 (100 %) 99 (100 %) 12 (1.9 %) 50 (6.5 %) 51 (8.6 %) 87 (3.2 %)

#Elements in
Ticket Text

606 (97.9 %) 724 (93.5 %) 534 (90.5 %) 1812 (66.3 %)

#Elements in
Commit Messages

1 (0.2 %) 0 (0 %) 0 (0 %) 443 (16.2 %)

D
oc

um
en

ta
tio

n
O

rig
in

#Elements in Code
Comments

0 (0 %) 0 (0 %) 5 (0.8 %) 387 (14.2 %)

Continued on next page

164

9.2. Results and Discussion

iPraktikum 18/19 ISE 19/20 ISE 20/21 ISE 21/22 ConDec

Product Workplace
Control App

Car Charging
App

IoT
Platform

Web Search
Engine

Soccer App ConDec
Plug-Ins

#Open Issues 5 (15.2 %) 11 (52.4 %) 4 (3.6 %) 0 (0 %) 1 (1.4 %) 14 (2.2 %)

St
at

us

#Rejected Decisions 8 (6.9 %) 9 (7.8 %) 3 (3.9 %) 65 (8.4 %)

Decision Knowledge in Relation to Requirements and Code

/#Requirements 56
46 = 1.2 11

31 = 0.4 116
68 = 1.71 116

27 = 4.3 76
50 = 1.5 771

184 = 4.2
/#Codegraph

116
101 = 1.15 116

658 = 0.2 76
292 = 0.3 771

944 = 0.8

Decision Coverage of Requirements (User Stories, Scenarios, or System Functions) in Link Distance <= 3

No Traceable 34 (97.1 %) 31 (100 %) 29 (54.7 %) 0 (0 %) 0 (0 %) 3 (3.1 %)
1 Traceable 1 (2.9 %) 0 (0 %) 8 (15.1 %) 0 (0 %) 0 (0 %) 3 (3.1 %)

> 1 Traceable 0 (0 %) 0 (0 %) 16 (30.2 %) 13 (100 %) 33 (100 %) 92 (93.9 %)
Max. # Traceable 1 (2.9 %)

→ 1
31 (100 %)
→ 0

2 (3.8 %)
→ 6

1 (7.7 %)
→ 27

1 (3 %)
→ 8

2 (2 %) → 44

Decision Coverage of Code in Link Distance <= 3

No Traceable 82 (81.2 %) 27 (4.1 %) 89 (30.5 %) 12 (1.3 %)
1 Traceable 2 (2 %) 11 (1.7 %) 42 (14.4 %) 34 (3.6 %)

> 1 Traceable 17 (16.8 %) 620 (94.2 %) 161 (55.1 %) 898 (95.1 %)
Max. # Traceable 17 (16.8 %)

→ 2
1 (0.2 %)
→ 39

2 (0.7 %)
→ 13

1 (0.1 %)
→ 225

Documentation Locations

This section presents the results for the question Where were the decision knowledge elements
documented, i. e. in which documentation locations, and when? (RQ1.2). In the iPraktikum,
ConDec only enabled to document decision knowledge as entire tickets. Thus, it was the only
location used. In the ISE projects (90.5 – 97.9 %) and ConDec project (66.3 %), the prevailing
documentation location was ticket text, i. e., the description and comments (Table 9.3). The
results indicate that documenting decision knowledge in Jira ticket text is more accessible than
creating entire tickets for every decision knowledge element. In addition to documenting decision
knowledge in the text of requirements and work items, the developers in the ISE projects often
created entire tickets for issues. Then they captured the related solution options and arguments
in their text. The ConDec developers also documented decision knowledge in commit messages
(16.2 %) and code comments (14.2 %). While the developers’ preferences differ, the results show
that it is feasible to document decision knowledge in different locations with ConDec.

Figure 9.2 shows the proportion of used documentation locations over time for the projects
with more than one documentation location. In the ISE 19/20 project, the developers mainly
used ticket descriptions and comments to document decision knowledge. In the ISE 20/21 and
21/22 projects, the developers mainly documented decision knowledge in ticket descriptions and
comments, but they also continuously used entire tickets to report issues. The ConDec developers
continuously used all four locations to document decision knowledge.

Change of Decision Knowledge Elements Over Time

This section presents the results for the question How many rationale elements were updated
after their first documentation? (RQ1.3). Figure 9.3 compares the date of first documentation
(creation date) of the rationale elements in the projects against their last update as scatter plots
(above) and boxplots and histograms (below). Some rationale elements were never updated in all
projects (positioned on the diagonal lines in the scatter plots in Figure 9.3). The histograms
show that most rationale elements were never or shortly updated after their first documentation
(the first bar is the highest). The further away the elements are from the diagonal line in the

165

9. Analysis of Knowledge Documentation

0%

25%

50%

75%

100%

2019-10-01 2019-11-01 2019-12-01 2020-01-01 2020-02-01 2020-03-01

Creation Date

D
oc

um
en

ta
tio

n
Lo

ca
tio

n

ISE
19/20

JiraIssueText

JiraIssue

Commit

0%

25%

50%

75%

100%

2020-11-01 2020-12-01 2021-01-01 2021-02-01 2021-03-01

Creation Date

D
oc

um
en

ta
tio

n
Lo

ca
tio

n

ISE
20/21

JiraIssueText

JiraIssue

0%

25%

50%

75%

100%

2021-10-01 2022-01-01 2022-04-01

Creation Date

D
oc

um
en

ta
tio

n
Lo

ca
tio

n

ISE
21/22

JiraIssueText

JiraIssue

Code

0%

25%

50%

75%

100%

2018-01-01 2019-01-01 2020-01-01 2021-01-01 2022-01-01

Creation Date

D
oc

um
en

ta
tio

n
Lo

ca
tio

n

ConDec

JiraIssueText

JiraIssue

Commit

Code

Figure 9.2.: Proportion of documentation locations used over time in the validation projects.
The gray dashed vertical lines indicate the sprint reviews.

scatter plots, the longer the duration between their creation and the last update. While some
rationale elements were never changed, others were changed after different periods. The results
show that the developers constantly updated rationale elements throughout the projects, maybe
because ConDec presented the elements to the developers as part of the knowledge subgraph for
a development task. Interestingly, elements positioned along horizontal lines in the scatter plots
were changed on the same date, indicating that a more extensive set of rationale documentation
was improved at this date. Notably, all rationale elements documented in the description or
comment of a ticket, in a commit message (which is transcribed into a ticket comment), or in a
code comment have the same creation date and last update due to a lack of tool support to keep
a fine-grained version history. Thus, rationale elements of different types documented in these
locations are on top of each other in the scatter plots in Figure 9.3. The current lack of tool
support is why we cannot answer how long it takes from the first capturing of an issue to its
solution through a decision. Figure 9.3 omits elements that were updated after the project was
finished, e. g., to fix spelling mistakes.

166

9.2. Results and Discussion

Dec 01 Jan 01 Feb 01

D
ec

 0
1

Ja
n

01
F

eb
 0

1

Creation Date (2018-11-10 to 2019-02-01)

La
st

 U
pd

at
e

iPraktikum Workplace-Control

Issue
Decision
Alternative
Argument

Dec 01 Jan 01 Feb 01

D
ec

 0
1

Ja
n

01
F

eb
 0

1

Creation Date (2018-11-10 to 2019-02-01)

La
st

 U
pd

at
e

iPraktikum Car Charging

Issue
Decision
Alternative
Argument

Nov Jan Mar

N
ov

Ja
n

M
ar

Creation Date (2019-10-02 to 2020-03-13)

La
st

 U
pd

at
e

ISE 19/20

Issue
Decision
Alternative
Argument
Pro
Con

Nov Jan Mar

N
ov

Ja
n

M
ar

Creation Date (2020-10-19 to 2021-03-13)

La
st

 U
pd

at
e

ISE 20/21

Issue
Decision
Alternative
Pro
Con

Nov Jan Mar

N
ov

Ja
n

M
ar

Creation Date (2021-10-05 to 2022-03-29)

La
st

 U
pd

at
e

ISE 21/22

Issue
Decision
Alternative
Pro
Con

2018 2019 2020 2021 2022

20
18

20
19

20
20

20
21

20
22

Creation Date (2018-01-07 to 2022-04-10)

La
st

 U
pd

at
e

ConDec

Issue
Decision
Alternative
Argument
Pro
Con

1 3 5 7 9 13

DCreation and Last Update [days]

P
er

ce
nt

ag
e

of
 1

21
 R

at
io

na
le

 E
le

m
en

ts

0%

10%

20%

30%

40%

50%

60%
iPraktikum Workplace-Control

Median = 2 days
Mean = 5 days
Min = 0 days
Max = 15 days
SD = 5 days

5 15 25 35 45 55

DCreation and Last Update [days]

P
er

ce
nt

ag
e

of
 9

1
R

at
io

na
le

 E
le

m
en

ts

0%

20%

40%

60%

iPraktikum Car Charging

Median = 4 days
Mean = 12 days
Min = 0 days
Max = 60 days
SD = 18 days

10 50 90 130

DCreation and Last Update [days]

P
er

ce
nt

ag
e

of
 5

06
 R

at
io

na
le

 E
le

m
en

ts

0%

20%

40%

60%

80%

100%
ISE 19/20

Median = 0 days
Mean = 6 days
Min = 0 days
Max = 154 days
SD = 21 days

5 25 55 85 115 145

DCreation and Last Update [days]

P
er

ce
nt

ag
e

of
 5

24
 R

at
io

na
le

 E
le

m
en

ts

0%

10%

20%

30%

40%
ISE 20/21

Median = 29 days
Mean = 53 days
Min = 0 days
Max = 142 days
SD = 50 days

10 50 90 130 170

DCreation and Last Update [days]

P
er

ce
nt

ag
e

of
 4

76
 R

at
io

na
le

 E
le

m
en

ts

0%

5%

10%

15%

20%

25%

30%
ISE 21/22

Median = 55 days
Mean = 70 days
Min = 0 days
Max = 170 days
SD = 59 days

50 350 750 1150 1550

DCreation and Last Update [days]

P
er

ce
nt

ag
e

of
 2

68
9

R
at

io
na

le
 E

le
m

en
ts

0%

5%

10%

15%

20%

25%

30%
ConDec

Median = 570 days
Mean = 566 days
Min = 0 days
Max = 1553 days
SD = 470 days

Figure 9.3.: Above: Date of first documentation (creation date) plotted against the last update
of the rationale elements in the validation projects during the project duration.
Below: Boxplots and histograms of the time difference between the first documen-
tation and the last update of the rationale elements as well as the median, mean,
minimum, maximum, and standard deviation (SD).

167

9. Analysis of Knowledge Documentation

Decision Types

This section presents the results for the questions What types of decisions are documented
and when? Were specific types of decisions documented at specific points in time? (RQ1.4).
Figure 9.4 visualizes the number of decisions per decision type (left) and the number of types
per decision (right) in the iPraktikum and ISE (above) and the ConDec projects (below). The
largest group of decisions are frontend (33 %) as well as backend and data storage decisions
(29 % in the iPraktikum and ISE projects or 32 % in ConDec). 18 % or 26 % of the decisions are
functionality-driven, 14 % or 8 % of are quality-driven, 6 % or 5 % concern the API, 3 % or 6 %
concern an external library or framework, 19 % or 8 % are executive decisions, and 6 % or 5 %
relate to software testing. While the majority of the decisions (74 % or 75 %) is assigned to
one decision type, about a quarter of the decisions are assigned to two types and very few
decisions to three types. Further data are required to investigate to which extent the distribution
of decision types is the same for other projects or differs depending on the software domain
or team size (executive). However, the classified decisions (in Appendix A) can be helpful in
other software development projects as a basis for decision guidance. The lowest percentage of
executive decisions was documented in the ConDec project. Especially in the iPraktikum, more
than one-third of the documented decisions are executive. The high number matches the finding
that practitioners mentioned executive decisions as important to be documented (Chapter 3).

QualityDriven (51 ≈ 14%)

FunctionalityDriven (66 ≈ 18%)

Frontend (123 ≈ 33%)BackendAndDataStorage (110 ≈ 29%)

API (24 ≈ 6%)

ExternalLibOrFramework (13 ≈ 3%)

Executive (73 ≈ 19%)

Testing (21 ≈ 6%)

iPraktikum and ISE Projects

1 Groups Assigned
(279 Decisions ≈ 74%)

2 Groups Assigned
(86 Decisions ≈ 23%)

3 Groups Assigned
(10 Decisions ≈ 3%)

iPraktikum and ISE Projects

QualityDriven (63 ≈ 8%)

FunctionalityDriven (200 ≈ 26%)

Frontend (257 ≈ 33%)

BackendAndDataStorage (251 ≈ 33%)

API (42 ≈ 5%)

ExternalLibOrFramework (50 ≈ 6%)

Executive (63 ≈ 8%)
Testing (38 ≈ 5%)

ConDec

1 Groups Assigned
(580 Decisions ≈ 75%)

2 Groups Assigned
(189 Decisions ≈ 25%)

3 Groups Assigned
(2 Decisions ≈ 0%)

ConDec

Figure 9.4.: Left: Number of decisions per decision type in the validation projects. A decision
can be assigned to more than one type. Thus, the sum of percentages exceeds 100 %.
Right: Number of assignments per decision. Above: Average of all 375 decisions
in the iPraktikum and ISE projects. Below: 771 in the ConDec project.

Figure 9.5 shows the proportion of decision types documented over time. In the ISE 20/21
project, testing decisions were only documented shortly before and after the third sprint review.
In the ISE 21/22 project, executive decisions were documented subsequently to the first, second,
third, and fourth sprint reviews. Generally, there seems not to be a tendency to document
a specific type of decision during a particular period. This underpins the idea of CSE that
the developers frequently iterate over all phases of software development instead of performing
waterfall-like projects. Figure 9.5 shows that it is feasible to document different types of decisions
with ConDec continuously.

168

9.2. Results and Discussion

0%

25%

50%

75%

100%

2018-12-01 2019-01-01 2019-02-01

Creation Date

#D
ec

is
io

ns
 D

oc
um

en
te

d
iPraktikum
Workplace
Control

QualityDriven

FunctionalityDriven

Frontend

BackendAndDataStorage

API

Executive

Testing

0%

25%

50%

75%

100%

2018-12-01 2019-01-01 2019-02-01

Creation Date

#D
ec

is
io

ns
 D

oc
um

en
te

d

iPraktikum
Car Charging

Frontend

BackendAndDataStorage

Executive

Testing

0%

25%

50%

75%

100%

2019-10-01 2019-11-01 2019-12-01 2020-01-01 2020-02-01 2020-03-01

Creation Date

#D
ec

is
io

ns
 D

oc
um

en
te

d

ISE 19/20

QualityDriven

FunctionalityDriven

Frontend

BackendAndDataStorage

API

ExternalLibOrFramework

Executive

Testing

0%

25%

50%

75%

100%

2020-11-01 2020-12-01 2021-01-01 2021-02-01 2021-03-01

Creation Date

#D
ec

is
io

ns
 D

oc
um

en
te

d

ISE 20/21

QualityDriven

FunctionalityDriven

Frontend

BackendAndDataStorage

API

ExternalLibOrFramework

Executive

Testing

0%

25%

50%

75%

100%

2021-10-01 2022-01-01 2022-04-01

Creation Date

#D
ec

is
io

ns
 D

oc
um

en
te

d

ISE 21/22

QualityDriven

FunctionalityDriven

Frontend

BackendAndDataStorage

API

ExternalLibOrFramework

Executive

Testing

0%

25%

50%

75%

100%

2018-01-01 2019-01-01 2020-01-01 2021-01-01 2022-01-01

Creation Date

#D
ec

is
io

ns
 D

oc
um

en
te

d

ConDec

QualityDriven

FunctionalityDriven

Frontend

BackendAndDataStorage

API

ExternalLibOrFramework

Executive

Testing

Figure 9.5.: Proportion of decision types documented over time in the validation projects.
The gray dashed vertical lines indicate sprint reviews.

169

9. Analysis of Knowledge Documentation

Correlation of Decision Types With Other Decision Types

This section presents the results for the question Are decision types often or never assigned
to the same decisions? (RQ1.5). Figure 9.6 shows a Venn diagram (left) and the correlation
matrix (right) for the decision types in all validation projects. The Venn diagram and the
correlation matrix were calculated with all 1146 decisions because the distribution of decision
types is similar for the validation projects (Figure 9.4). In the Venn diagram, the size of the
circles indicates the number of decisions per decision type, and the intersections indicate typical
combinations. For example, the intersection between the circles for testing and executive decisions
indicates that most of the testing decisions (44) are specific executive decisions, while 15 are
non-executive. The correlation matrix expresses the likelihood that two decision types are
assigned to the same decision. Only executive and testing decisions have a positive correlation
value (0.43). Crossed-out correlation coefficients are insignificant (significance level is 0.05). All
other decision types are negatively correlated. While some decisions have two types, such as
functionality-driven and frontend, the majority of the frontend decisions are not classified as
functionality-driven. Especially, frontend decisions and decisions regarding the backend and data
storage are disjunctive (-0.42).

API

ExternalLibOrFramework

BackendAndDataStorage

Executive

Testing

Frontend
FunctionalityDriven

QualityDriven

1 -0.15 0 -0.01 -0.06 -0.07 -0.08 -0.08

-0.15 1 -0.12 -0.26 -0.11 -0.13 -0.2 -0.13

0 -0.12 1 -0.42 -0.09 -0.06 -0.22 -0.14

-0.01 -0.26 -0.42 1 -0.05 -0.01 -0.23 -0.15

-0.06 -0.11 -0.09 -0.05 1 -0.04 -0.09 -0.06

-0.07 -0.13 -0.06 -0.01 -0.04 1 -0.03 -0.04

-0.08 -0.2 -0.22 -0.23 -0.09 -0.03 1 0.43

-0.08 -0.13 -0.14 -0.15 -0.06 -0.04 0.43 1

QualityDriven

FunctionalityDriven

Frontend

BackendAndDataStorage

API

ExternalLibOrFramework

Executive

Testing

Qua
lity

Driv
en

Fun
cti

on
ali

tyD
riv

en

Fro
nt

en
d

Bac
ke

nd
And

Dat
aS

to
ra

ge API

Exte
rn

alL
ibO

rF
ra

m
ew

or
k

Exe
cu

tiv
e

Tes
tin

g

-1.0

-0.5

0.0

0.5

1.0

Correlation
of Decision
Types in

All
Projects

Figure 9.6.: Left: Venn diagram of decision types and intersections in all projects.
Right: Correlation between the decision types in all projects.

Correlation of Decision Types with Documentation Locations

This section presents the results for the question Are there decision types that often or never
are documented in specific documentation locations? (RQ1.6). Figure 9.7 shows the correlation
matrix for the decision types and documentation locations in the ConDec project. The correlation
matrix was calculated on the decisions of the ConDec project because it is the only project
in which the developers documented decision knowledge in the four documentation locations
currently supported (entire Jira tickets, description and comments of existing Jira tickets such as

170

9.2. Results and Discussion

-0.06 -0.02 -0.19 0.23 0.04 0.02 -0.11 -0.01

0.02 0.08 0.19 -0.22 -0.07 0.01 0.03 -0.05

0.08 -0.05 0.01 -0.01 0 -0.04 0.05 0.01

0 -0.06 -0.07 0.08 0.05 -0.02 0.03 0.06

Code

JiraIssueText

JiraIssue

Commit

Qu
ali
tyD
riv
en

Fu
nc
tio
na
lity
Dr
ive
n

Fr
on
te
nd

Ba
ck
en
dA
nd
Da
ta
St
or
ag
e

AP
I

Ex
te
rn
alL
ibO
rF
ra
m
ew
or
k

Ex
ec
ut
ive

Te
sti
ng

-1.0

-0.5

0.0

0.5

1.0

ConDec

Figure 9.7.: Correlation between the decision types and documentation locations for the decisions
documented in the ConDec project.

work items or requirements, commit messages, and code comments). The documentation in code
comments is positively correlated with the documentation of decisions regarding backend and
data storage (correlation coefficients 0.23) and negatively correlated with the documentation of
frontend (-0.19) and executive (-0.11) decisions. Frontend decisions are rarely documented in
code comments. The reason might be that the feature to extract rationale from code comments
only initially supported the Java programming language. Java is mainly used in the backend
of the ConDec plug-ins (except for the Eclipse plug-in). In the future and other projects, more
decisions might be documented in frontend code, such as JavaScript files. No executive decisions
are documented in the code, but non-executive testing decisions, e. g., We have one mock git
repository for testing! Crossed-out correlation coefficients are insignificant (significance level is
0.05). A few other positive and negative correlations exist, e. g., to document quality-driven
decisions such as Use basic authentication! in entire Jira tickets. However, the correlations
are relatively low, and, in general, the documentation locations of ConDec are interchangeable,
meaning developers can choose their preferred location.

Discussion: Is it feasible to document decision knowledge in practice with ConDec?

With the answers for the sub-questions of RQ1, we showed that it is feasible to document decision
knowledge with various rationale types, in four documentation locations in the issue tracking
system Jira and version control system git, with various decision types, and continuously, i. e.
over time in small increments instead of only once in practice with ConDec. Besides, we showed
that it is feasible to continuously change decision knowledge in practice with ConDec.

9.2.2. Feasibility of Documenting a High Amount of Knowledge with ConDec

This section presents the results for the research question Is it feasible to document a high amount
of knowledge in practice with ConDec? (RQ2). The subsections describe 1) the requirements
specification and other tickets in Jira, 2) the code in git, 3) the ratios between the number of
rationale elements and requirements as well as code. In the last subsection, we answer the RQ2.

171

9. Analysis of Knowledge Documentation

Requirements Specification and Other Tickets in the Issue Tracking System Jira

This section presents the results for the question Which and how many requirements and other
tickets are documented? (RQ2.1). The requirements elicitation, documentation, checking, and
management was an ongoing, iterative process, i. e., the requirements documentation was not
fixed from the beginning. Still, for simplicity, this section only reports the results at the end of
the project (Table 9.3 on page 164). The requirements of the validation projects are specified
either as epics and user stories, scenarios, or in the notations of Task and Object-oriented
Requirements Engineering (Paech and Kohler, 2004). The different types of requirements are
represented by the Feature entity in the ConRat knowledge model (Section 6.1). All projects use
a hierarchical requirements model that breaks down high-level requirements (e. g., epics, user
tasks) into fine-grained requirements (e. g., user stories, system functions) or work items. Four
of the six projects explicitly specify quality requirements either in the form of distinct tickets
or as user stories. Amongst the iPraktikum and ISE projects with comparable duration and
number of developers, the specification for the IoT platform contains the highest number of
requirements (68). In contrast, the specification for the web search engine contains the lowest
number (27). The specification for the ConDec plug-ins contains 184 requirements in total. It
must be noted that these numbers might not represent the size and complexity of the software
systems because the granularity of requirements might differ between the projects, even for the
same requirement types, such as user stories. In all projects, work items resemble the ticket type
with the highest number. The project documentation contains other tickets, in particular, bug
reports and test-related tickets.

Code in the Version Control System Git

This section presents the results for the question Which and how many code elements were
created? (RQ2.2). Frequently used languages and code file types are Java, JavaScript (js),
TypeScript (ts), Hypertext Markup Language (HTML), Extensible Markup Language (XML),
Cascading Style Sheets (CSS), and configuration (conf) in the available git repositories (Table 9.3
on page 164). The number of code elements #Codegraph, i. e., code files integrated into the
knowledge graph, varies between 101 and 658, and the #LOCgraph between 10553 and 141266
for the ISE projects. The ConDec project contains 944 code elements and 293151 #LOCgraph.
The particularly high numbers are due to the inclusion of library code in git.

Ratios between Number of Decisions and Requirements as well as Code

This section presents the results for the question What are the ratios between decision knowledge
and system knowledge elements? (RQ2.3). The ratios between the number of decisions and
requirements range from 0.4 to 4.3 for the iPraktikum and ISE projects (Table 9.3 on page 165).
For the ConDec project, the ratio is 4.2, which means that more than four decisions are
documented for a requirement on average. The ratios between the number of decisions and code
elements range from 0.2 to 1.15 for the ISE projects, and the ratio is 0.8 for the ConDec project.

Discussion: Is it feasible to document a high amount of knowledge in practice with ConDec?

We showed that it is feasible to document a high amount of system knowledge, i. e. requirements
and code, with ConDec through its application in the validation projects. We consider the
amount of system knowledge documented in the validation projects with a duration of about
six months as high. These projects resulted in between 27 to 68 documented requirements and
101 to 658 code files. The ISE 19/20 project (IoT platform) shows the feasibility to document
a high amount of rationale related to requirements and code with ConDec using the following
two indicators (Table 9.3 on page 165): First, the ratios between the number of decisions and

172

9.2. Results and Discussion

requirements or code element both exceed 1.0, which means that more than one decision was
documented for each requirement and code element. Second, for every of the 116 decisions
more than four other rationale elements are documented on average (619 rationale elements are
documented in total). Notably, a ratio of 1.0 could mean that a decision was documented for
every requirement or code element but could also mean that all the decisions relate to only one
requirement or code element. To further analyze the relation, Section 9.2.3 quantifies the number
of traceable decisions from requirements and code using the decision coverage metric.

9.2.3. Feasibility of Documenting High Quality Knowledge with ConDec

This section presents the results for the research question Is it feasible to create high-quality
knowledge documentation in practice with ConDec? (RQ3). The subsections describe 1) the
completeness of links between code in git to tickets in Jira via commits, 2) the intra-rationale
completeness, 3) the states of issues and decisions, and 4) the decision coverage of requirements
and code. In the last subsection, we answer the RQ3.

Trace Links between Commits and Code in Git to Tickets in Jira

This section presents the results for the question How well is the knowledge documented in git
linked to the knowledge documented in Jira? (RQ3.1). The number of commits with a valid
ticket identifier in their commit message (#CommitsL) strongly varies between 19 % and 78 %
for the ISE projects. It is 82 % in the ConDec project (Table 9.3 on page 164). This confirms the
finding by Saito et al. (2017) and Rath et al. (2018) that only parts of the commits are linked
to tickets. The number of code files traceable from at least one ticket (#CodecomL) is higher
(56 % to 100 % in the ISE projects and 99.5 % in the ConDec project). We conclude that the
majority of code elements are traceable from at least one ticket, which enables the knowledge
exploitation of decision knowledge documented in the issue tracking system from code and vice
versa. However, missing links and wrong links might hinder the exploitation. Currently, ConDec
offers basic mechanisms to detect wrong links (Section 7.6.9), and developers can manually mark
links as wrong (Section 7.5.3). Techniques to automatically improve and maintain trace links as
systematized by Hübner and Paech (2020) should be added to ConDec in the future.

Intra-Rationale Completeness

This section presents the results for the question Is the decision knowledge completely docu-
mented? (RQ3.2). It assesses the criteria of intra-rationale completeness: 1) issues with at least
one alternative, 2) decisions with an issue, 3) decisions with at least one pro-argument, and
4) alternatives with at least one con-argument documented. The section exemplifies violations.

The number of issues with at least one alternative documented (next to the solution decision)
varies between 30.3 % and 94 % in the iPraktikum and ISE projects (Table 9.3 on page 164).
In the ConDec project, 44.2 % of issues is relatively low. In all of the projects, it was not
mandatory to document alternatives next to the solution decision. Still, we encouraged the
documentation of alternatives while disseminating rationale management (Chapter 12). An
exception is finding out what to do rather than deciding between solution options. For example,
the issue How can we clean up after the deletion of a Jira project? has only a decision Delete
all knowledge elements and links from Jira ticket description and comments after project deletion
in database! Remove all singleton objects for the project! but no alternatives. In other cases, the
documentation of alternatives would have been useful: An example for the workplace-control app
is the Which tool should we use to write/publish the API during the development? with the
decision Postman! We cannot know if the developers discussed alternatives such as Swagger
and why they discarded the alternatives.

173

9. Analysis of Knowledge Documentation

The amount of decisions with an issue documented and linked varies between 75 % and 100 %
in the iPraktikum and ISE projects. It is 100 % in the ConDec project (Table 9.3 on page 164).
The fulfillment of the criterion was mandatory during the ISE and ConDec projects and, thus, is
very high. In the iPraktikum projects, decisions without an issue are documented, making it hard
to understand the problem they solve. Examples for the workplace-control app are Shared
devices energy consumption is distributed among relevant occupants! and Use core location
and geofence to track time user spent at the workplace!

The number of decisions with at least one pro-argument documented varies between 9.1 %
and 97.4 % in the iPraktikum and ISE projects (Table 9.3 on page 164). In the ConDec project,
40.2 % of decisions are relatively low. In all of the projects, it was not mandatory to document
pro-arguments for decisions. Still, we encouraged the documentation of pro-arguments while
disseminating rationale management (Chapter 12) since it enables an understanding of why a
decision was selected. We did not enforce the arguments documentation in favor of lightweight
decision documentation. In all projects, there are decisions without documented pro-arguments.
An example for the IoT platform is the issue When should we load the list of devices from the
database in the frontend? The decision is We get the list of devices from the backend while
loading the page in the frontend! There is no documented pro-argument (and no alternative) for
the decision, making it hard to understand why the issue was discussed.

The amount of alternatives with at least one con-argument varies between 18.8 % and 95.2 %
in the iPraktikum and ISE projects and is 66.7 % in the ConDec project (Table 9.3 on page 164).
Again, it was not mandatory to document con-arguments for alternatives. In all projects, there
are alternatives without documented con-arguments, which makes it difficult to understand why
they were discarded. An example for the IoT platform is the issue How to implement charts,
i. e., with which library? with the alternative We could use Chartist.js to implement charts.
For this alternative, only pro-arguments are documented, e. g., open source. This pro-argument
is also linked to the decision We use chart.js to implement charts!, but the decision has a
further pro-argument We’ve already had some experience with it, therefore quick and easy
to use. This additional argument for the decision indicates why the alternative was discarded.
However, it would be more explicit to add an attacks-association from the pro-argument for the
decision to the alternative.

The ConDec quality checking feature enables the enforcement of all criteria of intra-rationale
completeness, which can be valuable in strictly regulated domains (e. g., medical or aerospace).
Burge and D. C. Brown (2008a) distinguish syntactic and semantic inferences over rationale
documentation. Syntactic inferences are concerned with the structure of the rationale. Semantic
inferences look into the content. While the analysis of the intra-rationale completeness was
syntactical, a semantic analysis of the rationale elements should be done in the future. In some
cases, decisions cannot be understood outside the development team. An example is the issue

Should we merge our issues with the sign-in database developers? with the decision yes.
Such decision knowledge documentation is probably not helpful after the specific discussion.

States of Issues and Decisions

This section presents the results for the question What are the states of the issues and decisions?
(RQ3.3). The proportion of unsolved issues varies between 0 % and 52.4 % in the iPraktikum
and ISE projects and is 2.2 % in the ConDec project (Table 9.3 on page 165). Proportionally,
the iPraktikum projects have the highest number of unsolved issues (15.2 % and 52.4 %) not
linked to a solution decision. Examples for the workplace-control app are Should the world
maps and anchors be saved on the server? and What should be in the energy consumption
report? Examples for the car charging app are How to display the calendar for the charging
station owner? and What should be the next view after the sign-in view? This might be due to

174

9.2. Results and Discussion

missing tool support for quality checking at this time, missing links between issues and decisions,
and also because the rationale documentation was not demanded in sprint reviews as in the ISE
projects. The ISE projects have only a few unsolved issues (0 – 4) because the developers aimed
to solve the issues before the end of the project and they consolidated the (decision knowledge)
documentation. The ConDec development is an ongoing open-source project to be continued in
the future and the open issues represent opportunities for improvement.

Rejected decisions were incorporated into the system and then changed (Section 6.1.2). Between
3.9 % and 7.8 % of the decisions in the ISE projects and 8.4 % of the decisions in the ConDec
project are rejected (Table 9.3 on page 165). These decisions are valuable since they 1) can prevent
going into dead ends in the same or other projects and 2) the rejected code is preserved and
linked via the feature tasks in the git repository, which—next to the documented rationale—can
support understanding and undoing the rejection.

Decision Coverage of Requirements and Code

This section presents the results for the question How many decisions are traceable from require-
ments and code, i. e., what is the decision coverage? (RQ3.4). The decision coverage expresses
the direct and indirect traceability from system knowledge elements, i. e., requirements in tickets
and code, to documented decisions. In general, the higher the decision coverage, the better
the accessibility of the decisions from tickets and code (but there can also be wrong links, as
described below). The decision coverage is calculated with the maximal link distance (number of
hops) of three from requirements and code elements to include transitively (indirectly) linked
decisions. For example, developers can access a decision from a requirement if this decision is
documented in a comment of a work item linked to the requirement. Requirements considered
are scenarios, user stories, and system functions because of their similar granularity instead
of user tasks and epics. Table 9.3 on page 165 provides numbers and Figure 9.8 on page 176
visualizes boxplots and histograms for the decision coverage.

The car charging app project is not included in Figure 9.8 because no requirement (scenario)
is transitively linked to decisions. Decisions might be documented for the requirements but not
linked. For instance, a scenario for the car charging app is called Manage own bookings, and
an issue is How to determine free time slots for booking? Both seem to be related, but they
are not linked and, thus, not traceable. In general, the requirements of the iPraktikum and the
ISE 19/20 projects have a low decision coverage. A low decision coverage indicates requirements
and code files with missing decision making (unsolved issues), missing decision documentation,
or missing links. During these projects, ConDec did not offer a quality checking and nudging
mechanism (Section 7.6.4) that frequently confronts the developers with a low decision coverage.

In the ISE 20/21, ISE 21/22, and ConDec projects, the majority of the requirements (93.9 % –
100 %) is covered with more than one decision, as requested by the definition of done. In these
projects, the requirements and code files are covered with 2 – 17 decisions on average (mean
value in Figure 9.8), which are reasonable numbers for exploitation. The decision coverage
varies for the requirements and code files (standard deviation 2 – 27 in Figure 9.8). The decision
coverage of code files varies stronger than the decision coverage of requirements, maybe due to
the heterogeneity of code written in different languages.

The maxima of traceable decisions in link distance three can be very high, e. g., 225 decisions
can be reached from the atlassian-plugin.xml file of the ConDec Jira plug-in. It would not benefit
developers to see 225 or 44 decisions when working on code or requirements, respectively. The
high numbers can be due to the following reasons: 1) Trace links between code files and work items
can be wrong because of tangled commits. Configuration files such as the atlassian-plugin.xml
and pom.xml in ConDec or the schema.xml in the web search engine development were often
changed. They are linked to tickets and transitively related to decisions that do not explain

175

9. Analysis of Knowledge Documentation

the changes in these files. Thus, a very high decision coverage can be used as an indicator
to detect wrong links in the knowledge graph. 2) A very high decision coverage can indicate
decision “hot spots” in that it might be worth splitting a requirement or code file. For instance,
the system function Manually classify text in the description or comments of a Jira ticket as
decision knowledge of the ConDec project is covered with 44 decisions since its implementation
was complex. 3) The calculation of the decision coverage might traverse useless links. Currently,
link distance three is used in all directions. However, it might be useless to see the decisions
directly linked to a user story from other user stories of an epic.

0 1

Number of Traceable Decisions

P
er

ce
nt

ag
e

of
 3

5
R

eq
ui

re
m

en
ts

0%

20%

40%

60%

80%

100%
iPraktikum Workplace-Control

Median = 0 decisions
Mean = 0 decisions
Min = 0 decisions
Max = 1 decisions
SD = 0 decisions

0 1 2 3 4 5 6

Number of Traceable Decisions

P
er

ce
nt

ag
e

of
 5

3
R

eq
ui

re
m

en
ts

0%

10%

20%

30%

40%

50%

60%
ISE 19/20

Median = 0 decisions
Mean = 1 decisions
Min = 0 decisions
Max = 6 decisions
SD = 2 decisions

0 1 2

Number of Traceable Decisions

P
er

ce
nt

ag
e

of
 1

01
 C

od
e

F
ile

s

0%

20%

40%

60%

80% ISE 19/20

Median = 0 decisions
Mean = 0 decisions
Min = 0 decisions
Max = 2 decisions
SD = 1 decisions

7 10 14 18 22 26

Number of Traceable Decisions

P
er

ce
nt

ag
e

of
 1

3
R

eq
ui

re
m

en
ts

0%

10%

20%

30%

40%
ISE 20/21

Median = 15 decisions
Mean = 17 decisions
Min = 7 decisions
Max = 27 decisions
SD = 7 decisions

0 5 11 18 25 32 39

Number of Traceable Decisions

P
er

ce
nt

ag
e

of
 6

58
 C

od
e

F
ile

s

0%

20%

40%

60%

80% ISE 20/21

Median = 2 decisions
Mean = 2 decisions
Min = 0 decisions
Max = 39 decisions
SD = 2 decisions

2 3 4 5 6 7 8

Number of Traceable Decisions

P
er

ce
nt

ag
e

of
 3

3
R

eq
ui

re
m

en
ts

0%

10%

20%

30%

40%

50%
ISE 21/22

Median = 5 decisions
Mean = 5 decisions
Min = 2 decisions
Max = 8 decisions
SD = 2 decisions

0 2 4 6 8 10 13

Number of Traceable Decisions

P
er

ce
nt

ag
e

of
 2

92
 C

od
e

F
ile

s

0%

10%

20%

30%

40%
ISE 21/22

Median = 2 decisions
Mean = 3 decisions
Min = 0 decisions
Max = 13 decisions
SD = 3 decisions

0 5 11 18 25 32 39

Number of Traceable Decisions

P
er

ce
nt

ag
e

of
 9

8
R

eq
ui

re
m

en
ts

0%

5%

10%

15%

20%
ConDec

Median = 7 decisions
Mean = 8 decisions
Min = 0 decisions
Max = 44 decisions
SD = 8 decisions

0 30 65 105 150 195

Number of Traceable Decisions

P
er

ce
nt

ag
e

of
 5

47
 C

od
e

F
ile

s

0%

5%

10%

15%

20%
ConDec

Median = 7 decisions
Mean = 16 decisions
Min = 0 decisions
Max = 225 decisions
SD = 27 decisions

Figure 9.8.: Decision coverage of requirements and code in a maximal distance of three links.
For each project, the number of traceable decisions from requirements and code
(if available) is shown as boxplots and histograms, as well as the median, mean,
minimum, maximum, and standard deviation (SD).

176

9.3. Related Work

Discussion: Is it feasible to create high-quality knowledge documentation with ConDec?

We showed that it is feasible to create high-quality knowledge documentation using the following
indicators: 1) Most code elements in the projects are traceable from at least one ticket in the issue
tracking system, which supports knowledge exploitation. 2) Most decision knowledge elements
of the ISE projects are completely documented according to four criteria of intra-rationale
completeness, in particular, if checked and enforced by ConDec, in addition to promoting
completeness through guidelines. 3) The ISE projects contain only a few unsolved issues. 4) The
decision coverage of requirements and code files fulfills the definition of done checked and enforced
by ConDec.

In the future, the semantic content of the rationale documentation should be analyzed. ConDec
supports rational and naturalistic decision documentation (Section 2.2.2), but naturalistic
decisions might not be the best solution. An example is the issue Which technology shall
the backend use? with the decision Use NodeJS! and the pro-argument We have more
experience with NodeJS than with Flask. In few cases, the documentation deviates from the
ConRat knowledge model (Section 6.1): The decision Use a single stop word file to keep
maintenance low! includes the pro-argument to keep maintenance low. The development team
can configure the rationale model and decide on the format. ConDec supports creating consistent,
correct, up-to-date, and unique documentation by 1) making the decision knowledge traceable
from requirements, other tickets, and code, 2) offering easily accessible knowledge visualizations
and frequently presenting the documented knowledge, and 3) recommendation systems. Next to
tools, dissemination and guidelines are important to support high quality.

9.3. Related Work

This section discusses related work on analyzing rationale documentation created in software
development projects. While there are approaches to identify and mine rationale retrospectively,
this section discusses studies in which developers documented rationale during the project.
Table 9.4 compares the study in this chapter with the related studies. The iPraktikum and ISE
projects are similar in duration and team size, while the ConDec project differs.

Alkadhi et al. (2017a) developed the Rationale ExtrAction from Communication arTifacts
(REACT) approach to capture rationale in chat messages and applied it in two studies. In their
first study, they applied REACT in a short-term design task with eleven teams. In their second
study, they applied REACT in an iPraktikum 2017/18 project over two months with one team
of ten developers. The setting of the second study by Alkadhi et al. (2017a) is similar to the
iPraktikum and ISE projects used for treatment validation in this dissertation. The developers
captured about five decisions in chat messages, while in the iPraktikum and ISE projects of
this thesis, the developers captured 11 – 116 decisions. Alkadhi et al. (2017a) analyzed different
documentation aspects than us, namely the correctness of the rationale annotations and the
collaborativeness of developers. The studies are also published in Alkadhi (2018).

Schubanz and Lewerentz (2020) performed eight case studies between 2015 and 2019 with
software engineering students. In total, about 400 students formed 82 development teams,
resulting in an average team size of about five. These projects are similar to the iPraktikum
and ISE projects. Each team developed a software product during the lecturing period of one
semester, i. e., about 15 weeks. The decisions are documented in Markdown Architecture Decision
Record (MADR) templates (Kopp et al., 2018; Kopp and Armbruster, 2019). On average,
nine decisions were documented by each team, while in the iPraktikum and ISE projects, the
developers captured 11 – 116 decisions. Schubanz and Lewerentz (2020) analyzed the decision
types documented by the students. They used a partly different coding scheme for the decisions.
They split the executive decision type into the types development platform, prioritize features,

177

9. Analysis of Knowledge Documentation

Table 9.4.: Characteristics of empirical studies that analyze rationale documentation created by
developers, i. e., not created retrospectively by researchers.

This Thesis Alkadhi et al., 2017a,
Alkadhi, 2018

Schubanz and
Lewerentz, 2020

Project/ Setting 2 iPraktikum
and 3 ISE
projects

ConDec
project

short-term
design task

iPraktikum
project

8 case studies in 3
universities

#Teams 5 1 11 1 82
#Developers 5 – 9 per team 26 (over time) ≈ 10 per team 10 ≈ 5 per team

Duration ≈ 6 months 6 years 20 min 2 months ≈ 15 weeks
Tool/Approach ConDec REACT MADR
Documentation

Locations
issue tracking system, code and

commit messages in version
control system

chat messages markdown files in
version control
system

#Rationale
Elements

99–774 per team,
1536 in total

2732 ≈ 31 per team,
342 in total

32 702 + ? in total

#Decisions 11 – 116 per
team, 375 in
total

771 ≈ 8 per team,
79 in total
(23 % of 342)

≈ 5 (15 % of
32)

≈ 9 per team,
702 decisions in
total

Analyzed Aspects of Decision Knowledge Documentation

Intra-Rationale
Completeness

✓ ✓ ✗ ✗ ✓

Decision Coverage ✓ ✓ ✗ ✗ ✗

Decision Types ✓ ✓ ✗ ✗ ✓

Status ✓ ✓ ✗ ✗ ✗

Evolution ✓ ✓ ✗ ✗ ✓

Correctness of
Annotations

✗ ✗ ✓ ✓ ✗

Collaborativeness ✗ ✗ ✓ ✓ ✗

development tools, and development process. We combined these decision types into the executive
decision type. They also had a type for decisions on external libraries and frameworks, for quality-
driven decisions (software quality) and functionality-driven decisions (definition or refinement of
features/requirements). They did not have decision types for the frontend, backend, and API but
combined these types into the software architecture type. However, we introduced these decision
types because they were important to the practitioners in the interview study (Chapter 3) and
the developers used the types during the validation projects. Schubanz and Lewerentz (2020)
only assigned one decision type per decision, while ConDec allows multiple assignments. The
most frequent decisions concerned the definition or refinement of features/requirements (19 %).
In our study, 23 % of all 1146 decisions were classified as functionality-driven, which is a similar
result. Schubanz and Lewerentz (2020) also investigated aspects of intra-rationale completeness.
In their documentation, 94 % of the decisions have an alternative documented, while this number
varies between 30.3 % and 94 % in the validation projects of this thesis. With ConDec, the
rationale manager can tailor the definition of done to enforce the documentation of alternatives.
Schubanz and Lewerentz (2020) also visualized the evolution of the decision types over time as
done in Figure 9.5. Similar to the results of this thesis, they found no simple answer to which
types of decisions are documented when in the project.

A contribution of this thesis is the analysis of the decision coverage and the status of issues
and decisions in a decision knowledge documentation created by developers (Table 9.4).

178

9.4. Threats to Validity

9.4. Threats to Validity
This section discusses four validity criteria of primary empirical studies as defined by Easterbrook
et al. (2008) and Runeson et al. (2012):

Construct validity focuses on whether the theoretical constructs are measured and interpreted
correctly. A threat is that the decision coverage and intra-rationale completeness metrics we
measured have limited suitability to answer the research questions of whether the decision
knowledge is completely documented for requirements, code, and within. They are merely
syntactical and do not consider the semantic meaning and usefulness of the documented knowledge.
In addition to the metrics, this chapter contains examples of decisions of the validation projects
to minimize the threat of cutting off too much detail with Ockham’s razor.

Internal validity concerns whether the results we draw really follow from the data, e. g.,
whether confounding factors influence the results. The students might have documented decision
knowledge only because they received credits and grades when working on the projects. To
mitigate this threat of a conflict of interest, we explicitly pointed out to the students that the
rationale management will not affect the grading.

External validity addresses the generalizability of the study results. The generalizability of
the results based on six projects with University students as developers is limited. However,
the instantiation of ConRat and applying the ConDec plug-ins worked well in different domains.
The students created thorough rationale documentation in a limited amount of time while they
had to learn various software development workflows, tools, and technologies. Thus, we expect
applying ConRat and ConDec in other industry projects is also feasible.

Reliability validity concerns the study’s dependency on specific researchers. A threat to the
reliability validity is that the coding of decision types was only performed by the author of this
thesis. However, the author is very familiar with the decisions in the validation projects since she
was either part of the development team (in ConDec), supervising or monitoring the projects. In
addition, the supervisors of this thesis supervised the analysis. Appendix A provides the coded
data and analysis scripts for transparency and repeatability.

9.5. Conclusion
This chapter presented an empirical study to analyze decision knowledge documentation in relation
to other software artifacts of six validation projects. The contribution is twofold: First, the study
showed that it is feasible to document a high amount of high-quality decision knowledge during
ConRat with the ConDec plug-ins. Second, the study contributes empirical knowledge about
rationale documentation in CSE projects: a) The developers documented 11 – 116 decisions and
related rationale in projects lasting about six months with ConDec, continuously throughout the
project and mainly in the description and comments of tickets or as entire tickets. The developers
of the ConDec project documented 771 decisions and related rationale, also in commit messages
and code comments. b) The developers constantly updated rationale elements throughout
the projects, maybe because ConDec presented them. c) The developers documented different
types of decisions throughout the projects. The decision types with most decisions assigned are
frontend, backend and data storage, and functionality-driven decisions, followed by executive and
quality-driven decisions. The decision types can overlap: Testing decisions are often executive
but not always. While the documentation locations of ConDec are interchangeable, developers
can tend to (not) document specific types of decisions in particular locations, e. g., executive
decisions not in code comments. d) Most decision knowledge elements are completely documented
according to four criteria of the intra-rationale completeness if checked and enforced by ConDec.
e) The projects with a duration of about six months resulted in between 27 to 68 documented
requirements as tickets and 101 to 658 code files in the knowledge graph. Most of the code files

179

9. Analysis of Knowledge Documentation

are traceable from at least one ticket, which supports knowledge exploitation. The decision
coverage of the requirements and code files varies. A low decision coverage indicates requirements
and code files with missing decision making or missing documentation (of decisions or links). A
very high decision coverage indicates wrong links in the knowledge graph or decision “hot spots”
in that it might be worth splitting a requirement or code file. f) The study analyzed the states
of issues and decisions: The final knowledge documentation of the ISE projects contains only a
few unsolved issues (0 – 4). Less than ten percent of the decisions are rejected.

ConDec operationalizes the quality of knowledge documentation. Practitioners can reflect on
the knowledge documentation quality of their projects using these metrics. Like test-coverage
measurement, the measurement of decision coverage and intra-rationale completeness is now a
standard part of CSE. The study provides the basis for further work on developing guidelines
for creating high-quality decision knowledge documentation and tools to support high quality.

180

Chapter 10
Effectiveness of Automatic Text Classification

“The proper place to study elephants is the jungle, not the zoo. The
proper place to study bacteria is the laboratory, not the jungle.”

—Stol and Fitzgerald, 2018

This chapter contributes to the knowledge goal 4 of the thesis: Show the effectiveness of
automatic text classification from the researchers’ perspective. It presents an empirical study to
validate the effectiveness of ConDec’s automatic text classification described in Section 7.6.8.

Section 10.1 describes the study design. Section 10.2 presents and discusses the validation results.
Section 10.3 discusses related work on automatic text classification for rationale management
and compares the results of the effectiveness validation. Section 10.4 discusses threats to validity.
Section 10.5 concludes this chapter. Appendix A contains the ground truth data and describes
how to reproduce the results with ConDec.

A first study concerning the validation of ConDec’s automatic text classification with the
decision knowledge of the ConDec project as the ground truth was published in Kleebaum et al.
(2021b). This chapter extends the previous study by using more data from different projects for
training and cross validation and comparing machine learning algorithms.

10.1. Study Design

Section 10.1.1 introduces the research questions. To train and validate the text classifier,
researchers need a ground truth, also called gold standard. Section 10.1.2 describes the ground
truth. Section 10.1.3 introduces evaluation metrics. Section 10.1.4 describes the procedure.

10.1.1. Research Questions

The knowledge goal 4 is refined into a research question with four sub-questions. Table 10.1 gives
an overview of the questions and metrics. This section describes the questions.

RQ1 How effective is the automatic text classification of ConDec at identifying rationale
elements?

The research question aims to determine the effectiveness of ConDec’s automatic text classification
in detecting and classifying rationale into issues, alternatives, decisions, pros, and cons. It
compares different training and validation settings and machine-learning algorithms.

181

10. Effectiveness of Automatic Text Classification

Table 10.1.: Research questions and metrics of the empirical study on the effectiveness of auto-
matic text classification.

Research Question Metrics

RQ1 How effective is the automatic text classification of ConDec at identifying rationale elements?

RQ1.1 How effective is the automatic text classification of ConDec
at identifying rationale elements within the same project
that it was trained in using cross validation?

Precision, recall, and F-scores
for data of single project

RQ1.2 How effective is the automatic text classification of ConDec
at identifying rationale elements when being trained on the
data of a different project than being validated?

Precision, recall, and F-scores
for cross-project validation

RQ1.3 How effective is the automatic text classification of ConDec
at identifying rationale elements when being trained and cross
validated on the combined data of different projects?

Precision, recall, and F-scores
for combined data of different
projects

RQ1.4 Which supervised machine learning algorithm is most
effective for the different training and validation settings?

Number of times algorithms
achieve best F-scores

RQ1.1 How effective is the automatic text classification of ConDec at identifying rationale
elements within the same project that it was trained in using cross validation? We use the data of
various projects as the gold standard for training and cross validation. We aim to show that the
text classifier is effective when trained within a project (either retrospectively or online during
the development) and then used to detect and classify new rationale elements in this project.

RQ1.2 How effective is the automatic text classification of ConDec at identifying rationale
elements when being trained on the data of a different project than being validated? We perform
cross-project validation on the data of various projects: We use the data of a single project as the
gold standard for the training and then validate the trained classifier on the data of a different
project. ConDec allows training a text classifier in one project and using the pre-trained classifier
in another. We aim to test the generalizability of the classification models across projects.

RQ1.3 How effective is the automatic text classification of ConDec at identifying rationale
elements when being trained and cross validated on the combined data of different projects? We
combine the data of different projects into a single gold standard for training and cross validation.
We aim to evaluate whether the text classifier becomes more effective when trained on a more
extensive data set of different domains.

RQ1.4 Which supervised machine learning algorithm is most effective for the different training
and validation settings? This question compares the effectiveness of supervised machine learning
algorithms for detecting and classifying rationale into issues, alternatives, arguments, and
decisions. It compares the algorithms for the different training and validation settings: data from
a single project, cross-project validation, and combined data from multiple projects.

10.1.2. Ground Truth Data

We evaluated the effectiveness of the automatic text classification on decision knowledge doc-
umentation created with ConDec during CSE (Chapter 9) and on retrospectively annotated
data by Alkadhi (2018). First, we used the data from the ConDec project and the three ISE
projects as ground truth, i. e., the gold standard. We did not use the documentation of the
iPraktikum projects since, at this time, ConDec did not yet offer the feature to document decision

182

10.1. Study Design

knowledge in ticket descriptions and comments and, thus, is not representative. Second, we used
the issue tracking data by Alkadhi (2018), who retrospectively annotated ticket comments of the
three open-source projects Apache Lucene, Ubuntu, and Mozilla Thunderbird. In contrast to
the data created with ConDec, some text parts annotated by Alkadhi (2018) have more than
one rationale type. We removed these multi-labeled text parts because ConDec’s fine-grained
text classifier predicts one rationale type. Figure 10.1 illustrates how retrospectively annotated
decision knowledge in a ticket of the Apache Lucene project would appear in ConDec.

Figure 10.1.: Example of retrospectively annotated decision knowledge in ConDec. Left: Jira
ticket of the Apache Lucene project with an issue in its description. The text
classification view shows two irrelevant text parts (type other) that need to be
manually approved, i. e., validated. Right: Knowledge tree (node-link tree diagram,
V2nld) of retrospectively annotated rationale elements in the ticket comments.

The ground truth consists of decision knowledge elements, called relevant text parts, and
irrelevant text parts. Table 10.2 shows the number of entries in the ground truth per project,
including the combined ground truths of the ISE data and the data by Alkadhi (2018).

10.1.3. Evaluation Metrics

The text classifier consists of a binary and a fine-grained classifier that are applied sequentially
(Section 7.6.8). To assess their quality, the classification results of the binary and a fine-grained
classifier are compared with the annotated text from the ground truth. The metrics precision,
recall, and F-scores are used for the comparison.

Precision is the number of correct classifications, i. e., true positives, within all classifications
made by the text classifier (Equation 10.1). The latter is the sum of true positives and incorrect
classifications, i. e., false positives. For the binary classifier, a precision of 100 % is achieved if
all identified relevant text parts are really relevant, i. e., are decision knowledge elements. For
the fine-grained classifier, a precision of 100 % is achieved if all identified decisions are really
decisions and analogously for the other types.

183

10. Effectiveness of Automatic Text Classification

Table 10.2.: Number of text parts in the ground truth, i. e., gold standard, per project used to
train and cross-validate the binary and fine-grained text classifiers. The minority
class that determines the undersampling size of the other classes is bold-faced.

Data
Source

#Irrelevant #Issues #Alternatives #Decisions #Pros #Cons #Relevant∑
ConDec 10904 638 336 771 516 453 2714

ISE 19/20 1448 111 94 116 184 113 618
ISE 20/21 1165 81 118 116 262 197 774
ISE 21/22 818 73 84 76 203 154 590

ISE all
∑

3431 265 296 308 649 464 1982

Lucene 661 242 560 191 319 158 1470
Thunderbird 1323 747 484 80 224 228 1763

Ubuntu 1227 687 410 117 189 152 1555

R. Alkadhi
∑

3211 1676 1454 388 732 538 4788

Precision = #true positives
#true positives + #false positives (10.1)

Recall or sensitivity is the amount of true positive classifications made by the text classifier
within all existing correct classifications (Equation 10.2). The latter is the sum of true positives
and false negatives, i. e., not found rationale elements. For the binary classifier, a recall of 100 %
is achieved if all relevant text parts are identified. For the fine-grained classifier, a recall of 100 %
is achieved if all existing decisions within a text are identified and analogously the other types.

Recall = #true positives
#true positives + #false negatives (10.2)

Fβ-scores combine the results for precision and recall in a single metric to judge the correctness
of a text classifier. As shown in the Equation 10.3 for Fβ, β can be used to weigh precision in
favor of recall and vice versa.

Fβ = (1 + β2) · Precision · Recall
(β2 · Precision) + Recall (10.3)

Berry (2017) discusses the importance of precision and recall for what he calls hairy tasks.
Such tasks involve natural language documents and are relatively easy for humans on a small
scale but become unmanageable on a large scale. Identifying and annotating decision knowledge
elements in natural language text is hairy. The importance of precision and recall for the two
application scenarios of the automatic text classification of ConDec differ:

First, the automatic text classification can be applied retrospectively, for example, to establish
ConRat in a brownfield project with existing implicit rationale documentation in the issue
tracking system and commit messages. Automatic text classification of a high amount of text
needs high precision because ConDec integrates the identified decision knowledge directly into
the knowledge graph rather than after manual approval. False positives in the knowledge graph
confuse the developers during knowledge exploitation. The recall must also be high because false
negatives lead to incomplete documentation, which impedes exploitation. Researchers commonly
use the F1-score to judge whether the retrospective application is well supported (Section 10.3).
The F1-score weighs precision and recall equally.

184

10.1. Study Design

Second, automatic text classification is applied during active development. In this scenario,
ConDec presents the automatic classification results to the developers constantly. We favor recall
over precision in this ongoing application since the developers need to approve the identified
decision knowledge manually and can directly improve false positives. We argue that false positives
are a means to nudge the correct documentation; therefore, the number of false negatives must
be reduced. We use the F2-score, which emphasizes recall, to judge whether automatic text
classification during active development is well supported.

To our knowledge, there are no clear thresholds for precision, recall, and F-score values in the
existing literature that automatic rationale identification should at least achieve to be effective.
Kurtanović and Maalej (2018) filtered all results having precision, recall, or the F1-score below
0.6. Usually, researchers compare their best-achieved precision, recall, and F-scores with related
work. This study makes the following assumptions: ConDec’s automatic text classification should
be better than guessing. For binary classification, values > 0.5 are better than guessing because
of a 50/50 chance to decide whether a text contains relevant rationale (since the ground truth
data is balanced). For fine-grained classification, values > 0.2 are better than guessing because of
a 1/5 chance to decide the rationale type. Furthermore, ConDec’s automatic text classification
should be at least as effective as related approaches, discussed in Section 10.3.

10.1.4. Evaluation Procedure

We trained and validated the automatic text classification in ConDec. Figure 10.2 shows a
screenshot of ConDec’s configuration and evaluation view for the automatic text classification.
ConDec automatically preprocesses the data in the ground truth as explained in Section 7.6.8,
except for sentence splitting because the data entries were already split. We created the
binary and fine-grained classifiers with the three supervised machine-learning algorithms Logistic
Regression (LR), Naïve Bayes (NB), and Support Vector Machine (SVM). We decided to use
these algorithms because they were used in the related work and are easy to implement using
the Statistical Machine Intelligence and Learning Engine (SMILE) library.

The gold standard in Table 10.2 is imbalanced, i. e., the classes vary in the number of text parts.
A classifier trained on an imbalanced dataset can be biased toward the majority class, i. e., the
class with the higher number of instances, and neglect the minority class (Chawla et al., 2004).
To avoid such bias, ConDec balances the data before performing cross validation. ConDec uses
undersampling to balance 1) relevant and irrelevant text parts and 2) the decision knowledge
elements by their type. Undersampling means that only a subset of the majority class is used for
the training and validation. ConDec applies undersampling by selecting the first data entries in
the ground truth instead of random selection, which makes the validation results reproducible.
For example, of the 3431 irrelevant text parts in the ISE ground truth (Table 10.2), ConDec
uses 1982 for the binary classifier because this is the number of relevant text parts. Of the 687
issues in the Ubuntu ground truth, ConDec’s fine-grained classification only uses 117 issues to
balance the data. In this ground truth, the 117 decisions represent the minority class (Table 10.2).
An alternative balancing technique is oversampling. The Synthetic Minority Over-Sampling
Technique (SMOTE) enables synthetically creating entries of the minority class for oversampling
(Fernandez et al., 2018). We decided to use undersampling instead of oversampling because
it reduces the size of the training data and, thus, reduces the computational cost for training
and validation. Since training and validation of automatic text classification are functionalities
of the ConDec Jira plug-in, resources are limited to those of the underlying system. ConDec
restricts the maximum training data size of support vector machines to 6000 3-grams to avoid
out-of-memory exceptions of the underlying Jira system.

When using the same data set for training and validation, we applied 10-fold cross validation
to train and evaluate the binary and fine-grained classifiers. In 10-fold cross validation, the

185

10. Effectiveness of Automatic Text Classification

Figure 10.2.: ConDec’s configuration view for automatic text classification. The view enables to
train and validate the binary and fine-grained classifiers.

ground truth is split into ten parts of equal sizes, called folds. Nine folds are used for training
the classifier, and the remaining fold is used for validation. The procedure is repeated ten times,
rotating the training and validation folds (James et al., 2021). The final evaluation is calculated
by averaging the results of the ten iterations. We also applied cross-project validation, which
means that we trained the binary and fine-grained classifiers on the data of one project and
validated them on the data of a different project.

10.2. Results and Discussion

The following sections present and discuss the results for the research question How effective is the
automatic text classification of ConDec at identifying rationale elements? (RQ1). Section 10.2.1
provides the results for individual projects, Section 10.2.2 for the cross-project validation,
Section 10.2.3 for the combined data from different projects, and Section 10.2.4 for the comparison
of machine-learning algorithms. This section partly discusses the results, and Section 10.3 will
further discuss the results compared with related work. This chapter provides the F-scores as
the aggregated results in Table 10.3 – Table 10.5. Appendix E contains the precision and recall

186

10.2. Results and Discussion

values. The best results are bold-faced. Results better than guessing are colored green, whereas
results worse than guessing are colored red; threshold values are white.

Table 10.3.: Evaluation results of the binary and fine-grained classifiers on the data of single
projects using 10-fold cross validation. The machine-learning algorithms are Logistic
Regression (LR), Naïve Bayes (NB), and Support Vector Machine (SVM).

Metric Project Alg. Binary
(Relevant/Irrelevant)

Issue Alternative Decision Pro Con

F1 ConDec LR 0.66 0.39 0.1 0.39 0.1 0.32
ConDec NB 0.7 0.52 0.24 0.36 0.21 0.44
ConDec SVM 0.63 0.55 0.33 0.4 0.42 0.33

ISE 19/20 LR 0.72 0.57 0.21 0.41 0.23 0.47
ISE 19/20 NB 0.7 0.57 0.36 0.49 0.18 0.42
ISE 19/20 SVM 0.63 0.62 0.1 0.41 0.36 0.48
ISE 20/21 LR 0.65 0.48 0.02 0.24 0.26 0.54
ISE 20/21 NB 0.81 0.69 0.46 0.07 0.39 0.35
ISE 20/21 SVM 0.7 0.54 0.08 0.1 0.34 0.26
ISE 21/22 LR 0.75 0.56 0.37 0.36 0.11 0.45
ISE 21/22 NB 0.71 0.54 0.33 0.4 0.3 0.07
ISE 21/22 SVM 0.81 0.65 0.47 0.42 0.22 0.34

Lucene LR 0.68 0.35 0.22 0.39 0.14 0.23
Lucene NB 0.65 0.29 0.34 0.49 0.4 0.38
Lucene SVM 0.71 0.31 0.3 0.29 0.23 0.16

Thunderbird LR 0.69 0.42 0.36 0.4 0.23 0.27
Thunderbird NB 0.65 0.24 0.15 0.45 0.32 0.1
Thunderbird SVM 0.68 0.46 0.43 0.48 0.25 0.34

Ubuntu LR 0.67 0.04 0.18 0.39 0.16 0.36
Ubuntu NB 0.66 0.03 0.07 0.26 0.34 0.37
Ubuntu SVM 0.65 0.13 0.33 0.4 0.12 0.37

F2 ConDec LR 0.63 0.32 0.07 0.6 0.07 0.26
ConDec NB 0.83 0.46 0.21 0.36 0.17 0.58
ConDec SVM 0.58 0.54 0.31 0.45 0.41 0.31

ISE 19/20 LR 0.72 0.53 0.19 0.52 0.19 0.48
ISE 19/20 NB 0.68 0.53 0.44 0.55 0.14 0.38
ISE 19/20 SVM 0.56 0.61 0.08 0.52 0.33 0.44
ISE 20/21 LR 0.59 0.66 0.01 0.18 0.23 0.56
ISE 20/21 NB 0.91 0.74 0.6 0.05 0.36 0.31
ISE 20/21 SVM 0.66 0.65 0.06 0.07 0.43 0.23
ISE 21/22 LR 0.71 0.49 0.33 0.34 0.08 0.62
ISE 21/22 NB 0.66 0.52 0.37 0.41 0.33 0.05
ISE 21/22 SVM 0.78 0.63 0.43 0.35 0.19 0.44

Lucene LR 0.67 0.54 0.17 0.29 0.1 0.19
Lucene NB 0.67 0.24 0.33 0.55 0.4 0.4
Lucene SVM 0.85 0.47 0.26 0.2 0.17 0.13

Thunderbird LR 0.8 0.44 0.38 0.4 0.21 0.27
Thunderbird NB 0.73 0.21 0.12 0.47 0.43 0.07
Thunderbird SVM 0.79 0.44 0.44 0.39 0.21 0.43

Ubuntu LR 0.82 0.02 0.14 0.59 0.12 0.34
Ubuntu NB 0.77 0.02 0.05 0.23 0.42 0.48
Ubuntu SVM 0.64 0.09 0.29 0.49 0.09 0.44

187

10. Effectiveness of Automatic Text Classification

Table 10.4.: Evaluation results of the binary and fine-grained classifiers for cross-project validation.
The machine-learning algorithms are Logistic Regression (LR), Naïve Bayes (NB),
and Support Vector Machine (SVM).

Metric Training
Project

Validation
Project

Alg. Binary Issue Alternative Decision Pro Con

F1 ISE 19/20 ISE 20/21 LR 0.24 0.37 0.05 0.15 0.49 0.13
ISE 19/20 ISE 20/21 NB 0.64 0.44 0.35 0.24 0.14 0.42
ISE 19/20 ISE 20/21 SVM 0.69 0.45 0.09 0.27 0.52 0.2
ISE 19/20 ISE 21/22 LR 0.37 0.39 NA 0.21 0.54 0.14
ISE 19/20 ISE 21/22 NB 0.72 0.48 0.26 0.32 0.09 0.35
ISE 19/20 ISE 21/22 SVM 0.61 0.61 0.16 0.22 0.54 0.16
ISE 20/21 ISE 19/20 LR 0.37 0.11 NA 0.11 0.46 0.32
ISE 20/21 ISE 19/20 NB 0.48 0.61 0.32 0.38 0.26 0.43
ISE 20/21 ISE 19/20 SVM 0.52 0.33 0.02 0.09 0.47 0.34
ISE 20/21 ISE 21/22 LR 0.42 0.23 NA 0.02 0.5 0.32
ISE 20/21 ISE 21/22 NB 0.64 0.46 0.27 0.26 0.13 0.36
ISE 20/21 ISE 21/22 SVM 0.68 0.41 0.02 0.08 0.53 0.29
ISE 21/22 ISE 19/20 LR 0.59 0.15 0.02 0.07 0.44 0.26
ISE 21/22 ISE 19/20 NB 0.58 0.51 0.31 0.46 0.09 0.41
ISE 21/22 ISE 19/20 SVM 0.48 0.33 0.05 0.11 0.48 0.3
ISE 21/22 ISE 20/21 LR 0.61 0.24 NA 0.06 0.5 0.27
ISE 21/22 ISE 20/21 NB 0.61 0.57 0.31 0.23 0.11 0.37
ISE 21/22 ISE 20/21 SVM 0.7 0.5 0.05 0.05 0.51 0.3

F2 ISE 19/20 ISE 20/21 LR 0.17 0.31 0.04 0.12 0.65 0.1
ISE 19/20 ISE 20/21 NB 0.63 0.45 0.47 0.28 0.1 0.38
ISE 19/20 ISE 20/21 SVM 0.83 0.35 0.06 0.24 0.68 0.14
ISE 19/20 ISE 21/22 LR 0.28 0.35 NA 0.18 0.71 0.1
ISE 19/20 ISE 21/22 NB 0.73 0.56 0.35 0.38 0.06 0.31
ISE 19/20 ISE 21/22 SVM 0.79 0.52 0.12 0.17 0.71 0.12
ISE 20/21 ISE 19/20 LR 0.3 0.07 NA 0.07 0.65 0.29
ISE 20/21 ISE 19/20 NB 0.69 0.63 0.42 0.33 0.2 0.47
ISE 20/21 ISE 19/20 SVM 0.7 0.24 0.01 0.06 0.66 0.29
ISE 20/21 ISE 21/22 LR 0.33 0.17 NA 0.01 0.66 0.29
ISE 20/21 ISE 21/22 NB 0.82 0.57 0.37 0.23 0.1 0.36
ISE 20/21 ISE 21/22 SVM 0.81 0.3 0.01 0.05 0.71 0.24
ISE 21/22 ISE 19/20 LR 0.59 0.1 0.01 0.05 0.61 0.25
ISE 21/22 ISE 19/20 NB 0.59 0.44 0.43 0.53 0.06 0.39
ISE 21/22 ISE 19/20 SVM 0.68 0.24 0.04 0.07 0.65 0.28
ISE 21/22 ISE 20/21 LR 0.56 0.17 NA 0.04 0.66 0.23
ISE 21/22 ISE 20/21 NB 0.58 0.56 0.46 0.26 0.07 0.3
ISE 21/22 ISE 20/21 SVM 0.83 0.38 0.04 0.04 0.68 0.25

10.2.1. Effectiveness For Ground Truth From Single Project

This section presents the results for the question How effective is the automatic text classification
of ConDec at identifying rationale elements within the same project that it was trained in
using cross validation? (RQ1.1). Table 10.3 shows the results of evaluating the binary and fine-
grained classifiers on the data of individual projects using 10-fold cross validation and for different
machine-learning algorithms. The best F1-scores are 0.81 for binary classification, 0.69 for issues,

188

10.2. Results and Discussion

0.46 for alternatives, 0.49 for decisions, 0.42 for pro-arguments, and 0.54 for con-arguments.
The best F2-scores are 0.91 for binary classification, 0.74 for issues, 0.6 for alternatives, 0.6 for
decisions, 0.43 for pro-arguments, and 0.62 for con-arguments. The best F2-scores exceed the
best F1-scores, which means that automatic text classification is more effective when weighing
recall over precision. The binary and fine-grained classifiers are often better than guessing but,
in some cases, are worse (red colored in Table 10.3), which are unacceptable results for automatic
text classification and will be discussed in Section 10.3.

Identifying issues is more effective on the data created with ConDec during the development
than on the retrospectively annotated data of the Lucene, Thunderbird, and Ubuntu projects
(Table 10.3). The reason is probably that issues in the data created with ConDec are often
formulated as questions. In contrast, the issues in the retrospectively annotated data are more
heterogeneous, as illustrated in Figure 10.1.

10.2.2. Effectiveness For Cross-Project Validation

This section presents the results for the question How effective is the automatic text classification
of ConDec at identifying rationale elements when being trained on the data of a different
project than being validated? (RQ1.2). Table 10.4 shows the results of evaluating the
binary and fine-grained classifiers for cross-project validation in the three ISE projects and
different machine-learning algorithms. Alkadhi (2018) performed cross-project validation with
the retrospectively created data sets of the Lucene, Thunderbird, and Ubuntu projects, and we
did not repeat the experiments in this study. Section 10.3 will compare and discuss the results.

The best F-scores for the cross-project validation are smaller than for the 10-fold cross validation
within a single project. Not available (NA) values in Table 10.4 indicate that the precision and
recall values are zero, which are unacceptable results for automatic text classification. The results
indicate that it is better to train the text classifiers on the data of the current project than on
the data of a different project because the phrasing of rationale elements is specific to the project.
This confirms the findings by Alkadhi (2018), who suggests using communication artifacts from
the same project to train the classifiers rather than generic rationale classifiers.

Interestingly, the classification of pro-arguments is more effective when training and applying
the fine-grained classifier on different projects than when using 10-fold cross validation on the
data of a single project. A reason might be that similar pro-arguments, such as required by
the customer, are documented in different projects but only once within a single project. As for
the cross validation within a single project, the best F2-scores exceed the best F1-scores.

10.2.3. Effectiveness For Combined Ground Truth From Different Projects

This section presents the results for the question How effective is the automatic text classification
of ConDec at identifying rationale elements when being trained and cross validated on the
combined data of different projects? (RQ1.3). Table 10.5 shows the results of evaluating
the binary and fine-grained classifiers on the combined data sets using 10-fold cross validation
and for different machine learning algorithms. We created two combined data sets with the data
of the three ISE projects and the data by Alkadhi (2018) because of the different settings: The
developers of the ISE projects performed continuous rationale management, while Alkadhi (2018)
retrospectively identified the decision knowledge.

The best F-scores for the combined data validation are smaller than for the validation within
single projects. Section 10.3 will discuss the reason by comparing related classification approaches.

189

10. Effectiveness of Automatic Text Classification

Table 10.5.: Evaluation results of the binary and fine-grained classifiers on the combined data of
the ISE projects using 10-fold cross validation. The machine-learning algorithms are
Logistic Regression (LR), Naïve Bayes (NB), and Support Vector Machine (SVM).

Metric Data
Source

Alg. Binary
(Relevant/Irrelevant)

Issue Alternative Decision Pro Con

F1 all ISE LR 0.69 0.64 0.02 0.43 0.33 0.46
all ISE NB 0.74 0.61 0.38 0.38 0.27 0.41
all ISE SVM 0.52 0.64 0.19 0.27 0.41 0.42

R. Alkadhi LR 0.68 0.36 0.27 0.31 0.15 0.33
R. Alkadhi NB 0.67 0.15 0.2 0.23 0.34 0.37
R. Alkadhi SVM 0.68 0.33 0.32 0.18 0.2 0.25

F2 all ISE LR 0.65 0.6 0.01 0.56 0.3 0.48
all ISE NB 0.86 0.6 0.46 0.39 0.21 0.38
all ISE SVM 0.43 0.71 0.16 0.22 0.52 0.38

R. Alkadhi LR 0.75 0.53 0.22 0.24 0.11 0.28
R. Alkadhi NB 0.78 0.12 0.15 0.18 0.43 0.46
R. Alkadhi SVM 0.83 0.49 0.28 0.12 0.14 0.21

10.2.4. Effectiveness Of Different Supervised Machine Learning Algorithms

This section presents the results for the question Which supervised machine learning algo-
rithm is most effective for the different training and validation settings? (RQ1.4). Table 10.6
counts the number of times a supervised machine learning algorithm was the most effective in
terms of F1- and F2-score in Table 10.3, Table 10.4, and Table 10.5. Undecided cases in that
two algorithms achieved the same maximum F-score are omitted.

Table 10.6.: Number of times a machine-learning algorithm achieved the best F-score.
Validation Logistic Regression Naïve Bayes Support Vector Machine

F1-Score F2-Score F1-Score F2-Score F1-Score F2-Score

Single Project 3x 3x 2x 2x 2x 2x
Cross Project 1x 0x 1x 1x 4x 5x

Combined Data 0x 0x 1x 1x 0x 1xBi
na

ry

Single Project 1x 1x 1x 1x 5x 4x
Cross Project 0x 0x 4x 6x 2x 0x

Combined Data 1x 1x 0x 0x 0x 1x

Iss
ue

Single Project 0x 0x 3x 3x 4x 4x
Cross Project 0x 0x 6x 6x 0x 0x

Combined Data 0x 0x 1x 1x 1x 1xAl
te

rn
at

iv
e

Single Project 1x 3x 2x 4x 4x 0x
Cross Project 0x 0x 5x 6x 1x 0x

Combined Data 2x 2x 0x 0x 0x 0xD
ec

isi
on

Single Project 0x 0x 5x 4x 2x 3x
Cross Project 0x 0x 0x 0x 5x 5x

Combined Data 0x 0x 1x 1x 1x 1x

Pr
o

Single Project 2x 3x 2x 3x 2x 1x
Cross Project 0x 0x 6x 6x 0x 0x

Combined Data 1x 1x 1x 1x 0x 0x

Co
n

190

10.3. Related Work

The Naïve Bayes and support vector machine classifiers often outperformed the logistic
regression classifiers regarding best F-scores. For the project cross validation, the logistic
regression did only once achieve the best F1-score in binary classification. This indicates that
the Naïve Bayes and support vector machine are more effective for detecting and classifying
new data that differs from their training data than the logistic regression. The support vector
machine outperformed the other classifiers in detecting decision knowledge (binary classification)
and pro-arguments classification. The Naïve Bayes classifiers outperformed the other classifiers
in classifying issues, alternatives, decisions, and con-arguments.

10.3. Related Work
This section discusses related work on automatic text classification for rationale documentation. It
includes the publications on automatic text classification found in the systematic mapping study
in Chapter 4 that measure precision, recall, and F-score for effectiveness validation. Table 10.7
compares ConDec’s automatic text classification and the results of the effectiveness evaluation
with seven related publications.

The approaches classify and are validated on different data (Table 10.7): Four related ap-
proaches classify tickets, e. g., chrome bug reports. Two approaches classify chat messages from
Gitter, Slack, or Internet relay chat. One approach classifies design discussion transcripts and
another approach classifies messages from a mailing list. ConDec’s automatic text classification
is the only one that also classifies commit messages. Kurtanović and Maalej (2018) classify user
rationale, whereas the other approaches (including ConDec) classify developer rationale.

All the approaches require a ground truth for training and validating the supervised machine-
learning classifiers. ConDec is the only tool that provides labeling support in Jira. With ConDec,
developers or researchers can directly annotate text as decision knowledge elements in the
description and comments of tickets (Section 7.3.2). Other researchers labeled text parts with the
General Architecture for Text Engineering (GATE) tool to create the ground truth (Table 10.7).

All except one approach by Kurtanović and Maalej (2018) perform a binary classification
to detect text parts with rationale, decisions, or issues before the more detailed (fine-grained)
classification (Table 10.7). The binary classification resulted in best F1-scores between 0.68 to
0.95 (for ConDec 0.81). The approaches aim to identify different rationale types or decision types
for fine-grained classification. ConDec and five other approaches identify different rationale types,
e. g., the issue (decision problem), alternatives, the decision, as well as pro- and con-arguments.
The approaches by Bhat et al. (2017b) and Fu et al. (2021) classify decisions into decision types.
The fine-grained classification is less effective than the binary classification since it resulted in
best F1-scores between 0.36 to 0.83 (for ConDec 0.42 to 0.69).

Three approaches do not apply data balancing of the ground truth, i. e., they worked with
an imbalanced data set (Rogers et al., 2015; Kurtanović and Maalej, 2018; Lester et al.,
2020). The other approaches, including ConDec, apply undersampling for data balancing of
the ground truth. Alkadhi (2018) applies a combination of undersampling and oversampling
using SMOTE. The approaches use and experiment with various classification features and
preprocessing steps. Basic preprocessing techniques are tokenization and lowercase conversion.
ConDec is the only approach that uses Global Vectors for Word Representation (GloVe) for
word-to-vector conversion and it uses 3-grams as classification features, whereas other approaches
use a variety of features. ConDec uses GloVe because GloVe considers the semantics of words,
which is helpful for classification (Pennington et al., 2014). Others use Term Frequency-Inverse
Document Frequency (TF-IDF), (continuous) bag-of-words, skip-gram, and Word2Vec. Further
preprocessing techniques applied are part-of-speech tagging, word combinations (n-grams),
sentence length, stemming and lemmatization, and stop-word removal. The approaches apply and
experiment with various classification algorithms, e. g., Naïve Bayes, SVM, Logistic Regression,

191

10. Effectiveness of Automatic Text Classification

Decision Tree, and Random Forest. One approach uses a convolutional neural network (CNN) and
the pre-trained Bidirectional Encoder Representations from Transformers (BERT) model. The
algorithms’ effectiveness varies by the data and classification tasks, as observed in Section 10.2.4.

Table 10.7.: Characteristics of empirical studies that evaluate automatic text classification for
rationale documentation.

Publication What is
Classified?

Binary
Results

Fine-Grained
Results

Preprocessing, Features; Classifiers;
External Dependencies and Tools

This Thesis:
ConDec’s

Automatic
Text Classifi-

cation

Text parts from
descriptions and
comments of tickets
and commit
messages transcribed
into ticket comments
(Table 10.2)

F1 up to
0.81
(rationale/
non-
rationale)

F1 up to
0.69 (issues),
0.47 (alternatives),
0.49 (decisions),
0.42 (pro-
arguments),
0.54 (con-
arguments)

Sentence splitting, lowercase, tokenization,
GloVe, 3-grams, undersampling for data
balancing, no stop-word removal and no
stemming;
Naïve Bayes, SVM, Logistic Regression;
SMILE

Alkadhi
(2018):

A-REACT

Ticket comments
from Apache Lucene,
Ubuntu, and Mozilla
Thunderbird; chat
messages from Slack
and internet relay
chat

F1 up to
0.95
(rationale/
non-
rationale
for tickets)

F1 up to
0.76 (issues),
0.77 (alternatives),
0.7 (decisions),
0.62 (pro-
arguments),
0.5 (con-arguments)

Lowercase, tokenization, stemming,
n-grams, TF-IDF, undersampling and
SMOTE for data balancing;
Naïve Bayes, SVM, Logistic Regression,
Decision Tree, Random Forest;
GATE, WEKA, MEKA

Bhat et al.
(2017b):

ADeX

Summaries and
descriptions of
tickets of Apache
Spark and Apache
Hadoop Common:
1571 tickets, 480
labeled decisions

F1 up to
0.91
(decision/
non-
decision)

F1 up to 0.83 for
classification of
decisions into
decision types
structural,
behavioral, and ban
(Section 2.2.4)

Lowercase, tokenization, stop-word
removal, stemming, n-grams, TF-IDF,
random sampling for data balancing;
Naïve Bayes, SVM, Logistic Regression,
Decision Tree;
MLlib, LibSVM

Kurtanović
and Maalej

(2018)

1020 user reviews
sampled from 52
software applications,
classify user
rationale

no binary
classifica-
tion into
rationale
and non-
rationale

F1 up to
0.77 (issues),
0.82 (alternatives),
0.83 (decisions),
0.74 (justifications),
0.77 (criteria)

Stop-word removal, lemmatization,
bag-of-words, n-grams, part-of-speech, . . . ;
Naïve Bayes, SVM, Logistic Regression,
Decision Tree, Gaussian Process Classifier,
Random Forest, Multilayer Perceptron;
NLTK, Standford Parser, scikit-learn

Lester et al.
(2020)

200 chrome bug
reports and
transcribed design
discussions

F1 up to
0.77 for
chrome
(rationale/
non-
rationale)

F1 up to
0.41 (decisions),
0.48 (alternatives),
0.39 (arguments)
for chrome

Sentence parsing and shuffling, n-grams,
part-of-speech, . . . ; use evolutionary
algorithms to optimize feature selection;
Naïve Bayes;
GATE, WEKA, NLTK

Li et al.
(2020) and

Fu et al.
(2021)

Hibernate developer
mailing list, 650
decision sentences
and 650 non-decision
sentences

Li et al.,
2020: F1
up to 0.76
(for
decision/
non-
decision)

Fu et al., 2021: F1
up to 0.73 for
classification of
decisions into
design, requirement,
management,
construction, testing

Stop-word removal or inclusion, stemming
and lemmatization, filtering by sentence
length; feature extracting using
(continuous) bag-of-words, TF-IDF,
Word2Vec, skip-gram; Naïve Bayes, SVM,
Logistic Regression, Decision Tree,
Random Forest; NLTK, scikit-learn, gensim

Rogers et al.
(2015)

200 chrome bug
reports (17410
sentences without
rationale, 2131
sentences with
rationale, e. g., 424
decisions, 352
alternatives, 494
arguments)

F1 up to
0.68
(rationale/
non-
rationale)

F1 up to
0.8 (decisions),
0.36 (alternatives),
0.36 (arguments)

Tokenization, part-of-speech, sentence
splitting, verb group chunking, stemming,
n-grams, contextual information, sentence
length;
Naïve Bayes, SVM, Random Forest,
BayesNet;
GATE, WEKA

Shi et al.
(2021): Issue-

Solution
Pairs from

communitY
live chats

Chat messages from
eight projects with
communication in
Gitter, 750 dialogs
including 171
issue-solution pairs

F1 up to
0.76 (issue/
non-issue)

F1 up to 0.63 for
identification of
solution for issue

Spell checking, low-frequency token
replacement, acronym and emoji
replacement, recovery of broken utterance;
convolutional neural network with BERT
layer, random sampling for data balancing;
TextCNN, NLTK

192

https://gitter.im

10.3. Related Work

The approaches depend on various libraries, frameworks, and tools. ConDec is the only
tool integrating the SMILE library since SMILE provides online-learning capabilities and is
implemented in Java. Three approaches apply the Waikato Environment for Knowledge Analysis
(WEKA). Alkadhi (2018) uses the Multi-Label Extension to WEKA (MEKA) for fine-grained
classification. Two approaches use the Python library scikit-learn. Other libraries, frameworks,
and tools applied are: Apache Spark’s scalable machine learning library (MLlib), LibSVM, Natural
Language Toolkit (NLTK), gensim, the Standford Parser, and TextCNN.

Alkadhi (2018) also automatically detected and classified rationale in their retrospectively
created ground truths of Apache Lucene, Ubuntu, and Mozilla Thunderbird. Alkadhi (2018)
achieved F1-scores up to 0.95 for binary classification, 0.76 for issues, 0.77 for alternatives, 0.62
for pro-arguments, 0.5 for con-arguments, and 0.7 for decisions. ConDec’s text classification
is currently less effective. As described in Section 10.1.2, ConDec only used a subset of the
data by Alkadhi (2018) due to the exclusion of multi-labeled rationale elements and the mere
undersampling for data balancing, whereas Alkadhi (2018) combines undersampling with SMOTE.
The different results can also be because ConDec uses GloVe instead of term frequency-inverse
document frequency for converting words to numerical vectors and 3-grams as classification
features. Alkadhi (2018) uses n-grams of lengths 1 to 3. Alkadhi (2018) also found out that
automatic classification is more effective if the classifiers are trained on the data of the underlying
project than when using classifiers trained on the data of a different project.

The best F1-scores measured with ConDec in our study are among the best F1-scores of
the related work in Table 10.7, which means that ConDec can be similarly effective. However,
our study’s precision, recall, and F1-score results vary strongly, and ConDec’s automatic text
classification is sometimes worse than guessing. One reason might be the mere usage of 3-grams
as classification features. For example, the 3-gram an external library might belong to an issue
How can we integrate an external library?, a decision We decided to use an external library, an
alternative We could use an external library, or a pro-argument It is easier to use an external
library. The training data might classify the 3-gram into a different rationale type than the
validation data, leading to wrong classifications. In general, alternatives and decisions can be
hard to distinguish, even for humans (Alkadhi, 2018), so the two classes could be replaced by one
class for solution options. In the future, ConDec’s automatic text classification could combine
multiple classification features, e. g., part-of-speech tagging. The classification could also benefit
from a rule-based approach as suggested by Sharma et al. (2021). For example, many issues are
formulated as questions in the data created with ConDec. A rule that classifies questions as
issues could be valuable. However, this rule might not work out in the retrospectively annotated
data because issues are not necessarily questions. The technical problem is that we had to restrict
the training data size of support vector machine classifiers to avoid out-of-memory exceptions
since the training and validation are done in Jira.

This study evaluated whether the effectiveness of the classification can be improved using more
extensive data from different domains (Section 10.2.3). The best F1-scores for the combined data
were smaller than when classifiers were trained and validated on the data of a single project.
The reason might be that the mere usage of 3-grams as classification features was insufficient, as
discussed above. None of the related studies evaluated the effect of the data size, so we cannot
compare the results. It needs to be further investigated to which extent more extensive data sets
can improve the effectiveness of automatic classification.

The contribution of ConDec is that it integrates automatic text classification directly into the
issue tracking system. The seven related approaches in Table 10.7 use separate tools (or tool
stacks) for retrospective rationale identification and extraction. ConDec is also the only tool that
makes online learning possible: When the developers manually approve or improve the automatic
classification, they contribute to the ground truth.

193

10. Effectiveness of Automatic Text Classification

10.4. Threats to Validity
This section discusses four validity criteria of primary empirical studies as defined by Easterbrook
et al. (2008) and Runeson et al. (2012):

Construct validity focuses on whether the theoretical constructs are measured and interpreted
correctly. The effectiveness of ConDec’s automatic text classification depends on the effectiveness
of the binary and fine-grained classifiers since ConDec applies the binary and fine-grained
classifiers sequentially. False positives of the binary classifier would be incorrect inputs, and false
negatives would be missing inputs for the fine-grained classifier. In this study, we evaluated the
fine-grained classifier by solely inputting relevant decision knowledge elements, i. e., we evaluated
the fine-grained classifier independently of the binary classifier. The independent evaluation is
also performed in the related work, enabling comparing the fine-grained results.

Internal validity concerns whether the results we draw really follow from the data, e. g., whether
confounding factors influence the results. The developers or researchers who retrospectively
classified implicit rationale manually approved every entry in the ground truth. However, also
the manual classification is subjective and might be wrong. To mitigate the risk of wrong
classification, the rationale manager constantly reviewed the knowledge documentation of the
ISE and ConDec projects. ConDec supported the quality assurance with the quality checking
recommendation system (Section 7.6.4) and by presenting the developers with the knowledge
to nudge its improvement. For the issue tracking data of Apache Lucene, Ubuntu, and Mozilla
Thunderbird, Alkadhi (2018) created coding guides. Two researchers independently coded, i. e.,
manually classified, the data and resolved disagreements through discussions.

External validity addresses the generalizability of the study results. We evaluated the automatic
text classification on different data and used various training and validation configuration to
understand to which extent the results can be generalized. We used the data of seven different
projects, four in which the developers documented decision knowledge with ConDec during
development and three by Alkadhi (2018) with retrospectively annotated decision knowledge.
We also performed project cross validation. The precision, recall, and F-score values vary and
may differ in other software projects.

Reliability validity concerns the study’s dependency on specific researchers. A threat is that the
experiments with different training and validation data and various machine learning classifiers
were only conducted by the author of the thesis. To mitigate the threat, the digital Appendix A
describes how to reproduce the results with the ConDec Jira plug-in and the ground truth data.

10.5. Conclusion
This chapter presented an empirical study to evaluate the effectiveness of ConDec’s automatic
text classification by running experiments with different training and validation data sets and
supervised machine-learning algorithms. We performed cross-project validation and evaluated
the effectiveness of the classification on projects with and without explicit decision knowledge
documentation. We used the measures of precision, recall, and F-scores as indicators for
effectiveness.

The evaluation revealed that ConDec can detect rationale with an F1-score up to 0.81 and an
F2-score up to 0.91 and classifies the detected rationale into different rationale elements with an
F1-score up to 0.69 and an F2-score up to 0.74. These results for best F1-scores are similar to
the results of related work. Still, the effectiveness of ConDec’s automatic text classification varies
for different training data, classifiers, and classes to be classified, which complicates its use.

The best F2-scores exceed the best F1-scores, which means that automatic text classification
is more effective when weighing recall over precision, i. e., if false positives are experienced as
less inconvenient than false negatives. ConDec’s automatic text classification supports two tasks:

194

10.5. Conclusion

First, it supports the task by the rationale manager to retrospectively formalize the implicit
rationale in the development artifacts of a project in that continuous rationale management
has not yet been performed. The retrospective application of automatic text classification
can be of great importance in practice for brownfield development. Second, it supports the
developers during their daily work in formalizing rationale by automatically detecting and
classifying rationale elements and asking them to approve the classification manually. We argue
that automatic text classification with higher F2-scores than F1-scores, i. e., higher recall than
precision, is more effective during active development than when applied retrospectively because
the developers can directly correct false positives. False positives can be seen as a mechanism to
nudge the developers into improving the rationale documentation.

For future improvements, various ways exist to extend the automatic text classification and
work on its evaluation. Further experiments should be performed with different preprocessing
steps, classification features, oversampling using SMOTE, other classifiers, e. g., random forest,
and the different training data. The language representation model BERT could replace the
GloVe model, which ConDec currently uses. BERT received promising results in various natural
language processing tasks (Deshpande et al., 2021). The automatic text classification could also
benefit from integrating a generative pre-trained transformer model by OpenAI1. This study did
not answer the question of why different algorithms have different effectiveness on different data.
Future researchers should put effort into making the classification results explainable.

While automatic text classification can be technically improved, it is unlikely that its effec-
tiveness can become perfect because decision knowledge is very complex. A strength of the
documentation created with ConDec is that decision knowledge is more structured than the
retrospectively classified documentation, which supports the exploitation. For example, issues
are often formulated as questions in the documentation created with ConDec. The developers are
responsible for clear formulation and structuring. Thus, the automatic text classification is most
valuable when being part of ConRat, i. e., when reviewed and improved by the developers. During
ConRat, the automatic classification nudges the developers to document decision knowledge in a
lightweight way so that they can put more effort into decision making instead of documentation.

1https://openai.com

195

https://openai.com

Chapter 11
User Acceptance of ConDec Plug-Ins

“A toolmaker succeeds as, and only as, the users of the tool
succeeded with its aid.”

—Brooks, 1996

This chapter contributes to the knowledge goal 5 of the thesis: Show the acceptance of the
ConDec plug-ins from the software practitioners’ perspective. It presents an empirical study on
user acceptance with practitioners from industry and University students working in project
courses in an industrial setting. While the study participants used ConDec in CSE, they were in
the role of users. Section 11.1 describes the study design. Section 11.2 presents and discusses
the results of the study on user acceptance validation. Section 11.3 discusses threats to validity.
Section 11.4 concludes this chapter. An initial study of usage analysis based on logging was
published in Kleebaum et al. (2021c).

11.1. Study Design
Section 11.1.1 introduces the research questions. Section 11.1.2 describes the study participants.
and Section 11.1.3 presents the metrics, i. e., indicators, to measure acceptance and the data
acquisition and analysis methods.

11.1.1. Research Questions

We refine the knowledge goal 5 into four research questions shown in Table 11.1. The questions
address the course-grained rationale management activities demanded by the technical research
goal of the thesis (Section 1.4): a) collaborative, incremental, and rational decision making,
b) documentation, c) exploitation, and d) quality assurance of decision knowledge.

RQ1 Do developers accept the ConDec support for decision making?

With this research question, we aim to show that ConDec is beneficial for decision making from
the point of view of software practitioners. For simplification, we omitted the specific aspects.

RQ2 Do developers accept the ConDec support for knowledge documentation?

In Chapter 9, we showed that it is feasible to document a high amount of decision knowledge
related to other software artifacts with ConDec. With this research question, we want to show
that software practitioners accept the ConDec support for knowledge documentation.

197

11. User Acceptance of ConDec Plug-Ins

Table 11.1.: Research questions and metrics of the empirical study on the user acceptance.
Research Question Metrics

RQ1 Do developers accept the ConDec support for decision making? Usefulness, intention to use
RQ2 Do developers accept the ConDec support for knowledge

documentation?
Ease of use, usefulness, inten-
tion to use, usage frequencies

RQ3 Do developers accept the ConDec support for knowledge
exploitation?

Ease of use, usefulness, inten-
tion to use, usage frequencies

RQ4 Do developers accept the ConDec support for quality assurance? Ease of use, usefulness, inten-
tion to use, usage frequencies

RQ3 Do developers accept the ConDec support for knowledge exploitation?

With this research question, we aim to show that ConDec is beneficial for the exploitation of a
high amount of distributed knowledge from the point of view of software practitioners.

RQ4 Do developers accept the ConDec support for quality assurance?

With the research question, we aim to show that ConDec is beneficial for creating and maintaining
high documentation quality from the point of view of software practitioners.

11.1.2. Participants

This section provides descriptive data on the study participants, to understand their background.
Table 11.2 shows their experiences in software development and rationale management.

The study mainly reports findings of the ISE 21/22 project since the ConDec features were
most mature in this project. The study reports findings of the previous projects if features were
not applied in ISE 21/22 and if they had consequences for the further development of ConDec.
Six student software developers and two practitioners from the industry (IT consultants) were
involved in the ISE 21/22 project (Table 8.2 on page 148). The consultants helped the developers
to improve the development process and disseminated app technologies that the developers
needed to decide on. We interviewed both the developers (ISE 21/22 D) and the consultants
(ISE 21/22 C) at the end of the project. The student developers rated their experience in

Table 11.2.: Study participants’ answers on statements regarding their experience and the
weighted mean µw. “ISE 21/22 D” represents the six developers and “ISE 21/22 C”
the two IT consultants from industry in the ISE 21/22 project.

Statement Study Strongly
Disagree

Disagree Neutral Agree Strongly
Agree

µw

Before the project/workshop, I was
experienced with rationale

management.

Workshop 0 1 1 2 0 0.2
ISE 21/22 D 0 3 0 3 0 0
ISE 21/22 C 0 0 1 1 0 0.5

Before the project, I was experienced in
developing software for a customer.

ISE 21/22 D 0 0 3 2 1 0.7

Before the project, I was experienced in
developing software in a team.

ISE 21/22 D 0 0 0 4 2 1.3

I am experienced with CSE. Workshop 0 1 2 0 1 0.2
ISE 21/22 C 0 0 0 1 1 1.5

198

11.1. Study Design

developing software for a customer and in a team (Table 11.2). The IT consultants provided
the time they worked in software engineering. On average, the consultants had an experience
in IT projects of ten years (SD = 6.4 years). One consultant had documented rationale in two
projects and exploited the rationale documented by others in one project. The other consultant
had documented and exploited the rationale in more than 100 projects as a site manager.

The study also reports the findings of a one-day rationale-management workshop in the
research division of an industrial company in September 2021. In total, the company has
more than 100 000 employees. During the workshop, we presented ConDec to practitioners and
asked them to document and exploit knowledge in a demo project. Four practitioners filled
in a survey questionnaire after the workshop. They described their roles as researchers who
develop prototypes but also as project leads, architects, and software developers. On average, the
practitioners have an experience in IT projects of seven years (SD = 6.8 years). They documented
rationale themselves in two projects (SD = 1.7) and exploited the rationale documented by others
in four projects (SD = 5.5).

The descriptive data show that the study participants were less experienced in rationale
management than in software development in general, confirming the interview study’s findings
in Chapter 3. Since all participants were experienced in software development, they have enough
prerequisites to help evaluate user acceptance of ConDec.

11.1.3. Indicators for Acceptance and Research Methods
The study uses four indicators to measure the acceptance of ConDec views and features. It uses
the variables of the Technology Acceptance Model, i. e., the participants’ perceived 1) ease of use,
2) usefulness, and 3) intention to use the solution in the future (Davis et al., 1989; Marangunić
and Granić, 2015). The participants accept a view or feature if they approve of these variables.
Besides, the study assesses the 4) usage frequencies by asking the participants how often they
used a view or feature and through usage logging. A high usage frequency is an indicator that
the participants accept a feature. The following subsections describe the methods for collecting
and analyzing user feedback from the study participants and usage logging.

Collecting and Analyzing User Feedback

ConDec was applied in six validation projects, i. e., the iPraktikum, ISE 19/20, ISE 20/21, ISE
21/22, and the ConDec project (Section 8.1). We observed the rationale documentation during
these projects and collected developer feedback through informal discussions. In addition, we
used written surveys and semi-structured interviews to collect feedback based on questionnaires
(available in Appendix F). The questionnaires contain person-related questions to describe the
experience of the study participants, questions to ask for their attitude toward the ConDec views
and features, and questions concerning the quality of the rationale documentation in the project.
The questionnaires group the ConDec views and features by the rationale-management activities
they primarily support. Often, we formulated the questions in the questionnaires as statements
that the participants should rate on Likert scales, e. g., ConDec is useful for decision making.
We derived the statements in the questionnaires by considering the perceived usefulness, ease of
use, and intention to use of the Technology Acceptance Model. The participants should rate
these variables on a five-point Likert scale between strongly disagree to strongly agree. Next to
rating statements, the study participants needed to provide detailed feedback on the features
for rationale management they applied. For example, the study participants should provide
details on what they think is useful or useless, easy or difficult, and why they think so. For the
ConDec features, we asked the study participants to rate their usage frequency on a four-point
Likert scale, i. e., never, rarely, sometimes, often. We used an even-numbered instead of an
odd-numbered Likert scale because there is no neutral option for usage frequencies. We detailed

199

11. User Acceptance of ConDec Plug-Ins

the meanings of the frequencies as follows: rarely means 0 – 3 times, sometimes means 4 – 10
times, and often means > 10 times. For the detailed ConDec features, we omitted to ask for the
intention to use a feature in the future to reduce the questionnaire size, and because the ease of
use and usefulness are determinants of the intention to use (Marangunić and Granić, 2015). To
enable an overall rating, we calculated the weighted mean µw of the participants’ rating on Likert
scales for the usage frequencies (Equation 11.1) and the variables of the Technology Acceptance
Model (Equation 11.2),

−2 · #never − 1 · #rarely + 1 · #sometimes + 2 · #often
#participants (11.1)

−2 · #strongly disagree − 1 · #disagree + 0 · #neutral + 1 · #agree + 2 · #strongly agree
#participants

(11.2)

where #. . . represents the number of participants who selected a specific rating. For example,
a weighted mean µw = 2 means that all participants strongly agreed to a statement. A weighted
mean µw = −1 means that the participants disagreed with a statement on average.

Measurement of Usage Frequencies through Usage Logging

We performed usage analytics of ConDec’s knowledge graph views to quantify the view usage
and get an impression of which views the developers prefer. The ConDec implementation uses a
REST API to create the knowledge graph views. We logged the usage of this REST API. The
students knew that we monitor the ConDec usage for evaluation purposes, but we assured them
that this does not influence the grading. We collected the data in two projects: ISE 20/21 and
ISE 21/22. For the ISE 20/21 project, we started the data collection after the second sprint. For
the ISE 21/22 project, we logged the usage during the entire project. We analyzed the usage of
the REST API using an R script (R Core Team, 2022), available in Appendix A. We anonymized
the collected data but ensured we only analyzed the REST API usage of the project participants.
We analyzed the usage over time and the usage per ConDec view.

11.2. Results and Discussion
The following sections present and discuss the results of the acceptance validation. Section 11.2.1
describes the acceptance of the decision-making support. Section 11.2.2 describes the acceptance of
the knowledge-documentation support. Section 11.2.3 describes the acceptance of the knowledge-
exploitation support. Section 11.2.4 describes the acceptance of the quality-assurance support.
This chapter reports the weighted means of the study participants’ statement ratings on the
Likert scales. Appendix F provides the detailed ratings.

11.2.1. Acceptance of Benefits for Decision Making

This section presents the results for the question Do developers accept the ConDec support for
decision making? (RQ1). We asked the study participants to judge the extent to that ConDec
supports decision making. Table 11.3 shows the results for the statements ConDec is useful for
decision making and I would use ConDec to support decision making in the future. On average,
the participants agreed on the usefulness for decision making (rating 1 – 1.5) and would use
ConDec to support decision making in the future (rating 0.2 – 1).

200

11.2. Results and Discussion

Table 11.3.: Study participants’ assessment of whether ConDec fulfills the technical research
goal: answers on their perceived ease of use, usefulness, and intention to use as the
weighted means µw of the Likert answers.

Sub-Goals of Technical Research Goal Study Ease of
Use

Usefulness Intention
to Use

Decision-making support (ConDec is useful for decision
making and I would use ConDec to support decision

making in the future)

ISE 21/22 D 1.5 1
ISE 21/22 C 1 0.5
Workshop 1 0.2

Documentation support ISE 21/22 C 1 1 0
Workshop 0 1.5 0.2

Exploitation support and support for a high amount of
distributed knowledge

ISE 21/22 C 1 1 1
Workshop 0.5 0.5 0.2

High quality support ISE 21/22 C 0 1 0
Workshop 0 0 0

The participants gave the following positive feedback: One participant emphasized that
ConDec enables collaborative decision making because all team members can discuss and reflect
on decisions. ConDec could particularly support decision making in bigger teams in that not all
developers can share decisions otherwise. One participant highlighted that ConDec is easy to
learn and intuitive when familiar with the underlying tools.

The participants gave the following negative feedback or improvement ideas: One practitioner
from the industry stated, “ConDec is not for decision making in my view; it is for decision
documentation. Decision making involves discussions, investigations, weighing pros/cons, and
talking to stakeholders. Just writing down options, pros, and cons is not sufficient to make a
decision. ConDec is rather supporting that rationale does not get lost.” The same practitioner
also stated, “I am not sure the value of using such a tool is indeed much higher than simply
noting down decisions in a Word document.” In contrast to the practitioner, we argue that
ConDec supports decision making because it makes decision knowledge explicit, which helps its
reflection and discussion. The practitioners from the industry hesitate to use ConDec in the
future because they partly use a different tool stack. For instance, they use Azure DevOps or
Microsoft Teams instead of the issue tracking system Jira. One practitioner uses Mural as a
digital whiteboard for decision making. Another practitioner requests the integration with arc42
templates. Since ConDec is a research prototype developed during a dissertation project, we
could not build extensions for all the software development tools used in practice. In the future,
it would be valuable to build ConDec extensions for more tools such as Azure DevOps, Teams,
and Mural and to integrate templates used in the industry, such as arc42.

11.2.2. Acceptance of Knowledge Documentation Features

This section presents the results for the question Do developers accept the ConDec support for
knowledge documentation? (RQ2). The subsections describe 1) the overall acceptance from the
point of view of practitioners from the industry (workshop participants and IT consultants),
2) the acceptance of specific documentation locations and the respective documentation features,
3) the acceptance of other specific documentation features, and 4) the documentation features
the study participants prefer to use in the future. In the last subsection, we discuss the results.

201

11. User Acceptance of ConDec Plug-Ins

Acceptance of Knowledge Documentation Support by Practitioners from Industry

Table 11.3 shows the results for the statements It is easy to document decision knowledge with
ConDec, ConDec is useful for decision knowledge documentation and I would use ConDec to
document decision knowledge in the future. These statements were rated by the practitioners
from the industry, i. e., the ISE 21/22 consultants and workshop participants, who only briefly
used ConDec. For the student developers, who used ConDec over several months, we asked
more detailed questions (cf. the following subsections). On average, the practitioners from the
industry were neutral or agreed on the ease of use (rating 0 – 1) and agreed on the usefulness
(rating 1 – 1.5). They were neutral or slightly agreed that they would use ConDec for decision
knowledge documentation in the future (rating 0 – 0.2). The practitioners from the industry
gave the following feedback: They like the structured, formalized way of decision knowledge
documentation, which makes it easy to “track made decisions and their reasoning”. However,
one practitioner stated: “In my view, a word document, PowerPoint slide, text file, or wiki page
is easier to create. These do not force the users into a specific structure. That, of course, does
not allow to benefit from trace links or dependencies between decisions but is often the only
option in a tight development schedule that does not allocate much time for documentation
tasks. Maintaining trace links is brittle in my experience. Often a simple text search on the code
repository or the documentation is sufficient to find certain artifacts and could thus substitute for
trace links.” For future improvements, the practitioner requests the integration with architecture
models and import functionality for decision points so you do not have to start each project from
scratch. The practitioner states: “Maybe pattern catalogs could be encoded in such tools and
then get imported as a starting point. In my view, the point is not in having different forms,
visualizations, or tracing mechanisms. These are all fine, but the core is the decision making
and knowing and selecting the best choices. That is a much bigger problem for the developers
than documenting their rationale.” The import functionality could add to ConDec’s decision
guidance feature, which recommends solution options but no decision points, i. e., issues. Again,
the practitioners from the industry request that ConDec plug-ins be available for the tools they
use, such as Mural, Azure DevOps, and Microsoft Teams.

Acceptance of Documentation Locations and Respective Features

We asked the study participants which of the four documentation locations in the issue tracking
system and version control system supported by ConDec they prefer and why. They could
choose more than one location. We also asked them if they would like to document decision
knowledge in another documentation location. Table 11.4 shows the answers. We included
the answers of the developers of the ISE 19/20 project whom we asked for their preferred
documentation location in the issue tracking system Jira. In general, the participants preferred

Table 11.4.: Study participants’ answers on their preferred documentation locations for decision
knowledge.

Study Entire Jira
Tickets

Jira Ticket
Text

Commit
Messages

Code
Comments

Other

ISE 19/20 2 6 Wiki
Workshop 1 2 0 2 Free Text, PowerPoint, Wiki

ISE 21/22 D 6 3 0 0 -
ISE 21/22 C 1 1 0 0 Markdown, Mural, Wiki

different documentation locations. Some participants stated that it is a matter of habit which
documentation location to use. One practitioner would like to have a “single source of truth”

202

11.2. Results and Discussion

instead the decentralized documentation in ConDec. However, ConDec enables the centralized
access of the decision knowledge since it integrates the decision knowledge from various locations
into one model (Section 6.1). When stating to prefer entire Jira tickets, the participants described
the workflow to create a ticket for a decision problem and then capture other rationale elements,
i. e., alternatives, arguments, and the solution decision, in its description. The advantage of the
entire tickets for decision problems is that all Jira features, such as Jira filters, can be applied to
the tickets instead of only the ConDec features. When stating to prefer Jira ticket text, i. e., the
description and comments of existing Jira tickets such as user stories, they justified their selection
as follows: It is easy to annotate the text with the decision knowledge annotations, and decisions
related to requirements or work items are automatically linked in the knowledge graph. None of
the participants picked commit messages as their preferred location for decision capturing. They
argue that commit messages should only contain absolutely necessary information. They think it
is too complicated to annotate and complete the decision knowledge in a commit message after the
transcription into a comment of the related Jira ticket. Two practitioners from the industry picked
code comments as their preferred documentation location as “the truth is in the code”. Others
argue that it reduces the readability of code if there are too many comments. One practitioner
would prefer markdown files instead of code comments as done by Kopp et al. (2018) and Kopp
and Armbruster (2019) through Markdown Architecture Decision Record templates. As further
documentation locations, the participants mention wiki pages, free-text documents (possibly
integrated with architecture documentation), the digital whiteboard Mural, and PowerPoint.

Further, we asked the developers who used ConDec for several months to rate the usage
frequencies, the ease of use, and the usefulness of the features. Table 11.5 lists the weighted
means by the study participants of two validation projects. In the ISE 19/20 project, we did not
ask for features that were not existing yet or mature. Commit messages and code comments were
rarely used as documentation locations during the ISE 21/22 development (ratings -1.8 and -1.7).
We showed in Chapter 9 that it is feasible to document decision knowledge in commit messages
and code comments by analyzing the documentation of the ConDec project. In the ISE 19/20
project, the developers applied the ConDec Slack plug-in to annotate decision knowledge in chat
messages and to export the decision knowledge elements to Jira. The ISE 19/20 developers
slightly disagreed on the support’s ease of use and usefulness because they thought it easier to
document the decision knowledge in Jira directly. Also, they used a different chat messenger
in the team than Slack, for which no ConDec plug-in is available. They slightly agreed that
capturing decision knowledge in wiki pages or pull requests would also be useful, which is not
yet supported by ConDec.

Acceptance of Other Documentation Features

Table 11.5 shows the ratings regarding other documentation features of ConDec. We also asked
the IT consultants for their perceived usefulness. In the following, we discuss the acceptance of
the documentation features.

We added the decision grouping feature based on requests by the ISE 19/20 developers. The
participants explained their positive rating of the decision grouping feature as follows: The
feature is particularly useful for projects with many decisions to get an overview. It enables
filtering for the important decisions for a developer, e. g., only for backend decisions if a developer
is not responsible for developing the frontend.

The participants rarely used the automatic text classification, meaning the feature was mainly
disabled (rating -0.7 and -1.3). There are two different opinions regarding the text classifier. The
first opinion is that the practitioners find the text classifier easy to use and useful, but only if it
has good accuracy. Otherwise, improving wrong classifications can become tedious. The second

203

11. User Acceptance of ConDec Plug-Ins

Table 11.5.: Weighted means µw of the study participants’ Likert ratings on their perceived usage
frequency, ease of use, and usefulness of ConDec’s documentation features.

ConDec Feature Feature
Description

Project Usage
Frequency

Ease of
Use

Usefulness

Documentation of Decision Knowledge in . . .

Entire Jira tickets Section 7.3.1 ISE 19/20 -0.9 0 0.3
ISE 21/22 D 2 1.5 1.7

Description and comments of Jira tickets Section 7.3.2 ISE 19/20 1.6 0.4 0.3
ISE 21/22 D 0.5 1.2 1.7

Commit messages using annotations during
committing or afterward in Jira comment

Section 7.3.3 ISE 21/22 D -1.8 0

Code comments using annotations Section 7.3.4 ISE 21/22 D -1.7 0.4
Chat messages and exporting it to Jira Section 7.3.5 ISE 19/20 -1.1 -0.1 -0.1

Wiki pages (not implemented) Section 7.3.5 ISE 19/20 0.6
Pull requests (not implemented) Section 7.3.5 ISE 19/20 0.3

Other Documentation Features

Decision grouping Section 7.9 ISE 21/22 D 0.5 1.3 1
ISE 21/22 C 1.5

Automatic text classification to identify
decision knowledge in Jira ticket text, RS5 Section 7.6.8

ISE 19/20 -0.7 0 0
ISE 21/22 D -1.3 0.5 -0.7
ISE 21/22 C 1

Link recommendation and
duplicate detection, RS4 Section 7.6.7 ISE 21/22 D -0.2 1.5 0

ISE 21/22 C 1
Recommendation of solution options from

knowledge sources (decision guidance), RS3 Section 7.6.6 ISE 21/22 D -1.5 1 0.2
ISE 21/22 C 2

Changing elements and links through
interaction with knowledge graph views, F3 Section 7.5.3

ISE 19/20 0.9 0.6 0.9
ISE 21/22 D 0.5 0.8 1
ISE 21/22 C 1.5

Linking arguments to criteria in
criteria matrix, F3

Section 7.4.4,
Section 7.5.3

ISE 21/22 D 1.8 0.7 0.6
ISE 21/22 C 2

opinion is that the text annotation in Jira ticket descriptions and comments is already very easy,
and the participants thought automating the annotation was unnecessary.

The participants rarely used the link recommendation and duplicate detection feature (rating
-0.2). They stated that they find the feature useful if the recommendations are true positives and
there are no false negatives. Besides, they stated that the feature would be particularly useful in
long-living projects with changing developers, which was not the case in the ISE 21/22. One
practitioner disagreed about the usefulness because too many links would lead to information
overload when exploiting the knowledge graph.

The participants very rarely used the decision guidance feature (rating -1.5). Like the link
recommendation and duplicate detection feature, they stated that the decision guidance is only
useful if the recommendations are high-quality. For this purpose, one needs similar projects
or another kind of fruitful knowledge source. One participant emphasized that it is still very
important to think about your own decisions instead of just accepting decisions from others.

In general, the participants had a positive attitude toward the interaction possibilities of the
knowledge graph views (V1 – V6). They like the context menu and drag & drop functionality.
They state that adding new decision knowledge elements via the context menu is easier than

204

11.2. Results and Discussion

writing it in text because ConDec automatically adds the annotations. However, they stated
that the view interactions need practice and are not self-explanatory.

The ISE 21/22 participants had a positive attitude toward the linking of arguments to criteria.
For instance, criteria are quality requirements, e. g., efficiency and security, or constraints and
context factors, e. g., implementation effort. They justify the positive rating as follows: It helps
during decision making to weigh the arguments, e. g., to see that usability is more important in
the project than security. It helps structure pros and cons, see all decisions affecting a specific
criterion, and see whether quality requirements are fulfilled.

Intended Future Usage of Documentation Features

We asked the ISE 21/22 developers which of the documentation features they would use in the
future. The answer indicates which features the developers prefer. All developers intend to
use the documentation of decision knowledge in Jira as tickets and ticket text. One developer
answered that they intended to document decision knowledge in code comments in the future.
Further, they intend to use decision grouping, linking criteria to arguments, link recommendation
and duplicate detection, and decision guidance features.

Discussion: Do developers accept the ConDec support for knowledge documentation?

Overall, the study participants accept the knowledge documentation features since they mostly
agreed on the ease of use and usefulness. The acceptance differs between the features as
discussed above. The results regarding the preferred documentation locations illustrate that
study participants have different preferences about where to document decision knowledge. It is
a strength of ConDec to integrate the documentation in tools and documentation locations that
the practitioners already use instead of providing a separate tool. With ConDec, the practitioners
can document decision knowledge in their preferred documentation locations, which makes the
documentation low-intrusive and helps to overcome the capture problem. In the future, the
documentation should be supported in even more tools and documentation locations used in the
industry, which would likely increase the acceptance by the practitioners. The practitioners accept
the recommendation systems concerning the documentation, i. e., the automatic text classification
(RS5), link recommendation and duplicate detection (RS4), and the decision guidance (RS3), if
the accuracy of their recommendations is high. In the future, these recommendation systems
should be further improved.

11.2.3. Acceptance of Knowledge Exploitation Features

This section presents the results for the question Do developers accept the ConDec support for
knowledge exploitation? (RQ3). The subsections describe 1) the acceptance from the point
of view of practitioners from the industry (workshop participants and IT consultants), 2) the
acceptance of the knowledge graph views, 3) the acceptance of other exploitation features,
and 4) the exploitation features the study participants prefer to use in the future. In the last
subsection, we discuss the results.

Acceptance of Knowledge Exploitation Support by Practitioners from Industry

Table 11.3 on page 201 shows the results for the statements It is easy to exploit decision knowledge
with ConDec, ConDec is useful for decision knowledge exploitation and I would use ConDec to
exploit decision knowledge in the future. On average, the practitioners from the industry were
neutral or agreed on the ease of use (rating 0.5 – 1) and agreed on the usefulness (rating 0.5 – 1).
They agreed they would use ConDec for decision knowledge exploitation in the future (rating

205

11. User Acceptance of ConDec Plug-Ins

0.2 – 1). The practitioners from the industry gave the following feedback: Some like the knowledge
view because they are “visual persons”. One practitioner likes that the decision knowledge is
accessible from tools such as Jira because you “do not have to read Javadoc”. However, one
practitioner states: “I am not sure if special visualizations like trees or graphs are actually
superior to a text file and a search function.”

Acceptance of Knowledge Graph Views

To understand the acceptance of the knowledge graph views, we combined the collection of
qualitative feedback with view access logging. Figure 11.1 shows the view usage over time for the
ISE 20/21 (starting from the second sprint review) and the ISE 21/22 projects. The developers
accessed the views with varying frequencies and accessed different views during the projects. In
the ISE 20/21 project, the view usage seemed to be higher before the sprint reviews (Figure 11.1,
first plot). A reason might be that the developers had to tidy up the documentation to present
it to the customer in the sprint review. For that purpose, they accessed the ConDec views. In
the ISE 21/22 project, the proportion of the accessed views changed (Figure 11.1, fourth plot).
In the first to third sprint, the developers mainly accessed the knowledge tree views (V2). In the
fourth and fifth sprints, the developers mainly accessed the criteria matrix (V4cri).

Table 11.6.: Total number of accesses per ConDec view measured by logging REST API calls
in the validation projects ISE 20/21 and ISE 21/22 as well as the perceived usage
frequencies stated by the ISE 21/22 developers. The last column lists the number of
ISE 21/22 developers who selected a view as their preferred view.

ConDec View API Name ISE 20/21 ISE 21/22
#Accesses #Accesses Perceived

Usage
Is View
Preferred?

Node-link diagram, V1 view/node-link-diagram 317 (3.8 %) 483 (6.6 %) -0.7 0 (0 %)
Tree, V2ind view/indented-outline 4207 (50.9 %) 1645 (22.6 %) 0.7 5 (83.3 %)
Tree, V2nld view/treant 2193 (26.5 %) 2390 (32.8 %) 0.7 5 (83.3 %)

Adjacency matrix, V4adj view/adjacency-matrix 383 (4.6 %) 485 (6.6 %) -0.8 0 (0 %)
Criteria matrix, V4cri view/criteria-matrix 0 (0 %) 2034 (27.9 %) 1.8 6 (100 %)

Chronology, V5 view/chronology 28 (0.3 %) 22 (0.3 %) -1.8 0 (0 %)
Metrics, V6 dashboard 1088 (13.2 %) 235 (3.2 %) 0.8 5 (83.3 %)

Table 11.6 shows the total amount of accesses per view during the project duration of both
ISE projects and the perceived usage frequencies stated by the ISE 21/22 developers. We also
asked ISE 21/22 developers for their preferred views and to explain their selections.

The knowledge tree views (V2) were most often accessed. They account for 6400 (77.4 %) of
the view accesses in ISE 20/21 and 4035 (55.3 %) in ISE 21/22. When asking the ISE 20/22
developers for their attitude towards the ConDec views, they stated that the indented outline was
most useful because it provided the best overview. Regarding the node-link tree diagram, they
criticized that they often had to scroll a lot, which they found not useable. On average, the ISE
21/22 developers said they sometimes used both knowledge tree views with an equal perceived
usage frequency (rating 0.7). Five of the six developers in the ISE 21/22 project selected the
knowledge tree views as preferred.

The developers accessed the node-link diagram (V1) and adjacency matrix (V4adj) similarly
often (between 3.8 % to 6.6 % of the view accesses). The ISE 21/22 developers said they rarely
used these views with similar ratings (-0.7 and -0.8). They stated that both views are useful for
seeing and managing links, i. e., their types and directions. Link types and directions are not
shown in knowledge tree views. They emphasized that they liked the colorful presentation of link

206

11.2. Results and Discussion

0

500

1000

1500

2000

2020-11-01 2020-12-01 2021-01-01 2021-02-01 2021-03-01

Date

#A
P

I C
al

ls
 fo

r
C

on
D

ec
 V

ie
w

s/
D

ay

ISE
20/21

view/indented-outline

view/treant

view/node-link-diagram

view/chronology

view/criteria-matrix

view/adjacency-matrix

dashboard

0%

25%

50%

75%

100%

2020-11-01 2020-12-01 2021-01-01 2021-02-01 2021-03-01

Date

P
ro

po
rt

io
n

of
 A

P
I C

al
ls

ISE
20/21

view/indented-outline

view/treant

view/node-link-diagram

view/chronology

view/criteria-matrix

view/adjacency-matrix

dashboard

0

250

500

750

2021-10-01 2022-01-01 2022-04-01

Date

#A
P

I C
al

ls
 fo

r
C

on
D

ec
 V

ie
w

s/
D

ay

ISE
21/22

view/indented-outline

view/treant

view/node-link-diagram

view/chronology

view/criteria-matrix

view/adjacency-matrix

dashboard

0%

25%

50%

75%

100%

2021-10-01 2022-01-01 2022-04-01

Date

P
ro

po
rt

io
n

of
 A

P
I C

al
ls

ISE
21/22

view/indented-outline

view/treant

view/node-link-diagram

view/chronology

view/criteria-matrix

view/adjacency-matrix

dashboard

Figure 11.1.: View usage measured by the number of REST API calls per day in the validation
projects ISE 20/21 and ISE 21/22. The first and third plots show the number of
API calls, whereas the second and fourth plots show the proportion.

types in the adjacency matrix view. However, they found the node-link diagram and adjacency
matrix unsuitable for getting a good overview of the documented knowledge.

The metrics plots (V6) are part of the knowledge dashboard, which plots various metrics at
once. The ISE 21/22 developers said they sometimes used the dashboard with metrics plots
(rating 0.8), equally often as the knowledge tree views. However, the developers accessed the
knowledge dashboard less often (3.2 % to 13.2 % of the view accesses in both projects). Five of

207

11. User Acceptance of ConDec Plug-Ins

the six developers in the ISE 21/22 project selected the knowledge dashboard as a preferred view.
We discuss the developers’ attitude toward the knowledge dashboard as part of RQ4.

The chronology view (V5) was hardly ever accessed (0.3 % of the view accesses). This was
confirmed by the ISE 21/22 developers, who stated that they almost never used the chronology
view (rating -1.8). When asking about their attitude, they did not use the chronology view
because they had already included a list of decision knowledge elements (V3) in their meeting
agenda and used it as a stand-up table. They found that the chronology view could replace the
list in meeting agendas but that using both the list and the chronology view is unnecessary.

In the ISE 20/21, the developers did not use the criteria matrix (V4cri). They stated that, in
general, they find it useful to consider criteria such as quality requirements during decision making,
but they did not find it necessary in their project. However, they linked work items to quality
requirements and used other knowledge graph views to inspect the knowledge documentation in
the context of the quality requirements. In contrast, in the ISE 21/22 project, the criteria matrix
was often accessed and accounts for 27.9 % of the view accesses. When asking the ISE 21/22
developers, they also stated that they often used the criteria matrix (rating 1.8) and selected
the criteria matrix as their preferred view. One developer stated that “the criteria matrix is
most useful because it offers the best overview of pros and cons. You can see contradictions
and make decisions better.” The reason for the completely different usage of the criteria matrix
in both projects might be twofold: First, we focused on this view when disseminating ConDec
since it was not used in the prior ISE project. Second, the developers in both projects developed
different habits and preferences.

dashboard

view/adjacency-matrix

view/chronology

view/criteria-matrix

view/indented-outline

view/node-link-diagram

view/treant

dev 4
dev 3
dev 2
dev 1
dev 0

#API Calls for ConDec Views in ISE 20/21

0 500 1000 1500

dashboard

view/adjacency-matrix

view/chronology

view/criteria-matrix

view/indented-outline

view/node-link-diagram

view/treant

dev 5
dev 4
dev 3
dev 2
dev 1
dev 0

#API Calls for ConDec Views in ISE 21/22

0 500 1000 1500

Figure 11.2.: View usage measured by the number of REST API calls per view and developer
during the ISE 20/21 (starting from second sprint review) and ISE 21/22 projects.

Figure 11.2 shows that the view usage differed between the ConDec views and also between
the developers dev 0 – dev 4 in ISE 20/21 and dev 0 – dev 5 in ISE 21/22.

We asked the developers to rate the overall usefulness of presenting, i. e., visualizing knowledge
in Jira (Table 11.7). They agreed to strongly agreed on the usefulness, but—as discussed
above—gave feedback that some views are more useful than others.

Acceptance of Other Exploitation Features

Table 11.7 shows the ratings regarding other exploitation features of ConDec. In the following,
we discuss the acceptance of these features.

The participants rarely used the stand-up table with decision knowledge in Confluence. On
average, they agreed on its ease of use, and they were neutral to agreed on its usefulness. They
like that the stand-up table provides a good overview of the open issues and recently made
decisions. However, they state that the information is redundant to what is shown in the rationale

208

11.2. Results and Discussion

Table 11.7.: Weighted means µw of the study participants’ Likert ratings on their perceived usage
frequency, ease of use, and usefulness of ConDec’s exploitation features.

ConDec View or Feature Description Project Usage
Frequency

Ease of
Use

Usefulness

Presenting/visualizing knowledge in Jira Section 7.4 ISE 19/20 0.9
ISE 21/22 D 1.7

Stand-up table with decision knowledge in
Confluence Section 7.10 ISE 21/22 D -0.7 1.2 0.5

ISE 21/22 C 0.5
Semi-automatic release notes creation

including decision knowledge Section 7.11 ISE 21/22 D -0.7 1.2 1.2
ISE 21/22 C -1

Change impact analysis, RS2 Section 7.6.5 ISE 21/22 D -1.5 0.7 0.3
ISE 21/22 C 0.5

Navigation from code to knowledge graph
view in Jira, F5

Section 7.5.5 ISE 21/22 D -2 1 -0.2

Filtering the knowledge graph views, F1 Section 7.5.1 ISE 21/22 D 0 0.8 1.7
ISE 21/22 C 1

Exploiting transitive links, F2 Section 7.5.2 ISE 21/22 D 0 0.8 1
ISE 21/22 C 0.5

View for rationale in pull requests, V3 Section 7.4.3 ISE 19/20 -0.3 0.1 0.3
View for rationale from git in Jira, V3 Section 7.4.3 ISE 21/22 D -2

backlog and decision knowledge overview in Jira. Instead of the stand-up table in Confluence,
they used the backlog in Jira because then they could directly make changes, which the ConDec
Confluence plug-in currently not supports. The IT consultants were neutral to agreed about the
usefulness of the stand-up table with decision knowledge in Confluence. They use boards in their
daily work, sometimes analog, not digital.

The participants rarely used the semi-automatic release notes creation including decision
knowledge, as each developer only applied it at the end of the sprint when they took the role
of the Scrum master and rationale manager. The ISE 21/22 developers agreed that the semi-
automatic release notes creation is easy to use and useful. They liked presenting the release notes
with decision knowledge to the customer and explaining what they did in the sprint and why they
did it. In the ISE projects, we requested the students to present their knowledge documentation
during the sprint reviews. For this purpose, the release notes with decision knowledge are useful.
The IT consultants disagreed on the usefulness of the release notes with decision knowledge
because the customer might not be interested in decisions. The developers refined this statement
as the customer might only be interested in decisions for the problem space, i. e., for requirements,
and not for the solution space. One IT consultant stated that it depends on the domain. For
example, a software development project to develop a source code library might benefit more
from release notes with decision knowledge than an app development project.

The participants very rarely used the change impact analysis. They were neutral to agreed
on the ease of use and its usefulness. They liked to see the affected knowledge elements of a
new decision or a decision to be changed “since you cannot have all dependencies in mind when
making changes”. However, two developers stated that they still had the dependencies in mind as
implicit knowledge in their project and, thus, did not need the feature. The feature will become
more useful for them in larger projects with changing developers.

After we disseminated ConDec, the participants never used the navigation feature from code to
the knowledge graph views in Jira on their own. We developed a ConDec Eclipse and a VSCode
plug-in that offer this feature. However, the developers in the ISE 21/22 mainly used the IntelliJ

209

11. User Acceptance of ConDec Plug-Ins

integrated development environment, for which currently no ConDec plug-in exists. While they
agreed that the feature is easy to use, they slightly disagreed on its usefulness. They stated
that knowing about the Jira tickets that changed a specific code file and the related decision
knowledge was not necessary. Again, this might be more useful in larger projects with changing
developers. One developer stated to have used git functionalities such as git blame or git annotate
to find out about the history of a code file. ConDec also uses these git functionalities to establish
the links between code files and Jira tickets in the knowledge graph.

The participants agreed on the ease of use of filtering the knowledge graph views and exploiting
transitive links. They are must-be features to cope with a high amount of knowledge elements.
They state that they needed some time to get familiar with the faceted ConDec filters, which
are separate from the Jira filter functionality. Currently, the filters are reset when reloading a
view. It would ease the usage if the ConDec filters could be cached.

The ISE 19/20 developers rarely used the view for decision knowledge in pull requests. The
ISE 21/22 developers did not use pull requests but directly merged their feature branches. Thus,
they did not use this feature. On average, the ISE 19/20 developers were neutral on its ease of
use and slightly agreed on its usefulness. They like to see the decision knowledge related to the
pull request because it helps them understand the code changes when reviewing the pull request.
Besides, presenting decision knowledge enables the review of the decision knowledge itself. The
decision knowledge is currently shown in a dialog, which is triggered manually, and should better
be directly shown within the pull request view.

The ISE 21/22 developers did not use the view for decision knowledge from git in Jira since
they mainly documented decision knowledge in Jira and not in git.

Intended Future Usage of Exploitation Features

We asked the ISE 21/22 developers which of the exploitation features they would use in the
future. The answer indicates which features the developers prefer. All developers intend to use
their preferred knowledge views and the filtering possibilities in the future. Three developers
state that they intend to use the exploitation of transitive links. Although they rarely used
the features in the projects, three developers intend to use the stand-up table with decision
knowledge, and three intend to use the semi-automatic release notes creation.

Discussion: Do developers accept the ConDec support for knowledge exploitation?

Overall, the study participants accepted the knowledge exploitation features since they mostly
agreed on their ease of use and usefulness. The acceptance differs between the features as
discussed above. While the developers who used ConDec over several months agreed on the
usefulness of the knowledge visualization based on trace links, one practitioner from the industry
discussed that simple text files and a search function might “also do the job”. We argue that
the knowledge visualization based on trace links is superior to text files for projects with many
requirements and code files. For example, one can easily see all decisions related to a requirement
by filtering and exploiting transitive links and can perform change impact analysis. ConDec
enables the export of the knowledge graph data structure in a text file if needed. The trace
links in ConDec are lightweight as they are established either a) automatically by ConDec, e. g.,
between an issue and a requirement if the issue is documented in a comment of the requirement,
or b) by the developers during their usual practices as done between code and tickets through
providing ticket identifiers in commit messages. In the future, knowledge exploitation should be
supported in all tools used in industry, which would likely increase their acceptance.

210

11.2. Results and Discussion

11.2.4. Acceptance of Quality Assurance Features
This section presents the results for the question Do developers accept the ConDec support for
quality assurance? (RQ4). The subsections describe 1) the acceptance from the point of view
of practitioners from the industry, 2) the acceptance of specific quality assurance features, and
3) the quality assurance features the study participants prefer to use in the future. In the last
subsection, we discuss the results.

Acceptance of Quality Assurance Support by Practitioners from Industry

Table 11.3 on page 201 shows the results for the statements It is easy to create and maintain high
documentation quality with ConDec, ConDec is useful to create and maintain high documentation
quality and I would use ConDec to create and maintain high documentation quality in the future.
On average, the practitioners from the industry were neutral on the ease of use (rating 0) and
were neutral or agreed on the usefulness (rating 0 – 1). They were neutral about whether they
would use ConDec for creating and maintaining high documentation quality in the future (rating
0). One practitioner states: “The quality comes from the user entering high-quality content. I
think you can still very much misuse the tool and enter inconsistent and incomplete information.
The tool can only syntactically check if certain forms are filled, but not, for example, if an
important decision option is missing.”

Usage Frequency, Ease of Use, and Usefulness of Quality Assurance Features

Table 11.8 shows the ratings regarding features for creating and maintaining high documentation
quality of ConDec. In the following, we discuss the acceptance of these features.

Table 11.8.: Weighted means µw of the study participants’ Likert ratings on their perceived usage
frequency, ease of use, and usefulness of ConDec’s quality assurance features.

ConDec View or Feature Description Project Usage
Frequency

Ease of
Use

Usefulness

Defining and checking of a definition of done
for the knowledge documentation, RS1 Section 7.6.4 ISE 21/22 D 0.2

ISE 21/22 C 1.5

Knowledge dashboard with metrics, V6 Section 7.8 ISE 21/22 D 0.8 1.3 1.5
ISE 21/22 C 1

Rationale backlog showing knowledge
elements that violate the definition of done

Section 6.2.3,
Section 7.7

ISE 21/22 D 1 0.8 1.7
ISE 21/22 C 1

Result presentation of definition of done
checking in the quality check view

Section 7.6.4 ISE 21/22 D 0.7 1.5 1

Ambient feedback nudging: coloring menu
items and knowledge elements, N2

Section 7.6.2 ISE 21/22 D 0 1.5 1.5

Just-in-time prompt nudging, N3 Section 7.6.3 ISE 21/22 D 0 0.8 0.8

Marking links as wrong or useless Section 7.5.3 ISE 21/22 D -0.7 0.3 0.2
ISE 21/22 C 0.5

Merge check of decision knowledge in pull
requests

Section 7.6.4 ISE 19/20 -0.3 0.6 -0.3

The participants slightly agree to strongly agree that defining and checking of a definition of
done for the knowledge documentation is useful. The participants agree that it is useful to make
the criteria explicit that need to be fulfilled before finishing a requirement or task. Otherwise,
the documentation might be neglected, and there will be “uncontrolled development”. However,
they would like to have the possibility to disable the definition of done checking for particular

211

11. User Acceptance of ConDec Plug-Ins

Jira tickets, such as those related to bug fixes, which quickly need to be finished and do not
involve decision making, in their opinion. One developer who strongly disagrees states that a
decision should be postponed to the last possible moment in agile software development. In
contrast, the definition of done would enforce quick decision making to fulfill it.

The participants sometimes used the knowledge dashboard with metrics. They agreed on its
ease of use and usefulness. They found it useful in the role of the rationale manager to supervise
the rationale documentation. One developer fears that calculating and optimizing too many
key performance indicators, i. e., metrics in the dashboard would destroy the agile nature of
the software development process. For example, they stated the metric that shows how many
knowledge elements fulfill and violate the definition of done is generally useful. Still, they could
not satisfy it since many code files did not reach the minimum decision coverage.

The participants sometimes used the rationale backlog showing knowledge elements that violate
the definition of done. They agreed on its ease of use. Some developers like that the rationale
backlog is a new view in Jira introduced by the ConDec Jira plug-in for separating concerns.
Others would find the rationale backlog easier to use if it was directly integrated into the view of
Jira’s product and sprint backlogs. The participants agreed to strongly agreed on the usefulness
of the rationale backlog. They like that they can easily find knowledge elements that need
improvement. They used the rationale backlog during meetings to discuss open issues as an
alternative to the stand-up table in Confluence.

The participants sometimes used the definition of done checking result presentation in the
quality check view. The developers agreed to strongly agreed on its ease of use and agreed on
its usefulness. While the ambient feedback nudging mechanisms indicate quality problems, the
quality check view explains which criteria of the definition of done are violated.

The participants agreed to strongly agreed on the ease of use and usefulness of the ambient
feedback nudging mechanism. They state that the coloring helps to understand the quality check
results without navigating to the quality check view. One participant with a red-green deficiency
points out that other means should indicate quality problems next to colors, such as structures
or font style.

The participants agreed on the ease of use and usefulness of the just-in-time prompt nudging
mechanism. It is easy to use because the prompt is automatically shown when changing a
Jira ticket state, e. g., when starting or finishing a requirement. It is useful to see hints for
improvement of the decision knowledge documentation. However, the participants admitted
that—in some cases—they ignored and closed the prompt because of time pressure and because
the prompt only gives hints and does not enforce the improvements.

The participants rarely marked links in the knowledge graph as wrong or useless. They slightly
agreed that the feature is easy to use and useful. One developer calls it an advanced feature that
they would have used more often if the project had gone longer. The feature helps to exclude
decisions that are transitively, i. e., indirectly, linked to a requirement but are semantically
unrelated. One developer thinks that the concept of marking a link as wrong or useless is hard
to grasp, stating “either you have a link, or you have no link”.

The ISE 19/20 developers rarely used the merge check of decision knowledge in pull requests.
While they agree that the merge check is easy to use, they slightly disagree that it is useful. Some
pull requests related to bug fixing could not fulfill the required decision coverage. They created a
Jira ticket for the bug-fixing task but did not make decisions worth documenting. Note that in
the ISE 19/20 project, ConDec did not yet have the functionality to include indirect links in the
calculation of the decision coverage. The decisions had to be directly linked to the bug report.
In the current version of ConDec, the bug report fulfills the decision coverage if it is linked to a
requirement with documented decisions. The ISE 19/20 developers discussed that enforcing the
decision coverage can lead to the documentation of trivial decisions. However, one developer
states that they would not document decisions if such checks and enforcement did not exist.

212

11.2. Results and Discussion

Table 11.9.: Study participants’ assessment of the rationale documentation quality in the project
and weighted means µw.

ConDec Statement Project Strongly
Disagree

Disagree Neutral Agree Strongly
Agree

µw

The rationale documented during the ISE
project has high quality.

ISE 21/22 C 0 0 0 2 0 1

Keeping the documented rationale
complete is easy.

ISE 21/22 D 0 1 1 4 0 0.5

Keeping the documented rationale
consistent with other rationale and

artifacts (e. g., requirements, code) is easy.

ISE 21/22 D 0 3 1 2 0 -0.2

We asked the IT consultants from the industry to rate whether the rationale documentation
created during the ISE 21/22 project is of high quality, which they agreed on (Table 11.9). One
IT consultant stated, “it reflects what they did, from the point of view of the project supervisor”.
However, they discussed that the developers sometimes documented the decisions retrospectively,
which they should ideally do during decision making.

We asked the developers how easy it was to maintain the high quality of the documented
decision knowledge. We focused on completeness and consistency as two important quality
attributes of software documentation (Section 1.2). Table 11.9 shows the Likert selections. They
found keeping the documentation complete (rating 0.5) easier than consistent (rating -0.2).
Regarding completeness, one developer stated, “it is easier with ConDec than without because
you get slapped on the fingers”. Another developer stated, “with ConDec, it is easier to see
where you have forgotten something”. Regarding consistency, one developer stated, “Keeping
documentation up to date is never easy, I think”. A second developer stated “we had decision
problems that became outdated, but it is difficult for a system to point them out. You have to
deal with it manually”. A third developer stated, “with ConDec, it is easier because you stumble
over the documentation again and again; it is a strength of ConDec that it is built into Jira”.

Intended Future Usage of Quality Assurance Features

We asked the ISE 21/22 developers which of the features for creating and maintaining high
documentation quality they would use in the future. The answer indicates which features
the developers prefer. Four developers intend to use the definition of done for the knowledge
documentation and the related checking features, such as the coloring of user-interface elements
(nudging mechanisms), the quality check view, and the rationale backlog. Three developers
intend to use the knowledge dashboard. Two developers intend to use the marking of wrong or
useless links if necessary during knowledge exploitation.

Discussion: Do developers accept the ConDec support for quality assurance?

Overall, the study participants accepted the quality assurance features since they mostly agreed
on their ease of use and usefulness. The acceptance differs between the features as discussed above.
Currently, ConDec can either indicate violations of the definition of done through warnings or
enforce the improvement of violations by treating them as errors. On the one side, the indication
through warnings might lead to low documentation quality since the developers delay the quality
improvement. On the other side, enforcement is intrusive in the development process. It might
lead to pseudo decisions, i. e., decisions being not useful for future development, solely being
documented to optimize a key performance indicator. In the future, the rationale manager should
get more possibilities to configure when ConDec should a) ignore violations of the definition of

213

11. User Acceptance of ConDec Plug-Ins

done, as discussed for bug reports for that a development team might decide that no decisions
need to be linked, b) indicate violations of the definition of done through warnings, or c) enforce
their improvement.

11.3. Threats to Validity

This section discusses four validity criteria of primary empirical studies as defined by Easterbrook
et al. (2008) and Runeson et al. (2012):

Construct validity focuses on whether the theoretical constructs are measured and interpreted
correctly. The study participants might have interpreted the questions or statements in the
questionnaires differently from what we intended. To mitigate misinterpretations, we allowed
them to ask questions at any time. A threat is that we interviewed practitioners from the industry
who did not have the chance to use ConDec over a longer time. They might not be able to
assess the acceptance reliably. Nevertheless, we report their attitude because we think that their
experience in industry projects and with other tools outweighs the lack of usage. Similarly, the
student developers rarely used some views and features. However, their feedback is interesting
for collecting improvement ideas.

Internal validity concerns whether the results we draw really follow from the data, e. g., whether
confounding factors influence the results. Positive ratings could be because students received
credits and grades when working on the projects. We mitigated this threat by assuring the
students that their interview answers do not affect the grading and that we are interested in
honest feedback. Besides, the students should always explain their rating to reflect on it. The
students knew that we monitor the ConDec usage for evaluation purposes, but we assured them
that this does not influence the grading. The number of API calls is one indicator for view usage
but needs to be assessed with caution: The knowledge graph views V1 – V7 are the building
blocks supporting a continuous rationale visualization. The knowledge tree view V2ind lists the
knowledge elements with violating definition of done in the rationale backlog. Thus, whenever
the developers accessed the rationale backlog, the REST API of V2ind was called. There is no
default view when accessing the knowledge graph from Jira issues such as requirements or work
items. However, the ConDec Jira plug-in remembers the view that a developer selected and
makes it the default until the browser session is finished. We mitigated the threat of drawing
wrong conclusions from the measured view accesses by asking the developers for their perceived
usage frequencies and attitudes regarding the views.

External validity addresses the generalizability of the study results. While we mainly reported
the feedback of the last ISE project 21/22, we studied the acceptance of ConDec during other
validation projects starting from the iPraktikum 18/19. We constantly improved ConDec based
on the feedback of the previous studies. We expect that industry practitioners would generally
accept the use of ConRat and the ConDec plug-ins. However, the analysis of the view accesses
of the criteria matrix showed that the acceptance of specific features could differ a lot between
development teams.

Reliability validity concerns the study’s dependency on specific researchers. In the iPraktikum
projects, two researchers from the Technical University of Munich who managed the projects
collected feedback regarding ConDec. Afterward, a threat to the reliability validity might be
that the collection and analysis of feedback through surveys, interviews, and informal discussions
were only done by the author of this thesis. We asked the study participants to review their
feedback and Likert ratings to mitigate the threat.

214

11.4. Conclusion

11.4. Conclusion
This chapter presented an empirical study on the acceptance of the ConDec plug-ins from the
point of view of software practitioners from industry and University students working in project
courses in an industrial setting. The study participants generally accepted the ConDec views
and features and the decision-making benefit. However, the acceptance differs between the
study participants and the ConDec views and features. Many factors influence the acceptance,
for example, whether the practitioners usually use the tools extended by the current ConDec
plug-ins and the dissemination technique. The study reported feedback on what the practitioners
liked about the features and improvement ideas. The study participants liked the following
ConDec views and features the most: Documentation of decision knowledge in Jira (as tickets or
in ticket text), decision grouping, interaction and filtering possibilities in the knowledge views,
the knowledge tree views and criteria matrix, the stand-up table with decision knowledge for
meetings, the quality checking functionality including nudges, the rationale backlog, and the
knowledge dashboard. While one practitioner from the industry particularly questioned ConDec’s
benefit for decision making, the application of ConDec in the case study projects indicated that
it helps the discussion and reflection on decisions. ConDec particularly supports decision making
with the criteria matrix, the stand-up table, the rationale backlog, and the decision guidance
recommendation system (Section 7.1.3).

The study is interesting for practitioners since it showed that the ConDec plug-ins could
support ConRat in industrial projects as long as the underlying tools fit, e. g., Jira is used as the
issue tracking system. The study makes two contributions to researchers: First, it provided ideas
about future work on rationale management. Based on the study participants’ feedback, the
ConDec views and features should be improved. In particular, further ConDec plug-ins must be
developed for other tools used in the industry, e. g., GitLab, Azure DevOps, and IntelliJ. Second,
the methods presented in the study are interesting for researchers as a template to validate user
acceptance in their projects. The study contributed a questionnaire in Appendix F and a method
to analyze the Likert results with weighted means. Researchers could adapt the questionnaire
for other features. The study contributed methods and results of REST APIs usage logging as
an indicator for acceptance. Since REST APIs are standard interfaces in many applications,
researchers could apply the methods in other domains.

215

Chapter 12
Dissemination of ConRat and ConDec Plug-Ins

“Although the benefits are well-known and undisputed,
sharing architectural knowledge is not something architects
automatically do.”

—Hoorn et al., 2011

This chapter contributes to the instrument design goal of the thesis: Disseminate ConRat and
the ConDec plug-ins to developers and show the acceptance of the dissemination. To overcome the
rationale management problems in practice, developers need to know how to capture rationale
and be aware of the benefits of rationale management. This chapter presents a syllabus on
rationale management to disseminate ConRat and the ConDec plug-ins with hands-on exercises.
The syllabus includes teaching students a rationale model, introducing them to workflows,
ConDec views and features for rationale management, and motivating them to apply rationale
management in the future. We gave lectures based on the syllabus in the iPraktikum and ISE
projects (Section 8.1) as well as in a rationale management workshop in the research division of
an industrial company in September 2021.

Section 12.1 describes the syllabus, including 15 exercises. Section 12.2 describes the students’
feedback and the exercise results and discusses lessons learned from the first instantiation of the
lecture in the iPraktikum 18/19. Section 12.3 discusses related work on disseminating rationale
management in student courses. Section 12.4 concludes this chapter.

An initial version of this chapter was published in Kleebaum et al. (2019a). This thesis added
new exercises based on the experiences and for disseminating newer ConDec views and features.

12.1. Syllabus on Rationale Management
This section describes the syllabus for the dissemination of rationale management activities
supported through ConDec. As a prerequisite, the students are expected to have the following
knowledge: They must be familiar with the concepts and usage of the issue tracking system Jira,
the wiki system Confluence (or similar tools), the version control system git, and an integrated
development environment. They should know how to manage requirements and work items as
tickets and how to create and merge feature branches linked to the tickets. The instantiation of
the syllabus as a lecture lasts 120 minutes and can be tailored to teach only the basic rationale
management activities (Table 12.1). Students are grouped into teams and require a web-
connected device with access to the internet.1 During the lecture, four systems are required: Jira,

1An alternative would be to run the servers locally and to give students access to the intranet (not possible for
Slack).

217

12. Dissemination of ConRat and ConDec Plug-Ins

Table 12.1.: Schedule for the rationale management lecture. Bold parts are mandatory to teach
basic rationale management activities. The other exercises are more advanced.

Part of Lecture In
tro

ducti
on

Exer
cis

e 1:
View

Iss
ue

s for
Req

uir
em

en
t

Exer
cis

e 2:
Disc

us
s Deci

sio
n Typ

es

Exer
cis

e 3:
Link

Iss
ue

to
Req

uir
em

en
t

Exer
cis

e 4:
Filte

r Kno
wled

ge

Exer
cis

e 5:
Cap

tur
e Rati

on
ale

in
Jir

a

Exe
rci

se
6:

Link
Crit

eri
a

Exe
rci

se
7:

View
Kno

wled
ge

Exe
rci

se
8:

Cap
tur

e Rati
on

ale
in

Git

Exe
rci

se
9:

Cap
tur

e Rati
on

ale
in

Cha
t

Exe
rci

se
10

: Ana
lyz

e Cha
ng

e Im
pa

cts

Exe
rci

se
11

: Rev
iew

Rati
on

ale
Qua

lity
(1)

Exe
rci

se
12

: Con
du

ct
Meet

ing
(1)

Exer
cis

e 13
: Con

du
ct

Meet
ing

(2)

Exe
rci

se
14

: Rev
iew

Rati
on

ale
Qua

lity
(2)

Exe
rci

se
15

: Crea
te

Rele
ase

Note
s

End
ing

/B
uff

er

∑
Duration [min] 20 4 5 5 5 10 6 7 10 8 5 5 5 5 5 5 10 120

Confluence, git, and the instant messaging service Slack2. Further, the ConDec Jira, Confluence,
and Slack plug-ins3 must be installed in the systems. Rationale elements that the students
can explore must be added to the respective Jira projects (as exemplified in Figure 12.1 and
Figure 12.2). A git repository and a Confluence space must be created for every team. Slack is
used as a communication tool between instructors and students. Polls can be created with the
Polly Slack app4 through which students participate during the lecture.

Figure 12.1.: The decision knowledge view for performing rationale management in Jira.

The introduction of the lecture covers background information about rationale management,
such as its definition, expected benefits, and rationale models (Section 2.2). It introduces the
students to the ConRat knowledge model (Section 6.1). ConRat demands to use specific phrases
when talking about and capturing rationale elements (Table 12.2). The students should phrase
issues as questions ending with a question mark and end decisions with an exclamation mark.
For dissemination, the knowledge model distinguishes three types of associations. The relates to
association is the default type. Only for arguments, different types are used: A pro-argument
supports a solution option, whereas a con-argument attacks an option.

2https://slack.com
3https://github.com/cures-hub, see also Appendix A
4https://polly.ai

218

https://slack.com
https://github.com/cures-hub
https://polly.ai

12.1. Syllabus on Rationale Management

Figure 12.2.: The Jira ticket view includes the interactive rationale tree. Note that the tooltip
Issues refers to Jira issues as a synonym for Jira tickets. A Jira issue is an abstract
container in contrast to the rationale element issue, i. e., decision problem.

The remainder of the section describes the exercises grouped by ConDec features. It starts
from must-be features for rationale documentation and exploitation to more advanced features.

Capturing, Visualizing, and Filtering Rationale in Jira

The instructor introduces the students to the Jira ConDec plug-in including the Jira ticket types
for rationale elements. Two views for rationale management are shown to the students: the
decision knowledge view (Figure 12.1) and the Jira ticket view (Figure 12.2). The decision
knowledge view is a separate view that holds all knowledge elements and their links of the given
project. In this view, a user can select rationale elements and see the views on the knowledge
graph, such as the knowledge tree views (V2). The rationale attached to Jira tickets can be
explored in the Jira ticket view. For example, Figure 12.2 shows the knowledge tree for a scenario.
Then, the instructor demonstrates how to create and link the rationale elements, as shown on the
right side of Figure 12.1. Afterward, the students gather in teams and perform the first exercise.

Table 12.2.: Rationale types, their representing icon, and indicating phrases for informal capture
adapted from Doyle and Straus (1993).

Icon Name Indicating Phrases

Issue I have a question . . . ; How should . . . ; . . . , any suggestions?; We need to solve how . . .
Alternative I { suggest | propose } . . . ; One { option | proposal } is . . . ; What { about | do you think } . . .

Pro The { advantages | pros } are . . . ; I { like | prefer } it because . . . ; I agree with user . . .
Con The { disadvantages | cons } are . . . ; I don’t like it because . . . ; I disagree with user . . .

Decision Let’s do . . . ; We decided . . . ; The best option is . . .

219

12. Dissemination of ConRat and ConDec Plug-Ins

Exercise 1 Gather your team, open your Jira project, and find the scenario already documented
in the project. Answer the question: How many issues are linked to the scenario?

The students can answer the question via a poll. In the example, the correct answer is that
two issues are linked to the scenario (Figure 12.2). The next exercise is to discuss the content of
the solution proposals, i. e., the alternatives and decisions.

Exercise 2 Answer the question: Which of the proposed alternatives and decisions focus on
requirements, and which are on implementation? Add the alternatives and decisions to the
respective decision groups.

In Figure 12.2, the decision and alternative on the left are requirements-related, whereas
the decision on the right is implementation-specific. With this exercise, the students learn
that rationale can be captured for all software engineering workflows, including requirements
elicitation, implementation, testing, and when processing user feedback. They get to know
ConDec’s decision grouping feature. Now, the students will learn to document rationale elements.

Exercise 3 Link the existing issue “How to save transactions?” to the scenario.

This issue is already part of the Jira project (Figure 12.1) but is not linked to the scenario yet.
The students can link the issue via a context menu on the scenario node (root node in Figure 12.2).
They can search for the issue themselves or use the link recommendation system. The students
should now realize that graphs of rationale can become large and complex. Therefore, filtering is
essential. The next exercise addresses filtering and exploiting transitive links.

Exercise 4 Filter the element types so that only the scenario and decisions are shown in the
knowledge tree.

Figure 12.3.: Filtered knowledge tree (node-link tree diagram, V2nld) in that issues are filtered
out and replaced by transitive links to the decisions.

Figure 12.3 shows the solution of this exercise. Rationale can be captured in many places. Jira
tickets are just one documentation location to store rationale. To demonstrate other documenta-
tion locations, the instructor presents capturing rationale in ticket comments (Figure 12.4).

220

12.1. Syllabus on Rationale Management

Figure 12.4.: Left: Explicit rationale in the comments of the scenario. Right: Knowledge tree
(node-link tree diagram, V2nld) automatically created from rationale in comments.

Now, students discuss rationale in their team:

Exercise 5 Create a new issue “How to persist data?” as a Jira ticket. Add the following
alternatives as comments: “JSON!”, “SQLite!”. Discuss and capture the pros and cons of each
persistence alternative in your team. Add more alternatives and make a decision.

To solve this exercise, the students can add rationale elements collaboratively from different
devices. They can also use the decision guidance feature to see recommended solution options.
In the following exercise, the students structure their arguments using criteria to check whether
they evaluated the solution options systematically.

Exercise 6 Navigate to the criteria matrix for the issue “How to persist data?” Link your pros
and cons for the solution options to the criteria “Implementation effort”, “Maintainability”, and
“Performance”. Think about other criteria, add them, and link them to your arguments. Add
new arguments or links between solution options and existing arguments to fill empty cells of the
criteria matrix.

Figure 12.5 shows a criteria matrix (V4cri) with alternatives but no decision. Until now, the
students got to know the knowledge tree view (node-link tree diagram, V2nld) and the criteria
matrix (V4cri). In the next exercise, they explore other knowledge views.

Figure 12.5.: Criteria matrix (V4cri) for the issue “How to persist data?”. The pro-arguments are
reused as con-arguments for the opposite alternatives using the attacks relationship.

221

12. Dissemination of ConRat and ConDec Plug-Ins

Exercise 7 Until now, we explored rationale in two views called node-link tree diagram (knowl-
edge tree view) and criteria matrix. Get familiar with the following other knowledge visualizations
you can access from the scenario: Indented outline (another knowledge tree view), node-link di-
agram, adjacency matrix, and chronology view. Discuss the strengths and weaknesses of each view.

The strengths and weaknesses of each view are discussed in Section 11.2.3.

Capturing Rationale in Code, Commits, and Chat Messages

The next two exercises introduce capturing rationale outside of Jira.

Exercise 8 Create a feature branch for the scenario in your git repository with the name
“IOS-1.implement.scenario” (one team member). Check out the feature branch and add dummy
code files to the repository, e. g., DataPersistenceManager and PasswordPersistenceManager
(every team member). Add decision knowledge in code comments to the code files, e. g., the issue
“How to persist passwords?” with solution options and arguments. Commit the changes (new
code files) with the commit message “Use SHA-1 to encrypt passwords!”. Merge the branch back
to the mainline when every team member made their commits. Navigate to the Jira view for
the scenario. Check that the decision knowledge from code is added to the knowledge tree and
shown in the view for “knowledge in git”. Check that the commit message was transcribed into a
comment of the scenario in Jira. Annotate the decision in the transcribed commit message and
add the issue “How to encrypt passwords?” in Jira.

The students learn that the decision knowledge from code comments and commit messages is
added to the knowledge graph and visualized in Jira. The last step of annotating the decision
can be omitted if the automatic text classification is enabled. Now, the students discuss rationale
in chat messages and use the decision knowledge icons in Table 12.2 to annotate them:

Exercise 9 Informally discuss the issue “Which programming languages should we use?” in
chat messages. Add solution options, pros, and cons. Annotate the rationale elements with the
decision knowledge icons and export them to Jira. Navigate to Jira and check that you can see
the rationale elements there.

Figure 12.6.: Knowledge tree view (indented outline, V2ind) for the scenario with change impact
highlighting.

222

12.1. Syllabus on Rationale Management

Change Impact Analysis

In this exercise, the students learn how to exploit the documented knowledge during changes.
They get to know the change impact analysis feature.

Exercise 10 Apply change impact analysis on the scenario in the project. Which impact fac-
tor is assigned to the decision “Provide several input fields for description of expense, e. g., for
name and frequency!” that is indirectly linked to the scenario? How is the impact factor calculated?

The impact factor is 0.42, as shown in the tooltip in Figure 12.6. It is calculated based on
propagation rules, also shown in the tooltip.

Rationale Backlog and Quality Checking as a Developer

The following exercise introduces the rationale backlog and quality checking features.

Exercise 11 Add the issue “How can the frontend communicate with the backend?” to Jira
without solution options. Navigate to the rationale backlog and open the quality check view for
the issue. What do you see?

The answer is that the students see the open issue in the rationale backlog. The issue is colored
in red to nudge the developers to resolve it. The quality check view explains that 1) the issue is
open, 2) a decision needs to be linked, and 3) at least one alternative needs to be linked if this is
configured in the definition of done.

Rationale-based Meeting Management

Capturing rationale pays off during sprint meetings. The meeting agenda has an information-
sharing section that lists issues discussed and decisions made during the last sprint. If meeting
agendas are managed in Confluence, the rationale elements can be easily imported. The import
can be done in two ways: 1) via a built-in macro for Jira tickets only or 2) via the ConDec
Confluence plug-in for decision knowledge from various documentation locations.

Exercise 12 Gather your team, open your Confluence space and create a new page called <Ra-
tionale Lecture> (one per team). Create a subpage called <Your Name> (every team member).
Use the Jira issues macro to display decisions from your Jira project. Answer the question: How
many decisions do you see?

The Jira issues macro is used in the exercise, and the query is expressed using the Jira Query
Language. The query is:

project = <Project Key> AND

issuetype = Decision AND

created > -7d.

In the example, two decisions are shown. However, no decisions documented in the Jira
ticket comments or other documentation locations are shown. With the next exercise, the
students import rationale elements from the distributed documentation locations using the
ConDec Confluence plug-in and its decision knowledge import macro.

223

12. Dissemination of ConRat and ConDec Plug-Ins

Exercise 13 Add a stand-up table showing all rationale elements created or updated within the
last two weeks to your sub-page called <Your Name> (every team member). Use the decision
knowledge import macro to import rationale elements from distributed documentation locations.
Answer the question: How many open issues do you see?

In the example, at least one open issue that was added in Exercise 11 is shown.

Inspecting Rationale Quality as a Rationale Manager

Now, the students learn about the tasks of the rationale manager role. They get familiar with
the knowledge dashboard, which shows metrics calculated on the knowledge documentation.

Exercise 14 Navigate to the knowledge dashboard. Inspect the intra-rationale completeness
metrics. For how many decisions is at least one pro-argument documented? Are there decisions
without pro-arguments? Inspect the decision coverage metrics. Are there scenarios that are not
covered by a decision?

In the example, all decisions have a pro-argument documented. The students might have
added decisions as part of Exercise 5, Exercise 6, Exercise 8, or Exercise 9 without pro-arguments.
In the example, there is only one scenario. This scenario is covered with at least two decisions
(Figure 12.3), meaning these decisions are indirectly, i. e., transitively, linked to the scenario in a
maximal link distance of 3. The instructor tells the student that the rationale manager would
assign rationale improvement tasks to the developers.

Creating Release Notes at End of Sprint

The students should assume that they have completed a sprint. To publish what they did, the
students create release notes with the issues they solved and their decisions.

Exercise 15 Set the status of the scenarios in Jira to done. Navigate to the release notes view
in Jira and create new release notes with the default settings. How many decisions are included
in the release notes?

The answer is that all decisions documented in the project are included in the release notes.

12.2. Results of the First Instantiation

This section presents the results and discusses the lessons learned from the first instantiation
of the lecture in the iPraktikum at the Technical University of Munich on November 8, 2018.
The lecture included six exercises (Exercise 1, Exercise 2, Exercise 3, Exercise 4, Exercise 5,
and Exercise 12). The lecture only included this subset because the ConDec views and features
applied during the other exercises did not yet exist or were not mature.

The instantiation of the lecture included a study to assess the attitude of the students toward
the dissemination of ConRat and ConDec. The research question of the study is Do developers
accept the dissemination? We issued several polls to receive feedback from the students in a
survey. The survey questions ask for the student’s acceptance of tool features. Thus, the answers
to the survey questions are only indirect indicators to answer the research question. The study
reported here is a pre-study to the user acceptance study described in Chapter 11. The remainder
of the section provides the exercise results and the survey questions and answers.

224

12.2. Results of the First Instantiation

Table 12.3.: Students’ attitude toward the presented methods and tools for rationale management
and weighted means µw = (−2 · #strongly disagree − 1 · #disagree + 0 · #neutral +
1 · #agree + 2 · #strongly agree)/#participants.

ConDec Statement Strongly
Disagree

Disagree Neutral Agree Strongly
Agree

µw

Linking an existing ticket to a scenario is easy. 4 2 11 16 26 1

Discussing rationale using ConDec is simple. 0 3 14 35 4 0.7

I would capture rationale in Jira ticket comments. 0 18 24 17 2 0

I would apply presenting rationale in Confluence pages. 0 7 13 23 12 0.7

The first poll asked for the team a student belongs to. With this poll, we wanted the students
to get warmed up for voting and to get the number of participating students. In total, 88 students
answered the poll, i. e., about 88 students participated in the lecture. This number is a reference
point for the following quantitative evaluation results. Exercise 1 was answered by 64 students,
i. e., 73 % of the participating students, of whom 63 gave the correct answer.

Regarding Exercise 2, we initially asked the students to describe the difference between
the alternatives and decisions. Since this question seemed hard to answer, we restated the
question to answer which of the solution options focuses on requirements, and which of them
on implementation. This exercise was verbally performed. ConDec’s decision grouping feature
(Section 7.9) did not yet exist at the first instantiation of the lecture. We added the task of
applying the decision grouping feature after the second ISE project.

After performing Exercise 3, we asked students to assess how easy it was to link an existing
issue to a scenario via a poll. They were asked to rate the statement Linking an existing issue to a
scenario is easy with one answer from a five-point Likert scale. Fifty-nine students participated in
this poll, of whom six disagreed, 11 were neutral, and 42 agreed with the statement (Table 12.3).
After the lecture, we checked whether the teams correctly performed Exercise 3. In every team
project, the issue was correctly linked to the scenario. We collected no results for or attitudes
toward Exercise 4. For Exercise 5, we created a poll in which the students could rate the
statement Discussing rationale using ConDec is simple. Fifty-six students participated in this
poll, of whom three disagreed, 14 were neutral, and 39 agreed with the statement (Table 12.3).
The students documented all rationale elements as entire Jira tickets since this was the only
documentation location supported. We asked the students to provide written feedback on
discussing rationale (Table 12.4), and we analyzed the knowledge graphs. A total of 126 rationale
elements were documented, i. e., a mean value of 12.6 rationale elements per team with a Standard
Deviation (SD) of 9.4 elements. That means that each student contributed a mean value of
1.4 rationale elements. A mean value of 3.3 alternatives was documented per team (SD = 1.2).
61 % of the alternatives correctly ended with an exclamation mark. Seven of the ten issues
correctly ended with a question mark. Studying the rationale trees that the students created,
we noticed that we did not ask the students to make a decision. Thus, only four decisions were
documented. As a result, we restated the exercise. The types of elements were correctly chosen,
e. g., arguments were not accidentally classified as alternatives. The students seem to understand
the elements of the rationale model (Table 12.2) since they correctly classified the element types.

At the time of the first instantiation of the lecture, we have been developing the feature of
documenting rationale in Jira ticket comments. After demonstrating that rationale could also
be captured in the comments of the scenario, we asked the students to rate the statement I
would capture rationale in Jira ticket comments. Sixty-one students participated in this poll; 18
disagreed, 24 were neutral, and 19 agreed with the statement (Table 12.3). The reason for the

225

12. Dissemination of ConRat and ConDec Plug-Ins

Table 12.4.: Summarized feedback provided by students.
Student Feedback Rationale

Deletion of elements is not possible. Permission scheme in the Jira project forbids deletion
for non-admin users.

If there are many alternatives and arguments, it is
hard to get an overview. The user needs to scroll very
far to the right to see all the content.

A better graph visualization and better, easy-to-apply
filter possibilities are needed.

Rationale elements should not always be a single ticket.
This seems to end up in a ticket overflow. Pro- and
con-arguments should be comments.

Capturing rationale elements in separate Jira tickets
has the advantage that they can easily be imported into
Confluence. We also develop the ConDec Confluence
plug-in to import rationale from comments.

overall neutral attitude toward this feature might be that we presented the prototype and that
the students could not use it themselves.

After the students performed Exercise 12, we asked them to rate the statement I would apply
presenting rationale in Confluence pages. Fifty-five students participated in this poll, of whom
seven disagreed, 13 were neutral, and 35 agreed with the statement (Table 12.3). A mean value
of 58 students participated in the polls analyzed in Table 12.3, representing 66 % of all students.

The results collected during the lecture represent the students’ first impression about the
rationale management activities and the support through ConDec. The voting results on the
statements in Table 12.3 indicate that most students liked applying rationale management. The
written feedback summarized in Table 12.4 encouraged us to improve the visualization and
filtering components of ConDec. The students seemed to like voting on the polls and performing
the exercises since this made the lecture more interactive, as also observed by Krusche et al.
(2017). We concluded that students accepted the dissemination from this instantiation and the
application during the iPraktikum afterward. Subsequently, we improved ConDec by adding new
views and features, and we added new exercises to the syllabus.

12.3. Related Work
This section discusses related work on disseminating rationale management in student projects
focusing on teaching aspects. It includes related work investigating the students’ acceptance
after a project course instead of only a lecture, as reported in this chapter. Thus, this section
also includes related work for the user acceptance study in Chapter 11, which reported results of
applying ConDec over a semester. This section omits publications about evaluations of rationale
management tools in student projects without the teaching focus, e. g., by Falessi et al. (2006)
and Alkadhi et al. (2017a). Table 12.5 compares the dissemination approach in this thesis with
related publications. In addition to these publications, the book by Bruegge and Dutoit (2010)
offers a thorough introduction to rationale management, including exercises for students.

Dutoit et al. (2005) discuss experiences with the integrated, rationale-based modeling envi-
ronment Sysiphus in various software engineering courses. By applying rationale management,
they aim to enhance the communication between instructor and students, to support students in
reflecting on their work, and to enable the instructor to monitor students’ progress better. We
also experienced these benefits when students applied rationale management during the semester
as part of the agile project courses (iPraktikum and ISE projects). Like the syllabus presented
in this chapter, Dutoit et al. (2005) describe exercises to teach rationale management. For
example, the instructor presents an incomplete rationale for an architectural decision, only listing
alternatives and asking students to complete it, similar to the Exercise 5 and Exercise 6. The
syllabus for disseminating ConRat and ConDec includes other process-oriented exercises, such as

226

12.3. Related Work

Table 12.5.: Related work on disseminating rationale management in student projects.
This

Thesis
Dutoit
et al.

(2005)

Malloy and
Burge
(2016)

Schubanz and
Lewerentz

(2020)

Capilla
et al.

(2020b)

Tool/Approach ConDec Sysiphus SEURAT_Edu MADR ADMentor
Rationale Management
Guidelines and Process

Extensions

✓ ConRat ✗ ✗ ✓ ✗

Description of Exercises ✓ ✓ ✓ ✗ ✗

Survey on Students’ Attitude ✓ ✗ ✓ ✓ ✓

Experiment to Study the
Effectiveness of the Approach

✗ ✗ ✗ ✗ ✓

rationale-based meeting management and release note creation at the end of a sprint. Like the
Sysiphus modeling environment, ConDec integrates the rationale and system knowledge elements,
such as requirements. In addition, ConDec supports linking rationale with development tasks
since they represent where developers need to solve issues related to design and implementation.

Malloy and Burge (2016) developed the software engineering using rationale tool SEURAT_Edu
as a web-based system that replaces the former SEURAT Eclipse5 extension. Like ConDec, SEU-
RAT_Edu aims to support students in making the best decision for an issue under consideration
by explicitly reasoning about design alternatives. SEURAT_Edu enables the teacher to supply
students with an incomplete rationale they are asked to complete in exercises. Like the quality
checking features of ConDec, SEURAT_Edu performs automatic error checks, e. g., whether
there are issues not solved by a decision. In addition, SEURAT_Edu enables the teacher to
create a set of “solution” rationale. It displays the status to which students reached a solution
to encourage them during their tasks. During their evaluation, Malloy and Burge surveyed the
students’ attitudes. They found that the students using their tool felt they considered more
alternatives and put more thought into decision making. Like their tool, the ConDec Jira plug-in
is web-based, allowing students to collaborate efficiently. SEURAT_Edu integrates with learning
management systems such as Moodle6, which has the advantage that the learning management
system takes care of authentication and assignment creation. For ConDec, this is handled by the
underlying systems, such as Jira, Confluence, and Bitbucket.

Schubanz and Lewerentz (2020) performed eight case studies between 2015 and 2019 with
software engineering students. They disseminated rationale management in workshops with
the students. During the workshops, they discussed issues relevant to the students, elicited
alternatives, made decisions, and documented them. Further, they provided the students with
guidelines. Similar to the ConRat life cycle model extension (Chapter 6), Schubanz and Lewerentz
(2020) extended Scrum with two process elements for rationale management: 1) At the end
of each sprint planning, the Scrum Master identifies and documents the three most relevant
decisions for the current sprint together with the team. Their students documented decisions
in markdown files using the Markdown Architecture Decision Record (MADR) template (Kopp
et al., 2018; Kopp and Armbruster, 2019). They uploaded the MADR files to their project git
repositories. 2) At the end of the sprint, the Scrum Master reviews the documented decisions
with the team. In case of changes, inconsistencies, or recently emerged important decisions, the
Scrum Master has to revise the documentation. Schubanz and Lewerentz (2020) surveyed the
students’ attitudes toward performing rationale management after completing the case studies.

5https://eclipse.org
6https://moodle.de

227

https://eclipse.org
https://moodle.de

12. Dissemination of ConRat and ConDec Plug-Ins

Overall, the attitudes were positive. Like us, they encourage the capture of decisions and their
rationale to be part of software engineering education.

Capilla et al. (2020b) describe a setup to teach students software architecture decision making
and documentation using the ADMentor tool. They surveyed the students’ attitudes using a
questionnaire. In addition, they investigated the effects of the rationale management approach
on the quality of software architectures modeled by students. They conducted an experiment
and used previous course instances and the respective architecture models as the control group.
They found that groups using ADMentor arrived at “better” architectures as they identified the
design problems more clearly. Since the students developed different software systems in each
validation project, we cannot compare their solutions with previous projects to investigate the
effectiveness of applying rationale management. However, the students’ attitudes we surveyed
via polls and later in the projects described in Chapter 11 were overall positive.

12.4. Conclusion
This chapter presented a syllabus for disseminating rationale management supported through
ConDec. The syllabus contains 15 exercises in which the students apply ConDec. The chapter
reported the results of the first instantiation of the syllabus as a lecture. The results of this pre-
study provided the first indication of the feasibility and user acceptance of ConDec. Chapter 11
described further user acceptance studies performed afterward.

The syllabus disseminates most ConDec views and features but not all because it would be
too much information for one lecture. Omitted features are the presentation and merge check of
decision knowledge in pull requests, just-in-time prompts, wrong link marking, and the features
of the ConDec integrated development environment plug-ins. In the validation projects, we
introduced these features in follow-up meetings with the students.

A contribution of the syllabus is to teach the integration of rationale management into existing
development workflows, such as rationale-based meeting management and release note creation.
While others also perform exercises teaching documentation and the concept of intra-completeness,
this syllabus contains various new exercises using innovative ConDec features. The syllabus
includes exercises on manual activities with a hint of how ConDec’s recommendation systems
support and automate them. For example, ConDec’s automatic text classification and link
recommendation system support the manual activities of documenting and linking rationale. The
students must understand the manual activities before they are automated, and this syllabus
teaches manual activities and innovative support. Practitioners can use the syllabus and exercises
as a starting point to incorporate ConRat and ConDec in their software development process.

228

Part V.

Conclusion

229

Chapter 13
Summary

“When discussing research design, researchers often cite a number
of dichotomies: field versus laboratory research, desk versus field
research, in vitro versus in vivo, quantitative versus qualitative
research, fixed versus flexible research, positivist versus
interpretivist research, inductive versus deductive research,
exploratory versus confirmatory research, rigor versus relevance,
internal versus external validity. . . The dichotomy suggests two
mutually exclusive “extremes”, as if it were a tradeoff, while in
actual fact reality is more complicated.”

—Stol and Fitzgerald, 2018

This chapter summarizes the goals of the thesis and its contributions. The contributions
are valuable for both software engineering practitioners and researchers. Continuous Software
Engineering (CSE) is a software life cycle model that is characterized by frequent changes. The
overall goal of this dissertation was to integrate rationale management into CSE while treating
the three rationale management problems of intrusiveness and effort, high amount of distributed
knowledge, and low documentation quality. We refined the overall goal into one technical research
goal, five knowledge goals, and one instrument design goal.

Knowledge goal 1 was to investigate the current state of the practice of rationale management
during CSE. We conducted a semi-structured interview study with practitioners from the industry
to investigate how practitioners define and perform CSE, to understand the rationale-management
practices and problems during CSE, and to elicit improvement ideas (Chapter 3). The results of
the interview study indicated that rationale management is not systematically integrated into
CSE. The practitioners capture decision knowledge informally, for example, in natural language
discussions in issue tracking systems. For them, capturing rationale has many positive effects,
such as improved decision-making and change processes, accountability, knowledge sharing, and
reuse. However, the practitioners lack systematic techniques and tools for rationale management.
The reported challenges confirm the rationale management problems: 1) Documenting rationale
is seen as an overhead and intrusive. 2) It is not clear how to access and exploit the decision
knowledge documentation when needed during software evolution. 3) Rapid changing decisions
lead to outdated documentation, i. e., inconsistency between the captured decisions and their
implementation. Even if the decision knowledge is captured, e. g., in the issue tracking system,
it is difficult to access in the context of requirements, code, and other software artifacts. The
interview study contributed functional and non-functional features for continuous rationale
management that benefit practitioners. The results are interesting for practitioners to compare
their current practices and to reflect on the necessity for adopting ConRat and ConDec. The

231

13. Summary

interview study is also interesting for researchers when performing future interview studies to
adopt the methods and to compare the findings.

Knowledge goal 2 was to investigate the current state of rationale management support with
classification and recommendation (Chapter 4). The study contributed an overview of four
approaches helpful for rationale management: Automatic text classification, automatic linking,
decision guidance, and consistency support. The study outlined the functioning and evaluation
of the approaches and revealed that only a few approaches are implemented in development
tools, hindering practitioners’ usage. The results are valuable for researchers as a basis for future
systematic literature reviews and primary studies.

The technical research goal was to develop the treatment for the three rationale management
problems based on the outcome of the interview study and systematic mapping study (Chapter 5).
The treatment consists of the ConRat life cycle model extension (Chapter 6) and its support
through the views and features of the ConDec plug-ins (Chapter 7). ConRat treats the problem
of intrusiveness and effort by integrating rationale management activities for collaborative,
incremental, and rational decision making, documentation, exploitation, and quality assurance of
decision knowledge into existing CSE workflows. ConDec minimizes intrusiveness by integrating
into standard development tools rather than providing a standalone tool. ConDec enables
capturing decision knowledge using lightweight annotations in various documentation locations
typical for CSE, in particular, Jira ticket description and comments, commit messages, and code
comments. To enable the exploitation of the high amount of distributed knowledge, ConRat
defines a knowledge model and ConDec instantiates the model as a knowledge graph. ConDec
provides comprehensive knowledge visualizations that developers can access from various tools
and artifacts. ConRat operationalizes rationale quality and ConDec implements the concepts,
to treat the problem of low documentation quality. ConDec is the first tool that supports high-
quality rationale documentation with a definition of done and the decision coverage metric that
counts decisions traceable from requirements and code. ConDec offers a rationale backlog showing
knowledge elements violating the definition of done. It offers a knowledge dashboard presenting the
decision coverage and other metrics. ConDec reduces the developers’ manual work and motivates
them using recommendation systems and nudging mechanisms. ConDec offers six recommendation
systems, inspired by the approaches identified in the systematic mapping study. First, the quality
checking recommendation system indicates violations of the definition of done with friction
nudges and in just-in-time prompts. Second, change impact analysis highlights decisions and
other artifacts affected by a change in the views on the knowledge graph to support consistent
changes. Third, decision guidance recommends solution options to decision problems from other
software development projects and external knowledge sources. Fourth, the link recommendation
system detects missing links and duplicates within the knowledge graph. Fifth, ConDec supports
developers in explicitly capturing decision knowledge through automatic text classification. So
far, automatic text classification has only been applied retrospectively. ConDec is the first tool
that integrates automatic text classification into the ongoing development during CSE. Sixth,
the summarization of source code changes helps to make tacit decisions explicit. Adopting
ConRat and ConDec is particularly interesting for practitioners since managing rationale has
many positive effects, such as improved decision-making and change process, knowledge sharing,
reuse, and accountability. ConRat shows how practitioners can integrate rationale management
activities into their current workflows. They can easily extend their tools and systems with the
views and features of the ConDec plug-ins. ConRat and ConDec are interesting for researchers
as a basis for further development and empirical studies on rationale management.

Knowledge goal 3 was to analyze the decision knowledge documentation of six case study
projects to validate the feasibility of ConRat and ConDec and to investigate the outcome of
decision knowledge documentation in practice (Chapter 9). In total, the software developers of the
six projects documented more than 1000 decisions using ConDec in four different documentation

232

locations, which demonstrated ConDec’s feasibility for decision documentation. The developers
documented different types of decisions. The decision types with most decisions assigned are
frontend, backend and data storage, and functionality-driven decisions, followed by executive and
quality-driven decisions. Most decision knowledge elements are completely documented according
to four criteria of the intra-rationale completeness if checked and enforced by ConDec. The
decision coverage of the requirements and code files varies. A low decision coverage indicates
requirements and code files with missing decision making or missing documentation of decisions
or links. A very high decision coverage indicates wrong links in the knowledge graph or decision
hot spots in that it might be worth splitting a requirement or code file. The study is interesting
as it showed how to operationalize the quality of knowledge documentation. Practitioners can
reflect on the knowledge documentation quality of their projects using the metrics. The study
is interesting for researchers as a basis for further work on developing guidelines for creating
high-quality decision knowledge documentation and tool support.

Knowledge goal 4 was to validate the effectiveness of automatic text classification (Chapter 10).
The automatic text classification integrated into ConDec can detect rationale with an F1-score
up to 0.81 and classifies the detected rationale into different rationale elements with an F1-score
up to 0.69. The results indicated that automatic text classification could support developers in
documenting rationale and retrospective reconstruction. Still, researchers can further improve
ConDec’s automatic text classification in the future and use the study results as a benchmark.
While the classification results can be wrong, automatic text classification is a nudging mechanism,
i. e., an incentive for creating and improving the rationale documentation.

Knowledge goal 5 was to validate software developers’ acceptance of ConDec (Chapter 11).
The study contributed feedback and improvement ideas for the views and features of the ConDec
plug-ins. The study participants liked the following ConDec views and features the most:
Documentation of decision knowledge in Jira as tickets or in ticket text, decision grouping,
interaction and filtering possibilities in the knowledge views, the knowledge tree views and
criteria matrix, the stand-up table for meetings, the quality checking functionality including
nudges, the rationale backlog, and the knowledge dashboard. While one practitioner from the
industry particularly questioned ConDec’s benefit for decision making, the application of ConDec
in the case study projects indicated that it helps the discussion and reflection on decisions. The
results indicated that software developers accept ConDec and that ConDec can support ConRat
in industrial projects as long as the underlying tools fit, e. g., Jira is used as the issue tracking
system. The improvement ideas are interesting for researchers as a basis for further development
and they can adapt the study methods to validate user acceptance in other projects.

The instrument design goal was to design a syllabus for disseminating ConRat and ConDec
(Chapter 12). The syllabus consists of exercises where students perform rationale management
activities using the ConDec views and features. It is interesting for practitioners as a starting
point to adopt ConRat and ConDec.

In summary, the dissertation contributed a validated approach for continuous rationale man-
agement consisting of the ConRat life cycle model extension and the ConDec plug-ins. The thesis
also contributed empirical knowledge of rationale management practices, problems, and solutions
before ConRat and ConDec and the outcome of rationale documentation created with ConDec.

233

Chapter 14
Future Work

Digital ethics is the new organic movement.
—Spiekermann, 2019

This chapter discusses future work. Based on the ConRat life cycle model extension, the
ConDec plug-ins, and the empirical evaluations, several directions for future work exist.

The knowledge management strategy of codification aims for explicit decision knowledge
documentation, while the personalization strategy focuses on the interaction among knowledge
workers (Section 2.2.3). Babar et al. (2007) found that codification in knowledge management
research is often done intentionally, while personalization is done unintentionally. They suggest
combining codification and personalization into a hybrid approach with an intentional focus on
both strategies. ConRat and ConDec support both knowledge management strategies. ConDec
supports the codification through the features for knowledge documentation. ConRat supports
personalization by integrating rationale management activities into the CSE process, e. g., through
rationale-based meeting management, which helps communicate knowledge instead of only storing
it. In the future, personalization could be further enhanced and detailed.

Robillard et al. (2017) described the idea of an on-demand developer documentation that
generates documentation when developers need it. The long-term vision of this thesis is an
on-demand decision documentation which supplies developers with the rationale documentation
they need when they evolve a software system. Information could be inferred using the retro-
spective reconstruction of decision knowledge, as done by researchers studying the effectiveness
of automatic text classification (Alkadhi, 2018). However, decision reconstruction is likely to
be incomplete, e. g., due to missing alternatives (Bruegge and Dutoit, 2010). Robillard et al.
(2017) in particular discuss rationale as part of the on-demand developer documentation. They
state that rationale cannot automatically be inferred and that an “incentive to motivate the
more systematic capture of rationale” is needed. ConDec addresses both problems by supporting
developers to capture decision knowledge and presenting it for easy use. ConDec supports the
creation of rationale documentation during development instead of post-mortem.

Razavian et al. (2023) describe the vision of On-demand Architectural Knowledge Systems
(ODAKS), which addresses knowledge management issues holistically. For example, ODAKS
use assistive conversation to provide architects with relevant knowledge. They use probing to
understand the architects’ decision problems, recommend knowledge, and present reflective hints
to mitigate human decision-making issues, such as cognitive bias. While ConDec’s nudging
mechanisms and recommendation systems (Section 7.6) partly implement the ideas, ODAKS
contains many ideas for future work (Razavian et al., 2023).

235

14. Future Work

ConDec supports written informal discussions, but issues and decisions are also discussed
verbally. ConDec could support capturing informal discussions via voice (Capilla et al., 2020a).

ConRat requires the manual inspection of the semantic content of the rationale as part of
reviews. ConDec supports its checking through knowledge visualization and change impact
analysis. In the future, ConDec could be extended with semantic inferences that inspect the
content of the rationale. For example, the SEURAT tool alerts if an earlier discarded alternative
is selected (Burge and D. C. Brown, 2008a). Consistency support, as suggested by Lytra
et al. (2015), could be added to ConDec. ConDec establishes lightweight traceability, whereas
the consistency support uses transformations (formal mappings) between architecture and code.
These transformations are more powerful than traceability links since they create decision models
that are interrelated with architecture models and the corresponding code. Hence, changes in
the models can be propagated to the code. However, transformations are more intrusive than
traceability links because they require extra notations. Thus, the trade-off between lightweight
capturing and powerful consistency checks needs to be considered.

Since the usefulness of the rationale exploitation depends on the trace link quality, mechanisms
for trace link improvement and maintenance should be added (Hübner and Paech, 2020). Wrong
link detection should become a part of the link recommendation system in the future. Change
impact estimation should combine more approaches (Lehnert, 2011; Kretsou et al., 2021), its
visualization could be improved using impact cities (Kugele and Antkowiak, 2016), and automatic
change execution could be supported to resolve inconsistency and duplicates automatically.

Six ConDec plug-ins exist for the issue tracking system Jira, the wiki system Confluence, the
integrated development environments Eclipse and VSCode, the chat system Slack, and the web-
based git-client Bitbucket. The user acceptance study in Chapter 11 showed that practitioners
use partly other tools. In the future, further ConDec plug-ins must be developed for other tools
used in practice, e. g., GitLab, Azure DevOps, and IntelliJ.

ConRat and ConDec provide a solid foundation for conducting further empirical work for
their validation and answering knowledge questions beyond validation. ConRat and ConDec
should be applied in industry projects to investigate decision knowledge documentation in
practice, as started in Chapter 9. For instance, it is interesting to explore further which decisions
practitioners consider important to be captured to develop guidelines on what to capture.
The thesis investigated the validation aspects feasibility, effectiveness, and user acceptance
(Section 1.3). We studied the effectiveness of automatic text classification in terms of F-scores.
In addition, future studies should investigate the effectiveness from the developers’ perspective
and the efficiency of applying continuous rationale management supported with ConDec. Like in
Bratthall et al. (2000), the hypothesis is that developers are faster in doing changes and arrive at
better design solutions with ConDec than without in a software development project unknown
to them. However, this hypothesis needs to be tested in an experiment.

Literature exists that critically reflects the current CSE processes. Spiekermann (2019) criticizes
that—while CSE helps optimize software’s technical functioning—it misses techniques to reflect
whether the software adds ethical values that contribute to a better society. Software engineering
generally misses techniques for incorporating digital ethics, but CSE aggravates the disregard for
ethical values. During CSE, development tends to start early before clarifying whether there
are negative impacts. For example, Spiekermann (2019) describes a food delivery software that
leads to bad eating habits and isolation of its users. Transparent decisions are one aspect of
explainability, an important non-functional requirement (Chazette et al., 2021). ConRat and
ConDec are intended to support responsible decisions that support real human lives (Jonas,
1985). Future research should focus on evaluating decisions regarding their ethical impacts.

236

Part VI.

Appendix

237

Appendix A
Digital Appendix for Tools and Data

“I suppose it is tempting, if the only tool you have is a hammer, to
treat everything as if it were a nail.”

—Maslow, 1962

This thesis has a digital appendix1 in the zenodo platform to enable other researchers to
reproduce the results of this thesis and to guarantee the availability of the ConDec plug-ins and
the data in the future. The digital appendix contains the following artifacts for the chapters:

• Chapter 4: Protocol of systematic mapping study and R script for analysis.

• Chapter 7: Source code and binary releases of the ConDec plug-ins.

• Chapter 9: Anonymized decision knowledge documentation of the case study projects and
R script for analysis.

• Chapter 10: Ground truth data used to evaluate the automatic text classification.

• Chapter 11: R script for analysis of usage frequencies from log files.

1zenodo.org/communities/conrat

238

https://zenodo.org/communities/conrat

Appendix B
Supplementary Material
of Interview Study on State of the Practice

“Some companies automate knowledge management; others rely on
their people to share knowledge through more traditional means.
Emphasizing the wrong approach—or trying to pursue both at the
same time—can quickly undermine your business.”

—Hansen et al., 1999

This appendix provides supplementary material for the interview study in Chapter 3. Sec-
tion B.1 provides statements by the practitioners. Section B.2 describes the related work.

B.1. Interview Statements by Practitioners from Industry
We removed mentions of companies, persons, products, and self-developed tools to anonymize
the statements. For the German interview transcripts, we translated the statements into English
using the DeepL translator1.

Section B.1.1 lists statements regarding the research question How do practitioners apply
CSE during software evolution? (RQ1). Section B.1.2 lists statements regarding the research
question How do practitioners manage decision knowledge during CSE? (RQ2). Section B.1.3
lists statements regarding the research question How can rationale management in CSE be
improved according to practitioners? (RQ3).

B.1.1. Statements regarding As-is State of CSE in Industry

Table B.1.: Anonymized examples of practitioners’ CSE definitions and the identified CSE
elements (RQ1.1).

CSE Element(s) Practitioner’s Statement regarding the CSE Definition

Learning from usage
data and feedback

For me, a feedback loop would be central, which runs through the whole thing. Not
only from the finished product back to the software but also through the entire process
until the software is built again. So I would see a feedback loop as the main criterion.

Continued on next page

1https://www.deepl.com

239

https://www.deepl.com

B. Supplementary Material of Interview Study on State of the Practice

CSE Element(s) Practitioner’s Statement regarding the CSE Definition

Involved users and
other stakeholders,
learning from usage
data and feedback,
continuous planning
activities, continu-
ous requirements en-
gineering

As a company, you do CSE when you are also continuously in contact with the customer
or the users of a system to get new requirements or changed requirements for the software.
You can understand that the user suddenly interacts differently with the system and
define the appropriate tasks and develop the functionality possibly differently than it was
originally intended (because the behavior to use it also changes). So CSE means that I
consider the wishes of the customer in my strategy for further development and that
not only randomly but also in a structured way. You determine the next development
steps also by what you get back from the user as feedback.

Involved users and
other stakeholders,
comply with shared
ruleset, management
commitment, focus
on features

CSE to me means that you can implement a feature pretty quickly to a ticket, that a
review happens quickly, and that you get that feature live extremely quickly so that
the customer or the end-user sees that. For me, that’s CSE when the employees of the
company can get their features live without being told that a manager still has to look
over it or that there’s only a release date every six months, for example. So in CSE, the
teams should be able to do that relatively independently.

Comply with
shared ruleset,
self-reflection and
discipline, continu-
ous integration of
work, version control

I’m not focused on the academic world, but we have cooperation with other companies
that are also discussing similar things. It includes always committing the code and some
have a strict definition that when you do continuous integration, you should always
commit your code, every single day. You should never have any development only
residing on a developer computer. You should always merge it back to the main code
base before you leave for the day. In those terms, we are very far away from it yet. There
are several maturity levels when it comes to the fulfillment of continuous integration.

Involved users and
other stakeholders,
learning from usage
data, continuous in-
tegration of work,
branching strategies

I believe CSE is consistently implemented when (a) there is a very sparse branching
strategy and every commit leads to a finished product that is then seen by enough
people. And (b) this feedback then flows directly back into new builds that are created
as a result.

Continuous planning
activities, continu-
ous requirements en-
gineering, focus on
features, agile prac-
tices, continuous de-
ployment of releases,
automated tests, ver-
sion control

For me, CSE starts right at the beginning with the requirements, i. e. with the con-
tinuous elicitation or adaptation of requirements. This means that continuous change
management is part of it as well as continuous grooming of a feature/story backlog, i. e.
that the list of things to be done is continuously maintained and that this information
is continuously passed on to the teams. This implies that re-prioritization can be
done continuously and that there is a kind of to-do pipeline whose contents are jointly
prioritized, picked out, and processed by e. g. the Product Manager and the development
teams (like on an assembly line). As soon as a feature or story is implemented, it is
immediately tested automatically, i. e. automated tests must exist for it. Then this
feature is also automatically brought into production. You can call this a pipeline, I
would call it an assembly line because it works like an assembly line from requirements
analysis/requirements engineering to deployment to production. And in that, of course,
there are all these technical aspects like code management, issue management, test
management, and things like that. That’s the technology, but you should support a
process and that’s what’s lacking most of the time because the process in most projects
is not aimed at mapping a pipeline like that. If all these steps are met, I would say a
company is doing CSE. However, if a company first writes a requirements catalog (and
is busy with it for a year), prioritizes the requirements, and then the development team
goes agile with Scrum or SAFe to implement these requirements in two- to three-week
sprints where they pick the requirements to have something finished in two to three-week
intervals, that is not continuous. That has nothing to do with agility and that has
nothing to do with CSE. Continuous would be when, as soon as a feature is ready, you
can show this feature to the stakeholders.

Continuous integra-
tion of work, contin-
uous delivery

CSE is a very broad topic and deals with many different issues. For me, the focus is on
continuous integration (i. e. real development) and delivering the software quickly and
regularly.

Continued on next page

240

B.1. Interview Statements by Practitioners from Industry

CSE Element(s) Practitioner’s Statement regarding the CSE Definition

Focus on features,
continuous delivery,
continuous deploy-
ment of releases, au-
tomated tests, ver-
sion control

You are now asking me to draw a line on the floor and say “this is where it starts and
that is where it ends”. I don’t like to do that, I think it’s gradual. Some do it more,
some do it less. It’s not continuous in that sense, because software ultimately consists
of bytes, and that’s not analog, it’s digital. In this respect, the software that is in
production does not change continuously in the mathematical sense. What is meant by
this is that the rollout into production happens more or less constantly. In this project,
it was now the case that Monday to Thursday was usually rolled out in the morning. So
there were daily releases. So those are still releases and if you’re nitpicking, you can say
that’s not continuous yet. But there was the possibility that even a single developer,
if they find a bug, can push their microservice into production in between, past the
daily rhythm. That is wanted, that is desired. You will agree on this with your IT,
you don’t just do it on your own, but it’s okay. The difference between continuous is
that the threshold and the time between development and production has been reduced
considerably. How do you manage that? We used to do quarterly releases, which means
I code today and in late summer it goes into production. You used to do that because
you had a big test department that tested the whole thing front to back and back to
front. Today, we afford to just leave that out because we say we have automated testing.
Unfortunately, not everything is still automated. Even back then, there was not only a
release every quarter of a year, but sometimes a bug was found in production and then
this bug was fixed (usually only three to four lines of code change) and pushed directly
into production (sometimes even bypassing the test team if it had to go very quickly).
Of course, this was all secured, there was version management control over it. That
means we also learned back then that if you just make the change small enough, the
risk is small. Now we don’t do the huge release anymore, but push one small feature
after the other and deliver in much smaller crumbs to the customer.

Involved users and
other stakeholders,
learning from us-
age data, continu-
ous planning activi-
ties, agile practices,
continuous integra-
tion of work, contin-
uous delivery, auto-
mated tests

My understanding is that the continuous loop is the important thing. So you’re iterating
on-going, incorporating customer feedback. So ongoing, continuous improvement of the
product is necessary. All processes, including those from the engineering perspective,
are part of CSE: continuous builds, ongoing sprint planning, and everything that can
be improved in the process to enable the rapid iterations of the product with respect to
customer needs. I think if a company has the processes and tools to enable continuous
delivery, testing, and feedback loops, uses them, and has integrated them, then they
implement it. Then there’s a level of reflection that can be achieved. But basically,
if a programmer develops a feature, pushes commit, the whole thing automatically
ends up with the person who’s supposed to test it, and then you can deliver it to the
customer with another button, and the feedback is integrated back in, through the
product management side, then that’s exactly what I understand it to be.

Continuous planning
activities, continu-
ous requirements
engineering, modu-
larized architecture
and design, sharing
knowledge, agile
practices, continu-
ous integration of
work, continuous de-
ployment of releases,
automated tests

For me, CSE means that software development is no longer thought of in phases, but
rather in short development cycles, after which executable, quality-assured software
versions are always available and these are also passed on to the customer, i. e. made
productive. One no longer differentiates when a project begins and ends, but the product
life cycle is continuous, i. e., the project is always alive and change requests and new
requirements can always be added as well as improvement potentials discovered. The
project is continuously developed. This is what CSE means to me. In other words,
all disciplines of software engineering must position themselves to enable continuous
application life cycle management. In my opinion, a company must position itself
differently in three areas to enable CSE: methodologically, concerning the technical
infrastructure, and organizationally. 1) That means developing or introducing methods
that enable continuous software development. I am thinking of the process models.
For example, you have to introduce agile process models, you have to do requirements
management differently, you have to define architectures differently, and you have to
do testing differently. 2) This all requires tools and infrastructure, so you also have
to build the software development infrastructure accordingly so that these fast cycles
can be maintained. A lot of automation needs to be put in. 3) And in the third point
(organizational), this means that the team formation is topic-specific, i. e., there are
multidisciplinary teams that are responsible for a topic and work together continuously.

241

B. Supplementary Material of Interview Study on State of the Practice

Table B.2.: Anonymized examples of practitioners’ negative, neutral, and positive experiences
per CSE category (RQ1.3).

Type Practitioner’s Description of Experience

CSE Category: User

Positive In our apps, there is a feedback channel, although classically as an email, but you can give feedback
that something doesn’t work or the content doesn’t fit. We then receive a collection of this in our
email inbox. And then we try to work through it. That’s also such a feedback channel, where we
see that there are problems with this or that feature, for example, that it’s buggy on all Android
devices. Then we try to get a solution for that. Since everything is manageable from an application
point of view, we have kept it rather pragmatic.

Neutral We do not have specific tools yet to involve users, but we try to communicate often in regular time
intervals to get feedback.

Neutral I think the user involvement is the part that is least technically supported in the process. The
user part is the part that is still very fuzzy, you have to make sure that there is not just a sham
continuity; if you have a support team that enters issues from time to time, I don’t think you can
already talk about CSE. Feedback has to become an active part of the process.

Negative We currently have the problem that we receive user feedback very late and mainly in the form of
incidents and change requests. We can only manually trace these incidents and change requests to
the related development activities. That’s where I would like to have an automated solution.

CSE Category: Developer

Positive The mindset of being agile, and also working with it, committing to it, using it, and evaluating it,
was difficult to introduce in parts. Some of the developers are new, still very young, from university.
It was no problem for them.

Neutral There is the role of the Review Manager. Every week, someone else is the Review Manager. This is
a normal developer who has the task of seeing if everyone has given it the thumbs up and makes
the decision that it now goes into production. So that’s always a different one every week.

Neutral A current trend is that customers demand for full-stack developers.
Neutral Unless the mindset of the employees is there, it won’t work. In addition, the speed must be right for

everyone involved. It may be that for a single employee, the feedback loop is closed too quickly, so
they can’t sustain attention. The attention must be able to be sustained by the developer without
disengaging from the process. That’s what an employee must be able to do.

Negative What hasn’t worked well, and presents great challenges, is to map the skills we already have in our
company into this high speed of changing customer requirements. If someone has been programming
ABAP or C for years, and now all of a sudden has to develop JavaScript. That permanent change is
difficult for some people. And it requires different skills, because half a year (or two) ago, completely
different programming languages or frameworks were in vogue than that is the case today.

Negative But for some, it was completely new, it was something new and unfamiliar to work like that. It is
so vaguely defined because no one says you have to do this or that. That was a challenge.

Negative The biggest problem is that developers who are not yet familiar with it have to be trained on it.
You have to know that you commit frequently, for example, that you should also make sure that
the pipeline goes through, that it’s deployed and that you can look at how the deployment works,
i. e. how you use the tools. I’ve had the experience that some developers are not very familiar with
that and think that that’s just there and running or that they don’t have to worry about it because
they think that everything is automated. But of course, they do have to deal with it, e. g. whether
the tests have run, that the code quality fits.

CSE Category: Business

Positive That only works with top management commitment, because it interferes with the culture, with the
structures. And budgets are suddenly no longer my own, you have to think n-to-n and no longer in
silos, that’s hard. What works very well is that we have top management with us who want this,
and have confidence in our ability.

Continued on next page

242

B.1. Interview Statements by Practitioners from Industry

Type Practitioner’s Description of Experience

Negative Many industrial projects would like to implement many of the CSE elements. But they are not
allowed to or do not get the freedom and budget to implement it. It is often the case that project
managers or middle management feel dispensable and use political means to prevent too much
agility/too much CSE from coming in because they then suddenly no longer find themselves in such
an environment.

CSE Category: Development

Neutral The thing to think about, or the thing to be able to do, is to break down a big functionality into
small functionalities. There is mainly a recurring discussion about how features can be delivered
and what is the smallest added value that can be realized within one or two days. In this process,
we discuss among ourselves, i. e. me in the role of an architect and me as platform owner with
the developers. I notice that the dual role is very difficult for me from an architectural point of
view, where you try to anticipate as much as possible for future changes, with regard to a clear
architecture, but on the other hand, the focus is also on delivering functionality quickly.

CSE Category: Operation

Positive We use Docker to realize the continuous delivery pipeline. For provisioning, we use tools such as
Puppet, Ansible, or Chef to set up a server. That works quite well.

Neutral In the afternoon, preproduction is closed. If new changes are made in development, they are
no longer automatically transferred to preproduction. Then the automated tests run, on the
environment that no longer changes. We have dozens of microservices there, so there’s always a bit
of movement. Then everyone has time to get back to us if anything doesn’t work. And if everything
works, the next day, the status from the afternoon the day before is put into production. Then the
preproduction is opened again and everything that has accumulated up to then runs into it.

Neutral The operating system is our base, we will not change it. We have to stay above it. The condition
was that everyone who uses our software uses this operating system, with exactly the packages that
we specified. And that, of course, is a very high requirement for the target systems.

Negative Hierarchical structures and regulations hinder CSE. For example, the setup of infrastructure, such
as requesting new servers, can take several months.

CSE Category: Knowledge (also see Section 3.2.2)

Neutral Each team or sub-team had to do knowledge sharing for itself, especially to absorb when new
colleagues came and went.

Neutral Continuous learning is supported through training to support the actual daily work and to get
better there.

Neutral To capture decisions, we have a wiki (Confluence) where we have captured major decisions, also so
that later colleagues can read in there.

Negative Knowledge management covers topics where there are problems in the projects. How do we make
decisions in the first place? A saying of mine is “decisions should be made, not just happen”. How
do we make decisions, how do we document decisions? Is what is decided today still understandable
a month from now? Can someone new to the team even read up on it anywhere? Things do get
outdated. Who throws away the old stuff? No one dares to do that. There is a lot of documentation
(including many decisions), but that is far too little used. These are exciting topics.

CSE Category: Software Management

Positive Continuous Integration is a very elementary component that we cannot do without. Neither from a
developer, from product management, nor from any other stakeholder perspective. We automatically
build all our products. Internal, i.e. custom software, ensures that this is also distributed internally.

Neutral We use Scrum and have two-week sprints and all the regular Scrum meetings, so Planning 1,
Planning 2, Review, Retro, and Grooming. Within these two weeks we have our tickets, which
are on a Scrum board in the Jira system and have five steps, from open, in progress, to review, to
release, and done.

Continued on next page

243

B. Supplementary Material of Interview Study on State of the Practice

Type Practitioner’s Description of Experience

Neutral For continuous planning, our tool is Jira. There is a well-filled backlog. There are Jira items such
as epics at the entire level (for the 150 people) and then it is broken down to epics or stories for the
own team. Then individual stories are created there and added to sprints. Then individual tasks
are created day by day. The first thing you do for a sprint is a redefinition of what the tasks are
under the stories, e. g. for the feature “Button on the user interface and something should end up
in the database”. This is then written in the story. That is then estimated, so estimation poker is
what we do at that point as well. Then the next thing to do is to break that down.

Neutral Interestingly, things that we used to think were quite important, like reproducibility of builds, no
longer matter. You simply don’t need it anymore. That is, if you want to reproduce in three weeks
what we have in production today, you can’t do that in most projects anymore, because software
that we push into production consists only to a small part of our own code and to a huge part of
some artifacts (e. g. Maven artifacts). Nobody bothers to keep track of the whole dependency tree,
which version of what went into the build. You take the latest at the moment and that runs into
production and if there is a bug, then it gets fixed, and the current version runs into production.
When you had real releases, there was a requirement that you could reproduce the build from three
months ago, otherwise you couldn’t put a hotfix into production. Today, you make new releases so
often that the need to reproduce an old build is no longer there.

Negative I often see the problem that the process is not really agile (at best it is semi-agile). This hinders
the implementation of more advanced CSE elements, such as continuous delivery.

Negative Right now this is so far in the future for us so we have not really considered continuous deployment.
It is still far away from being actually on the level that we can deliver a releasable quality level of
code with that frequency. And also I would say the customers are not interested in getting this
right now. It needs both: We need to prove that quality is not an issue and customers should not
be concerned about doing the upgrades but we also need to provide more efficient ways for the
customers to upgrade. Today, a software upgrade for our customers costs an awful amount of money
since they might need to do system shutdowns and things like that. It is something they don’t want
to do. But of course, the general idea for us would be very appealing if we were able to continuously
get our latest software out on the customer side without any risks for the end-users. Because it is a
big cost for us also related to the fact that we need to maintain all our old software releases. In
general, we have some 10 to 15 years of support-responsibility on a version, which we have released.
It can become costly to correct things in very old software.

CSE Category: Quality

Positive In terms of automated tests, we have quite a good range of tools, i. e. also a choice of tools that can
be used for different application scenarios.

Neutral For automated tests, we use the standard tools that are available in the Java environment and
also in front-end development with Angular 2. That means JUnit, JMeter, and Protractor, the
counterpart to Angular 2: also a JUnit framework together with static code analysis like FindBug
and JSLint and ESLint.

Neutral For automatic tests of user interfaces we use Selenium. When we test backends, we often use JMeter
or Gatling.

Neutral We rarely do pull requests, but that’s on the rise right now.
Neutral We have hardly any audits, but we will soon have one.
Negative Jenkins is not a good build server from my point of view but is widely used. The problem with

Jenkins is that it was originally a hobby project by a Sun developer. It is unstable and does not
scale. For example, it is very difficult for large companies with several 100 developers to run a large
build farm. It doesn’t scale reasonably.

Negative We would like to do more on automated front-end tests that compare images. But we haven’t yet
found the right tool for this that works well.

Continued on next page

244

B.1. Interview Statements by Practitioners from Industry

Type Practitioner’s Description of Experience

CSE Category: Code

Positive Version control, branching, code coverage, . . . that are all very important. And it’s all fully integrated
with us as well. No one struggles with it, has problems with it, or doesn’t like it. That’s not the
case at all. Everybody loves Git and uses it. So very positive experiences with it. We’ve gone
through quite a bit as well, moving from SVN to Mercurial and then to Git. The changeover cost
the developers a lot to use branching strategies. But as I said, this is now standard and we could
never do without it.

Positive An integration of the version control system, the build management system, and the issue tracking
system is very useful and forms the golden triangle.

Neutral We don’t have code coverage explicitly, every developer can do that in their development environment,
but it is not a statistic that is published or can be collected somewhere.

Neutral Anyone can create and merge branches as they wish. That runs on a certain basis of trust. For
example, we’re not allowed to rebase because you can break other developers’ work, but it’s only
excluded on paper. If you go for it, you can also break Git, so that’s trust-based.

Neutral Currently, there is the Jira ticket with the status to review and someone judges that the code fits
and gives green light. Then you create a pull request and merge immediately. So you don’t have
to use the command line to merge the branch. Pull requests are currently only there to make
merging easier. Once or twice we’ve had another team make changes to our code, and then there
were regular pull requests where the other teams had committed something to a branch and then
submitted it to us for review via a pull request, and that worked pretty well.

Negative In interaction with external service providers, it is difficult to exchange files. That’s where we have
a problem: exchanging files and merging branches - these are all problems that require a lot of time
and resources.

Table B.3.: Anonymized examples of practitioners’ future plans per CSE elements (RQ1.4).
CSE Element(s) Practitioner’s Description of Future Plan

Proactive customers If I understand this correctly, the customer provides proactive feedback. That is
something we would still like to have in our process.

Logging and moni-
toring

In terms of monitoring metrics, etc., we are also in a weak position because we have put
a lot of focus on features. In the process, that fell off for quite a while. Now we have
the problem that things have become very slow and we don’t know what the reason
is. When something crashes, you restart a Docker container (we are in the cloud today,
after all) and then everything runs again. For that, we use Kubernetes. For logging, we
use an ELK stack (Elasticsearch, Logstash, Graylog, and Kibana). I am only moderately
happy with the stack. For performance metrics (speeds, latency, how many requests
fail, etc.) we are in a relatively poor position. At least we have some in Kibana. That
means we don’t have to pick it out of the log. You can click together statistics with
Kibana, but that is also not quite usable. Monitoring is a topic that I don’t enjoy that
much but is important, I’ve learned that the hard way now.

Convenient setup We may have containers, and we automatically install our software in them, and it then
runs there automatically. We can certainly improve in this area as well.

Staging environ-
ments, continuous
delivery, regular
builds

There are concrete plans, yes. Certainly, we want to extend the builds ... we already
have a relatively complex build pipeline that we used and that we make available to
the projects, with the respective complete environments. On the other hand, we also
plan to extend the builds to more platforms. Let’s put it this way, while we are already
relatively advanced in the Java world, we are not yet as well-positioned as we would like
to be in the Node/JavaScript world, which is also becoming more and more important,
and we have to generate one build per project manually. That is certainly another point
where we say we would like to offer ready-made pipelines.

Continued on next page

245

B. Supplementary Material of Interview Study on State of the Practice

CSE Element(s) Practitioner’s Description of Future Plan

Capturing decisions
and rationale

In some places, we could document more in what way we do what and why. That you
know why something was done and can reflect that again.

Continuous integra-
tion of work

I think the way it works for us, it’s always step by step. So little things, until recently
we had to trigger ourselves for almost everything in Jenkins to start a build. Now it
grabs the tags, and if there’s an appropriate tag, then it does the build itself. But these
are always such small points where something is done, but it’s not like: now we take care
of our Continuous Integration and do this perfectly. It’s always that in the day-to-day
development, as far as it’s kind of noticeable that something is clumsy, and you could
do it better, then it’s usually improved. That’s how it was in this case. Because there
were just too many things there: I did a lot of pull requests, and you always had to do
a lot of things until it was finished. Then they say, you’ve done so much by hand, let’s
automate it. And then that improves it. I guess it’s the same with other points. As
soon as you realize that something needs to be improved, and someone knows how to
improve it, then it will probably be implemented.

Continuous delivery We will probably do more in the context of Continuous Delivery. We are on the way
to the cloud. And you have the ability on AWS to deploy code pipelines in an even
more automated way. Right now, there are still manual steps involved when we deploy
it locally to our server. But that’s a lot fewer manual steps than if you still have to
manually create the jar file or the library and then copy it to the right place and launch
it. It’s not like that, but it’s still 5 to 6 clicks that you have to do. You can still optimize
a few clicks away from that.

Continuous deploy-
ment of releases

In the backend, we want to have more automated deployment, more tests in certain
environments that give us so much security that we can also say we press the button
because if the tests go through without a problem, you can also deploy it without a
problem. We have that with new products, but of course, we still have old products
where we haven’t transferred that knowledge, that experience, yet.

Automated tests Regarding integration tests, I am someone who likes to push this further and further,
e. g. not only testing with mocks, but also with the database. The bigger you test with
something else, i. e. the bigger the integration scope, the more expensive it becomes.

Automated tests Some things don’t yet work in this quality. What specifically comes to mind is testing,
i. e. automated testing; that only existed for parts, and it should work for everything.

Code coverage, auto-
mated tests

I would still like to see greater test coverage in depth. Actually, we haven’t done it
cleverly enough. In the beginning, a monolith was built and then split into microservices
only after a few months. This means that a microservice may still need information from
another microservice when it processes a request that comes from the browser. Then
that microservice and two or three others start sending requests. That is, there is a
constant dependency on other microservices at runtime. This is a problem if somewhere,
someone changes something. That’s what you try to find with automated tests, I would
like it better if we would notice such problems even earlier. If you change microservices
and then call the other from one, then it doesn’t work anymore, because you get a
different answer back than expected, for example. That’s where we come to your actual
topic, knowledge management, we’re a little bit bad at that. Hopefully, you get the
consequences of the change, but sometimes you don’t. There have also been cases where
the testers didn’t notice that.

Automated tests Yes, of course, we are constantly looking at our processes and seeing where we can still
improve them. I would say that we are relatively well-positioned in terms of continuous
integration. Where we maybe don’t have a direct focus yet is on code quality. We do
have tools like Sonar where we test the code, but ultimately, I’ll say, nothing happens
yet if there are a lot of errors or a lot of observation there. That runs with it for now,
but there’s no consequence to it for now. For example, that one would say, we have to
fulfill certain metrics or not.

246

B.1. Interview Statements by Practitioners from Industry

B.1.2. Statements regarding As-is State of Rationale Management during CSE in
Industry

Table B.4.: Anonymized examples of decisions that practitioners capture (RQ2.1).
Type Practitioner’s Statement regarding the Types of Decisions Captured

Existence decisions
(requirements, archi-
tecture)

We capture two types of decision knowledge and have one way of capturing decision
knowledge: in a wiki. There, we separate between technical architecture decisions that
are customer-specific, but which we make to be able to develop further, and—when we
do individual customer projects—the understanding receipts as to why we have agreed
on certain things with the customer. That goes from the interface description that we
negotiated with the customer to how we configured the client for the individual customer
to get things the way they want them. It’s recording the chronological order of when
any technical activities happen. Those are the two topics where we record decisions.
Sometimes this is rather bad than good. But it justifies why we/the customer decided
the way we did.

Existence decisions,
meta-decisions

We document decisions about features we implement in the Jira tickets. That works
quite well. What is needed? You record queries there, for example. It is also important
to record meta-decisions, as these affect the project much more than decisions made
during development on a feature branch.

Existence deci-
sions (features,
architecture), non-
existence decisions
(alternative feature
implementation),
property decisions
(code convention)

We have discussions in pull requests about coding conventions (e. g., whether variables
are named correctly), which means we do our code review in them and the need for a
separate code review tool is eliminated. We discuss code, we discuss how to implement
the feature, whether there are bugs, test coverage, and test issues. Partly, we also
discuss content-related things, i. e. whether we want to implement the feature this way
or whether we would prefer to go a different way. The idea is that as soon as you work
on something, you create a feature branch and you create a pull request. The build
server builds that in the background and you can see whatever it is, it’s still building.
That’s a good basis to discuss and that way you can also add nice bites without affecting
people who are working on other branches.

Existence decisions
(architecture, imple-
mentation, techni-
cal)

Implementation decisions and technical decisions. For example, if there is a feature
where something is calculated, this technicality often has a certain fuzziness (you can
go right or left). Then the business experts make the decision, for example, to do the
calculation in a certain way. This is documented and must be documented because this
is professionalism and forms the basis of the software. It has to be documented exactly
why the subject matter experts chose exactly that way. If we then make decisions during
implementation, such as architectural decisions, we also document that.

Executive decisions We have decisions on the definition of done, for example. When does the team say that
a piece of code is ready for production? That is quite well documented.

Executive decisions Of course, important decisions relevant to the budget are recorded, and there are
also decisions in the Steering Committee, especially in the case of large sums. You
can’t write everything down. At some point, you shake hands, look each other in the
eye and say “that’s how we do it”. In my opinion, that’s 90 % of the decisions. The
number is probably not correct, but one thing is certain: most decisions are made and
adhered to uncodified. And the Scrum team further evolves this knowledge. Important,
cross-cutting constraints are, of course, recorded.

Executive decisions,
existence decisions
(architecture)

However, some decisions are made outside the project team, i. e., that come from above.
For example, that the infrastructure is too expensive and has to be handed over, or
that external employees have to leave the project for cost reasons. It also happens that
management has already made technical decisions. The team had problems with that.
So, for example, it happened that the management said that Java EE and a certain
database would be used. It took the team a long time to get the management to revise
these decisions, using guerrilla tactics from below.

Continued on next page

247

B. Supplementary Material of Interview Study on State of the Practice

Type Practitioner’s Statement regarding the Types of Decisions Captured

Executive decisions In what we do for AWS, the Chief Technology Officer says, “We want continuous delivery
in the cloud.” Everything after that is up to the teams (what we do, what frameworks
are used, that’s all in team authority).

Existence deci-
sions (requirements,
implementation,
tests), executive
decisions (decisions
from management
level), non-existence
decision (several
implementation
options)

In daily discussions, we have always made decisions about different activities and
topics. In our projects, we have always distinguished between information types such as
requirements, developer to-dos, tester to-dos, and error messages. During the creation
and processing of these information types, questions always arose where decisions had
to be made. With the requirement topics, typical decisions are first of all, which
requirements one has at all or how important these requirements are, and which
requirement one can do without at the beginning. So the prioritization activity contains
many decisions. Further complexity considerations of requirements contain decisions,
thus as how complex we evaluate which requirement. This complexity assessment is
related to the effort estimation of the developers and decisions come into play there as
well. For a requirement, there can be several implementation options that differ in the
effort estimation, quality, maintainability, or scaling. Of course, a distinction must be
made here as to which implementation option is chosen, which quality characteristics
are more important, and how much can be invested in each implementation. Depending
on the requirements and the implementation options of the developers, decisions have
to be made. Decisions have to be made in testing activities, especially when doing
risk assessments. We didn’t always test everything due to time constraints, but took a
risk-based approach and tested the most important things. We had to make decisions
about which test cases were the most important, which test cases to execute after which
sprint cycle, which means that planning the test activities also involved decisions. Who
tests, what are the test resources, how much time do we take for the test if there is a
roll-out and the developers are possibly not yet ready, and how do we possibly redesign
the planned test phase. That means there are also many decisions that are made in
particular from the management level. After the test executions, we received error
messages again and again, and we had to decide how important these error messages
are, how we deal with these error messages, how critical are they, do we want to fix
them immediately, and whether we can postpone the bug fixing to the future sprint.

Existence deci-
sions (architecture),
property decisions
(non-functional prop-
erties), executive
decisions

There are a lot of architecture decisions in there, of course. But some decisions affect
the way it’s used, so—sounds funny when I say it like that, but—decisions made by the
user experience team. They offer that to the outside world: What do we document?
When do we make changes? These are also decisions that affect not only architectural
changes, but rather ... partly functional, or also non-functional properties that then
affect the experience of the entire environment.

Property decisions,
executive decisions

Code style guides, which describe recommendations or constraints on how to record
changes, when to create repositories, . . .

Property decisions
regarding high avail-
ability and consis-
tency

We have demand for high availability. For example, if a data center fails in China,
the hope is that a European or American data center will compensate. This may be
a little slower, but it will continue. If you want to implement this in software, you
no longer have many things that you would otherwise have, e. g. the abstraction of
the transaction into the database does not work then. This is the famous theorem on
consistency, availability and partition tolerance. Of those three things, you can only ever
get two. Software development has always held consistency high. And we then turned
partition tolerance down. That means there is only one database server or if there are
several database servers they have to be able to talk to each other. Now we suddenly
took another database, the non-relational database Cassandra. For us as developers,
this means a completely different approach to our software development. Consistency is
suddenly no longer a given, how do we deal with that?

248

B.1. Interview Statements by Practitioners from Industry

Table B.5.: Anonymized examples of where practitioners capture the decisions (in which docu-
mentation locations), with which techniques and tools (RQ2.1).

Location/Tool Practitioner’s Statement regarding the Locations, Techniques, and Tools

External document
(word), wiki, issue
tracking system

Decisions that were made once were documented in Word documents and archived in
folders. Later, during the implementation of such decisions, e. g. when setting up the
infrastructure for continuous integration, selecting the tools, and deciding how to work
with these tools, such as the git workflow, how should the developers deal with the
git management system during development (how should they define their branches,
how should they merge the branches), we documented such fundamental decisions in
a central wiki. For the developer decisions, we recorded them in the tickets, so the
developers documented their implementation proposals in the tickets and the business
department had to go through those proposals and set the ticket statuses accordingly,
thereby documenting that they had read those implementation options and decided on
one and why they decided on it. In this context, we worked with the tool “Redmine”.
But in other contexts, we also use Confluence and Jira, which are very comparable.
There, we stored such decisions of all project participants in an accessible way, so that
one could always read up on them.

Wiki, issue tracking
system

To record decisions, we have a wiki (Confluence) where we have recorded major decisions,
also so that later colleagues can read in there. We used Jira and documented the relevant
steps and decisions for each story so that we could see in the future why we did what
we did and what the reasons were. Otherwise, people have the knowledge and there is
still the truth in the code.

Wiki, issue tracking
system

The technical decisions are often discussed in Jira tickets. The stories are documented
there and then the decisions are also documented there. With other customers, I have
also seen that Confluence is used for documentation and that this is tracked in Jira. In
the end, it doesn’t matter, the main thing is that it’s documented somehow and you
can find it again.

Wiki In some cases, decisions are documented in Confluence, where the basis for the decision
is listed, i. e. what was the basis, what knowledge was available and what criteria were
considered, what decisions were made and why these decisions were made. What are
we doing for what reason? That came into the project over time. In between, there
was some sloppiness, especially at times when things were hectic and decisions had to
be made quickly. But then you also noticed that quickly because you could no longer
understand things.

External document,
issue tracking sys-
tem, email

They are recorded in meeting minutes if they are big decisions. I think you have to
differentiate, and I can’t speak for everybody, but there is a tool, clearly the ticketing
tool for the features, but other decisions, whether you’re changing build plans or the
pipeline somehow, that was only recorded in meeting minutes, email, or via personal
contact, or in PowerPoints.

External document When we go strategically in this or that direction, we discuss pros and cons in Google
Docs. Everyone contributes. And then we record a decision below. Bottom line: we do
XY, so decisions like that. Smaller things, the color of a button, or we do a feature a
little bit differently after all, we make this decision rather ad-hoc and don’t justify it in
writing. We then record more the decision, less the reason for it.

Continued on next page

249

B. Supplementary Material of Interview Study on State of the Practice

Location/Tool Practitioner’s Statement regarding the Locations, Techniques, and Tools

Issue tracking sys-
tem, pull requests

We discuss a lot when we do our sprint planning, e. g. to better estimate a story and to
know what happens behind it. Then we record that we first have to make a decision
that we will do something “this way or that way” and think about what the impact is
behind it. To not forget things, we create a story. We already include decisions there.
Otherwise, there are discussions in pull requests. I’m still trying to push that a little bit.
When we work with feature branches, we also work with pull requests. The idea is that
even if we are not yet finished with the feature, we create the pull request relatively
quickly so that the documentation can happen in it. From a developer’s point of view,
you are relatively close to the source code and you can discuss whether something is
done well or badly. This is currently the place where most of our decisions are recorded
or where you can see how something was done and for what reasons. Then, of course,
we have the documentation in the wiki. I didn’t use that in this project, but I did
in other projects where I was a software architect. There was a document in there
that documented the architecture decisions. Architecture decisions are very important
because they are hard to change. For small things, I think pull requests are just the
place to do it. It’s close enough to the code, developers read it, and it’s easy to discuss.

Issue tracking sys-
tem with tag/label

This is done via Jira. In it, there is a tag that is used for certain tickets. The tag is
called decision template. The tickets with this tag are collected and the responsible
persons (usually the product owners) have to make the decisions. It is possible to filter
for that tag and the product owner will see that there is still a decision to be made
before anything can be done at that point.

Commit in git Whereas I have to say, so far you try to record in every commit message that you make,
for what reasons something was changed. So it’s not that you don’t have some form
of tracing. What you don’t have with the commit messages in this sense is that it’s
somehow structured—that’s just a bit of text. For simple things, I’ve found it okay so
far to do that via commits. But of course, if you can also form real chains here, so to
speak, that you say that decision follows the other, then I could imagine, especially in
more complex projects, that that could be helpful.

External document,
issue tracking sys-
tem

We have a steering committee meeting every three weeks where we have about 20
PowerPoint slides that are then archived. When it comes to programming, we move
again in the direction of Jira, or another similar tool.

Chat tool We also use chat tools for remote programming. Right now, Slack is popular for that.
It’s very dangerous. If you’re not in the project for a day, there’s a discussion in Slack
and a decision is made there. Then there are 20 channels where there is an incredible
amount of discussion, and the question is whether you read it all or not. Personally, I
try to keep the slogan: “If it happens in Slack it didn’t happen. If you make a decision,
you have to send an email.” Slack is disadvantageous when it comes to documenting
things for the long term. It’s all kind of there, and depending on what you paid, you
can still get to the old content for a certain number of weeks, but the unimportant is
next to the important content. Everything is jumbled. Sometimes there is a separation
into channels, but that doesn’t work well and you can’t find anything. These chat tools
are a blessing for communication but a curse for documentation from my point of view.

ReadMe file In some cases, we have a ReadMe file in appropriate places, or some other kind of - let’s
say, if we deviate from specifications - document, then we document that in-place with
a file that is there, in the repository, where the software is.

250

B.1. Interview Statements by Practitioners from Industry

Table B.6.: Anonymized examples of how practitioners link decisions and related decision knowl-
edge to other software artifacts (RQ2.1).

Technique Practitioner’s Statement regarding Linked Artifacts

issue tracking sys-
tem functionality

In the ticket, it is stated which component this ticket concerns and accordingly a decision
can be related to a component.

No links between
model diagrams and
decisions

As such, there are no real links. You can add images, of course, but the images are
not linked to the actual diagram models. We use the Enterprise Architect to capture
component diagrams, sequence diagrams, and domain models. But we don’t have any
linkage between the decisions in Confluence and the Enterprise Architect. This is done
by copying the image from the Enterprise Architect and adding it to the wiki so that at
least there you get the entry point where I can then look in the model repository.

Capturing decisions
as close to the code
for consistency

The things that are at the end in the product and the things the developers think are
important to capture are continuously being updated and kept in the internal product
documentation. There are important things that we definitely want to update in the
documentation. Otherwise, the general thing is in the code that we comment. We have
the information in the code. That’s kind of my experience through the years that it
makes sense to document the object model and all architectural thinking and so on but
if you get into too much detail in your internal technical documentation you always end
up being late and not being able to keep this updated with what is actually in the code.
My personal thinking is that we don’t have to bother too much about it and just accept
the fact that we never will be able to keep such a document updated. Instead, we should
put the effort into documenting the necessary things as close to the code as possible.

Table B.7.: Anonymized examples of how practitioners preserve the evolutionary history of
decisions (RQ2.1).

Technique Practitioner’s Statement regarding the Evolutionary History of Decisions

Special technique to
mark an obsolete/a
rejected decision

We decided to do something that has not happened before, however: if we were to revise
the technical decisions, we would mark the old decision that it is obsolete and create
a new decision. We would link the old and new decisions together, but not overwrite
them. By only starting with the project, we have already made and documented a few
decisions, but have not yet done any rescheduling of existing decisions.

History function of
issue tracking sys-
tem

If this is done within Jira, the history is stored. For example, when a ticket was opened
or closed.

History function of
issue tracking sys-
tem

Also decision changes (what changed when) could be tracked in Redmine’s edit or history
mode.

No dedicated tech-
nique to track his-
tory

During meetings in that decisions are made (e. g. developer workshops), the decisions
are recorded in a protocol. But I don’t know how that works with the decision template
in Jira.

251

B. Supplementary Material of Interview Study on State of the Practice

Table B.8.: Anonymized examples of when and how often the practitioners capture decisions
(RQ2.1).

Practice/Frequency Practitioner’s Statement regarding the Capturing Practices and Frequencies

On demand That is a sore point. We only document the most important decisions where we notice
in the discussion that we have different opinions. We do that to record the pro- and
con arguments that the stakeholders express, document the decisions, and communicate
clearly and specifically how to proceed. So we only document decisions on controversial
issues.

On demand It’s difficult to say exactly how and when to make decisions. On the one hand, there is
long-term corporate planning, where you already ask yourself many questions. Some
decisions are suddenly made from one moment to the next. So you don’t have a fixed
point. We have the project going, and then it’s mostly on demand; depending on what’s
being touched at the moment, we look at and collect things and divide that up in terms
of time. This also means we have to see where we get the money for it; that’s also a
question.

Weekly I would say weekly. It depends on how many new tickets come in. We don’t just have
one Confluence page; we have many tickets. For the management issues, there are daily
changes in Confluence. For our team, however, it is only relevant weekly or even less
frequently.

Sprint planning We discuss a lot when we do our sprint planning, e. g., to estimate a story better and to
know what happens behind it.

Daily – weekly At peak times, this is sometimes done several times a day or even several times an hour.

On demand via is-
sue tracking system
tag/label/keyword

1) A person (e. g., a developer) notices that s/he needs a decision and creates a ticket
with the tag/keyword decision template or adds the keyword to an already existing
ticket. 2) In Confluence, a page with a built-in Jira widget displays all current tickets
with the keyword decision template. However, there is no other automatic notification.
The person has to take action themselves and notify decision makers (e. g., via the
mention function in Jira comments or by mail). 3) A second person (e. g., product
owner) takes one of the decision template tickets and will make a decision if necessary.
4) This decision is then communicated somehow. In what way is not exactly specified,
but the Jira comment function has been used here for the most part so far. 5) The
keyword/tag/label decision template is removed and the keyword decision is added.
This way, searching for all decisions made later will still be possible. 6) On the same
Confluence page, another Jira widget shows all decision tickets and accordingly provides
an overview of all decisions made.

Table B.9.: Anonymized examples of why practitioners capture decisions (benefits) and how they
exploit the decision knowledge documentation (RQ2.1).

Benefit Practitioner’s Statement regarding Benefits and Exploitation

Decision-making
support

We have started to work out a proposal in our team on how to deal with this. It contains
concrete problems or restrictions and suggestions on how we can live with them. When
it was finished, three colleagues who were particularly interested in the topic first looked
at it. Then we formally said: “The following is up for decision, this is the current
proposal. Do you all agree? If not, we need to discuss further.” Because I had involved
the people who were most interested in it before, that went through and so we made a
formal decision. That was an example where we went very cleanly.

Decision-making
support

As a basis for discussion in any case, yes. Especially when you discuss relatively rough
architectures, then this is very good.

Continued on next page

252

B.1. Interview Statements by Practitioners from Industry

Benefit Practitioner’s Statement regarding Benefits and Exploitation

Knowledge sharing,
accountability

I don’t know how important it is to preserve history, but having a rationale for the
current state is important. You often ask yourself in the code “what’s going on here
and why something was done this way” and it would be good to say “ah, ok, here the
customer said they absolutely need the feature and then it was done this way”.

Knowledge sharing,
reuse (don’t have to
do the work twice),
accountability

I would definitely say it’s moving us forward. It’s not very formalized. It’s more of
an ad-hoc approach, we realize that we’ve discussed something bigger, then we try to
record that as well. So that we don’t have to do the work twice. These are often very
detailed decisions that, if they are not written down somewhere, have to be derived
from somewhere, which then takes some time. You can simply look back once again:
“Why didn’t we do that back then? Oh, that’s right, that’s why. . . ” And also simply
be able to read. “Such and such has already been discussed”. “Such and such major
features are planned for these reasons”. Simply also to make it easier to collaborate.

Accountability, reuse To see what happened back then. Or to check whether it made sense at the time. Yes,
also to, when you need to make a new decision, look at the old ones again, that happens.
But also rather very manually.

Accountability For now, they are just documented. We are doing this because we think that at some
point we will ask ourselves exactly why we decided to do something. Then we want to
look into it. When it comes to the agreements with the customer to adjust interfaces or
to consider whether to adjust them, we then also want to know what was agreed and
what changes we have to make to the interfaces.

Table B.10.: Anonymized examples of practitioners’ rating of the sentence The explicit capturing
of decisions benefits our software development process (RQ2.1).

Likert Choice Practitioner’s Statement regarding their Current Decision Capturing

Agree I would say it’s not a hundred percent true because it’s not currently used by every
person and it’s not completely transparent what happens with the decisions.

Disagree I think we don’t utilize them today on the level it would be good if we did. I think
we could benefit more from them. We address the individual decisions that we make
during reviews and within the project but we do not utilize that for general learnings
and process improvements in a good way. I would say we are right now on a -1 but if
we would utilize the information better we could be +1 or +2 on that.

Neutral I would place this project right in the middle, i. e. neutral. The reason is that a lot is
documented (including many decisions), but that this is used far too little.

Agree The decisions that are recorded are clear to the person recording them anyway. That
person then does it the same way. If he hadn’t recorded it, he would still do it the
same way. It would not change much. Afterward, no one looks at these Jira issues
anymore. When something is done, it is documented somehow. So you could look again,
but what’s the point? I do think that we benefit from the things that we document
in Confluence. That’s an important resource. But I benefit more from the auxiliary
material than the decisions.

253

B. Supplementary Material of Interview Study on State of the Practice

Table B.11.: Anonymized examples of decisions that practitioners do not capture (RQ2.2).
Type Practitioner’s Statement regarding the Types of Decisions not Captured

Executive decisions With newer decisions, e. g. regarding the build pipeline and deployment, you don’t
document it, you just do it because it has to be done very quickly because the developers
are waiting. Afterward, you don’t get to the documentation because something else
happens that you have to react to quickly. That also “catches up with you again”.
Last week, I had to dig out an email that was a year and a half old, where we had
discussed how to technically set something on servers and made a decision. That wasn’t
documented at all, and that wasn’t considered when a change was made on the server,
which is why something ended up not running. So I had to dig out those emails where
it said how we decided that at the time. It would have been easier if I had known that
it was on a particular Confluence page, for example.

Executive decisions On the pipeline; here we capture too little knowledge, almost no knowledge. But from
my point of view, we should.

Existence decisions Primarily, these are former decisions. It can be architectural things, design decisions, or
smaller things that make the product slowly turn in a specific direction. When you sum
up any of those, the effect could be potentially significant.

Existence decisions,
non-existence deci-
sions/bans

Smaller things, the color of a button, or we do a feature a little bit differently after all,
we make this decision rather ad-hoc and don’t justify it in writing. We then record
more the decision, less the reason for it.

Existence decisions,
non-existence deci-
sions/bans

In concrete terms, it’s often smaller user-interface and functional things. In a review of
a feature, you simply sit down with a colleague, do a code review or feature review, and
then define changes and create issues for it. But there is no rationale behind it. Not:
Why did we do it this way? But simply: We do it this way, maybe a little differently,
the button a little nicer, and then it goes on. These are rather the things that happen
ad-hoc. That is written down in the issue tracking system.

Existence decisions Swagger is software to create and partially document our interfaces. But meta-
information, which service is responsible for which things, that’s kind of known, but
not documented. A very simple architectural question like “When do I create a new
microservice and when do I extend an existing one?” is also answered by intuition, and
there are no clear criteria for this. Some things work, others don’t.

Existence decisions For example, a team decided to do a new microservice in a completely different way,
using Spring Boot. (Spring Boot is a standard framework). The decision to do this with
Spring-Boot was made incrementally, and not properly documented (except, of course,
by the fact that the thing exists).

Property decisions An important decision is also whether microservices work synchronously or asyn-
chronously. Asynchronous is a bit more performant, asynchronous is much easier
to program. That’s just what happened, these are decisions that someone makes the
moment they code something for the first time. Then everybody else imitates it and it’s
not really discussed. Something like that in that form unfortunately happens several
times. That’s because each microservice can do it a little bit differently. That’s a
freedom that microservices have brought. You actually want that, too. But this freedom
also invites a bit of abuse. Everyone does what they feel like doing at the moment. For
my taste, there is a bit too little consistency in this project and especially too few formal
decisions and documented decisions in this project. “Why are we doing it this way? We
do it this way here, we do it differently there. What’s the plan?” We’re relatively weak
on that kind of thing. At the moment it’s not about the day-to-day business, but more
about the strategic issues, the longer-term issues like architecture issues, we’re missing
something. You could do that with Confluence, you would need more meetings. We are
a distributed team, when we get together time is already tight because of all the Scrum
formalities. There is not much time left for additional discussions.

Existence decisions
(configuration)

For example, we would have to record our decisions regarding the compiler version
numbers used as well.

Continued on next page

254

B.1. Interview Statements by Practitioners from Industry

Type Practitioner’s Statement regarding the Types of Decisions not Captured

Existence decisions
(tests)

Sometimes we have had situations, e. g. for troubleshooting or execution of the most
important test cases, where test cases that were documented were so abstract that the
testers did not necessarily know how exactly to perform the test steps. There you made
decisions over the short communication path (just table to table), we didn’t document
such decisions. You just did that and it then came down to whether that test case
passed or failed. If it failed, we then included that decision in the defect description
after all: To this test case number x we came to the following defect, most of the time
we also added a screenshot so that you could later reproduce/understand why a defect
occurred. We have had the awareness in the team if someone has to do rework or repeat
activities, what decisions and information they will need. We always documented these.

Existence decisions When you develop software, you often decide how to do it. Maybe which framework to
use. This is not always to be found in the documentation.

Existence decisions For example, we have decided on how we send messages to other teams from our
application. We’ve written those down for our team and they’re clear to our team and
we’ve also defined them in some Jira ticket in a schema, but we haven’t captured them
in a Confluence interface definition page, so the other team that’s trying to consume
the messages is still standing there saying, “We don’t know about that now. We need
something here.” And we say, “How, you guys have everything.” But then when they
ask where we do realize we don’t know. That happens.

Existence decisions In terms of the microservice architecture: Up to the point where we adopt the microser-
vices, we define very precisely where and what has to happen. But the internal nature
of the microservices’ data structures is not as well documented as I would like it to be
to understand why certain data structures were chosen for the business functionality
that the service is supposed to provide.

Executive decisions
(prioritization)

This has something to do with prioritization. When one implements a change, it means
that one has preferred this change to other changes that were also pending, due to a
certain priority. In doing that, I’ve found that after a couple of weeks, the question
comes up as to why you did that and not something else first. That’s something that
we didn’t document in the decision-making process of why we were doing something.
At that point, we determine that’s the most important thing, but why the other thing
wasn’t more important and what assumptions were made there, that’s not available.

Non-existence
decisions/bans

Especially, we do not document why a particular option was not implemented.

Table B.12.: Anonymized examples of reasons for not capturing decisions reported by practitioners
(RQ2.2).

Reason Practitioner’s Statement regarding the Reasons for Not Capturing Decisions

Overhead, exploita-
tion (added value)
unclear

Of course, it is time-consuming to document decisions that have been made. There
is also the question of who reads through everything afterward. If you have to read
through everything again before you can develop it yourself, there is a lot of overhead.
On the other hand, it is often the case that people think, “It’s logical, everyone else
would probably have made the same decision.” In other words, you don’t even think
about the fact that you’re making a decision, and that’s why you don’t think about
documenting it.

Overhead, exploita-
tion (added value)
unclear

It is once due to the time. But it is also due to the fact that developers prefer to develop
microservices experimentally, i. e. to try out different data structures and use them for
their use case, and that it no longer offers any added value for them to document this
afterwards once the data structure that is best suited for this has been found.

Continued on next page

255

B. Supplementary Material of Interview Study on State of the Practice

Reason Practitioner’s Statement regarding the Reasons for Not Capturing Decisions

Overhead Usually, people say that it’s a problem of time and money. Which is sometimes a bit of
an excuse. But it is always an effort. And people always shy away from that and prefer
to do something else first.

Overhead I’m not a big proponent of codified knowledge management because we all don’t have
time to look at it. And secondly, I’ve never seen it work.

Immature process Many projects do not even get into the situation of documenting decisions or being able
to document and operate knowledge management, because the development processes
do not correspond to what would be necessary, as many approach it with a semi-agile
approach and thus often have problems.

Exploitation (added
value) unclear

It’s often smaller user-interface and functional things. In a review of a feature, you
simply sit down with a colleague, do a code review or feature review, and then define
changes and create issues for it. But there is no rationale behind it. Not: Why did we
do it this way? But simply: We do it this way, maybe a little differently, the button a
little nicer, and then it goes on. These are rather the things that really happen ad-hoc.
That is written down in the issue tracking system.

Exploitation (added
value) unclear

Because everything runs in a very agile manner. There is a new task, then someone
takes care of it, implements it, then it is briefly checked, and then it is checked off and
in. But it is not recorded for a longer period of time. Probably because there is no need,
or because the need occurs so rarely that I can then simply think to myself in case of
doubt: “Why did I do it that way back then?”.

Overhead (asking
colleagues as an al-
ternative knowledge
source is easier)

There are often retrospectives. We have a lot that we don’t write down directly, but
have in the process itself. You can just always talk to people a lot, and ask about it.
This probably has nothing to do with it at first, but: If the knowledge is in people’s
heads, then it’s very easy for us to ask them. I don’t have to wait two weeks for an
appointment, I can just go and ask. Of course, that is also the reason why this is not
documented, because asking is simply easy. Then there is this situation that people you
want to ask are no longer there. And then you regret it.

Overhead, exploita-
tion (added value)
unclear

The added value is sometimes not clear and it behaves like the 80/20 principle: to
document the remaining 20 %, you would have to put in 80 % more. The benefit-cost
ratio would then not be reasonable.

Overhead, lack of ap-
propriate techniques
or tools

You have different toolings for different things. That causes annoyance. For one it’s
IBM for requirements, for others it’s a different system. Then you’re doing work twice.
That annoys the developer.

Rapid changing de-
cisions that lead to
outdated decisions,
i. e. to inconsistency

Probably because parts of it change quickly, and then you have the problem that they
are no longer up-to-date. And then you have another document that contains something
that might have been true for an outdated version. That almost goes down to the
code level. The problem is that we have a relatively large number of small, individual
modules, some of which use data that comes from some test system, because it’s much
faster than mocking everything up, and the access to this test system alone changes-not
so often, but it has changed before-so that some modules no longer work with the test
system, because the test system is already newer than the module. This means that
even at the code level, this problem arises that the systems sometimes develop so quickly
that not even the test code in the individual modules keeps up. So module functionality
of course, but the test code in the module does not work. And if it’s just little things
like that the test user is called differently, and that’s not in all 20 individual modules
already updated. Since it doesn’t work there, I can very well imagine that if there’s a
text file lying around somewhere that says something, that it’s 100 % wrong.

256

B.1. Interview Statements by Practitioners from Industry

Table B.13.: Anonymized examples for potential benefits if practitioners captured the decisions
that they currently do not capture (RQ2.2).

Potential Benefit Practitioner’s Statement regarding Potential Benefits if Captured

Accountability,
knowledge sharing,
decision-making
support, reuse

Advantages would be that a person afterward, who works in the same work environment,
does not wonder why the system is set up that way. If this person has a different opinion,
then discussions arise as to why it could not be done differently. But if you have a
reasoned decision, discussions can still arise, but then that person doesn’t wonder. And
one can profit from it in similar cases. That means, for example, if you have done
something on one server, then you don’t have to go through the whole process again
on another server, weighing up the pros and cons, but can have results for the second
server more quickly based on the decisions and arguments already made.

Accountability,
knowledge sharing

Either in that case the team would find the decisions regarding the interfaces directly,
which would reduce the overhead because they wouldn’t have to ask us in the first place.
If they did have to ask us, we could explain it to them better and wouldn’t have to pick
something out ourselves first and then also translate it from Jira to Confluence, but say,
“Here it is, read it through and then if you have any questions, comment below it, then
it’s documented again.”

Knowledge sharing,
reuse

Some things happen now and then that are not documented. You notice that pretty
quickly, too, that you stumble across it. Especially when you get used to the fact that
all knowledge is documented in some way, and then you think that some issue is open
and then it’s not open because three people thought about it but didn’t write it down.

Decision-making
support, account-
ability, knowledge
sharing

Continuous learning is very much part of that for me: Understanding exactly what they
want to build and recording the decisions that are made exactly through the trade-offs
and compromises that you find: what was decided, why was it decided, so that you can
understand after the fact why it happened the way it did.

Knowledge sharing
(regarding implemen-
tation decisions)

If it goes down to code level, that would be partially great, because then you would
know why anything is done that way. I had code but didn’t know exactly what it was
for. I asked, and someone was able to tell me exactly why it was the way it was. But
the bottom line is that it wasn’t clear to me right away, and asking is then of course an
additional expense.

Knowledge sharing
(regarding ban deci-
sions)

It is certainly not wrong to read up on why the decision was made at the time. Sometimes
you look up in the history what you once developed and why you left it. It would be
interesting to ask: why did you end it?

Knowledge sharing
(to support disaster
recovery)

I think the most important point in favor of capturing the knowledge is in the direction
of disaster recovery. I mean, there are maybe 2-3 people who know how to reproduce
the previous state, but with such a size, of course, it is already critical.

Table B.14.: Anonymized examples of practitioners’ rating of the sentence The explicit capturing
of decisions would benefit our software development process (RQ2.2).

Likert Choice Practitioner’s Statement regarding more Decision Capturing

Strongly agree I think it really hurts that decisions happen but are not made properly. The moment
you document them, you also force them to be made. If the other person doesn’t agree,
there are discussions. It would also be good to know what is already decided and what
is not. That would be beneficial.

Strongly agree Because there are so many decisions that are made and there are certainly some that
are also dependent on each other or that are made twice. I think that makes sense, in
any case, to save time afterward and to keep the overview.

Continued on next page

257

B. Supplementary Material of Interview Study on State of the Practice

Likert Choice Practitioner’s Statement regarding more Decision Capturing

Disagree We already have a high level of decision documentation and to a certain extent the
documentation is not even used.

Strongly agree Advantage for whom? You have to break down the development process: Who has which
role? Who wants to do what with the knowledge? If you look at the overall success of
the project, I totally agree, it’s very interesting for that. Whether it’s interesting to an
individual developer has a different meaning than it does to a project coordinator or
leader, or someone doing the integration. Tooling to understand decisions is definitely
an advantage.

Disagree I’m on thin ice here, because I don’t program myself. But I don’t believe in it myself,
because: yes, in a waterfall method, in which nothing changes, in which the market
is stable, and in which processes are stable—sure, that fits! But the development
frameworks change relatively quickly, the market changes quickly, why should I look
up how the decision was 6 months or 2 years ago, when the market is different again
anyway? That doesn’t do any good.

Agree The problem: Should I take into account that this is extra work, which in many cases
is, of course, negative or costs time? Even though it’s probably better in the long run,
in the short run it always has this initial problem of “okay, I need to use these systems
to keep the decisions, I need to maintain them.” Then the standard problem is that if I
don’t maintain the systems properly, then I have something in the system that doesn’t
match the code.

Neutral However, the more agile the team becomes, the less I consider documentation. The
increased feedback loop makes it more difficult, and the time for documentation is
simply no longer available. Perhaps some of the efficiency is also lost if one were to
invest more time in documentation, because tomorrow the decision-making situation
can already look different again.

Table B.15.: Anonymized examples for knowledge sources from which practitioners retrieve
necessary information for decisions that are not captured (RQ2.3).

Source Practitioner’s Statement regarding Alternative Knowledge Sources

Reverse engineering
(of code)

As the saying goes, “The truth is in the code.” That means we then look in there. Of
course, that’s not always so helpful. As I said, we are also trying to get better at this
point. We have now also set up Jira and Confluence so that such decisions can perhaps
be documented there. But that is still a process that is just getting started.

Reverse engineering,
asking colleagues

My standard approach: 10 minutes or, let’s say, a short time I look myself, then I ask
any people. Some things I find out relatively quickly, then I do not need to annoy people
with pointless questions, but I have then also noticed that it is sometimes 100 times
smarter to ask after 10 minutes briefly and then get the answer, even if I could find out
after 1 hour myself, what’s behind it.

Reverse engineering
(of code)

I hope to find out through the code. And that’s why the review is so critical.

Asking colleagues Then the first thing is to curse because it is difficult. We may ask the person who did it
what is difficult when that person is no longer there . . .

Continued on next page

258

B.1. Interview Statements by Practitioners from Industry

Source Practitioner’s Statement regarding Alternative Knowledge Sources

Asking colleagues us-
ing emergency mo-
bile phone

This goes as far as being able to be called at 4 a.m. There is an emergency mobile
phone for this purpose, and it is also relatively well documented what the responsibility
of the person who has the emergency mobile phone is, what tools they have, and what
standard interventions are (shutting down containers and starting them up again). There
are always two who are responsible—one main responsible and one as a backup. The
main responsible can call in the other if necessary, if they have problems. It is well
documented who is on duty and when.

Look through emails
and pull requests,
asking colleagues

One has certain decisions that are made in emails. In this project, we do not have a
dedicated document for such decisions. Sometimes, having something like that would
be quite useful because now you have to look through emails and pull requests to see
when you have done something. In a small team, this works quite well; we all sit across
from each other at the same table. It’s still easy to keep this common picture in mind.
In a larger team, that would also be more difficult.

Table B.16.: Anonymized examples of how practitioners share knowledge to avoid knowledge
vaporization (RQ2.3).

Technique Practitioner’s Statement regarding Avoidance of Knowledge Vaporization

Sharing knowledge
between project
members (depends
on team size)

It depends on the constellation of the team. In large areas where the tasks are documented
in great detail, it’s a different question than in a small team where everyone does
everything. If someone then leaves, that is, of course, a problem. We have departments
with 3-4 developers, and there are departments with 50 developers. They are structured
completely differently.

Sharing knowledge
between project
members

We try to distribute knowledge as much as possible on many shoulders for our area and
to document a lot—not only decisions—but also the project knowledge as a whole. We
do this in Confluence, where we document exactly what we build and how we build,
what we expect from the other teams and the project sub-teams, what they have to
deliver so that we can build, what they have to configure, and so on. We document this
process so that, ultimately, if I were to “drive in front of the freeway bridge tomorrow”,
the team would still be able to move forward.

Sharing knowledge
between project
members (through
pull requests and
knowledge transfer
sessions)

A mechanism to distribute the knowledge goes back to pull requests. We have included
the check that a feature branch can only be merged if the build server says “The
build and all tests were successful.” That’s the technical check. And we also included
that you can only merge the feature branch/pull request if at least one reviewer has
approved the pull request and done the code review. We are a small team, and we have
determined that we always invite the whole team for every pull request we make. It’s
up to each person to decide whether they can contribute to the discussion. If no one
responds, the person who made the pull request can contact people again and ask for a
review/briefing. A lot of knowledge sharing happens on pull requests because that’s
where it’s documented. We also do pair programming from time to time. At the end of
the project, we explicitly do a few knowledge transfer sessions on various topics. That’s
the usual game when you leave a project.

Sharing knowledge
between project
members (wiki
instead of diary)

I told the new employee that I don’t like to see research diaries. It’s a notebook in which
you write something down in these meetings where everyone sits and writes something
down. You can ask yourself what the point is. That should be written in the wiki.

Continued on next page

259

B. Supplementary Material of Interview Study on State of the Practice

Technique Practitioner’s Statement regarding Avoidance of Knowledge Vaporization

Sharing knowledge
between project
members (offboard-
ing process)

In general, we try to spread the knowledge. For such central decisions that are not
documented and someone abruptly leaves the company overnight, then it’s almost too
late, then you have to try to explore afterward why something was decided that way.
We just had the case that someone left the company. But the person had worked for
another month before that, and they spent one to three weeks of that month informing
other people about the application that they and their team had developed and simply
writing down the knowledge.

Table B.17.: Anonymized examples of how practitioners identify parts of the system that are
affected by new or changed decisions during CSE (RQ2.4).

Technique Practitioner’s Statement regarding Managing Changing Decisions

Change management
process

There is a process for change management. We have set up a Jira system in which for
every project, regardless of whether it is a new project or already in progress, you enter
the change request, and then the person who has to implement it, i. e. first of all the
project manager, basically has to assess whether it is covered by the contract, whether
it should be done or not. If it is, then you have to go to the corresponding developer,
maybe several if it’s something bigger, and get cost estimates of how big the impact on
the entire software system is. That’s the process at a very rough level. You decide: yes
or no? If yes, you have to evaluate it, how is the implementation? The best thing is to
create tasks from the change request. And then process them accordingly.

No tool for change
impact analysis since
scaling processes is
difficult

We don’t do these in a dedicated way. That usually results from the project knowledge.
It also depends on the project. I also know many projects that are large and so complex
in terms of architecture. These would need a change impact analysis, but they don’t do
that either and are always quite surprised that when you “pull the thread on the right,
that the left corner fidgets a bit.” Many projects do not scale with their processes. These
are large projects that are still carried out as if they were five- or ten-man projects.

No tool for change
impact analysis but
risk management

We have not done a change impact analysis systematically or methodically. Of course,
we intuitively asked ourselves what this meant for us. One situation was when there
was a change in a company’s name. Changing the name was a decision with a serious
impact. In the user interface, changing the name was fairly easy, but in all the
development environments, all the code and repository names, and the continuous
integration infrastructure, getting the name out was very complicated. They didn’t
do a change impact analysis when they made this decision. That means we didn’t
use a systematic impact analysis, a lot of intuitive and ad hoc decisions were made.
What we already did systematically was risk management. In risk management, we
always wrote down the risks at the beginning of new phases or the beginning of the
development of new features or decisions. Through a brainstorming session, we identified
risks, categorized them by the probability of occurrence and potential impact, and for
the important risks that affected us, we came up with measures to minimize the risks.
If we can’t eliminate the risks, we’ve also thought about how to fix the problems after
the fact. There, we worked with Excel spreadsheets. We always had these risks in mind,
and, in particular, it helped us to put in place good risk avoidance measures. We have
introduced a lot of techniques and tools, especially related to operations. These have
helped us to prevent certain error situations, but also to detect them as early as possible.

No tool for change
impact analysis

No, unfortunately not, I would say. That is very hard and that’s a challenge.

No tool for change
impact analysis

Our boss has a very good overview of the entire system. It’s very easy to assess where
it might interact with something else, and then if necessary, there are still questions,
such as what exactly does that mean in the app, in the backend, etc. But I would say
that our boss has the entire overview to be able to assess, where what happens. Yes, it
happens through reflection, it’s not so much a defined process.

Continued on next page

260

B.1. Interview Statements by Practitioners from Industry

Technique Practitioner’s Statement regarding Managing Changing Decisions

No tool for change
impact analysis

There is no good system model here in which you can do any sensitivity analysis or
influence analysis. There isn’t. That was also one of the points that went wrong from
time to time, rather on a smaller scale. No, there is no tool here, and then that happened
more of good luck and common sense.

No tool for change
impact analysis but
automated tests

Often in planning, when you sit down with everyone, the most important dependencies
already come out, but in the end, you have to be honest, with the first time compiling
and starting, you see what you forgot. That is, when running or testing, at the latest
then you see it. There are only two things for me: Automatic tests and a good type
system. Of course, that’s difficult with our recent JavaScript developments, because
you’re completely type-less there. Since the code base is still quite small, you still know
the dependencies, you have them in your head. But if the system continues to grow—as
we’ve already noticed several times—we won’t be able to avoid testing.

No tool for change
impact analysis

Because we have very clear technical boundaries through our microservice architecture,
we can identify relatively quickly during an analysis which initial components are affected
first by this change and derive from this through the architecture of the system, which
goes beyond the service boundary (i. e., which domain-oriented objects do I have, where
are the domain-oriented objects, in which services), I can derive very quickly which
components, i. e., which services must be adapted. The change has to be encapsulated
in a microservice, and this helps to prevent the change from spreading throughout the
entire system. That allows our architecture and interface design quite well to not have
that propagation. But that’s human work, that’s not a tool. Our system is not yet so
big that you can’t grasp it manually, but that will probably only be a matter of time.
In three years, I could imagine that we might think about it, but right now, a manual
change analysis takes about three-quarters of an hour, and since it doesn’t happen that
often, it’s not a high priority to automate it.

261

B. Supplementary Material of Interview Study on State of the Practice

B.1.3. Statements regarding Ideas for Continuous Rationale Management

Table B.18.: Anonymized examples of beneficial rationale management features and additions
reported by practitioners (RQ3.1).

Features Practitioner’s Statement regarding Important Features and Additions

Filtering and search-
ing

The most important thing for me would be a pretty powerful search. That you can find
what you’re looking for relatively quickly. I don’t know how one would imagine that
currently. Somehow it has to be searchable by text. That’s what I would find most
difficult, but also most important.

Knowledge presen-
tation (exploitation,
reflection), documen-
tation of alternatives

The second thing would be to see exactly which considerations were made, but also to
see what the alternatives were and why variant B and not variant A was chosen. We
notice this again and again, and every developer knows it, that you see code and think
“what kind of chaos is this, why was it done this way?” In half of the cases, the objection
is correct and in the other half the answer is “because we could not do the way you
suggest for such and such reasons”. I think that’s very important, to see what all the
possible alternatives were. They don’t have to be completely worked out, but you at
least have to say “we could have done it that way”. Two sentences are enough. You
don’t have to write a lot of code for that, but if you already have ideas about how you
could do something alternatively, then chances are that someone else will come up with
that idea at some point. And then it would be good to say why it wasn’t done that way.

Navigation, trace-
ability

The third feature would be the link to the code so that you also get from the code to the
decisions. You can go the way we are using now. If I want to know what has changed in
the code, then I can say in IntelliJ or Eclipse “annotate me the class” and then to the
left of each line is when it last changed and by whom and in which commit. We also
include the Jira ticket identifier in every commit message. This gives me a reasonably
quick understanding of the context in which this class was touched.

Navigation (trace-
ability), searching
and filtering, knowl-
edge visualization/p-
resentation

The dependencies between the features should be shown and one should be able to trace
decision paths. A search is very important in any case. Over time, the database will
become huge, because many features will be developed. I think it is not so easy to
implement a meaningful search. Depending on how often documentation is done. The
search is in principle most important, because if you document something and then
cannot find it, then it also brings nothing. It is important that you see the points that
you want/must see at that moment. If everything is documented, it quickly becomes a
lot. It is also very important to present this data in a concentrated way.

Knowledge manage-
ment, exploitation
(accountability),
traceability

I find the topic very exciting. We are also active in this area in a certain way. However,
more on the business processes, when a company wants to know how the customer reacts
and what needs to be changed to make the customer happy. The knowledge repository
is suitable for recording why certain business processes are changed.

Continued on next page

262

B.1. Interview Statements by Practitioners from Industry

Features Practitioner’s Statement regarding Important Features and Additions

Metrics calculation
and presentation in
dashboard, decision-
making support
based on usage
knowledge

The most important feature for me would be the different metrics that I get from
monitoring usage and other technical metrics. That I can offer a function there for each
feature that will fast-track the metrics together for me in the way that I think I should
decide. So that after a certain amount of time, I implement or “keep alive” the feature
that provides the better metric. That would be something that would simplify the
argumentation in many places because I can then discuss with other stakeholders at the
beginning what is most important in terms of user feedback and customer satisfaction.
And I can then conclude with what we have agreed, which means that we have made
that decision. That I could drill down. What would also be interesting afterward is to
confirm the assumptions that you make in an experiment, but then also look afterward
to see if they still hold. That would be a constant check on the numbers. A kind of
interactivity in the knowledge repository. Several stakeholders are usually involved in
the decision-making process. A third feature would be to be able to record discussions
there, for example, if you can store formulas for the metrics, it must also be clear why
you have chosen this formula. This is also a decision that subsequently leads to whether
A or B is implemented. If the factors are weighted appropriately, the decision can lead
to both A and B. There, too, I have to record the decisions.

Interoperability
(technical interfaces),
documentation of
decisions and related
discussions, decision-
making support
through voting

Branching and merging is important. It must also be possible to address the knowledge
repository independently of the dashboard, i. e. there must be interfaces. Developers like
to work close to the hardware. Reading and writing with markdown and YAML should
be possible. The difference between discussion and decision should be possible, so it
should also be possible to record discussions. In addition to feedback FB, developer and
stakeholder discussion should also be able to be entered into the knowledge repository.
Voting should be made possible in the tool. It should be a decision voting engine, so to
speak, with which one can interact.

Accountability,
decision-making
support (voting)

Simply a D1 <a decision> is probably not yet sufficient as atomic information. It must
also be recorded who was involved in the decision-making process and how, i. e. that
four people were in favor and three against, and how the processes for this took place.

Traceability, inte-
grated documen-
tation locations,
decision-making
(discuss and reject
decisions), change
impact analysis

I think it’s generally important to have documented decisions. I think the key to success
is that it’s close to the developers. For example, if it’s a Word document in a Sharepoint,
that’s so far away from the developers that when in doubt, nobody looks in there. If it’s
in the wiki, it’s a little bit closer to the developers. The supreme discipline would be to
integrate this information into a pull request, so to speak. The most important thing is
that it is close to the developer and that when a piece of information (like a decision) is
recorded, you also know what is meant by it and that you see the impact, i. e., on which
other artifacts this decision still has an impact. But this is all hypothetical because I
have never seen such a system. It’s supposed to be close to the developer and maybe
the developer should also have the possibility to give feedback on the decisions. So it
should be possible that you can also discuss the decisions again or ask: “OK, there is a
decision, but I have a completely different opinion about it.”

Integration, decision-
making support
based on usage
knowledge

Well, you know how it is: the better the tool integration, the easier it is for you. If you
have a tool that you can say, “hey look, on this feature branch there’s this, and on each
one there’s this”, that means the work is already done, two variants of it have already
been developed, and I just have to click on them: that one to these 5 users, and that
one to these 5 users, and tomorrow you’ll look at the answers, then I’m sure you’ll do
that in certain cases because it’s already interesting as well. Just if it all has to be done
manually . . . It just has to be well integrated.

Continued on next page

263

B. Supplementary Material of Interview Study on State of the Practice

Features Practitioner’s Statement regarding Important Features and Additions

Integration and
traceability

Integration with the tools people normally use is very important. As soon as you have to
document twice, nobody does it from experience. That is, in Google Docs we enter the
version numbers, you can just about rely on that, but that you then deposit individual
Jira issue numbers to a discussed decision, you then usually do not, because it is clear
anyway, what it is about. Whether it can then be tracked again in five years to a specific
Jira issue, we will then see. But having tooling in this direction is, I think, very helpful,
such as linking integrated development environments and software parts. It just has to
work with the existing tools. Otherwise, you don’t do the abstract documenting. What
I also find interesting would be to link it even more or to subdivide it even more. A
feature can be: rebuild the view, but a feature can also be, we make a completely new
huge feature, a new use case. So that you can still link it. That you say, we are still
building this milestone, and all these features are attached to it, and these decisions
then flow into the milestone. So in short: you have one more subdivision, maybe one
level. And maybe you can also link the features, and not just have individual features.

Automation, naviga-
tion support, change
execution, nudging,
metrics and dash-
board

Generally speaking: It automates everything that can be automated. I can always edit
it afterward. And, that I can jump back and forth between my knowledge repository
and my CSE infrastructure very quickly, so that at any point in my branch, if I see
something, I’m directly in the knowledge repository at that point, and I can add the
corresponding knowledge that I’ve gained. Maybe also that the dashboard can directly
generate any suggestions, warnings, . . . something like that maybe already itself. So
that the dashboard not only visualizes knowledge.

Automation, trace-
ability

I think that this should all be automated. Otherwise, I can’t get it in. In other words, if
that eats up part of my development or management capacity, then of course you have
a problem establishing such a system. Therefore, a high degree of automation would be
a prerequisite. I don’t want to link it individually, but it should be obtained from the
data that I have across all my systems, whether in Jira or git so that it can be linked
automatically. Because I already enter the data somewhere.

Decision making
based on run-time
infos (logs, active
features)

It would be important for a project team to know which feature is productive at all.
That’s why you need a link between the knowledge repository and the CSE infrastructure.
That information exchange also takes place there, so that you can then see which version
is deployed and which features are contained in it. That would be an important criterion
for me. What would also be important (but this is more technical) is that the developer
gets quick access to log data from production. This is mostly missing. When users report
bugs, it’s usually the case that the developer can’t get to the data from production at
all. There are tools for collecting these logs and making them available to developers via
dashboards. However, this is always difficult because it involves personal data (which
is critical), even if this data is not contained in it or if, for example, it runs like the
US stock exchange and, according to SOX criteria, development must be very strictly
separated from production. In the end, the developer gets nothing from the production.

Table B.19.: Anonymized examples of obstacles of continuous rationale management reported by
practitioners (RQ3.2).

Obstacle Practitioner’s Statement regarding the Obstacles

Intrusiveness and ef-
fort problem

The disadvantage would be that from a developer’s point of view you would have to put
a lot of work into documenting it. So if I open a feature branch, and name it correctly,
and then that already works automatically, then that would be super cool, then that
would also be useful to many. But if I first have to make a new entry in such a system,
then have to enter: these belong together in such and such a way, the feature branch
belongs to this knowledge repository entry or proposal, and there I would like to link
this analytics data, please, and have to set everything up manually, then it would all be
such a big obstacle that people probably wouldn’t use it.

Continued on next page

264

B.2. Description of Related Work

Obstacle Practitioner’s Statement regarding the Obstacles

Intrusiveness and ef-
fort problem, dis-
tributed documenta-
tion

The knowledge repository already exists in parts in the form of ticketing systems, e. g.
Redmine already does this. The problem, however, is that you always have to search in
two places. One is lazy and does not do exactly that; developers also want to do a lot
via the console.

High amount Over time, the database will become huge because many features will be developed. I
think it is not so easy to implement a meaningful search.

B.2. Description of Related Work

Tang et al. (2006) surveyed 81 participants to investigate the value of design rationale to
practitioners and how they use and document design rationale. They also investigated which
types of rationale practitioners do (RQ2.1 a) and do not capture (RQ2.2 a). They refer to non-
existence decisions as discarded decisions. About 44 % of their respondents answered to document
discarded decisions very often, whereas about 36 % of their respondents do not document discarded
decisions. That confirms our finding that some practitioners stated capturing, for example, non-
existence decisions, while others do not capture them. Amongst others, they list the following
documentation locations, techniques, and tools mentioned by their study participants (RQ2.1 b):
office tools, UML tools, document architecture decisions using formal method and notation,
internally developed tools, and requirements traceability matrix. They report the following
benefits of documenting design rationale (RQ2.1 f): support maintenance and modification tasks
as well as impact analysis. Similar to our research questions RQ2.2 b and RQ3.2 as well as the
problems listed in Section 1.2, Tang et al. (2006) identified barriers to the use and documentation
of design rationale. Lack of time or budget was found to be the most common cause of not
documenting design rationale. For example, other barriers were a lack of appropriate standards
and tool support, the unawareness of the need and usefulness of documenting design rationale, a
lack of a formal review process, and the dynamic nature of technology and solutions make it
useless to document design rationale. Tang et al. (2006) discuss their results regarding various
aspects and provide ideas for general improvement and a few tool features (RQ3). They identified
a need for guidelines under which the use and documentation of design rationale will provide more
benefits than the costs involved. They mention a traceability feature to support the systematic
design rationale retrieval to be useful.

Miesbauer and Weinreich (2013) and Weinreich et al. (2015) conducted two interview studies
on kinds, influence factors, and documentation of design decisions in practice. Similar to
our study (RQ2.1 a), Miesbauer and Weinreich (2013) classified these decisions according to
Kruchten’s taxonomy (Kruchten, 2004; Kruchten, 2009). They also found that most of the
decisions were existence decisions and that non-existence and property decisions were rarely
mentioned. Weinreich et al. (2015) created a new classification scheme based on the practitioners’
examples. They found that software architects classify decisions as solution-oriented and driver-
oriented. For example, solution-oriented decisions concern the software structure and technology
selection. Driver-oriented decisions focus on the qualities that must be achieved, i. e., quality
requirements. Further, they found that software architects often classify decisions according
to granularity, scope, and impact. According to Weinreich et al. (2015), decisions regarding
high-level design (architectural decisions) are usually documented. Decisions with a local scope
are either documented in code, in the issue tracking system or not documented at all. Their
study participants named the following documentation locations (RQ2.1 b): source code, meeting
minutes, project diaries, tickets, text documents, emails, presentations, diagrams, and wikis.
Regarding the evolutionary history (RQ2.1 d), they found that the versioning of decisions was
considered to be very important by the practitioners but do not detail how versioning is done.

265

B. Supplementary Material of Interview Study on State of the Practice

They asked when design decisions are made and documented (RQ2.1 e). They mention meetings
and that architecture decisions are “typically a group effort”, while developers make decisions with
a local scope on their own. They identified the following benefits of design decision documentation
(RQ2.1 f): training of new employees, arguing with customers during development, resolving
production problems, impact analysis during product maintenance, and preventing knowledge
vaporization. Weinreich et al. (2015) asked for types of decisions that the practitioners consciously
do not capture. In contrast, we asked what important decisions the practitioners do not capture
(RQ2.2 a), which is a different question. However, Weinreich et al. (2015) provide examples
for decision types not captured that are important to the majority of their study participants:
Tool and property decisions as well as decisions related to the development process are often
not documented. Non-existence decisions are rarely documented. As reasons for not capturing
decisions (RQ2.2 b) they found: the documentation of design decisions is often too time- and
cost-intensive, outdated documentation and redundancies that lead to inconsistencies, an unclear
cost/benefit ratio when documenting decisions, the difficulty in finding a documented decision or
determining whether a specific decision is documented or not, and the difficulty in deciding what
and how best to document the knowledge. Similar to our research question RQ3, they make
the following recommendations for improved architectural knowledge management: Reducing
biases is important to support an objective and reasoned decision process, organize decisions
with requirements and qualities (e. g., in the issue tracking system), use patterns for ease of
capturing (e. g., referencing pattern catalogs), identify main drivers for decision makers, adjust
decision documentation techniques to team size, support the recovery of decision documentation
from various sources e. g., from the version control system such as van der Ven and Bosch (2013).

Capilla et al. (2016) performed an interview study to understand the state of practice regarding
architectural knowledge management. They interviewed six practitioners from the industry
working in the role of software architects. They provide a few examples of architectural knowledge
captured, e. g., API documentation, but not for decision types (RQ2.1 a). Word files, wiki
systems, and PowerPoint were mentioned as documentation locations for general architectural
knowledge, including requirements, architecture views, and design decision models (RQ2.1 b).
They discuss the following benefits of architectural knowledge management (RQ2.1 f): avoid
knowledge vaporization, understand the ripple effect of decisions, identify and track the root
causes of changes and better estimate the impact analysis, share decisions among the relevant
stakeholders, understand the evolution of the system, understand the underpinning reasons
for decisions and build on experience, and identify critical decisions and run-time concerns.
They asked for architectural knowledge not captured by the practitioners but worthwhile to be
captured. The practitioners answered that design rationale would be relevant to be captured
(RQ2.2 a) to explain why the software was designed in a certain way (RQ2.2 c). They identified
the following barriers, i. e., reasons why architectural knowledge management is not performed
(RQ2.2 b): Lack of motivation or incentive, lack of adequate tools, uncertainty of what to capture,
effort in capturing architectural knowledge, disrupting the design flow, and lack of stakeholder
understanding. Similar to our research question RQ3, they identified remedies: Encourage and
convince the stakeholders, systematize the knowledge-capturing process, lean approaches for
capturing architectural knowledge, embed the design rationale with current modeling approaches
and tools.

Schubanz (2021) surveyed the as-is state of rationale management in agile software develop-
ment, in particular Scrum. One hundred-two practitioners participated in the survey. They
tested various hypotheses. For example, their responses indicate that a developer’s experience
significantly impacts the documentation frequency and the interest in the available documentation.
They asked for types of decisions that practitioners document (RQ2.1 a) and that they think are
worth documenting (similar to RQ2.2 a. Still, it is unclear whether the practitioners currently do
not capture the decision types). They have predefined decision types that the practitioners rated

266

B.2. Description of Related Work

(in descending order by their rating to be worth documenting): decisions regarding development
tools, feature refinement, architecture/design, quality, feature prioritization, user experience,
deployment, process, technology, team, and to-do items. Examples of free-text answers were:
changes in solution decisions and decisions where it is not immediately obvious that it is the
optimal choice. They asked for media types and means to capture decisions (RQ2.1 b). They
provided a list of Scrum practices, such as retrospective and sprint planning, and asked for
the practitioners’ decision documentation frequencies per activity (RQ2.1 e). They asked for
criteria motivating the practitioners to document decisions and situations in that a decision
documentation is useful (RQ2.1 f): for example, preparation for later audits and compliance with
legal regulations. Further, they asked for reasons not to document decisions (RQ2.2 b). They
received various answers, of which we arbitrarily picked the following: Decisions can change
faster than documentation, so small decisions are more likely to be documented directly in the
code rather than using wikis. Sometimes decisions are made intuitively, and there is no analysis
of the alternatives. Decisions made unconsciously are not documented.

267

Appendix C
Supplementary Material
of Systematic Mapping Study

“Quality deliveries with short cycle time need a high degree of
automation.”

—Ebert et al., 2016

This appendix provides supplementary material for the systematic mapping study in Chapter 4.
Listing C.1 shows the query for the ACM digital library1. We searched the ACM Full-Text

Collection and excluded publications before 2010.

Listing C.1: ACM digital library key-word query
(Title :("rationale") OR Title:("decision") OR Abstract :("rationale") OR Abstract :("decision"))
AND (Title:("knowledge") OR Abstract :("knowledge") OR Title:(document *) OR

Abstract :(document *) OR Title:(manage *) OR Abstract :(manage *))
AND (Title:(recommend *) OR Title:(classif *) OR Abstract :(recommend *) OR Abstract :(classif *))
AND (Title:("technique") OR Title:("approach") OR Title:("method") OR Title:("support") OR

Abstract :("technique") OR Abstract :("approach") OR Abstract :("method") OR
Abstract :("support") OR Title:("system") OR Abstract :("system"))

AND (Title:("software") OR Abstract :("software"))

Listing C.2 shows the query for the IEEE Xplore digital library. We entered the query in the
command search interface2 and excluded publications before 2010 and books.

Listing C.2: IEEE Xplore digital library key-word query
("Document Title":"decision" OR "Document Title":"rationale"

OR "Abstract":"decision" OR "Abstract":"rationale")
AND ("Document Title":"knowledge" OR "Abstract":"knowledge" OR "Document Title":"document*"

OR "Abstract":"document*" OR "Document Title":"manage*" OR "Abstract":"manage*")
AND ("Document Title":"recommend*" OR "Document Title":"classif*"

OR "Abstract":"recommend*" OR "Abstract":"classif*")
AND ("Document Title":"approach" OR "Document Title":"technique" OR "Document Title":"method"

OR "Document Title":"support" OR "Abstract":"approach" OR "Abstract":"technique" OR
"Abstract":"method" OR "Abstract":"support" OR "Document Title":"system" OR
"Abstract":"system")

AND ("Document Title":"software" OR "Abstract":"software")

1https://dl.acm.org/search/advanced
2https://ieeexplore.ieee.org/search/advanced/command

269

https://dl.acm.org/search/advanced
https://ieeexplore.ieee.org/search/advanced/command

Appendix D
Supplementary Material
of Knowledge Documentation Analysis

“Capturing the right set of links can help increase decisions’
sustainability.”

—Zdun et al., 2013

This appendix provides supplementary material for the knowledge documentation analysis
in Chapter 9. Section D.1 describes the documentation of the six validation projects’ decision
knowledge, system knowledge, and project knowledge. Section D.2 contains additional plots of
the knowledge documentation data.

D.1. Description of Knowledge Documentation of Validation Projects

We describe the knowledge documentation of the case study projects to enable their comparison
and conclusions in the remainder of this chapter. We qualitatively and quantitatively describe
1) the requirements specification and other tickets in the issue tracking system, 2) code and
commits in the version control system as well as their links to the issue tracking system of
the four projects for that we have access to the version control system data, 3) the decision
knowledge documentation including the rationale types, documentation locations, states of issues
and decisions, intra-rationale completeness, and decision types, and 4) the relation of the decision
knowledge to requirements and code.

Workplace-Control App

For the workplace-control app, the developers documented 11 epics. Seven epics relate to
app features or components: Setting up new Smart Devices, Smart Device Control, Energy
Consumption Awareness, Augmented-Reality View of Smart Devices, Fog Node Architecture,
Smart Environment Automation Server, and User Management. A particularity is that the
four remaining epics describe project-specific organizational aspects: Client Acceptance Test,
Design Review, Shoot a Trailer for the Design Review, and Documentation. 35 user stories are
documented, e. g., titled Show aggregated energy consumption, Comparison of energy consumption
to other occupants, Control smart lamps, Show devices in the current point of view, and Show
additional information about selected device. The project documentation of the workplace-control
app contains 172 development tasks, 309 development sub-tasks, and 50 bug reports.

271

D. Supplementary Material of Knowledge Documentation Analysis

The developers of the workplace-control app documented 33 issues, 56 decisions, 16 alternatives,
and 26 arguments. All of the 131 decision knowledge elements are documented as entire tickets.
Five issues are unsolved. During the iPraktikum projects, ConDec did not offer the functionality
to mark rejected decisions. Thus, the respective number is unknown. 30.3 % of the 33 issues
have at least one alternative documented (next to the decision). For 75 % of the decisions, an
issue is linked. For 16.1 % of the decisions, at least one pro-argument is linked. At least one
con-argument is linked for 18.8 % of the alternatives.

The decisions for the workplace-control app are assigned to the following types: 45 % are
executive decisions (e. g., We do not assign tasks, but people grab them! and We will use
our current setup with fog node on the virtual machine and the virtual-private-network tunnel to
the lamps!), 25 % are quality-driven (e. g., Delete device via long press! for usability), 21 % are
functionality-driven (e. g., Set consumption in contrast with the hours spent at the smart office!
and Show consumption in the last 30 days in energy report!), 20 % concern the frontend (e. g.,

Add brightness slider with icons on side of labels!), 7 % concern the backend and data storage
(e. g., Use InfluxDB for saving analytics data!), 5 % concern the API (e. g., Determine
current occupants via fog node connection!), and 2 % relate to software testing (Allow creation
of multiple World Maps [for testing] during development stage!). Since we assigned the types
retrospectively, no other decision types are assigned to the decisions for the workplace-control
app.

97.1 % of the user stories are not linked to decisions. Only one user story titled split up world
maps and anchors again is linked to one decision via the respective issue: What action should
we take when it is too dark for loading the world maps? An option to turn on the lights should
be displayed!

Car Charging App

For the car charging app, the developers documented 31 scenarios, e. g., titled Configure smart
device notifications, Enable and disable notifications, Join neighborhood as charging station owner,
Add charging station to own account, Search for charging stations nearby, Accept/Deny friend
request/invite, and Autonomous car drives to charging station. Besides, the car charging app
project documentation contains 162 development tasks, 593 development sub-tasks, and 57 bug
reports.

The developers of the car charging app documented 21 issues, 11 decisions, 29 alternatives,
and 38 arguments. All of the 99 decision knowledge elements are documented as entire tickets.
Eleven issues are unsolved. 57.1 % of the 21 issues have at least one alternative documented. For
90.9 % of the decisions, an issue is linked. For 9.1 % of the decisions, at least one pro-argument is
linked. At least one con-argument is linked for 44.8 % of the alternatives.

The decisions for the car charging app are assigned to the following types: 36 % are executive
decisions (e. g., Use docker!), 18 % concern the frontend (e. g., Replace the search tab bar
element with discover view!), 45 % concern the backend and data storage (e. g., Composite
between UserClass – HouseClass – SmartDeviceClass!), and 9 % relate to software testing (Mock
Tesla!). Since we assigned the types retrospectively, no other decision types are given to the
decisions for the car charging app app.

All of the scenarios are not linked to decisions. The maximal decision coverage of scenarios is
zero. However, one development task and two development sub-tasks are linked to decisions. For
example, the task Set up virtual machine is linked to Should the database run in docker? and

Use docker! with the pro-argument Reproducible on other systems.

272

D.1. Description of Knowledge Documentation of Validation Projects

IoT Platform

For the IoT platform, the developers documented seven epics: Basic Device Management, Device
Overview, Device Detail View, Master-data Management, Tag Management, Mock Device Data
Provider, and Anomaly Detection. The requirements specification for the IoT platform contains
53 user stories, e. g., titled Register a device, Modify a device, Tag a device with arbitrary tags,
See an overview of all devices, See all measured data from a device, and See a historical list
of anomalies for a device. Each of the user stories contains a description using the Connextra
template, i. e., in the form I as a <role> want <function> so that <business value/some reason>
(Cohn, 2004). For example, the user story titled See a detailed view of an anomaly is described as
As an IoT manager, I want to see anomalies highlighted in the device data so that I can figure out
if something is wrong with my devices or their data. A particularity is that 26 user stories specify
non-functional requirements, e. g., As an IoT manager, I want to store at least 50 000 devices to
manage a vast IoT landscape. Every non-functional user story is linked to a quality attribute:
either to Security, Maintainability, Portability, Usability, Compatibility, Reliability, Performance
Efficiency, or Functional Suitability. Besides, the IoT platform project documentation contains
27 development tasks, 129 development sub-tasks, and 35 bug reports.

The IoT platform project has five git repositories1, for the frontend, backend, deployment,
a crawler for air-quality data, and for setting up the development infrastructure. In total, the
master branches of the repositories contain 998 commits. 19 % of the commits have a valid ticket
identifier in their commit message. The knowledge graph contains 101 code files (10553 LOC) of
the seven types ts, vue, js, xml, scss, conf, and html. Particular code types in the IoT platform
project are vue for the Vue JavaScript framework and scss for Sass CSS, a preprocessing language
for CSS. 23.8 % of the code files (24 files, 1730 LOC) are for testing. 56 % of the code files are
linked to at least one ticket in the issue tracking system.

The developers of the IoT platform documented 111 issues, 116 decisions, 94 alternatives,
184 pro-, 113 con-arguments, and one unpositioned argument. In total, they documented
619 decision knowledge elements. 1.9 % of the decision knowledge elements are documented as
entire tickets, 97.9 % in the description and comments of existing tickets such as user stories or
development tasks, and 0.2 % in commit messages. Four issues are unsolved, and 8 of the decisions
are marked as rejected. 59.5 % of the 111 issues have at least one alternative documented. For
all of the 116 decisions, an issue is linked (there are issues with more than one decision). For
73.3 % of the decisions, at least one pro-argument is linked. For 71.3 % of the alternatives, at
least one con-argument is linked.

The decisions for the IoT platform are assigned to the following types: 12 % are executive
decisions, 17 % are quality-driven, 9 % are functionality-driven, 44 % concern the frontend,
28 % concern the backend and data storage, 10 % concern the API, 3 % concern an external
library or framework, and 3 % relate to software testing. The developers assigned the following
additional decision types: The quality attributes usability, security, and availability, the software
features information sharing, navigation, and other types user roles, architecture, implementation,
responsive layout, prioritization, naming, and error handling.

54.7 % of the user stories are not linked to decisions. Eight user stories are linked to one
decision. Sixteen user stories are linked to more than one decision. The maximal decision
coverage of six decisions is reached by two user stories titled As an IoT manager, I want to
register new devices, so that I can maintain my infrastructure and As an IoT manager, I want
to tag a device with arbitrary tags, so that I can find this device with these tags. 81.2 % of the
code files are not linked to decisions. 2 % of the code files are linked to one decision. 16.8 % of
the code files are linked to multiple decisions. Seventeen code files reach the maximal decision
coverage of 2 decisions.

1https://github.com/HEIOT

273

https://github.com/HEIOT

D. Supplementary Material of Knowledge Documentation Analysis

Web Search Engine

The requirements specification of the web search engine contains the following three epics: Search
Input, Search Processing, and Search Result Presentation. The epics are refined into 13 user
stories, which are titled according to the Connextra template. For example, Search Processing
is refined into As a search engine user, I want to find documents that contain synonyms to my
search terms, so I don’t have to try each synonym individually and As a search engine user, I
want to find information about my search input even if I made spelling mistakes, so I don’t have
to consider correct spelling. Besides, the requirements specification contains one user role (Search
Engine User), four personas, and six quality requirements (e. g., A search should not take longer
than 1 second and Documents containing the information needed should always be under the top
10 search results). Besides, the web search engine project documentation contains 131 work items
and 34 bug reports.

The web search engine has one git repository with 185 commits on the master branch. 78 %
of the commits have a valid ticket identifier in their commit message. The knowledge graph
contains 658 code elements (141266 LOC) of the three types ts, html, and xml. A particularity
is that the code of the Apache Solr and Apache Nutch libraries are part of the repository, which
results in high numbers of code elements and LOC. 1.8 % of the code files (12 files, 1724 LOC)
are for testing. All the code files are linked to at least one ticket in the issue tracking system.

The developers of the web search engine documented 81 issues, 116 decisions, 118 alternatives,
262 pro-, and 197 con-arguments. In total, they documented 774 decision knowledge elements in
two different documentation locations: 6.5 % of the decision knowledge elements are documented
as entire tickets, which are mainly issues, such as Which framework should we use for the
search engine? and Which framework should we use as a webcrawler? They captured solution
options and arguments in the description and comments of these issues. Altogether, 93.5 % of the
decision knowledge elements are documented in the description or comments of existing tickets,
such as the issue tickets, user stories, work items, and bug reports. All of the 81 issues are solved,
and nine decisions are marked as rejected. 79 % of the 81 issues have at least one alternative
documented. For all of the 116 decisions, an issue is linked (there are issues with more than
one decision). For 94 % of the decisions, at least one pro-argument is linked. For 76.3 % of the
alternatives, at least one con-argument is linked.

The decisions for the web search engine are assigned to the following types: 12 % are executive
decisions, 9 % are quality-driven, 26 % are functionality-driven, 22 % concern the frontend, 44 %
concern the backend and data storage, 4 % concern the API, 4 % concern an external library or
framework, and 9 % relate to software testing. The developers assigned the following additional
decision types: crawler, indexer, suggester, query processing, and legality.

All user stories are linked to more than one decision. The maximal decision coverage of 27
decisions is reached by one user story titled As a search engine user, I want to see my search
results as a paginated list to navigate through the pages. 4.1 % of the code files are not linked to
decisions. 1.7 % of the code files are linked to one decision. 94.2 % of the code files are linked to
more than one decision. The maximal decision coverage of 39 decisions is reached by one code
file named schema.xml.

Soccer App

The requirements specification of the soccer app contains the following four epics: Team Ad-
ministration and Rating, Player Administration and Rating, Exercise Management, and Event
Management. The epics are refined into 33 user stories, e. g., Create team, View exercise rec-
ommendations for entire team, Rate team, and View Exercise Details. Each of the user stories
contains a description using the Connextra template. For example, the user story titled View
exercise recommendations for entire team is described as As a coach, I want to see exercise

274

D.1. Description of Knowledge Documentation of Validation Projects

recommendations for the entire team to integrate them into practice. Besides, the requirements
specification contains two user roles (Coach and Player), four personas, and seven quality re-
quirements (e. g., The application should not take too long to load in any view, it should not take
longer than 0.5s). Besides, the soccer app project documentation contains 179 work items and
39 bug reports.

The soccer app project has two git repositories, one for the frontend and the backend. In total,
the master branches of the repositories contain 983 commits. 48 % of the commits have a valid
ticket identifier in their commit message. The knowledge graph contains 292 code files (19268
LOC) of the eight types java, ts, js, xml, css, conf, html, and yaml. A particular code type in
the knowledge graph of the soccer app project is yaml for configuration. 9 % of the code files (26
files, 3355 LOC) are for testing. 97 % of the code files are linked to at least one ticket in the
issue tracking system.

The developers of the soccer app documented 73 issues, 76 decisions, 84 alternatives, 203 pro-,
and 154 con-arguments. In total, they documented 590 decision knowledge elements. 8.6 %
of the decision knowledge elements are documented as entire tickets, mainly issues. 90.5 % of
the decision knowledge elements are documented in the description and comments of existing
tickets, and 0.8 % in code comments. One issue is unsolved, and three of the decisions are marked
as rejected. 94.5 % of the 73 issues have at least one alternative documented. For all of the
76 decisions, an issue is linked (there are issues with more than one decision). For 97.4 % of
the decisions, at least one pro-argument is linked. For 95.2 % of the alternatives, at least one
con-argument is linked.

The decisions for the soccer app are assigned to the following types: 21 % are executive
decisions, 9 % are quality-driven, 17 % are functionality-driven, 45 % concern the frontend, 24 %
concern the backend and data storage, 5 % concern the API, 7 % concern an external library or
framework, and 7 % relate to software testing. The developers assigned the following additional
decision types: architecture, compatibility, implementation, prioritization, and security.

All user stories are linked to more than one decision. The maximal decision coverage of 8
decisions is reached by one user story titled As a coach, I want to browse different exercises to
get inspiration for practice. 30.5 % of the code files are not linked to decisions. 14.4 % of the
code files are linked to one decision. 55.1 % of the code files are linked to more than one decision.
The maximal decision coverage of 13 decisions is reached by two code files named Player.java
and PlayerService.java.

ConDec Plug-Ins

Table D.1 presents an overview of the knowledge documentation of the ConDec plug-ins. We use
the notations of Task and Object-oriented Requirements Engineering to specify the requirements
for the ConDec plug-ins (Paech and Kohler, 2004). The requirements specification of ConDec
contains five major user roles: Product Owner, Rationale Manager, Developer, Meeting Manager,
and Release Manager (Section 7.1). For each user role, we specified one user task, e. g., the user
task Rationale Management for the Rationale Manager role. We refined the user tasks into 14
sub-tasks. The IT support for the sub-tasks is specified using 98 system functions. The user-
interface structure consists of 48 workspaces. In total, 14 quality requirements are documented
for all ConDec plug-ins. Diagrams for the domain data model and the user-interface-structure
diagram are documented in the wiki. Besides, the ConDec project documentation contains 493
work items, 151 bug reports, 50 system test cases, and five test execution tickets. All ConDec
plug-ins share the task specification. The ConDec Jira plug-in implements the highest number
of system functions of the ConDec plug-ins. The ConDec Jira plug-in offers 74 system functions,
and the Jira project contains 843tickets. Table D.1 does not list user tasks and sub-tasks because
they are shared among the ConDec plug-ins.

275

D. Supplementary Material of Knowledge Documentation Analysis

Table D.1.: Knowledge documentation of the ConDec plug-in development projects (March 1,
2023): 1) requirements and other tickets in Jira, 2) commits and code in git and
their trace links to Jira, and 3) decision knowledge in Jira and git.

ConDec
Jira

ConDec
Confluence

ConDec
Bitbucket

ConDec
Eclipse

ConDec
VSCode

ConDec
Slack

Requirements and other Tickets in Jira

#System Functions 74 3 3 12 2 4
#Workspaces 32 3 3 4 3 3

#Tickets 843 24 19 54 13 45

Commits and Code in git

#Commits 1823 77 53 48 13 19
#CommitsL 1539 (84 %) 39 (51 %) 26 (49 %) 41 (85 %) 2 (15 %) 11 (58 %)

Code Types in
Knowledge Graph

java, js, xml,
vm

java, js, xml,
vm

java, js, xml,
soy

java, js, xml ts js

#Codegraph (Test) 792 (397) 26 (15) 29 (17) 82 (28) 4 (3) 11 (2)
#LOCgraph (Test) 278049

(24371)
2070 (942) 2310 (1314) 8421 (2582) 199 (114) 2102 (14)

#CodecomL 791 (99.9 %) 25 (96 %) 29 (100 %) 82 (100 %) 2 (50 %) 11 (100 %)

Decision Knowledge Documentation in Jira and git

#Issues 529 17 13 62 6 11
#Decisions 652 22 14 65 9 9

#Alternatives 283 4 6 33 1 9

Ra
tio

na
le

Ty
pe

s

#Arguments 453 ,
377 , 11

7 , 10 6 , 6 38 , 51 3 , 2 9 , 7 ,
7

/# 529
652 = 0.8 17

22 = 0.8 13
14 = 0.9 62

65 = 1 6
9 = 0.67 11

9 = 1.2
/# 652

283 = 2.3 22
4 = 5.5 14

6 = 2.3 65
33 = 1.97 9

1 = 9 9
9 = 1

#(+ +)/#(+) 841
935 = 0.9 17

26 = 0.65 12
20 = 0.6 89

98 = 0.9 5
10 = 0.5 23

18 = 1.3
/#System Function 652

74 = 8.8 22
3 = 7.3 14

3 = 4.67 65
12 = 5.4 9

2 = 4.5 9
4 = 2.2

Ra
tio

s

with 237 (44.8 %) 4 (23.5 %) 4 (30.8 %) 30 (48.4 %) 1 (16.7 %) 6 (54.5 %)
with 652 (100 %) 22 (100 %) 14 (100 %) 65 (100 %) 9 (100 %) 9 (100 %)
with 274 (42 %) 5 (22.7 %) 6 (42.9 %) 18 (27.7 %) 3 (33.3 %) 4 (44.4 %)
with 182 (64.3 %) 4 (100 %) 4 (66.7 %) 26 (78.8 %) 1 (100 %) 5 (55.6 %)In

tr
a-

Ra
tio

na
le

Co
m

pl
et

en
es

s

#Rationale Elements 2305 60 45 249 21 52

#Elements as
Tickets

68 (3 %) 0 (0 %) 1 (2.2 %) 0 (0 %) 0 (0 %) 18 (34.6 %)

#Elements in
Ticket Text

1507 (65.4 %) 43 (71.7 %) 29 (64.4 %) 183 (73.5 %) 16 (76.2 %) 34 (65.4 %)

#Elements in
Commit Messages

378 (16.4 %) 9 (15 %) 6 (13.3 %) 45 (18.1 %) 5 (23.8 %) 0 (0 %)

D
oc

um
en

ta
tio

n
O

rig
in

#Elements in Code
Comments

349 (15.1 %) 8 (13.3 %) 9 (20 %) 21 (8.4 %) 0 (0 %) 0 (0 %)

#Open Issues 8 (1.5 %) 1 (5.9 %) 2 (15.4 %) 3 (4.8 %) 0 (0 %) 0 (0 %)

St
at

us

#Rejected
Decisions

60 (9.2 %) 1 (4.5 %) 2 (14.3 %) 1 (1.5 %) 1 (11.1 %) 0 (0 %)

Decision Coverage of System Functions in Link Distance <= 3

No Traceable 0 (0 %) 0 (0 %) 0 (0 %) 0 (0 %) 0 (0 %) 3 (75 %)
1 Traceable 1 (1.4 %) 0 (0 %) 1 (33.3 %) 0 (0 %) 0 (0 %) 1 (25 %)

> 1 Traceable 73 (98.6 %) 3 (100 %) 2 (66.7 %) 12 (100 %) 2 (100 %) 0 (0 %)
Max. # Traceable 2 (2.7 %)

→ 44
1 (33.3 %)
→ 10

1 (33.3 %)
→ 4

1 (8.3 %)
→ 13

2 (100 %)
→ 3

1 (25 %)
→ 1

Decision Coverage of Code Elements in Link Distance <= 3

No Traceable 1 (0.1 %) 1 (3.8 %) 0 (0 %) 0 (0 %) 2 (50 %) 8 (72.7 %)
1 Traceable 21 (2.7 %) 3 (11.5 %) 7 (24.1 %) 0 (0 %) 0 (0 %) 3 (27.3 %)

> 1 Traceable 770 (97.2 %) 22 (84.6 %) 22 (75.9 %) 82 (100 %) 2 (50 %) 0 (0 %)
Max. # Traceable 1 (0.1 %)

→ 225
1 (3.8 %)
→ 15

1 (3.4 %)
→ 10

1 (1.2 %)
→ 25

2 (50 %)
→ 4

1 (9.1 %)
→ 1

276

D.2. Additional Plots of Knowledge Documentation Analysis

Each of the ConDec plug-ins (for Jira, Confluence, Bitbucket, Eclipse, VSCode, and Slack) has
one git repository2. In total, the master branches of the repositories contain 2033 commits. 82 %
of the commits have a valid ticket identifier in their commit message. The knowledge graphs of
the ConDec plug-ins contain 944 code files (293151 LOC) of the six types java, js, xml, vm, soy,
and ts. In the ConDec project, particular code types are Velocity (vm) and soy templates for
the user interface. 49 % of the code files (463 files, 29337 LOC) are for testing. 99.5 % of the
code files are linked to at least one ticket in the issue tracking system. Table D.1 on page 276
shows descriptive data about the code and commits as well as their links to the issue tracking
system for every ConDec plug-in. The ConDec Jira plug-in has the highest number of commits
(1823) and code elements (792) of the ConDec plug-ins. The particular high number of LOC
(278049) is due to the inclusion of library code3 in its current version.

The decision knowledge documentation of the ConDec plug-ins contain 638 issues, 771 decisions,
336 alternatives, 516 pro-, 453 con-arguments, and 18 arguments. 3.2 % of the decision knowledge
elements are documented as entire issue tracking system tickets, 66.4 % in the description and
comments of existing tickets, 16.2 % in commit messages, and 14.2 % in code comments. 14
issues are unsolved and 65 of the decisions are rejected. 44.2 % of the 638 issues have at least
one alternative documented. For all of the 771 decisions, an issue is linked (there are issues with
more than one decision). For 40.3 % of the decisions, at least one pro-argument is linked. At
least one con-argument is linked for 66.1 % of the alternatives. The ConDec Jira plug-in has the
highest number of documented rationale elements (2305) of the ConDec plug-ins.

The decisions for the ConDec plug-ins are assigned to the following types: 8 % are executive
decisions, 8 % are quality-driven, 26 % are functionality-driven, 33 % concern the frontend, 33 %
concern the backend and data storage, 5 % concern the API, 7 % concern an external library or
framework, and 5 % relate to software testing. The developers assigned the following additional
decision types: architecture, chatbot, chronology view, change impact analysis, compatibility,
configuration, context menu, criteria matrix, dashboard, decision grouping, decision guidance,
documentation location, event listener, explainability, export, filtering, git, import, informa-
tion channel, internationalization, knowledge graph, knowledge linking, knowledge management,
knowledge visualization, link recommendation, maintainability, merge check, naming, navigation,
nudging, performance, publishing, quality checking, rationale backlog, rationale model, release
notes, security, summarization, text classification, tree visualization, usability, webhook, and
wrong links. These types represent a collection of features and other important aspects in ConDec.

3.1 % of the specified system functions are not linked to decisions. 3.1 % of the system
functions are linked to one decision. 93.9 % of the system functions are linked to more than one
decision. The maximal decision coverage of 44 decisions is reached by two system functions titled
Manually classify text in the description or comments of a Jira issue as decision knowledge and
Automatically add decision knowledge from Jira issue description and comments in the knowledge
graph. 1.3 % of the code files are not linked to decisions. 3.6 % of the code files are linked to one
decision. 95.1 % of the code files are linked to more than one decision. The maximal decision
coverage of 225 decisions is reached by one configuration code file atlassian-plugin.xml of the
ConDec Jira plug-in.

D.2. Additional Plots of Knowledge Documentation Analysis

Figure D.1 visualizes the proportion of rationale types documented over time in the validation
projects. Gaps in the plot are due to a lack of decision knowledge data.

2https://github.com/cures-hub
3https://github.com/cures-hub/cures-condec-jira/tree/v2.3.6/src/main/resources/js/lib

277

https://github.com/cures-hub
https://github.com/cures-hub/cures-condec-jira/tree/v2.3.6/src/main/resources/js/lib

D. Supplementary Material of Knowledge Documentation Analysis

0%

25%

50%

75%

100%

2018-12-01 2019-01-01 2019-02-01

Creation Date

#R
at

io
na

le
 E

le
m

en
ts iPraktikum

Workplace
Control

Argument

Alternative

Decision

Issue

0%

25%

50%

75%

100%

2018-12-01 2019-01-01 2019-02-01

Creation Date

#R
at

io
na

le
 E

le
m

en
ts iPraktikum

Car Charging

Argument

Alternative

Decision

Issue

0%

25%

50%

75%

100%

2019-10-01 2019-11-01 2019-12-01 2020-01-01 2020-02-01 2020-03-01

Creation Date

#R
at

io
na

le
 E

le
m

en
ts

ISE
19/20

Issue

Decision

Alternative

Argument

Pro

Con

0%

25%

50%

75%

100%

2020-11-01 2020-12-01 2021-01-01 2021-02-01 2021-03-01

Creation Date

#R
at

io
na

le
 E

le
m

en
ts ISE

20/21

Issue

Decision

Alternative

Pro

Con

0%

25%

50%

75%

100%

2021-10-01 2022-01-01 2022-04-01

Creation Date

#R
at

io
na

le
 E

le
m

en
ts ISE

21/22

Issue

Decision

Alternative

Pro

Con

0%

25%

50%

75%

100%

2018-01-01 2019-01-01 2020-01-01 2021-01-01 2022-01-01

Creation Date

#R
at

io
na

le
 E

le
m

en
ts

ConDec

Issue

Decision

Alternative

Argument

Pro

Con

Figure D.1.: Proportion of rationale types documented over time in the validation projects.

278

D.2. Additional Plots of Knowledge Documentation Analysis

Figure D.2 shows the used documentation locations over time. We did not plot the iPraktikum
18/19 projects because the only documentation location used was entire Jira tickets.

0

40

80

120

2019-10-01 2019-11-01 2019-12-01 2020-01-01 2020-02-01 2020-03-01

Creation Date

#R
at

io
na

le
 E

le
m

en
ts

ISE
19/20

JiraIssueText

JiraIssue

Commit

0

20

40

60

80

2020-11-01 2020-12-01 2021-01-01 2021-02-01 2021-03-01

Creation Date

#R
at

io
na

le
 E

le
m

en
ts

ISE
20/21

JiraIssueText

JiraIssue

0

10

20

30

40

2021-10-01 2022-01-01 2022-04-01

Creation Date

#R
at

io
na

le
 E

le
m

en
ts

ISE
21/22

JiraIssueText

JiraIssue

Code

0

10

20

30

40

2018-01-01 2019-01-01 2020-01-01 2021-01-01 2022-01-01

Creation Date

#R
at

io
na

le
 E

le
m

en
ts

ConDec

JiraIssueText

JiraIssue

Commit

Code

Figure D.2.: Number of rationale elements per documentation origin in the validation projects.

Table D.2 lists the number and percentage of decisions per type per validation project.
Figure D.3 visualizes the number of decision groups assigned to the decisions. The groups are

a subset of our coding scheme executive, quality-driven, functionality-driven, frontend, backend
and data storage, API, external library or framework, testing.

Figure D.4 shows the custom decision groups used in the projects and the respective number
of decisions per group.

Figure D.5 shows the proportion of decision types documented over time in the validation
projects.

279

D. Supplementary Material of Knowledge Documentation Analysis

1 Groups Assigned
(43 Decisions ≈ 77%)

2 Groups Assigned
(12 Decisions ≈ 21%)

3 Groups Assigned
(1 Decisions ≈ 2%)

iPraktikum Workplace-Control

1 Groups Assigned
(10 Decisions ≈ 91%)

2 Groups Assigned
(1 Decisions ≈ 9%)

iPraktikum Car Charging

1 Groups Assigned
(87 Decisions ≈ 75%)

2 Groups Assigned
(27 Decisions ≈ 23%)

3 Groups Assigned
(2 Decisions ≈ 2%)

ISE 19/20

1 Groups Assigned
(85 Decisions ≈ 73%)

2 Groups Assigned
(28 Decisions ≈ 24%)

3 Groups Assigned
(3 Decisions ≈ 3%)

ISE 20/21

1 Groups Assigned
(54 Decisions ≈ 71%)

2 Groups Assigned
(18 Decisions ≈ 24%)

3 Groups Assigned
(4 Decisions ≈ 5%)

ISE 21/22

1 Groups Assigned
(580 Decisions ≈ 75%)

2 Groups Assigned
(189 Decisions ≈ 25%)

3 Groups Assigned
(2 Decisions ≈ 0%)

ConDec

Figure D.3.: Number of groups assigned to the decisions in the validation projects.

280

D.2. Additional Plots of Knowledge Documentation Analysis

Table D.2.: Number of decisions per decision type in the six validation projects. A decision can
be assigned to more than one type, thus, the sum of percentages exceeds 100 %.

iPraktikum 18/19 ISE 19/20 ISE 20/21 ISE 21/22 ConDec

Product Workplace
Control App

Car Charging
App

IoT
Platform

Web Search
Engine

Soccer App ConDec
Plug-Ins

Executive 25 (45 %) 4 (36 %) 14 (12 %) 14 (12 %) 16 (21 %) 63 (8 %)
Quality-Driven 14 (25 %) 0 (0 %) 20 (17 %) 10 (9 %) 7 (9 %) 63 (8 %)

Functionality-Driven 12 (21 %) 0 (0 %) 11 (9 %) 30 (26 %) 13 (17 %) 200 (26 %)
Frontend 11 (20 %) 2 (18 %) 51 (44 %) 25 (22 %) 34 (45 %) 257 (33 %)

Backend And Data
Storage

4 (7 %) 5 (45 %) 32 (28 %) 51 (44 %) 18 (24 %) 251 (33 %)

API 3 (5 %) 0 (0 %) 12 (10 %) 5 (4 %) 4 (5 %) 42 (5 %)
External Library and

Frameworks
0 (0 %) 0 (0 %) 3 (3 %) 5 (4 %) 5 (7 %) 50 (6 %)

Testing 1 (2 %) 1 (9 %) 4 (3 %) 10 (9 %) 5 (7 %) 38 (5 %)

QualityDriven (14 ≈ 25%)

FunctionalityDriven (12 ≈ 21%)

Frontend (11 ≈ 20%)BackendAndDataStorage (4 ≈ 7%)
API (3 ≈ 5%)

Executive (25 ≈ 45%)

Testing (1 ≈ 2%)

iPraktikum Workplace-Control

Frontend (2 ≈ 18%)

BackendAndDataStorage (5 ≈ 45%)

Executive (4 ≈ 36%)

Testing (1 ≈ 9%)

iPraktikum Car Charging

QualityDriven (20 ≈ 17%)

FunctionalityDriven (11 ≈ 9%)

Frontend (51 ≈ 44%)

BackendAndDataStorage (32 ≈ 28%)

API (12 ≈ 10%)

ExternalLibOrFramework (3 ≈ 3%)

Executive (14 ≈ 12%)
Testing (4 ≈ 3%)

ISE 19/20

QualityDriven (10 ≈ 9%)

FunctionalityDriven (30 ≈ 26%)

Frontend (25 ≈ 22%)

BackendAndDataStorage (51 ≈ 44%)

API (5 ≈ 4%)

ExternalLibOrFramework (5 ≈ 4%)

Executive (14 ≈ 12%)

Testing (10 ≈ 9%)

ISE 20/21

QualityDriven (7 ≈ 9%)

FunctionalityDriven (13 ≈ 17%)

Frontend (34 ≈ 45%)
BackendAndDataStorage (18 ≈ 24%)

API (4 ≈ 5%)

ExternalLibOrFramework (5 ≈ 7%)

Executive (16 ≈ 21%)

Testing (5 ≈ 7%)

ISE 21/22

QualityDriven (63 ≈ 8%)

FunctionalityDriven (200 ≈ 26%)

Frontend (257 ≈ 33%)

BackendAndDataStorage (251 ≈ 33%)

API (42 ≈ 5%)

ExternalLibOrFramework (50 ≈ 6%)

Executive (63 ≈ 8%)
Testing (38 ≈ 5%)

ConDec

Figure D.4.: Number of decisions per decision type in the six validation projects. A decision can
be assigned to more than one type. Thus, the sum of percentages exceeds 100 %.

281

D. Supplementary Material of Knowledge Documentation Analysis

0

5

10

2018-12-01 2019-01-01 2019-02-01

Creation Date

#D
ec

is
io

ns
 D

oc
um

en
te

d

iPraktikum
Workplace
Control

QualityDriven

FunctionalityDriven

Frontend

BackendAndDataStorage

API

Executive

Testing

0

1

2

3

2018-12-01 2019-01-01 2019-02-01

Creation Date

#D
ec

is
io

ns
 D

oc
um

en
te

d

iPraktikum
Car Charging

Frontend

BackendAndDataStorage

Executive

Testing

0

10

20

30

2019-10-01 2019-11-01 2019-12-01 2020-01-01 2020-02-01 2020-03-01

Creation Date

#D
ec

is
io

ns
 D

oc
um

en
te

d

ISE 19/20

QualityDriven

FunctionalityDriven

Frontend

BackendAndDataStorage

API

ExternalLibOrFramework

Executive

Testing

0

5

10

15

2020-11-01 2020-12-01 2021-01-01 2021-02-01 2021-03-01

Creation Date

#D
ec

is
io

ns
 D

oc
um

en
te

d

ISE 20/21

QualityDriven

FunctionalityDriven

Frontend

BackendAndDataStorage

API

ExternalLibOrFramework

Executive

Testing

0.0

2.5

5.0

7.5

2021-10-01 2022-01-01 2022-04-01

Creation Date

#D
ec

is
io

ns
 D

oc
um

en
te

d

ISE 21/22

QualityDriven

FunctionalityDriven

Frontend

BackendAndDataStorage

API

ExternalLibOrFramework

Executive

Testing

0

5

10

15

20

2018-01-01 2019-01-01 2020-01-01 2021-01-01 2022-01-01

Creation Date

#D
ec

is
io

ns
 D

oc
um

en
te

d

ConDec

QualityDriven

FunctionalityDriven

Frontend

BackendAndDataStorage

API

ExternalLibOrFramework

Executive

Testing

Figure D.5.: Decision types documented over time in the validation projects.

282

D.2. Additional Plots of Knowledge Documentation Analysis

We also coded the decisions by their levels as defined by van der Ven and Bosch (2013).
Figure D.6 shows the number and percentage of decisions assigned to the three decision levels.
Every decision is assigned to precisely one decision level.

High Level
(15 Decisions ≈ 26.8%)

Medium Level
(12 Decisions ≈ 21.4%)

Realization Level
(29 Decisions ≈ 51.8%)

iPraktikum Workplace-Control

High Level
(8 Decisions ≈ 72.7%)

Medium Level
(2 Decisions ≈ 18.2%)

Realization Level
(1 Decisions ≈ 9.1%)

iPraktikum Car Charging

High Level
(19 Decisions ≈ 16.4%)

Medium Level
(55 Decisions ≈ 47.4%)

Realization Level
(42 Decisions ≈ 36.2%)

ISE 19/20

High Level
(13 Decisions ≈ 11.2%)

Medium Level
(70 Decisions ≈ 60.3%)

Realization Level
(33 Decisions ≈ 28.4%)

ISE 20/21

High Level
(17 Decisions ≈ 22.4%)Medium Level

(30 Decisions ≈ 39.5%)

Realization Level
(29 Decisions ≈ 38.2%)

ISE 21/22

High Level
(76 Decisions ≈ 9.9%)

Medium Level
(272 Decisions ≈ 35.3%)

Realization Level
(423 Decisions ≈ 54.9%)

ConDec

Figure D.6.: Decision level assignments in the validation projects.

Figure D.7 shows the proportion of decision levels documented over time in the validation
projects.

283

D. Supplementary Material of Knowledge Documentation Analysis

0%

25%

50%

75%

100%

2018-12-01 2019-01-01 2019-02-01

Creation Date

#D
ec

is
io

ns
 D

oc
um

en
te

d

iPraktikum
Workplace
Control

High Level

Medium Level

Realization Level

0%

25%

50%

75%

100%

2018-12-01 2019-01-01 2019-02-01

Creation Date

#D
ec

is
io

ns
 D

oc
um

en
te

d

iPraktikum
Car Charging

High Level

Medium Level

Realization Level

0%

25%

50%

75%

100%

2019-10-01 2019-11-01 2019-12-01 2020-01-01 2020-02-01 2020-03-01

Creation Date

#D
ec

is
io

ns
 D

oc
um

en
te

d

ISE
19/20

High Level

Medium Level

Realization Level

0%

25%

50%

75%

100%

2020-11-01 2020-12-01 2021-01-01 2021-02-01 2021-03-01

Creation Date

#D
ec

is
io

ns
 D

oc
um

en
te

d

ISE
20/21

High Level

Medium Level

Realization Level

0%

25%

50%

75%

100%

2021-10-01 2022-01-01 2022-04-01

Creation Date

#D
ec

is
io

ns
 D

oc
um

en
te

d

ISE
21/22

High Level

Medium Level

Realization Level

0%

25%

50%

75%

100%

2018-01-01 2019-01-01 2020-01-01 2021-01-01 2022-01-01

Creation Date

#D
ec

is
io

ns
 D

oc
um

en
te

d

ConDec

High Level

Medium Level

Realization Level

Figure D.7.: Proportion of decision levels documented over time in the validation projects.

284

Appendix E
Supplementary Material
of Text Classifier Validation

“To reduce design documentation effort, we experimented with
lean, minimalistic documentation.”

—Zdun et al., 2013

This appendix provides supplementary material for the effectiveness evaluation of the automatic
text classification in Chapter 10. Table E.1 shows the precision and recall values of the evaluation
of the binary and fine-grained classifiers on the data of individual projects using 10-fold cross-
validation and for different machine learning algorithms. Table E.2 shows the precision and recall
values of the evaluation of the binary and fine-grained classifiers for cross project validation in
the three ISE projects and different machine learning algorithms. Table E.3 shows the precision
and recall values of the evaluation of the binary and fine-grained classifiers on the combined
data of the three ISE projects and the issue tracking data by Alkadhi (2018) using 10-fold
cross-validation and for different machine learning algorithms.

285

E. Supplementary Material of Text Classifier Validation

Table E.1.: Evaluation results of the binary and fine-grained classifiers on the data of single
projects using 10-fold cross validation. The machine-learning algorithms are Logistic
Regression (LR), Naïve Bayes (NB), and Support Vector Machine (SVM).

Metric Project Alg. Binary
(Relevant/Irrelevant)

Issue Alternative Decision Pro Con

Precision ConDec LR 0.7 0.65 0.31 0.25 0.42 0.5
ConDec NB 0.56 0.69 0.33 0.37 0.37 0.31
ConDec SVM 0.74 0.56 0.36 0.33 0.43 0.39

ISE 19/20 LR 0.73 0.67 0.29 0.3 0.36 0.46
ISE 19/20 NB 0.75 0.64 0.28 0.42 0.38 0.53
ISE 19/20 SVM 0.79 0.65 0.17 0.3 0.41 0.57
ISE 20/21 LR 0.77 0.33 0.2 0.46 0.32 0.5
ISE 20/21 NB 0.68 0.62 0.33 0.43 0.46 0.43
ISE 20/21 SVM 0.77 0.42 0.18 0.26 0.26 0.32
ISE 21/22 LR 0.83 0.7 0.47 0.42 0.26 0.31
ISE 21/22 NB 0.82 0.57 0.28 0.38 0.26 0.25
ISE 21/22 SVM 0.86 0.69 0.58 0.67 0.28 0.24

Lucene LR 0.69 0.22 0.39 0.92 0.65 0.36
Lucene NB 0.63 0.45 0.35 0.42 0.4 0.36
Lucene SVM 0.56 0.2 0.39 0.96 0.67 0.24

Thunderbird LR 0.57 0.39 0.33 0.4 0.3 0.27
Thunderbird NB 0.55 0.32 0.24 0.42 0.22 0.24
Thunderbird SVM 0.55 0.52 0.41 0.84 0.36 0.25

Ubuntu LR 0.52 0.2 0.4 0.25 0.45 0.39
Ubuntu NB 0.53 0.12 0.5 0.34 0.26 0.27
Ubuntu SVM 0.66 0.31 0.41 0.3 0.24 0.29

Recall ConDec LR 0.62 0.28 0.06 0.93 0.06 0.23
ConDec NB 0.95 0.42 0.19 0.36 0.15 0.74
ConDec SVM 0.55 0.54 0.3 0.5 0.41 0.29

ISE 19/20 LR 0.72 0.5 0.17 0.63 0.17 0.48
ISE 19/20 NB 0.66 0.51 0.51 0.6 0.12 0.35
ISE 19/20 SVM 0.52 0.6 0.07 0.64 0.32 0.42
ISE 20/21 LR 0.56 0.89 0.01 0.16 0.22 0.58
ISE 20/21 NB 0.99 0.78 0.75 0.04 0.34 0.29
ISE 20/21 SVM 0.64 0.75 0.05 0.06 0.51 0.22
ISE 21/22 LR 0.68 0.46 0.31 0.32 0.07 0.83
ISE 21/22 NB 0.63 0.51 0.4 0.42 0.36 0.04
ISE 21/22 SVM 0.76 0.62 0.4 0.31 0.18 0.56

Lucene LR 0.67 0.84 0.15 0.25 0.08 0.17
Lucene NB 0.68 0.21 0.33 0.6 0.4 0.41
Lucene SVM 0.97 0.72 0.24 0.17 0.14 0.12

Thunderbird LR 0.89 0.45 0.39 0.4 0.19 0.27
Thunderbird NB 0.8 0.19 0.11 0.48 0.56 0.06
Thunderbird SVM 0.88 0.42 0.45 0.34 0.19 0.53

Ubuntu LR 0.95 0.02 0.12 0.9 0.1 0.33
Ubuntu NB 0.87 0.02 0.04 0.21 0.5 0.6
Ubuntu SVM 0.64 0.08 0.27 0.58 0.08 0.5

286

Table E.2.: Evaluation results of the binary and fine-grained classifiers for cross-project validation.
The machine-learning algorithms are Logistic Regression (LR), Naïve Bayes (NB),
and Support Vector Machine (SVM).

Metric Training
Project

Validation
Project

Alg. Binary Issue Alternative Decision Pro Con

Precision ISE 19/20 ISE 20/21 LR 0.79 0.56 0.21 0.31 0.34 0.4
ISE 19/20 ISE 20/21 NB 0.66 0.42 0.24 0.19 0.53 0.5
ISE 19/20 ISE 20/21 SVM 0.53 0.92 0.3 0.34 0.37 0.53
ISE 19/20 ISE 21/22 LR 0.8 0.48 0 0.32 0.39 0.5
ISE 19/20 ISE 21/22 NB 0.71 0.38 0.18 0.26 0.31 0.45
ISE 19/20 ISE 21/22 SVM 0.45 0.83 0.44 0.39 0.39 0.44
ISE 20/21 ISE 19/20 LR 0.57 1 0 0.78 0.31 0.39
ISE 20/21 ISE 19/20 NB 0.32 0.57 0.23 0.52 0.51 0.37
ISE 20/21 ISE 19/20 SVM 0.36 0.96 0.12 0.6 0.32 0.48
ISE 20/21 ISE 21/22 LR 0.78 0.67 0 1 0.36 0.37
ISE 20/21 ISE 21/22 NB 0.47 0.35 0.19 0.35 0.38 0.38
ISE 20/21 ISE 21/22 SVM 0.54 0.95 0.14 0.75 0.38 0.44
ISE 21/22 ISE 19/20 LR 0.6 1 0.14 0.45 0.3 0.29
ISE 21/22 ISE 19/20 NB 0.58 0.67 0.21 0.38 0.75 0.45
ISE 21/22 ISE 19/20 SVM 0.32 0.96 0.25 0.58 0.33 0.35
ISE 21/22 ISE 20/21 LR 0.69 0.92 0 0.33 0.35 0.38
ISE 21/22 ISE 20/21 NB 0.67 0.58 0.2 0.19 0.78 0.57
ISE 21/22 ISE 20/21 SVM 0.56 1 0.27 0.31 0.36 0.46

Recall ISE 19/20 ISE 20/21 LR 0.14 0.28 0.03 0.1 0.85 0.08
ISE 19/20 ISE 20/21 NB 0.62 0.46 0.62 0.31 0.08 0.36
ISE 19/20 ISE 20/21 SVM 0.97 0.3 0.05 0.22 0.87 0.12
ISE 19/20 ISE 21/22 LR 0.24 0.33 0 0.16 0.9 0.08
ISE 19/20 ISE 21/22 NB 0.74 0.64 0.45 0.43 0.05 0.29
ISE 19/20 ISE 21/22 SVM 0.97 0.48 0.1 0.15 0.89 0.1
ISE 20/21 ISE 19/20 LR 0.27 0.06 0 0.06 0.9 0.27
ISE 20/21 ISE 19/20 NB 0.98 0.65 0.52 0.3 0.17 0.5
ISE 20/21 ISE 19/20 SVM 0.92 0.2 0.01 0.05 0.91 0.26
ISE 20/21 ISE 21/22 LR 0.29 0.14 0 0.01 0.83 0.28
ISE 20/21 ISE 21/22 NB 1 0.67 0.49 0.21 0.08 0.35
ISE 20/21 ISE 21/22 SVM 0.92 0.26 0.01 0.04 0.9 0.22
ISE 21/22 ISE 19/20 LR 0.59 0.08 0.01 0.04 0.83 0.24
ISE 21/22 ISE 19/20 NB 0.59 0.41 0.59 0.59 0.05 0.38
ISE 21/22 ISE 19/20 SVM 0.95 0.2 0.03 0.06 0.86 0.27
ISE 21/22 ISE 20/21 LR 0.54 0.14 0 0.03 0.85 0.21
ISE 21/22 ISE 20/21 NB 0.56 0.56 0.67 0.28 0.06 0.27
ISE 21/22 ISE 20/21 SVM 0.94 0.33 0.03 0.03 0.88 0.22

287

E. Supplementary Material of Text Classifier Validation

Table E.3.: Evaluation results of the binary and fine-grained classifiers on the combined data of
the ISE projects using 10-fold cross validation. The machine-learning algorithms are
Logistic Regression (LR), Naïve Bayes (NB), and Support Vector Machine (SVM).

Metric Data
Source

Alg. Binary
(Relevant/Irrelevant)

Issue Alternative Decision Pro Con

Precision all ISE LR 0.77 0.72 0.16 0.31 0.4 0.42
all ISE NB 0.6 0.64 0.3 0.36 0.45 0.48
all ISE SVM 0.77 0.56 0.32 0.42 0.31 0.5

R. Alkadhi LR 0.59 0.23 0.48 0.59 0.5 0.44
R. Alkadhi NB 0.54 0.3 0.39 0.54 0.25 0.28
R. Alkadhi SVM 0.52 0.21 0.42 0.96 0.53 0.37

Recall all ISE LR 0.62 0.58 0.01 0.7 0.28 0.5
all ISE NB 0.96 0.59 0.53 0.4 0.19 0.36
all ISE SVM 0.39 0.76 0.14 0.2 0.62 0.36

R. Alkadhi LR 0.8 0.8 0.19 0.21 0.09 0.26
R. Alkadhi NB 0.88 0.1 0.13 0.15 0.53 0.54
R. Alkadhi SVM 0.97 0.74 0.26 0.1 0.12 0.19

288

Appendix F
Supplementary Material
of User Acceptance Study

“Many ideas happen to us. We have intuition, we have feeling, we
have emotion, all of that happens, we don’t decide to do it. We
don’t control it.”

—Kahneman, 2011

This appendix provides supplementary material for the user acceptance validation in Chapter 11.
Section F.1 provides the questionnaire for surveying user acceptance. Section F.2 provides detailed
Likert ratings used to calculate the weighted means of ratings in Chapter 11.

F.1. Questionnaire for Collecting the User Feedback

This section presents an aggregated questionnaire to survey the user acceptance of ConDec.
The questions and statements were specific to the study participants as follows: Questions and
statements marked with D are specific for (student) developers. Questions and statements marked
with E are specific for IT experts, i. e., practitioners from the industry. Questions and statements
not marked are for study participants who used ConDec over the period of the project.

The questionnaire consists of the following five parts: 1) General Questions I, 2) Questions
regarding Fulfillment of ConDec’s Design Goals, 3) General Questions II, 4) Usage Frequency of
ConDec Features, and 5) Person-related Questions.

Please answer the following questions and rate the following statements regarding continuous
rationale management and the ConDec tool support.

To read about the mentioned features below, please see the ConDec feature documentation in
GitHub: https://github.com/cures-hub/cures-condec-jira/tree/develop/doc/features

289

https://github.com/cures-hub/cures-condec-jira/tree/develop/doc/features

F. Supplementary Material of User Acceptance Study

1) General Questions I

Question/Statement Answer

1.1 What ConDec features for rationale management were (the most) useful during the project? Why were
they useful?

1.2 What ConDec features for rationale management were not useful during the project? Why were they
not useful?

1.3 In retrospect, documenting our
most important decisions did help
the communication with the team
or with the other stakeholders.

□ strongly disagree □ disagree □ neutral □ agree □ strongly agree
Please justify your decision, e. g., by providing examples. Why
was it useful, why not? What would have made it more useful?

2) Questions regarding Fulfillment of ConDec’s Design Goals
ConDec Design Goal 1: Support collaborative, incremental, and rational decision making

Question/Statement Answer

DG1.1 ConDec is useful for (collaborative,
incremental, and rational) decision
making.

□ strongly disagree □ disagree □ neutral □ agree □ strongly agree
Please justify your decision. Why is ConDec useful for decision
making? Why is ConDec not useful for decision making? What
would make it more useful?

DG1.2 I would use ConDec to support
(collaborative, incremental, and ra-
tional) decision making in the fu-
ture.

□ strongly disagree □ disagree □ neutral □ agree □ strongly
agree
Please justify your decision. Why would you use ConDec to
support decision making? Why would you not use ConDec for
decision making? How can ConDec be improved so that you
would use it in the future?

DG1.3 Do you have other feedback regarding “ConDec Design Goal 1: Support collaborative, incremental, and
rational decision making”? Do you have feature requests regarding decision making support.

ConDec Design Goal 2: Enable easy decision knowledge documentation

Question/Statement Answer

DG2.1
(E)

Which documentation location of
rationale do you prefer?

□ Jira issue description + comments □ separate Jira issues with
distinct types □ commit messages □ code comments □ I would
prefer the following other documentation location:
Please justify your decision, e. g., by providing examples. Why do
you prefer one of these documentation locations over the other?

DG2.1 Documenting rationale in Jira is-
sue descriptions and comments is
easy.

□ strongly disagree □ disagree □ neutral □ agree □ strongly agree
Please justify your decision, e. g., by providing examples. What is
easy and why is it easy? What is difficult and why is it difficult?
What would make documenting rationale easier?

DG2.2 Documenting rationale in separate
Jira issues is easy.

□ strongly disagree □ disagree □ neutral □ agree □ strongly agree
Please justify your decision, e. g., by providing examples. What is
easy and why is it easy? What is difficult and why is it difficult?
What would make documenting rationale easier?

DG2.3 Capturing rationale in Jira is use-
ful (e. g. for decision making and
documentation).

□ strongly disagree □ disagree □ neutral □ agree □ strongly agree
Please justify your decision, e. g., by providing examples. Why is
it useful? Why is it not useful? What would make documenting
rationale in Jira more useful?

290

F.1. Questionnaire for Collecting the User Feedback

Question/Statement Answer

DG2.4 Which documentation location of
rationale in Jira do you prefer?

□ Jira issue description + comments □ separate Jira issues with
distinct types □ commit messages □ code comments □ I would
prefer the following other documentation location:
Please justify your decision, e. g., by providing examples. Why do
you prefer one of these documentation locations over the other? Or
in case you selected both: Why do you think both documentation
locations are equally useful?

DG2.5 Linking of criteria (quality require-
ments, such as efficiency, secu-
rity, and constraints/context fac-
tors, such as implementation ef-
fort) to arguments in criteria ma-
trix is easy.

□ strongly disagree □ disagree □ neutral □ agree □ strongly agree
Please justify your decision, e. g., by providing examples. What is
easy and why is it easy? What is difficult and why is it difficult?
What would make linking criteria easier?

DG2.6 Linking of criteria to arguments in
criteria matrix is useful.

□ strongly disagree □ disagree □ neutral □ agree □ strongly agree
Please justify your decision, e. g., by providing examples. Why is
it useful? Why is it not useful? hat would make linking criteria
more useful?

DG2.7 Grouping decisions by decision
level and decision groups is easy.

□ strongly disagree □ disagree □ neutral □ agree □ strongly agree
Please justify your decision, e. g., by providing examples. What is
easy and why is it easy? What is difficult and why is it difficult?
What would make grouping decisions easier?
Which decision groups were easy to decide? Why?
Which decision groups were difficult to decide? Why?

DG2.8 Grouping decisions by decision
level and decision groups is useful.

□ strongly disagree □ disagree □ neutral □ agree □ strongly agree
Please justify your decision, e. g., by providing examples. Why
is it useful? Why is it not useful? What would make grouping
decisions more useful?
How useful was the grouping of decisions for the current develop-
ment?
How useful is the grouping of decisions for future development?

DG2.9 It is easy to use the automatic text
classifier that tries to identify de-
cision knowledge.

□ strongly disagree □ disagree □ neutral □ agree □ strongly agree
Please justify your decision, e. g., by providing examples. What is
easy and why is it easy? What is difficult and why is it difficult?
What would make the automatic text classifier easier to use?

DG2.10 The automatic text classifier is use-
ful for decision knowledge docu-
mentation.

□ strongly disagree □ disagree □ neutral □ agree □ strongly agree
Please justify your decision, e. g., by providing examples. Why is
it useful? Why is it not useful? What would make the automatic
text classifier more useful?

DG2.11 The link recommendation and and
duplicate detection feature is easy
to use.

□ strongly disagree □ disagree □ neutral □ agree □ strongly agree
Please justify your decision, e. g., by providing examples. What is
easy and why is it easy? What is difficult and why is it difficult?
What would make the link recommendation and and duplicate
detection feature easier to use?

DG2.12 The link recommendation and du-
plicate detection feature is useful.

□ strongly disagree □ disagree □ neutral □ agree □ strongly agree
Please justify your decision, e. g., by providing examples. Why
is it useful? Why is it not useful? What would make the link
recommendation and duplicate detection feature more useful?

DG2.13 The decision guidance feature
(=recommendation of solution op-
tions from external knowledge
sources) is easy to use.

□ strongly disagree □ disagree □ neutral □ agree □ strongly agree
Please justify your decision, e. g., by providing examples. What is
easy and why is it easy? What is difficult and why is it difficult?
What would make the decision guidance feature easier to use?

291

F. Supplementary Material of User Acceptance Study

Question/Statement Answer

DG2.14 The decision guidance feature is
useful.

□ strongly disagree □ disagree □ neutral □ agree □ strongly agree
Please justify your decision, e. g., by providing examples. Why is
it useful? Why is it not useful? What would make the decision
guidance feature more useful?

DG2.15 Which of the features for decision knowledge documentation do you intend to use in the future?

DG2.16 Do you have other feedback regarding “ConDec Design Goal 2: Enable easy decision knowledge
documentation”? Do you have feature requests regarding easy documentation.

DG2.17
(E)

ConDec is useful for decision
knowledge documentation.

□ strongly disagree □ disagree □ neutral □ agree □ strongly agree
Please justify your decision, e. g., by providing examples. Why
is ConDec useful for decision knowledge documentation? Why is
ConDec not useful for decision knowledge documentation? What
would make it more useful?

DG2.18
(E)

I would use ConDec to document
decision knowledge in the future.

□ strongly disagree □ disagree □ neutral □ agree □ strongly
agree
Please justify your decision. Why would you use ConDec to
document decision knowledge? Why would you not use ConDec
to document decision knowledge? How can ConDec be improved
so that you would use it in the future?

ConDec Design Goal 3: Enable easy usage/exploitation of decision knowledge

Question/Statement Answer

DG3.1 Which presentation do you prefer
and why? (Which presentation is
most useful for you?)

□ Node-link diagram (graph view, vis.js) □ Tree view: indented
outline (jstree) □ Tree view: node-link tree diagram (treant.js)
□ Chronology view □ Adjacency matrix □ Criteria matrix □ I
would prefer the following other presentation:
Please justify your ranking. Please explain what you like and
what you do not like about each presentation.

DG3.2 Presenting/visualizing knowledge
in Jira is useful.

□ strongly disagree □ disagree □ neutral □ agree □ strongly agree
Please justify your decision, e. g., by providing examples. Why
is the presentation/visualization useful? Why is it not useful?
What would make the presentation/visualization more useful?

DG3.3 The ConDec visualizations of the
knowledge graph are easy to in-
teract with (e. g. for knowledge
management via drag&drop and
the context menu).

□ strongly disagree □ disagree □ neutral □ agree □ strongly agree
Please justify your decision, e. g., by providing examples. What is
easy and why is it easy? What is difficult and why is it difficult?
What would make the presentation/visualization easier to interact
with?

DG3.4 It is useful that the ConDec visu-
alizations of the knowledge graph
are interactive (e. g. for knowledge
management via drag&drop and
the context menu).

□ strongly disagree □ disagree □ neutral □ agree □ strongly agree
Please justify your decision, e. g., by providing examples. Why is
the interaction useful? Why is it not useful? What would make
the interaction more useful?

DG3.5 Importing rationale into Conflu-
ence is easy.

□ strongly disagree □ disagree □ neutral □ agree □ strongly agree
Please justify your decision, e. g., by providing examples. What is
easy and why is it easy? What is difficult and why is it difficult?
What would make importing rationale into Confluence easier?

292

F.1. Questionnaire for Collecting the User Feedback

Question/Statement Answer

DG3.6 Presenting rationale in meeting
agendas in Confluence is useful
(e. g. during meetings and for
knowledge sharing).

□ strongly disagree □ disagree □ neutral □ agree □ strongly agree
Please justify your decision, e. g., by providing examples. Why is
the presentation useful? Why is it not useful? What would make
the presentation of rationale in Confluence more useful?

DG3.7 The semi-automatic creation of re-
lease notes in Jira is easy to use.

□ strongly disagree □ disagree □ neutral □ agree □ strongly agree
Please justify your decision, e. g., by providing examples. What is
easy and why is it easy? What is difficult and why is it difficult?
What would make the semi-automatic creation of release notes
easier?

DG3.8 The semi-automatic creation of re-
lease notes in Jira is useful (e. g.
for knowledge sharing).

□ strongly disagree □ disagree □ neutral □ agree □ strongly agree
Please justify your decision, e. g., by providing examples. Why
is it useful? Why is it not useful? What would make the semi-
automatic creation of release notes more useful?

DG3.9 Change impact analysis through
change impact highlighting is easy
to perform.

□ strongly disagree □ disagree □ neutral □ agree □ strongly agree
Please justify your decision, e. g., by providing examples. What is
easy and why is it easy? What is difficult and why is it difficult?
What would make change impact highlighting easier?

DG3.10 Change impact analysis through
change impact highlighting is use-
ful.

□ strongly disagree □ disagree □ neutral □ agree □ strongly agree
Please justify your decision, e. g., by providing examples. Why is
navigating from code to the knowledge graph views useful? Why
is it not useful? What would make change impact highlighting
more useful?

DG3.11 Navigating from code to the knowl-
edge graph views in Jira (using
VSCode or Eclipse ConDec plug-
in) is easy.

□ strongly disagree □ disagree □ neutral □ agree □ strongly agree
Please justify your decision, e. g., by providing examples. What is
easy and why is it easy? What is difficult and why is it difficult?
What would make the navigation from code to the knowledge
graph views easier?

DG3.12 Navigating from code to the knowl-
edge graph views in Jira (using
VSCode or Eclipse ConDec plug-
in) is useful.

□ strongly disagree □ disagree □ neutral □ agree □ strongly agree
Please justify your decision, e. g., by providing examples. Why is
navigating from code to the knowledge graph views useful? Why
is it not useful? What would make navigating from code to the
knowledge graph views more useful?

DG3.13 Which of the features for knowledge exploitation do you intend to use in the future?

DG3.14 Do you have other feedback regarding “ConDec Design Goal 3: Enable easy usage/exploitation of
decision knowledge”? Do you have feature requests regarding easy usage/exploitation.

DG3.15
(E)

ConDec is useful for the exploita-
tion of decision knowledge.

□ strongly disagree □ disagree □ neutral □ agree □ strongly agree
Please justify your decision, e. g., by providing examples. Why
is ConDec useful for decision knowledge exploitation? Why is
ConDec not useful for decision knowledge exploitation? What
would make it more useful?

DG3.16
(E)

I would use ConDec to document
decision knowledge in the future.

□ strongly disagree □ disagree □ neutral □ agree □ strongly
agree
Please justify your decision. Why would you use ConDec to
exploit decision knowledge? Why would you not use ConDec to
exploit decision knowledge? How can ConDec be improved so
that you would use it in the future?

293

F. Supplementary Material of User Acceptance Study

ConDec Design Goal 4: Support creating and maintaining high documentation quality

Question/Statement Answer

DG4.1 The dashboard to visualize metrics
on the decision knowledge docu-
mentation is easy to use.

□ strongly disagree □ disagree □ neutral □ agree □ strongly agree
Please justify your decision, e. g., by providing examples. What is
easy and why is it easy? What is difficult and why is it difficult?
What would make the dashboard easier to use?

DG4.2 The dashboard to visualize metrics
on the decision knowledge docu-
mentation is useful to monitor and
improve the documentation qual-
ity.

□ strongly disagree □ disagree □ neutral □ agree □ strongly agree
Please justify your decision, e. g., by providing examples. Why is
it useful? Why is it not useful? What would make the dashboard
more useful?

DG4.3 Defining and checking a definition
of done for the knowledge docu-
mentation is useful.

□ strongly disagree □ disagree □ neutral □ agree □ strongly agree
Please justify your decision, e. g., by providing examples. Why is
it useful? Why is it not useful? What would make the definition
of done more useful?

DG4.4 The Rationale Backlog showing
knowledge elements that violate
the definition of done, e. g., in-
complete knowledge documenta-
tion, unresolved decision problems
(=issues) and challenged decisions
is easy to use.

□ strongly disagree □ disagree □ neutral □ agree □ strongly agree
Please justify your decision, e. g., by providing examples. What is
easy and why is it easy? What is difficult and why is it difficult?
What would make the Rationale Backlog easier to use?

DG4.5 The Rationale Backlog showing
knowledge elements that violate
the definition of done is useful.

□ strongly disagree □ disagree □ neutral □ agree □ strongly agree
Please justify your decision, e. g., by providing examples. Why is
it useful? Why is it not useful? What would make the Rationale
Backlog more useful?

DG4.6 Result presentation of definition of
done checking in the quality check
view is easy to understand.

□ strongly disagree □ disagree □ neutral □ agree □ strongly agree
Please justify your decision, e. g., by providing examples. What is
easy and why is it easy? What is difficult and why is it difficult?
What would make the Quality Check view easier to use?

DG4.7 Result presentation of definition of
done checking in the quality check
view is useful.

□ strongly disagree □ disagree □ neutral □ agree □ strongly agree
Please justify your decision, e. g., by providing examples. Why is
it useful? Why is it not useful? What would make the Quality
Check view more useful?

DG4.8 Coloring user-interface elements
(menu items and knowledge ele-
ments in the graph views) is easy
to use/understand (ambient feed-
back nudging mechanism).

□ strongly disagree □ disagree □ neutral □ agree □ strongly agree
Please justify your decision, e. g., by providing examples. What is
easy and why is it easy? What is difficult and why is it difficult?
What would make the ambient feedback nudging mechanism easier
to use/understand?

DG4.9 Coloring user-interface elements
(menu items and knowledge ele-
ments in the graph views) is useful.

□ strongly disagree □ disagree □ neutral □ agree □ strongly agree
Please justify your decision, e. g., by providing examples. Why is
it useful? Why is it not useful? What would make the ambient
feedback nudging mechanism more useful?

DG4.10 The just-in-time prompt that is
shown when changing the state of
a Jira issue is easy to use (nudging
mechanism).

□ strongly disagree □ disagree □ neutral □ agree □ strongly agree
Please justify your decision, e. g., by providing examples. What is
easy and why is it easy? What is difficult and why is it difficult?
What would make the just-in-time prompt nugding mechanism
easier to use/understand?

294

F.1. Questionnaire for Collecting the User Feedback

Question/Statement Answer

DG4.11 The just-in-time prompt that is
shown when changing the state of a
Jira issue is useful (nudging mech-
anism).

□ strongly disagree □ disagree □ neutral □ agree □ strongly agree
Please justify your decision, e. g., by providing examples. Why is
it useful? Why is it not useful? What would make the just-in-time
prompt nudging mechanism more useful?

DG4.12 Keeping the documented rationale
complete is easy. For example,
completeness means that impor-
tant issues and decisions are both
captured.

□ strongly disagree □ disagree □ neutral □ agree □ strongly agree
Please justify your decision, e. g., by providing examples. What is
easy and why is it easy? What is difficult and why is it difficult?
What would make it easier to keep the documented rationale
complete?

DG4.13 Keeping the documented rationale
consistent with the other artifacts
(requirements, design, code, tests,
...) is easy. For example, consis-
tency means that the documenta-
tion is up-to-date.

□ strongly disagree □ disagree □ neutral □ agree □ strongly agree
Please justify your decision, e. g., by providing examples. What is
easy and why is it easy? What is difficult and why is it difficult?
What would make it easier to keep the documented rationale
consistent?

DG4.14 Which of the features for creating and maintaining high documentation quality do you intend to use in
the future?

DG4.15 Do you have other feedback regarding “ConDec Design Goal 4: Support creating and maintaining high
documentation quality”? Do you have feature requests regarding high quality.

DG4.16
(E)

The rationale documented during
the project has a high quality.

□ strongly disagree □ disagree □ neutral □ agree □ strongly agree
Please justify your decision. Why do you think that the quality
is high or low? What could have improved the quality?

DG4.17
(E)

ConDec is useful for creating and
maintaining high documentation
quality.

□ strongly disagree □ disagree □ neutral □ agree □ strongly agree
Please justify your decision, e. g., by providing examples. Why is
ConDec useful for creating and maintaining high documentation
quality? Why is ConDec not useful for creating and maintaining
high documentation quality? What would make it more useful?

DG4.18
(E)

I would use ConDec to create and
maintain high documentation qual-
ity in the future.

□ strongly disagree □ disagree □ neutral □ agree □ strongly agree
Please justify your decision. Why would you use ConDec to create
and maintain high documentation quality? Why would you not
use ConDec to create and maintain high documentation quality?
How can ConDec be improved so that you would use it in the
future?

ConDec Design Goal 5: Enable documentation and exploitation of a high amount of
knowledge

Question/Statement Answer

DG5.1 Filtering the knowledge graph
views in Jira is easy.

□ strongly disagree □ disagree □ neutral □ agree □ strongly agree
Please justify your decision, e. g., by providing examples. What is
easy and why is it easy? What is difficult and why is it difficult?
What would make filtering the knowledge graph views easier?

DG5.2 Filtering the knowledge graph
views in Jira is useful.

□ strongly disagree □ disagree □ neutral □ agree □ strongly agree
Please justify your decision, e. g., by providing examples. Why is
it useful? Why is it not useful? What would make filtering the
knowledge graph views more useful?

295

F. Supplementary Material of User Acceptance Study

Question/Statement Answer

DG5.3 Exploiting transitive links (to e. g.
only see decisions for epics) in Jira
is easy.

□ strongly disagree □ disagree □ neutral □ agree □ strongly agree
Please justify your decision, e. g., by providing examples. What is
easy and why is it easy? What is difficult and why is it difficult?
What would make the exploitation of transitive links easier?

DG5.4 Exploiting transitive links (to e. g.
only see decisions for epics) in Jira
is useful.

□ strongly disagree □ disagree □ neutral □ agree □ strongly agree
Please justify your decision, e. g., by providing examples. Why is
it useful? Why is it not useful? What would make the exploitation
of transitive links more useful?

DG5.5 Marking of wrong/unuseful links
so that they are excluded from
presentation and knowledge graph
traversal is easy.

□ strongly disagree □ disagree □ neutral □ agree □ strongly agree
Please justify your decision, e. g., by providing examples. What is
easy and why is it easy? What is difficult and why is it difficult?
What would make marking of wrong/unuseful links easier?

DG5.6 Marking of wrong/unuseful links
so that they are excluded from
presentation and knowledge graph
traversal is useful.

□ strongly disagree □ disagree □ neutral □ agree □ strongly agree
Please justify your decision, e. g., by providing examples. Why
is it useful? Why is it not useful? What would make marking of
wrong/unuseful links more useful?

DG5.7 Which of the features for supporting a high amount of documentation and exploitation do you intend to
use in the future?

DG5.8 Do you have other feedback regarding “ConDec Design Goal 5: Enable documentation and exploitation
of a high amount of knowledge”? Do you have feature requests regarding high amount.

3) General Questions II

Question/Statement

3.1 What other features do you expect for rationale management that are not implemented?

3.2 (E) How useful could the rationale documentation be for the future of the project?

3.3 (E) What exploitation/usage scenarios for the rationale documentation do you see?

3.4 What change scenario(s) can you imagine for the project in that the documented rationale would be
very useful?

3.5 (E) What documented decisions will be the most useful for the future development? Why will they be
useful?

3.6 What other feedback do you have?

4) Usage Frequency of ConDec Features
Please provide an estimation how often you applied each ConDec feature.

Feature Please select one option.

Documentation of decision knowledge as
entire Jira tickets

□ not at all
(0 decisions)

□ rarely
(1-3 decisions)

□ sometimes
(3-10 decisions)

□ often
(>10 decisions)

Documentation of decision knowledge in
description and comments of Jira tickets

□ not at all
(0 decisions)

□ rarely
(1-3 decisions)

□ sometimes
(3-10 decisions)

□ often
(>10 decisions)

Documentation of decision knowledge in
commit message using annotations during
committing or afterward in Jira comment

□ not at all
(0 decisions)

□ rarely
(1-3 decisions)

□ sometimes
(3-10 decisions)

□ often
(>10 decisions)

296

F.1. Questionnaire for Collecting the User Feedback

Feature Please select one option.

Documentation of decision knowledge in code
comments using annotations

□ not at all
(0 decisions)

□ rarely
(1-3 decisions)

□ sometimes
(3-10 decisions)

□ often
(>10 decisions)

Changing elements and links through
interaction with the views of the knowledge

graph via context menu or drag & drop

□ not at all
(0 times)

□ rarely
(1-3 times)

□ sometimes
(3-10 times)

□ often
(>10 times)

Linking arguments to criteria in criteria
matrix

□ not at all
(0 decisions)

□ rarely
(1-3 decisions)

□ sometimes
(3-10 decisions)

□ often
(>10 decisions)

Link recommendation and duplicate detection □ not at all
(0 decisions)

□ rarely
(1-3 decisions)

□ sometimes
(3-10 decisions)

□ often
(>10 decisions)

Recommendation of solution options from
knowledge sources (decision guidance)

□ not at all
(0 times)

□ rarely
(1-3 times)

□ sometimes
(3-10 times)

□ often
(>10 times)

Automatic text classification to identify
decision knowledge in Jira ticket text

□ not at all
(0 times)

□ rarely
(1-3 times)

□ sometimes
(3-10 times)

□ often
(>10 times)

Decision grouping □ not at all
(0 times)

□ rarely
(1-3 times)

□ sometimes
(3-10 times)

□ often
(>10 times)

Knowledge dashboards with metrics □ not at all
(0 times)

□ rarely
(1-3 times)

□ sometimes
(3-10 times)

□ often
(>10 times)

Rationale backlog showing knowledge
elements that violate the definition of done

□ not at all
(0 times)

□ rarely
(1-3 times)

□ sometimes
(3-10 times)

□ often
(>10 times)

definition of done checking result
presentation in the quality check view

□ not at all
(0 times)

□ rarely
(1-3 times)

□ sometimes
(3-10 times)

□ often
(>10 times)

Nudging mechanisms: ambient feedback and
just-in-time prompt

□ not at all
(0 times)

□ rarely
(1-3 times)

□ sometimes
(3-10 times)

□ often
(>10 times)

Stand-up table with decision knowledge in
Confluence

□ not at all
(0 times)

□ rarely
(1-3 times)

□ sometimes
(3-10 times)

□ often
(>10 times)

Semi-automatic release notes creation
including decision knowledge

□ not at all
(0 times)

□ rarely
(1-3 times)

□ sometimes
(3-10 times)

□ often
(>10 times)

Tree view: indented outline □ not at all
(0 times)

□ rarely
(1-3 times)

□ sometimes
(3-10 times)

□ often
(>10 times)

Tree view: node-link tree diagram □ not at all
(0 times)

□ rarely
(1-3 times)

□ sometimes
(3-10 times)

□ often
(>10 times)

Node-link diagram (graph view) □ not at all
(0 times)

□ rarely
(1-3 times)

□ sometimes
(3-10 times)

□ often
(>10 times)

Chronology □ not at all
(0 times)

□ rarely
(1-3 times)

□ sometimes
(3-10 times)

□ often
(>10 times)

Criteria matrix (also called decision table) □ not at all
(0 times)

□ rarely
(1-3 times)

□ sometimes
(3-10 times)

□ often
(>10 times)

Adjacency matrix □ not at all
(0 times)

□ rarely
(1-3 times)

□ sometimes
(3-10 times)

□ often
(>10 times)

View for decision knowledge from git □ not at all
(0 times)

□ rarely
(1-3 times)

□ sometimes
(3-10 times)

□ often
(>10 times)

Change impact analysis □ not at all
(0 times)

□ rarely
(1-3 times)

□ sometimes
(3-10 times)

□ often
(>10 times)

297

F. Supplementary Material of User Acceptance Study

Feature Please select one option.

Filtering and transitive linking in the views
on the knowledge graph

□ not at all
(0 times)

□ rarely
(1-3 times)

□ sometimes
(3-10 times)

□ often
(>10 times)

Marking links as wrong or useless □ not at all
(0 times)

□ rarely
(1-3 times)

□ sometimes
(3-10 times)

□ often
(>10 times)

Navigation from code in integrated
development environment to knowledge graph

view in Jira

□ not at all
(0 times)

□ rarely
(1-3 times)

□ sometimes
(3-10 times)

□ often
(>10 times)

5) Person-related Questions

Question/Statement Answer

5.1 Before the project/workshop, I was
experienced with rationale man-
agement.

□ strongly disagree □ disagree □ neutral □ agree □ strongly agree
Please justify your decision, e. g., by providing examples. Which
experiences did you have regarding rationale management before
the project/workshop?

5.2 (D) Before the project, I was experi-
enced in developing software for a
customer.

□ strongly disagree □ disagree □ neutral □ agree □ strongly agree
Please justify your decision, e. g., by providing examples. Which
experiences did you have regarding developing software for a
customer before the project?

5.3 (D) Before the project, I was experi-
enced in developing software in a
team.

□ strongly disagree □ disagree □ neutral □ agree □ strongly agree
Please justify your decision, e. g., by providing examples. Which
experiences did you have regarding developing software in a team
before the project?

5.4 (E) How long have you been working in the field of software engineering?

5.5 (E) I am experienced with Continuous
Software Engineering (CSE).

□ strongly disagree □ disagree □ neutral □ agree □ strongly agree
Please justify your decision, e. g., by providing examples. Which
experiences do you have regarding CSE?

5.6 (E) What roles do you normally have?

5.7 (E) In how many projects have you documented rationale yourself?

5.8 (E) In how many projects have you exploited rationale documented by others?

298

F.2. Detailed Ratings by Study Participants

F.2. Detailed Ratings by Study Participants
We collected 16 filled-out questionnaires during the iPraktikum at the Technical University of
Munich: six by the workplace-control app and ten by the car charging app developers. Table F.1
shows the answers from a five point Likert scale.

Table F.1.: Study participants’ assessment of ConDec and the weighted means µw (iPraktikum).
ConDec Statement Project Strongly

Disagree
Disagree Neutral Agree Strongly

Agree
µw

Documenting rationale in Jira [as entire
tickets] is easy.

iPraktikum 0 1 2 12 1 0.8

Documenting rationale in Jira is useful for
decision making.

iPraktikum 2 2 6 4 2 0.1

I would document rationale in Jira in
future projects.

iPraktikum 2 2 5 7 0 0.1

Presenting/visualizing rationale in Jira is
useful.

iPraktikum 0 2 3 8 3 0.8

Searching and filtering the presented
knowledge is easy.

iPraktikum 0 4 9 1 2 0.1

Presenting rationale in meeting agendas in
Confluence is useful.

iPraktikum 1 2 6 4 3 0.4

Keeping the documented rationale
consistent, complete, and correct is easy.

iPraktikum 0 8 2 6 0 -0.1

The documented rationale during this
sprint is of high quality. It is complete,

consistent, and correct.

iPraktikum 2 3 9 2 0 -0.3

Importing rationale into Confluence is easy. iPraktikum 0 2 5 6 3 0.6
I would apply rationale-based meeting

management in future projects.
iPraktikum 1 2 3 8 2 0.5

Table F.2 lists the answers by the study participants of two validation projects on how often
they used the ConDec features. In the ISE 19/20 project, we did not ask for the usage frequencies
of features that were not yet existing or mature.

Table F.3 lists the answers by the study participants of the validation projects on their perceived
ease of use of the ConDec features.

299

F. Supplementary Material of User Acceptance Study

Table F.2.: Study participants’ answers on their usage frequencies of ConDec features and the
weighted means µw.

ConDec Feature
. . . how often used?

Project Never Rarely Sometimes Often µw

Documentation of Decision Knowledge in . . .

Description and comments of Jira tickets ISE 19/20 0 0 3 4 1.6
ISE 21/22 D 0 2 3 1 0.5

Entire Jira tickets ISE 19/20 1 5 1 0 -0.9
ISE 21/22 D 0 0 0 6 2

Commit messages using annotations during
committing or afterwards in Jira comment

ISE 21/22 D 5 1 0 0 -1.8

Code comments using annotations ISE 21/22 D 4 2 0 0 -1.7
Chat messages and exporting it to Jira ISE 19/20 1 6 0 0 -1.1

Other Documentation Features

Decision grouping ISE 21/22 D 1 1 2 2 0.5
Automatic text classification to identify decision

knowledge in Jira ticket text
ISE 19/20 0 6 1 0 -0.7
ISE 21/22 D 2 4 0 0 -1.3

Link recommendation and duplicate detection ISE 21/22 D 0 4 1 1 -0.2
Recommendation of solution options from external

knowledge sources (decision guidance)
ISE 21/22 D 5 0 1 0 -1.5

Changing elements and links through interaction
with views of knowledge graph

ISE 19/20 0 2 2 3 0.9
ISE 21/22 D 0 2 3 1 0.5

Linking arguments to criteria in criteria matrix ISE 21/22 D 0 0 1 5 1.8

Knowledge Graph Views

Node-link diagram, V1 ISE 21/22 D 0 5 1 0 -0.7
Tree: indented outline, V2ind ISE 21/22 D 0 2 2 2 0.7

Tree: node-link tree diagram, V2nld ISE 21/22 D 1 1 1 3 0.7
Adjacency matrix, V4adj ISE 21/22 D 1 4 1 0 -0.8

Criteria matrix, V4cri ISE 21/22 D 0 0 1 5 1.8
Chronology view, V5 ISE 21/22 D 5 1 0 0 -1.8

Other Knowledge Exploitation Features

Stand-up table with decision knowledge in
Confluence

ISE 21/22 D 0 5 1 0 -0.7

Semi-automatic release notes creation including
decision knowledge

ISE 21/22 D 0 5 1 0 -0.7

Change impact highlighting ISE 21/22 D 3 3 0 0 -1.5
Navigation from code to knowledge graph view in

Jira using VSCode or Eclipse ConDec
ISE 21/22 D 6 0 0 0 -2

Filtering the views on the knowledge graph ISE 21/22 D 0 3 3 0 0
Exploiting transitive links ISE 21/22 D 0 3 3 0 0

Decision knowledge presentation in pull requests ISE 19/20 0 5 1 1 -0.3
View for decision knowledge from git ISE 21/22 D 6 0 0 0 -2

Quality Assurance Features

Knowledge dashboard with metrics, V6 ISE 21/22 D 0 2 1 3 0.8
Rationale backlog showing knowledge elements

that violate the definition of done
ISE 21/22 D 0 1 3 2 1

definition of done checking result presentation in
the quality check view

ISE 21/22 D 0 2 2 2 0.7

Just-in-time prompt nudging mechanism ISE 21/22 D 2 1 1 2 0
Ambient feedback nudging mechanisms: coloring

menu items and knowledge elements
ISE 21/22 D 2 1 1 2 0

Marking links as wrong or useless ISE 21/22 D 2 2 2 0 -0.7
Merge check of decision knowledge in pull requests ISE 19/20 0 5 1 1 -0.3

300

F.2. Detailed Ratings by Study Participants

Table F.3.: Study participants’ answers on their perceived ease of use of ConDec features and
the weighted means µw.

ConDec Feature
. . . is easy to use?

Project Strongly
Disagree

Disagree Neutral Agree Strongly
Agree

µw

It is easy to document decision knowledge
with ConDec.

ISE 21/22 C 0 0 0 2 0 1
Workshop 0 0 4 0 0 0

It is easy to use/exploit decision knowledge
with ConDec.

ISE 21/22 C 0 0 0 1 0 1
Workshop 0 0 2 2 0 0.5

It is easy to create and maintain high
documentation quality with ConDec.

ISE 21/22 C 0 0 2 0 0 0
Workshop 0 1 2 1 0 0

Documentation of Decision Knowledge in . . .

Description and comments of Jira tickets ISE 19/20 0 1 2 4 0 0.4
ISE 21/22 D 0 0 1 3 2 1.2

Entire Jira tickets ISE 19/20 0 1 5 1 0 0
ISE 21/22 D 0 0 0 3 3 1.5

Chat messages and exporting it to Jira ISE 19/20 0 1 6 0 0 -0.1

Other Documentation Features

Decision grouping ISE 21/22 D 0 0 0 4 2 1.3
Automatic text classification to identify

decision knowledge in Jira ticket text
ISE 19/20 1 0 4 2 0 0

ISE 21/22 D 0 0 3 3 0 0.5
Link recommendation and duplicate

detection
ISE 21/22 D 0 0 1 1 4 1.5

Recommendation of solution options from
knowledge sources (decision guidance)

ISE 21/22 D 0 0 1 4 1 1

Changing elements and links through
interaction with views

ISE 19/20 0 0 3 4 0 0.6
ISE 21/22 D 0 0 2 3 1 0.8

Linking arguments to criteria in criteria
matrix

ISE 21/22 D 0 0 3 2 1 0.7

Knowledge Exploitation Features

Stand-up table with decision knowledge in
Confluence

ISE 19/20 0 0 5 2 0 0.3
ISE 21/22 D 0 0 0 5 1 1.2

Semi-automatic release notes creation
including decision knowledge

ISE 21/22 D 0 0 0 5 1 1.2

Change impact highlighting ISE 21/22 D 0 0 3 2 1 0.7
Navigation from code to knowledge graph

view in Jira
ISE 21/22 D 0 0 2 2 2 1

Filtering the views on the knowledge graph ISE 21/22 D 0 0 2 3 1 0.8
Exploiting transitive links ISE 21/22 D 0 0 2 3 1 0.8

Decision knowledge presentation in pull
requests

ISE 19/20 0 2 2 3 0 0.1

Quality Assurance Features

Knowledge dashboard with metrics, V6 ISE 21/22 D 0 0 1 2 3 1.3
Rationale backlog showing knowledge

elements that violate the definition of done
ISE 21/22 D 0 0 1 5 0 0.8

Result presentation of definition of done
checking in the quality check view

ISE 21/22 D 0 0 1 1 4 1.5

Ambient feedback nudging: coloring menu
items and knowledge elements

ISE 21/22 D 0 0 1 1 4 1.5

Just-in-time prompt nudging mechanism ISE 21/22 D 0 0 2 3 1 0.8
Marking links as wrong or useless ISE 21/22 D 0 1 2 3 0 0.3

Merge check of decision knowledge in pull
requests

ISE 19/20 1 0 1 4 1 0.6

301

F. Supplementary Material of User Acceptance Study

Table F.4 lists the answers by the study participants of the validation projects on their perceived
usefulness of the ConDec features.

Table F.4.: Study participants’ answers on their perceived usefulness of ConDec features and the
weighted means µw.

ConDec Feature
. . . is useful?

Project Strongly
Disagree

Disagree Neutral Agree Strongly
Agree

µw

ConDec is useful for decision making.
ISE 21/22 D 0 0 0 3 3 1.5
ISE 21/22 C 0 0 0 2 0 1
Workshop 0 1 0 1 2 1

Documentation of Decision Knowledge in . . .

Jira (in description and comments of
tickets or as entire tickets)

ISE 19/20 0 1 3 3 0 0.3
ISE 21/22 D 0 0 0 2 4 1.7

Commit messages using annotations during
committing or afterward in Jira comment

ISE 21/22 D 0 2 3 2 0 0

Code comments using annotations ISE 21/22 D 1 0 1 5 0 0.4
Chat messages and exporting it to Jira ISE 19/20 0 3 2 2 0 -0.1

Wiki pages (not supported) ISE 19/20 0 1 2 3 1 0.6
Pull requests (not supported) ISE 19/20 0 1 4 1 1 0.3

Other Documentation Features

Decision grouping ISE 21/22 D 0 0 2 2 2 1
ISE 21/22 C 0 0 0 1 1 1.5

Automatic text classification to identify
decision knowledge in Jira ticket text

ISE 19/20 1 0 5 0 1 0
ISE 21/22 D 2 1 2 1 0 -0.7
ISE 21/22 C 0 0 1 0 1 1

Link recommendation and duplicate
detection

ISE 21/22 D 1 1 2 1 1 0
ISE 21/22 C 0 0 0 1 0 1

Recommendation of solution options from
knowledge sources (decision guidance)

ISE 21/22 D 0 0 5 1 0 0.2
ISE 21/22 C 0 0 0 0 1 2

Changing elements and links through
interaction with views

ISE 19/20 0 0 2 4 1 0.9
ISE 21/22 D 0 0 1 4 1 1
ISE 21/22 C 0 0 0 1 1 1.5

Linking arguments to criteria in criteria
matrix

ISE 21/22 D 0 0 4 2 1 0.6

ISE 21/22 C 0 0 0 0 2 2

ConDec is useful for decision knowledge
documentation.

ISE 21/22 C 0 0 0 2 0 1
Workshop 0 0 0 2 2 1.5

Knowledge Exploitation Features

Presenting/visualizing knowledge in Jira ISE 19/20 0 0 2 4 1 0.9
ISE 21/22 D 0 0 0 2 4 1.7

Stand-up table with decision knowledge in
Confluence

ISE 21/22 D 0 2 0 3 1 0.5
ISE 21/22 C 0 0 1 1 0 0.5

Semi-automatic release notes creation
including decision knowledge

ISE 21/22 D 0 0 0 5 1 1.2
ISE 21/22 C 1 0 1 0 0 -1

Change impact highlighting ISE 21/22 D 0 0 4 2 0 0.3
ISE 21/22 C 0 0 1 1 0 0.5

Navigation from code to knowledge graph
view in Jira

ISE 21/22 D 0 1 5 0 0 -0.2

Filtering the views on the knowledge graph ISE 21/22 D 0 0 0 2 4 1.7
ISE 21/22 C 0 0 1 0 1 1

Exploiting transitive links ISE 21/22 D 0 0 1 4 1 1
ISE 21/22 C 0 0 1 1 0 0.5

Continued on next page

302

F.2. Detailed Ratings by Study Participants

ConDec Feature
. . . is useful?

Project Strongly
Disagree

Disagree Neutral Agree Strongly
Agree

µw

Decision knowledge presentation in
pull requests

ISE 19/20 0 2 2 2 1 0.3

ConDec is useful to use/exploit decision
knowledge in context to other knowledge.

ISE 21/22 C 0 0 0 1 0 1
Workshop 0 0 2 2 0 0.5

Quality Assurance Features

Defining and checking of a definition of
done for the knowledge documentation

ISE 21/22 D 1 1 0 4 0 0.2
ISE 21/22 C 0 0 0 1 1 1.5

Knowledge dashboard with metrics, V6 ISE 21/22 D 0 0 0 3 3 1.5
ISE 21/22 C 0 0 0 2 0 1

Rationale backlog showing knowledge
elements that violate the definition of done

ISE 21/22 D 0 0 0 2 4 1.7
ISE 21/22 C 0 0 1 0 1 1

Result presentation of definition of done
checking in the quality check view

ISE 21/22 D 0 0 2 2 2 1

Ambient feedback nudging mechanisms:
coloring menu items and knowledge

elements

ISE 21/22 D 0 0 1 1 4 1.5

Just-in-time prompt nudging mechanism ISE 21/22 D 0 1 2 0 3 0.8
Marking links as wrong or useless ISE 21/22 D 1 0 2 3 0 0.2

ISE 21/22 C 0 0 1 1 0 0.5
Merge check of decision knowledge in pull

requests
ISE 19/20 1 3 0 3 0 -0.3

ConDec is useful to create and maintain
high documentation quality.

ISE 21/22 C 0 0 0 2 0 1
Workshop 1 0 1 2 0 0

Table F.5 lists the answers by the study participants of the validation projects on their intention
to use the ConDec features in the future.

Table F.5.: Study participants’ answers on their intention to use ConDec in the future and the
weighted means µw.

ConDec Statement Project Strongly
Disagree

Disagree Neutral Agree Strongly
Agree

µw

I would use ConDec to support decision
making in the future.

ISE 21/22 D 0 0 1 4 1 1
ISE 21/22 C 0 0 1 1 0 0.5
Workshop 0 0 3 1 0 0.2

I would use ConDec to document decision
knowledge in the future.

ISE 21/22 C 0 0 2 0 0 0
Workshop 0 0 3 1 0 0.2

I would use ConDec to exploit rationale in
context to other knowledge in future.

ISE 21/22 C 0 0 0 1 0 1
Workshop 0 0 3 1 0 0.2

I would use ConDec to create and maintain
high documentation quality in the future.

ISE 21/22 C 0 0 2 0 0 0
Workshop 0 0 4 0 0 0

303

Bibliography

Al Safwan, K., Elarnaoty, M., and Servant, F. (2022). “Developers’ need for the rationale of
code commits: An in-breadth and in-depth study”. In: Journal of Systems and Software 189,
p. 111320. doi: 10.1016/j.jss.2022.111320.

Alexeeva, Z., Perez-Palacin, D., and Mirandola, R. (2016). “Design Decision Documentation: A
Literature Overview”. In: Software Architecture. Ed. by B. Tekinerdogan. Vol. 5292. Lecture
Notes in Computer Science. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 84–101. doi:
10.1007/978-3-319-48992-6_6.

Alkadhi, R. (2018). “Rationale in Developers’ Communication”. Dissertation. Technical University
of Munich, Germany.

Alkadhi, R., Johanssen, J. O., Guzman, E., and Bruegge, B. (2017a). “REACT: An Approach
for Capturing Rationale in Chat Messages”. In: 11th ACM/IEEE International Symposium
on Empirical Software Engineering and Measurement (ESEM’17). Toronto, Ontario, Canada:
IEEE. doi: 10.1109/esem.2017.26.

Alkadhi, R., Laţa, T., Guzman, E., and Bruegge, B. (2017b). “Rationale in Development Chat
Messages: An Exploratory Study”. In: 14th International Conference on Mining Software
Repositories. MSR ’17. Buenos Aires, Argentina: IEEE Press, pp. 436–446. doi: 10.1109/msr.
2017.43.

Alkadhi, R., Nonnenmacher, M., Guzman, E., and Bruegge, B. (2018). “How do developers
discuss rationale?” In: 25th International Conference on Software Analysis, Evolution and
Reengineering (SANER). Campobasso, Italy: IEEE, pp. 357–369. doi: 10.1109/saner.2018.
8330223.

Aman, V. (2019). “Unterstützung der Konsistenz zwischen Entscheidungen und ihrer Umsetzung
durch Zusammenfassung von Codeänderungen”. Bachelor Thesis. Heidelberg University.

Ampatzoglou, A., Bibi, S., Avgeriou, P., and Chatzigeorgiou, A. (2020). “Guidelines for Managing
Threats to Validity of Secondary Studies in Software Engineering”. In: Contemporary Empirical
Methods in Software Engineering. Vol. 106. Cham: Springer International Publishing, pp. 415–
441. doi: 10.1007/978-3-030-32489-6_15.

Anders, M. (2020). “Comprehensive and Targeted Access to and Visualization of Decision
Knowledge”. Master Thesis. Heidelberg University. doi: 10.11588/heidok.00029025.

Arnold, R. S. and Bohner, S. A. (1993). “Impact Analysis - Towards A Framework for Comparison”.
In: International Conference on Software Maintenance (ICSM). Montreal, Quebec, Canada:
IEEE, pp. 292–301. doi: 10.1109/ICSM.1993.366933.

Babar, M. A., de Boer, R. C., Dingsoyr, T., and Farenhorst, R. (2007). “Architectural Knowlege
Management Strategies: Approaches in Research and Industry”. In: Second Workshop on
Sharing and Reusing Architectural Knowledge - Architecture, Rationale, and Design Intent
(SHARK/ADI’07: ICSE Workshops 2007). Minneapolis, MN, USA: IEEE, p. 7. doi: 10.1109/
SHARK-ADI.2007.3.

305

https://doi.org/10.1016/j.jss.2022.111320
https://doi.org/10.1007/978-3-319-48992-6_6
https://doi.org/10.1109/esem.2017.26
https://doi.org/10.1109/msr.2017.43
https://doi.org/10.1109/msr.2017.43
https://doi.org/10.1109/saner.2018.8330223
https://doi.org/10.1109/saner.2018.8330223
https://doi.org/10.1007/978-3-030-32489-6_15
https://doi.org/10.11588/heidok.00029025
https://doi.org/10.1109/ICSM.1993.366933
https://doi.org/10.1109/SHARK-ADI.2007.3
https://doi.org/10.1109/SHARK-ADI.2007.3

Bibliography

Babar, M. A., Dingsøyr, T., Lago, P., and van Vliet, H. (2009). Software Architecture Knowledge
Management: Theory and Practice. Berlin, Heidelberg: Springer, p. 279. doi: 10.1007/978-3-
642-02374-3.

Bacher, I., Namee, B. M., and Kelleher, J. D. (2016). “On Using Tree Visualisation Techniques
to Support Source Code Comprehension”. In: Working Conference on Software Visualization
(VISSOFT). Raleigh, NC, USA: IEEE, 91–95. doi: 10.1109/VISSOFT.2016.8.

Basili, V. R., Caldiera, G., and Rombach, D. H. (1994). “The Goal Question Metric Approach”.
In: Encyclopedia of Software Engineering. New York, NY, USA: John Wiley & Sons, Inc.,
pp. 528–532.

Bass, L., Clements, P., and Kazman, R. (2003). Software architecture in practice. Boston, US:
Addison-Wesley.

Baum, J. (2021). “Support for Rationale Management with Nudging”. Bachelor Thesis. Heidelberg
University.

Beck, K., Beedle, M., Van Bennekum, A., Cockburn, A., Cunningham, W., Fowler, M., Grenning,
J., Highsmith, J., Hunt, A., Jeffries, R., Kern, J., Marick, B., Martin, R. C., Mellor, S., Schwaber,
K., Sutherland, J., and Thomas, D. (2001). Manifesto for Agile Software Development. url:
http://agilemanifesto.org.

Bendl, L. (2022). “Change Impact Analysis for Issue Tracking Systems”. Bachelor Thesis.
Heidelberg University.

Berry, D. M. (2017). “Evaluation of Tools for Hairy Requirements and Software Engineering
Tasks”. In: 25th International Requirements Engineering Conference Workshops (REW). Lisbon,
Portugal: IEEE, pp. 284–291. doi: 10.1109/REW.2017.25.

Bhat, M. (2020). “Tool support for architectural decision making in large software intensive agile
projects”. Dissertation. Technical University of Munich, Germany.

Bhat, M., Shumaiev, K., Biesdorf, A., Hassel, M., Hohenstein, U., and Matthes, F. (2017a).
“An ontology-based approach for software architecture recommendations”. In: Twenty-third
Americas Conference on Information Systems (AMCIS). Boston, Massachusetts, USA, p. 10.

Bhat, M., Shumaiev, K., Biesdorf, A., Hohenstein, U., and Matthes, F. (2017b). “Automatic
Extraction of Design Decisions from Issue Management Systems: A Machine Learning Based
Approach”. In: 11th European Conference on Software Architecture (ECSA’17). Ed. by A.
Lopes and R. de Lemos. Cham, Switzerland: Springer, pp. 138–154. doi: 10.1007/978-3-319-
65831-5_10.

Bhat, M., Shumaiev, K., Koch, K., Hohenstein, U., Biesdorf, A., and Matthes, F. (2018). “An
Expert Recommendation System for Design Decision Making: Who Should be Involved in
Making a Design Decision?” In: International Conference on Software Architecture (ICSA).
Seattle, WA, USA: IEEE, pp. 85–8509. doi: 10.1109/ICSA.2018.00018.

Bhat, M., Tinnes, C., Shumaiev, K., Biesdorf, A., Hohenstein, U., and Matthes, F. (2019).
“ADeX: A Tool for Automatic Curation of Design Decision Knowledge for Architectural
Decision Recommendations”. In: International Conference on Software Architecture Companion
(ICSA-C). Hamburg, Germany: IEEE, pp. 158–161. doi: 10.1109/ICSA-C.2019.00035.

Boerner, M. (2021). “Qualitätssicherung von dokumentiertem Wissen mithilfe der Erhebung der
Entscheidungsabdeckung”. Bachelor Thesis. Heidelberg University.

Bosch, J. (2014). Continuous Software Engineering: An Introduction. Springer. doi: 10.1007/978-
3-319-11283-1.

Boz Kumru, Ö. (2019). “Analyse und Klassifikation von Entscheidungswissen in Jira-Issues”.
Bachelor Thesis. Heidelberg University.

Brandner, K. and Weinreich, R. (2019). “A Recommender System for Software Architecture
Decision Making”. In: 13th European Conference on Software Architecture (ECSA). Vol. 2.
Paris, France: ACM, pp. 22–25. doi: 10.1145/3344948.3344959.

306

https://doi.org/10.1007/978-3-642-02374-3
https://doi.org/10.1007/978-3-642-02374-3
https://doi.org/10.1109/VISSOFT.2016.8
http://agilemanifesto.org
https://doi.org/10.1109/REW.2017.25
https://doi.org/10.1007/978-3-319-65831-5_10
https://doi.org/10.1007/978-3-319-65831-5_10
https://doi.org/10.1109/ICSA.2018.00018
https://doi.org/10.1109/ICSA-C.2019.00035
https://doi.org/10.1007/978-3-319-11283-1
https://doi.org/10.1007/978-3-319-11283-1
https://doi.org/10.1145/3344948.3344959

Bibliography

Bratthall, L., Johansson, E., and Regnell, B. (2000). “Is a Design Rationale Vital when Predicting
Change Impact? – A Controlled Experiment on Software Architecture Evolution”. In: 2nd
International Conference on Product Focused Software Process Improvement (PROFES).
Vol. LNCS 1840. Oulu, Finland: Springer, pp. 126–139. doi: 10.1007/978-3-540-45051-1_14.

Brooks, F. P. (1996). “The computer scientist as toolsmith II”. In: Communications of the ACM
(CACM) 39.3, pp. 61–68. doi: 10.1145/227234.227243.

Brown, C. (2019). “Digital Nudges for Encouraging Developer Actions”. In: 41st International
Conference on Software Engineering: Companion Proceedings (ICSE-Companion). Montreal,
QC, Canada: IEEE, pp. 202–205. doi: 10.1109/ICSE-Companion.2019.00082.

Brown, W. H., Malveau, R. C., McCormick, H. W. S., and Mowbray, T. J. (1998). AntiPatterns:
Refactoring Software, Architectures, and Projects in Crisis. John Wiley & Sons, Inc.

Bruegge, B. and Dutoit, A. H. (2010). Object-Oriented Software Engineering: Using UML,
Patterns, and Java. 3rd ed. Upper Sandle River, NJ, USA: Pearson Prentice Hall, p. 800.

Bruegge, B., Krusche, S., and Alperowitz, L. (2015). “Software Engineering Project Courses with
Industrial Clients”. In: ACM Transactions on Computing Education 15.4, 17:1–17:31.

Brunet, J., Murphy, G. C., Terra, R., Figueiredo, J., and Serey, D. (2014). “Do developers
discuss design?” In: 11th Working Conference on Mining Software Repositories - MSR 2014.
Hyderabad, India: ACM, pp. 340–343. doi: 10.1145/2597073.2597115.

Buchgeher, G. and Weinreich, R. (2011). “Automatic Tracing of Decisions to Architecture
and Implementation”. In: Ninth Working IEEE/IFIP Conference on Software Architecture
(WICSA). Boulder, CO, USA: IEEE, pp. 46–55. doi: 10.1109/WICSA.2011.16.

Burge, J. E. (2008). “Design rationale: Researching under uncertainty”. In: Artificial Intelli-
gence for Engineering Design, Analysis and Manufacturing 22.4, pp. 311–324. doi: 10.1017/
S0890060408000218.

Burge, J. E. and Brown, D. C. (2008a). “Software Engineering Using RATionale”. In: Journal of
Systems and Software 81.3, pp. 395–413. doi: 10.1016/j.jss.2007.05.004.

Burge, J. E. and Brown, D. C. (2008b). “SEURAT: Integrated Rationale Management”. In:
International Conference on Software Engineering (ICSE). Leipzig: IEEE, pp. 835–838. doi:
10.1145/1368088.1368215.

Burge, J. E., Carroll, J. M., McCall, R., and Mistrik, I. (2008). Rationale-Based Software
Engineering. Berlin, Heidelberg: Springer Berlin Heidelberg, p. 316. doi: 10.1007/978-3-540-
77583-6.

Capilla, R., Dueñas, J. C., and Nava, F. (2010). “Viability for codifying and documenting
architectural design decisions with tool support”. In: Journal of Software Maintenance and
Evolution: Research and Practice 22.2, pp. 81–119. doi: 10.1002/smr.419.

Capilla, R., Jansen, A., Tang, A., Avgeriou, P., and Babar, M. A. (2016). “10 years of software
architecture knowledge management: Practice and future”. In: Journal of Systems and Software
116, pp. 191–205. doi: 10.1016/j.jss.2015.08.054.

Capilla, R., Jolak, R., Chaudron, M. R. V., and Carrillo, C. (2020a). “Design Decisions by
Voice: The Next Step of Software Architecture Knowledge Management”. In: Human-Centered
Software Engineering (HCSE). Vol. 12481 LNCS. Springer, pp. 166–177. doi: 10.1007/978-3-
030-64266-2_10.

Capilla, R., Nava, F., and Carrillo, C. (2008). “Effort Estimation in Capturing Architectural
Knowledge”. In: 23rd IEEE/ACM International Conference on Automated Software Engineering.
L’Aquila, Italy: IEEE, pp. 208–217. doi: 10.1109/ASE.2008.31.

Capilla, R., Nava, F., Pérez, S., and Dueñas, J. C. (2006). “A Web-based Tool for Managing
Architectural Design Decisions”. In: ACM SIGSOFT Software Engineering Notes 31.5. doi:
10.1145/1163514.1178644.

Capilla, R., Zimmermann, O., Carrillo, C., and Astudillo, H. (2020b). “Teaching Students
Software Architecture Decision Making”. In: Software Architecture (European Conference

307

https://doi.org/10.1007/978-3-540-45051-1_14
https://doi.org/10.1145/227234.227243
https://doi.org/10.1109/ICSE-Companion.2019.00082
https://doi.org/10.1145/2597073.2597115
https://doi.org/10.1109/WICSA.2011.16
https://doi.org/10.1017/S0890060408000218
https://doi.org/10.1017/S0890060408000218
https://doi.org/10.1016/j.jss.2007.05.004
https://doi.org/10.1145/1368088.1368215
https://doi.org/10.1007/978-3-540-77583-6
https://doi.org/10.1007/978-3-540-77583-6
https://doi.org/10.1002/smr.419
https://doi.org/10.1016/j.jss.2015.08.054
https://doi.org/10.1007/978-3-030-64266-2_10
https://doi.org/10.1007/978-3-030-64266-2_10
https://doi.org/10.1109/ASE.2008.31
https://doi.org/10.1145/1163514.1178644

Bibliography

on Software Architecture). Vol. 12292 LNCS. September. Cham: Springer, pp. 231–246. doi:
10.1007/978-3-030-58923-3_16.

Caraban, A., Karapanos, E., Gonçalves, D., and Campos, P. (2019). “23 Ways to Nudge: A
Review of Technology-Mediated Nudging in Human-Computer Interaction”. In: Conference on
Human Factors in Computing Systems (CHI). Glasgow, UK: ACM, pp. 1–15. doi: 10.1145/
3290605.3300733.

Caraban, A., Konstantinou, L., and Karapanos, E. (2020). “The Nudge Deck: A Design Sup-
port Tool for Technology-Mediated Nudging”. In: Designing Interactive Systems Conference.
Eindhoven, Netherlands: ACM, pp. 395–406. doi: 10.1145/3357236.3395485.

Carrillo, C. and Capilla, R. (2018). “Ripple Effect to Evaluate the Impact of Changes in
Architectural Design Decisions”. In: 12th European Conference on Software Architecture
(ECSA’18). Madrid, Spain: ACM, pp. 1–8. doi: 10.1145/3241403.3241446.

Chacon, S. and Straub, B. (2014). Pro Git: Everything you need to know about Git. Ed. by
L. Corrigan. 2nd ed. New York, USA: Apress, p. 441. doi: 10.1007/978-1-4842-0076-6.

Chawla, N. V., Japkowicz, N., and Kotcz, A. (2004). “Editorial: Special Issue on Learning
from Imbalanced Data Sets”. In: ACM SIGKDD Explorations Newsletter 6.1, pp. 1–6. doi:
10.1145/1007730.1007733.

Chazette, L., Brunotte, W., and Speith, T. (2021). “Exploring Explainability: A Definition,
a Model, and a Knowledge Catalogue”. In: 29th International Requirements Engineering
Conference (RE). Notre Dame, IN, USA: IEEE, pp. 197–208. doi: 10.1109/RE51729.2021.
00025.

Clarke, A. C. (1962). Profiles of the Future: An Inquiry into the Limits of the Possible. The
Orion Publishing Group Ltd.

Cleland-Huang, J., Mirakhorli, M., Czauderna, A., and Wieloch, M. (2013). “Decision-Centric
Traceability of architectural concerns”. In: 7th International Workshop on Traceability in
Emerging Forms of Software Engineering (TEFSE). San Francisco, CA, USA: IEEE, pp. 5–11.
doi: 10.1109/TEFSE.2013.6620147.

Clormann, J. (2018). “DecXtract: Dokumentation und Nutzung von Entscheidungswissen in Jira-
Issue-Kommentaren”. Master Thesis. Heidelberg University. doi: 10.11588/heidok.00026059.

Codoban, M., Ragavan, S. S., Dig, D., and Bailey, B. (2015). “Software history under the lens:
A study on why and how developers examine it”. In: 2015 IEEE International Conference
on Software Maintenance and Evolution (ICSME). Bremen, Germany: IEEE, pp. 1–10. doi:
10.1109/ICSM.2015.7332446.

Cohn, M. (2004). User Stories Applied: For Agile Software Development. Ed. by K. Beck and
M. Fowler. 1st ed. Boston, MA, USA: Addison-Wesley, p. 286.

Cortés-Coy, L. F., Linares-Vásquez, M., Aponte, J., and Poshyvanyk, D. (2014). “On Automat-
ically Generating Commit Messages via Summarization of Source Code Changes”. In: 14th
International Working Conference on Source Code Analysis and Manipulation. Victoria, BC,
Canada: IEEE, pp. 275–284. doi: 10.1109/SCAM.2014.14.

Cursino, R., Ferreira, D., Lencastre, M., Fagundes, R., and Pimentel, J. (2018). “Gamification in
Requirements Engineering: A Systematic Review”. In: 11th International Conference on the
Quality of Information and Communications Technology (QUATIC). IEEE, pp. 119–125. doi:
10.1109/QUATIC.2018.00025.

Davis, F. D., Bagozzi, R. P., and Warshaw, P. R. (1989). “User Acceptance of Computer
Technology: A Comparison of Two Theoretical Models”. In: Mangagement Science 35.8,
pp. 982–1002.

de Boer, R. C., Lago, P., Telea, A., and van Vliet, H. (2009). “Ontology-Driven Visualization
of Architectural Design Decisions”. In: Joint Working IEEE/IFIP Conference on Software
Architecture & European Conference on Software Architecture. Cambridge, UK: IEEE, pp. 51–
60. doi: 10.1109/WICSA.2009.5290791.

308

https://doi.org/10.1007/978-3-030-58923-3_16
https://doi.org/10.1145/3290605.3300733
https://doi.org/10.1145/3290605.3300733
https://doi.org/10.1145/3357236.3395485
https://doi.org/10.1145/3241403.3241446
https://doi.org/10.1007/978-1-4842-0076-6
https://doi.org/10.1145/1007730.1007733
https://doi.org/10.1109/RE51729.2021.00025
https://doi.org/10.1109/RE51729.2021.00025
https://doi.org/10.1109/TEFSE.2013.6620147
https://doi.org/10.11588/heidok.00026059
https://doi.org/10.1109/ICSM.2015.7332446
https://doi.org/10.1109/SCAM.2014.14
https://doi.org/10.1109/QUATIC.2018.00025
https://doi.org/10.1109/WICSA.2009.5290791

Bibliography

de Boer, R. C. and van Vliet, H. (2009). “On the similarity between requirements and architecture”.
In: Journal of Systems and Software 82.3, pp. 544–550. doi: 10.1016/j.jss.2008.11.185.

de Sombre, P. (2020). “Verlinkungsunterstützung und Duplikaterkennung von Wissenelementen”.
Master Thesis. Heidelberg: Heidelberg University.

Deshpande, G., Sheikhi, B., Chakka, S., Zotegouon, D. L., Masahati, M. N., and Ruhe, G. (2021).
“Is BERT the New Silver Bullet? - An Empirical Investigation of Requirements Dependency
Classification”. In: 29th International Requirements Engineering Conference Workshops (REW).
IEEE, pp. 136–145. doi: 10.1109/REW53955.2021.00025.

Dhaouadi, M., Oakes, B. J., and Famelis, M. (2022). “End-to-End Rationale Reconstruction”. In:
37th IEEE/ACM International Conference on Automated Software Engineering. Rochester,
MI, USA: ACM, pp. 1–5. doi: 10.1145/3551349.3559547.

Dias, M., Bacchelli, A., Gousios, G., Cassou, D., and Ducasse, S. (2015). “Untangling fine-
grained code changes”. In: 22nd International Conference on Software Analysis, Evolution,
and Reengineering (SANER). Montreal, QC, Canada: IEEE, pp. 341–350. doi: 10.1109/SANER.
2015.7081844.

Ding, W., Liang, P., Tang, A., and Vliet, H. van (2014). “Knowledge-Based Approaches in
Software Documentation: A Systematic Literature Review”. In: Information and Software
Technology 56.6, pp. 545–567. doi: 10.1016/j.infsof.2014.01.008.

Dingsøyr, T. and van Vliet, H. (2009). “Introduction to Software Architecture and Knowledge
Management”. In: Software Architecture Knowledge Management. Berlin, Heidelberg: Springer.
Chap. 1, pp. 1–17. doi: 10.1007/978-3-642-02374-3_1.

Doyle, M. and Straus, D. (1993). How to Make Meetings Work: The New Interaction Method.
Berkley.

Dragomir, A., Lichter, H., and Budau, T. (2014). “Systematic Architectural Decision Management,
A Process-Based Approach”. In: IEEE/IFIP Conference on Software Architecture. Sydney,
NSW, Australia: IEEE, pp. 255–258. doi: 10.1109/WICSA.2014.39.

Durdik, Z. and Reussner, R. H. (2013). “On the Appropriate Rationale for Using Design
Patterns and Pattern Documentation”. In: 9th International ACM SIGSOFT Conference on
the Quality of Software Architectures (QoSA). Vancouver, BC, Canada: ACM, pp. 107–116.
doi: 10.1145/2465478.2465491.

Dutoit, A. H., McCall, R., Mistrík, I., and Paech, B. (2006). Rationale Management in Software
Engineering: Concepts and Techniques. Springer.

Dutoit, A. H., Wolf, T., Paech, B., Borner, L., and Rückert, J. (2005). “Using Rationale for
Software Engineering Education”. In: 18th Conference on Software Engineering Education and
Training (CSEE&T). Ottawa, Canada: IEEE, pp. 129–136. doi: 10.1109/CSEET.2005.1.

Easterbrook, S., Singer, J., Storey, M.-A., and Damian, D. (2008). “Selecting Empirical Methods
for Software Engineering Research”. In: Guide to Advanced Empirical Software Engineering.
London: Springer. Chap. 11, pp. 285–311. doi: 10.1007/978-1-84800-044-5_11.

Ebert, C., Gallardo, G., Hernantes, J., and Serrano, N. (2016). “DevOps”. In: IEEE Software
33.3, pp. 94–100. doi: 10.1109/MS.2016.68.

Falessi, D., Cantone, G., and Becker, M. (2006). “Documenting Design Decision Rationale
to Improve Individual and Team Design Decision Making”. In: ACM/IEEE International
Symposium on Empirical Software Engineering (ISESE). Rio de Janeiro, Brazil: ACM, pp. 134–
143. doi: 10.1145/1159733.1159755.

Fernandez, A., Garcia, S., Herrera, F., and Chawla, N. V. (2018). “SMOTE for Learning from
Imbalanced Data: Progress and Challenges, Marking the 15-year Anniversary”. In: Journal of
Artificial Intelligence Research 61, pp. 863–905. doi: 10.1613/jair.1.11192.

Filho, G. C. and Zisman, A. (2017). “D3TraceView: A Traceability Visualization Tool”. In: 29th
International Conference on Software Engineering and Knowledge Engineering (SEKE’17).
Pittsburgh, PA, USA: KSI Research Inc., pp. 590–595. doi: 10.18293/SEKE2017-038.

309

https://doi.org/10.1016/j.jss.2008.11.185
https://doi.org/10.1109/REW53955.2021.00025
https://doi.org/10.1145/3551349.3559547
https://doi.org/10.1109/SANER.2015.7081844
https://doi.org/10.1109/SANER.2015.7081844
https://doi.org/10.1016/j.infsof.2014.01.008
https://doi.org/10.1007/978-3-642-02374-3_1
https://doi.org/10.1109/WICSA.2014.39
https://doi.org/10.1145/2465478.2465491
https://doi.org/10.1109/CSEET.2005.1
https://doi.org/10.1007/978-1-84800-044-5_11
https://doi.org/10.1109/MS.2016.68
https://doi.org/10.1145/1159733.1159755
https://doi.org/10.1613/jair.1.11192
https://doi.org/10.18293/SEKE2017-038

Bibliography

Fitzgerald, B. and Stol, K.-J. (2017). “Continuous software engineering: A roadmap and agenda”.
In: Journal of Systems and Software 123, pp. 176–189. doi: 10.1016/j.jss.2015.06.063.

Fu, L., Liang, P., Li, X., and Yang, C. (2021). “A Machine Learning Based Ensemble Method for
Automatic Multiclass Classification of Decisions”. In: Evaluation and Assessment in Software
Engineering. Trondheim, Norway: ACM, pp. 40–49. doi: 10.1145/3463274.3463325.

García, F., Pedreira, O., Piattini, M., Cerdeira-Pena, A., and Penabad, M. (2017). “A framework
for gamification in software engineering”. In: Journal of Systems and Software 132, pp. 21–40.
doi: 10.1016/j.jss.2017.06.021.

Gaubatz, P., Lytra, I., and Zdun, U. (2015). “Automatic Enforcement of Constraints in Real-
time Collaborative Architectural Decision Making”. In: Journal of Systems and Software 103,
pp. 128–149. doi: 10.1016/j.jss.2015.01.056.

Gerdes, S., Soliman, M., and Riebisch, M. (2015). “Decision Buddy: Tool Support for Constraint-
Based Design Decisions during System Evolution”. In: 1st International Workshop on Future of
Software Architecture Design Assistants (FoSADA). Montreal, QC, Canada: ACM, pp. 13–18.
doi: 10.1145/2751491.2751495.

Gerner, R. (2020). “Entwicklung eines Rationale Backlogs”. Bachelor Thesis. Heidelberg Univer-
sity.

Gronert, F. (2019). “Unterstützung der Erstellung von Release-Beschreibungen durch dokumen-
tiertes Entscheidungswissen”. Bachelor Thesis. Heidelberg University.

Hamma, I. (2019). “Unterstützung der konsistenten Dokumentation von Entscheidungen im
Software Engineering”. Master Thesis. Heidelberg University.

Hansen, M. T., Nohria, N., and Tierney, T. (1999). “What’s your strategy for managing knowl-
edge?” In: Harvard Business Review 77.2, pp. 106–116.

Harari, Y. N. (2016). Homo Deus: A brief history of tomorrow. Harvill Secker.
Haselböck, S., Weinreich, R., and Buchgeher, G. (2019). “Using Decision Models for Documenting

Microservice Architectures: A Student Experiment and Focus Group Study”. In: International
Conference on Service-Oriented System Engineering (SOSE). San Francisco, CA, USA: IEEE,
pp. 37–3709. doi: 10.1109/SOSE.2019.00016.

Henze, D. (2020). “Dynamically Scalable Fog Architectures”. Dissertation. Technical University
of Munich, Germany.

Herzig, K. and Zeller, A. (2013). “The impact of tangled code changes”. In: 10th Working
Conference on Mining Software Repositories (MSR). San Francisco, CA, USA: IEEE, pp. 121–
130. doi: 10.1109/MSR.2013.6624018.

Hesse, T.-M. (2020). “Supporting Software Development by an Integrated Documentation Model
for Decisions”. Dissertation. Heidelberg University. doi: 10.11588/heidok.00028713.

Hesse, T.-M., Kuehlwein, A., Paech, B., Roehm, T., and Bruegge, B. (2015). “Documenting
Implementation Decisions with Code Annotations”. In: 27th International Conference on
Software Engineering and Knowledge Engineering (SEKE’15). Pittsburgh, PA, USA, pp. 152–
157. doi: 10.18293/SEKE2015-084.

Hesse, T.-M., Kuehlwein, A., and Roehm, T. (2016a). “DecDoc: A Tool for Documenting Design
Decisions Collaboratively and Incrementally”. In: 1st International Workshop on Decision
Making in Software ARCHitecture (MARCH 2016). Venice, Italy: IEEE, pp. 30–37. doi:
10.1109/MARCH.2016.9.

Hesse, T.-M., Lerche, V., Seiler, M., Knoess, K., and Paech, B. (2016b). “Documented decision-
making strategies and decision knowledge in open source projects: An empirical study on
Firefox issue reports”. In: Information and Software Technology 79, pp. 36–51. doi: 10.1016/
j.infsof.2016.06.003.

Hesse, T.-M. and Paech, B. (2013). “Supporting the Collaborative Development of Requirements
and Architecture Documentation”. In: 3rd International Workshop on the Twin Peaks of

310

https://doi.org/10.1016/j.jss.2015.06.063
https://doi.org/10.1145/3463274.3463325
https://doi.org/10.1016/j.jss.2017.06.021
https://doi.org/10.1016/j.jss.2015.01.056
https://doi.org/10.1145/2751491.2751495
https://doi.org/10.1109/SOSE.2019.00016
https://doi.org/10.1109/MSR.2013.6624018
https://doi.org/10.11588/heidok.00028713
https://doi.org/10.18293/SEKE2015-084
https://doi.org/10.1109/MARCH.2016.9
https://doi.org/10.1016/j.infsof.2016.06.003
https://doi.org/10.1016/j.infsof.2016.06.003

Bibliography

Requirements and Architecture. Rio de Janeiro, Brazil: IEEE, pp. 22–26. doi: 10.1109/
TwinPeaks-2.2013.6617355.

Hesse, T.-M. and Paech, B. (2016). “Documenting Relations Between Requirements and Design
Decisions: A Case Study on Design Session Transcripts”. In: Requirements Engineering:
Foundation for Software Quality: 22nd International Working Conference, REFSQ 2016. Ed. by
M. Daneva and O. Pastor. Vol. LNCS 9619. Gothenburg, Sweden: Springer. Chap. Documentin,
pp. 188–204. doi: 10.1007/978-3-319-30282-9_13.

Hofmeister, C., Kruchten, P., Nord, R. L., Obbink, H., Ran, A., and America, P. (2007). “A
general model of software architecture design derived from five industrial approaches”. In:
Journal of Systems and Software 80.1, pp. 106–126. doi: 10.1016/j.jss.2006.05.024.

Hoorn, J. F., Farenhorst, R., Lago, P., and van Vliet, H. (2011). “The lonesome architect”. In:
Journal of Systems and Software 84.9, pp. 1424–1435. doi: 10.1016/j.jss.2010.11.909.

Hübner, P. and Paech, B. (2020). “Interaction-based creation and maintenance of continuously
usable trace links between requirements and source code”. In: Empirical Software Engineering
(ESE) 25.5, pp. 4350–4377. doi: 10.1007/s10664-020-09831-w.

ISO/IEC 25010 (2011). Systems and software engineering – Systems and software Quality Require-
ments and Evaluation (SQuaRE) – System and software quality models. Geneva, Switzerland.

ISO/IEC/IEEE 24774 (2021). Systems and software engineering – Life cycle management –
Specification for process description. Geneva, Switzerland.

Jacobson, I., Booch, G., and Rumbaugh, J. (1998). The unified software development process.
Addison-Wesley.

James, G., Witten, D., Hastie, T., and Tibshirani, R. (2021). An Introduction to Statistical
Learning. Springer Texts in Statistics. New York, NY: Springer, p. 618. doi: 10.1007/978-1-
0716-1418-1.

Jansen, A. G. J. and Bosch, J. (2005). “Software Architecture as a Set of Architectural Design
Decisions”. In: 5th Working IEEE/IFIP Conference on Software Architecture (WICSA’05).
Pittsburgh, PA, USA: IEEE, pp. 109–120. doi: 10.1109/WICSA.2005.61.

Jarczyk, A., Loffler, P., and Shipmann, F. (1992). “Design rationale for software engineering: a
survey”. In: Twenty-Fifth Hawaii International Conference on System Sciences. Vol. 2. Kauai,
HI, USA: IEEE, pp. 577–586. doi: 10.1109/HICSS.1992.183309.

Jesse, M. and Jannach, D. (2021). “Digital nudging with recommender systems: Survey and future
directions”. In: Computers in Human Behavior Reports 3. doi: 10.1016/j.chbr.2020.100052.

Johanssen, J. O. (2019). “Continuous User Understanding in Software Evolution”. Dissertation.
Technical University of Munich, Germany.

Johanssen, J. O., Kleebaum, A., Bruegge, B., and Paech, B. (2017a). “Towards a Systematic
Approach to Integrate Usage and Decision Knowledge in Continuous Software Engineering”.
In: 2nd Workshop on Continuous Software Engineering. Hannover, Germany, pp. 7–11.

Johanssen, J. O., Kleebaum, A., Bruegge, B., and Paech, B. (2017b). “Towards the Visualization
of Usage and Decision Knowledge in Continuous Software Engineering”. In: 5th IEEE Working
Conference on Software Visualization (VISSOFT 2017). Shanghai, China, pp. 104–108. doi:
10.1109/VISSOFT.2017.18.

Johanssen, J. O., Kleebaum, A., Bruegge, B., and Paech, B. (2019a). “How do Practitioners
Capture and Utilize User Feedback during Continuous Software Engineering?” In: 27th IEEE
International Requirements Engineering Conference (RE’19). Jeju Island, South Korea: IEEE,
pp. 153–164. doi: 10.1109/RE.2019.00026.

Johanssen, J. O., Kleebaum, A., Paech, B., and Bruegge, B. (2018). “Practitioners’ Eye on
Continuous Software Engineering: An Interview Study”. In: International Conference on
Software and System Process. ICSSP ’18. Gothenburg, Sweden: ACM, pp. 41–50. doi: 10.
1145/3202710.3203150.

311

https://doi.org/10.1109/TwinPeaks-2.2013.6617355
https://doi.org/10.1109/TwinPeaks-2.2013.6617355
https://doi.org/10.1007/978-3-319-30282-9_13
https://doi.org/10.1016/j.jss.2006.05.024
https://doi.org/10.1016/j.jss.2010.11.909
https://doi.org/10.1007/s10664-020-09831-w
https://doi.org/10.1007/978-1-0716-1418-1
https://doi.org/10.1007/978-1-0716-1418-1
https://doi.org/10.1109/WICSA.2005.61
https://doi.org/10.1109/HICSS.1992.183309
https://doi.org/10.1016/j.chbr.2020.100052
https://doi.org/10.1109/VISSOFT.2017.18
https://doi.org/10.1109/RE.2019.00026
https://doi.org/10.1145/3202710.3203150
https://doi.org/10.1145/3202710.3203150

Bibliography

Johanssen, J. O., Kleebaum, A., Paech, B., and Bruegge, B. (2019b). “The Eye of Continuous
Software Engineering”. In: Software Engineering and Software Management (SE). Bonn,
Germany: Gesellschaft für Informatik e.V., pp. 67–68. doi: 10.18420/se2019-17.

Johanssen, J. O., Kleebaum, A., Paech, B., and Bruegge, B. (2019c). “Continuous software
engineering and its support by usage and decision knowledge: An interview study with
practitioners”. In: Journal of Software: Evolution and Process (JSEP) 31.5, e2169. doi: 10.
1002/smr.2169.

Jonas, H. (1985). The imperative of responsibility: In search of an ethics for the technological age.
University of Chicago Press.

Josephs, A., Gilson, F., and Galster, M. (2022). “Towards Automatic Classification of Design
Decisions from Developer Conversations”. In: 19th International Conference on Software
Architecture Companion (ICSA-C). Honolulu, HI, USA: IEEE, pp. 10–14. doi: 10.1109/ICSA-
C54293.2022.00009.

Kahneman, D. (2011). Thinking, Fast and Slow. London, UK: Penguin Books.
Kano, N. (1984). “Attractive quality and must-be quality”. In: Hinshitsu. The Journal of Japanese

Society for Quality Control 14, pp. 39–48.
Kitchenham, B. A. and Charters, S. (2007). Guidelines for Performing Systematic Literature

Reviews in Software Engineering (Version 2.3). Tech. rep. EBSE 2007-001. Keele, Staffs, UK;
Durham, UK: Keele University and Durham University Joint Report, p. 65.

Kleebaum, A., Johanssen, J. O., Paech, B., Alkadhi, R., and Bruegge, B. (2018a). “Decision
knowledge triggers in continuous software engineering”. In: 4th International Workshop on
Rapid Continuous Software Engineering - RCoSE ’18. Gotheburg, Sweden: ACM Press, pp. 23–
26. doi: 10.1145/3194760.3194765.

Kleebaum, A., Johanssen, J. O., Paech, B., and Bruegge, B. (2018b). “Tool Support for Decision
and Usage Knowledge in Continuous Software Engineering”. In: 3rd Workshop on Continuous
Software Engineering, pp. 74–77. doi: 10.11588/heidok.00024186.

Kleebaum, A., Johanssen, J. O., Paech, B., and Bruegge, B. (2019a). “Teaching Rationale
Management in Agile Project Courses”. In: 16. Workshop Software Engineering im Unterricht
der Hochschulen (SEUH). Bremerhaven, Germany, pp. 125–132. doi: 10.11588/heidok.
00026358.

Kleebaum, A., Johanssen, J. O., Paech, B., and Bruegge, B. (2019b). “How do Practitioners
Manage Decision Knowledge during Continuous Software Engineering?” In: 31st International
Conference on Software Engineering and Knowledge Engineering. SEKE’19. Lisbon, Portugal:
KSI Research Inc., pp. 735–740.

Kleebaum, A., Johanssen, J. O., Paech, B., and Bruegge, B. (2019c). “Sharing and Exploiting
Requirement Decisions”. In: Fachgruppentreffen Requirements Engineering (FGRE). Heidelberg,
Germany: Gesellschaft für Informatik, pp. 19–20. doi: 10.11588/heidok.00028596.

Kleebaum, A., Johanssen, J. O., Paech, B., and Bruegge, B. (2020). “Continuous Management
of Requirement Decisions Using the ConDec Tools”. In: 26th International Conference on
Requirements Engineering (REFSQ20) Workshops, Doctoral Symposium, Live Studies Track,
and Poster Track. Pisa, Italy: CEUR-WS.org, p. 6. doi: 10.11588/heidok.00028230.

Kleebaum, A., Johanssen, J. O., Paech, B., and Bruegge, B. (2021a). “Continuous Rationale
Management Using the ConDec Tools”. In: Software Engineering 2021 Satellite Events. Ed. by
S. Götz, L. Linsbauer, I. Schaefer, and A. Wortmann. Braunschweig/Virtual: CEUR-WS,
pp. 1–2. doi: 10.11588/heidok.00029976.

Kleebaum, A., Konersmann, M., Langhammer, M., Paech, B., Goedicke, M., and Reussner, R.
(2019d). “Continuous Design Decision Support”. In: Managed Software Evolution. Ed. by R.
Reussner, M. Goedicke, W. Hasselbring, B. Vogel-Heuser, J. Keim, and L. Märtin. Cham:
Springer International Publishing. Chap. 6, pp. 107–139. doi: 10.1007/978-3-030-13499-0_6.

312

https://doi.org/10.18420/se2019-17
https://doi.org/10.1002/smr.2169
https://doi.org/10.1002/smr.2169
https://doi.org/10.1109/ICSA-C54293.2022.00009
https://doi.org/10.1109/ICSA-C54293.2022.00009
https://doi.org/10.1145/3194760.3194765
https://doi.org/10.11588/heidok.00024186
https://doi.org/10.11588/heidok.00026358
https://doi.org/10.11588/heidok.00026358
https://doi.org/10.11588/heidok.00028596
https://doi.org/10.11588/heidok.00028230
https://doi.org/10.11588/heidok.00029976
https://doi.org/10.1007/978-3-030-13499-0_6

Bibliography

Kleebaum, A., Paech, B., Johanssen, J. O., and Bruegge, B. (2021b). “Continuous Rationale
Identification in Issue Tracking and Version Control Systems”. In: REFSQ-2021 Workshops,
OpenRE, Posters and Tools Track, and Doctoral Symposium. Essen/Virtual: CEUR-WS.org,
p. 9. doi: 10.11588/heidok.00029966.

Kleebaum, A., Paech, B., Johanssen, J. O., and Bruegge, B. (2021c). “Continuous Rationale
Visualization”. In: Working Conference on Software Visualization (VISSOFT). Luxembourg:
IEEE, pp. 33–43. doi: 10.1109/VISSOFT52517.2021.00013.

Klepper, S., Krusche, S., and Bruegge, B. (2016). “Semi-automatic generation of audience-specific
release notes”. In: International Workshop on Continuous Software Evolution and Delivery -
CSED’16. Austin, TX, USA: ACM, pp. 19–22. doi: 10.1145/2896941.2896953.

Kopczyńska, S., Ochodek, M., Piechowiak, J., and Nawrocki, J. (2022). “On the benefits and
problems related to using Definition of Done — A survey study”. In: Journal of Systems and
Software 193, p. 111479. doi: 10.1016/j.jss.2022.111479.

Kopp, O. and Armbruster, A. (2019). “Generalized markdown architectural decision records:
Capturing the essence of decisions”. In: 11th Central European Workshop on Services and their
Composition. Vol. 2339. Bayreuth, Germany: CEUR, pp. 55–57.

Kopp, O., Armbruster, A., and Zimmermann, O. (2018). “Markdown architectural decision
records: Format and tool support”. In: 10th Central European Workshop on Services and their
Composition. Vol. 2072. Dresden, Germany: CEUR-WS.org, pp. 55–62.

Kretsou, M., Arvanitou, E.-M., Ampatzoglou, A., Deligiannis, I., and Gerogiannis, V. C. (2021).
“Change impact analysis: A systematic mapping study”. In: Journal of Systems and Software
174, p. 110892. doi: 10.1016/j.jss.2020.110892.

Kruchten, P. (2004). “An Ontology of Architectural Design Decisions in Software-Intensive
Systems”. In: 2nd Groningen Workshop on Software Variability Management, pp. 54–61.

Kruchten, P. (2009). “Documentation of Software Architecture from a Knowledge Management
Perspective – Design Representation”. In: Software Architecture Knowledge Management. Ed.
by M. Ali Babar, T. Dingsøyr, P. Lago, and H. van Vliet. Berlin, Heidelberg: Springer Berlin
Heidelberg. Chap. 3, pp. 39–57. doi: 10.1007/978-3-642-02374-3_3.

Kruchten, P., Capilla, R., and Dueñas, J. C. (2009). “The Decision View’s Role in Software
Architecture Practice”. In: IEEE Software 26.2, pp. 36–42. doi: 10.1109/MS.2009.52.

Kruchten, P., Lago, P., and van Vliet, H. (2006). “Building Up and Reasoning About Architectural
Knowledge”. In: 2nd International Conference on Quality of Software Architectures - Revised
Papers (QoSA’06). Ed. by C. Hofmeister, I. Crnkovic, and R. Reussner. Vol. LNCS 4214.
Lecture Notes in Computer Science. Västerås, Sweden: Springer Berlin Heidelberg, pp. 43–58.
doi: 10.1007/11921998.

Krusche, S. T. (2016). “Rugby – A Process Model for Continuous Software Engineering”.
Dissertation. Technical University Munich, Germany, p. 203.

Krusche, S. T., Alperowitz, L., Bruegge, B., and Wagner, M. O. (2014). “Rugby: An Agile Process
Model Based on Continuous Delivery”. In: 1st International Workshop on Rapid Continuous
Software Engineering (RCoSE 2014), pp. 42–50. doi: 10.1145/2593812.2593818.

Krusche, S. T. and Bruegge, B. (2017). “CSEPM - A Continuous Software Engineering Process
Metamodel”. In: 3rd International Workshop on Rapid Continuous Software Engineering
(RCoSE). Buenos Aires, Argentina: IEEE, pp. 2–8. doi: 10.1109/RCoSE.2017.6.

Krusche, S. T., von Frankenberg, N., and Afifi, S. (2017). “Experiences of a Software Engineering
Course based on Interactive Learning”. In: 15. Workshop Software Engineering im Unterricht
der Hochschulen (SEUH). Hanover, Germany, pp. 32–40.

Kuchenbuch, T. (2019). “Darstellung der Evolution von Entscheidungswissen”. Bachelor Thesis.
Heidelberg University.

313

https://doi.org/10.11588/heidok.00029966
https://doi.org/10.1109/VISSOFT52517.2021.00013
https://doi.org/10.1145/2896941.2896953
https://doi.org/10.1016/j.jss.2022.111479
https://doi.org/10.1016/j.jss.2020.110892
https://doi.org/10.1007/978-3-642-02374-3_3
https://doi.org/10.1109/MS.2009.52
https://doi.org/10.1007/11921998
https://doi.org/10.1145/2593812.2593818
https://doi.org/10.1109/RCoSE.2017.6

Bibliography

Kugele, S. and Antkowiak, D. (2016). “Visualization of Trace Links and Change Impact Analysis”.
In: 24th International Requirements Engineering Conference Workshops (REW). Beijing, China:
IEEE, pp. 165–169. doi: 10.1109/REW.2016.039.

Kunz, W. and Rittel, H. W. J. (1970). Issues as elements of information systems. Berkeley,
California, US: Institute of Urban and Regional Development, University of California.

Kurtanović, Z. and Maalej, W. (2017). “Mining User Rationale from Software Reviews”. In:
25th IEEE International Requirements Engineering Conference (RE). Ed. by A. Moeira and
J. Araújo. Lisbon, Portugal: IEEE, pp. 53–62. doi: 10.1109/RE.2017.86.

Kurtanović, Z. and Maalej, W. (2018). “On user rationale in software engineering”. In: 23.3,
pp. 357–379. doi: 10.1007/s00766-018-0293-2.

Lauesen, S. (2002). Software requirements: styles and techniques. Pearson Education.
Lauesen, S. and Kuhail, M. A. (2012). “Task descriptions versus use cases”. In: Requirements

Engineering 17.1, pp. 3–18. doi: 10.1007/s00766-011-0140-1.
Lee, J. (1991). “Extending the Potts and Bruns Model for Recording Design Rationale”. In:

13th International Conference on Software Engineering (ICSE’91). Austin, TX, USA: IEEE,
pp. 114–125. doi: 10.1109/ICSE.1991.130629.

Lee, J. (1997). “Design Rationale Systems: Understanding the Issues”. In: IEEE Expert 12.3,
pp. 78–85. doi: 10.1109/64.592267.

Lee, L. and Kruchten, P. (2008). “A Tool to Visualize Architectural Design Decisions”. In:
Quality of Software Architectures. Models and Architectures: 4th International Conference on
the Quality of Software-Architectures. Ed. by S. Becker, F. Plasil, and R. Reussner. Springer,
pp. 43–54. doi: 10.1007/978-3-540-87879-7_3.

Lehman, M. M. (1980). “Programs, Life Cycles, and Laws of Software Evolution”. In: Proceedings
of the IEEE (PROC) 68.9, pp. 1060–1076. doi: 10.1109/PROC.1980.11805.

Lehnert, S. (2011). “A taxonomy for software change impact analysis”. In: 12th international
workshop and the 7th annual ERCIM workshop on Principles on software evolution and
software evolution - IWPSE-EVOL ’11. 1. Szeged, Hungary: ACM, p. 41. doi: 10.1145/
2024445.2024454.

Leite, L., Rocha, C., Kon, F., Milojicic, D., and Meirelles, P. (2019). “A Survey of DevOps
Concepts and Challenges”. In: ACM Computing Surveys 52.6, pp. 1–35. doi: 10.1145/3359981.

Lester, M., Guerrero, M., and Burge, J. (2020). “Using evolutionary algorithms to select text
features for mining design rationale”. In: Artificial Intelligence for Engineering Design, Analysis
and Manufacturing 34.2, pp. 132–146. doi: 10.1017/S0890060420000037.

Li, X., Liang, P., and Li, Z. (2020). “Automatic Identification of Decisions from the Hibernate
Developer Mailing List”. In: Evaluation and Assessment in Software Engineering. December.
Trondheim, Norway: ACM, pp. 51–60. doi: 10.1145/3383219.3383225.

Liang, Y., Liu, Y., Kwong, C. K., and Lee, W. B. (2012). “Learning the “Whys”: Discovering
design rationale using text mining — An algorithm perspective”. In: Computer-Aided Design
44.10, pp. 916–930. doi: 10.1016/j.cad.2011.08.002.

Lopes Silva, I. C., Brito, P. H. S., dos S. Neto, B. F., Costa, E., and Silva, A. A. (2015). “A
decision-making tool to support architectural designs based on quality attributes”. In: 30th
Annual ACM Symposium on Applied Computing (SAC). Salamanca, Spain: ACM, pp. 1457–
1463. doi: 10.1145/2695664.2695928.

López, C., Codocedo, V., Astudillo, H., and Cysneiros, L. M. (2012). “Bridging the gap between
software architecture rationale formalisms and actual architecture documents: An ontology-
driven approach”. In: Science of Computer Programming 77.1, pp. 66–80. doi: doi.org/10.
1016/j.scico.2010.06.009.

Lytra, I., Tran, H., and Zdun, U. (2012). “Constraint-Based Consistency Checking between
Design Decisions and Component Models for Supporting Software Architecture Evolution”.

314

https://doi.org/10.1109/REW.2016.039
https://doi.org/10.1109/RE.2017.86
https://doi.org/10.1007/s00766-018-0293-2
https://doi.org/10.1007/s00766-011-0140-1
https://doi.org/10.1109/ICSE.1991.130629
https://doi.org/10.1109/64.592267
https://doi.org/10.1007/978-3-540-87879-7_3
https://doi.org/10.1109/PROC.1980.11805
https://doi.org/10.1145/2024445.2024454
https://doi.org/10.1145/2024445.2024454
https://doi.org/10.1145/3359981
https://doi.org/10.1017/S0890060420000037
https://doi.org/10.1145/3383219.3383225
https://doi.org/10.1016/j.cad.2011.08.002
https://doi.org/10.1145/2695664.2695928
https://doi.org/doi.org/10.1016/j.scico.2010.06.009
https://doi.org/doi.org/10.1016/j.scico.2010.06.009

Bibliography

In: 16th European Conference on Software Maintenance and Reengineering. Szeged, Hungary:
IEEE, pp. 287–296. doi: 10.1109/CSMR.2012.36.

Lytra, I., Tran, H., and Zdun, U. (2013). “Supporting Consistency between Architectural Design
Decisions and Component Models through Reusable Architectural Knowledge Transformations”.
In: Software Architecture: 7th European Conference, ECSA 2013, Montpellier, France, July
1-5, 2013, Proceedings. Ed. by K. Drira. Vol. LNCS 7957. Lecture Notes in Computer Science.
Montpellier, France: Springer, pp. 224–239. doi: 10.1007/978-3-642-39031-9_20.

Lytra, I., Tran, H., and Zdun, U. (2015). “Harmonizing Architectural Decisions with Component
View Models using Reusable Architectural Knowledge Transformations and Constraints”. In:
Future Generation Computer Systems 47, pp. 80–96. doi: 10.1016/j.future.2014.11.010.

Lytra, I. and Zdun, U. (2014). “Inconsistency Management between Architectural Decisions
and Designs Using Constraints and Model Fixes”. In: 23rd Australian Software Engineering
Conference. Milsons Point, NSW, Australia: IEEE, pp. 230–239. doi: 10.1109/ASWEC.2014.33.

MacLean, A., Young, R. M., Bellotti, V. M. E., and Moran, T. P. (1991). “Questions, Options,
and Criteria: Elements of Design Space Analysis”. In: Human-Computer Interaction 6.3-4,
pp. 201–250.

Mahoney, M. S. (1990). “The roots of software engineering”. In: CWI Quarterly 3.4, pp. 325–334.
Malloy, J. and Burge, J. E. (2016). “SEURAT_Edu: A Tool to Assist and Assess Student

Decision-Making in Design”. In: 47th Technical Symposium on Computing Science Education
(SIGCSE’16). Memphis, Tennessee, USA: ACM, pp. 669–674. doi: 10.1145/2839509.2844555.

Manteuffel, C., Tofan, D., Avgeriou, P., Koziolek, H., and Goldschmidt, T. (2015). “Decision
architect - A decision documentation tool for industry”. In: Journal of Systems and Software
112, pp. 181–198. doi: 10.1016/j.jss.2015.10.034.

Marangunić, N. and Granić, A. (2015). “Technology acceptance model: a literature review
from 1986 to 2013”. In: Universal Access in the Information Society 14.1, pp. 81–95. doi:
10.1007/s10209-014-0348-1.

Martinez-Fernandez, S., Jedlitschka, A., Guzman, L., and Vollmer, A. M. (2018). “A Quality
Model for Actionable Analytics in Rapid Software Development”. In: 44th Euromicro Conference
on Software Engineering and Advanced Applications (SEAA). Prague, Czech Republic: IEEE,
pp. 370–377. doi: 10.1109/SEAA.2018.00067.

Maule, A. J. (2010). “Can Computers Help Overcome Limitations in Human Decision Making?”
In: International Journal of Human-Computer Interaction 26.2-3, pp. 108–119. doi: 10.1080/
10447310903498684.

Merten, T., Mager, B., Hübner, P., Quirchmayr, T., Bürsner, S., and Paech, B. (2015). “Re-
quirements Communication in Issue Tracking Systems in Four Open-Source Projects”. In: 6th
International Workshop on Requirements Prioritization and Communication (RePriCo). Essen,
Germany, pp. 114–125.

Miesbauer, C. and Weinreich, R. (2012). “Capturing and Maintaining Architectural Knowledge
Using Context Information”. In: Joint Working IEEE/IFIP Conference on Software Architecture
and European Conference on Software Architecture (WICSA/ECSA). Helsinki, Finland: IEEE,
pp. 206–210. doi: 10.1109/WICSA-ECSA.212.30.

Miesbauer, C. and Weinreich, R. (2013). “Classification of Design Decisions - An Expert Survey in
Practice”. In: 7th European Conference on Software Architecture (ECSA’13). Ed. by K. Drira.
Springer, pp. 130–145. doi: 10.1007/978-3-642-39031-9_12.

Myers, M. D. and Newman, M. (2007). “The Qualitative Interview in IS Research: Examining
the Craft”. In: Information and Organization 17.1, pp. 2–26. doi: 10.1016/j.infoandorg.
2006.11.001.

Naur, P. and Randell, B. (1968). “Software Engineering”. In: Report of the 1968 conference in
Garmisch, Germany. NATO Science Committee.

315

https://doi.org/10.1109/CSMR.2012.36
https://doi.org/10.1007/978-3-642-39031-9_20
https://doi.org/10.1016/j.future.2014.11.010
https://doi.org/10.1109/ASWEC.2014.33
https://doi.org/10.1145/2839509.2844555
https://doi.org/10.1016/j.jss.2015.10.034
https://doi.org/10.1007/s10209-014-0348-1
https://doi.org/10.1109/SEAA.2018.00067
https://doi.org/10.1080/10447310903498684
https://doi.org/10.1080/10447310903498684
https://doi.org/10.1109/WICSA-ECSA.212.30
https://doi.org/10.1007/978-3-642-39031-9_12
https://doi.org/10.1016/j.infoandorg.2006.11.001
https://doi.org/10.1016/j.infoandorg.2006.11.001

Bibliography

Nazar, N., Hu, Y., and Jiang, H. (2016). “Summarizing Software Artifacts: A Literature Review”.
In: Journal of Computer Science and Technology 31.5, pp. 883–909. doi: 10.1007/s11390-
016-1671-1.

Nizenkov, K. (2019). “Design and implementation of a developer-centric quality web application”.
Bachelor Thesis. Heidelberg University.

Nonaka, I. and Takeuchi, H. (1995). “The Knowledge-Creating Company: How Japanese Compa-
nies Create the Dynamics of Innovation”. In: Oxford University Press.

Object Management Group (2017). Unified Modeling Language Specification Version 2.5.1.
Olsson, H. H., Alahyari, H., and Bosch, J. (2012). “Climbing the “Stairway to Heaven” – A

Multiple-Case Study Exploring Barriers in the Transition from Agile Development towards
Continuous Deployment of Software”. In: 38th Euromicro Conference on Software Engineering
and Advanced Applications. Cesme, Turkey: IEEE, pp. 392–399. doi: 10.1109/SEAA.2012.54.

Otchere, C. (2020). “Die Rolle von Qualitätsattributen während der Dokumentation und Nutzung
von Entscheidungswissen”. Bachelor Thesis. Heidelberg University.

Paech, B., Delater, A., and Hesse, T.-M. (2014). “Supporting Project Management Through
Integrated Management of System and Project Knowledge”. In: Software Project Management
in a Changing World. Ed. by G. Ruhe and C. Wohlin. Heidelberg, Germany: Springer. Chap. 7,
pp. 157–192. doi: 10.1007/978-3-642-55035-5.

Paech, B. and Kohler, K. (2004). “Task-Driven Requirements in Object-Oriented Development”.
In: Perspectives on Software Requirements. Ed. by J. C. Sampaio do Prado Leite and J. H. Doorn.
Vol. 753. Boston, MA: Springer US. Chap. 3, pp. 45–67. doi: 10.1007/978-1-4615-0465-8_3.

Pan, S., Bao, L., Ren, X., Xia, X., Lo, D., and Li, S. (2021). “Automating Developer Chat
Mining”. In: 36th IEEE/ACM International Conference on Automated Software Engineering
(ASE). Melbourne, Australia: IEEE, pp. 854–866. doi: 10.1109/ASE51524.2021.9678923.

Paulk, M., Curtis, B., Chrissis, M., and Weber, C. (1993). “Capability maturity model, version
1.1”. In: IEEE Software 10.4, pp. 18–27. doi: 10.1109/52.219617.

Pedraza-García, G., Astudillo, H., and Correal, D. (2015). “DVIA: Understanding how software
architects make decisions in design meetings”. In: European Conference on Software Architecture
Workshops. Dubrovnik/Cavtat, Croatia: ACM, pp. 1–7. doi: 10.1145/2797433.2797486.

Pennington, J., Socher, R., and Manning, C. (2014). “Glove: Global Vectors for Word Repre-
sentation”. In: Conf. on Empir. Methods in Natural Language Processing (EMNLP). Doha,
Qatar: Association for Computational Linguistics, pp. 1532–1543. doi: 10.3115/v1/D14-1162.

Petersen, K., Feldt, R., Mujtaba, S., and Mattsson, M. (2008). “Systematic Mapping Studies
in Software Engineering”. In: 12th International Conference on Evaluation and Assessment
in Software Engineering (EASE). Bari, Italy: British Computer Society, pp. 68–77. doi:
10.14236/ewic/EASE2008.8.

Pohl, K. and Rupp, C. (2016). Requirements Engineering Fundamentals. 2nd ed. Rocky Nook.
Popper, K. R. (1959). “The Logic of Scientific Discovery”. In: Hutchinson, London.
R Core Team (2022). R: A Language and Environment for Statistical Computing. R Foundation

for Statistical Computing. Vienna, Austria. url: https://www.R-project.org.
Ralph, P. et al. (2020). “Empirical Standards for Software Engineering Research”. In: ACM Special

Interest Group on Software Engineering (SIGSOFT). doi: 10.48550/ARXIV.2010.03525.
Rastkar, S. and Murphy, G. C. (2013). “Why did this code change?” In: 35th International

Conference on Software Engineering (ICSE). IEEE, pp. 1193–1196. doi: 10.1109/ICSE.2013.
6606676.

Rath, M., Rendall, J., Guo, J. L. C., Cleland-Huang, J., and Mäder, P. (2018). “Traceability in
the wild”. In: 40th International Conference on Software Engineering (ICSE). Gothenburg,
Sweden: ACM, pp. 834–845. doi: 10.1145/3180155.3180207.

316

https://doi.org/10.1007/s11390-016-1671-1
https://doi.org/10.1007/s11390-016-1671-1
https://doi.org/10.1109/SEAA.2012.54
https://doi.org/10.1007/978-3-642-55035-5
https://doi.org/10.1007/978-1-4615-0465-8_3
https://doi.org/10.1109/ASE51524.2021.9678923
https://doi.org/10.1109/52.219617
https://doi.org/10.1145/2797433.2797486
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.14236/ewic/EASE2008.8
https://www.R-project.org
https://doi.org/10.48550/ARXIV.2010.03525
https://doi.org/10.1109/ICSE.2013.6606676
https://doi.org/10.1109/ICSE.2013.6606676
https://doi.org/10.1145/3180155.3180207

Bibliography

Razavian, M., Paech, B., and Tang, A. (2023). “The vision of on-demand architectural knowledge
systems as a decision-making companion”. In: Journal of Systems and Software 198, p. 111560.
doi: 10.1016/j.jss.2022.111560.

Razavian, M., Tang, A., Capilla, R., and Lago, P. (2016). “In Two Minds: How Reflections
Influence Software Design Thinking”. In: Journal of Software: Evolution and Process 28.6,
pp. 394–426. doi: 10.1002/smr.1776.

Rittel, H. W. J. (1972). “On the Planning Crisis: Systems Analysis of the ’First and Second
Generations’”. In: Bedriftsøkonomen 8, pp. 390–396.

Robillard, M. P., Marcus, A., Treude, C., Bavota, G., Chaparro, O., Ernst, N., Gerosa, M. A.,
Godfrey, M., Lanza, M., Linares-Vásquez, M., Murphy, G. C., Moreno, L., Shepherd, D., and
Wong, E. (2017). “On-Demand Developer Documentation”. In: International Conference on
Software Maintenance and Evolution, p. 5. doi: 10.1109/ICSME.2017.17.

Robillard, M. P. and Walker, R. J. (2014). “An Introduction to Recommendation Systems in
Software Engineering”. In: Recommendation Systems in Software Engineering. Ed. by M. P.
Robillard, W. Maalej, R. J. Walker, and T. Zimmermann. Berlin, Heidelberg: Springer Berlin
Heidelberg, pp. 1–11. doi: 10.1007/978-3-642-45135-5_1.

Roeller, R., Lago, P., and van Vliet, H. (2006). “Recovering architectural assumptions”. In:
Journal of Systems and Software 79.4, pp. 552–573. doi: 10.1016/j.jss.2005.10.017.

Rogers, B., Gung, J., Qiao, Y., and Burge, J. E. (2012). “Exploring techniques for rationale
extraction from existing documents”. In: 2012 34th International Conference on Software
Engineering (ICSE). Zurich, Switzerland: IEEE, pp. 1313–1316. doi: 10.1109/ICSE.2012.
6227091.

Rogers, B., Justice, C., Mathur, T., and Burge, J. E. (2017). “Generalizability of Document
Features for Identifying Rationale”. In: Design Computing and Cognition ’16. Cham: Springer
International Publishing, pp. 633–651. doi: 10.1007/978-3-319-44989-0_34.

Rogers, B., Qiao, Y., Gung, J., Mathur, T., and Burge, J. E. (2015). “Using Text Mining
Techniques to Extract Rationale from Existing Documentation”. In: Design Computing and
Cognition ’14. Springer, pp. 457–474. doi: 10.1007/978-3-319-14956-1_26.

Runeson, P., Host, M., Rainer, A., and Regnell, B. (2012). Case Study Research in Software
Engineering: Guidelines and Examples. 1st ed. Hoboken, NJ, USA: John Wiley & Sons, p. 256.

Saito, S., Iimura, Y., Massey, A. K., and Antón, A. I. (2017). “How Much Undocumented
Knowledge is there in Agile Software Development? Case Study on Industrial Project using
Issue Tracking System and Version Control System”. In: 2017 IEEE 25th International
Requirements Engineering Conference. Lisbon, Portugal: IEEE Computer Society, pp. 186–195.

Saldaña, J. (2009). The Coding Manual for Qualitative Researchers. 2nd ed. SAGE Publications.
Sauerwein, E., Bailom, F., Matzler, K., and Hinterhuber, H. H. (1996). “The Kano model: How

to delight your customers”. In: 9th International Working Seminar on Production Economics.
Vol. 1. Innsbruck: Elsevier, pp. 313–327.

Schroeder, M. (1999). “A practical guide to object-oriented metrics”. In: IT Professional 1.6,
pp. 30–36. doi: 10.1109/6294.806902.

Schubanz, M. (2014). “Design rationale capture in software architecture: What has to be
captured?” In: 19th international doctoral symposium on Components and architecture -
WCOP ’14. Marcq-en-Bareul, France: ACM, pp. 31–36. doi: 10.1145/2601328.2601329.

Schubanz, M. (2021). How Software Engineers Deal With Decisions in Scrum – An Analysis.
Tech. rep. Brandenburgische Technische Universität Cottbus-Senftenberg, p. 387. doi: 10.
26127/BTUOpen-5066.

Schubanz, M. and Lewerentz, C. (2020). “What Matters to Students – A Rationale Management
Case Study in Agile Software Development”. In: 17. Workshop Software Engineering im
Unterricht der Hochschulen (SEUH). Innsbruck, Österreich: CEUR, pp. 17–26.

Schwaber, K. and Beedle, M. (2002). Agile software development with Scrum. Prentice Hall.

317

https://doi.org/10.1016/j.jss.2022.111560
https://doi.org/10.1002/smr.1776
https://doi.org/10.1109/ICSME.2017.17
https://doi.org/10.1007/978-3-642-45135-5_1
https://doi.org/10.1016/j.jss.2005.10.017
https://doi.org/10.1109/ICSE.2012.6227091
https://doi.org/10.1109/ICSE.2012.6227091
https://doi.org/10.1007/978-3-319-44989-0_34
https://doi.org/10.1007/978-3-319-14956-1_26
https://doi.org/10.1109/6294.806902
https://doi.org/10.1145/2601328.2601329
https://doi.org/10.26127/BTUOpen-5066
https://doi.org/10.26127/BTUOpen-5066

Bibliography

Seaman, C. (1999). “Qualitative Methods in Empirical Studies of Software Engineering”. In:
IEEE Transactions on Software Engineering 25.4, pp. 557–572. doi: 10.1109/32.799955.

Seiler, M. (2017). “Dokumentation und Nutzung von Entscheidungen in Code”. Bachelor Thesis.
Heidelberg University.

Shahbazian, A., Kyu Lee, Y., Le, D., Brun, Y., and Medvidovic, N. (2018). “Recovering Ar-
chitectural Design Decisions”. In: International Conference on Software Architecture (ICSA).
Seattle, WA: IEEE, pp. 95–104. doi: 10.1109/ICSA.2018.00019.

Shahin, M., Ali Babar, M., and Zhu, L. (2017). “Continuous Integration, Delivery and Deployment:
A Systematic Review on Approaches, Tools, Challenges and Practices”. In: IEEE Access 5.Ci,
pp. 3909–3943. doi: 10.1109/ACCESS.2017.2685629.

Shahin, M., Liang, P., and Khayyambashi, M. R. (2010). “Improving Understandability of Archi-
tecture Design through Visualization of Architectural Design Decision”. In: ICSE Workshop
on Sharing and Reusing Architectural Knowledge (SHARK ’10). Ed. by P. Avgeriou, P. Lago,
and P. Kruchten. Cape Town, South Africa: ACM, pp. 88–95. doi: 10.1145/1833335.1833348.

Shahin, M., Liang, P., and Li, Z. (2011). “Architectural Design Decision Visualization for
Architecture Design: Preliminary Results of A Controlled Experiment”. In: 5th European
Conference on Software Architecture (ECSA). Ed. by I. Crnkovic, V. Gruhn, and M. Book.
Vol. Companion. Essen, Germany: ACM, 2:1–2:8. doi: 10.1145/2031759.2031762.

Sharma, P. N., Savarimuthu, B. T. R., and Stanger, N. (2021). “Extracting Rationale for Open
Source Software Development Decisions — A Study of Python Email Archives”. In: 43rd
International Conference on Software Engineering (ICSE). Madrid, Spain: IEEE, pp. 1008–
1019. doi: 10.1109/ICSE43902.2021.00095.

Sharma, P. N., Savarimuthu, B. T. R., and Stanger, N. (2023). “How are decisions made in open
source software communities? — Uncovering rationale from python email repositories”. In:
Journal of Software: Evolution and Process November 2022, pp. 1–29. doi: 10.1002/smr.2526.

Shi, L., Jiang, Z., Yang, Y., Chen, X., Zhang, Y., Mu, F., Jiang, H., and Wang, Q. (2021). “ISPY:
Automatic Issue-Solution Pair Extraction from Community Live Chats”. In: 36th IEEE/ACM
International Conference on Automated Software Engineering, ASE 2021, pp. 142–154. doi:
10.1109/ASE51524.2021.9678894.

Soliman, M., Avgeriou, P., and Li, Y. (2021). “Architectural design decisions that incur technical
debt — An industrial case study”. In: Information and Software Technology 139, p. 106669.
doi: 10.1016/j.infsof.2021.106669.

Solis, C. and Ali, N. (2010). “Distributed Requirements Elicitation Using a Spatial Hypertext
Wiki”. In: 5th IEEE International Conference on Global Software Engineering. Princeton, NJ,
USA: IEEE, pp. 237–246.

Spiekermann, S. (2019). Digitale Ethik: ein Wertesystem für das 21. Jahrhundert. Droemer.
Spillner, A. and Linz, T. (2021). Software Testing Foundations: A Study Guide for the Certified

Tester Exam – Foundation Level – International Software Testing Qualifications Board (ISTQB)
Compliant. dpunkt.verlag.

Stol, K.-J. and Fitzgerald, B. (2018). “The ABC of Software Engineering Research”. In: ACM
Transactions on Software Engineering and Methodology 27.3, pp. 1–51. doi: 10.1145/3241743.

Svensson, R. B., Feldt, R., and Torkar, R. (2019). “The Unfulfilled Potential of Data-Driven
Decision Making in Agile Software Development”. In: Lecture Notes in Business Information
Processing. Vol. 355, pp. 69–85. doi: 10.1007/978-3-030-19034-7_5.

Tang, A., Babar, M. A., Gorton, I., and Han, J. (2006). “A survey of architecture design rationale”.
In: Journal of Systems and Software 79.12, pp. 1792–1804. doi: 10.1016/j.jss.2006.04.029.

Tang, A. and Lau, M. F. (2014). “Software Architecture Review by Association”. In: Journal of
Systems and Software 88.1, pp. 87–101. doi: 10.1016/j.jss.2013.09.044.

Tang, A., Liang, P., Clerc, V., and van Vliet, H. (2011). “Traceability in the Co-evolution of
Architectural Requirements and Design”. In: Relating Software Requirements and Architectures.

318

https://doi.org/10.1109/32.799955
https://doi.org/10.1109/ICSA.2018.00019
https://doi.org/10.1109/ACCESS.2017.2685629
https://doi.org/10.1145/1833335.1833348
https://doi.org/10.1145/2031759.2031762
https://doi.org/10.1109/ICSE43902.2021.00095
https://doi.org/10.1002/smr.2526
https://doi.org/10.1109/ASE51524.2021.9678894
https://doi.org/10.1016/j.infsof.2021.106669
https://doi.org/10.1145/3241743
https://doi.org/10.1007/978-3-030-19034-7_5
https://doi.org/10.1016/j.jss.2006.04.029
https://doi.org/10.1016/j.jss.2013.09.044

Bibliography

Ed. by P. Avgeriou, J. Grundy, J. G. Hall, P. Lago, and I. Mistrík. Berlin, Heidelberg, Germany:
Springer Berlin Heidelberg. Chap. 4, pp. 35–60. doi: 10.1007/978-3-642-21001-3_4.

Tao, Y. and Kim, S. (2015). “Partitioning Composite Code Changes to Facilitate Code Review”.
In: 12th Working Conference on Mining Software Repositories. Florence, Italy: IEEE, pp. 180–
190. doi: 10.1109/MSR.2015.24.

Thaler, R. H. and Sunstein, C. R. (2008). Nudge: Improving Decisions about Health, Wealth, and
Happiness. New York, USA: Yale University Press.

Theunissen, T., van Heesch, U., and Avgeriou, P. (2022). “A mapping study on documentation in
Continuous Software Development”. In: Information and Software Technology 142, p. 106733.
doi: 10.1016/j.infsof.2021.106733.

Thurimella, A. K., Schubanz, M., Pleuss, A., and Botterweck, G. (2017). “Guidelines for Managing
Requirements Rationales”. In: IEEE Software 34.1, pp. 82–90. doi: 10.1109/MS.2015.157.

Tofan, D., Galster, M., and Avgeriou, P. (2013). “Difficulty of Architectural Decisions – A
Survey with Professional Architects”. In: 7th European Conference on Software Architecture
(ECSA’13). Ed. by K. Drira. Vol. LNCS 7957. Lecture Notes in Computer Science. Montpellier,
France: Springer, pp. 192–199. doi: 10.1007/978-3-642-39031-9_17.

Tralle, L. (2019). “Visualisierung und Verwaltung von Entscheidungswissen in Jira”. Bachelor
Thesis. Heidelberg University.

van der Ven, J. S. and Bosch, J. (2013). “Making the Right Decision: Supporting Architects with
Design Decision Data”. In: Lecture Notes in Computer Science. Vol. 7957. Berlin, Heidelberg:
Springer, pp. 176–183. doi: 10.1007/978-3-642-39031-9_15.

van Heesch, U., Avgeriou, P., and Hilliard, R. (2012). “A documentation framework for architecture
decisions”. In: Journal of Systems and Software 85.4, pp. 795–820. doi: 10.1016/j.jss.2011.
10.017.

Wagner, S., Goeb, A., Heinemann, L., Kläs, M., Lampasona, C., Lochmann, K., Mayr, A., Plösch,
R., Seidl, A., Streit, J., and Trendowicz, A. (2015). “Operationalised product quality models
and assessment: The Quamoco approach”. In: Information and Software Technology 62.1,
pp. 101–123. doi: 10.1016/j.infsof.2015.02.009.

Wang, W. and Burge, J. E. (2010). “Using Rationale to Support Pattern-Based Architectural
Design”. In: ICSE Workshop on Sharing and Reusing Architectural Knowledge - SHARK ’10.
Cape Town, South Africa: ACM, pp. 1–8. doi: 10.1145/1833335.1833336.

Weinreich, R. and Groher, I. (2016). “Software architecture knowledge management approaches
and their support for knowledge management activities: A systematic literature review”. In:
Information and Software Technology (IST) 80, pp. 265–286. doi: 10.1016/j.infsof.2016.09.
007.

Weinreich, R., Groher, I., and Miesbauer, C. (2015). “An expert survey on kinds, influence factors
and documentation of design decisions in practice”. In: Future Generation Computer Systems
(FGCS) 47, pp. 145–160. doi: 10.1016/j.future.2014.12.002.

Wieringa, R. J. (2014). Design Science Methodology for Information Systems and Software
Engineering. Springer Berlin Heidelberg, p. 332. doi: 10.1007/978-3-662-43839-8.

Wieringa, R. J. and Moralı, A. (2012). “Technical Action Research as a Validation Method in
Information Systems Design Science”. In: Design Science Research in Information Systems:
Advances in Theory and Practice. Vol. LNCS 7286. Lecture Notes in Computer Science. Las
Vegas, Nevada, USA: Springer Berlin Heidelberg, pp. 220–238. doi: 10.1007/978-3-642-
29863-9_17.

Wisniowski, L. (2019). “Quality assurance of documented decision knowledge in feature branches”.
Master Thesis. Heidelberg University.

Wohlin, C. (2016). “Second-generation systematic literature studies using snowballing”. In: 20th
International Conference on Evaluation and Assessment in Software Engineering (EASE).
ACM, 15:1–15:16. doi: 10.1145/2915970.2916006.

319

https://doi.org/10.1007/978-3-642-21001-3_4
https://doi.org/10.1109/MSR.2015.24
https://doi.org/10.1016/j.infsof.2021.106733
https://doi.org/10.1109/MS.2015.157
https://doi.org/10.1007/978-3-642-39031-9_17
https://doi.org/10.1007/978-3-642-39031-9_15
https://doi.org/10.1016/j.jss.2011.10.017
https://doi.org/10.1016/j.jss.2011.10.017
https://doi.org/10.1016/j.infsof.2015.02.009
https://doi.org/10.1145/1833335.1833336
https://doi.org/10.1016/j.infsof.2016.09.007
https://doi.org/10.1016/j.infsof.2016.09.007
https://doi.org/10.1016/j.future.2014.12.002
https://doi.org/10.1007/978-3-662-43839-8
https://doi.org/10.1007/978-3-642-29863-9_17
https://doi.org/10.1007/978-3-642-29863-9_17
https://doi.org/10.1145/2915970.2916006

Bibliography

Wohlin, C. and Aurum, A. (2015). “Towards a decision-making structure for selecting a research
design in empirical software engineering”. In: 20.6, pp. 1427–1455. doi: 10.1007/s10664-014-
9319-7.

Yan, K. (2021). “Unterstützung der Analyse von Änderungsauswirkungen auf Graphen von
Wissenelementen”. Master Thesis. Heidelberg University.

Yang, C., Liang, P., and Avgeriou, P. (2019). “Integrating Agile Practices into Architectural
Assumption Management: An Industrial Survey”. In: Evaluation and Assessment on Software
Engineering (EASE). March. Copenhagen, Denmark: ACM, pp. 156–165. doi: 10.1145/
3319008.3319027.

Zannier, C., Chiasson, M., and Maurer, F. (2007). “A model of design decision making based
on empirical results of interviews with software designers”. In: Information and Software
Technology 49.6, pp. 637–653. doi: 10.1016/j.infsof.2007.02.010.

Zdun, U., Capilla, R., Tran, H., and Zimmermann, O. (2013). “Sustainable Architectural Design
Decisions”. In: IEEE Software 30.6, pp. 46–53. doi: 10.1109/MS.2013.97.

Zhang, L., Sun, Y., Song, H., Chauvel, F., and Mei, H. (2011). “Detecting Architecture Erosion
by Design Decision of Architectural Pattern”. In: 23rd International Conference on Software
Engineering and Knowledge Engineering. Skokie, IL, USA: Knowledge Systems Institute
Graduate School, pp. 758–763.

Zhao, L., Alhoshan, W., Ferrari, A., Letsholo, K. J., Ajagbe, M. A., Chioasca, E. V., and Batista-
Navarro, R. T. (2020). “Natural Language Processing (NLP) for requirements engineering: A
systematic mapping study”. In: arXiv v. arXiv: 2004.01099.

Zhi, J., Garousi-Yusifoğlu, V., Sun, B., Garousi, G., Shahnewaz, S., and Ruhe, G. (2015). “Cost,
benefits and quality of software development documentation: A systematic mapping”. In:
Journal of Systems and Software 99, pp. 175–198. doi: 10.1016/j.jss.2014.09.042.

Zhu, J., He, P., Fu, Q., Zhang, H., Lyu, M. R., and Zhang, D. (2015). “Learning to Log: Helping
Developers Make Informed Logging Decisions”. In: 37th IEEE International Conference on
Software Engineering. Florence, Italy: IEEE, pp. 415–425. doi: 10.1109/ICSE.2015.60.

Zimmermann, O. (2011). “Architectural Decisions as Reusable Design Assets”. In: IEEE Software
28.1, pp. 64–69. doi: 10.1109/MS.2011.3.

Zimmermann, O. and Miksovic, C. (2013). “Decisions Required vs. Decisions Made”. In: Aligning
Enterprise, System, and Software Architectures. Ed. by I. Mistrik, A. Tang, R. Bahsoon, and
J. A. Stafford. IGI Global. Chap. 10, pp. 176–208. doi: 10.4018/978-1-4666-2199-2.ch010.

Zimmermann, O., Wegmann, L., Koziolek, H., and Goldschmidt, T. (2015). “Architectural
Decision Guidance across Projects: Problem Space Modeling, Decision Backlog Management
and Cloud Computing Knowledge”. In: 12th Working IEEE/IFIP Conference on Software
Architecture (WICSA ’15). Ed. by L. Bass, P. Lago, and P. Kruchten. Montréal, Québec,
Canada: IEEE, pp. 85–94. doi: 10.1109/WICSA.2015.29.

Zubrod, P. (2017). “Dokumentation und Nutzung von Entscheidungen in Git”. Bachelor Thesis.
Heidelberg University.

Zubrod, P. (2021). “Vorschlagsmechanismus für Lösungsoptionen zu Entscheidungsproblemen in
der Softwareentwicklung”. Master Thesis. Heidelberg University.

320

https://doi.org/10.1007/s10664-014-9319-7
https://doi.org/10.1007/s10664-014-9319-7
https://doi.org/10.1145/3319008.3319027
https://doi.org/10.1145/3319008.3319027
https://doi.org/10.1016/j.infsof.2007.02.010
https://doi.org/10.1109/MS.2013.97
https://arxiv.org/abs/2004.01099
https://doi.org/10.1016/j.jss.2014.09.042
https://doi.org/10.1109/ICSE.2015.60
https://doi.org/10.1109/MS.2011.3
https://doi.org/10.4018/978-1-4666-2199-2.ch010
https://doi.org/10.1109/WICSA.2015.29

List of Figures

1.1 Major activities that researchers of a design science research project perform . . 8
1.2 Design cycle of the thesis . 8
1.3 Validation aspects examined in this thesis (UML package diagram). 9
1.4 Empirical studies along their level of obtrusiveness and generalizability 10
1.5 Goal structure of the thesis . 12

2.1 Rugby CSE process model . 21
2.2 Parallel Workflows of Rugby CSE process model 23
2.3 Decision documentation model . 26
2.4 Design of the CURES prototype . 29

3.1 Number of interviews in which the practitioners mentioned a CSE element. . . . 38
3.2 Number of experiences that the practitioners reported per CSE category 40
3.3 Model of continuous software engineering . 41
3.4 Practitioners’ attitude towards capturing decisions 44

4.1 Search procedure and results of the systematic mapping study 57
4.2 Timeline of classification and recommendation approaches published per year . . 59
4.3 Systematic map: Number of publications per approach and synthesis criterion . . 66

5.1 Ticket with explicit decision knowledge and knowledge tree view of ConDec Jira 72
5.2 Meeting agenda of ConDec Confluence and merge check of ConDec Bitbucket . . 72
5.3 Commit message with decision and knowledge subtree 73
5.4 Treatment consisting of ConRat life cycle model extension and ConDec plug-ins . 73

6.1 ConRat knowledge model . 80
6.2 Instance of ConRat knowledge model . 82
6.3 Decision-making states of issues, alternatives, and decisions 82
6.4 Documentation states of decision knowledge . 83
6.5 Image-matching decision as an example instance of the knowledge model 84
6.6 Rugby workflows and ConRat activities as a UML use case diagram 88
6.7 Classes and associations involved in life cycle modeling (UML class diagram). . . 88
6.8 Instances and associations involved in Rugby extended with ConRat 89
6.9 Dynamic view of the Rugby life cycle model extended with ConRat 90
6.10 Requirements elicitation workflow with explicit rationale management. 90
6.11 Development workflow with explicit rationale management. 91
6.12 Review workflow with explicit rationale management. 91
6.13 Release workflow with explicit rationale management. 92
6.14 Feedback/change management workflow with explicit rationale management. . . 92
6.15 Image-matching decision after employing usage knowledge 93
6.16 Meeting workflow with explicit rationale management. 93
6.17 Rationale quality management and dissemination workflow. 94

321

List of Figures

7.1 Functional model of ConDec’s support for documenting rationale 98
7.2 Functional model of ConDec’s support for exploiting rationale documentation . . 100
7.3 Functional model of ConDec’s support for decision making 102
7.4 Functional model of ConDec’s support for the quality assurance 103
7.5 Functional model of ConDec’s support for setting up rationale management . . . 105
7.6 ConDec plug-ins and the features they offer as classes (UML component diagram) 106
7.7 Decision knowledge documentation as entire tickets or ticket text 109
7.8 Decision knowledge documentation in commit message 109
7.9 Decision knowledge documentation in code . 110
7.10 Node-link diagram . 111
7.11 Knowledge tree view: Indented outline . 112
7.12 Knowledge tree view: Node-link tree diagram . 112
7.13 View on knowledge in git for a specific Jira ticket 113
7.14 Adjacency matrix view . 114
7.15 Criteria matrix view . 114
7.16 Knowledge tree view for quality requirement and metrics view 114
7.17 Chronology view . 115
7.18 Instance of ConRat knowledge model with transitive linking 117
7.19 Support for change execution in knowledge tree view 118
7.20 ConDec’s decision guidance view . 120
7.21 ConDec’s just-in-time prompt . 121
7.22 ConDec’s quality check view . 122
7.23 Knowledge tree view highlighting definition of done violations 122
7.24 Configuration view for the definition of done for the knowledge documentation. . 123
7.25 Indented outline with change impact highlighting 124
7.26 ConDec’s link recommendation view . 125
7.27 ConDec’s text classification view . 126
7.28 Decision knowledge in ticket comments and knowledge tree visualization 128
7.29 Filtered knowledge tree visualization with a rejected decision 129
7.30 Summarization of Source Code Changes in ConDec 129
7.31 Rationale backlog . 130
7.32 Rationale coverage dashboard item . 131
7.33 Intra-rationale completeness dashboard item showing the metrics using pie charts. 132
7.34 General metrics dashboard item showing metrics using boxplots and pie charts. . 132
7.35 Dashboard item showing metrics about the knowledge in git. 133
7.36 Dashboard item showing metrics about the decision levels and decision groups. . 133
7.37 Filter settings for rationale coverage dashboard item. 134
7.38 Navigation dialog with elements violating the definition of done. 134
7.39 ConDec dialog to assign a level and custom groups to a decision. 135
7.40 Issues and decisions of user interface (UI) decision group in ISE 2021/22 project. 136
7.41 Decision groups overview with context menu to rename or delete a group. 136
7.42 Decision problem violating the definition of done 137
7.43 Meeting agenda with decision knowledge . 137
7.44 ConDec’s release notes editor . 138
7.45 ConDec’s export dialog for knowledge subgraph 138

9.1 Number of rationale elements documented per date in the validation projects . . 163
9.2 Proportion of documentation locations used over time in the validation projects . 166
9.3 Change of decision knowledge elements over time 167
9.4 Number of decisions per decision type in the validation projects 168

322

List of Figures

9.5 Proportion of decision types documented over time in the validation projects . . 169
9.6 Correlation between the decision types in validation projects 170
9.7 Correlation between decision types and documentation locations in ConDec project171
9.8 Decision coverage of requirements and code . 176

10.1 Example of retrospectively annotated decision knowledge in ConDec 183
10.2 ConDec’s configuration view for automatic text classification 186

11.1 View usage measured by the number of REST API calls per day 207
11.2 View usage measured by the number of REST API calls per view 208

12.1 Decision knowledge view of ConDec Jira plug-in 218
12.2 Jira ticket view including the interactive rationale tree 219
12.3 Filtered knowledge tree with transitive links . 220
12.4 Explicit rationale in the comments of a scenario and knowledge tree 221
12.5 Criteria matrix . 221
12.6 Knowledge tree view with change impact highlighting 222

D.1 Proportion of rationale types documented over time in the validation projects. . 278
D.2 Number of rationale elements per documentation origin in the validation projects. 279
D.3 Number of groups assigned to the decisions in the validation projects. 280
D.4 Number of decisions per decision type in the six validation projects. 281
D.5 Decision types documented over time in the validation projects. 282
D.6 Decision level assignments in the validation projects. 283
D.7 Proportion of decision levels documented over time in the validation projects. . . 284

323

List of Tables

1 Bachelor and master theses contributing to the dissertation. vi

1.1 Rationale management problems and their aggravation through CSE. 7
1.2 Structure of the thesis, including research goals and research questions (RQ). . . 16
1.3 Previous publications . 17

2.1 Continuous ∗ activities and their definitions by Fitzgerald and Stol (2017). 20

3.1 Research questions of the interview study. 34
3.2 CSE categories and CSE elements . 35
3.3 Rationale management aspects investigated in related studies 51
3.4 Findings of our and related studies with practitioners 51

4.1 Research questions of the systematic mapping study. 56
4.2 Exclusion criteria and inclusion criterion of systematic mapping study 58
4.3 Primary publications on automatic text classification. 60
4.4 Primary publications on automatic linking. 61
4.5 Primary publications on decision guidance. 62
4.6 Primary publications on consistency support. 63
4.7 Rationale management problems treated and activities supported 64
4.8 Approach implementation into tools . 64
4.9 Evaluation aspects investigated in the primary studies per approach. 67

5.1 Rationale management problems and treatment through ConRat and ConDec . . 74

6.1 Synonymous names for knowledge elements in the ConRat knowledge model . . . 81
6.2 Influence of definition of done on quality requirements for documentation 86
6.3 CSE practices involving rationale management activities 94

7.1 Task and support specification for documenting decision knowledge 99
7.2 Task and support specification for the exploitation of knowledge documentation . 101
7.3 Task and support specification for decision making 102
7.4 Task and support specification for the quality assurance 103
7.5 Task and support specification for setting up rationale management 104
7.6 Features available in knowledge graph views . 116
7.7 Binary and fine-grained labeled text parts in ConDec’s default training data. . . 127
7.8 Rationale management tools and their views. 141

8.1 Overview of empirical studies . 147
8.2 Characteristics of the six validation projects . 148
8.3 ConDec plug-ins applied in the validation projects 151
8.4 Application of ConDec views and features in the validation projects 152
8.5 Evaluation methods used in the validation projects 153

325

List of Tables

9.1 Research questions and metrics of the empirical study on rationale documentation 156
9.2 Decision knowledge documentation examples of the validation projects 162
9.3 Metrics for the knowledge documentation of the validation projects 164
9.4 Related work on analyzing rationale documentation created by developers 178

10.1 Research questions and metrics of the evaluation of automatic text classification 182
10.2 Ground truth for evaluation of ConDec’s automatic text classification 184
10.3 F-scores of classifiers on data of single projects 187
10.4 F-scores of cross-project validation . 188
10.5 F-scores of classifiers on combined data . 190
10.6 Number of times a machine-learning algorithm achieved the best F-score. 190
10.7 Related work on evaluating automatic text classification for rationale documentation192

11.1 Research questions and metrics of the empirical study on the user acceptance. . . 198
11.2 Descriptive data of study participants . 198
11.3 Assessment of whether ConDec fulfills the technical research goal 201
11.4 Study participants’ answers on their preferred documentation locations 202
11.5 Usage frequency, ease of use, and usefulness of documentation features 204
11.6 Number of accesses per ConDec view measured by logging REST API calls . . . 206
11.7 Usage frequency, ease of use, and usefulness of exploitation features 209
11.8 Usage frequency, ease of use, and usefulness of quality assurance features 211
11.9 Study participants’ assessment of the rationale documentation quality 213

12.1 Schedule for the rationale management lecture 218
12.2 Rationale types, their representing icon, and phrases for informal capture 219
12.3 Students’ attitude toward the methods and tools for rationale management . . . 225
12.4 Summarized feedback provided by students. 226
12.5 Related work on disseminating rationale management in student projects. 227

B.1 Practitioners’ CSE definitions and identified CSE elements 239
B.2 Practitioners’ negative, neutral, and positive experiences per CSE category . . . 242
B.3 Practitioners’ future plans per CSE elements . 245
B.4 Decisions captured by practitioners . 247
B.5 Examples of documentation locations, techniques, and tools 249
B.6 Examples of how practitioners link decisions to other software artifacts 251
B.7 Examples of how practitioners preserve the evolutionary history of decisions . . . 251
B.8 Examples of when and how often the practitioners capture decisions 252
B.9 Examples regarding benefits and exploitation . 252
B.10 Practitioners’ attitude toward capturing decisions currently captured 253
B.11 Decisions that practitioners do not capture . 254
B.12 Reasons for not capturing decisions . 255
B.13 Potential benefits if practitioners captured the decisions currently not captured . 257
B.14 Practitioners’ attitude toward capturing decisions currently not captured 257
B.15 Knowledge sources from which practitioners retrieve decisions not captured . . . 258
B.16 Examples of how practitioners share knowledge to avoid knowledge vaporization 259
B.17 Examples of how practitioners deal with changed decisions 260
B.18 Examples of beneficial rationale management features and additions 262
B.19 Examples of obstacles of continuous rationale management 264

D.1 Metrics for the knowledge documentation of the ConDec project 276
D.2 Number of decisions per decision type in the six validation projects 281

326

List of Tables

E.1 Precision and recall of classifiers on data of single projects 286
E.2 Precision and recall of cross-project validation . 287
E.3 Precision and recall of classifiers on combined data 288

F.1 Study participants’ assessment in iPraktikum projects 299
F.2 Study participants’ answers on their usage frequencies of ConDec features 300
F.3 Study participants’ answers on their perceived ease of use of ConDec features . . 301
F.4 Study participants’ answers on their perceived usefulness of ConDec features . . 302
F.5 Study participants’ answers on their intention to use ConDec in the future 303

327

List of Equations

10.1 Precision . 184
10.2 Recall . 184
10.3 Fβ-scores . 184
11.1 Weighted mean µw of the participants’ rating on a four-point Likert scale 200
11.2 Weighted mean µw of the participants’ rating on a five-point Likert scale 200

329

	Abstract
	Zusammenfassung
	Acknowledgements
	List of Acronyms
	Preliminaries
	Introduction
	Motivation
	Problem Context
	Research Methodology
	Research Goals
	Contributions
	Structure of the Thesis
	Previous Publications

	Background
	Continuous Software Engineering (CSE)
	Stairway to Heaven
	DevOps and BizDevOps
	Rugby CSE Life Cycle Model

	Rationale Management
	Types of Knowledge and Knowledge Management
	Implicit versus Explicit Knowledge and Decision Making Strategies
	Knowledge Formalization versus Personalization
	Rationale Representation

	Development Tools and Systems
	Continuous Usage- and Rationale-based Evolution Decision Support (CURES)

	Problem Investigation
	State of the Practice: Rationale Management during CSE
	Study Design
	Research Questions
	Interview Study Procedure
	Participants
	Research Perspectives

	Results and Discussion
	As-is State of CSE in Industry
	As-is State of Rationale Management during CSE in Industry
	Practitioners' Assessment of Ideas for Continuous Rationale Management

	Related Work
	Threats to Validity
	Conclusion

	State of the Art: Classification and Recommendation for Rationale Management
	Study Design
	Research Questions
	Literature Study Procedure

	Results and Discussion
	Overview of Approaches and Publications
	Support for Software Practitioners
	Machine Learning Techniques and Rules Applied in the Approaches
	Evaluation of Approaches

	Threats to Validity
	Conclusion

	Treatment Design
	Overview of Continuous Rationale Management and its Support with ConDec
	Usage of ConDec to Support Continuous Rationale Management
	High-Level Decision Problems and Decisions
	Treatment of Intrusiveness and Effort Problem
	Treatment of High Amount of Distributed Knowledge Problem
	Treatment of Low Documentation Quality Problem

	Life Cycle Modeling of Continuous Rationale Management
	Knowledge Model
	Knowledge Elements and Associations
	State of Rationale Elements
	Demonstration Project

	Extended Rugby Life Cycle Model
	Metrics for Rationale Documentation
	Definition of Done for Knowledge Documentation
	Rationale Backlog
	Overview of a Life Cycle Model Extended with ConRat
	Parallel Workflows: Roles and Their Tasks
	Starting and Finishing CSE Practices

	Conclusion

	Supporting Continuous Rationale Management with ConDec
	Requirements
	Rationale Documentation
	Exploitation of Rationale Documentation
	Decision Making
	Quality Assurance
	Setting Up Rationale Management

	Design of ConDec
	Rationale Documentation in Various Locations
	Entire Tickets
	Description and Comments of Tickets
	Commit Messages
	Code Comments
	Chat Messages, Wiki Pages, and Pull Requests

	Views on the Knowledge Graph
	Node-Link Diagram (V1)
	Knowledge Tree View (V2)
	List View (V3)
	Adjacency and Criteria Matrix View (V4)
	Chronology View (V5)
	Metrics View (V6)
	Detail View of Knowledge Element (V7)

	Features of the Knowledge Graph Views
	Filtering (F1)
	Transitive Linking (F2)
	Change Execution (F3)
	Specifying the Level of Detail (F4)
	Navigation (F5)

	Nudging Mechanisms and Recommendation Systems
	Facilitate Nudges (N1)
	Ambient Feedback and Friction Nudges (N2)
	Just-in-Time Prompts (N3)
	Quality Checking (RS1)
	Change Impact Analysis (RS2)
	Decision Guidance (RS3)
	Link Recommendation and Duplicate Detection (RS4)
	Automatic Text Classification (RS5)
	Summarization of Source Code Changes (RS6)

	Rationale Backlog
	Knowledge Dashboard
	Dashboard Item for Rationale Coverage
	Dashboard Item for Intra-Rationale Completeness
	Dashboard Item for General Metrics
	Dashboard Item for Metrics on Rationale in Code, Commits, and Branches
	Dashboard Item for Metrics about Decision Types
	Filtering and Navigation from Knowledge Dashboard to Details

	Decision Grouping
	Assignment, Filtering, and Overview
	Decision Grouping as a Definition of Done Criterion

	Stand-up Table with Decision Knowledge
	Release Notes with Decision Knowledge
	Knowledge Export
	Related Work
	Tools for Low-Intrusive, Lightweight Rationale Management
	Tools Supporting a High Amount of Distributed Knowledge
	Tools Supporting High Documentation Quality

	Conclusion

	Treatment Validation
	Overview of Evaluation Studies
	Evaluation Projects
	iPraktikum
	Information Systems Engineering Projects
	ConDec Project

	ConDec Plug-Ins and Features Applied in Evaluation Projects
	Evaluation Methods

	Analysis of Knowledge Documentation
	Study Design
	Research Questions
	Data Acquisition
	Analysis of Code and Trace Links to Tickets
	Coding of Decisions with Decision Types

	Results and Discussion
	Feasibility of Documenting Decision Knowledge with ConDec
	Feasibility of Documenting a High Amount of Knowledge with ConDec
	Feasibility of Documenting High Quality Knowledge with ConDec

	Related Work
	Threats to Validity
	Conclusion

	Effectiveness of Automatic Text Classification
	Study Design
	Research Questions
	Ground Truth Data
	Evaluation Metrics
	Evaluation Procedure

	Results and Discussion
	Effectiveness For Ground Truth From Single Project
	Effectiveness For Cross-Project Validation
	Effectiveness For Combined Ground Truth From Different Projects
	Effectiveness Of Different Supervised Machine Learning Algorithms

	Related Work
	Threats to Validity
	Conclusion

	User Acceptance of ConDec Plug-Ins
	Study Design
	Research Questions
	Participants
	Indicators for Acceptance and Research Methods

	Results and Discussion
	Acceptance of Benefits for Decision Making
	Acceptance of Knowledge Documentation Features
	Acceptance of Knowledge Exploitation Features
	Acceptance of Quality Assurance Features

	Threats to Validity
	Conclusion

	Dissemination of ConRat and ConDec Plug-Ins
	Syllabus on Rationale Management
	Results of the First Instantiation
	Related Work
	Conclusion

	Conclusion
	Summary
	Future Work

	Appendix
	Digital Appendix for Tools and Data
	Supplementary Material of Interview Study on State of the Practice
	Interview Statements by Practitioners from Industry
	Statements regarding As-is State of CSE in Industry
	Statements regarding As-is State of Rationale Management during CSE
	Statements regarding Ideas for Continuous Rationale Management

	Description of Related Work

	Supplementary Material of Systematic Mapping Study
	Supplementary Material of Knowledge Documentation Analysis
	Description of Knowledge Documentation of Validation Projects
	Additional Plots of Knowledge Documentation Analysis

	Supplementary Material of Text Classifier Validation
	Supplementary Material of User Acceptance Study
	Questionnaire for Collecting the User Feedback
	Detailed Ratings by Study Participants

	Bibliography
	List of Figures
	List of Tables
	List of Equations

