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Realtime properties of QCD

We present a novel technique for the calculation of fundamental realtime correlation func-
tions in functional approaches to quantum field theory, the spectral functional approach,
and demonstrate its potential for the calculation of observables in quantum chromodynam-
ics (QCD). The approach builds on spectral representations for correlation functions, such
as the Källén-Lehmann representation of the propagator, and facilitates dimensional reg-
ularisation as well as on-shell renormalisation. We apply the spectral functional approach
to the two most prominent functional frameworks for the calculation of non-perturbative
fundamental correlation functions in QCD, which are Dyson-Schwinger equations and the
functional renormalisation group. Building on this conceptual development, we calculate
the spectral functions of all fundamental QCD fields, i.e., quark, gluon and ghost. We
complement these results with data from spectral reconstruction with Gaussian process
regression, inferring gluon and ghost spectral functions from Euclidean lattice QCD data
in a Bayesian, non-parametric manner. Finally, as use cases for the spectral functional
approach, we present direct computations of several QCD observables, facilitated by re-
altime correlator data. These include the shear viscosity of the quark-gluon plasma, the
non-perturbative, timelike strong coupling constant, a crucial ingredient for scattering
amplitudes, and the hadronic vacuum polarisation in the complex momentum plane, the
leading QCD contribution to g–2.

Realzeiteigenschaften der QCD

Wir führen eine neue Methode zur Berechnung von fundamentalen Realzeitkorrelations-
funktionen in funktionalen Zugängen zu Quantenfeldtheorie ein, den spectral functional
approach, und demonstrieren sein Potenzial für die Berechnung von Observablen in der
Quantenchromodynamik (QCD). Die Methode basiert auf Spektraldarstellungen für Kor-
relationsfunktionen, wie beispielsweise die Källén-Lehmann-Darstellung des Propagators,
und ermöglicht dimensionale Regularisierung sowie Renormierung auf der Massenscha-
le. Wir wenden den spectral functional approach auf die beiden am weitesten verbreite-
ten Techniken zur Berechnung von nicht-störungstheoretischen fundamentalen Korrela-
tionsfunktionen in QCD an, die Dyson-Schwinger-Gleichungen und die funktionale Re-
normierungsgruppe. Basierend auf dieser konzeptionellen Entwicklung berechnen wir die
Spektralfunktionen aller fundamentalen QCD-Felder, sprich Quark, Gluon und Geist. Wir
komplementieren diese Resultate mit spektralen Rekonstruktionsergebnissen aus Gaus-
sian process regression, indem wir auf Bayes’sche, nicht-parametrische Weise die Spek-
tralfunktionen von Gluon und Geist aus Euklidischen Gitter-QCD-Daten ableiten. Ab-
schließend, als Anwendungsfälle für den spectral functional approach, präsentieren wir
direkte Berechnungen von verschiedenen QCD-Observablen, ermöglicht durch Realzeit-
korrelatordaten. Diese beinhalten die Scherviskosität des Quark-Gluon-Plasmas, die nicht-
störungstheoretische, zeitartige starke Kopplungskonstante, ein zentraler Bestandteil von
Streuamplituden, sowie die hadronische Vakuumpolarisation in der komplexen Impulsebe-
ne, der führende QCD-Beitrag zu g–2.
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1. Introduction

Systems of strongly correlated quantum matter offer a plethora of fascinating phenomena
on a vast range of energy scales. At its lower end lie ultracold atomic gases and conden-
sed matter systems, where strong correlations arise from the Coulomb interaction. These
systems also promise industrial application, e.g., for quantum computing and material
science. In high energy systems such as the quark-gluon plasma or neutron stars, strong
correlations mediated by the strong interaction appear. Finally, even beyond the Planck
scale strong correlations can be found in the form of spacetime fluctuations, induced by
gravity. The development of quantum field theory (QFT) has brought great success to mo-
dern physics in describing these strongly correlated systems. Of particular interest in this
thesis will be the strongly coupled infrared regime of Quantum Chromodynamics (QCD),
describing the strong interaction between the very constituents of matter, i.e., the quarks.

A very characteristic feature of QCD is that its microscopic degrees of freedom, quarks
and gluons, are not directly observable in experiments. Instead, they can only be measured
in the form of hadronic bound states. This is due to the phenomenon of confinement. From
a theoretical perspective, the mechanism behind it is far from being fully understood. In
fact, a particular manifestation of confinement poses one of the seven infamous Millennium
Prize Problems [13]: Rigorously establishing a mass gap for the gluon in Yang-Mills theory,
the pure gauge part of QCD, has not been achieved until today. Another defining feature
of QCD can be found in the matter sector, where the mechanism of spontaneous chiral
symmetry breaking generates large parts of the masses of the light quark flavors. While
not being directly measurable, these quark masses account for the overwhelming part of
the observed masses of protons and neutrons and therefore ultimately of the vast majority
of matter around us. Inseparably linked to confinement and chiral symmetry breaking is
the phenomenon of asymptotic freedom in QCD. It describes the strong coupling con-
stant’s peculiar behaviour of growing big at large, but vanishing at small distances, whose
discovery yielded the Nobel Prize for Gross, Politzer and Wilczek in 2004.

A central aspect of the phenomenology of QCD is its phase structure, often summarised
in dependence on temperature and net baryon density in the QCD phase diagram. Despite
joint theoretical and experimental efforts, there still remain sizable unexplored regions in
the phase diagram. For example, the question of the existence and location of a critical
endpoint of the first order phase transition between the confined and deconfined region
has triggered enormous research activity—without conclusive result so far. From the ex-
perimental side, the phase structure of QCD is explored predominantly by the collisions of
heavy ions at the facilities of RHIC [14] and LHC [15] as well as, prospectively, CBM [16]
and NICA [17]; see [18–22] for an overview. The experimental signatures observed the-
re are the final products of various stages of the far-from-equilibrium evolution that the
quark-gluon plasma created in heavy-ion collisions undergoes. Connecting these signatures
to the theoretical predictions for the equilibrium phase diagram requires understanding of
also non-equilibrium aspects of QCD.

On the theory side, two competing and quite complementary approaches for dealing
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with the strongly coupled infrared regime of QCD exist. One of them are lattice simula-
tions, based on a discretisation of a finite, four-dimensional Euclidean spacetime. Lattice
QCD has brought significant advances in the description of low-lying hadronic bound
states [23–27] and QCD’s phase structure at vanishing and small chemical potential [28–
31]; for recent reviews on lattice QCD, see [32–34]. The removal of discretisation artefacts
via well-defined continuum and infinite volume limits poses a major technical obstacle
in lattice simulations. Furthermore, a severe sign problem hampers simulations directly
in Minkowski spacetime and at higher baryon chemical potential [35, 36]. Functional ap-
proaches to QCD, on the other hand, such as the functional renormalisation group (fRG),
Dyson-Schwinger equations (DSEs) or nPI methods, are continuum formulations which
do not suffer from sign problems. Accordingly, they can be applied in the entire phase
diagram of QCD; see [37–39] for recent results. Within functional approaches, one is of-
ten provided with an infinite tower of coupled differential equations for the fundamental
correlation functions of the theory, which needs to be truncated to perform calculations.
Due to the increase of computer algebraic and numerical capabilities, functional approa-
ches have matured in recent years and are by now quantitatively competitive to lattice
simulations of QCD in Euclidean spacetime. Establishing convergence in truncations still
poses a central conceptual problem, however.

Despite this rapid progress in particular in the last decade, the reliable, non-perturbative
calculation of correlation functions in Minkowski spacetime is still in its infancy; for re-
cent works in different functional approaches, see, e.g., [40–50]. While a formulation of
functional equations in Minkowski spacetime (realtime) is generally possible, for most
applications Euclidean spacetime (imaginary time) is chosen due to significantly redu-
ced computational costs. Thereby, the extraction of timelike properties of QCD, such as
the emergence of the hadronic bound spectrum as well as transport properties of the
quark-gluon plasma, remains a notoriously hard task. Besides their strong relevance for
connecting experimental observations to the phase diagram, the theoretical description of
these inherent non-equilibrium phenomena constitutes a key challenge of our fundamental
understanding of QCD.

In this thesis, we tackle the task of describing QCD in the timelike domain by the spec-
tral functional approach [1], a particular formulation of functional approaches allowing for
efficient calculation directly in Minkowski spacetime. In essence, the spectral functional
approach reduces the realtime-induced numerical complexity of functional equations by
analytic simplifications, facilitated by using integral representations for correlation func-
tions, so-called spectral representations. The most prominent example of such a spectral
representation is the Källén-Lehmann representation [51, 52] of the two-point function. In
a scalar QFT, the mere existence of a Hilbert space with a positive norm already entails
the existence of a Källén-Lehmann representation. The spectral formulation therefore not
only facilitates access to observables, but also offers insights into fundamental properties
of the underlying quantum field theory. It is this particular combination of simultaneously
accessing phenomenological and fundamental aspects of a theory, which constitutes the
major appeal of the spectral functional approach. Accordingly, the projects considered in
this thesis attempt to contribute to our understanding of QCD in both ways, and their
particular relevance will be put into context at the beginning of the respective chapters.

This thesis is structured as follows. The technical tools used in all investigations presen-
ted throughout this thesis, i.e., the basic concepts of functional approaches to QFT, are
introduced in Chapter 2. In Chapter 3, after briefly reviewing the essentials of non-Abelian
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gauge theories and QCD, we discuss mechanisms for the mass generation of the gluon. In
Chapter 4, the spectral functional approach is introduced. The conceptual development of
this section, and in particular its application to DSEs, is a central element of this thesis,
which nearly all results presented in the further course are based on. We present the first of
these results already in Chapter 4, consisting in spectral functions of a scalar field theory
from both, the spectral DSE and fRG. The motivation for this is twofold: On the one
hand, the computations serve as a proof of concept for the spectral functional approach,
which we eventually want to use for computing realtime correlation functions in QCD. On
the other hand, by comparing the results from these two different functional approaches,
we obtain a strong benchmark test for our technique. In Chapter 5, we present results
for various realtime correlation functions in Yang-Mills theory and QCD, obtained not
just via the spectral functional approach, but also via spectral reconstruction of Euclide-
an lattice QCD data. After a general discussion of the complex structure of Yang-Mills
theory, we present results for the ghost spectral function. The latter serves as an input
for the reconstruction of ghost and gluon spectral functions from 2+1 flavor lattice QCD
data using Gaussian process regression (GPR), also presented in Chapter 5. With these
reconstruction results as an input, we directly compute the quark spectral function in
QCD. In Chapter 6, we turn towards the calculation of selected observables, including the
non-perturbative, timelike strong coupling constant, bound states, transport coefficients
and the hadronic vacuum polarisation. Finally, we present general conclusions, a summary
as well as a brief outlook on future prospects in Chapter 7.
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2. Functional methods

In this section, we introduce the basic concepts of functional methods. In particular, we give
a brief account of the frameworks of Dyson-Schwinger equations (DSE) and the functional
renormalisation group (fRG), as these will be used in the further course of this thesis. For
exhaustive discussions of these methods, see the reviews [37, 53–56] for DSE and [57–64]
for the fRG.

2.1. Generating functionals

Functional methods base on the path integral formulation of QFT; for an introduction
into the underlying topics, we refer to the literature [65–69]. In the path integral approach,
correlation functions arise as moments of generating functionals. For illustrative purposes,
we restrict ourselves to the case of a real scalar field ϕ(x) in this introduction, obeying
the classical action

S[ϕ] =

∫
ddx

{
1

2
ϕ
(
− ∂2 +m2

)
ϕ+

λφ
4!
ϕ4

}
. (2.1)

We work in Euclidean spacetime in this section.

Partition function

The correlation functions of the theory can be defined by

〈ϕ(x1) . . . ϕ(xn)〉J =
1

Z[J ]

δnZ[J ]

δJ(x1) . . . δJ(xn)
, (2.2)

where the subscript J indicates the dependence of the correlation function on the external,
spacetime dependent source J(x). We will drop this subscript from now on.

The partition function Z introduced in (2.2) is called a generating functional, since all
correlation functions can be generated from it by taking functional derivatives. Using the
classical action (2.1), the partition function can be represented as

Z[J ] =
1

N

∫
dϕ exp

{
− S[ϕ] + J · ϕ

}
, (2.3a)

and we introduce the shorthand notations

J · ϕ =

∫

x
J(x)ϕ(x) ,

∫

x
=

∫
ddx . (2.3b)

The normalization constant N in (2.3) is arbitrary since it drops out of correlation func-
tions, see (2.2). Quantum field theories are fully determined by their corresponding set
of correlation functions, promoting correlation functions to a central object of study. The
path integral thus encodes the full information about the theory.
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2.1. Generating functionals

Schwinger functional

The correlation functions obtained with (2.2) contain redundant information. This can be
seen by splitting correlation functions into connected and disconnected parts. In case of
the two-point, this yields

〈ϕ(x1)ϕ(x2)〉 = 〈ϕ(x1)ϕ(x2)〉c + 〈ϕ(x1)〉〈ϕ(x2)〉 , (2.4)

with the subscript c denotes the connected part of the correlation function. The term
’connected’ refers to all external points of the Feynman diagrams of the respective cor-
relators being connected by internal lines. It can be seen that the disconnected part of
two-point function is simply given by the product of the two one-point functions. This
redundancy can be removed by introducing the Schwinger functional,

W [J ] = logZ[J ] , (2.5)

which is the generating functional for connected correlation functions,

〈ϕ(x1) . . . ϕ(xn)〉c =
δnW [J ]

δJ(x1) . . . δJ(xn)
. (2.6)

For the special case of the one-point-function, there is no disconnected component, and
we have

〈ϕ(x)〉 = 〈ϕ(x)〉c =
δW [J ]

δJ(x)
. (2.7)

Quantum effective action

We can remove further redundant information from correlation functions by noting that
Feynman diagrams can be decomposed in one-particle-irreducible (1PI) and one-particle-
reducible components. One-particle-irreducibility refers to Feynman diagrams that cannot
be divided into two separate diagrams by cutting one internal propagator line. This be-
comes evident at the example of the propagator, which in functional approaches arises as
the second moment of the Schwinger functional (2.5),

G(x1, x2) = 〈ϕ(x1)ϕ(x2)〉c . (2.8)

In perturbation theory, the propagator is expanded in loop diagrams. This expansion can
be organised into a sum over powers of single 1PI kernel, where the different instances of
that kernel are connected to each other via single internal lines. Hence, these expressions
can be divided into two separate diagrams by cutting the single internal lines connecting
the kernels, classifying them as one-particle-reducible diagrams. A closed expression for
the propagator can be obtained via Dyson resummation of this sum over powers of 1PI
kernels, in analogy of a geometric series. In consequence, the 1PI kernel itself encodes
the full information about the propagator. To remove this redundancy, we define the
quantum effective action or simply effective action, which is the generating functional of
1PI correlation functions. The effective action is obtained via Legendre transform of the
Schwinger functional,

Γ[φ] = sup
J

{
J · φ−W [J ]

}
= Jsup · φ−W [Jsup] . (2.9)
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2.1. Generating functionals

Note that the supremum source Jsup has an implicit field dependence, Jsup = Jsup[φ]. In
the following, we will drop the subscript sup and implicitly assume the supremum to be
achieved in the context of the effective action.

The effective action is a functional of the mean field φ = 〈ϕ〉 at a given external source
J . This becomes very clear in the situation where the supremum source J is a maximum
of Γ,

δΓ[φ]

δJ(x)
= 0 . (2.10)

Taking a derivative with respect to the supremum source of (2.9) and using (2.10), we
obtain

φ =
δW [J ]

δJ(x)
= 〈ϕ(x)〉 , (2.11)

stating that the argument of the effective action is indeed the mean field.

The effective actions can be understood as the quantum analogue of the classical action.
This can be seen explicitly by taking a derivative with respect to the mean field in (2.9),

δΓ[φ]

δφ(x)
= J , (2.12)

where we used that the terms originating in the field dependence of J cancel out since we
assumed that J is a maximum of Γ, and we can make use of (2.11). The physical theory
is obtained at J = 0, in which case (2.12) yields the quantum analogue of the classical
equation of motion δS/δϕ = 0.

By taking functional derivatives of (2.9) with respect to φ, all higher order 1-PI corre-
lation functions are generated,

Γ(n)(x1, . . . , xn) =
δnΓ[φ]

δφ(x1) . . . δφ(xn)
. (2.13)

Since the effective action is a functional of the mean field, see (2.11), fluctuations are no
longer encoded in the field variable. The fluctuations are integrated out and encoded in
the operators appearing in the effective action, which can be projected onto using (2.13).
In particular, the propagator can be obtained from this relation as the inverse of the 1-PI
two-point function. This follows from

∫

y

δ2W [J ]

δJ(x1)δJ(y)

δ2Γ[φ]

δφ(y)δφ(x2)
=

∫

y

δφ(y)

δJ(x1)

δJ(x2)

δφ(y)
= δ(x1 − x2) , (2.14)

where in the first step we used (2.7) and (2.12). Hence,

G(x1, x2) =
(

Γ(2)(x1, x2)
)−1

. (2.15)

Expectation values of composite operators

As a first application of the above general relations for generating functionals, we will
derive a very useful expression for expectation values of general composite operators. To

7



2.1. Generating functionals

that end, we note that we can pull out functional derivatives with respect to the source
term of the partition function by addition of a mean field, i.e.,

1

Z[J ]

δnZ[J ]

δJ(x1) . . . δJ(xn)
=

(
δ

δJ(x1)
+ φ(x1)

)
1

Z[J ]

δn−1Z[J ]

δJ(x2) . . . δJ(xn)
, (2.16)

compensating for the fact that the derivative now also hits the normalisation 1/Z[J ].
Recursively applying (2.16), we find

〈ϕ(x1) . . . ϕ(xn)〉 =

n∏

i=1

(
δ

δJ(xi)
+ φ(xi)

)
. (2.17)

Next, we rewrite the source derivative using the propagator,

δ

δJ(x)
=

∫

y

δφ(y)

δJ(x)

δ

δφ(y)
=

∫

y
G(x, y)

δ

δφ(y)
, (2.18)

which, substituted in (2.17), yields

〈ϕ(x1) . . . ϕ(xn)〉 =

n∏

i=1

(∫

yi

G(xi, yi)
δ

δφ(yi)
+ φ(xi)

)
. (2.19)

We can straightforwardly generalise (2.19) to any operator O admitting a series represen-
tation in terms of products of fundamental fields. The expectation value of O can then be
obtained as

〈O[ϕ]〉 = O
[
ϕ = G · δ

δφ
+ φ

]
, (2.20)

which makes apparent the pivotal role of the propagator in functional approaches. The
right-hand side of (2.20) is now fully given in terms of 1PI vertices Γ(n), which surface by
taking field derivatives of the propagator upon noting another useful identity,

δ

δφ(x3)
G(x1, x2) = −

∫

y1,y2

G(x1, y1)Γ(3)(y1, x3, y2)G(y2, x2) . (2.21)

Fourier space

In functional approaches to QFT, calculations are usually performed in momentum space,
which we will also stick to beyond this introductory chapter. In fact, already in the intro-
duction of the functional renormalisation group in Section 2.3, we will switch to momen-
tum space, since Fourier space allows for a very intuitive understanding of renormalisation
group concepts.

The definition of the quantum effective action (2.9) makes apparent that all correlation
functions explicitly depend on the background field φ. The full, field-dependent propagator
G[φ], as a central correlation function in functional approaches, is obtained via the inverse
of the 1PI two-point function (2.15). In Fourier space, this relation reads

G[φ](p, q) =
1

Γ(2)
[φ](p, q) , (2.22)
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2.1. Generating functionals

where we made the field-dependence explicit. For simplicity, in functional approaches one
usually resorts to spatially homogeneous background fields,

φ(x) = φ , (2.23)

with Fourier transform

φ̃(p) = φ (2π)dδ(p) . (2.24)

In this case, propagator and two-point function become diagonal in momentum-space,

G[φ](p, q) = G[φ](p)(2π)dδ(p+ q) , (2.25a)

and similarly

Γ(2)[φ](p, q) = Γ(2)[φ](p)(2π)dδ(p+ q) . (2.25b)

In consequence, (2.22) reduces to

G[φ](p) =
1

Γ(2)[φ](p)
. (2.26)

If not specified otherwise, we will always work in spatially homogeneous backgrounds in
this thesis, where (2.26) holds.
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2.2. Dyson-Schwinger equations

S(n)
=

n

Γ(n) =

n

G = =

−1

, ,

Abbildung 2.1.: Diagrammatic notation employed in this work. We use black dots/blue
blobs with n legs for classical/full one-particle irreducible n-vertices
S(n)/Γ(n), see (2.13). Internal lines always represent full propagators, if
not stated otherwise. Note that a full two-vertex corresponds to an inver-
se full propagator, see (2.26).

2.2. Dyson-Schwinger equations

The language of path integrals allows for an intuitive perspective on the symmetries of the
theory at hand. By the assumption of vanishing boundary contributions to the path inte-
gral, field transformations whose generators can be represented as total field derivatives
leave the path integral invariant. Hence, these transformations correspond to symmetries
of the full quantum theory. Letting the corresponding generators explicitly act on the
integrand of the path integrals gives rise to a plethora of conservations laws, all captu-
red by a generalised Dyson-Schwinger equation (DSE). DSEs can be understood as the
equations of motion of the Green’s functions of the theory at hand, and were devised by
Schwinger [70, 71] basing on earlier work by Dyson [72].

In this section, we will discuss the most prominent representative of the generalised
DSE, which is commonly referred to as simply the Dyson-Schwinger equation. It encodes
the invariance of the path integral under spacetime-dependent shifts of the field, i.e.,
ϕ(x)→ ϕ(x)+Λ(x). The generator corresponding to this fairly general field transformation
is a simple field derivative, resulting in the following simple expression for the DSE,

1

Z[J ]

∫
dϕ

δ

δϕ(x)
exp

{
− S[ϕ] + J · ϕ

}
= 0 . (2.27)

The generalised DSE is achieved by insertion of an arbitrary field operator O[ϕ] to the
right of the field derivative.

Assuming J = Jsup allows to introduce the effective action into (2.27) by the equation
of motion of the supremum current (2.12). Explicitly acting with the field derivative on
the exponential in (2.27) yields

1

Z[J ]

∫
dϕ

[
− δS[ϕ]

δϕ(x)
+
δΓ[φ]

δφ(x)

]
exp

{
− S[ϕ] +

δΓ[φ]

δφ
· ϕ
}

= 0 . (2.28)

The derivative of the effective action does not depend on the fluctuation field and can thus
be pulled in front of the path integral, which then simply cancels with the normalisation.
Remembering the definition of expectation values (2.2), we arrive at

δΓ[φ]

δφ(x)
=

〈
δS[ϕ]

δϕ(x)

〉
. (2.29)
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2.2. Dyson-Schwinger equations

= + 1
2 − 1

6

Abbildung 2.2.: Master DSE for a scalar φ4-theory defined by the action (2.1). Notation
as defined in Figure 2.1.

Equation (2.29) is the so-called master DSE. It states that the quantum equations of
motion (2.12) can be obtained as the expectation value of the classical equations of motion.

Assuming a series representation for the classical action, we can exploit the identi-
ty (2.20) to arrive at an algebraic representation of the master DSE,

δΓ[φ]

δφ(x)
=

δS

δϕ(x)

[
ϕ = G · δ

δφ
+ φ

]
. (2.30)

By taking functional derivatives of (2.30), DSEs for correlation functions of all order can
be generated. In Figure 2.2, we depict the master DSE for the example of a scalar φ4-
theory. The diagrammatic notation is defined in Figure 2.1. In general, the DSE for the
correlation function Γ(n) is dependent on Γ(n+2), as can be anticipated from the master
DSE in Figure 2.2. This makes apparent the need for truncation in applications.
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2.3. Functional renormalisation group

2.3. Functional renormalisation group

This section uses parts of [6].

Another important technique in the toolbox of functional methods is the functional re-
normalisation group (fRG) approach. The underlying idea is to successively incorporate
quantum fluctuations of different length scales into an effective formulation of the theory,
closely resembling the concept of Kadanoff’s block spinning on a lattice [73]. The ge-
neralisation of this technique to continuum formulations of QFT has been achieved by
Wilson [74, 75], and goes by the name of Wilsonian renormalisation. The fRG provides
an implementation of Wilsonian renormalisation on the level of generating functionals by
integrating out quantum fluctuations momentum shell by momentum shell through the
path integral. Here, we will focus on Wetterich’s formulation of the fRG in terms of the
effective action [76]. Similar formulations exist in terms of other generating functionals; the
renormalisation group (RG) flow of the Wilsonian effective action, corresponding to the
amputated Schwinger functional, is described by the Polchinski equation [77], for example.
Its connection to the Wetterich equation is detailed, e.g., in [78–80].

In the fRG, the successive integration of fluctuations momentum shell by momentum
shell is implemented by suppressing modes with momenta below some scale k, and then
considering the change of the generating functional upon changing k. Starting from an
Ansatz at a (usually perturbatively large) scale k = Λ, the full theory including the
fluctuations of all scales is obtained upon integrating down to k = 0. The suppression of
modes with momenta p2 . k2 can be achieved by an appropriate modification of the path
integral measure,

∫
[dϕ]p2&k2 =

∫
dϕ exp

{
−∆Sk[ϕ]

}
, (2.31)

effectively adding a scale- and momentum-dependent mass term to the classical action,

∆Sk[ϕ] =
1

2

∫

p
ϕ(p)Rk(p)ϕ(−p) , with

∫

p
=

∫
ddp

(2π)d
. (2.32)

This results in an infrared modification of the classical dispersion,

p2 +m2 → p2 +m2 +Rk(p) . (2.33)

The regulator Rk needs to be designed such that while the propagation of modes with
p2 . k2 is suppressed, those with p2 & k2 remain unchanged. Furthermore, at k = 0 we
need the regulator to vanish, since we wish to recover our original theory after integrating
out all fluctuations. To discuss the implementation of these requirements, it is useful to
employ the following parametrisation for the regulator,

Rk(p) = Zφ k
2 r(x) , x =

p2

k2
or x =

~p 2

k2
, (2.34)

where Zφ is the cutoff dependent wave function renormalisation of the field at hand. The
shape function r(x) depends on either full or spatial momenta squared, p2 or ~p 2, measured
in the cutoff scale k2. It implements both, the vanishing momentum limit associated with
an infrared (IR) mass and the ultraviolet (UV) decay,

lim
x→0

r(x) = 1 , lim
x→∞

xd/2r(x)→ 0 , (2.35)
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2.3. Functional renormalisation group

∂tΓk[φ] = 1
2

Abbildung 2.3.: Wetterich equation (2.39) for a scalar φ4-theory defined by the acti-
on (2.1). The blob with the cross represents the regulator scale derivative
∂tRk. All other notation is defined in Figure 2.1.

see, e.g., [58] for a respective discussion. The first property in (2.35) implements the desired
IR regularisation by suppression of quantum fluctuations of field modes with momenta
p2 . k2. The second property leads to a suppression of momenta p2 & k2 in momentum
loop integrals. This renders the flow equation that we will derive in the following, as well
as all its field derivatives, yielding the flows of 1PI correlation functions, UV finite.

Replacing the usual path integral measure in (2.3) by the mode-suppressing one (2.31),
we obtain a scale-dependent partition function,

Zk[J ] = exp
{
−∆Sk

[ δ
δJ

]}
Z[J ] , (2.36)

with the scale-independent partition function as defined in (2.3). In (2.36) we exploited
that we can express the field dependence of ∆Sk as functional derivatives with respect to J ,
since these bring down factors of ϕ by hitting the source term in (2.3). The scale-dependent
effective action is defined as a modified Legendre transform,

Γk[φ] = sup
J

{
J · φ−Wk[J ]−∆Sk[φ]

}
, (2.37)

where the scale-dependent Schwinger functional is obtained via the definition (2.5) from
Zk. Note that also the supremum source acquires a scale dependence now, i.e., J = Jk[φ].
The modification of the ordinary Legendre transform (2.9) is introduced since the RG flow
of the Schwinger functional contains trivial contributions only proportional to the flow of
the regulator. These are cancelled in the definition (2.37) by subtraction of ∆Sk.

From the definition of the scale-dependent effective action (2.37), its scale evolution is
readily obtained by taking a derivative with respect to the cutoff scale k. It is convenient to
formulate the scale evolution in terms of dimensionless variables. To that end, we introduce
the RG time

t = − log
k

Λ
, (2.38)

where the initial cutoff scale Λ acts as reference scale. The RG time hence evolves from 0
to ∞ along the RG flow. Acting with a derivative with respect to the RG time on (2.37)
then yields the celebrated Wetterich equation,

∂tΓk[φ] = −1

2
TrGk[φ]∂tRk , (2.39)
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diagrammatically illustrated in Figure 2.3. The scale-dependent propagator in (2.39) is
defined as

Gk[φ] =
(

Γ
(2)
k [φ] +Rk

)−1
. (2.40)

The trace Tr in (2.39) includes summation over all internal degrees of freedom and indi-
ces, such as group indices or spacetime/momentum arguments. For a detailed derivation
of (2.39), we refer to the literature [58, 61, 81]. By taking derivatives of (2.39) with respect
to the mean field, flow equations for all n-point correlation functions can be generated.

Similar as in DSEs, see Section 2.2, the functional flow of the correlation function Γ
(n)
k is

generally dependent on Γ
(n+2)
k .
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3. Quantum chromodynamics

As the quantum theory of strong interactions, QCD is described by a gauge theory with
local SU(3) symmetry. Quarks enter as fermionic fields via the Dirac action, while gluons
appear as gauge bosons of the SU(3) gauge group. Except for a brief motivation of gauge
theories, in this chapter we restrict ourselves to Yang-Mills theory [82], the pure glue
part of QCD, which is sufficient to introduce the concepts needed in this thesis. The non-
Abelian nature of the theory results in self-interactions between the gauge bosons. Already
in Yang-Mills theory, these self-interactions lead to the phenomenon of color confinement,
entailing that colored states, i.e., states which are charged under the SU(3) gauge group,
are absent from the physical spectrum. Confinement can be associated with the dynamical
generation of a mass gap for the classically massless gluon. Possible mechanisms for this
dynamical mass generation are discussed in Section 3.2. To set the stage, we first introduce
the basic concepts of non-Abelian gauge theories in Section 3.1.

3.1. Basics of non-Abelian gauge theories

In this section, we introduce the basics of non-Abelian gauge theories; for comprehensive
introductions, see, e.g., [68, 69, 81, 83]. To that end, we first approach Abelian gauge
theories from a geometric perspective in Section 3.1.1, allowing for an intuitive under-
standing of the core concepts of gauge theories. We then turn towards Yang-Mills theory
in Section 3.1.2, and discuss its quantisation as well as gauge fixing in Section 3.1.3.
In Section 3.1.4, we review BRST symmetry, a symmetry of the gauge-fixed action. In
Section 3.1.5, we discuss the Hilbert space construction of Yang-Mills theory as well as
confinement. We introduce the Slavnov-Taylor identities, a set of conservation laws follo-
wing from BRST symmetry, and show how these entail transversality of the gluon mass
gap, in Section 3.1.6.

3.1.1. Geometric perspective on Abelian gauge theory

The notion of a gauge theory can be introduced intuitively at the example of an Abelian
gauge group. Consider a matter quantum field theory with the action

S =

∫

x
ψ̄
(
i/∂ −m

)
ψ , (3.1)

with mass parameter m, /∂ = ∂µγ
µ and the gamma matrices γµ. The action in (3.1) is

called Dirac action, and is invariant under global transformations U ∈ U(1), parametrised
by a real constant α ∈ R,

ψ(x) 7→ ψU (x) = Uψ(x) = e−ieαψ(x) , (3.2)

with charge e. Next, instead of global U(1) transformations, let us consider the case of
local ones. These are obtained by promoting the previously constant parameter α to a
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spacetime-dependent one, i.e., U → U(x) = e−ieα(x). Due to the partial derivative term
in (3.1), local U(1) transformations are no longer a symmetry of the action (3.1), however.
Consider the definition of the derivative term along a unit vector nµ,

nµ∂µψ(x) = lim
ε→0

1

ε

(
ψ(x+ εn)− ψ(x)

)
. (3.3)

Acting with a gauge transformation U on (3.3), we realise that the ordinary derivative
compares two fermionic fields ψ transforming differently under the local gauge group, since
they ’live’ at infinitesimally separated spacetime points. The definition (3.3) is therefore
not a meaningful one in the context of gauge theories. As a result, the matter action (3.1)
is no longer invariant under local U(1) transformations.

In order to restore the geometric meaning of the derivative term in our matter action,
we need to modify it. A more sensible definition is provided by introducing a Wilson line
C(x, y). The Wilson line is implicitly defined via the following transformation property
under local U(1) transformations,

C(x, y)ψ(y) 7→ U(x)C(x, y)ψ(y) . (3.4)

Equation (3.4) allows us to define the action of the so-called covariant derivative Dµ on
the spinor field ψ as

nµDµψ(x) = lim
ε→0

(
ψ(x+ εn)− C(x+ εn, x)ψ(x)

)
, (3.5)

which transforms under a local gauge transformation U as

Dµψ(x) 7→ U(x)Dµψ(x) . (3.6)

Promoting the ordinary derivative term in the action (3.1) to a covariant one, we observe
that the transformation property (3.6) restores local U(1) symmetry. The Wilson line C
compensates for the fact that the matter field ψ transforms differently at two different
points in spacetime. The Dirac action for a gauge theory thus reads

SDirac[ψ̄, ψ] =

∫

x
ψ̄
(
i /D +m

)
ψ . (3.7)

From (3.6), we can deduce the transformation property of the Wilson line itself under
gauge transformations, which is

C(x, y) 7→ U(x)C(x, y)U−1(y) . (3.8)

Performing a Taylor expansion of C(x+ εn) while demanding C(x, x) = 1, we find that

C(x+ nε, x) = 1− ieAµ(x)εnµ +O(ε2) . (3.9)

The local vector field Aµ(x) in (3.9) is called connection and effectively carries the infor-
mation about the local gauge symmetry. Using (3.9), we can recast the transformation
property of the covariant derivative in terms of the gauge field Aµ(x),

Dµ(x) = ∂µ + ieAµ(x) . (3.10)
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With (3.6) in addition, we can also deduce the transformation behaviour of the gauge field,

A 7→ AU = UAµU−1 +
i

g
(∂µU)U−1 . (3.11)

Using the covariant derivative, we can construct another gauge invariant operator in
the action. The curvature or field strength tensor is defined via the commutator of two
covariant derivatives,

Fµν =
i

e
[Dµ, Dν ] = ∂µAν − ∂νAµ , (3.12)

consequently transforming as

Fµν 7→ FUµν = UFµν U−1 , (3.13)

under gauge transformations. The absence of a commutator term for the gauge fields
in (3.12) entails that Fµν itself is invariant in Abelian gauge theories.

We can use the field strength to construct the following gauge invariant action,

SQED[A, ψ̄, ψ] =

∫

x

{
1

4
FµνFµν + ψ̄

(
i /D +m

)
ψ

}
, (3.14)

which is the action of quantum electrodynamics (QED).

3.1.2. Yang-Mills theory

We now turn to non-Abelian gauge theories, and in particular Yang-Mills theory. Yang-
Mills theory already exhibits some key phenomena of QCD. In particular the deep IR
dynamics of QCD is dominated by the gauge sector, which is why many of the mecha-
nisms of Yang-Mills theory readily carry over to QCD. Although Yang-Mills theory is
studied intensively since decades, it still poses numerous unanswered questions. The most
prominent one certainly is how the classically massless gluon acquires its mass gap.

Yang-Mills theory describes an SU(Nc) gauge theory, where Nc is the number of colors.
The gauge field Aµ is element of the corresponding Lie algebra su(Nc) with generators ta,

Aµ(x) = Aaµ(x)ta , with a = 1, . . . , N2
c − 1 . (3.15)

Accordingly, the gauge field transforms in the adjoint representation of the group.

In QCD, one has Nc = 3. In that case, the defining representation of the generators ta

are the Gell-Mann matrices. For the electroweak theory with gauge group SU(2), these
are the Pauli matrices. As opposed to the Abelian U(1) case, these generators are complex
matrices ta ∈ CNc,Nc . Hence, they do not commute. In fact, it is the commutation relation
of the generators which fully determines the structure of the Lie algebra su(Nc) and hence
that of its corresponding Lie group SU(Nc). For general representations, a Lie algebra
is defined via its Lie bracket. In the case of a matrix representation, as discussed in the
following, the Lie bracket corresponds to the well-known commutator of matrices,

[ta, tb] = ifabctc . (3.16)
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In (3.16), we have introduced the fully antisymmetric structure constants fabc. As the name
says, the structure constants fully determine the algebra and hence the group structure.
A typical choice for the normalisation of the generators is

tr
(
tatb
)

=
1

2
δab , (3.17)

where the trace is taken in the fundamental representation.
To obtain the curvature tensor of Yang-Mills theory, we only need to replace the electric

charge e by the gauge coupling g in the definition (3.12). Since the gauge field is algebra
valued, so is the field strength, and we have

Fµν =
i

g
[Dµ, Dν ] = F aµνt

a , with F aµν = ∂µA
a
ν − ∂νAaµ + gfabcAbµA

c
ν . (3.18)

Note that in contradistinction to the Abelian case (3.12), (3.18) contains a non-vanishing
commutator term for the gauge fields, giving rise to the last term on the very right of (3.18).
We can then define the Yang-Mills action via

SYM[A] =
1

2

∫

x
trFµνFµν =

1

4

∫

x
F aµνF

a
µν , (3.19)

which is gauge invariant due the cyclicity of the trace, again taken in the fundamental
representation.

3.1.3. Path integral quantisation & gauge fixing

Next, we discuss the path integral quantisation of QCD at the example of YM theory.
The path integral defined by the classical YM action (3.19) contains physically redundant
degrees of freedom, which are gauge field configurations

A ∈ A = space of all gauge fields , (3.20)

which are related by a gauge transformation, i.e.,

AU =
{
AU ∀U ∈ U

}
. (3.21)

AU is called a gauge orbit. Due to gauge invariance, moving along the gauge orbit by
gauge transformations leaves the action invariant, thus corresponding to physically equi-
valent configurations. The necessity to remove these redundancies is encoded in the non-
invertibility of the kinetic operator of the gauge field. Due to its transversality, it has a
vanishing eigenvalue,

pµS
(2)
AA,µν = pµ

(
p2δµν − pµpν

)
= 0 . (3.22)

In order to single out physically inequivalent configurations, we only want to consider one
representative per gauge orbit. These can be represented by the quotient space,

A/U =
{
A ∼ AU : A ∈ A, U ∈ U

}
. (3.23)

We can hence remove all redundancies by restricting our path integral measure to the
quotient space. To achieve this, one needs to construct a suitable measure dµ[A] such that
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3.1. Basics of non-Abelian gauge theories

the path integral factorises into an integration over gauge transformations and over the
quotient space A/U ,

Z[JA] =

∫

U
dU
∫

A/U
dµ[A] exp

{
− S[A] + JA ·A

}
. (3.24)

The measure on the gauge group dU is called Haar measure and is gauge invariant.
With (3.24), configurations on the same gauge orbit can be integrated out, and the resul-
ting factor can be absorbed in the normalisation of the partition function, hence dropping
out of correlation functions. Then, we are left with an integration over physically ine-
quivalent field configurations in the quotient space A/U . We will explicitly construct the
desired measure in (3.24) in the following.

In order to restrict to one representative per gauge orbit, one imposes a gauge fixing
condition. We would like to have that for any A ∈ A, there exists a unique U? ∈ U such
that, for some function F ,

F [AU
?
] = 0 , (3.25)

which would allow us to single out one representative AU
?

per orbit. In fact, it is known
that (3.25) cannot always be satisfied, going by the name of Gribov ambiguity [84]. It might
happen that the gauge fixing condition does not apply to any element on a particular gauge
orbit, or to more than one, which are called Gribov copies. For the moment, we will simply
assume that (3.25) holds, and come back to this assumption below.

The gauge fixing condition (3.25) needs to be implemented on the level of the path inte-
gral. This can be achieved by Faddeev-Popov quantisation. There, one inserts a functional
unity into the path integral,

1 = ∆F [A]

∫

U
dU δ

(
F
[
AU
])
, (3.26)

with the inverse Jacobian

∆F [A] = detMF , with MF =
δF [AU ]

δU

∣∣∣∣
U=U?

. (3.27)

∆F is called the Faddeev-Popov determinant, and M is the Faddeev-Popov matrix.
In (3.27), we assumed MF to be a positive definite operator. We remark that this is
assumption is generally not true, ultimately sourcing the Gribov problem. A common
technique to soften this problem is to restrict the path integral to a single Gribov re-
gion, bounded by the Gribov horizon which marks the first root of the Faddeev-Popov
determinant (3.27) around the origin. We discuss this approach briefly in Section 3.1.5.

With (3.27), the path integral measure can be expressed as

∫

A
dA =

∫

U
dU
∫

A
dAδ

(
F
[
AU
])

∆F
[
A] , (3.28)

For the measure (3.28) to factorise as desired in (3.24), we still need to eliminate the U-
dependence of the delta distribution carrying the gauge fixing condition. This can be done
via a simple gauge transformation A 7→ AU

†
, noting that the path integral measure dA is

gauge invariant due to unitarity of the gauge transformation U ∈ U . The Faddeev-Popov
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determinant (3.26) is gauge invariant as well, owing to the gauge invariance of the Haar
measure dU . We obtain the desired split (3.24) of the path integral measure,

∫

A
dA =

∫

U
dU
∫

A
dAδ

(
F [A]

)
∆F
[
A] , (3.29)

from which the explicit form of the measure on the quotient space can be read off,

∫

A/U
dµ[A] =

∫

A
dAδ

(
F [A]

)
∆F [A] . (3.30)

The integration over the gauge group simply yields a constant factor, which is the volume
of the gauge group,

∫

U
dU = VU . (3.31)

Since the normalisation of the partition function drops out of correlation functions, see (2.2),
we can simply drop the factor VU .

The Faddeev-Popov determinant ∆F [A] can be calculated explicitly from (3.26). The
gauge invariance of the Haar measure allows for expanding the group elements U about
the unit element. This yields the explicit form of the Faddeev-Popov matrix M defined
in (3.27),

MF = −δF [A]

δAµ
Dµ . (3.32)

We can express the determinant ofMF as a functional Gaussian integral with help of two
Grassmann fields c̄, c,

∆F =

∫
dc dc̄ exp

{
c̄a · Mab

F · cb
}
. (3.33)

It remains to find a representation of the delta distribution in (3.30) carrying the gauge
fixing condition, which allows for practical calculations. To that end, we rewrite it via its
Fourier representation by introducing an auxiliary field,

δ
(
F [A]

)
=

∫
dB exp

{
Ba · Fa[A]

}
, (3.34)

where B and F are algebra-valued. The Nakanishi-Lautrup field B will also be useful for
the discussion of BRST symmetry, a symmetry of the gauge-fixed action, later.

Since all predictions of our theory need to be independent of how exactly we fix the gau-
ge, the gauge fixing condition (3.25) is arbitrary. Instead of a single gauge fixing condition,
we can therefore also consider a Gaussian average over gauge fixing conditions,

δ
(
F [A]) →

∫
df δ

(
F [A]− f

)
exp

{
− 1

2ξ
fa · fa

}
, (3.35)

=

∫
dB exp

{
− ξ

2
Ba ·Ba −Ba · Fa[A]

}
, (3.36)
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where in the last step, we used (3.34) and absorbed a numerical prefactor into the norma-
lisation. Furthermore, we introduced an arbitrary gauge fixing parameter ξ. With (3.35),
the gauge-fixed Yang-Mills action reads,

SYM[A,B, c̄, c] =

∫

x

{
1

4
F aµνF

a
µν +

ξ

2
BaBa +BaFa[A] + c̄aMab

F c
b

}
. (3.37)

Note that the Nakanishi-Lautrup field B has no kinetic term and can hence be integrated
out using its equation of motion,

Ba
EoM = −1

ξ
Fa[A] . (3.38)

Specifying to the common case of linear covariant gauges,

F [A] = ∂µAµ , (3.39)

and integrating out the Nakanishi-Lautrup field using (3.38), we eventually obtain the
gauge-fixed path integral of Yang-Mills theory,

Z[J ] =

∫
dAdc̄dc exp

{
SYM[A, c̄, c] + JA ·A+ Jc · c− c̄ · Jc̄

}
, (3.40)

with J = (JA, Jc̄, Jc) and

SYM[A, c̄, c] =

∫

x

{
1

4
F aµνF

a
µν +

1

2ξ

(
∂µA

a
µ

)2 − c̄a∂µDab
µ c

b

}
. (3.41)

3.1.4. BRST symmetry

By construction, the gauge-fixed action (3.41) is no longer gauge invariant. Leaving aside
the ghost terms, the gauge fixing term explicitly breaks gauge invariance. The informa-
tion about the gauge symmetry is not lost however, it is still present in terms of BRST
symmetry. A BRST transformation can heuristically be understood as transformation
compensating for the gauge variance of the gauge fixing term. This has two immediate
consequences: First, the non-gauge-fixed Yang-Mills action (3.19) is BRST invariant,

δBRST SYM[A] = 0 , (3.42)

for an infinitesimal BRST transformation δBRST. Second, the transformation is Grassma-
nian in nature. Introducing a superfield Φ = {A,B, c̄, c}, δBRST can be written as

δBRSTΦ = ε sΦ , (3.43)

where the infinitesimal parameter ε is Grassmanian. The BRST variation s has the general
form

s =

∫

x
(sΦi)

δ

δΦi
, (3.44)

and explicitly acts on the Yang-Mills field content as

sAaµ = Dab
µ c

b , s c̄a = Ba , s ca = −g
2
fabccbcc , sB = 0 . (3.45)
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From the transformation behaviour (3.45), it can be checked that the BRST variation can
be written as a total derivative,

s =

∫

x

δ

δΦi
(sΦi) . (3.46)

We can see from (3.45) that, while the Dµc term is gauge invariant, it is precisely the
antighost which cancels the BRST transformation of the gauge fixing term. In fact, we
can exploit (3.45) to recast the gauge-fixed Yang-Mills action as

S[Φ] = SYM[A] +

∫

x
sψ[Φ] , (3.47)

where SYM stands for the non-gauge-fixed Yang-Mills action (3.19). In (3.47), we also
introduced the gauge fixing fermion,

ψ[Φ] = c̄a∂µA
a
µ −

ξ

2
c̄aBa . (3.48)

Another crucial property of the BRST generator is its nilpotency,

s2 = 0 , (3.49)

which can be verified explicitly with (3.45). Together with (3.47), the nilpotence (3.49) of
s directly leads us to

s S[Φ] = 0 , (3.50)

i.e., the BRST invariance of the gauge-fixed Yang-Mills action.

3.1.5. Hilbert space and confinement

The path integral quantisation of non-Abelian gauge theories discussed in this chapter
in principle allows for the computation of gauge invariant correlation functions. The con-
struction of a corresponding Hilbert space Hphys requires canonical quantisation of the field
operators, however. For the gauge-fixed action (3.37), canonical quantisation relations can
indeed be established. A Hilbert space construction based on these operators is required to
yield positive-norm states which respect the symmetries of the gauge-fixed theory. Under
the assumption of global BRST symmetry, this can be achieved within BRST quantisati-
on. By Noether’s theorem, global BRST symmetry entails the existence of a corresponding
BRST charge operator QBRST,

QBRST =

∫
d4xJ0

BRST , with ∂µJ
µ
BRST = 0 , (3.51)

where JBRST is the corresponding conserved Noether current. Since physical states need to
respect the symmetries of the gauge-fixed action, they are required to be invariant under
BRST transformations. In consequence, they do not carry BRST charge, which is why
QBRST can be used to distinguish between physical and unphysical states,

QBRST|ψphys〉 = 0 , (3.52)
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for |ψphys〉 ∈ Hphys. As a result of the nilpotency of the BRST generator s, cf. (3.49), QBRST

is nilpotent as well. In consequence, (3.52) also applies trivially to QBRST-exact states,
which are generated via the charge operator,

|ψexact〉 = QBRST|ψ〉 ⇒ QBRST|ψexact〉 = 0 . (3.53)

QBRST-exact states have vanishing norm, which follows directly from the nilpotency of
the charge operator. For this reason, we want to exclude these states from the physical
spectrum. To that end, one defines the Hilbert space as equivalence class of states which
have vanishing BRST charge, but may differ by QBRST-exact states. More precisely, the
Hilbert space is given by the cohomology of the BRST charge operator,

Hphys = Cohom(QBRST) =
ker(QBRST)

im(QBRST)
, (3.54)

where ker is the kernel and im the image of the charge operator, such that for all QBRST-
exact states, |ψexact〉 ∈ im(QBRST). For a more detailed introduction to BRST quantisation,
see, e.g., [85].

Confinement

Of course, a successful Hilbert space construction needs to respect the phenomenon of
confinement, i.e., it must not contain colored asymptotic states such as single quarks or
gluons. In the following, we give a brief account of confinement scenarios on the basis of
correlation functions; topological approaches to confinement can be found, e.g., in [86, 87].

The confinement criterion by Kugo and Ojima [88] formulates how, under the assump-
tion of a global color charge, the absence of colored single gluon states can be achieved in
Yang-Mills theory. The mechanism entails a particular large distance decay behaviour of
the one-particle Green’s functions of the theory. In momentum space, this criterion trans-
lates into the gluon propagator being less and the ghost propagator being more singular
than the propagator of a massless particle in the origin. These requirements are met by the
so-called scaling solution of Yang-Mills theory, which has been found in various Landau
gauge DSE [2, 89–94] and fRG [95, 96] computations. Within the scaling solution, gluon
and ghost propagator show a scaling behaviour in the deep IR,

Gsca
A (p) ∼ (p2)2κ−1 , Gsca

c (p) ∼ (p2)−1−κ , (3.55)

with a scaling exponent 1/2 < κ < 1. Numerical estimates yield κ ≈ 0.58 [95], while
analytic results predict a value of κ = (93 +

√
1201)/98 ≈ 0.5953 [91, 92].

In lattice simulations, an IR behaviour of ghost and gluon progagators different from
the scaling is usually realised [97–101]. It is characterised by a mass-like gapped gluon
propagator and a simple massless pole in the ghost propagator for p→ 0,

Gdec
A (p) ∼ 1 , Gdec

c (p) ∼ 1

p2
, (3.56)

commonly referred to as decoupling solution. The fact that lattice simulations so far have
not been able to realise the scaling solution has been connected to the difference in gauge
fixing between lattice and functional approaches [102]. While not being in line with the
Kugo-Ojima confinement scenario, the decoupling solution found in lattice simulations
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is consistent with the refined Gribov-Zwanziger scenario for confinement [103, 104]. The
Gribov-Zwanziger action imposes an additional gauge fixing condition on the Yang-Mills
action (3.37) in order to restrict the configuration space for the gauge field to the first
Gribov region. In its initial formulation [105, 106], it predicted a vanishing gluon and an in-
frared enhanced ghost propagator, which is incompatible with the lattice data. The refined
version, however, compensating for non-locality of the additional gauge fixing term, leads
to a decoupling-type solution (3.56). Note that the Gribov-Zwanziger action inherently
breaks global BRST symmetry [107].

The decoupling solution (3.56) can be also realised in functional approaches, see, e.g., [93,
95, 96]. The DSE solution [2] for the ghost spectral function reported in this thesis in Secti-
on 5.2 encompasses both, the scaling and decoupling solution. In functional Landau gauge
calculations, the scaling solution usually appears as the IR closure of possible solutions
with respect to the initial condition for the gluon mass gap in the system. Therefore, ob-
taining the scaling solution requires solving a quadratic fine-tuning problem, which gets
particularly clear in the context of fRG studies due the RG scaling of the gapping para-
meter.

Both, the Kugo-Ojima and Gribov-Zwanziger approach to confinement predict a finite
value for the gluon propagator at vanishing momentum as a result of confinement, i.e., a
mass gap. Through the Slavnov-Taylor identities (STI), which we discuss in Section 3.1.6,
BRST symmetry entails that this mass gap only exists in the transverse component of
the gluon field. While also the transverse component of the gluon field does not appear in
the physical, asymptotic spectrum, as discussed above, its massive excitation eventually
gives rise to the physical mass gap of Yang-Mills theory and QCD. The longitudinal
component, in contrast, is an unphysical one, which also becomes manifest in the fact that
it constitutes a zero-norm state and hence is right away eliminated within the perturbative
BRST quantisation procedure described above. However, this begs the question of how
the split between longitudinal and transverse component in the gluon propagator comes
about on the level of functional equations. The scaling solution (3.55) constitutes a natural
mechanism for this split [94]. We turn towards a general discussion of mechanisms for the
mass generation of the gluon with focus on condensation in Section 3.2. In the following,
we close this introduction to non-Abelian gauge theories with a brief discussion of STIs
and the relevant example for this thesis, the STI for the gluon propagator.

3.1.6. Slavnov-Taylor identities

In Section 2.2, we observed that field transformations which can be written as total deri-
vatives lead to non-trivial identities, called Dyson-Schwinger equations. This property is
rooted in the shift invariance of the path integral. We will utilise this fact in this section to
derive the Slavnov-Taylor identities, which are the non-Abelian counterpart of the Abelian
Ward-Takahashi identities.

Utilising that also the BRST variation s can be written as a total derivative (3.46), we
can express the normalised generating functional including the Nakanishi-Lautrup field as

1

Z[J ]

∫
dAdB dcdc̄ s exp

{
− S[A,B, c̄, c] + JA ·A+ Jc · c− c̄ · Jc̄

}
= 0 . (3.57)

Explicitly carrying out the BRST variation yields the Slavnov-Taylor identity,
∫

x

〈
JA sA− Jc s c− Jc̄ s c̄

〉
= 0 . (3.58)
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The STI (3.58) obtains a much more compact form when casting it in terms of the quantum
effective action. To that end, we introduce source terms for the BRST variations,

∫

x
Qi sΦi =

∫

x

(
QA sA+Qc s c+Qc̄ s c̄

)
, (3.59)

which only represent spectators in the Legendre transform leading to the effective action.
Equation (3.59) then allows us to rewrite the STI as

〈sΦi〉 =
1

Z[J,Q]

δZ[J,Q]

δQi
= −δΓ[Φ, Q]

δQi
. (3.60)

Exploiting the equations of motions of the source terms for the fields,

JA =
δΓ

δA
, Jc̄ = −δΓ

δc̄
, Jc = −δΓ

δc
, (3.61)

from (3.58) we are directly lead to the quantum master equation,

δΓ

δQi

δΓ

δΦi
= 0 . (3.62)

STI for the gluon two-point function

As a relevant example for this thesis, we now discuss the STI for the gluon two-point-
function. It states that the quantum corrections of the gluon propagator are purely trans-
verse, i.e., the gluon mass gap only applies to its transverse degrees of freedom. We discuss
mechanisms for the generation of this mass gap in Section 3.2.

Before starting with the derivation of the gluon propagator STI, we introduce a general
parametrisation of the gluon two-point function,

Γ
(2)
AA,µν(p) = p2

(
Z⊥A (p)Π⊥µν(p) + Z

‖
A(p)Π‖µν(p)

)
, (3.63)

using the longitudinal and transverse projection operators Π‖ resp. Π⊥,

Π‖µν(p) =
pµpν
p2

, Π⊥µν(p) = δµν −Π‖µν(p) . (3.64)

In the following, we will take the freedom to swap between super- and subscripts ⊥ / ‖
for the projection operators (3.64) depending on the position of the Lorentz indices.

We begin deriving the gluon propagator STI by taking a ghost and gluon derivative
of the master equation (3.62) at vanishing BRST sources and on the field equations of
motion Φ0 = (0, BEoM), with BEoM given by (3.38),

δ2

δAµ(x)δc(y)

[
δΓ

δQi
· δΓ
δΦi

]

Φ=Φ0,Q=0

(3.65)

=

[
δ

δc(y)

δΓ

δQA,ν

] [
δ

δAµ(x)

δΓ

δAν

]
+

[
δ

δAµ(x)

δΓ

δQc̄

] [
δ

δc(y)

δΓ

δc̄

] ∣∣∣∣∣
Φ=Φ0,Q=0

= 0 .

First, we note that we can express the variation of the effective action w.r.t. the anti-ghost
BRST source by the equation of motion of the Nakanishi-Lautrup field, i.e.,

δΓ

δQc̄(x)
= BEoM =

1

ξ
∂µAµ , (3.66)
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where in the last step we again used (3.38). Next, we express the anti-ghost derivative of
the effective action by means of the anti-ghost DSE, which reads

1

Z[J ]

∫
dΦ

δ

δc̄(x)

[
exp

{
− S[A,B, c̄, c] + JA ·A− c̄ · Jc̄ + Jc · c

}]
= 0 . (3.67a)

Explicitly performing the field variation leads to

〈
∂µDµc

〉
= Jc̄ . (3.67b)

The expectation value on the left-hand side of (3.67b) is a BRST variation, see (3.42).
We can hence rewrite it in terms of the effective action using (3.60). Also substituting the
equation of motion for the anti-ghost source (3.61), we eventually arrive at

δΓ

δc̄
= −∂µ

δΓ

δQA,µ
. (3.67c)

The final form of the anti-ghost DSE (3.67c) entails that we can pull out a common factor
with a ghost derivative and a gluon BRST source variation of Γ in the STI (3.65) upon
integrating by parts. This yields

[
δ

δc(y)

δΓ

δQA,ν

] [
Γ

(2)
AA,νµ − ∂µ

δ

δAµ(x)

1

ξ
∂νAν

] ∣∣∣∣
Φ=0,Q=0

= 0 . (3.68)

The first term on the left-hand side, given by the ghost derivative of the BRST variation
of the gauge field, is a Lorentz vector. Since we evaluate (3.68) at vanishing fields and
BRST sources, the only non-vanishing Lorentz vector is the partial spacetime derivative.
This leads us to the final form of the gluon propagator STI in momentum space,

pµΓ
(2)
AA,µν(p) =

1

ξ
pµp

2 . (3.69)

Within the parametrisation (3.63), this entails that

Z
‖
A(p) =

1

ξ
, (3.70)

stating that the longitudinal dressing function of the gluon propagator is given by its
classical value. The gluon mass gap, characteristic of confinement (Section 3.1.5), hence
only exists in the physical transverse sector. Any mechanism for gluon mass generation
therefore not only needs to explain emergence of the mass itself, but also of the split
between the transverse and longitudinal sector of the gluon propagator. In the following
section, we will discuss a particular candidate for such a mechanism.
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3.2. Mass generation for the gluon via condensation

This section presents results of [4]. The practical calculations were performed in collabo-
ration with fellow PhD student Friederike Ihssen.

Yang-Mills theory exhibits a mass gap, in spite of the fact that the fundamental degrees
of freedom are massless at the level of the classical action. While perturbation theory is
based on massless gluons, non-perturbative quantum fluctuations lead to exponentially
decaying correlation functions for gauge invariant observables, which are characteristic
of massive excitations. The lightest excitations are glueballs [108, 109], and the lightest
glueball mass sets the mass gap or confinement scale. This dynamical emergence of a mass
gap in the gauge sector of QCD has been established by numerous lattice studies, see, e.g.,
[110–114], and continuum studies, see, e.g., [115–123].

In a gauge-fixed version of QCD, the effects of the mass gap manifest themselves through
the appearance of distinctive patterns in the infrared momentum region of correlation
functions, see the discussion in Section 3.1.5. Most of the related investigations have been
performed in Landau gauge QCD. Especially the infrared behaviour of the gluon propaga-
tor in Landau gauge has been explored within large-volume lattice simulations [98, 124–
132] and non-perturbative functional methods, such as Dyson-Schwinger equations (DSEs)
[107, 133–136] and the functional renormalisation group (fRG) [59, 62, 63, 137]. In com-
bination, these investigations have led to a coherent picture: with exception to the deep
infrared regime far below the confinement scale ΛQCD, the results obtained for the gluon
propagator in the non-perturbative domain are in excellent agreement. In particular, they
are found to be well compatible with a description in terms of an effective gluon mass. Put
differently, they show the dynamical emergence of a mass gap in the gluon propagator,
and in higher order correlation functions.

The precise relation between the gluon mass in gauge-fixed QCD and the physical mass
gap in Yang-Mills theory still eludes us. Nonetheless, in covariant gauges a mass gap in
the gluon propagator is required for quark confinement to occur, as has been established
through the study of the Polyakov loop expectation value in [138, 139].

This situation asks for the identification and investigation of potential mechanisms which
are able to create an effective gluon mass term. Commonly, gauge boson masses are gene-
rated by the formation of condensates, even in the absence of fundamental scalar fields.
The textbook implementation of such a scenario is realised within the theory of super-
conductivity. There, the massive photon associated with the Meissner effect is linked to
the condensation of the Cooper pairs, see, e.g., [140, 141], and references therein. In pu-
re Yang-Mills theory, a potential connection between the effective gluon mass and gluon
condensates of dimension four has mostly been discussed within the operator product ex-
pansion (OPE) [142–144]. It has been argued in [145] that a non-perturbative condensate
of composite color octets in QCD leads to a simple description of gluon masses by the
Higgs mechanism. In this scenario, the massive gluons can be identified with the lowest
mass vector mesons, with a rather successful phenomenology [146, 147].

Here, we present a first fRG study of a potential dynamical emergence of the effective
mass in the gauge-fixed gluon propagator in QCD color condensates. The condensate is
computed from the Euclidean effective potential of a constant field strength Fµν as in
[148], with precision ghost and gluon propagators obtained within the fRG [95]. We find
minima and saddle points for finite non-zero Fµν . The minimum value of Fµν is related to
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3.2. Mass generation for the gluon via condensation

an effective gluon mass, and the final color-blind result is obtained from an average over
color directions. Our computation of the effective gluon mass agrees very well with lattice
results and results obtained from alternative dynamical scenarios within the error bars,
despite the qualitative nature of the computation. The present study serves as a promising
starting point for a systematic exploration of the connection between gluon condensates
and gluon mass gap.

This section is structured as follows. In Section 3.2.1, we give a brief introduction to
the mechanism of gluon condensation. In Section 3.2.2, we introduce the background field
approach, which we use to deal with the non-vanishing background field which gives rise to
the condensate studied here. We discuss the computation of the background field effective
potential from which the condensate is obtained in Section 3.2.3 and resulting gluon mass
gap in Section 3.2.4. In Section 3.2.5, we compare to gluon mass gap results obtained from
the Schwinger mechanism. We present our conclusions in Section 3.2.6

3.2.1. Gluon condensates

Gluon condensation can be described by non-vanishing expectation values of composite
operators, such as the field strength squared, FµνFµν , being a scalar under Lorentz trans-
formations. In terms of the free energy or effective action of QCD, this entails that quantum
effects would trigger a non-trivial potential in these condensates, with the possibility of
capturing also the dynamics of the respective interaction channel. In this context, the
classical action of Yang-Mills theory (3.19) is the first (trivial) term of such a non-trivial
potential.

3.2.1.1. Color condensates

Color condensates [145, 149–151] could render the gluons massive through a dynamical
realisation of the Higgs mechanism. Note that, strictly speaking, a local gauge symmetry
cannot be broken spontaneously. Nonetheless, as well-known from the description of the
electroweak sector of the Standard Model, the language of spontaneous symmetry breaking
in a fixed gauge can be particularly useful, and will be employed in what follows.

Below we discuss a color condensate operator, derived from the field strength Fµν (3.18)
in the case of the physical gauge group SU(3). Generally, a possible condensate operator
of dimension four is given by the traceless hermitian Nc ×Nc matrices

χAB =

(
FACµν F

CB
µν −

1

Nc
FCDµν FDCµν δAB

)
, (3.71)

where A,B,C,D = 1, ..., Nc are color indices in the fundamental representation, FABµν =

F aµν(ta)AB. The subtraction of the diagonal term makes the operator traceless, χAA = 0,
and for Nc = 3 this is an octet operator. In terms of the field strength components F aµν ,
the condensate in (3.71) reads,

χAB =
1

2
F aµνF

b
µν

(
{ta , tb}AB − 1

Nc
δabδAB

)
, (3.72)

We note in passing that the above operator is only present for Nc ≥ 3. It vanishes in SU(2),
as the symmetric group invariant vanishes, dabc = Tr ta{tb , tc} = 0. This already suggests
that in a realistic condensation scenario leading to a gluon mass gap, (3.71) should be
augmented with further color condensate operators.
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3.2. Mass generation for the gluon via condensation

Introducing the composite color condensate field χAB, the quantum effective action Γ
introduced in Section 2.1 will contain an induced kinetic term,

Γχ = Zχ

∫

x
(Dµχ)AB (Dµχ)BA , (3.73)

with a wave function renormalisation Zχ. For a non-zero expectation value 〈χAB〉, this
induces a mass term for some gluons,

m2
A ∝ Zχg2

s〈χ〉2 . (3.74)

Mass terms for all gluons in SU(3) require condensates of more than one octet in different
directions since at least a U(1) × U(1)-subgroup remains unbroken, as for example in
[145, 149–151]. This argument also applies to higher gauge groups, Nc ≥ 3, and we have
already pointed out in this context that the color condensate operator (3.72) vanishes for
Nc = 2. Besides different mass terms, octet condensates can also induce different effective
gauge couplings for different gluons, due to terms in the effective action, see, e.g., [152, 153],

∫

x
FABµν χ

BCFCAµν . (3.75)

3.2.1.2. Color condensates and the field strength tensor

The flow equation approach with dynamical composite fields such as the color condensate
field discussed in the last section is well understood. It has been introduced and discussed
in [38, 58, 154–161], for applications to QCD see [38, 162–166] and the review [63]. However,
full computations including the composite field χAB require a substantial effort, and will
be considered elsewhere.

Here, we restrict ourselves to a qualitative study, whose principal aim is to gather insights
on the possible role of non-singlet condensates in the confining dynamics. This is done by
building on results for the condensation of the field strength tensor within functional
renormalisation group investigations in [148, 167, 168]. Such a colored expectation value
of Fµν is linked to non-vanishing expectation values of the color condensate operator χ
in (3.71) as well as potential non-vanishing expectation values of further color condensate
operators. Hence, 〈Fµν〉 can be used to describe the dynamical emergence of the effective
gluon mass via color condensates, for details see Section 3.2.1.3.

We emphasise that a description in terms of Fµν and its expectation value makes it diffi-
cult to include the full dynamics of the color condensate sector as well as the condensation
pattern, as this requires the computation of the dynamics of higher order terms in Fµν and
covariant derivatives. We also note that such an expansion about 〈Fµν〉 works naturally
for observables or more generally, expectation values of gauge invariant operators. There,
singling out a color direction is simply a means of computation. In turn, for gauge-variant
expressions the expansion about a non-trivial configuration mixes with the gauge fixing,
and it is difficult to undo the color selection quantitatively. Still, it can be done with an
additional color averaging 〈·〉av, which can be implemented systematically. As this con-
cerns the understanding and underlying structure of this section, we further explain this
with two simple examples. While important, it is not in our main line of reasoning and
hence is deferred to Appendix A.1.

Note, that such an averaging is to date always implied in lattice simulations of gauge-
fixed correlation functions as well as in most computations in functional QCD using an
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expansion about the only color-symmetric background, 〈Fµν〉 = 0. The intricacies mentio-
ned above only occur for a quantitative implementation in an expansion about a colored
background. It is the current lack of a quantitatively reliable averaging procedure, that
causes the current investigation to be of qualitative nature, and constitutes our largest
source of systematic error.

Here, we compute the respective gauge invariant effective potential Weff(Fµν) for con-
stant field strength Fµν from the effective action Γ[A],

Weff(Fµν) =
1

V Γ[A(Fµν)] , (3.76)

with the spacetime volume V.
Specifically, we choose gauge fields with the following constant self-dual field strengths:

the components Fµν = 0 for µν 6= 01, 10, 23, 32 vanish, and we have

F01 = F23 =
F a

2gs
ta , F a01 =

F a

2gs
, F a = Fna , (3.77a)

with a constant vector na with nana = 1. The field strength (3.77a) can be generated from
the gauge fields

Aaµ = −1

2
F aµνxν . (3.77b)

Evidently, the configuration is self-dual,

Fµν = F̃µν , with F̃µν =
1

2
εµνρσFρσ , (3.77c)

and is covariantly constant, [Dρ , Fµν ] = 0.
The classical action and the classical potentialWcl as well as the color condensate (3.71)

is obtained from the field strength squared, which reads for the configuration (3.77),

FµνFµν =
F 2

g2
s

(nata)2 , F aµνF
a
µν =

1

g2
s

F 2 . (3.78)

For example, for the configuration (3.77) with (3.78), the classical potential reduces to

Wcl(F
a) =

1

2
Tr F aF b tatb =

1

4g2
s

F 2 , (3.79)

where Tr is the group trace in the fundamental representation as in (3.19). From now on
we only consider configurations of the type (3.77), and hence Weff will be written as a
function of Fna, that is Weff(F a) instead of Weff(Fµν). The factor 1/g2

s in (3.78) reflects
the RG scaling of the field strength, and has been introduced for convenience. Moreover, as
both the gauge fields and the field strength in (3.77b) point in direction na of the algebra,
they can be rotated into the Cartan subalgebra without loss of generality.

Below, we briefly discuss SU(2) and SU(3) gauge groups, the former case as the simp-
lest example, the latter case for its physical relevance:

In the SU(2) gauge group, the Cartan subalgebra is generated by t3 = σ3/2 and the
self-dual field strength (3.77) is given by

F01 = F23 =
F

2gs
t3 . (3.80)
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We have already discussed above that in SU(2) the symmetric group invariant dabc vanis-
hes, and hence χABSU(2) = 0, implying (FµνFµν)AB = F aµνF

a
µνδ

AB/4 for all configurations.

For (3.80) we find

(FµνFµν)AB =
F 2

4g2
s

δAB . (3.81)

The explicit computation here is done for the physical gauge group SU(3) with the Cartan
generators t3, t8. These are related to the Gell-Mann matrices by ta = λa/2, the respective
vector n has the components na = 0 for a 6= 3, 8. A self-dual field strength (3.77) is given
by

F01 = F23 =
F

2gs

(
n3t3 + n8t8

)
. (3.82)

The octet condensate operator (3.71) for the configuration (3.82) reads

χAB =
F 2

2g2
s

[
nanb {ta , tb}AB − 1

3
δAB

]

=
F 2

2g2
s

δAB
[
δA1ν+ + δA2ν− + δA3ν3

]
, (3.83)

where

ν± =
1

2

(
n8

√
3
± n3

)2

− 1

3
, ν3 =

2

3
(n8)2 − 1

3
, (3.84)

where the trace(less) condition, χAA = 0, translates into ν+ + ν− + ν3 = 0 with (n3)2 +
(n8)2 = 1.

Non-vanishing octet condensate expectation values are in one to one correspondence to
non-trivial expectation values of its corresponding gauge invariant eigenvalues. Hence, a
non-trivial expectation value of the field strength triggers one for the octet condensate
χAB and other color condensate operators. Therefore, in Section 3.2.3, we compute the
effective potential for covariantly constant field strength or rather Weff[Fna] for the field
strength amplitude Fna defined in (3.77a), and the constant algebra element nata is ro-
tated into the Cartan subalgebra leading to (3.82). The respective effective potential is
shown in Figure 3.1 for the physical SU(3) case with the two Cartan components F01n

3

and F01n
8.

Our explicit computation of the effective gluon mass is based on an expansion about
the minimum 〈F 〉(na) in the three-direction with na = δa3. In SU(2) this is the Cartan
direction, and in SU(3) one of the absolute minima points in the three-direction, see
Figure 3.1. Then, the expansion about the minimum reads

F a01 = F a23 =
〈F 〉
2gs

δa3 +O(a) , (3.85)

31



3.2. Mass generation for the gluon via condensation

Abbildung 3.1.: Effective potential Weff(F a) in the plane spanned by the Cartan subal-
gebras. The position of the non-trivial global minimum is highlighted in
red.

for both gauge groups, where aµ is the gauge field, that carries the fluctuations about the
field strength expectation value. With (3.77b) we can deduce a gauge field, that generates
(3.85). We find,

Aaµ =
〈F 〉
4gs

(
x0δµ1 − x1δµ0 + x2δµ3 − x3δµ2

)
+ aaµ , (3.86)

which points in the same Cartan direction as the field strength. The fluctuation field
aµ carries the dynamics of the gauge field, leading to the O(a)-terms in (3.85). Within
this setting we shall derive our estimates for the effective gluon mass as well as discuss
constraints and bounds for this mass.

3.2.1.3. Color condensates and the gluon mass gap

It is left to discuss the emergence of an effective gluon mass term in the presence of
gluon condensates via the expectation value 〈F aµν〉 ∝ δa3 in Equation (3.85), or any other
algebra direction. This expectation value is computed from the effective potential W(F a)
introduced in Section 3.2.1.2.

Expanding the effective potential in powers of the fluctuation field gauge field aµ leads to
contributions to the n-point functions of the gauge field, including the two-point function.
However, neither a contribution to the mass operator aaµa

a
µ is generated, nor do we obtain

mass terms in specific algebra directions. In particular, no mass contribution in the Cartan
a = 3 direction is induced, as is readily shown for SU(2).

While the effective potential does not contribute to the effective mass term, the latter
receives contributions from other terms in the full, gauge invariant quantum effective action
Γ[A]. Such an action can be defined within the background field approach, which will be
detailed in Section 3.2.2. For the time being we simply assume its existence and consider
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the higher order term

ΓF [A] =
ZF
4

∫

x
(DµFνρ)

a(DµFνρ)
a , (3.87)

where ZF is the wave function renormalisation of the condensate term. Equation (3.87)
is the lowest order term that generates an effective gluon mass term within an expansion
about the condensate 〈F 〉. An obvious generalisation of (3.87) is provided by

1

4

∫

x
(DµFρσ)aZF

ab
ρσαβ(Fµν)(DµFαβ)b , (3.88)

with ZF
ab
ρσαβ(0) = ZF δραδσβδ

ab. In the following we will use the approximation

ZF
ab
ρσαβ(〈Fµν〉) ≈ ZF abρσαβ(0) , (3.89)

hence only considering the term (3.87).
Equation (3.87) leads to an effective gluon mass, but does not contribute to (covariantly

constant) solutions of the equations of motions as its first field derivative vanishes for
covariantly constant field strengths. The relevant contribution to the effective gluon mass
term is obtained by expanding (3.87) in powers of the gauge field, while treating the field
strength within the expansion (3.85). To that end we conveniently recast (3.87) into the
form

ΓF [A] = −ZF
2

∫

x
FCBνρ (D2)BAFACνρ , (3.90)

where the factor 1/2 in (3.87) is now carried by the trace in the fundamental representation.
The O(A2) term is given by

ΓF [A] =
ZF
2
g2
s

∫

x
(FνρFνρ)

AB (AµAµ)BA + · · · , (3.91)

and we expand (FνρFνρ)
AB about the field strength expectation value (3.85). This implies

a non-vanishing condensate expectation value for (3.71) as well as non-vanishing values
for other color condensate operators. The expansion about (3.85) leads us to

(FνρFνρ)
AB =

1

g2
s

〈F 〉2[(nata)2]AB +O(a) . (3.92)

We drop the higher order terms in (3.92) and insert it in (3.91), to wit,

ΓF [A] ' ZF
2
〈F 〉2

∫

x
Tr (t3)2A2

µ + · · · , (3.93)

with the group trace in the fundamental representation. Now we evaluate (3.93) for the
configurations (3.77), which leads to our final expression for the effective gluon mass
triggered by an expectation value of the field strength proportional to t3. For general
gauge groups, (3.93) is not color-blind, which originates in the colored expansion point. It
can be used to deduce the color-blind mass by a color average discussed in Appendix A.1.

Before we come to our final color-blind estimates, we exemplify (3.93) within SU(2)
and SU(3). We first discuss the simple example of an SU(2) gauge group. There, the
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configuration (3.85) leads to an F 2
µν that is proportional to the identity tensor 1 in the

algebra, as 4(t3)2 = 1. Indeed, as discussed below (3.80), general field strength tensors
lead to diagonal F 2

µν . In summary, in SU(2), a field strength condensate in the t3-direction
leads to

ΓF [A] ' 1

2
m2

3

∫

x
AaµA

a
µ + · · · , m2

3 =
ZF
8
〈F 〉2 , (3.94)

with a uniform mass m3 for all gluons. The subscript indicates that, while uniform, the
mass is generated by 〈F aµν〉 ∝ δa3. Importantly, (3.94) entails that a color condensate leads
to gluons with an effective mass. However, the current procedure with an expansion about
a non-vanishing field strength does not allow to directly infer the full effective gluon mass
obtained in a color-blind computation from m2

3 in (3.94). At this stage we only can offer
estimates, whose derivation is deferred to the end of the present section.

Before we come to these estimates, we proceed with the SU(3) example. There, we also
use the Cartan-valued configuration (3.85) (with n8 = 0) as one of the absolute minima in
the full effective potentialWeff points in this direction, see Figure 3.1. In contradistinction
to SU(2), the square 4(t3)2 is not the identity matrix in the algebra, but a projection onto
the first two colors,

[(t3)2]AB =
1

4
δAB

(
δA1 + δA2

)
. (3.95)

As expected, the expansion about a minimum of the field strength, related to one about
the octet condensate (3.71), breaks color, and indeed, the gluon with the third color is
massless if only considering contributions from ΓF . Hence, while the present expansion
shows, that the gluons acquire an effective mass term ∝ δab, the relation of its necessarily
color-blind value m2

A to the color-sensitive masses derived here is not straightforward.

Therefore, here we simply deduce self-consistency constraints for the effective mass m2
A

starting with the gluon mass m2
3, inferred from a field strength in the t3 direction. To

begin with, color symmetry can be restored by averaging over global color rotations as
always implied in lattice simulations as well as in most computations in functional QCD.
After this averaging, all masses are identical and non-vanishing. A color average of (3.93)
leads us to

ΓA2 [A] =
ZF
2
fav(Nc)〈F 〉2

∫

x
AaµA

a
µ , (3.96)

with fav(Nc) encodes the color average of the factor (t3)2 in (3.93),

fav(Nc) = 〈(t3)2〉av . (3.97)

The color average in (3.97) necessarily leads to a color insensitive sum over all generators
squared in the fundamental representation, which is simply the second Casimir C2(Nc) =
(N2

c − 1)/(2Nc) times the identity matrix. Moreover, there is an undetermined prefactor
cav(Nc), which leads us to

〈
(t3)2

〉
av

= cav(Nc)

N2
c−1∑

a=1

(ta)2 = cav(Nc)C2(Nc)1 . (3.98)
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Here we will only provide constraints for cav(Nc) and hence for fav(Nc) in (3.97). For
example, a ’natural’ bound for the averaging factor is unity, cav(Nc) ≤ 1.

In summary, we arrive at

m2
A =

ZF
2
fav(Nc) 〈F 〉2 , (3.99)

In Section 3.2.2.3 we will show, that self-consistency of the averaging in the large Nc limit
entails that in this limit fav(Nc) ∝ Nc. Indeed, this limit holds true for Nc-independent
cav. In particular this includes the case, where we saturate the ’natural’ bound cav = 1,
leading to

fav = (N2
c − 1)/(2Nc) . (3.100)

For this saturation fav we obtain

m2
A =

ZF
4

N2
c − 1

Nc
〈F 〉2 , (3.101)

Equation (3.101) will eventually yield our estimate of the effective gluon mass. In Secti-
on 3.2.2, we present the formalism employed for working with the constant field strength
configurations in (3.78). The computation of the minimum position F a = 〈F 〉na is detai-
led in Section 3.2.3, and an estimate of the wave function of the condensate together with
the result for the mass gap is presented in Section 3.2.4.

3.2.2. Background field approach

The condensate 〈F 〉 for the field strength configuration of (3.82) is given by the minimum
of an effective potential Weff(F na), derived from a gauge invariant effective action Γ[A],
see (3.76). Such an action is defined in the background field approach [169], building on
a linear decomposition of the full gauge field Aµ into a fluctuating and background field.
This linear split is given by Aµ = Āµ + aµ, where aµ denotes the fluctuation field and
Āµ the background field. On the quantum level, this relation has to be augmented with
the respective wave function renormalisations ZĀ = Z−2

gs for the background field Āµ and
Za for the fluctuation field aµ, as the two fields carry different RG scalings: As indicated
above, the background field scales inversely to the strong coupling, while the fluctuation
field carries the RG scaling of the gauge field in the underlying gauge without background
field. The gauge fixing condition involves the background field,

D̄µaµ = 0 , (3.102)

with the background covariant derivative D̄ = D(Ā), see (3.10). Note, that (3.102) is
invariant under background gauge transformations,

a→ a+ i [ω, a] , Ā→ Ā+
1

gs
D̄ω , (3.103)

implying a standard gauge transformation for the full gauge field: Aµ → Aµ + (1/gs)Dω.
Consequently, the full gauge-fixed classical action is invariant under (3.103), and so is
the full effective action Γ[Ā, a]. Moreover, the single-field background field effective action
Γ[A] := Γ[A, 0] is gauge invariant and can be expanded in gauge invariant operators. For
this reason, it also allows for a more direct access to observables. In what follows we use
the potential condensate background (3.77).
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3.2.2.1. Background field effective action

The gauge invariance of the background field effective action allows us to embed the
momentum-dependent kinetic terms and vertices in an expansion about a vanishing gauge
field in full gauge invariant terms that reduce to the original ones for Aµ → 0. An important
example is given by the (transverse) kinetic term of the gauge field, see, e.g., [138, 139, 148],

Γ[A] ∝ 1

2

∫

p
Aaµ(p)ZA(p2) p2 Π⊥µν(p)Aaν(−p) , (3.104)

with the abbreviation
∫
p =

∫
d4p/(2π)4, and the transverse and longitudinal projection

operators

Π⊥µν(p) = δµν −
pµpν
p2

, Π‖µν(p) =
pµpν
p2

. (3.105)

The kinetic operator ZA(p2)p2 is identified as theAµ → 0 limit of the second field derivative
of a gauge invariant term in the effective action Γ[A]. This leads us straightforwardly to
the parametrisation

Γ[A] =
1

2

∫
TrFµνfA,µνρσ(D)Fρσ + · · · , (3.106a)

with the split

fA,µνρσ(D) =
1

2
ZA(∆s)(δµρδνσ − δµσδνρ) + FγδfA,γδµνρσ(D) . (3.106b)

In (3.106b), we have introduced the spin-s Laplacians

∆0 = −D2 , ∆1,µν = DT,µν = −D2δµν + 2igs Fµν , (3.106c)

see also (B.1). Equation (3.106b) represents the most general parametrisation for a cova-
riant function coupled to two field strengths. Since fA,γδµνρσ is a function of the covariant
derivative D, higher order terms in the field strength tensor are contained in the second
term of (3.106b). For Aµ = 0, all these decompositions reduce to their the momentum-
dependent versions. In particular, the kinetic term (3.104) is obtained from (3.106b) by
taking two gauge field derivatives at A = 0.

A further relevant example is the sum of the classical action and the term ΓF in (3.87)
that generates the effective gluon mass. This combination is obtained with

ZA(−D2) = ZA − ZFD2 , fA,γδµνρσ = 0 . (3.107)

Here, ZA is the constant background wave function renormalisation multiplying the clas-
sical action, which also entails ZA = Z−2

gs .
The example given in (3.107) is central for two reasons: First, it demonstrates how the

condensate studied here emerges from the general, gauge invariant form of the effective
action (3.106a), which is defined in the next section within the background field formalism.
Second, it establishes a link between the wave function renormalisation of the condensate
and the kinetic operator of the gluon field ZA(∆s). More explicitly, due to the generality
of the split (3.106b), (3.107) entails that the wave function renormalisation of the con-
densate (3.87) is simply given by the D2-coefficient of the dressing function of the gluon
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propagator. In the limit of vanishing background, this simply corresponds to the p4-term
in the inverse gluon propagator.

Note that the use of different ∆s in the split (3.106b) leads to different forms for fµ1···µ6 ,
thus modifying the parametrisation of the kinetic term. Still, the different field modes carry
different spin, and the use of the respective Laplacians makes the split in (3.106b) to be the
most natural. Typically, higher order terms within this split are suppressed in the effective
action. For example, the second derivative of the classical Yang-Mills action with respect
to the gauge field is given by ∆1 = DT , multiplied by a covariant transverse projection
operator. For covariantly constant fields with [D,F ] = 0, we get

δ2

δAρδAσ

1

2

∫

x
TrF 2

µν = DT,ργ Π⊥γσ(D) , (3.108)

where the trace is taken in the fundamental representation. Above, we introduced the
covariant transverse and longitudinal projections,

Π⊥µν(D) = δµν −Π‖µν(D) , Π‖µν(D) = Dµ
1

D2
Dν , (3.109)

defining a decomposition in a covariantly transverse subspace with DµΠ⊥(D) = 0. It is
complete, Π⊥(D) + Π‖(D) = 1, and trivially orthogonal. Finally, the operators have the
projection property (Π⊥(D))2 = Π⊥(D) and (Π‖(D))2 = Π‖(D).

3.2.2.2. Ghost and gluon two-point functions

When supplemented by a wave function renormalisation ZA(DT ), (3.108) provides a very
good approximation of the full two-point function of the background gluon. This suggests
the split in (3.106b) with the spin one Laplacian ∆1 = DT for the transverse two-point
function, and with the second term being subleading,

Γ
(2,0)
AA,µν [A, 0] = ZA(DT )DT,µσ Π⊥σν(D) + Fγδ ∆fA,γδµσ(D) Π⊥σν(D) , (3.110)

where ∆fA,γδµν is a combination of derivatives of fA,µνρσ fully contracted with powers of
the field strength, see (3.106b), and Ā = A. The transversality of (3.110) follows from the
gauge invariance of the background field effective action, as does its covariance. In (3.110)
we have used the notation

Γ
(n,m)

Ānφi1 ···φim
[Ā, φ] =

Γ[Ā, φ]

δĀnδφm
, φ = (a, c, c̄) , (3.111)

with φ denoting the ghost and gluon fluctuation field. We shall use the split (3.106b)
leading to (3.110) and similar natural splits for the covariant versions of the momentum
dependent two-point functions, thus going from the Landau gauge to the Landau-DeWitt
gauge.

In particular one finds, that a similar line of arguments holds true for the kinetic operator
Za(p

2)p2 of the fluctuation field aµ,

Γ(0,2)
aa,µν [0, 0] = Za(p

2) p2Π⊥µν(p) +
1

ξ
p2Π‖µν(p) , (3.112)

where (3.105) was employed, and a diagonal form in the algebra, 1ab = δab, is im-
plied. Background gauge invariance entails that Γ(0,2)[A, 0] is a covariant operator un-
der the background gauge transformations (3.102). In consequence, the transverse part
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3.2. Mass generation for the gluon via condensation

of Γ
(0,2)
aa [A, 0] can be parametrised by the generic form of a background gauge covariant

function already employed in (3.106b), i.e.,

Γ(0,2)
aa,µν [A, 0] = Za(DT )DT,µσ Π⊥σν(D)− 1

ξ
D2 Π‖µν(D) + Fγδ ∆fa,γδµσ(D) Π⊥σν(D) . (3.113)

In (3.113) we have used the spin-1 Laplacian ∆1 = DT defined in (3.106c) in the wave
function renormalisation Za, since the transverse fluctuating gluon is a spin-1 field. For
two-flavor QCD, the validity of such covariant expansions has been confirmed explicitly
for the quark-gluon vertex, whose non-classical tensor structure can be related to higher
order gauge invariant terms q̄ /D

n
q [166].

Finally, in the case of the ghost two-point function we parametrise

Γ
(0,2)
cc̄ [A, 0] = −D2Zc(−D2) + Fµν ∆fc,µν(D) , (3.114)

where the use of the spin zero Laplacian in (3.114) is suggested by the ghost being a spin
zero field. For Aµ = 0, the ghost two point function in (3.114) reduces to that in standard
covariant gauges.

The infrared behaviour of Za(p) in the Landau gauge is an extensively studied subject,
both on the lattice and with functional approaches, see, e.g., [63, 107, 132, 133, 135, 136].
In particular, two types of solutions have emerged, discussed in the context of confinement
in Section 3.1.5. We briefly recapitulate them here and connect to the notation used in
this section:

(i) The scaling solution [88] has an infrared vanishing gluon propagator and a scaling
infrared behaviour,

Za,IR ∝ (−D2)−2κ , Zc,IR ∝ (−D2)κ , (3.115)

with κ ≈ 0.6. In (3.115) we have dropped terms proportional to the field strength. Note
that in this IR solution the ghost dressing function is infrared divergent. For the present
computations we shall use the fRG results from [95] within a quantitatively reliable ap-
proximation, for respective DSE results see [93].

(ii) An entire family of decoupling or massive solutions [142], where the gluon propagator
and the ghost dressing function saturate at finite non-vanishing values at the origin, in
agreement with the IR behaviour found in large-volume lattice simulations. Specifically,
we have

Za,IR ∝
1 + caD

2 log

(
−D2

Λ2
QCD

)

−D2
, Zc,IR ∝ cc . (3.116)

Note that the fluctuating propagator can be mapped to the background one by means
of an exact identity, characteristic of the Batalin-Vilkoviski formalism, which involves a
special two-point function, see, e.g., [135, 170].

We emphasise that both types of solutions agree quantitatively for momenta p2 &
Λ2

QCD, with ΛQCD related to the infrared mass gap. As a result, the deviations induced
to phenomenological observables by the use of either type are quantitatively minimal, see,
e.g., [166, 171]. In fact, here we will cover all potential solutions listed above, and show that

38



3.2. Mass generation for the gluon via condensation

their IR differences are immaterial to the central question of the presence of dynamical
condensate formation.

Both types of solutions, (3.115) and (3.116), are infrared irregular, and do not admit a
Taylor expansion about −D2 = 0. Instead, we can expand the wave function renormalisa-
tions about the infrared asymptotics. Making use of the relation between the condensate
and gluon wave function renormalisation established in (3.107), we arrive at

Za/A(−D2) = Za/A,IR(−D2) + (−D2)Za/A,F +O(D4) , (3.117)

for both Za and ZA with Za/A,IR defined in (3.115) and (3.116), and Za/A,F is the wave
function ZF for fluctuation and background field respectively. The first term Za/A,IR carries
the irregular infrared asymptotic behaviour, and Za/A,F is the (uniquely defined) constant
prefactor of the linear term in −D2. The expansion (3.117) makes explicit that scaling
and decoupling solutions only differ in the IR leading term Za/A,IR, while coinciding in
the expansion in powers of −D2. This in particular entails that the overlap between gluon
propagator and the condensate (3.87) is independent of the leading IR behaviour of the
respective solution, scaling or decoupling.

We are ultimately interested in the physical mass gap mgap of the fluctuation field aµ
resulting from the condensate term (3.87) in the full field A = Ā + a. The derivation of
the fluctuation field mass gap works analogously to that of (3.99) in Section 3.2.1.3, and
leads to a contribution Γgap in the effective action with

Γgap =
1

2
m2

gap

∫

x
abµa

b
µ , (3.118)

where the effective gluon mass of the fluctuation gluon aµ is given by

m2
gap =

Zcond

2
fav(Nc)〈F 〉2 , (3.119)

with Zcond = Za,F and the averaging factor fav(Nc) introduced in (3.96) and discussed
there. In particular, we have ZF = ZA,F 6= Zcond. The wave function ZF is used in (3.99)
for the mass term in a gauge invariant effective action, and in the present approach this
is the background field effective action. The difference between the wave functions ZF
and Zcond is the ratio of the respective wave functions of the background and fluctuation
gluons.

In (3.107) we observed that the wave function renormalisation Zcond of the condensate
studied here generally appears in the dressing function of the respective gluon propagator,
cf. (3.117). This connection will be utilised in Section 3.2.4 to determine Zcond from the
input gluon propagators [95] employed in the computation of the background field effective
potential Weff(F a). Supplemented with the non-trivial effective potential minimum 〈F 〉,
this procedure eventually lead to our heuristic estimate of the gluon mass gap in Landau
gauge Yang-Mills theory.

3.2.2.3. Large Nc-scaling and self-consistency

The effective gluon masses m2
A in (3.99) and m2

gap in (3.119) show an explicit 1/Nc-scaling,
while no Nc-scaling is present in the large Nc limit, if the theory is formulated in the ’t
Hooft coupling

λ = Ncg
2
s . (3.120)
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3.2. Mass generation for the gluon via condensation

This property serves as a self-consistency check of our computation and specifically our
group average used to derive (3.99), (3.119) and entailed in fav(Nc)

An illustrative and relevant example are the functional relations of the two-point func-

tion Γ
(0,2)
aa (p). Cast in a relation for the wave function Za(p), they read

Z(p2) = Zin + g2
s Nc Diags1 +O(N0

c ) , (3.121)

where the right-hand side stands for the typical loop diagrams of, e.g., (integrated) fRG
flows or Dyson-Schwinger equations. Here, Zin stands for the input dressing, either the
one at the initial UV cutoff scale (fRG) or the classical dressing (DSE). In most cases
the O(N0

c ) term is dropped, for an exception as well as a respective discussion see [172].
The term Diags1 stands for the loop integral that depends on the wave functions of all the
fields and the full vertex dressings. Importantly, the functional relations for all other vertex
dressings and wave functions have the same form as (3.121). Accordingly, if dropping the
subleading term of the order O(N0

c ), all functional relations only depend on the ’t Hooft
coupling (3.123), and so do all correlation functions. Respective lattice studies also reveal
that the large Nc-limit is achieved already for Nc & 3 for most correlation functions, for a
review see [173].

In summary, we deduce that in the large Nc-limit the only Nc-dependence of the effective
gluon masses m2

A in (3.99) and m2
gap in (3.119) is implicit in the dependence on the ’t

Hooft coupling (3.123). This concludes our brief discussion of the Nc-scaling of correlation
functions.

The relations for the effective gluon mass, (3.99), (3.119), show an even more direct
scaling consistency: ZF is an expansion term in the two-point function of the fluctuating
gluon. Moreover, in the presence of the condensate this two-point function approaches the
effective gluon for vanishing momentum,

lim
p→0

Π⊥µν(p)Γ(0,2)
aa,µν(p) = 3m2

gap . (3.122)

Accordingly, both Zcond and mgap have the same Nc-scaling (only dependent on the ’t
Hooft coupling in the large Nc-limit) as well as the same RG scaling. In conclusion, the
ratio Zcond/m

2
gap is manifestly RG invariant as well as Nc-independent in the large Nc-

limit. This implies already, that the RG invariant information in the effective gluon mass
is given by fav(Nc) 〈F 〉2. The value of the mass itself depends on the RG condition and
should not be confused with the gluon mass gap. The latter can be defined as the inverse
screening length of the gluon propagator which is indeed RG invariant.

In summary, fav(Nc) 〈F 〉2 should be Nc-independent in the large Nc-limit. This fixes the
Nc-scaling of fav(Nc), given that of 〈F 〉2. The Nc-scaling of the latter is obtained by an Nc-
analysis of the effective potential, whose explicit computation is detailed in Section 3.2.3
and Appendix B.2. Here we only need that it consists out of an ultraviolet classical piece
of the form (3.79) and a term that depends on NcF

2,

Weff(F a) =
1

4g2
s

F 2 + ∆Weff(NcF
2) , (3.123)

see Section 3.2.3.2. In (3.123), g2
s is the strong coupling at a large momentum scale kUV,

and we will use kUV = 20 GeV for this scale later on. We now absorb Nc into the field
strength squared amplitude F 2, i.e., F̄ 2 = NcF

2. With (3.120) this leads us to

Weff(F a) =
1

4λ
F̄ 2 + ∆Weff(F̄ 2) , (3.124)
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∂tΓk[Φ] =
1

2
−

Abbildung 3.2.: Depiction of the flow equation for the effective action, (3.126). Spiralling
orange lines depict the full field-dependent gluon propagator 〈AA〉c =
Gaa[Ā, φ], dashed back lines depicted the full field-dependent ghost pro-
pagator 〈cc̄〉c = Gcc̄[Ā, φ], where the subscript stands for connected part.
The circled cross stands for the regulator insertions ∂tRa (gluon loop) and
∂tRc (ghost loop).

and consequently

〈F̄ 〉 = F̄min(λ) −→ 〈F 〉 =
1√
Nc
F̄min(λ) . (3.125)

The 1/Nc-scaling for 〈F 〉2 derived in (3.125), is confirmed numerically in Appendix B.2.
There, the effective potential and its minimum is computed in a leading order Nc appro-
ximation and hence shows the asymptotic 1/Nc scaling even for Nc = 2. This Nc-scaling
is rooted in the adjoint representation trace of nata appearing the definition of the covari-
antly constant field strength in (3.77), cf. (B.3). We have confirmed its numerical presence
in a comparison of Nc = 2, 3.

3.2.3. Background field effective potential

Now we compute the value of the field strength condensate 〈Fµν〉 discussed in Secti-
on 3.2.1.2. For this purpose, we update the fRG computation done in [148] to a self-
consistent one with fRG precision gluon and ghost propagators from [95]. In Section 3.2.3.1
we briefly review the approach, and in Section 3.2.3.3 we report on the results for the con-
densate.

3.2.3.1. Flow of the background field effective potential

For the full computation we resort to the functional renormalisation group approach; see
Section 2.3 for an introduction and [58, 59, 62, 63, 174, 175] for QCD-related reviews.
In this approach, an infrared regulator Rk(p) is added to the classical dispersion. In the
infrared, that is p/k → 0, the regulator endows all fields with a mass, typically proportional
to the cutoff scale k. The regulator Rk(p) vanishes rapidly as p/k →∞, and the ultraviolet
physics is not modified; see (2.35). The change of the scale dependent effective action, Γk,
under a variation of the cutoff scale k is described by the flow equation. In the background
field approach it reads

∂tΓk[Ā, φ] =
1

2
Tr Ra[Ā]Gaa[Ā, φ]− Tr Rc[Ā]Gcc̄[Ā, φ] , (3.126)
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where t = log k/Λ is the (negative) RG time. GA, Gc are the fluctuation propagators of
gluon and ghost, respectively,

Gφ1φ2 [Ā, φ] =

[
1

Γ
(0,2)
k [Ā, φ] +Rk[Ā]

]

φ1φ2

. (3.127)

The traces in (3.126) sum over momenta, Lorentz and gauge group indices, details can
be found in Appendix B.1. The regulator function Rk = (Ra, Rc) transforms covariantly
under background gauge transformations, which preserve the background gauge invariance
of the effective action. The current study utilises the propagator data from [95], which
requires the use of the same regulators for our computation of the background field effective
potential. For details on the regulators see Appendix B.3.

For the derivation of the (background) field strength condensate we solve the equation
of motion stemming from the effective potential Weff(F a) of covariantly constant field
strength defined in (3.76). In the fRG approach it is obtained from its scale-dependent
analogue,

Wk(F
a) =

1

V Γk[A(F a), 0] , (3.128a)

with the full effective potential being defined at vanishing cutoff scale k = 0,

Weff(F a) =Wk=0(F a) . (3.128b)

The effective potential Wk is obtained by integrating the flow equation of the background
field effective action ∂tΓk[A(F ), 0], derived from (3.126) from the initial ultraviolet scale
kUV to the running cutoff scale k. The only input in this flow are the two-point functions

Γ
(0,2)
aa [A(F ), 0] and Γ

(0,2)
cc̄ [A(F ), 0], which we can infer from Landau gauge results. This is

the background Landau-DeWitt gauge with Ā = 0. For vanishing background the two-

point functions only depend on momenta, Γ
(0,2)
k (p). We use the results from [95], with

Γ
(0,2)
aa,k (p) = p2 Za,k(p

2)Π⊥(p) + p2

[
1

ξ
+ Z

‖
a,k(p

2)

]
Π‖(p) ,

Γ
(0,2)
cc̄ (p) = p2 Zc,k(p

2) , (3.129)

with the transverse and longitudinal projection operators introduced in (3.105). Note that
for the transverse dressing function, we omitted the ⊥-superscript in comparison to (3.63),
and we will keep doing so in the further course of this work. In (3.129), 1ab = δab is implied

in both two-point functions. The longitudinal dressing Z
‖
a,k signals the breaking of BRST

invariance due to the presence of the regulators, see Section 3.1.6, and vanishes in the
limit k → 0. There, the gluon two-point function in (3.129) reduces to that of (3.112).

Moreover, Z
‖
a,k is absent in the gluon propagator for the Landau gauge, ξ → 0,

Now we switch on the background field and use the decomposition (3.113) for the trans-
verse gluon two-point function. In addition, we drop the second line proportional to ∆fa
comprising higher order terms. They are associated with non-classical tensor structures
and can be shown to be small in the perturbative and semi-perturbative regimes. In the
Landau-DeWitt gauge, only the gauge fixing survives in the longitudinal propagator, and
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we can drop the cutoff contribution Z
‖
a,k. For the ghost we use (3.114), where we drop the

second term proportional to ∆fc. This leads us to

Γ
(0,2)
aa,k (p) 'DT Za,k(DT )Π⊥(−D)− 1

ξ
DµDν ,

Γ
(0,2)
cc̄ (p) ' −D2 Zc,k(−D2) , (3.130)

valid for covariantly constant field strength with [D,F ] = 0. For these configurations, the
transverse projection operator commutes with functions of the Laplacians ∆0 and ∆1.

3.2.3.2. RG consistent initial condition

The flow equation (3.128a) of the effective potential Wk(F
a) is readily obtained by in-

serting the approximations of (3.130) into the flow (3.126). The flow is evaluated for the
generic condensate background (3.77). The details can be found in Appendix B.3. Finally,
the effective potential Weff(F a) of Yang-Mills theory is obtained from the integrated flow.
We arrive at

Wk(F
a) =WkUV

(F a) +

∫ k

kUV

dk′

k′
∂t′Wk′(F

a) , (3.131)

where WkUV
is well approximated by the classical potential (3.79) for a large initial cutoff

scale kUV. Perturbation theory is valid for these scales, and the background field effective
action ΓkUV

[A] reduces to the classical Yang-Mills action of (3.19), augmented with a wave
function renormalisation ZA,kUV

. All other terms are suppressed by inverse powers of kUV.
This amounts to

WkUV
(F a) =

ZA,kUV

4 g2
s

F 2 =
F 2

16παs(kUV)
, (3.132)

where

αs(k) =
1

4π

g2
s

ZA,k
, with ZA,kUV

= 1 . (3.133)

Here, ZA,k is the background wave function ZA,k(p = 0), and g2
s is the running coupling

at the initial scale kUV.
The onset of this asymptotic UV regime for cutoff scales k & kon depends on the chosen

regulator or rather its shape. Roughly speaking, the sharper the regulator drops of in
momenta at about the cutoff scale, the larger is the onset scale kon. For the ghost and
gluon regulators underlying the computation of the propagators in [95], (B.11), we choose
an initial scale kUV = 20 GeV. This is safely in the asymptotic UV regime of the regulators
(B.11), as is also explicitly discussed in Appendix B.2. In summary, the computation is
initialised at

αs(kUV) = 0.184 with kUV = 20 GeV , (3.134)

and the running coupling data are also taken from [95], which ensures the self-consistency
of the computation.

In (3.133) we have used that the background wave function renormalisation ZA satisfies
Z−1
A = Z2

gs , a consequence of background gauge invariance. Moreover, RG consistency, see,
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Abbildung 3.3.: Effective Potential as a function of F 2 with a field strength pointing in
the t3-direction, (n3, n8) = (1, 0), and the cutoff scale k. The dashed line
singles out the absolute minimum of W (F ), see (3.135). The substructure
of the potential at cutoff scale k & 0.5 GeV is related to the regulator
used, see Appendix B.2. It leaves no trace in the potential for k → 0.

e.g., [58, 176], enforces (3.133): the flow of the initial effective action with an infinitesimal
change of the initial cutoff scale is given by the flow equation. Phrased in terms of the
effective potential in (3.131), this is the simple requirement that Wk and in particular
Weff = Wk is independent of kUV. Then, differentiation of (3.131) with respect to kUV

readily leads to (3.132). More details are deferred to Appendix B.2.

3.2.3.3. Results

The above derivation allows the numerical computation of the scale dependent effective
potential Wk(F

a) by performing the integration in (3.131) up to the respective RG scale
k. The result is shown in Figure 3.3, which shows the k-dependent effective potential as
a function of F 2, with a field strength pointing in the t3-direction: (n3, n8) = (1, 0). The
condensate 〈F 〉 is given by the solution of the equation of motion (EoM) for the effective
potential Weff(F a), given by

∂Weff(F a)

∂F

∣∣∣∣
F=〈F 〉

= 0 , (3.135)

for the generic field strengths of (3.82). The emergence of a non-trivial minimum is clearly
visible in the non-perturbative regime . 1 GeV, and its position indicated with the black
dashed line in Figure 3.3.

The gauge invariant information of the field strength Fµν is stored in its eigenvalues,
which do not change under (unitary) gauge transformations. In the present case, only the
F01 = F23 components and their antisymmetric counterparts are non-vanishing, and they
are proportional to a combination of the Cartan generators, see (3.82). The traces in the
flow equation are in the adjoint representation, and the six non-vanishing eigenvalues of
n3t3 + n8t8 are given by

τ
(1)
± = ±n3 , τ

(2)
± = ±

(1

2
n3 +

√
3

2
n8
)
, τ

(3)
± = ±

(1

2
n3 −

√
3

2
n8
)
, (3.136)
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for more details see, e.g., [177, 178]. The global, degenerate minima in Figure 3.1 are
located in the direction of the eigenvectors. The underlying Weyl symmetry maps the
different minima into each other, and is seen in Figure 3.1.

From (3.135) we determine the expectation values or rather saddle point position of
the condensate in both directions. We find that the expectation value in n3-direction is a
global minimum, while in the n8-direction the EoM singles out a saddle point. Both points
are indicated by the red and blue dots respectively in Figure 3.1. We determine the value
of the minimum by interpolation,

〈F 〉2λ3
= 0.98(11) GeV4 , (3.137)

where the error is obtained by a variation of 2% in the initial coupling αs. More details
on the RG consistency of this procedure are provided in Appendix B.2. Equation (3.137)
is the result of an SU(3) computation without the Nc rescaling.

As discussed below (3.82), the minimum in (3.137) is composed by the condensates of
both F 2 and FF̃ . Due to the CP-violating nature of an FF̃ condensate, its contribution to
our condensate value is tightly constrained by experimental data. Nonetheless, the value
quoted in (3.137) should be interpreted as an estimate colorless condensate 〈F 2〉.

The present first-principle Yang-Mills result (3.137) corroborates the phenomenological
estimates, i.e., 〈F 2〉 = 0.854(16) GeV4 [179], as already remarked in [148]. Indeed, the nor-
malisation procedure used here is similar to that in the phenomenological computation.
In contrast, both (3.137) and the phenomenological estimates disagree with the lattice
estimate 〈F 2〉 = 3.0(3) GeV4 [180]. The latter value is extracted from 〈G2〉 = 0.077(7)
in [180], and applying 〈F 2〉 = 4π2〈G2〉. In this context we remark that the total normali-
sation may differ, even though all procedures provide RG invariant results: for example,
one may multiply the respective result by the RG invariant ratio of couplings at different
momenta, αs(p

2
1)/αs(p

2
2), resulting in a global factor. This amounts to mapping the factor

αs from one momentum scale to another. While we lack a comprehensive interpretati-
on, we simply point out that the lattice definition involves αs at a low momentum scale,
conversely to the present procedure, and that used in phenomenological applications.

For comparison, we also provide the saddle point value,

〈F 〉2λ8
= 0.85(11) GeV4 , (3.138)

which may be used for a further error estimate of the relation between octet and colorless
condensates, as the octet condensate should be averaged over all color directions.

3.2.4. Gluon mass gap

The aim of this section is to use (3.119) and (3.137) for an estimate of the mass gap.
Evidently, to accomplish this, the determination of the wave function renormalisation
Zcond is required.

Inspecting the condensate generating kinetic term, see (3.87), one finds that its analogue
for the fluctuating gluon also contains contributions of the type

Zcond

2

∫

x
aaµ(∂2)2Π⊥µν(∂)aaν + . . . . (3.139)

Hence, the kinetic term for the field strength not only gives rise to the condensate, but also
overlaps with the gluon propagator. More specifically, as can be read off (3.139), the p4-
term of the fluctuation gluon two-point function carries the wave function renormalisation
Zcond as a prefactor, as made explicit in (3.117).
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Abbildung 3.4.: Gluon propagators from the fRG [95] in the scaling (red) and decoupling
(blue) scenario as well as lattice data from [128] with a continuum and
infinite volume extrapolation, see [181, 182]. Coloured/black markers show
the data. Solid lines show the respective fits from which the wave function
renormalisation Zcond (cf. (3.139)) is computed. The fit Ansätze are given
in (C.1). Here, we plot fits to the propagator data over the maximal fit
interval, see also Appendix C.1.1 for details.

Note that by means of (3.106a) and (3.107), the p4-term must be solely given by (3.139),
as ZA implicitly defined in (3.106b) encodes the full gluon propagator dressing function,
see (3.104). In terms of an operator product expansion, Zcond can be extracted by deter-
mining the p4-coefficient in the origin of the inverse input gluon propagator data from [95],
used in the calculation of the condensate effective potential in Section 3.2.3. This is done
via a fit, given by

Zfit(p
2) =Zas(p

2) + Zp2 + Zcond p
2 , (3.140)

where only the infrared asymptotes Zas(p
2) distinguish between scaling and decoupling

solutions (cf. (3.115) and (3.116)). A detailed discussion of the fitting procedure is provided
in Appendix C.1.1, and the respective fits in comparison to the propagator data from [95]
and the lattice data of [128] are depicted in Figure 3.4.

Equation (3.140) makes it apparent that scaling and decoupling solutions differ only in
the infrared, where the p4-term is subleading. We determine Zcond from the fRG scaling
solution of [95] as well as the lattice decoupling solution of [128]. Combining both estimates,
we arrive at the value for the wave function renormalisation

Zcond = 0.149(19) GeV−2 . (3.141)

Now we use the wave function renormalisation from (3.141), the condensate value 〈F 2〉
(3.100) as well as the saturation bound (3.100) for the averaging factor fav in the relation
for the effective gluon mass (3.119). This leads us to

mgap = 0.312(27) GeV . (3.142)

Equation (3.142) is the main result of the present study and provides an estimate for
the effective gluon mass in the Landau gauge. The relatively large uncertainty in (3.142)
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originates predominantly from the error for Zcond in (3.141). In particular, it does not
include a systematic error estimate, and is solely rooted in the small amount of data
points for the gluon propagator of [95] in the deep IR.

A large source for the systematic error is the current lack of a quantitative color average
as discussed in detail in Appendix A.1. Moreover, the field strength condensate (3.137)
also receives contributions from the topological condensate 〈FF̃ 〉, see the discussion there
and below (3.82). Accordingly, we simply note that inserting the literature value from phe-
nomenological 〈F 2〉 estimates [179] reduces the value in (3.142) to mgap = 0.291(19) GeV.
The same value is obtained by the use of the saddle point value (3.138), which we use as
an error estimate.

We can compare our result for the effective gluon mass (3.142) with that deduced from
the lattice data [128] with a continuum and infinite volume extrapolation, see [181, 182].
These data are shown in Figure 3.4, and the mass gap is given by the value of the inverse
lattice propagator in the origin. We find

m(lattice)
gap = 0.3536(11) GeV , (3.143)

which agrees within two standard deviations with our estimate (3.142).
A further direct test of the present results is provided by the comparison with the

effective gluon mass in (3.148) obtained via the Schwinger mechanism with mgap =
0.320(35) GeV after scale matching. This is an alternative approach for the dynamical
emergence of a gluon mass gap in the Landau gauge, for details see Section 3.2.5. The
results compare very well, which is to be expected as our propagator with the gluon mass
gap agrees well with the lattice results, as does the propagator obtained with the Schwinger
mechanism.

We emphasise that the estimate for the gluon mass gap depends on our choice for the
color averaging factor fav in (3.96): with (3.100) we have saturated the ’natural’ bound
cav = 1 in (3.98), leading to (3.101). In fact, the non-trivial compatibility of the present
results with that obtained from lattice propagators and via the Schwinger mechanism
corroborates the aforementioned choice.

We close this section with the remark that, while the effective gluon mass or rather the
gluon mass gap in the Landau or Landau-DeWitt gauge is a gauge variant quantity, its
size is directly related to physical scales such as the string tension and the confinement-
deconfinement temperature, see [138, 139]. Still, its value varies with the gauge as does
its precise relation to the physical scales and mechanisms. Consequently, the numerical
estimates of its value are rather disparate, ranging from a few hundred MeV up to 1
GeV, depending on the details of the approach and the definition employed, see, e.g.,
[115, 131, 142, 183–195]. Nonetheless, all these determinations convey information about
the same gauge invariant physical information, namely the Yang-Mills mass gap.

3.2.5. Schwinger mechanism

For comparison compare with the estimate based on condensation of Section 3.2.4, here we
present an alternative estimate for the gluon mass gap based on the Schwinger mechanism.

According to one of the main approaches put forth in a number of works [94, 196–199],
the generation of an effective gluon mass proceeds through the non-Abelian implementa-
tion of the well-known Schwinger mechanism [200–203]. Within this scenario, the funda-
mental vertices that enter the DSE of the gluon propagator contain longitudinally coupled
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Abbildung 3.5.: Left panel: Diagrammatic representation of (3.147). As opposed the usual
diagrammatic representation in this work, full propagators are marked by
white blobs. The full three-gluon vertex is denoted by an orange blob.
Right panel: the momentum dependence of C(q2) and C(q2) as obtained
in [196].

massless poles. Denoting the scalar part of the transverse component of the gluon propa-
gators as GA (corresponding to the inverse of the transverse component of (3.63)) which
eventually trigger the result G−1

A (0) := m2
gap.

In particular, the three-gluon vertex, IΓµαβ(q, r, p), and the ghost-gluon vertex, IΓµ(q, r, p),
are composed by two distinct types of terms, namely

IΓµαβ(q, r, p) = Γµαβ(q, r, p) +
qµ
q2
gαβC1(q, r, p) + · · · ,

IΓµ(q, r, p) = Γµ(r, p, q) +
qµ
q2
C(q, r, p) , (3.144)

where the terms Γµαβ(q, r, p) and Γµ(q, r, p) contain all pole-free contributions, which may
diverge at most logarithmically as q → 0 [204]. The ellipses in the first relation of (3.144)
denote terms proportional to rα/r

2 or pβ/p
2, which are annihilated when contracted with

the transverse (Landau gauge) gluon propagators inside the relevant diagrams of the DSEs,
or tensorial structures that are subleading in the limit q → 0.

A detailed analysis [205] based on the Slavnov-Taylor identities satisfied by the above
vertices reveals that

C1(0, r,−r) = C(0, r,−r) = 0 . (3.145)

Therefore, the Taylor expansion of C1(q, r, p) and C(q, r, p) around q = 0 yields

lim
q→0

C1(q, r, p) = 2(q · r)
[
∂C1(q, r, p)

∂p2

]

q=0︸ ︷︷ ︸
C(r2)

+O(q2) , (3.146)

lim
q→0

C(q, r, p) = 2(q · r)
[
∂C(q, r, p)

∂p2

]

q=0︸ ︷︷ ︸
C(r2)

+O(q2) .
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Thus, inserting the vertices of (3.144) into the DSE of the gluon propagator and taking
the limit q → 0, one arrives at [199]

m2
gap =

3CAαs
8π

∫ ∞

0
dy Z2

A(y) [6παsCAY (y)− 1] C(y) +
CAαs

8π

∫ ∞

0
dy Z2

c (y) C(y) , (3.147)

depicted in Figure 3.5. In the above formula, αs = g2
s/4π, defined at the renormalisation

point µ where the ingredients of (3.147) have been renormalised, within the momentum
subtraction (MOM) scheme; the renormalisation point has been chosen at µ = 4.3 GeV.
Moreover, CA is the Casimir eigenvalue of the adjoint representation with CA = Nc for
SU(N). Finally, ZA/c are the gluon/ghost dressing functions ZA/c(k

2) = k2GA/c(k
2), and

Y (k2) is an appropriately projected contribution of the subdiagram shown in Figure 3.5.

The functional form of the pole residues C(k2) and C(k2) is determined from the li-
near homogeneous system of coupled Bethe-Salpeter equations that they satisfy. This
system is derived from the corresponding DSEs governing the dynamics of IΓµαβ(q, r, p)
and IΓµ(q, r, p), in the limit q → 0; for further details, see [199].

The resulting eigenvalue problem yields non-trivial solutions for C(k2) and C(k2), for
a specific value of the coupling αs, which depends on the details of the ingredients that
enter the kernels of the Bethe-Salpeter system. It is important to emphasise that the
homogeneity and linearity of the equations leaves the overall scale of the corresponding
solutions undetermined. The scale setting is implemented by solving the vertex DSEs for
general kinematics, using as input the particular αs that was singled out by the eigenvalue
condition. Then, from the general 3-D solution the particular slice that corresponds to
C(k2) and C(k2) is identified, furnishing precisely the correctly rescaled version of the
solutions obtained from the system. The final form of the scale-fixed pole residues is
shown in Figure 3.5.

The next step consists in substituting into (3.147) the scale-fixed C(k2) and C(k2), and
use refined lattice data [182] for the gluon and ghost dressing functions, ZA(k2) and Zc(k

2).
The lattice propagators have been normalised at the point µ = 4.3 GeV, namely the highest
momentum scale available in this simulation. For the purpose of the comparison with the
results computed here we match the scales of the lattice data in [182] with that in [95],
which leads us to

m(Schwinger)
gap = 0.320(35) GeV . (3.148)

Equation (3.148) is in excellent agreement with the estimate mgap = 0.322(34) GeV ob-
tained here, see (3.142). Both compare rather favourably to the central lattice value

G
−1/2
A (0) = 0.354 GeV. The predominant source of error in the calculation using the

Schwinger mechanism originates from the uncertainties in the non-perturbative structure
of the pole-free vertex Γµαβ(q, r, p), which affects both, the determination of the functi-
on Y (k2) in (3.147), and the kernels of the Bethe-Salpeter equations that determine the
functions C(k2) and C(k2).

3.2.6. Conclusion

In this section, we explored the dynamical emergence of a mass gap in the Yang-Mills
correlation functions via the formation of color condensate in Section 3.2.4 and compared
to results from the non-Abelian Schwinger mechanism in Section 3.2.5.
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In the physical case with gauge group SU(3), a promising candidate for a condensate
generating the gluon mass gap is the octet condensate, see (3.71). Such a condensate may
be triggered by a Higgs-type mechanism in low energy QCD, similar and potentially related
to dynamical chiral symmetry breaking in QCD with the pion as pseudo-Goldstone bosons.
In Section 3.2.1, we have carried out a qualitative analysis within the fRG approach to QCD
by computing the minimum 〈F 〉 of the effective potential W (F a) in the three direction of
the Cartan subgroup. This non-vanishing field strength is related to non-vanishing color
condensates as discussed in Section 3.2.1.2. We have computed the effective potential
W(F a) for covariantly constant field strength which develops a non-trivial minimum if
quantum fluctuations are successively taken into account with the fRG flow, see Figure 3.1.
The condensate value (3.137) is in good agreement with phenomenological estimates, but
both disagree with lattice results. As discussed in section 3.2.3.3, this latter discrepancy
may be due to a difference in the normalisations employed.

The relation between the gluon condensate and the mass gap is given by (3.119). We
emphasise that the mass gap (3.119) triggered by the condensate depends on the RG
condition and naturally has the RG properties of a mass function: while the condensate
itself is independent of the RG condition, the condensate wave function is not and carries
the RG properties of the inverse gluon propagator. Consequently, the mass gap derived
from (3.119) has the RG scaling of the inverse gluon propagator, as it should. Accordingly,
for a comparison of the results for the mass gap obtained here with that in the literature
the potentially different RG schemes and conditions have to be taken into account. Most
fRG computations including the present one are done in MOM2, for a detailed discussion
see [171].

These considerations result in our estimate of the gluon mass gap,mgap = 0.312(27) GeV,
where our choice (3.96) for the color averaging factor fav saturates the ’natural’ bound,
see also the discussion below (3.99). This estimate compares well to the lattice estimate

m
(lattice)
gap = 0.3536(11) GeV. The latter value is obtained from the continuum and infini-

te volume extrapolation [181] of the lattice data in [128], after matching the momentum
scales and the renormalisation point.

In Section 3.2.5, we presented a result for the gluon mass gap obtained with the lon-
gitudinal Schwinger mechanism within the framework of the pinch technique [135]. This

analysis leads to m
(Schwinger)
gap = 0.320(35) GeV, which is in excellent agreement with the

estimate from condensation.
In summary, the findings of this section suggest that the gluon condensation as well as

the Schwinger mechanism work well as a mechanism for gluon mass generation. Beyond
improving the systematic error of the numerical estimates, on theoretical grounds it would
be desirable to establish a deeper connection between the Schwinger mechanism and the
condensate formation.
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4. The spectral functional
approach

In this chapter, we develop the spectral functional approach, a novel approach for the direct
computation of realtime correlation functions that is based on spectral representations.
The approach comes with the advantage that we can use dimensional regularisation for
the analytic computation of momentum integrals in fully numerical non-perturbative cal-
culations. Accordingly, the respective renormalisation scheme, spectral renormalisation, is
based on standard dimensional regularisation and respects the spacetime symmetries, in-
ternal symmetries such as chiral symmetry, and gauge symmetries of the theory at hand.
Clearly, this method is applicable to a broad range of theories, including non-Abelian gau-
ge theories, within a regularisation and renormalisation scheme which is manifestly gauge
invariant.

The spectral functional approach was put forward in [1], in the framework of Dyson-
Schwinger equations. Apart from the conceptual development, also a first application to a
scalar φ4-theory was included there. Reference [1] therefore represents the seminal work for
the spectral functional approach, which we present in its entirety in Section 4.1. The ex-
tension of the spectral functional approach to the functional renormalisation group (fRG)
is non-trivial, since common choices for the regulator violate causality and hence the
spectral representation. This problem can be circumvented by using a causal, mass-like
Callan-Symanzik (CS) regulator. However, the CS regulator comes with the loss of UV
finiteness in standard flow equations. In the manifestly finite CS flow equation, this is com-
pensated for by the counter term action, allowing for flowing renormalisation. Within this
framework, the spectral fRG was achieved in [6], which we discuss in detail in Section 4.2.
Like in the spectral DSE case, we accompany the conceptual advance with an application
to the scalar φ4-theory [9]. This allows for explicit comparison between the two different
spectral functional approaches discussed in this thesis.

Applications of the spectral functional approach to Yang-Mills theory [2, 5] and QCD [7]
are discussed in Chapter 5. For an application of the spectral fRG approach in quantum
gravity, see [206]. Other advances in realtime or complex plane calculations can be found,
e.g., for DSEs in [40–42, 207–211], for the fRG in [43–48, 212–231] and in Bethe-Salpeter
equations (BSEs) in [49, 50, 232–235], nPI methods [236–239] or on general grounds in [240,
241].
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4.1. Spectral Dyson-Schwinger equations

4.1. Spectral Dyson-Schwinger equations

This section presents the results of [1].

For the introduction to the spectral functional approach, we resort to the scalar φ4-theory.
This theory is a simple strongly correlated system and serves as a good benchmark for
new techniques before applying them more involved theories such as non-Abelian ones.
It is also interesting in its own right and has many applications as a model theory for
perturbative and non-perturbative phenomena.

The spectral functional approach centrally builds on spectral representations for corre-
lation functions, such as the Källén-Lehmann representation of the propagator. While the
spectral representations allow for analytic solution of the momentum loop integrals, they
introduce additional spectral integrals. A core feature of the spectral functional approach
is the spectral renormalisation scheme, providing consistent renormalisation of loop dia-
grams in functional equations in presence of spectral representations resp. integrals. We
discuss two subclasses of our novel scheme, which are spectral dimensional renormalisati-
on and spectral BPHZ renormalisation. The former renormalises the spectral integrals in
a purely dimensional manner, respecting all internal symmetries of the theory at hand.
In the BPHZ scheme, the spectral integrals are renormalised by a BPHZ-type subtracti-
on using counterterms. Since spectral renormalisation yields direct access to Minkowski
spacetime, it can be performed on-shell.

As a first application, we present results for the spectral function of the scalar field in
d = 2 + 1 dimensions. To that end, we apply the spectral functional approach to the fra-
mework of Dyson-Schwinger equations (DSE). Using its Källén-Lehmann representation,
we compute the spectral function from the gap equation of the propagator, including all
two-loop diagrams. In a first step, all vertices are approximated with the classical ones.
In a second step, we use a skeleton expansion of the DSE with a bubble resummation of
the s-channel four-point function. The non-perturbative s-channel spectral function of the
four-vertex is computed and used in the DSE.

The section is organised as follows. In Section 4.1.1, we introduce spectral renormalisa-
tion at the example of the Dyson-Schwinger approach along with the necessary technical
tools. In, Section 4.1.2, we apply the spectral functional approach to the scalar propagator
DSE, followed by the presentation of our results in Section 4.1.3. Finally, our conclusions
are presented in Section 4.1.4.

4.1.1. Spectral renormalisation

The general realtime renormalisation scheme we develop here aims at combining a practical
numerical implementation in non-perturbative applications while maintaining all under-
lying symmetries including gauge symmetries. This is achieved by utilising dimensional
regularisation, which respects all spacetime, internal and gauge symmetries of the theory
at hand. We also develop a BPHZ-type subtraction scheme which facilitates the analytical
computations significantly. If such a subtraction schemes does not violate any symmetries
in the theory at hand, it is the scheme of choice.

A practical implementation of dimensional regularisation requires an analytic momen-
tum structure of the propagators and vertices in the given loop integrals. While this
allows for its use in perturbation theory, non-perturbative applications, with their ne-
cessarily numerical computation of propagators and vertices, usually rely on ultraviolet
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momentum cutoffs. The latter are neither consistent with spacetime symmetries nor with
gauge symmetries. It is well-known that in gauge theories and supersymmetric theories
such a regularisation requires symmetry-breaking counterterms. This is not a conceptual
problem, but it typically triggers additional power-counting relevant terms that may lead
to additional fine-tuning tasks, see, e.g. [95, 166]. Moreover, the Wick rotation to Min-
kowski spacetimes is hampered by the deformation of the momentum integrals, which can
lead to additional poles and cuts in the integration contours.

The present renormalisation scheme achieves the requirement of analytic momentum in-
tegrals by using spectral representations of correlation functions. For the propagators this
is the Källén-Lehmann spectral representation, similar spectral representations also exist
for the vertices, though getting increasingly difficult. We call this renormalisation scheme
spectral renormalisation: after inserting the spectral representations in the loop integrals,
the momentum integrands take an analytic form. This form is well-suited for using dimen-
sional regularisation or related analytic computation techniques. The loop-momentum
integrations can be performed analytically, and we are left with spectral integrals. The
whole non-perturbative information is contained in the spectral functions of propagators
and vertices. In most non-perturbative applications the respective spectral integrals can
only be computed numerically.

The scheme can be practically applied to any divergent diagram that scales in the UV
with loop momentum to some natural power qm, m ∈ N (with m < nmax and nmax given
by the renormalisability constraint). This is always the case when using spectral repre-
sentations for all correlation functions, but also works for classical vertices. This will be
detailed in the present section within the example of the Dyson-Schwinger approach intro-
duced in the next section, Section 4.1.1.1. For classical vertices, all momentum integrals in
functional approaches, are of the standard perturbative form, but with different spectral
masses for all lines. Most of these integrals are known from perturbation theory results,
e.g., [242]. Note that this reparametrisation comes at the cost of spectral integrals for each
propagator. Spectral representations of vertices lead to further spectral integrals as well
as further classical propagators with spectral masses. In summary, in a spectral functional
approach all momentum integrals are perturbative. Hence, we can implement a symmetry-
preserving regularisation such as dimensional regularisation, leading to a renormalisation
scheme with symmetry-consistent counterterms.

A relevant example for this important symmetry-preserving property are gauge theories.
There, a momentum cutoff or standard subtraction scheme requires explicitly or implicit-
ly a mass counterterm for the gauge field in order to keep the renormalised gauge field
massless. In four dimensions this leads to a quadratic fine-tuning task instead of a loga-
rithmic one, for a detailed discussion see [95, 166]. Spectral renormalisation with spectral
regularisation removes the (explicit or implicit) necessity of a mass counterterm for the
gauge field, and hence the quadratic fine-tuning task.

After briefly introducing Dyson-Schwinger equations, Section 4.1.1.1, and the Källén-
Lehmann spectral representation, Section 4.1.1.2, we set up spectral renormalisation in
Section 4.1.1.3 (spectral dimensional renormalisation), and Section 4.1.1.4 (spectral BPHZ
renormalisation). Further examples and the discussion of the fully non-perturbative setup
can be found in Section 4.1.1.5 and Section 4.1.1.6. The explicit example used for demons-
trating the properties and computational details of the spectral renormalisation scheme is
the gap equation for scalar φ4- and φ3-theories.
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Abbildung 4.1.: DSE of the two-point function for a general background field φ 6= 0. The
vacuum polarisation and squint diagrams are proportional to S(3)[φ] ∝ φ.
They vanish for φ = 0, where the standard form with tadpole and sunset
diagrams is obtained. The notation is given in Figure 2.1.

4.1.1.1. Dyson-Schwinger equations

For our explicit example of a φ4-theory, the classical action is given by,

S[ϕ] =

∫
ddx

[
1

2
(∂µϕ)2 +

m2
φ,0

2
ϕ2 +

λφ,0
4!

ϕ4

]
, (4.1)

where ϕ refers to the full fluctuating quantum field. The classical action (4.1) depends
on two parameters or couplings, the bare four-point coupling λφ,0 and the bare mass
parameter mφ,0. The third parameter required for renormalisation, the wave function
renormalisation Zφ can be scaled out. This is conveniently done by setting it to unity at
the renormalisation scale.

The underlying Z2-symmetry of the theory, ϕ→ −ϕ implies the same symmetry for the
effective action under transformations of the mean field, φ → −φ. Accordingly, the odd
vertices vanish at vanishing mean field: Γ(2n+1)[φ = 0] ≡ 0. Moreover, restricting ourselves
to constant background fields φc, we can formally expand the three-point function in
powers of the field,

Γ(3)[φc](p1, p2, p3) = φc

[
Γ(4)(p1, p2, p3, 0) +O(φ2

c)

]
, (4.2)

due to the odd vertices vanishing at the expansion point φ = 0. In (4.2) we have used
the Fourier transform φ̃c(p) = (2π)dφcδ(p) of the constant field. We have also introduced
Γ(n)(p1, p2, p3, 0, ..., 0), the n-point functions at a vanishing background and n−3 vanishing
momenta.

Since the background field in (4.2) is constant, the propagator is diagonal in momentum
space and follows from the 1PI two-point function by the simplified inverse relation (2.26).
The DSE for the two-point function of the scalar theory defined by (2.1) is obtained by
taking two functional derivatives w.r.t. to the field of the master DSE (2.30), see Section 2.2
for an introduction to Dyson-Schwinger equations. We depict the resulting diagrammatic
form in Figure 4.1. The relation (4.2) gives rise to the polarisation and squint diagram for
φc 6= 0, which are absent for φc = 0. In the broken phase the equation of motion (EoM) φ0

for constant fields is solved for a non-vanishing expectation value of the field, i.e. φ0 6= 0.
Accordingly, if evaluating the DSEs for correlation functions on the EoM, these diagrams
are present.
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4.1.1.2. Källén-Lehmann spectral representation

Using the Källén-Lehmann spectral representation [51, 52], the propagator can be recast
in terms of its spectral function ρ,

G(p0, ~p) =

∫ ∞

0

dλ

π

λ ρ(λ, |~p|)
p2

0 + λ2
. (4.3)

For asymptotic states, the spectral function can be understood as a probability density
for the transition to an excited state with energy λ. In this way, the spectral function acts
as a linear response function of the two-point correlator, encoding the energy spectrum
of the theory. The existence of a spectral representation imposes tight restrictions on the
analytic structure of the propagator. In turn, the Euclidean propagator also constrains the
spectral function; for a rather non-trivial example for the latter constraints, see [243].

From a complex analysis perspective, the spectral function naturally arises as the set of
non-analyticities of the propagator. This results into the following inverse relation between
spectral function and the retarded propagator,

ρ(ω, |~p|) = 2 Im G(−iω+, |~p|) , (4.4)

where ω+ denotes the retarded limit,

ω+ = ω + i0+ , (4.5)

and ω is the realtime zero momentum component. This formulation allows us to work only
with the frequency argument and set the spatial momentum to zero in practice, since the
full phase-space can be restored from Lorentz invariance. Hence, for the remainder of this
work, |~p| will be dropped.

The existence of a spectral representation restricts all non-analyticities of the propagator
to lie on the real momentum axis, as manifest in (4.3) and (4.4). This crucial condition
as well as the generic structure in the complex plane already mentioned above allow us to
recast the spectral function into the form

ρ(λ) =
π

λ

∑

i

Zi δ(λ−mi) + ρ̃(λ) . (4.6)

The spectral function is split into a set of δ-functions and a continuous scattering part ρ̃,
arising from branch cuts in the complex plane of the propagator. For a classical propagator
the spectral function reduces to one mass-shell δ-function with Z1 = 1. There are no further
poles, Zi>1 = 0, and the scattering part is absent, ρ̃ ≡ 0. Further details can be found,
e.g., in [68].

In the scalar φ4-theory, the spectral function of the scalar field is that of an asymptotic
state, and hence is positive semi-definite and has the interpretation of a probability density.
Therefore, it is convenient to normalise its integrated weight to unity within an appropriate
renormalisation scheme. Within this scheme we have the sum rule,

∫

λ
λ ρ(λ) = 1 with

∫

λ
≡
∫ ∞

0

dλ

π
, (4.7)

which implies Zi ≤ 1. The spectral weight is distributed between poles and cuts, and in
the presence of scattering states the weight of the poles is less than one.
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∫λ ∫q
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F̃(p) := ∫q ∫λ
f(q, λ)
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finite 
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∫λ ∫q
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renormalization 
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Performed integral
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ε → 0
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dim. reg.

Abbildung 4.2.: Schematic illustration of the spectral renormalisation scheme. The functi-
on f is some arbitrary divergent integrand. The dependence on the exter-
nal momentum p is suppressed. The upper two boxes have to be under-
stood as finite by dimensional regularisation, but divergent in the limit
ε→ 0 in d−ε dimensions. In a first step, the momentum integrals are ana-
lytically evaluated via dimensional regularisation. Subsequently, the spec-
tral integrals are renormalised via spectral renormalisation, either within
the dimensional- (Section 4.1.1.3) or BPHZ approach (Section 4.1.1.4).

4.1.1.3. Spectral dimensional renormalisation

Next, we discuss the spectral renormalisation scheme, which is fully based on dimensional
regularisation. To that end, we employ the KL representation (4.3) for all propagators
in the loop diagrams of a given functional equation, such as the DSE for the scalar two-
point function, see Figure 4.1. Dimensional regularisation in d − ε dimensions renders
the loop diagrams finite, and we can swap orders of the initially outer momentum and
inner spectral integrals (cf. upper part of Figure 4.2). This allows us to first perform the
momentum integrals analytically. We are left with finite spectral integrals at finite ε > 0,
that in general have to be done numerically since the spectral functions may only be known
numerically.

Generally, the numerical integration of the spectral integrals can be performed for finite
ε, and in gauge theories full manifest gauge-consistency of spectral renormalisation requires
that the limit ε→ 0 is taken only after performing all integrals. However, it is convenient for
the numerical performance to do the spectral integration at ε = 0. The same holds for the
access to the analytic momentum structure required for extracting Minkowski properties.
In this case, for the limit ε→ 0 we have to set up a consistent renormalisation procedure
before performing the spectral integrals, which is worked out in detail in Section 4.1.1.4.
In particular, it is not sufficient to only remove the 1/ε-divergences that originate in the
momentum integrations, as the spectral integrations lead to further 1/ε-terms. This relates
to the swapping of the integration order and performing the limit ε→ 0 before evaluating
all integrals.
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This section is dedicated to the fully gauge consistent renormalisation scheme we call
spectral dimensional renormalisation. In this scheme, the divergent parts of the spectral
integrals are performed analytically before taking the limit ε→ 0. A simple example is the
tadpole contribution to the gap equation in Figure 4.1 in d = 3 dimensions, which comes
with a momentum-independent linearly divergent term. This example is also relevant for
our later computation in Section 4.1.2 and Section 4.1.3. After the momentum integration
is performed, we arrive at a finite result proportional to

∫ ∞

0
dλλ

µ2ελ1−2ε

(λ2 +m2)
= −π

2

1

cos
(
πε
2

) m
(
µ2

m2

)ε
. (4.8)

In (4.8) we have used a trial spectral function that decays for large spectral values λ
according to its momentum or spectral dimension,

ρtrial(λ,m) =
1

λ2 +m2
, (4.9)

with a positive mass m > 0. The trial spectral function in (4.9) approximates the cor-
rect leading ultraviolet behaviour, if we neglect logarithmic corrections. For large spectral
values, the UV-asymptotic of the spectral function can be extracted from the leading mo-
mentum dependence of the respective propagator. In the present example, the latter is
assumed to decay quadratically on its branch cut on the real momentum axis.

The finiteness of the result of the momentum integration used on the left-hand side of
(4.8) also points at a specific property of dimensional regularisation: in odd dimensions,
d = 2n + 1, it already removes all momentum divergences. In even dimensions, d = 2n,
it removes subclasses of divergent ones, a prominent being the (one-loop) tadpole in a
massless theory such as a gauge theory.

If we had put ε = 0 before the integration, (4.8) simply is (linearly) divergent. This is the
price to pay for the swapping of integration orders: the divergences are not fully covered
by the momentum integrals any more. The example also entails that in odd dimensions
including our explicit computation in the φ4-theory in d = 3, all divergences come via the
spectral integrals.

In spectral dimensional renormalisation, spectral singularities in even dimensions show
up as 1/ε-terms. In dimensional regularisation in perturbation theory, these divergences are
typically removed recursively by introduction of appropriate counterterms. This procedure
is applied in spectral dimensional renormalisation too, while keeping a finite ε as well as
isolating analytically the singular part of the spectral integrals with

ρ(λ) = ρIR(λ) + ρUV,an(λ) . (4.10)

In (4.10), the numerical ’infrared’ part ρIR(λ) decays sufficiently fast for large spectral
values and renders the respective spectral integrals finite. In turn, the ultraviolet part
ρUV,an(λ) carries the ultraviolet asymptotics analytically. Therefore, the respective spectral
integrals can be treated analytically with dimensional regularisation as done in (4.8). With
(4.9) we use the IR-UV–split

ρ(λ) = ρIR(λ, k) + ρtrial(λ, k) . (4.11)

We also emphasise that the theory does not depend on the mass parameter k that re-
gularises (in the infrared) the UV-part of the spectral function. In particular, we have
∂kρ(λ) ≡ 0, which entails the k-dependence of the infrared part of the spectral function.
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The (leading) ultraviolet behaviour of the spectral function at large spectral values is
governed by ρUV,an = ρtrial and the infrared part decays with the fourth power of the
spectral value,

lim
λ→∞

ρIR(λ→∞) ∝ 1

λ4
(4.12)

Inserting the split (4.11) into (4.8) leads us to the final finite result with ε = 0,

∫ ∞

0
dλµ2ελ2−ερ(λ) =

∫ ∞

0
dλλ2ρIR(λ)− π

2
k , (4.13)

with a finite (in general numerical) integral over the infrared part of the spectral function
due to (4.12). The numerical convergence of this integral can be further improved syste-
matically, if the UV-part ρUV(λ) also includes sub-leading UV-terms of the full spectral
function.

The finite result of (4.13) was obtained without the introduction of any counterterms
possibly breaking internal symmetries. Since the systematics of this example are general, it
can be applied to all divergences of general diagrams. As the demonstrated spectral dimen-
sional renormalisation procedure is entirely based on dimensional regularisation and the
use of spectral representation, it preserves all symmetries of the theory at hand. Especially
for the case of gauge theories it is manifestly gauge invariant or rather gauge consistent.
For example, it reflects the peculiarity of dimensional regularisation that integrals wi-
thout any external scale vanish identically. For k = 0 the integral over the UV-part of the
spectral function vanishes, and we are left with the finite IR-part. Accordingly, no mass
counterterms are needed in a massless theory such as a gauge theory.

Figure 4.2 illustrates the general renormalisation workflow, including spectral renorma-
lisation. The schematic representation holds for the case of spectral dimensional renor-
malisation as well as for the subtraction-based and more universal approach of spectral
BPHZ renormalisation, which is introduced in the following.

4.1.1.4. Spectral BPHZ renormalisation

In fully symmetry-consistent spectral dimensional renormalisation as described in Secti-
on 4.1.1.3, one has to perform analytic spectral integrals with dimensional regularisation
on top of the momentum integrations. Already the latter are more complicated than in
standard perturbation theory at the same order, since the spectral representations lead
to different masses for each line. While the momentum integration has to be necessarily
analytic in order to access Euclidean and Minkowski spacetime, this is not necessary for
the spectral integration, whose non-perturbative infrared part has to be done numerically
in most cases anyway.

The need for additional analytic computations of spectral integrals can be circumvented
by performing subtractions on the spectral integrals which render the spectral integrals
finite. This can be done by subtracting a Taylor expansion of the spectral integrand in
momenta according to the BPHZ scheme with Dyson’s formula. The procedure is called
spectral BPHZ renormalisation. We shall see, that its workflow is still described within
Figure 4.2. It is the last ’spectral’ step from the bottom right to the bottom left which is
changed by moving from spectral dimensional to the spectral BPHZ procedure. We empha-
sise that the underlying BPHZ regularisation in general does not preserve all symmetries
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− (p2 − μ2) [ ∂p2
p2=μ2

]
p2=μ2

spectral

renormalisation
−spectral BPHZ

Abbildung 4.3.: Schematic spectral BPHZ renormalisation procedure at the example of
the one-loop scalar propagator DSE for the φ3-theory. The diagram is
quadratically divergent in d = 6. First, the loop momentum divergences
are discarded by the usual momentum renormalisation part of dimensional
regularisation (i.e., implicitly assumed on the LHS). By introducing mass
and wave function counterterms, the diagram is subtracted by the first two
terms of its own Taylor expansion around the RG scale µ. This cancels
the leading order quadratic and subleading logarithmic divergences of the
spectral integrals.

of a given theory and in particular breaks gauge symmetry. This is not a conceptual
problem, as the counterterms also break gauge invariance and the final result is gauge
consistent, see, e.g. [244]. However, in numerical applications to gauge theories the gauge
consistent spectral dimensional renormalisation is arguably worth its price, in particular
for investigations of the Gribov problem and the confinement mechanism.

In the present example of a scalar φ4-theory, the BPHZ scheme is consistent with both
spacetime and the internal Z2-symmetry. We will therefore utilise it for explicit computa-
tion. We introduce and explain the setup within a specific example, the sunset graph in
the gap equation of the scalar φ4-theory in d dimensions, see Figure 4.1. This diagram also
carries sub-divergences while still being relatively simple. In Section 4.1.1.5 we additionally
analyse an explicit one-loop example.

Due to the spectral representation of the sunset graph, the fully perturbative momentum
integrals including the subtraction can be solved analytically in both d = 3 and d = 4:

In d = 4 the sunset graph is superficially quadratically divergent with logarithmic
divergences in the sub-diagrams. The respective spectral power counting follows from the
momentum dimension of the spectral value, [λ] = 1, where [O] counts the momentum
dimension of O. In particular, that of the spectral function is [ρ(λ)] = −2. This can
be read off from the classical spectral function of a field with mass m with ρcl(λ) =
2πδ(λ2 −m2). Trivial examples for such a power counting of spectral integrals are (4.8)
and the propagator itself with [

∫
dλλρ(λ))/(ω2 + λ2)] = −2. We subtract the zeroth

and first order of the Taylor expansion in external momentum about p2 = µ2 as well as
the zeroth term in Taylor expansions about the external momenta of the subdiagrams.
These counterterms contribute to the mass renormalisation as well as the wave function
renormalisation of the scalar field. The subtractions remove the leading and also the next-
to-leading order contributions in the spectral parameters λi in the integrand of the spectral
integral for λi → ∞. Consequently, the integrand decays faster by two powers of λ2

i and
the spectral integrals over λi with i = 1, 2, 3 are UV-finite.

In d = 3 there are no divergent subdiagrams and the sunset is superficially logarithmical-
ly divergent. We only subtract the zeroth order of the Taylor expansion, which contributes
to the mass renormalisation.

We are left with finite spectral integrations for the sunset graph in d = 3, 4 at ε = 0.
The integrand depends analytically on the external momentum, the spectral values λi
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with i = 1, 2, 3 of the three internal lines as well the respective spectral functions ρ(λi).
In general, the remaining spectral integrals have to be performed numerically.

In summary, spectral BPHZ renormalisation, as described in detail above, has the same
workflow as in the last section and is depicted in Figure 4.2: First we apply dimensio-
nal regularisation to the momentum integrations and swap the order of momentum and
spectral integrals. Then we perform the momentum integration analytically, right bottom
corner in Figure 4.2. Finally, we apply the spectral BPHZ step: the Taylor expansion in
all momenta about the renormalisation scale µ, which allows us to take the limit ε → 0.
This leaves us with the task to perform the finite spectral integrals either analytically or
numerically, depending on the application.

4.1.1.5. One-loop example: φ3-theory in d = 6

For further illustration we now apply spectral BPHZ renormalisation within the simple
perturbative example of the one-loop DSE for the two-point function of the (renormali-
sable) φ3-theory in d = 6 dimensions with a coupling g/(3!)

∫
x φ

3. The advantage of this
example is that already at one-loop it requires both a mass renormalisation and a wave
function renormalisation. Hence, both can be discussed within a simple one-loop com-
putation. In contrast, in the φ4-theory the wave function renormalisation only arises at
two-loop from the sunset diagram (even for φc 6= 0).

In the φ3-theory, the only diagrams in the gap equation Figure 4.1 are the polarisation
diagram and the squint diagram. At one loop we only have to consider the polarisation
diagram. In d = 6, this diagram is quadratically divergent. The respective DSE for the
(inverse) propagator reads schematically,

Γ(2)(p) = Zφ,0(µ)
(
p2 +m2

φ,0(µ)
)

+ g2

∫

λ1,λ2

λ1λ2 ρ(λ1)ρ(λ2)F (p, µ;λ1, λ2) . (4.14)

The integrand F results from the momentum integration and depends on the renormalisa-
tion group scale µ due to dimensional regularisation. Zφ,0 is the wave function renormali-
sation and m2

φ,0 is the bare mass squared. Both bare parameters contain counterterms that

remove the divergences in the diagrams within an expansion about p2 = µ2: the constant
quadratic divergence and the logarithmic divergence proportional to p2. This amounts to
the choices

Zφ,0(µ) = 1− g2

∫

λ1,λ2

λ1λ2 ρ(λ1)ρ(λ2)
∂F (p, µ;λ1, λ2)

∂p2

∣∣∣∣
p2=µ2

,

Zφ,0(µ)m2
φ,0(µ) =m2

φ − g2

∫

λ1,λ2

λ1λ2 ρ(λ1)ρ(λ2)

×
[
F (p, µ;λ1, λ2)− µ2 ∂F (p, µ;λ1, λ2)

∂p2

∣∣∣∣
p2=µ2

]
, (4.15)

for wave function and mass renormalisation respectively. The counterterms proportional
to g2 in (4.15) provide the first two terms of the Taylor expansion about p2 = µ2 of the
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diagram. To see this, we insert (4.15) in the DSE (4.14),

Γ(2)(p) = p2 +m2
φ + g2

∫

λ1,λ2

λ1λ2 ρ(λ1)ρ(λ2)

×
[
F (p, µ;λ1, λ2)− F (µ, µ;λ1, λ2)−

(
p2 − µ2

) ∂F (p, µ;λ1, λ2)

∂p2

∣∣∣∣
p2=µ2

]
.

(4.16)

Equation (4.16) is depicted in Figure 4.3. Accordingly, (4.15) implements the standard
renormalisation conditions, that the quantum corrections vanish at p2 = µ2,

Γ(2)(p2 = µ2) = Zφ(µ2 +m2
φ)

∂p2Γ(2)(p2 = µ2) = Zφ , (4.17)

for the two-point function with Zφ = 1. In the present φ3-example these two renormalisa-
tion conditions are complemented by that for the coupling g, which is also logarithmically
divergent in d = 6. As we have introduced this example only for illustration of spectral
BPHZ renormalisation, we refrain from discussing this any further. Mode details on the
spectral renormalisation conditions can be found in Section 4.1.2.2.

Continuing with the discussion of spectral renormalisation for the two-point function,
the subtraction of F in (4.16) by its own Taylor expansion at p2 = µ2 leads to finite
spectral integrals. We emphasise that this is not achieved by simply subtracting the 1/ε-
terms before performing the spectral integration: Since F scales with λ2 for large λ with
λ = λ1, λ2, the spectral integrals in (4.14) are quadratically divergent. After spectral
BPHZ renormalisation however, the subtracted scalar integrand in (4.16) scales as 1/λ2.
The subtraction scheme cancels the leading and subleading contributions in λ to F and
leads to finite spectral integrals.

4.1.1.6. Non-perturbative spectral renormalisation

The discussions of the last three sections, Section 4.1.1.3 to Section 4.1.1.5, entail that
spectral renormalisation leads to two different parts in the counterterms: the first part
is related to the momentum divergences and has all the properties of the counterterms
in dimensional regularisation. The second part comes from the spectral divergences. The
counterterms in spectral dimensional renormalisation respects all symmetries including
gauge symmetries and is tantamount to dimensional regularisation and renormalisation.
The counterterms in spectral BPHZ renormalisation lack the full symmetries. In particular
in gauge theories the BPHZ counterterms are necessarily not gauge invariant, precisely for
restoring gauge consistency of the full renormalised result.

Importantly, in both spectral renormalisation schemes, the spectral counterterms follow
the same recursive relations known from standard perturbation theory. This makes it a
consistent renormalisation scheme to all orders of perturbation theory.

In non-perturbative applications of the present spectral approach, the non-perturbative
information is solely present in the spectral functions of propagators and vertices. Mo-
reover, within the DSE we only deal with one- and two-loop diagrams with n vertices
derived from the master DSE in (2.30), see also Figure 2.2. We have one classical (bare)
vertex and n− 1 full vertices as well as full propagators. If recursively written in terms of
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loops, both, the finite full vertices and propagators, carry subtractions of the divergences
in these diagrams that render in particular subdiagrams finite. The leftover subtractions
from these re-distribution renormalise the one or two explicit loops in the DSE diagrams.

In summary, non-perturbative spectral renormalisation only concerns the counterterms
for the explicit loops in the DSE, while the rest of the renormalisation is carried by the
finite full vertices and propagators that have to obey the renormalisation conditions. This
is a consistent numerical non-perturbative renormalisation scheme.

4.1.2. φ4-theory in 2+1 dimensions

The φ4-theory in 2 + 1 dimensions is super-renormalisable, and the initial two renorma-
lisation conditions for the two-point function in Figure 4.1 reduce to the first one for
the mass. Moreover, we do not need to renormalise the coupling. This entails that in
the DSE for the scalar two-point function spectral BPHZ renormalisation as discussed
in Section 4.1.1.4 simply amounts to subtracting the zeroth order term in the Taylor ex-
pansion about p2 = µ2. After the momentum integrals are computed analytically within
dimensional regularisation, we are left with the finite spectral integrals.

After completing renormalisation, the iterative solution procedure in the DSE is briefly
described as follows: With a given input spectral function the renormalised DSE is evalua-
ted in Minkowski spacetime. The input spectral function is either the initial guess or the
result of the last iteration step. Then, an updated retarded two-point function is computed
from the result. This allows us to extract an updated spectral function, which is fed back
as input into the next iteration step. In this section we discuss the calculation sketched
above in a detailed way, step by step.

4.1.2.1. Momentum integration and spectral renormalisation

The DSE can be expressed as the sum of the bare two-point function and the loop diagrams
Dj ,

Γ(2)(p) = p2 +m2
φ,0 +

∑

{j}
Dj(p) , (4.18)

with j = tad,pol,sun,squint. In (4.18) we have used that the φ4-theory in d = 3 is super-
renormalisable and the only divergent term is the mass term. From now on, we drop the µ-
dependence of the spectral integrands for notational simplicity. With the Källén-Lehmann
spectral representation for the full propagator (4.3), as well as momentum-independent
vertices, an arbitrary loop diagram Dj in the DSE takes the form,

Dj(p) = gj

Nj∏

i

(∫

λi

λiρ(λi)

)
Ij(p;λ1, ..., λNj ) . (4.19)

The prefactors gj are the products of the combinatorial prefactors in the DSE and the
vertices of the corresponding diagram. In Table A.1 we provide the prefactors for the
Minkowski version of (4.19), see (4.22).

Dj has Nj internal lines, each of them coming with one spectral integral and a correspon-
ding spectral function. The Ij are nothing but a product of (momentum) loop integrals
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over Nj classical propagators with different spectral masses λi,

Ij(p;λ1, . . . , λNj ) =

N loops
j∏

k

∫
d3qk
(2π)3

Nj∏

i

1

λ2
i + l2i

. (4.20)

In (4.20) the momenta li are linear combinations of the loop-momenta qk and the external

momentum p. The number of loops is denoted by N loops
j in (4.20). The analytic solutions

of these integrals in d = 3 are known from perturbation theory, e.g. [242], and can be used
here.

With the analytic expressions for Ij , we apply spectral BPHZ renormalisation, c.f. Sec-
tion 4.1.1.4. Please note that only the logarithmically divergent sunset diagram Dsun ex-
plicitly requires renormalisation, since the bare tadpole simply can be absorbed in the
definition of the bare mass squared. To cancel the logarithmic divergence of this diagram,
within the BPHZ approach we subtract the zeroth order term in the Taylor expansion of
Dsun about p2 = µ2. The renormalised diagram reads

Dren
sun(ω) = gsun

∫

λ1,λ2

λ1λ2ρ(λ1)ρ(λ2)
[
Isun(ω;λ1, λ2)− Isun(µ;λ1, λ2)

]
. (4.21)

4.1.2.2. Evaluation at real frequencies

The Ij(p) are evaluated in Minkowski spacetime for the retarded two-point function. This
is done by parametrising the complex (Euclidean) frequency as p0 = −iω+, see (4.5) and
explicitly carrying out the limiting procedure. In a slight abuse of notation we denote the
continued expression as Ij(ω). They are given explicitly in Appendix B.4. The DSE in
Minkowski spacetime reads

Γ(2)(ω) = − ω2 +m2
φ,0 +

∑

{j}
gj

Nj∏

i

(∫

λi

λiρ(λi)

)
Ij(ω, µ;λ1, ..., λNj ) . (4.22)

The prefactors of the diagrams of the DSE (4.22) with the classical vertex approximation
and the skeleton expansion can be found in Table A.1. It can be deduced from the analytic
structure of the spectral integrands Ij(ω), that the support in ω of the imaginary part
of the polarisation diagram starts at ω = λ1 + λ2, as expected. Similarly, we find that
the support of the sunset diagram starts at ω = λ1 + λ2 + λ3. Hence, the support of the
expressions in the two-point function is given by multiples of the pole mass. This shows
how the Cutkosky cutting rules can be easily extracted from the present spectral approach.

It is clear from (4.22) that the spectral renormalisation approach allows for the imple-
mentation of physical on-shell renormalisation conditions. This is in contrast to Euclidean
computations, where on-shell renormalisation can only be implemented for massless modes.
On-shell renormalisation has the advantage that it minimises the quantum corrections in
a study of the resonance spectrum of a given theory. The renormalisation conditions (4.17)
for a φ4-theory in d = 3 dimensions reduce to

Γ(2)(p2 = −m2
pole) = 0 , (4.23)

since both the coupling and the kinetic term do not require renormalisation. The triviality
of the wave function renormalisation or rather the vanishing anomalous dimension entail,
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1. Make initial guess ρ0

2. Calculate  via DSEΓ(2)

3. Compute  from propagatorρ

Iterate  
until  
convergence 

Abbildung 4.4.: Iteration procedure for computing the spectral function. With the initial
guess ρ0 for the spectral function, the two-point function Γ(2) is computed
via the DSE. The resulting spectral function is fed back into the DSE for
the two-point function. This procedure is iterated until the convergence
for the spectral function is reached.

that the leading large momentum behaviour of the propagator is given by 1/p2. Accor-
dingly, the canonical commutation relations of the scalar field are unchanged, as is the
normalisation of dynamical states. The sum rule (4.7) is hence formally always satisfied
in 2 + 1 dimensions, and thus provides a non-trivially benchmark test of our results.

4.1.2.3. Spectral integration and iteration

The remaining multidimensional integrals over the spectral parameters λi in (4.22) are
solved numerically. Details on the numerical part of the calculation can be found in Ap-
pendix C.2. Subsequently, the spectral function is extracted from the updated two-point
function via (4.4) and fed back into the DSE. In this way, the DSE is solved iteratively by
successively integrating the right-hand side of the DSE with the updated spectral func-
tion from the last step until the solution converges, comp. Figure 4.4. Note that all the
dynamical information is stored in the spectral functions, and the integrands Ij do not
change within the iterations. Hence, each iteration only involves the numerical solution of
the respective multidimensional spectral integral of each diagram.

More details on the convergence test can be found in Appendix C.2. There, the rapid
convergence is illustrated at an exemplary case, see in particular Figure C.2.

As a starting point for the iterative procedure, an initial guess for the spectral function
has to be made that is close enough to the solution (in the attraction basin of the solution
in terms of the iteration). In the present case with the on-shell renormalisation (4.23)
the spectral function of the classical theory carries already the correct pole position by
definition. In general this will improve the convergence properties of the iteration. This
is yet another property that singles out on-shell renormalisation. The classical spectral
function is given by,

ρ0(ω) = δ(ω2 −m2
pole)

=
π

mpole

[
δ(ω −mpole)− δ(ω +mpole)

]
. (4.24)

The delta-function peaks are located at the physical pole mass squared, and the delta-
functions at ±mpole, are related by anti-symmetry. With the initial guess in (4.24), the

64



4.1. Spectral Dyson-Schwinger equations

= + 1
2 − 1

2 + 1
2− 1

6

Abbildung 4.5.: DSE of the two-point function with the classical vertex approximation
as used in Section 4.1.3.1. The tadpole can be absorbed into the mass
renormalisation in the bare inverse propagator, for more details can be
found in the main text. The two-loop terms constitute vertex corrections
of the classical vertices in the one-loop diagrams. The DSE is not two-
loop complete as further vertex corrections have been dropped due to the
classical vertex approximation. The notation is defined in Figure 2.1.

spectral integrals in the propagator DSE (4.22) reduce to the perturbative expressions.
Further iterations then lead to resummation of the respective diagram classes.

The branch cuts of the loop corrections generate a continuous tail in the spectral function
when inserting the initial spectral function ρ0 on the right-hand side of the DSE. This
entails via the sum rule in (4.7), that the residue of the mass pole decreases to Z < 1 due
to the positive weight of the tail. The mass pole residue of the updated spectral function
is obtained via the relation

Z = − 2mpole

∂ωΓ(2)(ω)

∣∣∣∣
ω=mpole

. (4.25)

The counterterm for the mass is conveniently extracted from Re Γ(2)(ω = mpole) = 0.

The three-point function Γ(3)[φc] in the gap equation is evaluated at the constant field
value φc = φ0, which solves the equation of motion, ∂φVeff[φ0] = 0, at each step of the
iteration. For fields in the vicinity of φ0 we can expand the effective potential in powers
of φ2 − φ2

0 in the broken phase, leading to,

Veff[φ] =
∞∑

n=2

vn
2n!

(
φ2 − φ2

0

)n
. (4.26)

Accordingly, the two-, three- and four-point functions at vanishing momentum are given
by,

Γ(2)[φ0] =
1

3
v2 φ

2
0 ,

Γ(3)[φ0] = v2 φ0

(
1 +

1

15

v3

v2
φ2

0

)
,

Γ(4)[φ0] = v2

(
1 +

1

5

v3

v2
φ2

0 +
1

105

v4

v2
φ4

0

)
. (4.27)

Dropping the higher order terms O
(
(φ2−φ2

0)3
)

in (4.26), the terms in parentheses of (4.27)
all reduce to unity. We introduce the curvature mass m2

cur(mpole, λφ) as the value of the
two-point function at vanishing momentum, i.e.,

m2
cur(mpole, λφ) ≡ Γ(2)[φ0](p = 0) . (4.28)
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Note that mcur is determined by the two free parameters of the theory, mpole and λφ. It
is no new parameter. Using (4.28) in (4.27) and dropping the higher-order contributions,
the three- and four-point functions at vanishing momentum are given by,

Γ(3)[φ0] =
√

3 v2mcur ,

Γ(4)[φ0] = v2 . (4.29)

v2 is nothing but the full four-vertex at vanishing momentum, v2 = Γ(4)[φ0](p = 0). For
a general, momentum dependent four-point function in the s-channel, we find for the
momentum-dependent three-point function,

Γ(3)(p) = Γ(4)(p)

√
3

v2
mcur , (4.30)

dropping the φ0-dependence of the correlators from now on. Note that by choosing Γ(3)

consistently with Γ(4) as done above, the three-point function becomes dynamical and
is hence updated through each iteration by its dependence on the two- and four-point
function.

4.1.3. Results

In this section we compute and discuss the solution to the DSE for the propagator with two
different approximations for the vertices. First we solve the DSE with the classical four-
point vertex and the related three-point vertex as derived in Section 4.1.2.3. Subsequently,
the DSE is considered in a skeleton expansion. Both, the full three- and four-point functions
Γ(3),Γ(4), are based on the bubble-resummed s-channel approximation to the four-point
vertex derived from its Bethe-Salpeter equation. We also use the DSE for Γ(4) to compute
results within a self-consistent version of this setup.

4.1.3.1. DSE with classical four-point vertex

In the present section we approximate the full vertices in the gap equation in Figure 4.1
with their classical counterparts while keeping the two-loop terms. This is depicted in
Figure 4.5. The two-loop terms constitute vertex corrections to the classical four-point
function in the tadpole diagram (sunset) and for the classical three-point function in the
polarisation diagram (squint). In the latter case this is but half of the vertex correction,
the other half has been dropped in the current approximation when approximating the
full three-point function in the polarisation diagram by its classical counterpart. This
approximation resums the propagator but is expected to fail in a regime where vertex
corrections grow large.

For the four-point function the classical vertex approximation amounts to,

Γ(4) = S(4) = λφ . (4.31)

With (4.31) and (4.29), the three-point function is given by

Γ(3) = S(3)[φ0] =
√

3λφmcur , (4.32)
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Abbildung 4.6.: Spectral function (left) and propagator (right) in the scalar theory for
the coupling choices λφ = 5, 10, 20 from the full DSE with classical verti-
ces using on-shell renormalisation (4.23). All dimensionful quantities were
rescaled in units of the respective mass pole result. The different height of
the delta peaks encodes the magnitude of the residue relative to the other
spectral functions. The grey dashed lines mark the n-particle onsets. For
large enough coupling, the three-particle onset becomes visible. The pro-
pagators were computed by the Källén-Lehmann spectral representation.

see (4.29). The resulting prefactors gj of the diagrams are listed in Table A.1. The tadpole
diagram only contributes a momentum-independent term that shifts the mass, and is
absorbed into the mass renormalisation.

All units will be given in the value of the pole mass. Put differently, we introduce
dimensionless units

λφ →
λφ
mpole

, ω → ω

mpole
, p→ p

mpole
, (4.33)

This also entails mpole = 1, and the massless limit is taken with λφ →∞. The dimension-
less units also emphasise the well-known fact, that the physics of the φ4-theory in d = 2+1
is specified by one dimensionless parameter, the ratio of coupling and (pole) mass.

We solve the DSE for three different values of the classical coupling constant λφ =
5, 10, 20. The renormalised mass is fixed by the on-shell RG conditions (4.23) with mpole =
1, and the quantum corrections to the mass vanish on-shell. For the smallest classical
coupling used here, λφ = 5, we take the classical spectral function as initial choice. For
the further couplings we use as the initial choice the full quantum spectral function of the
closest coupling value available. This stabilises the iterative procedure when successively
moving further to larger couplings inducing larger quantum corrections.

The resulting spectral functions, as well as the corresponding propagators, are shown in
Figure 4.6 for different values of the classical four-point coupling, λφ = 5, 10, 20. The mass
pole as well as the onset of the two-particle threshold, φ → φφ, at twice the pole mass
are clearly visible. The three-particle threshold, φ → φφφ, at 3mpole becomes visible for
large enough coupling. We emphasise that also all higher n-particle thresholds are present
in the result and can be resolved numerically. Since they are suppressed by the inverse of
the respective threshold energy squared, they are not visible in the plots. When further
zooming in on the higher onsets which were marked by the dashed lines, the respective
onsets would become visible.

The main effect of a stronger coupling (or small pole mass) can be understood intuitively
very well. The residue of the mass pole becomes smaller, while the scattering cut gets
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Abbildung 4.7.: Truncated DSE of the two-point function as used in Section 4.1.3.4. No-
tation is given in Figure 2.1. The full s-channel four-vertex in the tadpole
diagram enters via its spectral representation (4.36). The full vertices in
polarisation and sunset are approximated at zero frequency, see Para-
graph 4.1.3.2.3. The different prefactor in front of the sunset diagram as
compared to Figure 4.5 is due to the tadpole’s contribution to the sunset
topology, cf. Paragraph 4.1.3.2.2. Squint, kite and double-bubble topology
are dropped, as motivated in Section 4.1.3.2.

larger contributions, i.e. scatterings get enhanced due to the large coupling or the small
pole mass. As mentioned before, the only parameter present is λφ/mpole, and in the present
units with mpole = 1 this simply is λφ, see (4.33). At the largest coupling value considered
here, λφ = 20, also the higher scattering processes start contributing significantly: the
threshold at 3mpole is clearly visible in the spectral function for this coupling, shown in
the left panel of Figure 4.6. For large couplings also the higher thresholds kick in. This
scattering physics also leaves its traces in the Euclidean propagator, shown in the right
panel of Figure 4.6: while first the propagator drops for small momenta with the increasing
coupling (measured in the respective pole masses), it increases again for even larger ones
due to the more pronounced scattering physics present in the spectral function.

The resolution of the higher particle thresholds is nearly impossible within reconstruc-
tion methods due to their exponential suppression in the Euclidean data. This emphasises
once again the strength of our semi-analytic approach of calculating spectral functions
directly from realtime correlators, where all these thresholds are incorporated explicitly.

4.1.3.2. Fully non-perturbative DSE

The practical applicability of the spectral renormalisation scheme has been shown in the
last section within the DSE for the two-point function with classical vertices, see Figure 4.5.
This approximation implements a full resummation of the propagator. The approximati-
on also includes some corrections in the higher order diagrams in the DSE as already
discussed in the last section. While these diagrams contribute to the higher-order scatte-
ring thresholds, this may not be sufficient in the limit of asymptotically large couplings
λφ/mpole →∞, also tantamount to small pole masses. In this regime the vertex corrections
should be taken into account consistently.

In the present section we discuss non-perturbative expansion schemes of the DSE as well
as resummations of the vertices. This allows us to study the strongly correlated regime of
the theory. A full quantitative study is beyond the scope of the present contribution and
is deferred to future work.

A non-perturbative expansion scheme for the DSE is given by the skeleton expansion.
In this expansion all vertices are full-dressed, and higher loop-order diagrams with dressed
propagators and vertices have to be introduced successively. Instead of an expansion in
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Abbildung 4.8.: s-channel expansion of the momentum dependent four-point function Γ(4).
With a bubble resummation one arrives at (4.34). The notation is defined
in Figure 2.1

classical vertices it is an expansion in fully dressed ones. This expansion is closely related
to nPI-resummation schemes, in the φ4-theory it is related to a 4-PI scheme.

Here we consider the two-loop order of the skeleton expansion in the broken phase. A
first observation is, that the prefactor of the squint diagram vanishes: it is fully contained in
the polarisation diagram with two dressed three-point functions Γ(3). At perturbative two-
loop level the expansion involves a kite-diagram as well as a double-bubble diagram. Both
topologies are only generated from the polarisation diagram in the DSE, more precisely
from vertex corrections of the dressed three-point function. These contributions have to be
subtracted in terms of explicit kite and double-bubble diagram in the skeleton expansion.
For small field expectation values φ0 � 1, it is reasonable to neglect the kite diagram,
since it scales like φ4

0 due to its four three-point functions. We will also drop the double-
bubble diagram which is of order φ2

0. These approximations are discussed again later. The
remaining diagrams are the polarisation, sunset and tadpole. The present approximation
of the two-loop skeleton expansion of the gap equation is depicted in Figure 4.7.

4.1.3.2.1. Bubble-resummed s-channel four-point function It is left to specify
the approximations for the three-point and four-point vertices. To begin with, we still use
the relation (4.30) for the three-point function with the assumption of small field values
φ2

0. This leaves us with the four-point function, for which we resort to a bubble-resummed
s-channel expansion, e.g., [68, 245], shown graphically in Figure 4.8. Algebraically, the
momentum dependence of the s-channel in the four-point function can be expressed as

Γ(4)(p) =
λφ

1 + λφΠfish(p)
. (4.34)

Here, Πfish is the one-loop part of the s-channel self-energy (apart from λ2
φ),

Πfish(p) =
1

2

∫

λ1,λ2

λ1λ2ρ(λ1)ρ(λ2) Ipol(p;λ1, λ2) . (4.35)

This is exactly the polarisation diagram also appearing in the DSE with prefactor gpol = 1,
cf. Figure 4.3 and (4.14). The analytically-continued expression for Γ(4)(ω) is obtained by
simply replacing Ipol(p) in (4.35) with Ipol(ω).

The resulting Γ(4)(ω) depends on the full propagator through the spectral functions
in (4.35), and the equations for Γ(2) and Γ(4) are coupled. We also note that the s-channel
resummation used here is obtained in the NLO-expansion of the 1/N -expansion of an
O(N)-theory with N real scalar fields. In the present N = 1 case, s-channel dominance
is merely an assumption. For a full quantitative study, this assumption would have to be
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validated numerically. Otherwise, other scattering channels would have to be taken into
account as well.

The iteration procedure does not change for such a coupled system, even though coupled
systems generically show worse convergence properties. For a given input pair Γ(2) and Γ(4)

we compute the next iteration from the right-hand side of the DSE for Γ(2), Figure 4.7, and
the resummed representation of Γ(4), (4.34). This is repeated until convergence is reached.

4.1.3.2.2. Tadpole contribution to the sunset topology Before turning to the
explicit approximation used in the skeleton scheme, we emphasise again, that the fully-
dressed tadpole diagram and the fully-dressed sunset diagram are related. They both carry
the s-channel of the four-point vertex. While the tadpole simply is proportional to the s-
channel four-point vertex, the sunset includes the fish-diagram as a sub-diagram. Indeed,
the perturbative two-loop sunset graph is a combination of the respective contributions,
and the prefactor gsun of the sunset diagram in the skeleton expansion is such that the
perturbative prefactor, c.f. Table A.1.

The tadpole diagram is proportional to the s-channel four-point vertex, and we use the
full momentum-dependent four-point vertex obtained from the bubble resummation (4.34).
Inserting the diagrammatic vertex expansion explicitly into the diagram, one sees that the
dressed tadpole contributes to the sunset topology on the perturbative two-loop level.
However, this contribution does not account for the full prefactor of the latter. To arrive
at the correct perturbative prefactor of the sunset diagram, the prefactor of the fully-
dressed sunset diagram in the skeleton expansion needs to be adjusted accordingly, see
Figure 4.7 and Table A.1.

4.1.3.2.3. Vertex approximation in the skeleton expansion In the sunset dia-
gram, the two four-point vertices are averaged due to the two loop momenta that run
through both vertices. This averaging holds true for both, the Euclidean branch and the
Minkowski one. For this reason we approximate the full momentum-dependent four-point
vertices by that at vanishing momentum, Γ(4)[φ0].

In our approximation with Γ
(3)
pol(p) = φ0Γ(4)(p) with external momentum p, the vertices

in the polarisation diagram are, as in the tadpole, proportional to the s-channel four-point

vertex. For the sake of simplicity we also use Γ
(3)
pol = φ0Γ(4)(ω = 0). In any case, the

spectral integrands Ipol and Isun of polarisation and sunset diagram remain the same as
in Section 4.1.3.1. However, their prefactors gpol and gsun are modified by the skeleton
expansion, cf. Table A.1.

As outlined, our solution method requires an analytic solution of the momentum inte-
grals for all diagrams. In the current approximation this holds true for the polarisation and
sunset diagram. It is not the case for the tadpole diagram because the loop-momentum is
probing the non-trivial momentum structure of the resummed four-point function (4.34).
This problem can be resolved if we can use a spectral representation for the resummed
four-point function, which is discussed in the following section.
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Abbildung 4.9.: Left: Comparison of the momentum dependent (Euclidean) four-vertex
Γ(4)(p) in its initial form (4.34) with its spectral representation (4.36)
for the coupling choices λφ = {10,15,20} using a classical propagator,
i.e. a delta pole spectral function peaked at mpole = 1. All dimensionful
quantities were rescaled in units of the respective mass pole result. Right:
Corresponding spectral functions of the four-point functions. The different
height of the delta peaks encodes the magnitude of the residue relative to
the other spectral functions. Also here, all dimensionful quantities were
rescaled in units of the respective mass pole result.

4.1.3.3. Spectral representation for the four-point function

While the existence and practical form of spectral representations for full four-point func-
tions pose an intricate problem, spectral representations for (approximations of) single
exchange channels of the four-point function can be derived. From a practical perspective
we may treat such a channel similarly to a propagator. This is well-motivated by conside-
ring that the resonant channels of a four-point function correspond to particle exchange
interactions. Technically, this can be made explicit by means of a Hubbard-Stratonovich
transformation. In analogy to a propagator we can make the same ansatz for a spectral
representation for a single channel of the resummed vertex

Γ(4)(p) = λφ +

∫

λ

λ ρ4(λ)

p2 + λ2
, (4.36a)

with

ρ4(ω) = 2 Im Γ(4)(−iω+) , (4.36b)

where ω+ again denotes the retarded limit (4.5). In (4.36) the constant classical part λφ
has to be separated. It has no spectral representation and does not need one for the present
purpose. Indeed, classical vertices have been already considered in Section 4.1.3.1.

Our results confirm that the analytic structure of the resummed vertex is compatible
with (4.36) and works well. This can be seen in Figure 4.9, the computational details can
be found in the next section, Section 4.1.3.4. The spectral function ρ4 displayed in the
right panel exhibits a continuous tail corresponding to the φφ→ φφ scattering continuum
for ω ≥ 2mpole. The spectral representation (4.36) of the four-point function is used in the
tadpole diagram in complete analogy to that of propagators.
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Abbildung 4.10.: Spectral function (left) and propagator (right) from the skeleton expan-
ded DSE (comp. Figure 4.7) with a bubble-resummed s-channel expan-
sion of the four-point function for coupling choices λφ = 5, 10, 20 using
on-shell renormalisation (4.23). The curves were rescaled by the respecti-
ve mass poles. All vertices except for the tadpole one were approximated
at ω = 0. The weight of the continuous tail increases with coupling, the
mass pole residue decreases. Higher n-particle onsets are not visible in
the spectral function. The different height of the delta peaks encodes the
magnitude of the residue relative to the other spectral functions. The
propagators were computed by the Källén-Lehmann spectral representa-
tion. Increasing coupling makes the propagators deviate more from the
classical propagator, which approaches 1 at momentum p→ 0.

Importantly, the spectral representation of the vertex effectively just leads to another
classical propagator with spectral mass λ to the loop momentum integral. The momentum
flowing through the four-vertex is the sum of the loop and external momentum. Thus, the
momentum integral of the tadpole is identical to that of the polarisation diagram, since
the internal line of the four-vertex carries p + q and the initial internal line just the loop
momentum q. The tadpole diagram can therefore be expressed as

Dtad(ω) = gtad

∫

λ1,λ2

λ1λ2ρ(λ1)ρ4(λ2)Ipol(ω;λ1, λ2) . (4.37)

The spectral integral is logarithmically divergent, since the vertex spectral function ρ4

drops off in the UV as λ−1 (as opposed to ρ ∼ λ−2 in the UV). Again, we employ spectral
BPHZ renormalisation to subtract the zeroth order term of the Taylor expansion of Ipol.
Finally, the renormalised diagram reads

Dren
tad(ω) = gtad

∫

λ1,λ2

λ1λ2ρ(λ1)ρ4(λ2)
[
Ipol(ω;λ1, λ2)− Ipol(µ;λ1, λ2)

]
. (4.38)

4.1.3.4. Results for the coupled system of propagator and vertices

The DSE in the skeleton expansion is solved for the couplings also used in Section 4.1.3.1,
λφ = 5, 10, 20, measured in the pole mass mpole = 1.

For the first iteration, initial choices ρ0, ρ4,0 for the spectral function of the propagator
and that the four-point vertex are required. We use the classical spectral function (4.24) for
ρ0, as already done in Section 4.1.3.1. For the spectral function of the four-point function
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Abbildung 4.11.: Four-vertex spectral function (left) and four-vertex (right) from the skele-
ton expanded DSE (comp. Figure 4.7) with a bubble-resummed s-channel
expansion of the four-point function for coupling choices λφ = 5, 10, 20
using on-shell renormalisation (4.23). The curves were rescaled by the
respective mass poles. All vertices except for the tadpole one were ap-
proximated at ω = 0. The weight of the vertex spectral function increases
with coupling. For the largest coupling choice, the three-particle onset is
visible in the spectral function. The four-vertices were computed by their
spectral-like representation (comp. (4.36)). The quantum corrections in
the IR increase with coupling. All vertices approach their classical value
in the UV.

ρ4,0 compute it from the resummed representation of the four-point function, (4.34) with
the initial choice of the spectral function of the propagator, ρ0. This results in

ρ4,0(ω) = 2 Im
λφ

1 + λφΠfish,0(ω)
, (4.39a)

with

Πfish,0 =
1

2

∫

λ1,λ2

λ1λ2ρ0(λ1)ρ0(λ2)Ipol(ω;λ1, λ2)

=
1

2
Ipol(ω;mpole,mpole) , (4.39b)

with mpole = 1. While one could also simply take the classical vertex, the convergence
speed and potentially also the convergence radius (coupling range) is increased by the
improved choice (4.39a). For further couplings λφ we take as initial choices ρ0 and ρ4,0 the
full solutions ρ and ρ4 of the closest coupling value already computed. This procedure has
already been used in Section 4.1.3.1, and speeds up the convergence.

The spectral function and propagator obtained from the coupled system of resummed
four-point function and DSE are displayed in Figure 4.10. As for the case of bare vertices,
shown in Section 4.1.3.1, we find a distinct one-particle mass pole as well as a scattering
tail. The φ → φφφ onset is not visible in the spectral function for any of the coupling
configurations. It can be seen that for increasing coupling λφ, the tail of the spectral
function becomes more enhanced, since the higher scattering states are more accessible. In
turn, the mass pole residue decreases. The corresponding propagators in the right panel
show similar behaviour as the for the DSE with bare vertices. The larger the coupling gets,
the further the propagators deviate from the classical behaviour G(p)→ 1 for p→ 0.
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In Figure 4.11 we display the spectral function of the s-channel four-point function and
the Euclidean four-point function itself. The consistency of the spectral representation has
been discussed already in the previous section, and is confirmed numerically, see Figu-
re 4.9. Technically, the negativity of the spectral function displayed in Figure 4.11 can
be understood from the dominant quantum correction to the classical vertex, which is
negative. On the conceptual side, within the Hubbard-Stratonovich transformation ρ4 is
related to minus the spectral function of the exchange particle.

We find a continuous 2 → 2 scattering tail, starting at 2mpole for all coupling choi-
ces. The spectral function is strongly enhanced with increasing coupling. Additionally, for
larger coupling the spectral functions also clearly show the 1 → 3 scattering onsets star-
ting at 3mpole, which was not visible in the propagator spectral functions (cf. left panel
of Figure 4.10). By simple dimensional analysis it becomes clear that the higher n-particle
thresholds in the propagator spectral function are suppressed by their respective energy
threshold squared. This is not the case for the vertex spectral function: It decays with λ−1,
making the higher onsets less suppressed. In turn, the invisibility of four, five, and higher
particle onsets is due to their decreasing amplitude, as every next higher onset comes with
one additional loop.

Further, we note that the visible size of the 1→ 3 scattering onset has its sole origin in
the tadpole diagram. This diagram contributes to the 1→ 3 scattering process due to the
s-channel resummed four-point function, cf. Paragraph 4.1.3.2.2. The contribution of the
sunset itself is very suppressed in comparison. This points towards a general feature of our
approximation: In the large coupling (massless) limit, the tadpole becomes the dominating
diagram in the spectral function (for ω > 3mpole). We elaborate more on the massless limit
in Appendix A.2.

While presenting the spectral and correlation functions in units of the fixed mass pole
mpole = 1 allows for a comparison of the relative strength of the different contributions,
the approach to the massless limit is better studied if the results are presented in units
of a uniform interaction strength. This is achieved by measuring all results in units of
the coupling λφ, see Appendix A.2. For the parameters λφ/mpole = 5, 10, 20 studied here
this entails that we consider theories with the coupling λφ = 1 with pole masses mpole =
1/5, 1/10, 1/20. Evidently, within these units the spectral functions pole position moves
towards zero and the onset of the scattering states gets more pronounced, see Figure 4.14.

4.1.3.5. Self-consistent skeleton expansion

Within the current approximation, we have explicitly dropped the kite and double-bubble
diagrams. Implicitly we have also dropped the squint diagram, that corresponds to vertex
corrections to the three-point function in the vacuum polarisation: we have used two
dressed three-point vertices that are derived from the bubble resummation of the four-
point function. Such an approximation of the three-point function does not contain the
squint topology. An alternative approximation of the Dyson-Schwinger equation is derived
as follows:

We start from the initial, full propagator DSE (Figure 4.1) and consider it in a dia-
grammatic expansion in orders of the constant field φ0. In our approximation, these higher
orders come via the three-vertices Γ(3)(p) = φ0Γ(4)(p) + O(φ3

0). Acting on the DSE with
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Abbildung 4.12.: Spectral function (left) and propagator (right) from the self-consistent
skeleton expanded DSE (comp. Figure 4.7) with a bubble-resummed s-
channel expansion of the four-point function for coupling choices λφ =
5, 10, 20 using on-shell renormalisation (4.23). The polarisation diagram
is here expressed through the s-channel four-vertex, cf. (4.42). The cur-
ves were rescaled by the respective mass poles. All vertices except for the
tadpole one were approximated at ω = 0. The weight of the continuous
tail increases with coupling, the mass pole residue decreases. Higher n-
particle onsets are not visible. The different height of the delta peaks
encodes the magnitude of the residue relative to the other spectral func-
tions. The propagators were computed by the Källén-Lehmann spectral
representation. Increasing coupling makes the propagators deviate more
from the classical propagator, which approaches 1 at momentum p→ 0.

two derivatives w.r.t. the constant field φ0 and multiplying by φ2
0/2 afterwards, one finds

the schematic relation

OΓ(2),diag

[
φ2

0

]
(p) =

1

2
φ2

0

[
Γ(4)(p,−p, 0, 0)− λφ

]
, (4.40)

where OΓ(2),diag

[
φ2

0

]
represents all diagrams in the propagator DSE with two external

constant field legs, including their initial prefactors. This includes the squint diagram and
the vacuum polarisation.

On the right-hand side of (4.40), we have the full four-point function subtracted by its
classical value. We also made explicit the specific momentum dependence of the four-point
function. By differentiating twice w.r.t. to the momentum independent field φ0, Γ(4) only
depends on one external momentum p.

This entails that we can re-express all diagrams of OΓ(2),diag

[
φ2

0

]
through an s-channel

four-point function. What is missing is the classical part of the vertex DSE. It is included
by adding and subtracting the classical vertex contribution multiplied by an appropriate
prefactor involving the constant field, 1

2φ
2
0λφ to the propagator DSE. This leads us to

(4.40). Evidently, the additional constant part −1
2φ

2
0λφ in (4.40) is absorbed in the mass

renormalisation.

The expectation value φ2
0 can be expressed in terms of Γ(2)(0) = m2

cur and Γ(4)[0]. This
leads us to

1

2
φ2

0 Γ(4)(p) =
3

2
m2

cur

Γ(4)(p)

Γ(4)(0)
, (4.41)
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Abbildung 4.13.: Four-vertex spectral function (left) and four-vertex (right) from the self-
consistent skeleton expanded DSE (comp. Figure 4.7) with a bubble-
resummed s-channel expansion of the four-point function for coupling
choices λφ = 5, 10, 20 using on-shell renormalisation (4.23). The pola-
risation diagram is here expressed through the s-channel four-vertex,
cf. (4.42). The curves were rescaled by the respective mass poles. All
vertices except for the tadpole one were approximated at ω = 0. The
weight of the vertex spectral functions increases with coupling. For the
largest coupling choice, the three-particle onset is visible in the spectral
function. The four-vertices were computed by their spectral-like repre-
sentation (comp. (4.36)). The quantum corrections in the IR increase
with coupling. All vertices approach their classical value in the UV.

which has the scaling of a two-point function, and reduces to 3/2m2
cur at vanishing mo-

mentum. Making use of (4.40) and (4.41), we are led to the DSE for the propagator with
Minkowski frequencies ω,

Γ(2)(ω) = − ω2 +m2
pole +Dren

tad(ω) +Dren
sun(ω)

+
3

2
m2

cur

[
Γ(4)(ω)− Γ(4)(mpole)

Γ(4)(0)

]
, (4.42)

and i = tad,sun. Note that the polarisation and squint diagram have been absorbed into
the last term of (4.42) proportional to m2

cur as a result of (4.40). Due to the on-shell
renormalisation condition (4.23), all renormalised diagrams vanish at ω = mpole, that is
Dren
i (mpole) = 0. In summary, (4.42) is exact up to higher orders of φ2

0, leaving us with a
self-consistent systematic expansion scheme. The self-consistency refers to the fact that in
the present order in φ2

0, the polarisation diagram is given exactly in terms of the four-point
vertex. Therefore, approximations to the latter are transported to the former.

4.1.3.5.1. Vertex-approximation in the self-consistent skeleton expansion As
discussed above, within the self-consistent DSE in (4.42), it suffices to specify the ap-
proximation for the four-point function. Here we again resort to the bubble-resummed
four-point function of (4.34), already used in the previous section. This approximation of
the four-point function neglects in particular contributions in the DSE of the four-point
function that originate in the squint diagram. The self-consistency of (4.42) is reflected in
the fact that the contribution of the polarisation diagram is given by its bubble-resummed
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1/2φ2
0Γ(4),

1

2
φ2

0 Γ(4)(p) =
1

2
φ2

0

[
λφ − λφΠfishΓ(4)(p)

]
. (4.43)

As for the four-point function, (4.43), lacks the contributions from the squint diagram.
Note also that these contributions are related to the u, t-channel. Hence, with (4.43) we
consistently neglect the squint topology in the DSE if assuming dominance of the s-channel
vertex corrections for the four-point vertex. We emphasise that the assumption of s-channel
dominance is well-supported in the large-N limit, but less so in the present N = 1 case.

Diagrammatically, the DSE is still represented by Figure 4.7, with the polarisation
diagram given by the last term in (4.42). The prefactors of tadpole and sunset diagram
are identical to that in the standard skeleton scheme used in Section 4.1.3.4. They are
listed in Table A.1. In the tadpole diagram, the four-point function again enters via its
spectral representation (4.36).

4.1.3.5.2. Results Numerical results for the propagator in the self-consistent skeleton
scheme are displayed in Figure 4.12. The propagator spectral function is similar in shape
to that obtained in the standard skeleton approximation, see Figure 4.10. However, the
magnitude of the scattering tail close to the threshold is roughly a third for all coupling
choices. Comparing the two skeleton schemes one realises that the correct momentum
scaling behaviour of the standard skeleton expansion came at the price of two dressed
vertices. In turn, the self-consistent skeleton expansion has the correct momentum scaling
as well as the correct vertex strength. Arguably, this property is particularly important in
the vicinity of s-channel resonances or for asymptotically large couplings.

Higher n-particle onsets are not visible in the propagator spectral function similarly to
the results in the standard skeleton expansion. We emphasise again, that they are present
nevertheless, as well as easily accessible in the present spectral approach. The three-particle
onset can again be seen in the vertex spectral function (bottom left panel of Figure 4.13),
although it is less pronounced as in Figure 4.11. The magnitude of the vertex spectral
functions matches very well in the two different schemes, however.

The corresponding Euclidean correlation functions are shown in the top and bottom
right panel. Both receive slightly less quantum corrections as for the plain skeleton expan-
sion. For the propagator this is quite clear from the much smaller spectral functions in the
self-consistent approximation. The differences in the four-point vertex are less pronoun-
ced, and we refrain from discussing them. For a more detailed discussion of the general
features, see Section 4.1.3.4.

4.1.3.5.3. Low-lying bound state close to phase transition Lattice simulations
[246–248] show an additional low-lying excitation in the spectrum of the scalar φ4-theory
in d = 2+1 close to the phase transition with a mass of m ≈ 1.8mpole. This state has been
interpreted as a bound state of the fundamental excitation in [248]. It is also been observed
within the recent functional RG study [249]. The approximation scheme underlying the
Euclidean computation done in [249] is close in spirit to the s-channel approximation
scheme used in the present study in Minkowski spacetime. In [249], the spectral function
of the propagator, numerically reconstructed from Euclidean data, shows a bound state
close to the phase transition at a mass ratio consistent with that found in the lattice
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Abbildung 4.14.: Results from the skeleton expanded DSE (comp. Figure 4.7) with a
bubble-resummed s-channel expansion of the four-point function for
coupling choices λφ = 5, 10, 20 using on-shell renormalisation (4.23).
All vertices except for the tadpole one were approximated at ω = 0.
The curves were rescaled by their respective coupling parameters, i.e.

mpole,i = 1
λφ,i

and consequently λφ =
λφ,i
λφ,i

= 1 for all curves. TOP: Spec-

tral function (left) and propagator (right). The weight of the continuous
tail decreases with larger mass pole, the mass pole residues increases. The
different height of the delta peaks encodes the magnitude of the residue
relative to the other spectral functions. The propagators were computed
by the Källén-Lehmann spectral representation. The pole contributions
are dominant, since for smaller mass pole the propagator is strongly en-
hanced.

studies. However, further away from the phase transition, the clear signal of the bound
state is lost in [249].

The present direct computation of spectral functions is not performed close to the phase
transition, that is for mpole → 0. This regime will be studied elsewhere within the self-
consistent skeleton expansion developed in the present section. Our results for mpole 6= 0
indicate that the bound state may indeed only exist close to the phase transition. However,
the present s-channel approximation does not allow for a fully conclusive statement, as the
latter requires a multichannel analysis. Yet, the s-channel resummation typically captures
the dominant resonances and is trustworthy as next-to-leading order in a 1/N -expansion in
the large-N limit. The spectral properties of O(N) models as well as the phase transition
regime will be studied elsewhere.

We approach the two-particle bound state via a Bethe-Salpeter equation for the four-
point function in Section 6.2.
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4.1.4. Conclusion

In this section, we developed a spectral functional approach for the direct non-perturbative
computation of timelike correlation functions. This approach is based on a novel renor-
malisation scheme called spectral renormalisation: This renormalisation scheme is based
on the use of spectral representations and dimensional regularisation. The spectral repre-
sentation allows to perform the momentum integrals within dimensional regularisation.
This leaves us with the spectral integrals, whose spectral divergences can be renormalised
within dimensional regularisation as well, see Section 4.1.1.3. This scheme is called spectral
dimensional renormalisation, and respects all symmetries of the theory at hand that are
maintained within dimensional regularisation. The latter set also includes gauge symme-
tries, and hence spectral dimensional renormalisation as developed here is a manifestly
gauge invariant renormalisation scheme.

The renormalisation step can also be done with a standard subtraction procedure wi-
thin a Taylor expansion in momenta as done in BPHZ renormalisation This scheme is
called spectral BPHZ renormalisation, see Section 4.1.1.4. It maintains fewer symmetries
than spectral dimensional renormalisation and in particular requires counterterms in gauge
theories that break gauge symmetry (or rather BRST symmetry). The appeal of spectral
BPHZ renormalisation lies in its relative numerical simplicity. In summary, spectral re-
normalisation allows for direct access to the real momentum axis by analytic continuation
as a result of the fully analytic solution of all momentum integrals, while maintaining all
symmetries of the theory at hand.

We performed explicit, non-perturbative computations within the spectral DSE ap-
proach to the scalar φ4-theory in 2+1 spacetime dimensions. Our results include the spec-
tral function of the scalar propagator and that of the s-channel four-point function, and
are obtained by solving the spectral DSE recursively. We have first considered the appro-
ximation with classical vertices and full propagators in Section 4.1.3.1, but including the
two-loop diagrams in the DSE. The resulting spectral functions show a distinct one-particle
pole and a clear scattering tail with onset at twice the pole mass. The spectral function
contains all higher scattering thresholds, which are easily accessible due to the analytic
nature of the momentum integrations. For increasing couplings, the 1→ 3 scattering onset
becomes more pronounced.

We also considered an approximation with non-perturbative vertices, based on a skeleton
expansion scheme, in Section 4.1.3.4. The respective four-point function was given by an
s-channel bubble resummation. The propagator spectral function again shows a distinct
one-particle pole and a continuous scattering tail. The spectral function of the resummed
four-vertex features a scattering tail as well and additionally shows a distinct onset for
the 1 → 3 scattering process. For larger couplings, the fully non-perturbative nature of
the approximation leads to large, though only quantitative differences compared to the
classical vertex computation.

In the last part of this section, Section 4.1.3.5, we have developed a self-consistent ske-
leton expansion scheme. The self-consistency was obtained by relating a class of diagrams
with three-point functions to the s-channel four-point function. This entails that the ap-
proximation used in the computation of the four-point function is also used within the
three-point function diagrams. The results are qualitatively similar to that of the stan-
dard skeleton scheme. The magnitude of the scattering tail of the propagator spectral
function turns out much smaller in the upgraded scheme, and indicates an overestimation
of the polarisation diagram before. We expect that the use of such a self-consistent scheme
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is important close to the phase transition of the theory or, more generally, in the presence
of resonant s-channel interactions.

In conclusion, we have developed and put to work a fully non-perturbative spectral
functional approach to the computation of realtime correlation functions. The approach
was successfully tested within the scalar φ4-theory in 2+1 dimensions.
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4.2. Spectral functional renormalisation group

This section combines the derivation of the spectral fRG put forward in [6] with its appli-
cation to a scalar φ4-theory presented in [9]. Ref. [6] represents a jointly authored article
within the fQCD collaboration [12]. In [9], all practical calculations have been carried out
by Jonas Wessely during his early PhD and Master thesis, which I co-supervised.

In this section, we apply the spectral functional approach devised in [1], see Section 4.1,
to the functional renormalisation group framework, amounting to the spectral fRG. To that
end, we first set up a finite renormalised fRG approach, where renormalisation conditions
are transported along with the flow by flowing renormalisation. One of its advantages is
its manifest finiteness, also for regulators or regularisation schemes that do not directly
implement a UV decay in the loops of the flow equation. This allows for its application to
general non-perturbative truncation schemes. Our approach is manifestly finite as well as
Lorentz (or Galilei/Schrödinger) invariant and gauge consistent.

In the first step, we derive a manifestly finite, renormalised functional Callan-Symanzik
flow from finite fRG flows with spatial momentum regulators in the limit where these
regulators turn into masslike Callan-Symanzik (CS) regulators. This allows for a derivation
of the spectral fRG for the effective action by using spectral representations for correlation
functions, while full Lorentz invariance is smoothly achieved in the CS limit. In particular,
no regularisation of non-perturbative diagrams is implied, but all diagrams discussed are
manifestly finite. The valuable benefit of gauge consistency is guaranteed as in the CS
limit no momentum cutoff is involved. Finally, its realtime nature allows for an on-shell
renormalisation scheme which also facilitates computations.

Furthermore, we accompany above conceptual progress with a non-perturbative appli-
cation to spectral functions in the three-dimensional φ4-theory. This also allows to directly
compare our results with those obtained in [1] resp. Section 4.1 within the spectral DSE
approach. Both functional approaches implement different resummation schemes for the
theory at hand, as correlation functions obey different infinite towers of one-loop (fRG)
or two-loop (DSE) exact diagrammatic relations. Moreover, within an fRG implemen-
tation, the successive momentum-shell integration of loop momenta p2 ≈ k2 with the
infrared cutoff scale k, already provides an average momentum dependence within sim-
ple approximations. This is particularly beneficial for vertices, since the intricacy of their
spectral representations increases strongly with the number of involved field. The fRG
incorporates already parts of the momentum dependence of vertices, if approximations
with momentum-independent but cutoff dependent vertices are chosen.

In summary, this section lays the methodological ground for spectral fRG studies of
realtime quantum field theories including QCD and quantum gravity. We discuss the
application of the spectral fRG framework to Yang-Mills theory in Appendix A.3. For
examples of Yukawa theories and quantum gravity, see [6]. We remark that prior to the
formal derivation of the spectral fRG in [6], the spectral fRG has already been used in [206].

This section is structured as follows. In Section 4.2.1, we discuss the preservation of
Lorentz invariance, causality and finiteness within given regularisation schemes and derive
finite functional Callan-Symanzik flows with flowing renormalisation in Section 4.2.2. In
Section 4.2.3, the novel setup is used to derive the Lorentz invariant spectral fRG. Its
application to the scalar theory is discussed in Section 4.2.4. We present numerical results
for the spectral function of the scalar field from the spectral fRG in Section 4.2.4, and
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close with a short discussion in Section 4.2.6.

4.2.1. Regulators and symmetries

In order to motivate our derivation of the spectral fRG from functional Callan-Symanzik
flows, where the regulator function in (2.32) is simply given by a mass term, we first
illustrate the problem of causality-violating regulators in general realtime fRG setups. To
that end, we start by discussing analytic properties of the functional flow equation (2.39)
with respect to the choice of regulator at the example of a real scalar φ4-theory, see (2.1).
For an introduction to the fRG, see Section 2.3.

A specific example for a smooth shape function is

rexp(x) = e−x . (4.44)

In addition to the conditions in (2.35), which guarantee the finiteness of fRG flows, we
might want to impose additional, physically motivated conditions onto the regulators. For
relativistic theories it is desirable that the regulators do not spoil Lorentz/Poincaré inva-
riance. Furthermore, for studies of realtime properties, i.e., in Minkowski space, causality
should also not be violated. The latter is directly related to the existence of a spectral
representation for the propagator.

To maintain Lorentz invariance, the regulator should be a function of the four-momentum
squared, Rk(p

2). However, as discussed, e.g., in [43], such regulators might spoil causa-
lity through unphysical poles in the complex frequency plane. Typically, such regulators
either do not admit a spectral representation or generate fictitious mass poles that only
disappear in the vanishing cutoff limit; for a discussion of the latter, see [43, 44, 220]. As
an example, consider a classical Euclidean propagator

Gk(p) =
1

p2 +m2
φ +Rk(p)

, (4.45)

with a regulator shape function, c.f. (2.34),

rrat =

nmax∑

n=nmin

cn

(
k2

k2 + p2

)n
. (4.46)

Already for such a simple propagator, the existence of a spectral representation of the
regularised propagator is highly dependent on the coefficients cn, and in general not the
case, see [43, 243] for more details. For general propagators, regulators of the type (4.46)
typically generate at least nmax poles in the propagator, whose positions in the complex
plane usually spoil the spectral representation. Another choice would be a variation of the
exponential regulator (4.44), see [44, 220] for more details. Regulators of this type lead to
series of poles in the propagator as well as an essential singularity at infinity.

A further common choice are regulators that only depend on the spatial momenta,

R
(
k~p

2). Clearly, these regulators do not lead to additional poles in the complex frequency
plane, but merely modify the dispersion of the fields. Thus, they admit a spectral repre-
sentation at the cost of violating Lorentz invariance. If the system is in a medium, explicit
Lorentz symmetry breaking might seem innocuous, as it is broken anyway. While this has
been confirmed in specific examples [44, 250], it is a priori unclear in general. Especially
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Abbildung 4.15.: Sketch of the competing requirements for regulators: finiteness of the
flow, Lorentz invariance and causality of regulators. Examples for regula-
tors with two of the properties are given. A fully systematic construction
of regulators with all three properties in the flow is lacking to date.

when considering limiting cases of a phase diagram such as T → 0, the question becomes
much more intricate than the comparisons in the aforementioned works.

Hence, effectively we either violate (or at least complicate) causality, or we violate
Lorentz invariance. All known examples of regulators rely on the regularisation conditions
in (2.35). However, by relaxing at least one of these conditions, there is a natural choice
for a regulator which preserves both causality and Lorentz invariance,

Rk,CS = Zφ k
2 , rCS(x) = 1 , (4.47)

which we refer to as the CS regulator. It implements IR regularisation through an explicit
mass ∆m2 = Zφ k

2. In this case the flow equation (2.39) has been derived in [251]. To our
knowledge, it is indeed the first occurrence of such a closed (and one loop) exact functional
equation for the effective action. The insertion of the CS regulator in (2.39) leads us to
the (inhomogeneous) functional CS equation. However, it violates the second condition
(2.35). The CS regulator only lowers the UV degree of divergence by two, for example,
quadratically divergent diagrams such as the tadpole diagram in the two-point function
of the φ4 theory in d = 4 leads to logarithmically divergent tadpole diagrams in the CS
equation. In short, at each k in the flow, all loop momenta contribute. To render the flow
finite, an additional UV regularisation is required in general.

The different properties of the regularisation are summarised in Figure 4.15. Restricting
the discussion to vacuum for simplicity, the three different property of interest are

1. Lorentz invariance: The regulator is a function of p2 and respects Lorentz sym-
metry.
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2. Causality: The regularised propagator admits a spectral representation, c.f. (4.77).
Expressed in Euclidean momenta, the right half-plane for analytically continued
momenta is holomorphic.

3. Finiteness: All diagrams arising from (2.39) and its functional derivatives are finite.

In the overlap regions of Figure 4.15 we provide examples for regulators with the respective
two properties.

No example is given in the overlap regime in the middle with all three properties: at
present, no regulator keeping all three properties in Figure 4.15 simultaneously is known:
indeed, the structure of the full propagator,

Gk(p) =
1

Γ
(2)
k (p) +Rk(p)

, (4.48)

which is the inverse of the regulator and the (yet to be determined) two-point function

Γ
(2)
k entails that a systematic construction of such a regulator for all cutoff scales k ne-

cessarily requires the use of the complex structure of Γ
(2)
k in the regulator. This leaves

us with a combination of requirements: the existence of the spectral representation of the

propagator (4.48) with the regulator limits (2.35) for an unknown two-point function Γ
(2)
k .

This combination is rather obstructive, and if a systematic construction is possible at all,
it evidently requires using constraints on the complex structure of the two-point function
at hand.

As an illustration, let us assume we have a Lorentz invariant regulator with the proper-
ties (2.35). We observe that the regulator needs to be a decaying function as p → ∞, by
assumption, while Γ(2)(p) needs to be a growing function for p → ∞, being the inverse
of the propagator. This implies finite Lorentz invariant flow equations (properties 1 & 3).
Now we show that then causality (property 2) is at stake:

A simple consideration of the Cauchy–Riemann equations suggest different signs of their
imaginary parts in the top-right quadrant of p ∈ C. However, the regulator needs to have a
positive real part, at least for small Euclidean momenta, to provide the IR regularisation.
In a partially simplified picture, this leads to lines in the complex plane where the real
part of the regulator is zero. Similarly, the real part of the two-point function has lines
with vanishing real part, related to the dispersion relation. The different limiting cases
detailed above make it almost impossible to avoid zeros in the top right quadrant of
the complex momentum plane, and consequently lead to a violation of causality in the
regularised propagator. Partly, this reasoning can also be found in [47]. The argument
presented here is a very pictorial, simplified version. While it is easy to construct explicit
counterexamples, so far even in tailor made applications, such as spectral functions of a
simple scalar theory, no regulator has been provided that escapes this problem, leave aside
a generic systematic construction scheme. A full discussion of this issue is postponed to
future work.

This leaves us with the situation that we may consider regulators in the three overlap
regions, put differently, regulators, that lack one of the properties 1–3. In this context,
we emphasise a peculiarity of the overlap regime without finiteness including the CS
regulator: the structural similarity of the Wetterich equation (2.39) with regulators obeying
(2.35) and the flow with the CS regulator (4.47) is misleading. While the former equation
implements a Wilson-type momentum-shell integration in a fixed underlying quantum
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field theory, the CS flow constitutes a flow in the space of theories. To be specific, the
need for additional UV regularisation at different cutoff scales k implies that we have
different theories which necessarily require a different renormalisation. Hence, the flow
must be re-renormalised; only specifying the initial effective action Γkinit

does not lead
to a finite renormalised solution of the flow equation. This renormalisation is typically
done with an RG transformation, leading to finite renormalised loops as well as the β-
function and anomalous dimension terms in (4.62). As we will show in the next section,
this can be achieved instead by the introduction of explicit counterterms to the flow,
supplemented with renormalisation conditions which are fixed at an in general k-dependent
renormalisation scale µ.

4.2.2. Functional flows with flowing renormalisation

Next, we discuss the finiteness of infrared flows and the finiteness of the ultraviolet limit of
the effective action. Both properties are related to the UV renormalisation that is implicitly
or explicitly implemented in the flow equation. This will lead us to the concept of flowing
renormalisation. Again, we will stick to a real scalar field; the generalisation to theories
with arbitrary field content can be found in [6].

In Section 4.2.2.1 we discuss infrared RGs with general rescalings during the RG flows
and introduce the concept of RG consistency. This setup allows us to define flows that
have a finite UV limit, hence elevating the standard bare diverging UV effective action
to a renormalised finite UV action. In Section 4.2.2.2 we then derive a key result of the
present work, the general flow equation (4.73) with a flowing Bogoliubov-Parasiuk-Hepp-
Zimmermann (BPHZ)-type UV renormalisation. This renormalised fRG flow is not based
on full RG rescalings which imply a multiplicative renormalisation that typically cannot be
used in non-perturbative truncation schemes. This is achieved by augmenting the infrared
RG steps with explicit ultraviolet ones that are also formulated in terms of a standard
functional RG. In Section 4.2.2.3 we discuss the properties of the manifestly finite CS
equation (4.74) obtained from (4.73) for the CS regulator including the implementation
of general renormalisation conditions, which is the basis for the spectral fRG discussed in
Section 4.2.3. In Section 4.2.2.4 we summarise the results and findings of this section and
emphasise some important aspects.

4.2.2.1. RG consistency and UV scaling

For standard infrared regulators with shape functions r(x) that obey (2.35), the flow
equation is manifestly finite as loop momenta are effectively restricted to p2 . k2. Then,
choosing a specific r(x) amounts to specifying a UV regularisation scheme for fRG flows.
The effective action Γk of a general theory is then obtained by integrating (2.39) from
some initial cutoff scale kinit to k ≤ kinit,

Γk[φ] = Γkinit
[φ] +

∫ k

kinit

dk′

k′
∂tΓk′ [φ] . (4.49)

The renormalisation conditions are implicitly fixed through the initial effective action
Γkinit

. The theory at a given cutoff scale k should not depend on the initial cutoff scale
kinit, which is called RG consistency, see [58, 176, 252],

kinit
dΓk
dkinit

= 0 . (4.50)

85



4.2. Spectral functional renormalisation group

Since the initial effective action implicitly fixes the renormalisation conditions, RG con-
sistency entails renormalisation group invariance, and specifically the independence of the
theory on these conditions. Inserting (4.49) into (4.50), we arrive at

∂tinitΓkinit
[φ] =

1

2
TrGk[φ] ∂tRk

∣∣∣∣
kinit

. (4.51)

Equation (4.51) entails that the kinit-dependence of the effective action at the initial (large)
cutoff scale is given by the flow equation. Hence, the running of the UV relevant parameters
can be read off from the IR flow equation for asymptotically large cutoff scales, where the
flow of a given coupling is proportional to

lim
k→∞

∂tλi ∝ kdλi . (4.52)

The right-hand side includes the full k-scaling: the combination of the scaling of the loop
integrals and the vertices. Then, UV relevant and marginal couplings λi have scaling
dimensions dλi ≥ 0, while UV irrelevant couplings have scaling dimensions dλi < 0. Con-
sequently, for asymptotically large infrared cutoff scales, the effective action approaches
the bare UV effective action: only the UV relevant operators survive and diverge with
k → ∞ according to their scaling dimension with kdλi for dλi > 0 and logarithmically
with t for dλi = 0.

As a first step towards the desired finite flow equations, also for regulators such as the CS
one, we discuss how the UV scaling (4.52) can be absorbed within a general RG rescaling.
Then, the UV limit of the effective action is the finite renormalised UV action and not the
diverging bare action. For more details we refer the reader to [58] and in particular [61].

The underlying RG invariance of the theory at k = 0, see [58], implies that the full
effective action Γ = Γk=0 obeys the homogeneous renormalisation group equation

µ
dΓ[φ]

dµ
=

(
µ∂µ + β

(µ)
λi
∂λi +

∫

x
γ

(µ)
φ φ

δ

δφ

)
Γ[φ] = 0 , (4.53)

where
∫
x =

∫
ddx refers to the integral over spacetime. The β-functions β(µ) and anomalous

dimensions γ
(µ)
φ of the theory at hand are defined as

γ
(µ)
φ φ = µ

dφ

dµ
, β

(µ)
λ = µ

dλ

dµ
. (4.54)

The coupling vector λ = (λ1, ..., λm) contains all relevant parameters of the theory, inclu-
ding the mass parameters. Note that equation (4.53) entails the invariance of the under-
lying quantum field theory under self-similarity transformations of the theory.

It has been shown in [58] that the RG invariance of the theory is maintained in the
scale-dependent theory in the presence of the regulator term for regulators of the form of
(2.34). Such regulators are called RG-adapted as they satisfy the RG equation

(
µ∂µ + 2γ

(µ)
φ

)
Rk = 0 , (4.55)

and scale as an inverse two-point function. The respective full RG equation reads
(
µ∂µ + β

(µ)
λi
∂λi +

∫
γ

(µ)
φ φ

δ

δφ

)
Γk[φ] = 0 . (4.56)
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From this, we obtain the general flow equation that comprises the change of a cutoff scale,
here k, as well as an accompanying general RG transformation.

Using (2.39), an additional total k-derivative of (4.56) yields the flow equation with
reparametrisation at each flow step [58],

(
s∂s + β

(s)
λi
∂λi +

∫

x
γ

(s)
φ φ

δ

δφ

)
Γk[φ] =

1

2
TrGk[φ]

(
∂s + 2γ

(s)
φ

)
Rk , (4.57)

where we consider k(s) and µ(s) with

s∂s = µ∂µ + ∂t . (4.58)

The β-functions β(s) and anomalous dimensions γ(s) then encode the full s-scaling of a
combined cutoff (k-) and RG (µ-) flow, including a reparametrisation of the theory,

γ
(s)
φ φ = s

dφ

ds
, β

(s)
λ = s

dλ

ds
. (4.59)

Hence, the loop term on the right-hand side of (4.57) is proportional to the full s-scaling of
the cutoff term, consisting of the infrared cutoff scaling with k, the renormalisation group
scaling with µ and a potential scaling of a UV cutoff scale Λ. This s-scaling reduces to
(4.54) for s∂sµ = µ and s∂sk = 0, and to the standard fRG anomalous dimension and
β-functions for s∂sk = k and s∂sµ = 0. Finally, the linear combination (4.58) of k and µ

scalings leads to γ
(s)
φ = γ

(µ)
φ + γφ with

γφ ≡ γ(k)
φ = −1

2
∂t logZφ . (4.60)

For RG-adapted regulators with (4.55) the renormalisation group scaling drops out of the
right-hand side. For example, for the linear combination of the two scalings with k and µ
we arrive at

(
∂s + 2γ

(s)
φ

)
Rk =

(
∂t + 2γφ

)
Rk +

(
µ∂µ + 2γ

(µ)
φ

)
Rk

=
(
∂t + 2γφ

)
Rk . (4.61)

With (4.61) the flow (4.57) reduces to

(
s∂s + β

(s)
λi
∂λi +

∫

x
γ

(s)
φ φ

δ

δφ

)
Γk[φ] =

1

2
TrGk[φ] (∂t + 2γφ)Rk . (4.62)

Due to the reparametrisation invariance, the linear field-reparametrisation φ → Z
1/2
φ φ

leading to the occurrence of γφ in (4.62) are optional. They might be used to simplify
certain computations, e.g., in the context of critical physics, where anomalous dimensions
are of central interest.

Equation (4.62) represents the fRG setup for the effective action. For regulators with the
property of UV regularisation, field reparametrisations encoded in the anomalous dimensi-
ons and β-functions may facilitate the computations or implement functional optimisation
schemes. In particular, we can absorb the UV scaling (4.52) of the UV-relevant couplings
with dλi into the anomalous dimensions and β-functions, leading to a finite renormali-
sed UV effective action. This is simply a convenience for infrared flows with finite flow
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equations, but is a necessity in the absence of ultraviolet finite loops, as is the case for
the CS regulator, (4.47). Then, the rescalings implement the required UV renormalisation
via multiplicative renormalisation. While this is a formally correct procedure, the imple-
mentation of multiplicative renormalisation within non-perturbative truncation schemes
is intricate.

As the central result of this paper, we will show in the next section that the additional
µ-flow can be absorbed into a well-defined flow of a non-perturbative counterterm action
for the k-flow in a manifestly finite way. The flow of the counterterm action serves a two-
fold purpose: First, it allows to consistently change the renormalisation conditions with the
k-flow for general IR flows. We call this flowing renormalisation. Secondly, it also leads to
manifestly finite flows for the CS regulator with a flowing counterterm action for general
non-perturbative truncation schemes. The number of parameters in these counterterm
matches that of relevant parameters in the theory.

4.2.2.2. Functional RG with flowing renormalisation

We now use the general flow equation with an infrared regulator and an ultraviolet one
for deriving a flow equation which also incorporates an explicit UV renormalisation in a
manifestly finite approach in terms of a generalised BPHZ scheme with the subtraction of
a flowing counterterm action. In contradistinction to multiplicative schemes this leads to
finite loop diagrams by subtraction. Such a construction has the benefit of a simple and
robust numerical implementation.

This general setup also allows us to monitor and change the renormalisation conditions
within the infrared flow. This generalises the standard fRG setup, in which the (UV)
renormalisation and the respective renormalisation conditions are implicit in the choice of
the finite initial action, see the discussion around (4.49).

The access to the UV behaviour of the theory is obtained by introducing a regulator
Rk,Λ(p), where a UV cutoff Λ = Λ(k) enters as a free parameter/function. The regulator
Rk,Λ is chosen such that it effectively restricts loop momenta to p2 . Λ(k)2 in the loops
of the flow equation, see the examples (4.65c) and (4.65d) below. We may also use the
regulator for a full UV regularisation of the theory and not only the flow equation, see
e.g., (4.65e) below.

Changing the UV scale Λ = Λ(k) alongside with the infrared flow allows us to introduce
a flowing (UV) renormalisation in the latter. For these regulators the flow (2.39) can be
written as

(
∂t
∣∣
Λ

+Dk ∂tΛ
)

Γk,Λ =
1

2
TrGk,Λ

(
∂t
∣∣
Λ
Rk,Λ +Dk ∂tΛRk,Λ

)
, (4.63)

where tΛ = log(Λ/kref), with a reference scale kref . The factor Dk is a relative measure of
RG steps in the k− and the Λ-direction,

Dk = ∂t log Λ(k) . (4.64)

The flow (4.63) is a finite functional flow which allows us to successively integrate out
momentum shells. For ∂tΛRk,Λ = 0 we arrive at the standard (infrared) flow in (2.39).
This naive limit can only be taken for infrared momentum cutoffs that decay sufficiently
fast in the ultraviolet. Most importantly, we can identify the terms ∝ Dk in (4.63) as
UV-cutoff flows that can be used for a flowing renormalisation scheme.
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This derivation holds true for general infrared regulators. In the following we use as
an important example regulators Rk,Λ, that converge towards the CS regulator with the
shape function (4.47) for Λ→∞. In this case the flowing renormalisation can now be used
to derive the finite fRG flow (4.63) for the CS regulator. For this derivation it is convenient
to consider regulators Rk,Λ with

Rk,Λ(p) = Zφ k
2 r(xΛ) , xΛ =

~p 2

Λ2
, (4.65a)

where we have considered a spatial momentum regulator in order to retain causality in a
simple manner, as discussed in the previous section. Again, we emphasise that this choice
is only taken for the sake of the spectral flows discussed later, it is not a necessary one.
For Λ→∞ we require

lim
Λ→∞

Rk,Λ = Zφ k
2 , (4.65b)

which leaves us with the CS flow as limit of well-defined UV-finite flows. Explicit examples
for shape functions are given by

rexp(xΛ) = e−xΛ . (4.65c)

This regulator leads to an exponential damping of the UV modes in the loop via the
regulator in the numerator of the flow. Another regulator of this type is given by

rCS(xΛ) = θ(1− xΛ) . (4.65d)

Again the loop is rendered finite via the regulator in the numerator of the loop. We em-
phasise that, (4.65c) does not imply a UV regularisation of standard diagrams, e.g., in per-
turbation theory or a system of Dyson-Schwinger equations, but only a UV-regularisation
of the loops in the flow equations.

We may augment the IR regulator with a UV regulator, leading to UV and IR finite
loops with

rsharp(xΛ) =
1

θ(1− xΛ)
. (4.65e)

This regulator leads to momentum loops, e.g., in perturbation theory or a system of Dyson-
Schwinger equations, that do not receive any contribution from spatial loop momenta
~p 2 > Λ2. Naturally, this property also holds true for the respective flow equations. All the
regulators in (4.65) and the limit Λ→∞ satisfies the constraint (4.65b).

To understand the CS limit, we have to explicitly determine the part of the flow that
comes from changing the UV cutoff Λ. For Λ→∞ the second part of the flow,

1

2
TrGk,ΛDk ∂tΛRk,Λ , (4.66)

takes a simple form: Up to sharply peaked contributions for large momenta, see the ex-
amples in (4.65), the tΛ-derivative of the regulator vanishes in the CS limit (4.65b) with

lim
Λ→∞

∂tΛRk,Λ = 0 . (4.67)
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Note that (4.67) simply entails removing the Λ-part of the flow in the limit Λ → ∞, so
it holds true beyond the CS example. Thus, in this limit the contribution of the Λ-flow,
(4.66), to the full flow, (4.63), vanishes unless this zero is compensated by a divergence in
the Λ-flow.

On the more technical level we define diagrams with UV irrelevant power counting in

the flow equation: these are the diagrams Diag
(n)
i

(
∂tΛRk,Λ

)
in the flow of n-point functions

Γ
(n)
k which remains finite if the substitution ∂tΛRk → 1 is done. Here, the superscript (n)

indicates a diagram of the flow of Γ
(n)
k , while the subscript i labels the different diagrams

in this flow. We write

lim
Λ→∞

∣∣Diag
(n)
i

(
∂tΛRk,Λ → Λ2

)∣∣ <∞ . (4.68)

Diagrams with (4.68) either contain a sufficiently large number of propagators or suffi-
ciently rapidly decaying vertices to render the integration over loop momenta finite. In the
CS limit, the contribution of UV-irrelevant diagrams to the flow vanishes like Λ−n with
some n > 0.

In turn, the power counting marginal and relevant parts of the Λ-flow (4.66) will survive
in this limit and indeed diverge with powers and logarithms of Λ. Importantly, these terms
are also local if the vertices are: they only depend on powers of momenta. Note also that
the Λ-flow has the same UV power counting as standard diagrams, as the regulator behaves
like an inverse propagator for Λ→∞. This can be seen from the example regulators (4.65),
whose tΛ-derivative yields

∂tΛrexp(xΛ) = 2xΛe
−xΛ ,

∂tΛrCS(xΛ) = 2xΛδ(1− xΛ) .
(4.69)

Hence, the Λ-flows for n-point functions diverge with the same power of Λ as standard
loop diagrams, e.g., in perturbation theory.

Finally, the prefactors of the UV-relevant terms in the t flow may be different from
that in the tΛ flow, as the respective scale derivatives of the regulator have a different
momentum-dependence if taken for a fixed shape function. This is remedied by using
shape functions with

rΛ = r(xΛ) + ∆rΛ(xΛ) , (4.70)

and the correction ∆rΛ(xΛ) is taken such that the relative prefactors of all UV relevant
terms of the tΛ-flow equals the relative prefactors of the relevant terms in the t-flow.

In summary, this leads us to the definition of the counterterm action,

∂tSct[φ] := −1

2
TrGφk,ΛDk ∂tΛRk,Λ , (4.71)

which removes all terms with positive powers Λn as well as logarithms log Λ/kref from
(4.63) and renders the infinite UV cutoff limit finite,

lim
Λ→∞

∣∣∂tΓk,Λ[φ]
∣∣ <∞ . (4.72)

The counterterm action (4.71) depends on a finite set of renormalisation parameters re-
quired for the finite limit (4.72). The size of this set is equivalent to the number of UV
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relevant and marginal directions. Moreover, in the limit Λ → ∞ the counterterm action
takes a local form for approximations with local vertices that reduce to the classical ones
for large momenta.

Finally, we arrive at the novel flow equation with flowing renormalisation

∂tΓk[φ] =
1

2
TrG[φ] ∂tRk − ∂tSct[φ] , (4.73)

with the flow of the counterterm action (4.71) accounting for the flow of the renormalisation
conditions as well as the finiteness for infrared cutoffs such as the CS regulator. This
general equation constitutes a main result of our work. It can be augmented with general
reparametrisations of the theory, leading to a generalisation of (4.57): we simply have to
subtract ∂tSct[φ] defined in (4.71) on the right-hand side of (4.57). Note, that heuristically
such a procedure is suggestive but in general a naive removal of divergent terms does not
provide a consistent renormalisation. In the present section we have shown that (4.73) is
correct. The derivation also offers a systematic practical way to compute the counterterms.

4.2.2.3. Finite CS flows and flowing renormalisation conditions

In the remainder of this section, we use (4.73) for setting up spectral functional flows. To
that end, we consider the CS flow, for which (4.73) reduces to

∂tΓk[φ] = Tr G[φ] k2 − ∂tSct[φ] , (4.74)

where a CS regulator in a manifestly UV finite setting, such as given with the shape
function (4.65e), is assumed and the finite limit Λ → ∞ can be safely taken. As for the
general form (4.73), the novelty of (4.74) is not its finiteness per se. Indeed, already the
original functional CS equation as derived in [251] can be shown to be finite order by order
in perturbation theory. However, (4.74) is manifestly finite in general perturbative and non-
perturbative truncation schemes with a manifestly finite effective action. Moreover, the
present setup allows for a direct computation of the flow of the counterterm action, only
dependent on a set of renormalisation parameters which are in one-to-one correspondence
to the coefficients of the UV marginal and relevant operators. Finally, the finite CS flow
can be applied to perturbatively and non-perturbatively renormalisable theories. For a
first application in quantum gravity, we refer to [206].

The general flow (4.73) and its finite CS limit (4.74) seemingly imply that we are left
with the task of computing the non-trivial scaling factor Dk as well as the Λ-trajectory
(4.70) at each RG step. This would exact a heavy price for the finiteness (4.72). It is
therefore noteworthy that we do not have to compute ∂tSct[φ] from the flow, as it can be
completely fixed by the choice of renormalisation conditions. The subtraction ∂tSct[φ] has
to be simply chosen such that the flow of these conditions vanish. This choice is practically

implemented by subtracting the t-flow of the correlation functions Γ
(n)
k (p2 = µ2), that is

the renormalisation condition from the full t-flow. This renders the functional t-flow finite
and guarantees the RG conditions to hold.

We illustrate this within a simple example for the finite CS flow. Again we use a real
scalar field theory with the renormalised effective action Γk,Λ with a given UV cutoff Λ.
The renormalisation entails that the effective action Γk,Λ stays finite in the limit Λ→∞.
Moreover, it may satisfy the following on-shell renormalisation conditions at the flowing
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scale µ = µ(k),

lim
Λ→∞

Γ
(2)
k,Λ

[
φ
]
(p)
∣∣∣
p2

0=−µ2
= − k2 ,

lim
Λ→∞

∂p2
0
Γ

(2)
k,Λ

[
φ
]
(p)
∣∣∣
p2

0=−µ2
= 1 ,

lim
Λ→∞

Γ
(4)
k,Λ

[
φ
]
(p)
∣∣∣
p2

0=−µ2
=λφ , (4.75)

where p0 is the Euclidean frequency and p2 = p2
0 < 0 is evaluated at a timelike Minkowski

momentum with ~p = 0 and the Minkowski frequency ±
√
−p2

0. Here, φ is a background
field, which is typically given by the solution of its (quantum) equation of motion (EoM),
φ = φEoM.

The first condition is an on-shell mass renormalisation: the effective action in the pre-
sence of an IR regulator is defined as a modified Legendre transform excluding the regulator
term. Hence, for the physical CS regulator we have to consider the full Euclidean two-point

function with the CS mass term Zφk
2, that is Γ

(2)
k (p2) +Zφk

2. Thus, (4.75) simply implies

Γ
(2)
k (−µ2) + k2 = 0, so the renormalisation scale determines the k-dependent pole mass,
µ = mk. By setting µ = k, we can enforce this pole mass to be given by the mass introdu-
ced by the CS regulator. Thus, for a given physical mass the RG flow from the initial UV
scale kinit is terminated at kfin = mphys = mkfin

. Put differently, with this RG condition
we flow through the space of scalar theories with the physical pole mass k2.

The second condition in (4.75) fixes the wave function renormalisation at µ, Zφ(−µ2) = 1
on-shell. We remark, that this leads to a spectral function ρφ,k that is not normalised
to unity if φ is a physical field (defining an asymptotic state), see Section 4.2.3. The
last condition in (4.75) fixes the quartic interaction vertex. We have not specified the
momentum configuration here, but natural choices are the symmetric point and specific
momentum channels such as the s-channel. While every RG condition serves our purpose,
on-shell RG conditions are in most cases a specifically convenient physical choice, only
accessible for realtime formulations.

We also remark that adjusting specific renormalisation conditions in the standard fRG
setting is a fine-tuning problem: One has to adjust the initial effective action at the initial
cutoff scale kinit such, that the effective action at kfin satisfies the renormalisation condi-
tions. However, adjusting specific renormalisation conditions is not required in the fRG
approach but the same finite tuning task extends to adjusting the physics parameters at
the initial scale. Both tasks are solved or at least facilitated in the presence of flowing
renormalisation, and (4.75) exemplifies this general pattern. With (4.75) both the adjust-
ment of the renormalisation conditions and the adjustment of the physics parameters is
done directly.

It is an additional benefit of the present formulation that the usual finite tuning of the
physical parameters at k = 0 from a set of initial conditions at a large initial cutoff scale
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kinit can be avoided. From (4.75) we get

lim
Λ→∞

∂t

[
Γ

(2)
k,Λ

[
φ
]
(p)
∣∣∣
p2

0=−µ2

]
= − 2 k2 ,

lim
Λ→∞

∂t

[
∂p2

0
Γ

(2)
k,Λ

[
φ
]
(p)
∣∣∣
p2

0=−µ2

]
= 0 ,

lim
Λ→∞

∂t

[
Γ

(4)
k,Λ

[
φ
]
(p)
∣∣∣
p2

0=−µ2

]
= 0 , (4.76)

which completely fixes ∂tSct in (4.74).

We emphasise that the implementation of the above full flowing renormalisation is not
required within the formulation. Indeed, in the φ4-theory in d = 3 discussed in detail in Sec-
tion 4.2.4, the only divergence in the flow equation is related to the mass renormalisation:
The CS flow lowers the standard UV degree of divergence by two and the field-dependent
part of the flow is logarithmically divergent. Thus, the flow of the counterterm action ∂tSct

only needs to include one term to ensure finiteness. Additional counterterms for further
fundamental couplings can still be introduced to enforce the renormalisation conditions.

We emphasise that using a ’minimal’ counterterm with k-independent parameters, i.e.,
one that only regularises the divergent contributions, the present approach reduces to the
standard infrared flow: the renormalisation group conditions at k = 0 are implicitly set at
k = kinit and the physics parameters and RG conditions flow into their final values, which
have to be fine-tuned for given physics and RG conditions.

4.2.2.4. Wrap-up

The derivation of the general fRG flow (4.73) with flowing renormalisation and its finite CS
limit (4.74) is a key result of the present section. Importantly, the counterterm action Sct

is all that is left from the Λ and µ-dependence of the general fRG flow in equation (4.62).
Notably, the conventional finite CS equation also involves the terms proportional to the
β-function on the LHS side of equation (4.62) (which follow from multiplicative renorma-
lisation), which are missing in equation (4.74). We emphasise that the latter BPHZ-type
renormalisation allows for the implementation of general non-perturbative truncation sche-
mes which are difficult to implement in a setting with multiplicative renormalisation. Put
differently, the formal finiteness of the standard CS equation is only of use in truncation
schemes such as perturbation theory and does not survive in general non-perturbative
truncation schemes.

Equation (4.73) and (4.74) can be augmented with β-function terms. They are present
if the flow is amended with an additional standard RG transformation with µ(k). This
is an option in specific cases, as it may facilitate the computations or the convergence of
systematic approximation schemes. Still, it is an important result that such an additional
RG transformation is not required for finiteness and equation (4.74) is exact: while the
β-function terms pose no conceptual problem as they can be considered in a closed form
by auxiliary flows, their computation constitutes in most cases a considerable additional
technical challenge. For a detailed discussion of such a setup in a different context, see
[253]. There, it is shown how to derive flows for the dependences of vertices or couplings on
external parameters such as fundamental couplings, temperature, and chemical potential.
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4.2.3. Spectral functional renormalisation group flows

One of our main motivations for using the CS regulator is that Lorentz invariance and
the existence of spectral representations are manifest in the flow, see the discussion in
Section 4.2.1. We exploit in particular the latter property for defining spectral, Lorentz
invariant fRG flows in real time, based on the CS flow (4.74).

In Section 4.2.3.1 and Section 4.2.3.2 we give a brief overview on the spectral repre-
sentation of correlation functions in quantum field theories, including sum rules for single
particle spectral functions and their asymptotic behaviour that are direct consequences
of the existence of a spectral representation. In Section 4.2.3.3 we show how finite flows
are computed in practice, allowing for symmetry-preserving functional flows, including
gauge-consistent flows. For convenience, in this section we shall mostly use a scalar theory
in our discussions.

4.2.3.1. Spectral representation

The basic ingredient of spectral fRG flows are the spectral representations of the correlation
functions. Foremost, this is the Källén-Lehmann (KL) representation (4.3), which for the
scale-dependent propagator reads,

Gk(p) =

∫ ∞

−∞

dλ

2π

λ ρk(λ, ~p )

λ2 + p2
0

, (4.77)

with ρk(−λ, ~p ) = −ρk(λ, ~p ) and

ρk(ω, ~p ) = 2 ImGk(−iω+, ~p ) , (4.78)

where denotes the retarded limit (4.5). We emphasise that the spectral function is always
defined with (4.78) but the relation (4.77) does not always hold. As discussed in Secti-
on 4.2.1 we have to make sure that the spectral representation of correlation functions at
k = 0 is maintained also for k 6= 0 by choosing an appropriate regulator.

For the two-point function of asymptotic states, the spectral function is positive semi-
definite and normalised to unity, if the states are normalised, see also the discussion in
Section 4.2.4. In general this is not the case, since (4.78) and (4.77) are mere statements
about the causal propagation of the associated operator.

We exemplify these statements within a more detailed discussion of the single scalar
field ϕ in vacuum. Its two-point function Γ(2)(p2) can be parametrised as

Γ(2)(p2) = Zφ(p2)
(
p2 +m2

φ

)
, Γ(2)(−m2

φ) = 0 , (4.79)

with the pole mass mφ. The respective spectral function ρ admits a split into resonance
and scattering contributions, see (4.6).

The spectral flows with a spectral CS cutoff are derived as flows in a CS limit (4.65b)
of standard momentum shell cutoff flows as described in Section 4.2.2.2. Naturally, the
persistence of the spectral representation (4.77) in the presence of the momentum shell
regulators facilitates the derivation significantly. Hence, the CS limit may be taken with
general regulators whose shape functions (2.35) are only dependent on spatial momenta
squared, x = ~p 2/k2 or rather xΛ = ~p 2/Λ2, see the two examples (4.65). It is easy to see
that such regulators do not spoil the existence of a spectral representation for positive
definite shape functions.
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For illustration, we again consider the classical regularised propagator (4.45). Its respec-
tive scale dependent spectral function for general regulators r(xΛ) is given by

ρk(λ, ~p
2) =

π

λ

∑

±
δ
(
λ±

√
~p 2 +m2

φ + k2 r(xΛ)
)
, (4.80)

which can be shown by inserting (4.80) in (4.77),

Gk(p0, ~p) =
1

p2
0 + ~p2 +m2

φ + k2r(xΛ)
, (4.81)

for general shape functions r(xΛ). Hence, as argued before, we may use spatial momentum
regulators (2.34) with shape functions r(xΛ) and implement the CS limit (4.65b) in a
spectral way. Note that any class of regulator can be chosen for this limit, we either
drop Lorentz invariance or the spectral representation as discussed in Section 4.2.1, see
Figure 4.15. The combination is only obtained in the CS limit, which in its finite form
(4.74) has all three properties.

4.2.3.2. Sum rules

The KL spectral representation (4.77) links the infrared asymptote for λ → 0 and its
ultraviolet asymptote for λ→∞ to the IR and UV behaviour of the Euclidean propagator.
This also fixes its normalisation. These properties are discussed and verified in detail in
[2] resp. Appendix A.8 and [206, 243, 254]. The UV or IR asymptotic behaviour of the
dimensionless Euclidean propagator can be parametrised as

Ĝ(p2 → UV/IR) =
Zφ
p̂2

p̂η

(log p̂2)γ
, (4.82)

with the dimensionless momentum squared p̂2 = p2/m2
gap and some reference scale mgap.

In the UV limit one has the parameters Zφ,UV, ηUV, γUV, and in the IR Zφ,IR, ηIR, γIR. As
discussed in Section 4.2.3.1, the amplitude Zφ is the inverse of the wave function of the
two-point function (4.79).

This general asymptotic form of the propagator includes a power behaviour arising
from the anomalous dimension η besides the canonical power −2, as well as a logarithmic
dependence, see, e.g., [2] resp. Appendix A.8 and [206, 243, 254], for details. For some
non-local theories, the propagator shows an exponential decay behaviour [254], which is
not taken into account here. With (4.82) and the spectral representation (4.77), the UV
asymptote of the spectral function reads

lim
ω̂→∞

ρ̂(ω̂) =
Zφ,UV

ω̂2

2ω̂ηUV

(log ω̂2)γUV

(
sin
[π

2
ηUV

]
− cos

[π
2
ηUV

] πγUV

log ω̂2

)
, (4.83)

and the IR asymptote is given by

lim
ω̂→0

ρ̂(ω̂) =
Zφ,IR
ω̂2

2ω̂ηIR

(log ω̂2)γIR

(
(2− ηIR) +

2γIR

log ω̂2

)
. (4.84)

The UV limit already entails that only for ηUV = 0, γUV = 0 we have a normalisable
spectral function with

∫ ∞

0
dλλ ρ(λ) = Zφ,UV , (4.85a)
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which is in one-to-one correspondence with the commutation relations [φ(t, ~x), ∂tφ(t, ~y)] =
Zφ,UVδ(~x− ~y). The standard normalisation is obtained for Zφ,UV = 1, which entails cano-
nical commutation relations.

In turn, for ηUV < 0 or γUV > 0 the UV-tail of the spectral function is negative, and the
respective field does not describe an asymptotic state. Moreover, the spectral function is
normalised to zero,

∫ ∞

0
dλλ ρ(λ) = 0 . (4.85b)

In QCD this is the well-known Oehme-Zimmermann super convergence property [255, 256]
for the gluon in covariant gauges, for an evaluation in the Landau gauge see [243]. In
asymptotically safe gravity it holds true for the background graviton, for a reconstruction
see [257].

For ηUV > 0 or γUV < 0 the UV tail of the spectral function is positive, but the spectral
function is not normalisable,

lim
Λ→∞

∫ Λ

0
dλλ ρ(λ)→∞ , (4.85c)

in the absence of IR singularities. Equation (4.85c) holds true for the spectral function of
the fluctuation graviton in covariant gauges, see [257] for a reconstruction, and [206] for
a direct computation with the spectral fRG. Note that also in this case the field does not
generate an asymptotic state by applying it to the vacuum, φ|0〉. However, this is not to
be expected in a non-Abelian gauge theory or quantum gravity.

4.2.3.3. Spectral renormalisation & symmetries

It has been discussed in [1], see Section 4.1, how the momentum integrals of fully non-
perturbative loop integrals can be computed within dimensional regularisation. It has also
been shown, how a fully gauge-consistent functional renormalisation scheme can be set
up by also applying spectral dimensional renormalisation. One also can use a Bogoliubov-
Parasiuk-Hepp-Zimmermann–type (BPHZ) subtraction scheme, spectral BPHZ
renormalisation. For details, we refer the reader to this section, here we only briefly reca-
pitulate the important properties of spectral renormalisation.

The spectral renormalisation scheme in [1] resp. Section 4.1 has been set up for general
functional approaches, and has been exemplified within the Dyson-Schwinger equation
(DSE) for the scalar theory. The respective loop equations contain up to two-loop diagrams
with non-perturbative propagators and vertex functions. In the present case of the spectral
fRG we only have to consider the renormalisation of one-loop diagrams which facilitates the
task. One of the lines carries the cutoff insertion, and the momentum routing is typically
chosen such that it only depends on the loop momentum q. In terms of the frequency
dependence, the line with the cutoff insertion simply leads to two classical propagators
with the spectral masses λ2

1 and λ2
2, both carrying the loop frequency q0. The CS or spatial

regulator does not depend on the loop frequency, but only on x = ~q 2/k2. To facilitate
numerical computations in d > 1, it is advantageous to use a spectral representation of
the full regulator line or more precisely the propagator squared,

G(q)∂tRk(x)G(q) =
∂tRφ(x)

q2

∫ ∞

−∞

dλ

2π

λ ρG2(λ)

λ2 + q2
, (4.86)
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In (4.86) we have used, that Lorentz invariance allows us to reduce ρi(λ, ~q) to ρi(λ) =
ρi(λ, 0) within spectral representations such as (4.77) and (4.86),

∫ ∞

−∞

dλ

2π

λρi(λ, ~q)

λ2 + q2
0

=

∫ ∞

−∞

dλ

2π

λρ(λ, 0)

λ2 + q2
, (4.87)

Note that the regulator derivative in (4.86) is simply multiplying the spectral representa-
tion of G2. This is a consequence of the regulator not carrying the loop frequency. The
spectral density ρG2 in (4.86) is defined as

ρG2(ω) = 2 Im
[
ω2

+G (ω+)2
]
, (4.88)

We may either use (4.86) or the product of the two spectral functions for the propagators
on the right-hand side of (4.86). In both cases, general flow diagrams Diag(p) of the flow
of vertex functions and inverse propagators with the external momenta p = (p1, ..., pn)
have the representation

Diag(p) =

∫
ddq

(2π)d
Vert(l,p)

Nmax∏

i=1

∫ ∞

−∞

dλi
2π

λiρi(λi,~li)

λ2
i + (li)2

, (4.89)

where l = (q, q + p1, ...., ) is the vector of all momenta entering the propagators and
vertices of the loop diagram at hand, and Nmax is the number of spectral functions. The
factor Vert(l,p) stands for the momentum dependences of vertex and regulator factors
and possible projections and is a rational function in the momenta l and p.

For example, for constant vertex functions and using (4.86), Vert(l,p) ∝ 1
q2
0
, and NMax

is simply the number of internal lines including the regulator line. Then, the ρi are the
spectral functions of the fields φi propagating in the respective line and ρ1 = ρG2 . In turn,
if only using the spectral representation of the propagators, the vertex factor Vert(l,p)
has no frequency and momentum dependence, but NMax → NMax + 1: it is the number of
internal lines and the regulator line counts twice.

With (4.87), the momentum integral in (4.89) has the standard form of a one loop
perturbative integral, and can be computed with dimensional regularisation with d→ d−2ε
and ε→ 0. We are led to

Diag(p) =

Nmax∏

i=1

∫ ∞

−∞

dλi
2π

λiρi(λi, 0)Fdiag(λ,p; ε) , (4.90)

with

Fdiag(λ,p; ε) =

∫
ddq

(2π)d
Vert(l,p)

Nmax∏

i=1

1

λ2
i + (li)2

. (4.91)

Equation (4.90) generalises the form of the spectral integrals considered in [1] resp. Secti-
on 4.1, cf. (4.19) and (4.20), by including the momentum-dependent factor Vert. Since we
assume Vert to be a rational function of its momentum arguments, (4.90) can be treated
the same way as the DSE diagrams. Here, we briefly recapitulate the main results obtained
there and refer the reader to [1] resp. Section 4.1 for more details.

To begin with, for power-counting divergent perturbative momentum integrals, Fdiag

contains 1/ε-terms in even dimensions d = 2n with n ∈ N. It is tempting to apply the
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minimal subtraction idea of only subtracting these divergent pieces. This would amount
to simply dropping the 1/ε-terms in Fdiag. However, as thoroughly discussed in [1] and
Section 4.1, the remaining spectral integrations have the same ultraviolet degree of di-
vergence and may not be finite. Note that these divergences are sub-divergences and are
absent at one loop perturbation theory where the spectral functions are Dirac δ-functions.
This leaves us with two choices:

(i) Spectral dimensional renormalisation: if we want to maintain all symmetry-features
of dimensional regularisation, we also have to perform the UV part of the spectral
integrations analytically. This can be done using splits

ρ(λ, ~q ) = ρIR(λ, ~q ) + ρUV,an(λ, ~q ) , (4.92)

where the ’IR’ part decays sufficiently fast for large spectral values, and ρUV,an carries
the UV-tail of the spectral function and its form is chosen such that it facilitates
the analytic computation of the UV-part of the spectral integrations. Finally, we are
left with 1/ε terms from both the momentum and spectral integrals, which can be
subtracted by an appropriate choice of ∂tScl in (4.74).

(ii) Spectral BPHZ renormalisation: We implement the RG conditions at an RG scale
µ in terms of subtractions at the level of the integrand in (4.91). This amounts to
subtracting a Taylor expansion in p of Fdiag. For the sake of simplicity we restrict
ourselves to a case with one external momentum and a quadratic divergence, e.g.,
the flow of the two-point function Γ(2)(p) in a scalar theory in d = 4 dimensions.
Then, p = p and the BPHZ subtraction reads schematically,

Diagren(p) =

Nmax∏

i=1

∫ ∞

−∞

dλi
2π

λiρi(λi, 0)

[
Fdiag(λ, p; ε)

− Fdiag(λ, µ; ε)− (p2 − µ2)
∂Fdiag(λ, p; ε)

∂p2

∣∣∣∣
p2=µ2

]
. (4.93)

In (4.93) we can take the limit ε → 0 before performing the spectral integrations
which are manifestly finite. The showcase (4.93) straightforwardly extends to the
flow of general correlation functions with the standard BPHZ procedure. Evidently,
the subtraction terms constitute a specific choice of ∂tScl in (4.74).

This closes our brief recapitulation of the conceptual results in [1] resp. Section 4.1, and
the discussion of their application to the spectral CS-flows: The spectral dimensional or
BPHZ renormalisation is implemented by a respective choice of the flow of the counterterm
action ∂tScl in (4.74). This leads us to manifestly finite spectral flows within a systematic
flowing renormalisation scheme.

Evidently, the spectral BPHZ renormalisation is technically less challenging, and is the
renormalisation method of choice in most cases. However, we emphasise that the ε → 0-
limit and the integration do not commute, and hence the spectral BPHZ renormalisation
and the spectral dimensional renormalisation may not agree in terms of symmetries. This
may be specifically important for gauge theories. Either way this allows us to define finite
spectral flows.
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µ∂µ = − 1
2 + − µ∂µ Sct

(2)Γ(n) =

n

S(n) = ,

n

,

G = , =
(
1− ηϕ

2

)
Zϕµ

Abbildung 4.16.: Renormalised CS equation for the inverse propagator. The notation is
given in Figure 2.1. As in Figure 2.3, the blob with the cross represents
the regulator scale derivative ∂tRk. In the present case of the functional
Callan-Symanzik flow, the regulator term is simply given by the mass
term in the scale-dependent classical action, cf. (4.94), which entails the
lower definition.

4.2.4. Spectral fRG in the scalar φ4-theory

Next, we discuss the application of the spectral fRG framework set up in Section 4.2.3 to
the scalar φ4-theory in d = 2 + 1. Asymptotically free non-Abelian gauge theories are dis-
cussed in Appendix A.3, specifically concentrating on infrared and ultraviolet asymptotes
of the spectral function.

In the spectral fRG approach put-forward in [6, 206], the quantum effective action of
the theory at hand is obtained by starting with a theory with an asymptotically large
classical pole mass mφ → ∞, and then lowering the mass successively until the physical
point is reached. For this purpose, we recast the classical action of the scalar theory (2.1)
as

S[ϕ] =

∫
d3x

{
1

2
ϕ
(
−∂2 + Zφ µ

)
ϕ+

λϕ
4!
ϕ4

}
, (4.94)

where ϕ refers to the full fluctuating quantum field. µ > 0 signals a classical potential
with a trivial minimum. Then, the mass parameter can be identified with the classical
mass squared, m2

φ = µ. For µ < 0 in turn, the full potential exhibits non-trivial minima,

and the classical mass of the theory follows from the effective potential as m2
φ = −2µ.

The wave function Zφ has been introduced for convenience, anticipating the emergence of
a wave function. For asymptotically large pole masses we have Zφ → 1, see Figure 4.17b.
Then, the pole mass is given by

m2
φ = µ− 3µ θ(−µ) , (4.95)

capturing both, theories deep in the symmetric phase with µ → +∞ and theories deep
in the broken phase with µ → −∞. Here, we will focus on the symmetry-broken phase
µ < 0 in order to facilitate comparison with the spectral DSE results of Section 4.1. The
discussion of the symmetric phase results is deferred to [9].

4.2.4.1. Spectral flow of the propagator

The infinitesimal change of the quantum effective action Γ[φ] under a change of the mass
µ is governed by the manifestly finite renormalised Callan-Symanzik equation (4.74). We
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switch back to the dimensionful scale parameter to explicitly connect to the form (4.94)
including the wave function renormalisation Zφ. The corresponding functional CS equation
for the effective action reads

µ∂µΓ[φ] =
1

2

(
1− ηφ

2

)
ZφµTr

[
G[φ] + φ2

]
− 1

2
µ∂µSct[φ] , (4.96a)

with the anomalous dimension

ηφ = −2
µ∂µ Zφ
Zφ

, (4.96b)

The factor 2 in (4.96b) takes into account that µ has mass dimension 2, and the anomalous
dimension ’counts’ dimensions and not 1/2 dimensions. The argument φ in (4.96) is the
mean field. The term µ∂µSct[φ] in the second line of (4.96a) is the flow of the counterterms
that renders the flow equation finite, where the factor 1/2 was added for convenience.
The loop term on the right-hand side depends on the full field-dependent propagator. In
momentum space, the trace in (4.96a) corresponds to a momentum integral.

Note that the effective action Γ[φ] in (4.96) includes the full mass term 1/2
∫
x µφ

2

in contradistinction to the effective action used in standard fRG momentum-shell flows.
There, the momentum dependent regulator part of the mass term is subtracted, and the
physical theory is reached when it vanishes. In the present setup, the µ-dependent effective
action is that of a physical theory with mass parameter µ, and the flow is one in (physical)
theory space.

Compared to the Wetterich equation [76] with a momentum-dependent infrared regu-
larisation, the novel ingredient in the functional Callan-Symanzik equation (4.96) is the
explicit counterterm flow µ∂µSct[φ]. The counterterm flow has been derived in a manifestly
finite limit of standard momentum cutoff flow equations as discussed in detail in Secti-
on 4.2.2.2 resp. [6]. The derivation entails that the flow of the counterterm originates from
a closed one-loop expression such as the trace in (4.96) itself, i.e., µ∂µSct[φ] ∼ diagramms.
Accordingly, the counterterm flow contains no tree-level contributions to the respective
correlation functions. This entails that classical values of the correlation functions are sole-
ly given by the respective choice of tree-level values specified in the classical action (4.94),
and in particular cannot be further changed by specification of renormalisation conditi-
ons. In consequence, the latter can only be used to renormalise the flow contributions,
but not the initial conditions of the flow. This excludes, for example, that the counter-
term flow rearranges the theory from the symmetric into the broken phase or vice versa by
µ∂µSct ∝ ±const.µ

∫
φ2. However, the counterterm can contain similar terms proportional

to λφ/mpole = λeff.
Here, we consider the flow of the inverse propagator within the spectral representati-

on (4.77). This entails a particularly simple structure of the non-perturbative diagrams
in the flow equations, in which the momentum loop integration can be performed analy-
tically; see Section 4.2.3.3. The flow is diagrammatically depicted in Figure 4.16; for the
algebraic form, see [9]. All quantities in the flow equation (4.96a) depend on the chosen
background φ. For general spacetime-dependent backgrounds φ(x) this would lead us to
Γ(2)[φ](p, q). In the explicit computations we consider the background φ0, which is the
constant solution of the equation of motion

δΓ[φ]

δφ

∣∣∣∣
φ=φ0

= 0 . (4.97)
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(a) Scattering tail ρ̃k for vanishing spatial mo-
mentum ~p = 0 as a function of the spec-
tral value ω and the pole mass mpole for
1/20 ≤ mpole/λφ ≤ 1/10.

0.0 0.5 1.0 1.5 2.0

0.92

0.94

0.96

0.98

1.00

mpole [λϕ]

1
Z

ϕ

Trajectory of the residue in the broken phase

classical value Zϕ  1

(b) Amplitude 1/Zφ of the pole contribution of
the spectral function (4.100) as a function of
the pole mass mpole for 1/20 ≤ mpole/λφ ≤
1/2. The classical value for Zφ is indicated
in grey.

Abbildung 4.17.: Spectral function ρ, (4.100), for different pole masses mpole/λφ, measured
in the fixed coupling λφ.

Since we assume the physical background field φ0 defined by (4.97) to be constant, the
general field-dependent propagator (2.22) reduces to the physical propagator G(p2) (2.26)
in the absence of source terms. From now on we drop the field argument φ0. It is implicitly
understood that all correlation functions are evaluated at φ = φ0.

After this explicit discussion of functional flows with the mass scale µ, we substitute
µ with −k2, to keep the relations to standard fRG flows with momentum cutoffs simple,
where k is commonly used. The minus sign arises from the negativity of the mass term
in the broken phase, see (4.95). This facilitates the comparison and benchmarking of
the realtime results obtained with the spectral fRG. For example, the three-dimensional
φ4-theory has been studied abundantly within the Euclidean fRG, including systematic
studies of the convergence of approximation schemes, for a recent review see [63]. These
results carry over straightforwardly to the present approach, and the Euclidean correlation
functions obtained from the spectral functions can be directly compared. This substitution
leads us to

k2 = |µ| , ∂t = k ∂k = 2µ∂µ , (4.98)

where the (negative) RG time t = log(k/kref) is measured relatively to a suitable reference
scale or mass.

4.2.4.2. Spectral on-shell renormalisation

We proceed with discussing the on-shell spectral renormalisation, see Section 4.2.2.3 and
Section 4.2.3.3, applied to the current setup, exploiting the direct access to Minkowski
momenta. In (2 + 1) dimensions, both diagrams in the CS flow Figure 4.16 are manifestly
finite, and the flow of the counterterm action µ∂µSct only guarantees the implementati-
on of the chosen renormalisation conditions. The (2+1)-dimensional φ4-theory is super-
renormalisable, and one only has the renormalisation condition for the mass. Here, we
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=
Abbildung 4.18.: Truncated DSE for the three-point function in the skeleton expansion.

The notation is given in Figure 2.1.

employ flowing on-shell renormalisation, where the pole mass mpole is identified with mφ,
m2

pole = 2k2. The corresponding renormalisation condition reads

Γ(2)[φ0]
∣∣∣
p2=−2k2

= 0 , (4.99)

also sourcing an additional factor of 2 in front of the pole position in comparison to (4.75),
where m2

pole = k2 was used. Furthermore, in contradistinction to (4.75), we did not sub-
tract the trivial running of the regulator flow 1/2

∫
x µφ

2 in (4.96a). This gives rise to the
additional φ2 term inside the trace in (4.96a) compared to the standard CS flow (4.73),
ultimately resulting in the two-point function equating to zero in (4.99).

In our physical on-shell RG scheme, the phase transition between the symmetric and
broken phase happens for m2

φ = 0. Hence, we approach the phase transition in the limit
k → 0, and the flow is taking place solely in the broken phase here. This also avoids flows
through the phase transition as are present in momentum cutoff flows.

Due to the non-vanishing background field in the broken phase, 1→ 2 scattering proces-
ses are allowed. The onset of the scattering continuum of the spectral function is therefore
located at twice the pole mass, and the corresponding spectral function schematically
reads

ρ(λ) =
2π

Zφ
δ(λ2 −m2

pole) + θ(λ2 − (2mpole)
2)ρ̃(λ) , (4.100)

In Figure 4.17, we show the corresponding scale evolution of the spectral function ρ:
in Figure 4.17a we depict the scattering tail ρ̃, and in Figure 4.17b we depict the amplitude
of the pole contribution. All quantities are measured relative to the coupling λφ.

The spectral tail is rising towards smaller pole masses for a fixed classical coupling, and
in turn the amplitude 1/Zφ of the pole contribution is decreasing. In combination the sum
rule (4.7) holds during the evolution. The growing importance of the scattering processes
can be understood from the fact that the dynamics of the theory only depends on the
dimensionless ratio λφ/mφ with mφ ∝ k. Hence, the effective coupling grows strong for
smaller pole masses and on the other hand the dynamics of the theory are vanishing for
asymptotically large pole masses.

4.2.4.3. Flowing with the minimum

In general, the flow equation (4.96a) can be evaluated for arbitrary values of the external
field φ, which requires the inclusion of the full effective potential. However, this goes
beyond the scope of this work, and we simply evaluate the flow on the solution φ0 of the
equation of motion (4.97). This is a commonly used truncation as it gives access to the
physical correlation functions.
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Abbildung 4.19.: Schematic phase diagram with respect to the mass-parameter µ. The
phase boundary is located at µ = 0. The flow is initiated in the deep
UV, i.e. |µ| = k2 → ∞ with the respective (classical) initial effective
potential. Note that we are only considering the symmetry-broken phase,
depicted on the left, here.

In the present fRG approach with the spectral CS regulator, the flow takes place in
theory space and the effective action is physical for all values of k. In the broken phase,
the minimum of the full effective potential depends on k, and the total mass flow of
the two-point function is given by the flow diagrams originating from the CS equation,
∂tΓ

(2)[φ0](p) and a term proportional to the mass flow of φ0,

d

dt
Γ(2)[φ0](p) = ∂tΓ

(2)[φ0](p) +
(
∂tφ0Γ(3)[φ0]

)
(p) . (4.101)

The novel ingredient in the present setup originates in the tree-level k-dependence of
φ0 ≈ k

√
6/λφ, see (4.103). This tree-level dependence is usually absent in the flow of the

minimum in standard momentum-shell flows. There ∂tφ0 only comprises the effects of the
momentum shell integration and hence is inherently one-loop and beyond. The tree-level
k-dependence of φ0 in the present case triggers a tree-level k-dependence of ∂tφ0Γ(3)(p)
and the tree-level flow of the physical two-point function considered here reads

d

dt
Γ(2)

∣∣∣
tree-level

= −2k2 + ∂tφ0S
(3)[φ0] = 4k2 , (4.102)

where the classical three-point function is given by S(3)[φ] = λφφ.

4.2.4.4. Approximations

To facilitate comparison with the spectral DSE results of Section 4.1, we employ the exact
same approximations for the higher correlation functions. The four-point function is given
by the s-channel bubble resummation (4.34), depicted in Figure 4.8, obeying a simple
spectral representation (4.36).

The full momentum dependence of the three-point function in (4.101) can be incorpo-
rated via its DSE, which allows for an exact diagrammatic flow of the two-point function
on the physical minimum φ0. In the presence of approximations, a fully self-consistent
treatment would require us to use the integrated flow of Γ(3)[φ0](p, 0). However, also the
flow of Γ(3)[φ0] includes a similar additional term as in (4.102), which is proportional to
the four-point function. To ensure the correct RG scaling of the flow equation, we employ
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a skeleton expansion in the three-point DSE, where every vertex is dressed. Approxima-
ting Γ(n>4) ≈ 0 and dropping the remaining two-loop diagrams, we arrive at the simple
diagrammatic structure of the three-point function depicted in Figure 4.18.

The effective potential is given by a Taylor expansion about the constant background
field φ0 (4.26), as in Section 4.1. With Γ(n>4) ≈ 0, this again allows us to relate the three-
and four-point function via (4.30). Employing (4.30) on the RHS of the three-point DSE
in Figure 4.18 hence allows us to close our truncation.

For the explicit form of the final flow equation including that of the counterterm action,
also at real frequencies, we refer to [9].

4.2.4.5. Resume

In order to obtain intuition for the physical picture emerging within the spectral functional
flow at hand, it is beneficial to consider the ultraviolet limit of the effective potential of the
theory. Evidently, in the classical limit with vanishing spectral tail ρ̃k = 0 and Zφ = 1, see
Figure 4.17b, the curvature mass (4.28) agrees with the pole mass. This limit is approached
for asymptotically large pole masses, where the effective coupling λφ/mpole tends towards
zero. Hence, the ultraviolet effective potential VUV(φ) at k = Λ→∞ is augmented with a
classical dispersion with µ = −Λ2 and the initial (classical) coupling v2 = λφ, see (3.131),

VUV(φ) =
1

4!
λφ
(
φ2 − φ2

0

)2
, φ2

0 =
6Λ2

λφ
, (4.103)

for φ2 ≥ φ2
0. The initial curvature and pole mass are given by

m2
pole = m2

curv = 2Λ2 . (4.104)

This leads us to the following structure: the CS flow is initiated deep in the broken phase
for large pole masses and a given classical coupling λφ. This entails, that also the field
expectation value at the initial scale is large as it scales with Λ, see (4.103). Then, the
pole mass is successively lowered and for k = 0 one reaches the phase transition point.
In particular, the flow does not leave the symmetry-broken phase; see Figure 4.19. This
is in seeming contradiction to the standard fRG picture in a scalar theory, where flows
in the broken phase may end up in the symmetric phase. This apparent contradiction is
resolved by the fact, that φ0 in the standard fRG is defined from the subtracted EoM.
There, the trivial cutoff flow, which is ∝ k2φ, is subtracted from the effective potential,
and one recovers physics only in the limit k → 0.

4.2.5. Results

In this section, we present results for the non-perturbative spectral functions of the scalar
propagator. The discussion of the numerical implementation is deferred to [9]. The results
allow for an investigation of the scattering processes in both phases. The present results
are in remarkable quantitative agreement with that obtained with the spectral DSE in
[1], discussed in Section 4.1. This agreement of the spectral functions from these two
different functional approaches hold true for a large range of effective couplings λφ/mφ,
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(a) Spectral function of the propagator. The
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Abbildung 4.20.: Spectral functions as a function of Minkowski frequency in comparison
to DSE results from [1], see Section 4.1. In contrast to Figure 4.17, all
quantities are measured in units of the pole mass to facilitate the com-
parison with the DSE results.

see Figure 4.20a. In this coupling regime this agreement provides a non-trivial reliability
check for both functional approaches, thus decreasing the respective systematic error.

In Figure 4.20a the spectral function from the current fRG approach is compared to
spectral DSE results from [1] resp. Section 4.1. Every quantity is measured relative to
the respective pole mass to facilitate comparison with the DSE results. This allows to
compare the relative magnitude of the scattering continua for different coupling strengths.
For effective couplings λφ/mpole . 20, the spectral weight of the scattering continuum
is sub-leading, as can be inferred from the combination of Figure 4.17b and the sum
rule (4.7). The amplitudes of the pole contributions are listed in Section 4.2.5.

We find a remarkable agreement of both methods in the tested coupling range. For effec-
tive couplings λφ/mpole ≈ 20, the deviations start growing, specifically at the thresholds.
Deviations between both methods arise due to differences in the resummation structure
of the two functional equations in the current truncation. The convergence of functional
techniques for a large range of couplings is non-trivial and strengthens our confidence in
spectral functional approaches.

In general, the tail of the propagator spectral function is enhanced for stronger couplings,
while the residue of the mass pole decreases as the scattering states become more accessible

λφ/mpole 1/Zφ (fRG) 1/Zφ (DSE)

5 0.971 0.969

10 0.950 0.945

20 0.921 0.907

Tabelle 4.1.: Amplitudes 1/Zφ of the pole contribution for given effective couplings, cor-
responding to the scattering tails displayed in Figure 4.20a.
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Euclidean propagator in the broken phase

(a) Propagator as function of Euclidean frequen-
cy. This result serves as a cross-check bet-
ween a direct computation via the flow and
a calculation using the spectral functions.
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Euclidean 4-vertex in the broken phase

classical λϕ mpole

(b) Four-point vertex as function of Euclidean
frequency. Results are obtained from the re-
spective spectral functions in Figure 4.20a.
The classical values of the vertices are indi-
cated in grey.

Abbildung 4.21.: Euclidean correlators in the broken phase. All quantities are measured
in units of the pole mass.

due to the rising dimensionless interaction strength. The three- and higher N -particle
onsets are graphically not visible in the full spectral functions of Figure 4.20a, but present
in the data. In the limit of large couplings we expect the three-particle onset to become
more pronounced as the tadpole contribution becomes large.

The four-point spectral function shown in Figure 4.20b consists of only a negative scat-
tering tail corresponding to a 2 → 2 scattering process. For higher couplings, the three-
particle onset becomes visible. The different suppression of higher N -particle thresholds
in the propagator- and four-point spectrum are explained by dimensional analysis. Whi-
le for the propagator spectral function, higher N -particle onsets are suppressed by their
squared energy threshold, the four-point spectral function decays only with λ−1, leading
to a suppression linear in their respective energy thresholds. In both cases, four-particle
or higher onsets are strongly suppressed, since they come with at least one additional loop
each. The corresponding Euclidean correlators are shown in Figure 4.21b, also showing
remarkable agreement with the DSE.

Figure 4.21a shows the Euclidean propagators corresponding to the spectral functions
of Figure 4.20a. As a cross-check, we compare the Euclidean propagator calculated from the
spectral representation to the propagator directly obtained from the integrated Euclidean
flow. We find the spectral representation to hold.

4.2.6. Conclusion

In this section, we have derived a novel functional flow equation with flowing renormali-
sation, see (4.73) in Section 4.2.2.2, and successfully put it to use in a scalar φ4-theory
in Section 4.2.4 for the computation of spectral functions. Flowing renormalisation entails
that the renormalisation condition can be adapted with the flowing scale. This can be
used for fRG flows from the finite renormalised UV effective action at large infrared cutoff
scales to the full effective action at k = 0. Importantly, it also allows for manifestly finite
fRG flows with regulators that do not implement a UV regularisation of the loop, such
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as the Callan-Symanzik regulator. The respective CS flow, (4.74), is manifestly finite in
general truncation schemes. The novel fRG flows (4.73) and (4.74) constitute key results
of this chapter.

While finite (or homogeneous) CS equations are well-known, they are based on mul-
tiplicative renormalisation, which is not amiable to general truncation schemes, and in
particular do not support most non-perturbative schemes. In turn, the present derivation
is solely based on the general fRG framework with finite flow equations with respect to
an infrared regulator. This embeds the Callan-Symanzik equation self-consistently in this
Wilsonian framework. The current derivation also provides the full formal justification of
its use in asymptotic safety [206].

We have then used the finite Lorentz invariant CS flows to set up the Lorentz invariant
spectral fRG in Section 4.2.3, which we use to compute single particle spectral functions
in Section 4.2.4. The flow equation is evaluated on the (flowing) solution to the equations
of motion, corresponding to a scale-dependent background field effectively acting as an
order parameter for symmetry breaking.

Together with the flowing on-shell renormalisation condition, this physical choice allo-
wed us to formulate the flow along a physical trajectory in theory space. This trajectory
connects an infinitely heavy theory in the UV, where the effective action is reduced to the
classical one, with the strongly interacting massless limit k = 0, where the phase tran-
sition happens. In particular, our setup avoids flows through the phase transition, which
are present in momentum cutoff flows. Furthermore, the implementation of a flowing re-
normalisation condition eliminates the need of fine-tuned initial conditions and allows for
monotonous mass-flows.

The explicit results, see Section 4.2.5, are in impressive agreement with those obtained
in [1] within the spectral DSE, see Section 4.1. This strengthens our confidence in spectral
functional approaches to obtain reliable and fully non-perturbative realtime correlation
functions.

An appealing feature of the fRG approach is that it captures average momentum depen-
dencies of vertices. This allows to include non-trivial vertex dynamics without resorting
to full spectral representations of higher correlation functions. The current spectral fRG
approach is straightforwardly and easily extended to include the flow of the full effective
potential, and is a pivotal step to unravel realtime correlations in QCD from first principles
with spectral functional approaches.
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5. Fundamental realtime
correlation functions

In this chapter, we put the spectral functional approach introduced in Chapter 4 to use.
We present numerical results for all fundamental QCD propagators, i.e., ghost, gluon and
quark, in Minkowski space.

In Section 5.1, basing on [5], we discuss the complex structure of the coupled system of
ghost and gluon propagator DSEs in Yang-Mills theory. To that end, we first analytically
demonstrate how complex singularities propagate through the system by iteration in a sim-
ple truncation, posing tight consistency constraints on the analytic structure of potential
solutions. The numerical solution of the system was plagued by the appearance of exactly
such complex singularities. In consequence, the calculation of a gluon spectral function
was not possible. A scenario fulfilling analytic consistency constraints is the one where
both, the gluon and ghost propagator, obey a Källén-Lehmann representation. Under this
assumption, in Section 5.2 we present results for the ghost spectral function, which are
based on [2]. These are obtained using the spectral ghost DSE while resorting to spectral
reconstruction results in Yang-Mills theory from [243] for the gluon spectral function.

While Yang-Mills theory offers a plethora of interesting phenomena itself, we are even-
tually interested in QCD correlation functions. In Section 5.3, building on [3], we move
away for a bit from the direct calculation of Minkowski space correlators via functional ap-
proaches and turn towards spectral reconstruction of Euclidean high-precision correlator
data from lattice QCD. We demonstrate how functional realtime results such as the ghost
spectral function in Yang-Mills [2], see Section 5.2, can be used as prior information sup-
porting the spectral reconstruction of lattice QCD data. Making use of Gaussian process
regression (GPR), a non-parametric Bayesian approach, we reconstruct ghost and gluon
spectral functions from 2+1 flavour lattice QCD data [100, 101]. These reconstruction re-
sults in turn, and in particular that of the gluon spectral function, feature as direct input
for the direct calculation of the quark spectral function via the spectral DSE approach we
present in Section 5.4, which bases on [7]. There, we also put forward a detailed discussion
of sources of complex singularities in the quark propagator, focussing on STI-consistent
vertex constructions and gluon propagators with and without complex poles.
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5.1. Complex structure of Yang-Mills theory

This section presents results of [5].

In recent years, ghost and gluon spectral functions have been reconstructed from nume-
rical data of Euclidean ghost and gluon propagators, see, e.g., [243, 258–261]. Also direct
computations have been put forward, either perturbatively, e.g., [262, 263], with non-
perturbative analytically continued DSEs [207, 264], or in a spectral approach [42]. While
these direct computations unravel interesting structures, they are still inconclusive.

As a first step towards a full QCD treatment, in this section we use a coupled set
of spectral DSEs to compute the ghost and gluon propagators and spectral functions in
Yang-Mills theory directly in Minkowski spacetime. Apart from the numerical results, the
spectral set-up allows us to unravel much of the intricate spectral structure of the Yang-
Mills two-point functions. In summary, the present work serves a two-fold purpose: First,
the results presented here constitute an important step towards full self-consistent func-
tional resolution of timelike correlation functions which gives the access to the interesting
scattering and resonance physics in QCD mentioned above. Second of all, both the nu-
merical and the analytic results on the complex structure of ghost and gluon propagators
provide non-trivial constraints for spectral reconstructions as well as direct computation
of timelike propagators in Yang-Mills theory and QCD. Importantly, these constraints can
be used to qualitatively improve the systematic error of these computations.

We close the introduction with a bird eyes view on this section: In Section 5.1.1, we
briefly review the basics of Yang-Mills theory and the spectral representations of gluon and
ghost are discussed. In Section 5.1.2 we set up the coupled Yang-Mills system of gluon and
ghost propagator DSEs in a spectral manner. Section 5.1.3 is devoted to a discussion of
the complex structure of Yang-Mills theory based on the spectral formulation introduced
in Section 5.1.2. In particular, we evaluate the non-spectral scenario of a pair of complex
conjugate poles in the gluon propagator. In Section 5.1.5, we present numerical solutions to
the coupled DSE system of Yang-Mills. Section 5.1.6 contains a conclusion and a discussion
of the consequences of our combined results.

5.1.1. Yang-Mills theory and the spectral representation

We consider functional approaches to 3 + 1-dimensional Yang-Mills theory with Nc = 3
colors in the Landau gauge, see [58, 59, 61–63, 265] for fRG and [53–56, 132, 135, 136] for
DSE reviews. The gauge-fixed classical action was introduced in Section 3.1. We iterate it
here for readability,

SYM =

∫
d4x

[
1

4
F aµνF

a
µν − c̄a∂µDab

µ c
b +

1

2ξ
(∂µA

a
µ)2

]
. (5.1)

Landau gauge is given in the limit ξ → 0.
The functional relations derived from (5.1) are one-loop exact in the fRG approach, and

two-loop exact in the DSE approach, since the highest primitively divergent vertex is a
four-point function. In both approaches the propagator plays a fundamental role,

〈φi(p)φj(q)〉c = (2π)4δ(p+ q)Tφiφj (p)Gφi(p) , (5.2)

where the subscript c stands for connected. The fields in (5.2) are φ = (Aµ, c, c̄), and the
tensor Tφiφj (p) carries the Lorenz and gauge group tensor structure. The scalar parts of
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the propagators are given by Gφ = GA, Gc. In the Landau gauge, the gluon propagator is
transverse,

[TAA(p)]abµν = δabΠ⊥µν(p) , (5.3)

and Π⊥ denotes the transverse projection operator defined in (3.64). For the computations,
we parametrise the scalar part GA of the gluon propagator as,

GA(p) =
1

ZA(p)p2
, (5.4)

where the gluon dressing function is given by 1/ZA(p). Note that this convention might
differ from other DSE related works and is more similar to fRG related conventions.
Similarly, for the ghost we have a simple tensor structure T abcc̄ = δab, and we choose to
parametrise the scalar part as

Gc(p) =
1

Zc(p)p2
, (5.5)

with the ghost dressing function 1/Zc(p). We will compute (5.4) and eq. (5.5) for general
complex momenta, of course including timelike ones. Extensions of correlation functions
to the complex plane are particularly interesting, in view of their relevance for the self-
consistent treatment of bound-state problems, see, e.g., [120, 266, 267].

If the KL spectral representation is applicable, a propagator G can be recast in terms
of its spectral function ρ, see (4.3).

The spectral function naturally arises as the set of non-analyticities of the propagator
in the complex momentum plane. If the KL representation holds, the non-analyticities are
restricted to the real momentum axis. Therefore, Equation (4.3) directly implies an inverse
relation between the spectral function and the retarded propagator (4.4). Note again that
as in Section 4.1 Lorentz symmetry allows us to reduce our considerations to ~p = 0 and
then use p2

0 → p2. Hence, for the remainder of this work, |~p| will be dropped.
Formally, the ghost propagator is expected to obey the KL-representation [268, 269],

Gc(p) =

∫ ∞

0

dλ

π

λ ρc(λ)

p2 + λ2
, (5.6)

if the corresponding propagator is causal. Also, recent reconstructions [260, 261] and calcu-
lations [2], see Section 5.2, show no signs of a violation of this property. The ghost spectral
function must exhibit a single particle peak at vanishing spectral value, with residue 1/Zc.
In addition, a continuous scattering tail is expected to show up in the spectral function
via the logarithmic branch cut. This leads us to the general form of the ghost spectral
function,

ρc(ω) =
π

Zc

δ(ω)

ω
+ ρ̃c(ω) , (5.7)

where ρ̃c denotes the continuous tail of the spectral function and δ(ω)/ω has to be under-
stood as a limiting process δ(ω − 0+)/ω.

Inserting (5.7) in (5.6) leads us to a spectral representation for the ghost dressing func-
tion,

1

Zc(p)
=

1

Z0
c

+ p2

∫
dλ

π

λ ρ̃c(λ)

p2 + λ2
. (5.8)
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In the case where the spectral function can be normalised by solely integrating it over the
whole branch cut, the normalisation is given by the value of the inverse dressing function
at infinity. A detailed derivation of this is given in [2] and Appendix A.8. Since the inverse
ghost dressing tends to zero for large momenta, the ghost spectral function obeys

∫
dλ

π
λ ρc(λ) = 0 . (5.9)

Equation (5.9) is an analogue of the Oehme-Zimmermann superconvergence property of
the gluon [255, 256]. Expressed in terms of the spectral representation of the dressing (5.8),
it reads

∫
dλ

π
λ ρ̃c(λ) = − 1

Z0
c

. (5.10)

Equation (5.10) entails that the total spectral weight of the ghost vanishes. For a generic
discussion, see [2] resp. Appendix A.8 and [254].

The situation for the gluon is rather similar, as it has a spectral representation under
the same conditions as the ghost, i.e., the propagator must be causal. In this case we are
led to

GA(p) =

∫ ∞

0

dλ

π

λ ρA(λ)

p2 + λ2
, (5.11)

which is covered by (4.3). The associated sum rule is

∫ ∞

0

dλ

π
λ ρA(λ) = 0 , (5.12)

the Oehme-Zimmermann superconvergence relation. In summary, both, ghost and gluon
spectral function have a vanishing total spectral weight: (5.10) and (5.12). Note that the
validity of the underlying assumptions is subject of an ongoing debate; for results and
discussions, see, e.g., [2, 3] resp. Section 5.2 and 5.3 and [104, 195, 207, 243, 258, 260, 263,
264, 270–276].

Independent of this debate, the IR and UV of the gluon spectral function are fixed from
analytic considerations, a detailed discussion thereof can be found in [243]. We briefly
summarize it here: In both, the IR and UV, the spectral function is negative. In the UV
this simply follows from perturbation theory [255, 256]. For the IR, the situation is more
intricate. In order to make statements, one requires that the gluon propagator is analytic
in the finite, open semicircle in the upper half plane around the origin. This includes the
Euclidean domain, and, e.g., (5.11) meets this criterium. With this at hand, it can be
shown that the gluon spectral function is negative in the IR, owing to the contribution
of the ghost loop. More details of the derivation and explicit analytic forms can be found
in [243].

5.1.2. Spectral DSEs of Yang-Mills theory

In this section, we set up the spectral Yang-Mills system in order to compute the gluon
and ghost spectral function ρA and ρc.
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Abbildung 5.1.: Ghost-gluon vertex dressing λ
(cl)
Acc̄(p, q) (left) and three-gluon vertex dres-

sing λ
(cl)
A3 (p, q) (right), see (5.13) resp. (5.16). The data is taken from [243].

The dressing functions are shown at the symmetric point p2 = q2 = (p+q)2

for scaling and lattice-type decoupling solution, more details can be found
in [243].

5.1.2.1. Vertex approximation

The full ghost-gluon vertex consists of two tensor structures, see e.g. [94, 95, 182],

[ΓAc̄c]
abc
µ (p, q) = ifabc[qµλ

(cl)
Ac̄c(p, q) + pµλ

(nc)
Ac̄c (p, q)] , (5.13)

and the momentum arguments pi in our vertices Γφ1···φn(p1, ..., pn−1) always indicate the
incoming momentum of the field φi. In (5.13) we have the incoming gluon momentum p
and anti-ghost momentum q, and we have dropped the momentum conserving δ-function.

The ghost-gluon vertex is subject to Taylor’s non-renormalisation theorem, and does not
require renormalisation in the Landau gauge. Within our MOM-type scheme, the dressing
functions are set to unity at the renormalisation point µRG, i.e., ZA(µRG) = Zc(µRG) = 1.
Accordingly, the classical ghost-gluon dressing reduces to the strong coupling gs at the
renormalisation point, which typically is chosen to be the symmetric point, p2 = q2 =
(p+ q)2, or the soft gluon limit, p→ 0, q2 = µ2. In short,

λ
(cl)
Ac̄c(p, q)

∣∣
µRG

= gs . (5.14)

We emphasize that (5.14) is not an RG condition, it is a consequence of the non-renormalisation
of the ghost-gluon vertex. Moreover, the non-classical dressing in (5.13) is proportional to
the gluon momentum and hence drops out of the ghost DSE due to the transversality of
the Landau gauge gluon propagator.

The lack of a logarithmic RG running also leads to a very mild momentum dependence
of the vertex, see e.g. [93, 95, 99, 182, 277–282]. In the left panel of Figure 5.1, the ghost-
gluon vertex data from [95] is depicted at the symmetric point p2 = q2 = (p+q)2 for both,
the scaling solution and a lattice-type decoupling solution. For further explanations, we
refer to the detailed discussion of [94, 95].

In the present work we neglect the mild momentum dependence and identify the vertex

dressing λ
(cl)
Ac̄c with its value at the renormalisation point, (5.13), to wit,

λ
(cl)
Ac̄c(p, q) ≈ gs , (5.15)

113



5.1. Complex structure of Yang-Mills theory

which should only introduce a small systematic error for our Euclidean results.
The three-gluon vertex can be parametrised by ten longitudinal and four transverse

tensor structures. In the Landau gauge, only the transverse ones contribute, the dominant
being the classical tensor structure [283]. Neglecting the subleading tensor structures, the
three-gluon vertex can be written as

[Γ
(3)
A3 ]abcµνρ(p, q) = ifabcλ

(cl)
A3 (p, q) [T (cl)

A3 ]µνρ(p, q) , (5.16)

with the classical Lorentz structure T (cl)
A3 defined as

[T (cl)
A3 ]µνρ(p, q) = (p− q)νδµρ + (2q + p)µδνρ − (2p+ q)ρδµν . (5.17)

At the symmetric momentum configuration, the dressing function λ
(cl)
A3 gets negative in the

deep IR region and rising for increasing momenta [93, 95, 204, 284] due to its anomalous
dimension, see right panel of Figure 5.1. Since the ghost loop is known to dominate the
gluon gap equation in the IR, we approximate the dressing function by its counterpart at
the renormalisation point, as already done for the ghost-gluon vertex, (5.15),

λ
(cl)
A3 (p, q) ≈ gs , (5.18)

with gs being the strong running coupling gs(p) at the renormalisation scale p2 = µ2. This
yields a considerable technical simplification, since the realtime nature of the spectral
approach requires all momentum integrals to be solved analytically, as discussed in detail
in [2], see Section 5.2. However, in contradistinction to the approximation in the ghost-
gluon vertex this introduces a sizeable systematic error due to the sizeable momentum
dependence shown in the right panel of Figure 5.1. Accordingly, we expect our results to
be of qualitative nature, and the systematic error can be evaluated by comparing the results
to those obtained in quantitatively reliable approximations within functional approaches,
e.g. [93, 95] and on the lattice, see e.g. [102, 125, 128].

We emphasize that our approach is by no means restricted to classical vertices: quantum
corrections may be duly accounted for, as long as the momentum loops involved can be
integrated analytically. Especially, upon construction of spectral representations for higher
n-point-functions, see e.g., [285–297], fully dressed vertices of general form can be included.
In the present work, we restrict ourselves to classical ones, as this allows us to study the
emergence and interrelations of poles and generic complex structures of the propagators
themselves.

5.1.2.2. Spectral DSEs

In the Landau gauge, functional relations of transverse correlation functions are closed:
they do not depend on the longitudinal sector due to the transversality of the gluon
propagator, see [63, 95, 107]. For the present coupled set of propagator DSEs this entails

that the gluon two-point function, Γ
(2),‖
AA , does not enter in the system: neither the loop in

the ghost DSE nor those in the gluon DSE depend on it. The ghost and gluon gap equations
can be reduced to DSEs of the respective scalar parts, and we use the parametrisation,

[Γ
(2),⊥
AA ]abµν(p) = Π⊥µν(p)δabZA(p)p2 , (5.19a)

[Γ
(2)
cc̄ ]ab(p) = δabZc(p)p

2 . (5.19b)
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The dressings Zφ(p) in (5.19) can be conveniently written in terms of the respective self
energies, to wit,

ZA(p)p2 =Z3p
2 − ΣAA(p) , (5.20a)

Zc(p)p
2 = Z̃3p

2 − Σc̄c(p) , (5.20b)

with the renormalisation constants Z3 and Z̃3 associated with the gluon and ghost fields.
They contain the counter terms, that lead to finite loops as well as adjusting the renor-
malisation conditions in their respective DSEs.

Similarly, the classical ghost-gluon and three-gluon vertices in Figure 5.2 contain re-
spective renormalisation constants Z1 and Z̃1, i.e.

SµAcc̄(p, q) = − Z̃1igsf
abcpµ , (5.21a)

Sµνρ
A3 (p, q) =Z1igsf

abc[T (cl)
A3 ]µνρ(p, q) , (5.21b)

As for the propagators, they contain the counterterms leading to finite loops and adjusting
the renormalisation conditions in their respective DSEs. However, the ghost-gluon vertex
does not require renormalisation in the Landau gauge, and we do not consider vertex DSEs.
Accordingly, their consistent choice is Z1 = Z̃1 = 1, which is implemented later. For the
time being, we keep the renormalisation constants as they elucidate the systematics of the
spectral renormalisation applied in Section 5.1.2.3.

The gluon and ghost self-energies ΣAA and Σc̄c in (5.20) contain all quantum corrections
of the two-point functions, and are determined via their respective propagator DSEs. While
the ghost DSE is one loop closed, the gluon DSE is two-loop closed, and we have dropped
the two-loop diagrams. The corresponding system of DSEs for gluon and ghost two-point
functions in (5.19) is depicted in Figure 5.2, with the notation as defined in Figure 2.1.
The self-energies are then just given by the sum of all loop diagrams. We recast the gluon
self-energy defined in (5.20) in terms of its two contributing one-loop diagrams as

ΣAA(p) =
1

2

(
Dgluon(p)−Dghost(p)

)
, (5.22)

where Dgluon represents the gluon and Dghost the ghost loop. With the classical vertex
approximation discussed in Section 5.1.2.1, we arrive at

Dgluon = g2CAZ1Π⊥µν(p)

∫

q
GA(p+ q)Π⊥γδ(p+ q)GA(q)Π⊥αβ(q)[TA3 ]µαγ(p, q)

× [TA3 ]δβν(−q,−p) , (5.23a)

Dghost = g2CAZ̃1Π⊥µν(p)

∫

q
Gc(p)Gc(p+ q)qν(p+ q)µ . (5.23b)

Here, CA = Nc is the second Casimir for SU(Nc) in the adjoint representation.
The ghost-self energy (5.20) reads,

Σc̄c(p) = g2CAZ̃1

∫

q
(p2 − (p · q)2

q2
)GA(q)Gc(p+ q) . (5.24)
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Abbildung 5.2.: Diagrammatic representation of the Dyson-Schwinger equations for of the
inverse gluon (top) and ghost (bottom) propagator. Wiggly lines represent
gluon and dashed lines ghost fields. Notation as defined in Figure 2.1.

Now we recast the diagrams in (5.22) and (5.24) in their spectral form, using the respec-
tive KL representation (5.11) and (5.6) for gluon and ghost propagator and contracting
the Lorentz structure in (5.23) and (5.24). This leads us to

Dgluon = g2NcZ1

∫

λ1,λ2

ρA(λ1)ρA(λ2)

∫

q
V (p, q)

1

q2 + λ2
1

1

(p+ q)2 + λ2
2

, (5.25a)

with

V (p, q) = Π⊥µν(p)Π⊥γδ(p+ q)Π⊥αβ(q)[TA3 ]µαγ(p, q)[TA3 ]δβν(−q,−p) , (5.25b)

for the gluonic diagram in the gluon DSE. The function V defined in (5.25b) captures all
momentum dependencies arising from contracting the Lorentz structure of vertices and
projection operators in (5.23).

The ghost diagram is given by

Dghost = g2NcZ̃1

∫

λ1,λ2

ρc(λ1)ρc(λ2)

∫

q

(
q2 − (p · q)2

p2

) 1

q2 + λ2
1

1

(p+ q)2 + λ2
2

, (5.25c)

Finally, the spectral representation of the ghost DSE reads,

Σc̄c(p) = g2NcZ̃1

∫

λ1,λ2

ρA(λ1)ρc(λ2)

∫

q

(
p2 − (p · q)2

q2

) 1

q2 + λ2
1

1

(p+ q)2 + λ2
2

, (5.25d)

with ρA and ρc the gluon and ghost spectral functions, respectively, and
∫
λ :=

∫∞
0 dλλ/π.

The momentum integrals are regularised with dimensional regularisation. Importantly, this
makes both, the momentum and spectral integrations, finite, and allows us to interchange
the order of spectral and momentum integration, as done in (5.25).

5.1.2.3. Spectral renormalisation

The momentum integrals in (5.25) involve two classical propagators with spectral masses
λ1 and λ2 These are readily computed in d = 4 − 2ε dimensions; for the computatio-
nal details and the final expressions see Appendix B.5. This leaves us with two spectral
integrals.

Naively one could try to resort to a momentum space subtraction scheme by simply
dropping the 1/ε-term arising from the momentum integration. However, the spectral in-
tegrals suffer from the same superficial degree of divergence as their respective momentum
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integral, and this naive implementation of a MOM scheme does not work. This is a gene-
ric feature in the spectral DSE, for a thorough discussion, see [1] resp. Section 4.1. There
we have set up two spectral renormalisation schemes: spectral dimensional renormalisa-
tion and spectral BPHZ-renormalisation, both exploiting the advantageous properties of
dimensional regularisation of the momentum loop, but treating the spectral divergences
differently.

Spectral dimensional renormalisation also treats the spectral integrals in dimensional
regularisation, hence manifestly respecting all internal symmetries of the theory, including
gauge theory. This property entails that the gluon gap equation in Yang-Mills theory
has no quadratic divergence in spectral dimension renormalisation, and only logarithmic
divergences related to the gluon wave function renormalisation are present.

In turn, in spectral BPHZ renormalisation quadratic divergences are present, which is
a well-known property of the BPHZ scheme in gauge theories and originates in it being
a momentum cutoff scheme. For a detailed discussion see [58, 95, 96, 166] where also the
direct link to Wilsonian cutoffs in the fRG approach and the ensuing modified Slavnov-
Taylor identities (STIs) is discussed. In short, momentum cutoff schemes such as BPHZ-
type schemes necessitate a gluon mass counterterm, which is adjusted such that the STIs
are satisfied. Accordingly, the occurrence of mass counterterms in Yang-Mills theory in a
BPHZ-type scheme is a property of the scheme and restores gauge consistency and does
not (necessarily) signal its breaking.

In the present spectral BPHZ set-up, the spectral divergences are cured by introducing
counterterms, including a gluon mass counterterm, through the renormalisation constants
in (5.20) and taking ε→ 0 before computing the spectral integrals. Then, gauge invariance
is restored by adjusting the finite part of this counterterm such that the STIs are satisfied
on the level of the renormalised correlation function. For discussions about the treatment of
quadratic divergences in functional approaches to Yang-Mills theory, see e.g. [93–95, 298].

In summary, this amounts to a modification of the gluon DSE in (5.20) according to

ZA(p)p2 =Z3p
2 + m̃2

A − ΣAA(p) , (5.26)

where the mass counterterm m̃2
A is chosen such that the quadratic divergence in ΣAA is

cancelled. This already effectively absorbs the tadpole in the gluon DSE into the mass
counterterm.

The ghost self-energy Σc̄c only carries a logarithmic divergence proportional to p2, which
can be subtracted by a proper choice of Z̃3. Within spectral BPHZ renormalisation, the
counterterms are chosen to be proportional to the respective self-energies Σ, evaluated at
some RG scale µRG. We use standard renormalisation condition for the (inverse) dressing
functions,

ZA(µRG) = 1 +
m2
A

µ2
RG

, Zc(µRG) = 1 . (5.27a)

These renormalisation conditions are implemented by the respective choice of the renor-
malisation constants Z3, m̃

2
A and Z̃3 as

Z3 = 1 +
ΣAA(µRG)

µ2
RG

, m̃2
A = m2

A + ΣAA(µRG) , Z̃3 = 1 +
Σc̄c(µRG)

µ2
RG

, (5.27b)

augmented with Z1, Z̃1 → 1, reflecting the lack of vertex DSEs. For a detailed discussion
of self-consistent MOM-type RG conditions for DSEs (MOM in DSEs and MOM2 in fRG

117



5.1. Complex structure of Yang-Mills theory

equations and DSEs), see [171]. Eventually, this leads us to the renormalised system of
DSEs for the gluon and ghost dressing functions,

ZA(p)p2 = p2 +m2
A −

[
ΣAA(p) − ΣAA(µRG)

(
1 +

p2 − µ2
RG

µ2
RG

)]
, (5.28a)

Zc(p)p
2 = p2 −

[
Σc̄c(p)−

p2

µ2
RG

Σc̄c(µRG)
]
. (5.28b)

In perturbative applications the mass parameter m2
A is chosen such that the gluon two

point function has no infrared mass, tantamount to ZA(p)p2 → 0 for p → 0. This is the
requirement of perturbative BRST symmetry, implying the equivalence of the transverse
mass and the longitudinal one, and the latter vanishes due to the STI. In (5.28) this
amounts to

m2
A = ΣAA(0) , (5.29)

which reinstates perturbative gauge consistency with a massless gluon within the BPHZ-
scheme.

In the IR, m2
A is linked to the dynamical emergence of the gluon mass gap in QCD,

see also the discussion in Section 3.1.5 and Section 3.2. The explicit choice of m2
A will be

discussed in Section 5.1.5.

5.1.2.4. Evaluation at real frequencies

Apart from the integration over real spectral parameters λ, the renormalised DSEs in
(5.28) can be evaluated analytically for general complex frequencies. For the extraction
of the spectral functions with (4.4) we choose p0 = −i(ω + i0+). This leads us to the
Minkowski variant of (5.28),

ZA(ω)ω2 =ω2 −m2
A +

[
ΣAA(ω) − ΣAA(µRG)

(
1− ω2 + µ2

RG

µ2
RG

)]
, (5.30a)

Zc(p)ω
2 =ω2 +

[
Σc̄c(ω) +

ω2

µ2
RG

Σc̄c(µRG)
]
, (5.30b)

where, in a slight abuse of notation, we define Σ(ω) = Σ(−iω+), where ω+ denotes the
retarded limit (4.5).

The explicit spectral integral expressions for the self-energies and their renormalised
counterparts can be found in Appendix B.5. The remaining finite spectral integrals have
to be computed numerically, and the spectral functions ρc,A(ω) are given with (4.4) as

ρA(ω) = − 2

ω2
Im
[ 1

ZA(ω)

]
, (5.31)

for the gluon spectral function and

ρc(ω) =
π

Zc
δ(ω2)− 2

ω2
Im
[ 1

Zc(ω)

]
, (5.32)

for the ghost spectral function. Note that in (5.31) and (5.32), the retarded limit (4.5) has
already been carried out, resulting in the delta distribution in (5.32).

The combination of (5.30), (5.31), (5.32) allows us to compute both gluon and ghost
spectral functions ρA and ρc as well as the respective propagators for complex frequencies,
and in particular for spacelike (Euclidean) and timelike frequencies.
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5.1.2.5. Iterative procedure

The spectral DSEs for ghost and gluon propagator (5.30) are solved using an iteration
procedure, discussed in detail in [1], see Section 4.1, and briefly reviewed below:

Assuming spectral representations for ghost and gluon propagator, the gluon spectral

function ρ
(i)
A , obtained after the i-th iteration step with input ρ

(i)
c , is inserted together

with ρ
(i)
c into the spectral integral form of Σc̄c(p), on the right-hand side of (5.30b). Then,

by means of (5.32), we arrive at the (i + 1)-th ghost spectral function, ρ
(i+1)
c . In turn,

ρ
(i+1)
c is then inserted together with ρ

(i)
A into the spectral integral form of ΣAA(p), on the

right-hand side of (5.30a). With (5.31), we then obtain ρ
(i+1)
A . This iteration is repeated

until simultaneous convergence for both spectral functions has been reached. The iteration
commences with initial choices for ρA and ρc. Along with convergence properties, these
choices are discussed in Appendix C.3.

Attempts to solve the system for ρA and ρc via a Newton’s optimization scheme in a
purely spectral manner showed worse convergence properties than the iterative approach.
For this reason, the optimization approach was not pursued further.

5.1.3. Complex structure of Yang-Mills theory with complex conjugate poles

In this section, we analytically show that a gluon propagator with a simple pair of complex
conjugate poles cannot be part of a consistent solution of the coupled DSE system for Yang-
Mills propagators in the Landau gauge with bare vertices set up in Section 5.1.2. This is
pursued in Appendix A.6.1 and Appendix A.6.2. Before we come to this discussion, we
provide a brief overview of results on spectral representations and discuss the manifestation
of single pairs of complex conjugate poles in Section 5.1.3.1. This is followed by a discussion
of the generic impact of singularities in coupled sets of functional equations as well as the
requirements for conclusive studies in Section 5.1.4.

5.1.3.1. Complex structure of Yang Mills propagators

The complex structure of the Yang-Mills propagator, and specifically the gluon propaga-
tor, is the subject of an ongoing debate. Axiomatic formulations of local QFTs forbid the
existence of any further non-analytic structures beyond the real frequency axis for propa-
gators of asymptotic states. It has been argued that this also applies to gauge theories, and
in particular the case of the gluon propagator [271, 273, 299]. Scenarios such as complex
conjugate poles are nevertheless used in reconstructions of the timelike structure of the
gluon propagator, see e.g. [104, 195, 260, 263, 264, 270, 272, 274–276]. However, precision
reconstruction of Yang-Mills propagators in a purely spectral manner and without complex
conjugate poles has successfully been performed in [3], see Section 5.3 and [243, 258, 300].

In Appendix A.6.1 and Appendix A.6.2 we investigate the consequences of a single pair
of complex conjugate poles in the gluon propagator on the complex structure of Yang-
Mills theory fully analytically. While being not fully general, this scenario represents the
simplest and so far only considered case of violation of the spectral representation, both
in reconstructions and analytic considerations.

The spectral formulation employed in Section 5.1.2 enables us to study the general
complex structure of ghost and gluon DSE, as it covers a large class of functions for the
propagators and is by no means restricted to propagators satisfying the KL represen-
tation (4.3). In particular, a gluon propagator with a pair of complex conjugate poles is
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realised by collapsing the (gluonic) spectral integrals at complex spectral values correspon-
ding to complex conjugate pole positions, multiplied by the respective residues. Within
the iterative approach to solving DSEs described in Section 5.1.2.5, we are able to track
the propagation of these non-analyticities through the iterations of ghost and gluon DSE.
This is done in an expansion about the fully analytic spectral parts of all the diagrams. In
other words, we only consider the contributions arising from adding the holomorphicity
violating complex conjugate pole part of the gluon propagator.

Explicitly, for both, ghost and gluon, propagators we will employ the parametrisation

G = GKL +Gχ . (5.33)

The non-spectral part Gχ encodes the respective violation of the KL representation, either
directly given by the complex conjugate poles as for the gluon, or for the ghost induced
by the complex conjugate poles. The spectral contribution GKL is given by the KL repre-
sentation (4.3) of the respective propagator. With the spectral-non-spectral split (5.33),
the contributions to the single diagrams can be ordered in powers of non-spectral con-
tributions Gχ entering. We only consider one-loop diagrams with two propagators in the
spectral DSE setup of Section 5.1.2. Hence, the contributions coming from the additional
non-analyticities that we will consider here are given by GKLGχ, (Gχ)2. The ordinary
spectral part is constituted by (GKL)2.

5.1.4. Propagation of non-analyticities

The systems of DSEs are integral equations, typically solved within an iterative procedure.
In such an iteration, non-analyticities off the real frequency axis propagate through the
system by the iteration. Here, we use this mechanism to study if complex poles allow for an
analytically consistent solution to Yang-Mills theory. Our main results can be summarised
as follows:

In Yang-Mills theory with bare vertices, a pair of complex poles in the gluon propagator

1. violates the Källén-Lehmann representation of the ghost and

2. cannot be part of an analytically consistent solution of Yang-Mills theory without
additional branch cuts in the complex plane.

These results are obtained by the following analysis: We assume a gluon propagator
with only a single pair of complex poles. Via the ghost self-energy diagram, these poles
induce additional branch cuts off the real frequency axis in the ghost propagator. Hence,
the spectral representation of the ghost propagator is violated. The additional cuts in the
ghost propagator can be represented via a modified spectral representation. We use this
representation to study the back-propagation of these additional cuts into the gluon propa-
gator via the ghost loop of the gluon DSE. There, we observe that the cuts likewise induce
branch cuts off the real frequency axis in the gluon propagator. This is at odds with the
initial assumption of a single pair of complex conjugate poles. A consistent solution in the
above scenario, involving a single pair of complex conjugate poles as well as bare vertices,
is hence ruled out: an analytically consistent solution at least needs to be accompanied by
the respective pair of branch cuts. The explicit calculation is carried out in Appendix A.6.
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Complex-conjugate  
poles gluon propagator Violation of ghost spectral representation

Additional branch cuts 
in gluon propagator

+

+

Abbildung 5.3.: Propagation of non-analyticities in the coupled Yang-Mills system with
bare vertices. The displayed calculation is fully analytic. Complex poles
in the gluon propagator cause additional branch cuts off the real axis in the
ghost propagator, as shown in the plot on the right (see Figure A.2 for full
size). Hence, the Källén-Lehmann representation of the ghost is violated.
These additional branch cuts generate corresponding additional branch
cuts also in the gluon propagator via the ghost loop, demonstrated in the
bottom left figure (see Figure A.4 for full size). This violates the initial
assumption of just a single pair of complex poles in the gluon propagator.
In consequence, a single pair of complex poles cannot feature alone in
consistent solutions in our truncation. The explicit analytic computation
is presented in Appendix A.6.

We visualise the propagation of non-analyticities in the system in Figure 5.3. Note also
that the performed analysis is independent of possibly different infrared scenarios such as
scaling, decoupling or massive solutions.

If the non-trivial vertices do not annihilate the additional complex singular structures,
this mechanism readily carries over to the full Yang-Mills system. The former annihilation
either requires a respective ghost-gluon vertex that counteracts the loss of the spectral
representation of the ghost, or combinations of diagrams and vertices in the gluon gap
equation prohibiting the back-propagation of the additional branch cuts of the ghost.

While a full analysis goes far beyond the scope of the present work, we briefly evaluate
the above-mentioned simplest possibility: a non-trivial complex structure in the classical
dressing of the ghost-gluon vertex that counteract the effects of complex conjugate poles in
the gluon propagator in the ghost DSE. This is seemingly reminiscent of the cancellation
of complex poles in the electron propagator in QED: There one can solve the electron gap
equation under the assumption, that the photon enjoys a spectral representation. Then, the
solution of the electron gap equation with bare electron-photon vertices leads to complex
conjugate poles for the electron. These artefacts disappear if dressed vertices are used,
that satisfy the Ward-Takahashi identity. The latter vertex dressings are proportional to
differences of the wave functions of the electrons, balancing the (inverse) wave function in
the propagator.

This mechanism in the electron gap equation in QED does not apply to the ghost
DSE in QCD. First, the ghost shows additional branch cuts, not complex poles as the
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electron propagator in the scenario discussed above. Second, these branch cuts are due to
complex poles in the gluon propagator, which was shown in [2], see Section 5.2: Using a
spectral gluon propagator and bare vertices, complex poles are absent in the ghost, and
the spectral representation is intact. Furthermore, no sign for a loss of the ghost spectral
representation has been hinted at in all investigations so far. A cancellation of the complex
singularities of the gluon in the ghost gap equation hence needs to involve the ghost-gluon
vertex’s scattering kernel that is usually left out in the STI construction. We consider such
a delicate balance scenario as unlikely, and it has no counterpart in similar or seemingly
similar systems in the literature.

Note that this assessment is merely an interpretation of our structural results. We
emphasise that a conclusive analysis of the complex structure of the Yang-Mills system
requires a fully non-perturbative study, as the dynamical emergence of the gluon mass
gap is non-perturbative. It is difficult to envisage such a fully analytical study in the near
future, and a numerical study almost by definition has to rely on approximations and
hence lack a fully conclusive nature. This is already evident from the present study, as we
only can exclude complex conjugate poles in the present approximation.

The above arguments emphasise the difficulty of studies in Yang-Mills theories, so one
may first study variants thereof: In the past decade many studies have also exploited
massive extensions of Yang-Mills, formulated in terms of the Curci-Ferrari (CF) model
with mass terms for ghosts and gluons, or by simply adding a mass term for the gluon after
the gauge fixing. Note that in the numerical computations in the present work we follow the
latter approach. Both approaches only constitute models for Yang-Mills theory due to the
presence of an additional relevant parameter, the gluon mass and the almost certain lack
of unitarity. Still, they offer an analytic way for studying part of the full problem, which
already has proven useful. In a massive extension of Yang-Mills theory, complex conjugate
poles may occur in the gluon propagator at one-loop. This implies that their impact on
the ghost propagator may be visible at two-loop in the ghost gap equation. Accordingly,
the back-propagation of the ghost propagator’s non-analyticities into the gluon DSE at
least requires a perturbative three-loop computation. While certainly being challenging,
this may be within the technical range of perturbative computations in the CF model, and
is very desirable. The back-propagation of the additional cuts poses a major obstruction
that only can be circumvented by intricate relations between the complex structures of
propagators and that of the vertices, in particular the ghost-gluon vertex. Signs for the
latter gathered in perturbation theory at least require a three-loop analysis of the ghost
DSE as argued in Section 5.1.4. Such an analysis, while highly desirable, has not been
undertaken yet in the literature.

To wrap up, direct or reconstructed solutions with complex conjugate poles and addi-
tional cuts should undergo a self-consistency analysis as presented in this section before
being considered further. On the constructive side, the present self-consistency considera-
tions of the complex structure can be used to devise self-consistent spectral or generalised
spectral representations for correlation functions, either generic ones or restricted to a
given approximation at hand.
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Abbildung 5.4.: Gluon propagator for different values of m2
A. Solid lines represent the pro-

pagators computed directly via the spectral Euclidean DSE (5.28). The
squared points are obtained by a sum of the spectral contribution GKL

A

and the fit Gapprox
A of the spectral difference ∆GA defined in (5.34). GKL

A

is computed from the realtime DSE via the spectral representation (5.11),
while the fit Gapprox

A is constituted by a pole on the real frequency axis,
see (5.36). All propagators are of decoupling type, as they become con-
stant in the IR. Their asymptotic value increases with decreasing m2

A. The
propagators have been rescaled to lie on top of each other in the pertur-
bative region, cf. Appendix C.3.5.

5.1.5. Numerical results

In this section, we present numerical solutions of the coupled system of spectral ghost
and gluon propagator DSEs of Yang-Mills theory set up in Section 5.1.2. These solutions
are obtained by iteration, starting with an initial choice for ρA and ρc. Then, the coupled
system of ghost and gluon gap equations is solved self-consistently for a family of input
gluon mass parameters m2

A. The value of the renormalisation scale is set to µRG = 5
internal units (i.u.), which is converted to physical units as described in Appendix C.3.5.
This yields a slightly different renormalisation scale µRG for each input parameter m2

A,
which is always around µRG ≈ 10 GeV. The renormalisation conditions specified in (5.27a)
are employed.

5.1.5.1. Spectral violation

A simple and analytically consistent scenario for ghost and gluon propagator involves
solely simple branch cuts on the real axis for both, and a massless pole for the ghost. This
leaves their KL representation intact, see Section 5.1.2, and allows to solve the system
iteratively in a fully spectral manner, cf. Section 5.1.2.5. Our attempts to find such a fully
spectral solution were plagued by violations of the gluon spectral representation, however.
In particular, we could not find an initial guess for the gluon spectral function which did
not violate the KL representation in the gluon DSE (5.20). The violation of the spectral
representation can be assessed by subtracting the spectral propagator from the directly
computed one, i.e.

∆GA(p) = GA(p)−G(KL)
A (p) . (5.34)
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Abbildung 5.5.: Screening lengths of the gluon propagators as defined in (5.37) for the
whole family of solution as a function of the input gapping parameter
m2
A. The drastic, non-monotonic change of the screening length to the

left of m2
A ≈ 3 GeV2 hints at numeric instabilities in the solutions. These

are most like induced by worsening of the spectral difference approxima-
tion (5.36). Therefore, all solutions in the red shaded region will neither
be presented nor discussed.

Here,GA is the propagator obtained directly from the real- and imaginary-time DSEs (5.30)
and (5.28), while GKL

A is calculated from the gluon spectral function (5.31) obtained from
the spectral DSE (5.30).

If ∆GA is non-zero, the spectral representation is violated, and we found ∆GA 6= 0 for
all our initial guesses. In consequence, the corresponding gluon propagator must exhibit
further complex structures such as (one or more pairs of) complex conjugate poles or
further branch cuts in the complex plane, which violate the spectral representation. In
fact, in all cases the spectral difference ∆GA is fit quite well by a single pair of complex
conjugate poles, suggesting that the violation is mainly due to a single pair of these poles.
It thus seems natural to just include these additional complex poles into our approach.
However, this comes along with several problems: First, in order to directly resolve these
non-analytic structures and precisely determine their position, one would have to resolve
the full complex momentum plane. While in the fully spectral approach, only the Euclidean
and Minkowski axis have to be resolved, evaluating the DSEs in the full complex plane
would drastically increase the numerical effort. Most importantly though, the analytic
solutions of the momentum loop integrals presented in Appendix B.5 are a priori not valid
for arbitrary complex momenta p and complex masses λ. This issue is further discussed
in Appendix B.5.4.

Last but not least, from the findings of Section 5.1.3 it becomes evident that a self-
consistent solution of the coupled YM system with a pair of complex conjugate poles
in the gluon propagator and a spectral ghost propagator is not possible with just bare
vertices. The complex conjugate pole part of the gluon propagator directly induces two
additional branch cuts in the complex plane for the ghost propagator, see Figure A.2.
While these can be captured via a modified spectral representation as in (A.26) and
shown in Figure A.3, the additional cuts in the ghost propagator in turn induce (at least)
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Abbildung 5.6.: Gluon (left) and ghost (right) spectral functions for different inverse scree-
ning lengths, corresponding to the values of the input gapping parameter
m2
A = −2.98,−1.24 and −0.31 GeV2. For decreasing inverse screening

length, the peak amplitudes of the gluon spectral function decreases si-
gnificantly and a second negative peak at larger frequencies becomes more
pronounced. The inset shows that both IR and UV tail of all gluon spec-
tral functions approach the axis from below. As discussed in Section 5.1.1,
this property can be derived analytically by demanding a Källén-Lehmann
representation for the gluon propagator. Although our gluon propagator
minimally violates the spectral representation (comp. Figure 5.7), we still
find the negativity of both asymptotic tails to hold. The ghost spectral
function ρc shown in the right panel varies only in magnitude under va-
riation of m2

A. All ghost spectral functions coincide w.r.t. to shape. In
particular, they show a constant behaviour for ω → 0, which is a manifes-
tation of the purely logarithmic branch cut of the ghost propagator. For
larger frequencies, the ghost spectral functions approach zero.

two further branch cuts in the gluon propagator via the ghost loop, see Figure A.4. In
consequence, a pair of complex conjugate poles for the gluon propagator evidently leads
to a cascade of additional non-analytic structures for both ghost and gluon propagator.
This renders a consistent solution of the full theory including such a pair of poles highly
improbable.

Note that complex conjugate poles appear generically at the one-loop level of massive
extensions of Yang-Mills. This already suggests that our solutions are in the Higgs-type
branch of the theory, where we do not necessarily expect a spectral representation of the
gluon propagator. This is supported by the form of the gluon propagator in Figure 5.4,
as well as the relation between the screening mass ξ−1 and the input mass parameter m2

A

in Figure 5.5. Ultimately, we are interested in the confining branch of the theory. In order
to reach this branch, the system needs to be tuned in this direction via variation of the
input parameter m2

A, for a detailed discussion see c.f. [94, 95].
If the discrepancy ∆GA in (5.34) is non-zero, the spectral part of the gluon propagator

with the spectral function ρA as defined in (5.31) does not account for the full gluon
propagator GA any more, as discussed above. In order to still feed back an on both axes
well approximated gluon propagator, we also need to feed back the spectral difference ∆GA.
We approach this via a fit. The fit Ansatz for ∆GA is required to avoid the above described
cascade of non-analyticities induced by complex conjugate poles, while approximating the

125



5.1. Complex structure of Yang-Mills theory

numerically given spectral difference (5.34) as good as possible. Firstly, we note that ∆GA
is a purely real quantity, as ImGKL

A = ImGA due to

ImGKL
A (−i(ω + i0+)) = Im

[∫

λ

ρA(λ)

−(ω + i0+)2 + λ2

]

=
ρA(λ)

2

= ImGA(−i(ω + i0+)) , (5.35)

where in the last line we used the Sokhotski-Plemelj theorem. Note that ∆GA can generally
be only computed at frequencies p where the gluon DSE (5.28) is evaluated. In our case,
these are either purely real or imaginary frequencies.

As discussed in Section 5.1.3, the spectral DSEs set up in Section 5.1.2 are able to
account for propagators with real or complex poles or Källén-Lehmann-like integral repre-
sentation, such as the modified spectral representation for the ghost (A.26). Incorporating
∆GA into our calculation can be achieved by modelling ∆GA by a pole on the real fre-
quency axis,

∆GA(p) ≈ Gapprox
A (p) =

Zχ
p2 + χ2

, (5.36)

with real χ > 0. We emphasize that the parametrisation (5.36) of the spectral difference
by a pole on the real frequency axis solely constitutes a convenient approximation of all
non-holomorphicities of the gluon propagator beyond its branch cut on the real frequency
axis. In particular, due to the existence of a branch cut on the real frequency axis, if such
a pole existed it would directly show up as a singularity in the spectral function. This is
not the case, however.

In explicit, adding Gapprox
A to the Källén-Lehmann part G

(KL)
A , in (5.28) resp. (5.25) we

simply substitute ρA(λ) = ρ
(KL)
A (λ) + Z δ(λ2 − χ2)/π, where ρ

(KL)
A is still given by (5.31).

5.1.5.2. Numerical solutions

Accounting for spectral violations with the procedure described in Section 5.1.5.1, the cou-
pled DSE system of Yang-Mills theory is solved with a strong coupling constant αs = 0.2
for a family of input gapping parameters m2

A ∈ [−3.69,−0.31]. For values of m2
A beyond

this region, we were not able to converge to a solution. The solutions corresponding to the
different numerical inputs m2

A are labelled by the respective (inverse) screening lengths
of the gluon propagators instead, which are related to the gluon mass gap. The temporal
screening length ξ is defined through the Fourier transform of the propagator in momentum
space G(p), which is

lim
|x0−y0|→∞

∫ ∞

−∞

dp0

2π
eip0(x0−y0)G(p) ∼ e−|x0−y0|/ξ . (5.37)

According to (5.37), the screening length ξ governs how fast the propagator decays at large
temporal distances. Here, it is readily evaluated by computing the Fourier transforms of
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Abbildung 5.7.: Spectral violation of the gluon propagators for the whole family of so-
lutions as a function of the inverse screening length. In the considered
interval, the spectral violation exhibits a root at 2.65 < ξ−1 < −2.7 GeV.
Hence, the total weight of all non-analyticities flips sign.

the Euclidean propagators and determining ξ via an exponential fit of the large distance
behaviour.

The gluon propagators’ inverse screening length as a function of the m2
A is shown in Fi-

gure 5.5, and decreases monotonically with decreasing m2
A for all solutions considered

here.
Since our self-consistent Yang-Mills system does not have inherent scales, we set the

scale by rescaling all solutions to coincide with the fRG Landau gauge Yang-Mills data
of [95] in the deep perturbative region; details can be found in Appendix C.3.5.

The resulting gluon spectral functions ρA are shown in Figure 5.6 for m2
A = −2.98,

−1.24 , −0.31 GeV2. For larger m2
A, the gluon spectral function develops a strong and ve-

ry sharp positive peak. At the lower end of the family of solutions w.r.t m2
A, the gluon

spectral function develops a slight negative peak at around 4 GeV, while generally the
peak amplitudes decreases a lot. The inset in the left panel of Figure 5.6 shows that both
IR and UV tail of all gluon spectral functions approach the axis from below. As discussed
in Section 5.1.1, this property can be derived analytically by demanding a Källén-Lehmann
representation for the gluon propagator. Although our gluon propagator minimally vio-
lates the spectral representation (comp. Figure 5.7), we still find the negativity of both
asymptotic tails to hold.

However, all gluon propagators presented in Figure 5.4 feature a spectral violation,
see Section 5.1.5.1. This means that the spectral functions displayed in the left panel
of Figure 5.6 do not make up for the whole propagator. In order to quantify the size of the
gluon propagator’s fraction constituted by the spectral part GKL

A , we define the spectral
violation

Vspec =
1

‖GA‖L1

∫ ∞

0
dp
(
GKL
A (p)−GA(p)

)
. (5.38)

Note that only approximately GA ≈ GKL
A + Gapprox

A due to (5.36), which is why we leave
the difference GKL

A −GA in (5.38) explicit.
The spectral violation (5.38) as a function of the screening length is visualised in Figu-

re 5.7 for all solutions. We find that the (magnitude) of the spectral violation is increasing
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Abbildung 5.8.: Gluon (left) and ghost (right) dressing functions for different values of the
input gapping parameter m2

A. Solid lines represent the dressing functions
computed directly via the spectral Euclidean DSE (5.28). In case of the
gluon (left), the squared points are obtained by a sum of the dressing
corresponding to the spectral contribution GKL

A and the fit Gapprox
A of the

spectral difference ∆GA defined in (5.34). GKL
A is computed from the re-

altime DSE via the spectral representation (5.11), while the fit Gapprox
A is

constituted by a pole on the real frequency axis, see (5.36). For the ghost
(right), the squared points are given solely by the spectral representation
of the dressing. For decreasing m2

A, the peak position of the gluon dressing
function moves towards smaller frequencies. The ghost dressing functions
shown in the right panel are of decoupling-type and become constant in
the IR. barely vary and change of m2

A. All dressing functions have been
rescaled to lie on top of each other in the perturbative region, cf. Appen-
dix C.3.5.

towards the boundary of the m2
A-interval for which we are able to solve the system. The

fact that convergence worsens for large spectral violation can be attributed to the fact the
spectral difference ∆GA is only approximately taking into account via a pole on the real
frequency axis (5.36). The larger the absolute value of the spectral violation Vspec gets,
the larger the approximation error gets. A more in-depth discussion of the quality of the
approximation, in particular on the real frequency axis, is deferred to Appendix C.3.1.

Inspecting the shape of the gluon propagators presented in Figure 5.4, we find that the
value of the gluon propagator in the origin increases with decreasing m2

A, which signals
the Higgs-type branch of our solutions. In short, none of our solutions is in the confining
region, for more details see [94–96, 301]. In consequence, a statement about the complex
structure of Yang-Mills in the confining phase within the chosen approximation cannot be
made.

The ghost spectral functions of the presented solutions are shown in the right panel
of Figure 5.6. Evidently, the change of ρc under a variation of m2

A is much smaller. All
ghost spectral functions coincide with respect to shape. In particular, they show a constant
behaviour for ω → 0, which is a manifestation of the purely logarithmic branch cut of the
ghost propagator. For larger frequencies, the ghost spectral functions approach zero. In
summary, these results agree qualitatively very well with our previous studies of the ghost
spectral function, which have been carried out via the stand-alone spectral ghost DSE
in [2], see Section 5.2 and via reconstruction of QCD lattice data with Gaussian process
regression in [3], see Section 5.3.
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The corresponding gluon and ghost dressing functions are shown in Figure 5.8. For
decreasing m2

A, the peak position of the gluon dressing function moves towards smaller
frequencies. In order to assess how well the approximation of the spectral difference (5.34)
as a single particle pole (5.36) works, we compare the dressing computed directly via the
spectral Euclidean DSE (5.28) against the one given by the sum of the spectral part and the
fit of the spectral difference part, GKL

A +∆GA. It can be seen that the dressings match very
well, supporting the single pole approximation for the shown Euclidean solutions. In case
of the propagators, see Figure 5.4, the comparison is more sensitive to the IR. Also there,
single pole approximation works reasonably (on the Euclidean branch). For an in-depth
discussion of the approximation on the Minkowski axis, see Appendix C.3.1. The ghost
dressing functions accordingly are also all of decoupling-type as they become constant in
the IR. For decreasing m2

A, the IR value of the ghost dressing function increases. Here, the
spectral representation is intact.

5.1.6. Conclusion

In this section, we investigated the complex structure of Yang-Mills theory with help of
the spectral Dyson-Schwinger equation. Our approach is based on [1] resp. Section 4.1 and
utilises the spectral renormalisation scheme devised there. The spectral DSE allows for
analytic solution of the momentum loop integrals of all involved diagrams. In consequence,
we gain direct analytic access to the complex structure of ghost and gluon propagator.

In Section 5.1.3, we studied the analytic structure of Yang-Mills theory with bare ver-
tices and a gluon propagator with complex conjugate poles. Our findings could hint at
the fact that a self-consistent solution of Yang-Mills is not possible with a gluon propa-
gator featuring one or more pairs of complex conjugate poles. As we were able to show
analytically, in the case of bare vertices a self-consistent solution with complex conjugate
poles and no further branch cuts does not exist. Complex conjugate poles in the gluon
propagator directly violate the spectral representation of the ghost propagator by two ad-
ditional branch cuts off the real axis. This, in turn, introduces additional branch cuts off
the real axis in the gluon propagator via the ghost loop. These further cuts contradict the
initial assumption of single pair of complex conjugate poles. The study hence shows that
by seeding complex singularities in the gluon propagator, a cascade of non-analyticities
is induced, which propagate through the system by iteration. Eventually, this observation
could disfavour Yang-Mills solutions with complex conjugate poles and no further branch
cuts in the complex plane. We emphasize that this analytic result is independent of the
different solution ’branches’ of Yang-Mills such as scaling, decoupling or massive.

A central aspect of our analytic study of the complex structure of Yang-Mills theory
in Section 5.1.3 is, that the existence of complex conjugate poles in the gluon propagator
leads to a violation of the spectral representation for the ghost, at least for the case of
bare vertices. For this not to carry over to full YM theory, an intricate cancellation of the
complex poles in the gluon propagator by the full ghost-gluon vertex is required. In our
opinion, this is unlikely to occur in Yang-Mills theory or QCD. In particular, a respective
perturbative analysis requires at least three-loop consistency. We remark that no sign
of a violation of the spectral representation has been found for the ghost propagator in
various works [260, 261, 264, 302]. Therefore, our results emphasize the need for analysing
consistency of analytic structure in particular in results with complex conjugate poles for
the gluon propagator in QCD like regions.

In Section 5.1.5, we iteratively solve the coupled system of spectral DSEs for the YM
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propagators at real and imaginary frequencies. We find decoupling-type solutions for which
the Källén-Lehmann representation of the gluon propagator is partially violated, depen-
ding on the choice of input gapping parameter. The gluon spectral functions obey the
known analytic constraints on the asymptotic behaviour. Solving the system for more
QCD-like regions is hindered by increasing violation of the spectral representation, which
is accounted for approximatively.

The analytic structure of Yang-Mills theory therefore remains unclear: In Section 5.1.3
we present an analysis implying that for a consistent solution with complex poles in full YM
theory, a delicate cancellation in the analytic structure of propagators and vertices would
need to happen. As we were able to show, with bare vertices, such a solution without further
cuts is even ruled out. On the other hand, in our numerical study in Section 5.1.5 we were
not able to solve the system with allowing for violation of the gluon’s KL representation.
We observed the generic appearance of complex poles for a vast range of initial conditions.
Hence, a conclusive statement about the complex structure of Yang-Mills in the confining
region based on the present results is not possible. However, the study reported here lays
the foundation for such an analysis.
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5.2. Ghost

This section presents results of [2].

As we have seen in Section 5.1, the solution of the gluon DSE without the emergence
of dynamically generated complex singularities is a highly non-trivial task. Consequently,
some properties of the gluon spectral functions, and in particular the potential presence
and location of complex conjugate poles, are rather unstable under small variations of the
vertices involved; for a detailed recent discussion, see [264].

As we have demonstrated in Section 5.1.3, the complex singularities in the gluon propa-
gator directly violate the spectral representation of the ghost propagator in the employed
truncation with classical vertices. Hence, not only the extraction of the gluon, but also
of the ghost spectral function is hindered. In this section, we circumvent this problem for
the ghost spectral function by considering the standalone ghost DSE, see Figure 5.9, while
employing a spectral gluon propagator as input. Apart from the gluon propagator resp.
spectral function, the ghost DSE requires little non-trivial input: it additionally only de-
pends on the ghost propagator as well as the ghost-gluon vertex. The latter is protected by
non-renormalisation, and hence shows a very mild momentum-dependence. Accordingly,
in the present work we approximate this vertex by its classical counterpart, as done in
Section 5.1.

This leaves us with a rather stable set-up: the spectral ghost DSE is solved on the basis
of given input gluon spectral functions, obtained by appropriately modifying the result
of [243], which was reconstructed under the assumption of a KL representation of the
gluon. We also test the stability of the result under a variation of the input by tuning the
whole family of scaling and decoupling solutions.

This section is organised as follows: In Section 5.1.1 we discuss spectral properties of
Yang-Mills theory. In Section 5.2.1, the spectral ghost DSE is set up, and the input gluon
spectral function is discussed. We present our results for the ghost propagator and spectral
function in Section 5.2.2, and discuss our findings in Section 5.2.3.

5.2.1. The spectral ghost DSE in Yang-Mills theory

We again consider 3 + 1-dimensional Yang-Mills theory with three colors, Nc = 3, in the
Landau gauge, as discussed in Section 5.1.1. The gauge-fixed classical action including the
ghost action is given by (5.1). We use the spectral ghost propagator DSE (5.20b) with a
classical ghost-gluon vertex see (5.15) set up in Section 5.1.2.2. Renormalisation, evalua-
tion at real frequencies as well as iterative solution are discussed in Section 5.1.2.3, Secti-
on 5.1.2.4 and Section 5.1.2.5 respectively. In contrast to Section 5.1, the gluon propagator
is treated as an input here. We assume it to obey a spectral representation, see (5.11). The
corresponding input gluon spectral function is discussed below. The setup is analogous to
the one in Section 5.1, see Section 5.1.2, and we refer to this section or [3] for a detailed
discussion.

5.2.1.1. Gluon spectral function

As discussed above, we use the spectral reconstruction result from [243] based on Yang-
Mills gluon propagator fRG data from [95] for the gluon spectral function ρA. In both
scaling and decoupling scenarios, see Section 3.1.5 for a discussion in the context of con-
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−=

Abbildung 5.9.: Diagrammatic representation of the Dyson-Schwinger equation for of the
inverse ghost propagator. Notation as defined in Figure 2.1.

finement, the infrared behaviour of the gluon spectral function (assuming the validity of
the KL representation) can be inferred from the respective infrared scaling of the gluon
propagator in (5.4). More details can be found in [243].

For the entire family of solutions, the deep infrared limit with p → 0 is parametrised
by [243],

ĜA(p) =Z
(IR)
A x−1+2κ , (5.39a)

with a constant Z
(IR)
A . The scaling coefficient κ takes values in the range 1/2 < κ < 1, and

x = p̂ 2 + γG
(
m̂2

gap + p̂ 2 log p̂ 2
)
, (5.39b)

where the hatted dimensionless quantities in (5.39a) all future expressions have been res-
caled with the appropriate powers of ΛQCD, e.g., p̂ 2 = p2/Λ2

QCD. For γG = 0, the gluon
propagator in (5.39a) reduces to the scaling propagator. A brief account of the scaling
solution and its connection to confinement can be found in Section 3.1.5.

The lattice-type propagator is obtained for a γ
(lat)
G that is close to the maximal one

compatible with infrared QCD in the Landau gauge. The parameters (γG, m̂
2
gap) charac-

terise the one-parameter family of solutions. Indeed, the actual solutions in [95] are well
approximated by using the functional form of the scaling solution but with the argument
of (5.39b), and an appropriate tuning of γG. We shall exploit this property for constructing
a simple one-parameter family of gluon spectral functions, using the scaling one, ρ(dec)(ω),
as our point of departure.

For completeness, we note that, for p → 0, the respective (dimensionful) ghost propa-
gator is given by

Gc(p) =
Z

(IR)
c

p2

1

x2κ
, (5.40)

In the deep infrared, ρ(scal)(ω) is determined from (5.39a) and (5.39b), setting γG = 0.
Specifically, for ω → 0+, we obtain

ρ̂
(scal)
A (ω) =− 2Z

(IR)
A ω̂2(2κ−1) , (5.41)

which corresponds to the infrared tail of the full spectral function reconstructed [243],
depicted in Figure 5.10. Similarly, in the case of the decoupling-type solutions, we arrive
at

ρ̂
(dec)
A (ω) =− Z

(IR)
A

γG

2π

m̂4
gap

ω̂2 . (5.42)
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(a) Gluon spectral functions (scaling and de-
coupling), see (5.43), based on the recon-
struction of the scaling spectral function
in [243] (red-dashed line). The spectral
functions differ only in the infrared, shown
in the inset.
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(b) Euclidean gluon propagators obtained from
the KL representation (5.11) with the gluon
spectral functions in Figure 5.10a. The small
IR-difference for ω . 0.7 GeV shown in the
inset in Figure 5.10a translate into the IR-
differences for p . 1 GeV. The lattice data
is taken from [98].

Abbildung 5.10.: Reconstructed gluon spectral function (left) based on [243] and (5.43)
and the respective gluon propagators (right). The spectral functions and

propagators differ in the infrared and are labelled by G
(lat)
A (blue) for our

lattice-type input, and GA(0) [GeV−2]=4.4 (green), 1.9 (yellow).

While (5.41) and (5.42) describe the different behaviour of the scaling and decoupling
spectral functions in the deep infrared, for larger spectral values the two sets of spectral
functions coincide. This regime is approximately bounded from below by the first zero,
ω0, of the scaling spectral function, shown in Figure 5.10, with ω0 ≈ 0.78. A simple
interpolation to the decoupling solution, based on the scaling spectral function in [243], is
therefore given by

ρ
(dec)
A (ω, χ) = Zχ

(
ω2

ω2 + χ2

)2−2κ

ρ
(scal)
A (ω)θ(ω0 − ω + ρ

(scal)
A (ω)θ(ω − ω0) , (5.43a)

with

Zχ :=

∫ ω0

0 dλλ ρ
(scal)
A (λ)

∫ ω0

0 dλλ ρ
(scal)
A (λ)

(
ω2

ω2+χ2

)2−2κ , (5.43b)

dictated by the Oehme-Zimmermann superconvergence relation for the gluon spectral
function,

∫ ∞

0
dλλ ρA(λ) = 0 . (5.44)

With (5.43b) the total spectral weight of ρ
(dec)
A (ω, χ) is the same as that of ρ

(scal)
A (ω). Hence,

given that the latter satisfies (5.44), so does the former. The scaling spectral function
reconstructed in [243], satisfies (5.44) analytically for ε→ 0+ in (4.4). In the present work
we take a small ε ≈ 10−7 leading to

∫
dλλ ρA(λ)∫
dλλ |ρA(λ)| ≈ 10−4 , (5.45)
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(a) Ghost spectral function: direct computation
by iteration with the spectral DSE (5.25d)
and the gluon spectral function from Fi-

gure 5.10 for G
(lat)
A . The inlay also indica-

tes the δ-function contribution in the ori-
gin, indicated by an arrow. Its amplitude is
given by the value of corresponding Eucli-
dean dressing function 1/Zc(p) at p = 0.
The squares show our best fit, comp. Secti-
on 5.2.2.2.
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(b) Euclidean ghost dressings: 1/Zc(p) from KL
representation via the ρc’s in Figure 5.11a
(squares), 1/Zc(p) from the direct soluti-
on with the Euclidean DSE (straight lines),
1/Zc(p) from the Euclidean fRG computati-
ons in [95]: we have taken the solutions with
matching values of G0

A (dashed lines).

Abbildung 5.11.: Ghost spectral functions (left) and respective Euclidean dressings (right),
obtained with the decoupling gluon spectral functions in Figure 5.10,

with the same color coding by G
(lat)
A (blue), GA(0) [GeV−2]=4.4 (green),

1.9 (yellow).

for all spectral functions. For χ = 0, we get back the scaling solution with γG = 0. The

lattice gluon is achieved via (5.43a) for χ(lat) = 3
4 GeV2 with Z

(lat)
χ = 1.86.

We emphasise that fully quantitative gluon spectral functions ρ
(dec)
A may be achieved by

means of reconstructions. While possible, this is beyond the scope of the present work. Note
also that the simple analytic spectral functions ρA(ω, χ) give semi-quantitative results for
the gluon propagators, while at the same time allowing for analytic access to the relative
changes.

5.2.2. Results

With the preparation of the previous sections we now compute the ghost spectral function.
The ghost DSE is solved for the three different input decoupling gluon spectral functions

in Figure 5.10 and propagators, labelled by G
(lat)
A resp. the infrared value of the related

gluon propagators GA(0) = 4.4, 1.9 [GeV−2]. For G
(lat)
A , we tune the mass parameter χ

in (5.43a) such that we best agree with the lattice results from [98]. We pair each of our
input GA’s with a gluon propagator from the family of self-consistent YM solutions of [95],

indicated by dashed lines in the right panel of Figure 5.10. For G
(lat)
A (blue curve), we chose

the solution which also matches the lattice results from [98] best. The green and yellow
curves are matched with the respective solution with the same GA(0).

The renormalisation condition Z̃c is now chosen such that the value of the ghost dressing
function 1/Zc(p) matches that of [95] at the RG scale µRG = 20 MeV for the respective
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Abbildung 5.12.: Ghost spectral functions: direct computation by iteration with the spec-
tral DSE (5.25d) and the gluon spectral functions from Figure 5.10 with
the same color coding, i.e. GA(0) [GeV−2] = 4.4 (green), 1.9 (yellow). The
inlays also show the δ-function pole in the origin, indicated by an arrow.
The residue is given by the value of corresponding Euclidean dressing
function 1/Zc(p) at p = 0. The squares show our best fits, comp. Secti-
on 5.2.2.2.

gluon propagator. This IR renormalisation procedure is necessary in order to compensate
for the lack of self-consistency when considering the ghost DSE with fixed gluon input.
The strong coupling constant is fixed to αs = 0.26.

In Figure 5.11a and Figure 5.12 we show the respective ghost spectral functions. All
spectral functions show a positive particle peak at vanishing momentum, constituted by
a delta distribution. The magnitude of the corresponding residue, i.e. the particle peaks
amplitude, rises with decreasing GA(0), and the residue’s positivity reflects the chosen po-
sitive classical dispersion of the ghost. The spectral function also has a negative scattering
spectrum starting at vanishing frequency. For decreasing GA(0), one gradually approaches
the scaling solution, and the spectral weight increases drastically. This also mirrors the
increasing amplitude of the particle peak, which is enforced by the Oehme-Zimmermann-
type superconvergence relation (5.10) for the ghost, for more details see Appendix A.8 and
[254]. This also leads to the known UV-asymptotics for the ghost spectral function,

ρ̂(UV)(λ̂) =
Z

(UV)
c

1 + λ̂2(log λ̂2)γc
, (5.46)

with the ghost anomalous dimension γc, and the UV wave function renormalisation Z
(UV)
c .

The gluon spectral function for G
(lat)
A represents the lattice-type case, see Figure 5.10b. The

respective lattice data for the ghost propagator is depicted in Figure 5.11b, and confirms
the semi-quantitative nature of the classical vertex approximation in the ghost DSE. For
smaller GA(0) → 0, the gluon propagator approaches the scaling solution. This entails,
that also the ghost propagators approaches the scaling solution with 1/Zc(p) ∝ (p2)−κ.

The Euclidean dressing functions corresponding to the computed spectral functions for
the different gluon propagator inputs are shown in Figure 5.11b. We show both the dressing
functions obtained from the spectral Euclidean and realtime DSE and find that the spectral
representation for the ghost propagator (and dressing function) holds. We also compare
to the Yang-Mills results from [95], which we also used in the renormalisation condition
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Abbildung 5.13.: Comparison of the ghost dressing function obtained via the KL represen-
tation (5.8) from the spectral function (solid line) and its fit (squares)
for the different input gluon propagators.

as described above, and see that we reach very good qualitative agreement. In particular,
our most scaling-like solution shows the typical scaling behaviour down to about 30 MeV.
The deviations from [95] in the UV originate in the classical approximation for the full
ghost-gluon vertex used here.

5.2.2.1. Comparison with previous works

In this section we compare our results on the ghost spectral function with that in the
literature, for results with different approaches see [260–262, 302]. The spectral function
also allows us to map out the ghost propagator in the complex momentum plain, which is
discussed in Section 5.2.2.3 including a comparison with respective results in the literature
from a DSE analysis, see [264].

In [261], the ghost spectral function has been reconstructed from lattice QCD data. The
results are in good agreement with our direct computation: both show a massless particle
pole and a negative scattering tail. The reconstruction in [261] lacks reliability for spectral
values smaller than roughly 100 MeV, as the smallest Euclidean data point used for the
reconstruction is at about p = 150 MeV. In this regime, the present results from a direct
spectral computation can be used as an input for future reconstructions by restricting the
respective infrared completion. The same qualitative features are also found in the ghost
spectral function obtained via a massive propagator expansion in [262], i.e. a massless
particle pole as well as negative spectral tail.

In [260], Pade-type reconstructions of the ghost dressing spectral function from DSE and
lattice data in Yang-Mills theory has been performed. These results are in contradistinction
to the present result and [261, 262], as the scattering tails in [260] show significant negative
contributions. This corresponds to positive contributions in the propagator spectral func-
tion due to a relative sign in the definition. In addition, the UV tail of the reconstruction of
DSE data is not shown in [260], and the spectral function appears to approach a constant
value. A UV-positive (negative) as well as a non-vanishing tail in the propagator (dressing)
spectral function violates the analytically given asymptotic fixed by Equation (4.4), for a
detailed derivation see Appendix A.8.
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5.2. Ghost

The study of the analytic structure of the ghost propagator put forward in [302] also
suggests the existence of a massless pole as well as a branch cut along the real frequency
axis. As already mentioned above, Yang-Mills propagators in the whole complex momen-
tum plane have been investigated with DSEs in [264]. The findings show good qualitative
agreement with the propagators obtained from the ghost spectral function computed in
the present work, but do not support a KL spectral representation of the ghost. This is
discussed further in Section 5.2.2.3.

5.2.2.2. Spectral fits

The results for the ghost spectral function with the UV asymptotics ρ(UV)(λ) in (5.46), the
IR asymptotics ρ0 allow for a simple fit in terms of the both asymptotics and Breit-Wigner
functions for intermediate spectral values. The split into these three regimes allows for a

simple parametrisation ρ
(fit)
c of the ghost spectral function,

ρ(fit)
c (λ) = κ

[
ρ̂0 σIR(λ) + σ1(λ)f̂

(BW)
peak (λ)σ2(λ) +

N∑

j

f̂
(BW)
j (λ) + σUV(λ)ρ̂(UV)(λ)

]
.

(5.47a)

In (5.47a) we use the sigmoid function for projecting on the three regimes,

σx(y) =
1

1 + e−νx(y−Λx)
, (5.47b)

where κ only carries the appropriate dimension. The intermediate regime is expanded in
Breit-Wigner kernels,

f̂ (BW)
x (ŷ) =

cx

(ŷ − M̂x)2 + Γ̂x
. (5.47c)

For our best fit, we useN = 3. The respective fit parameters are listed in Appendix C.4, Ta-
ble C.2, and the fits are depicted together with the spectral functions in Figure C.7.

The accuracy of the fits is best evaluated within a comparison between the ghost dres-
sing functions 1/Zc(p) obtained from the computed spectral functions and their fits. This
comparison if depicted in Figure 5.13 for all three different input gluon propagators.

5.2.2.3. Results in the complex plane

We close this section with a short discussion of the potential application of the present
results within bound state and resonance computations in QCD. To begin with, the be-
haviour of QCD correlation functions for complex-valued momenta is instrumental for
the reliable computation of bound-state properties within the frameworks of the Bethe-
Salpeter equations (BSEs). In this quest, the gluon and ghost propagators are of paramount
importance, as may be exemplified by considering the BSEs that control the formation of
glueballs in a pure Yang-Mills theory [118, 119, 121–123, 303] (for lattice studies, see [114]
and references therein). In fact, the present results are specifically useful for the scalar
glueball: in contradistinction to its pseudo-scalar counterpart, it involves both the gluon
and ghost propagators, as shown in Figure 5.15.
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5.2. Ghost

Abbildung 5.14.: Real (left) and imaginary (right) part of the ghost dressing function
1/Zc(ω) for the lattice-like gluon input (comp. Figure 5.11) as a function
of complex frequencies. Purely real ω correspond to Minkowski frequen-
cies, purely imaginary ω to Euclidean frequencies. The color coding serves
to guide the eye. The branch cut along the real frequency axis is clearly
visible.

As is well-known, the need to extend the aforementioned propagators to the complex
plane stems from the fact that the momentum P of the bound-state in question must satisfy
P 2 = −M2, where M is the corresponding mass. This condition is typically implemented
by introducing the rest-frame parametrisation P = M(0, 0, 0, i) (see, e.g., [304]). Invariably,
this complexifies the arguments of GA(q±) and Gc(q±) in the BSE of Figure 5.15, since
q2
± = |q|2 −M2/4± i |q|M .

These considerations motivate the computation of the dressing function 1/Zc(p) in the
entire complex plane. To that end, we employ the KL representation of (A.47), utilising
the ρc(λ) found above, and setting ip = Re ω + i Imω. The results of this computation are
shown in Figure 5.14.

We now compare our results for the ghost propagator in the complex plane with the
spectral DSE with those from [264]. There, ghost and gluon propagators in the complex
plane have been computed with complex DSEs. The gluon propagators in [264] exhibit
complex conjugate singularities, and their nature and position varies greatly under small
changes in the ansatz for the vertex. We emphasise, that these singularities simply indicate
the limited radius of convergence of the method both for the gluon and for the ghost, for a
detailed discussion see [264]. For large (angular) distances to the Euclidean axis analyticity
is lost, and the method used does not produce reliable results. If reconstructed with the
Schlessinger point method, the singularities observed in [264] take the form of complex
conjugate poles. This has also been seen in [260], where similar reconstruction methods
have been used. For further studies of the complex structure of QCD-like theories in the
presence of complex conjugate poles see also the recent work [263, 275].

Despite the lack of reliability for sufficiently large Minkowski frequencies, we have com-
pared ghost dressing from [264] with the present result in this region. The imaginary part
of the ghost dressing function computed there is strictly positive for timelike momenta,
in qualitative agreement with our result, in particular in view of the different approxi-
mations. We have also confirmed the absence of a spectral representation of the ghost by
computing the spectral function from the Minkowski dressing of [264] via Equation (4.4).
Then, the Euclidean dressing is computed via the KL representation of Equation (5.8) and
compared to the direct calculation. This comparison showed a significant violation of the
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Abbildung 5.15.: One of the two BSEs comprising the system that controls the scalar glue-
ball formation. The blue (red) ellipses denote the glueball-gluon (ghost)
BS amplitudes, and k± = k ± P/2, q± = q ± P/2, where q denotes the
loop momentum. Note that we are employing a different notation than
that in Figure 2.1 here. Grey blobs represent full propagators and white
blobs full vertices here.

spectral representation especially for larger Euclidean frequencies. This is to be expected,
since by nature of the kernel of the spectral representation Equation (4.3), large Euclidean
frequencies are sensitive to large spectral values, i.e. large Minkowski frequencies. These
lie beyond the radius of convergence of the method used in [264], as discussed.

In summary, this analysis strongly suggests that complex conjugate poles as well as
other non-analyticities in the gluon propagator beyond the real frequency axis invalidate
the KL representation for both the gluon and the ghost. A more detailed discussion is
deferred to future work. In particular, this casts serious doubts on mixed reconstructions
with a KL representation for the ghost and cc poles for the gluons. In turn, the gluon
spectral function in [243] was reconstructed with the assumption of a KL representation,
as outlined in Section 5.2.1.1. As shown in the present work, this also leads to a KL
representation of the ghost. Whether this property holds true in a self-consistent solution
of the coupled system, remains to be seen and is deferred to future work.

5.2.3. Conclusion

In this section, we solved the Dyson-Schwinger equation for the ghost propagator in the
complex plane on the basis of a given input gluon spectral functions, spanning the whole
family of decoupling solutions, including the scaling limit. Our spectral DSE approach
is based on the spectral DSE put forward in [1], see Section 4.1, and uses the spectral
renormalisation devised there. The procedure allows for analytic solution of the momen-
tum loop integrals by utilising the KL representation and dimensional regularisation. This
facilitates the access to the full complex momentum plane, constituting the central aspect
of our scheme. The present truncation uses classical vertices in the ghost gap equation,
but we emphasise that the spectral DSE approach also allows for non-trivial vertex ap-
proximations, see [1] resp. Section 4.1.

The input data for the gluon spectral function is constructed via a decoupling-type
modification of the scaling spectral function from [243]. The latter spectral function has
been obtained via a reconstruction of the scaling solution fRG data of [95].

The spectral function for the ghost shows a massless pole as well as a continuous scat-
tering tail. The classical massless mode dominates up to momenta close to the position of
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the maximum of the input gluon propagator. For larger momenta, the perturbative loga-
rithmic behaviour starts to dominate, ultimately causing the dressing function to vanish
in the ultraviolet. The present results and the current realtime approach with a realtime
renormalisation scheme yields systematic spectral access to dynamical, timelike properties
of QCD. The respective results are pivotal for following studies of the resonance properties
and the dynamics of QCD within the present approach.
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5.3. Spectral reconstruction of ghost and gluon

This section presents the results of [3]. All practical calculations have been performed by
then fellow PhD student Julian Urban.

In the previous sections, we presented results for Minkowski space correlation functions
obtained via the spectral functional approach. In contradistinction to this direct realtime
scheme, Minkowski correlation functions can also be obtained via spectral reconstructi-
on of Euclidean correlation functions, which are well accessible within lattice simulations
and functional approaches. As the spectral functional approach, spectral reconstruction
exploits the Källén-Lehmann representation by computing the spectral function via an
inverse integral transform. Here, we approach this problem with Gaussian process regres-
sion (GPR). The applicability of GPR to inverse problems of this type has been discussed
in [305]. Specifically, it was shown how GPs can be used to obtain probabilistic models of
functions for which only weighted averages are available.

Utilising numerical reconstruction techniques to compute spectral functions has a long
history in non-perturbative QCD. The underlying problem is inherently ill-conditioned,
prompting the development and application of a plethora of approaches over the last couple
of decades, such as the maximum entropy method [258, 306, 307], Bayesian inference
techniques [308, 309], Tikhonov regularisation [261, 310, 311], neural networks [312–316],
kernel ridge regression [317, 318], and basis expansions [243, 319–322].

We apply GPR to the reconstruction of ghost and gluon spectral functions based on
recent results from 2+1 flavor lattice QCD with domain wall fermions at a pion mass of
139 MeV [100, 101]. Furthermore, we improve the systematic error control by incorpo-
rating additional data in the infrared (IR) and ultraviolet (UV) regimes from functional
renormalization group (fRG) and Dyson-Schwinger (DSE) computations in Yang-Mills
theory and QCD [2] resp. Section 5.2, [38, 39, 95, 166, 171, 243], mostly obtained within
the fQCD collaboration [12].

This section is structured as follows. In Section 5.3.1, we briefly recapitulate the spectral
representation for ghost and gluon propagator. In Section 5.3.2, we give a short introducti-
on to spectral reconstruction with GPR. We discuss the input data for our reconstruction
in Section 5.3.3, present our results in Section 5.3.4 and conclude in Section 5.3.5.

5.3.1. Spectral representation

In this section, we express the KL representation (4.3) of the propagator in momentum as

G(p) =

∫ ∞

−∞

dλ

2π

λ ρ(λ)

λ2 + p2
≡
∫ ∞

0
dλK(p, λ) ρ(λ) , (5.48)

implicitly defining the KL kernelK(p, λ). The spectral function is defined via the imaginary
part of the retarded propagator, see (4.4).

For the propagators of physical particles, the spectral function is the probability density
for (multi-)particle excitations to be created from the vacuum in the presence of the
corresponding quantum field. Consequently, in this case, the spectral function is positive
semi-definite and normalisable. For propagators of ‘unphysical’ fields, such as gauge fields,
positive semi-definiteness is no longer required and the spectral representation reduces to
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5.3. Spectral reconstruction of ghost and gluon

a statement about the analytic structure of the corresponding correlation function; see,
e.g., [2, 5] resp. Section 5.1 and 5.2 and [243, 254, 269, 273].

In this section, we reconstruct ghost and gluon spectral functions of 2+1 flavor QCD
under the assumption that both, ghost and gluon propagator Gc and GA, admit a KL
representation (5.48), with the respective spectral functions ρc and ρA. Their total spectral
weight vanishes, ∫ ∞

0
dω ωρA/c(ω) = 0 , (5.49)

for both, the ghost and gluon spectral functions, see also (5.9) and (5.44). For the gluon,
this is the well-known Oehme-Zimmermann superconvergence (OZS) condition [256, 323];
for recent discussions with general fields, see [2] resp. Appendix A.8 and [243, 254]. These
works also include a treatment of the analytic low-frequency behaviour of continuous parts
of the spectral functions, initiated in [243].

A general spectral function ρ can be composed of a continuous part ρ̃ and a sum of
particle and resonance peaks (proportional to the δ-function and its derivatives), see (4.6).
Here, we assume that the gluon spectral function only consists of a continuous part ρA =
ρ̃A satisfying (5.49). This is the generic structure suggested by all functional equations
describing the gluon propagator due to the ghost being massless. While derivatives of
δ-functions are formally also allowed, we exclude these structures from our ansatz due
to the absence of a generic mechanism generating the required roots of the inverse gluon
propagator on the real momentum axis. In turn, due to the 1/p2 behaviour of the Euclidean
lattice ghost propagator in the IR, the associated spectral function exhibits a particle peak
at vanishing frequency in addition to its continuous part, see (5.7) and (5.8).

Euclidean correlators obtained from lattice simulations are generally only available in
terms of discrete sets of observations Gi at NG Euclidean momenta pi with finite preci-
sion. Relating the results to the associated Minkowski propagators via Equation (4.4) is
problematic; see, e.g., [319, 320]. In such a numerical setup the analytic continuation via
p→ −i(ω+ i0+) is ill-conditioned, since further assumptions about the complex structure
need to be made. Instead, the usual strategy is the numerical inversion of the integral
transformation. A variety of approaches has been explored to tackle this issue, such as the
maximum entropy method [258, 306, 307], Bayesian inference techniques [308, 309], sui-
table expansions in functional spaces [243, 319–322], Padé-type approximants [260, 302],
Tikhonov regularisation [261, 310, 311], neural networks [312–315], and kernel ridge regres-
sion [317, 318]. Alternative approaches based on the existence of complex conjugate poles
have also been considered, see, e.g., [260, 263, 272, 274, 275, 324–327], but are orthogonal
to the method presented here.

5.3.2. Reconstruction with GPR

Starting from early developments in the context of geostatistics in the 1950s [328], today
GPR is widely employed in a variety of settings for the probabilistic modelling of functions
from a finite number of observations; see [329, 330] for reviews and [331] for a modern
textbook account. Recently, the method has been applied to the reconstruction of parton
distribution functions from lattice QCD [332]. In this section, we summarize the main
ingredients for spectral reconstruction with GPR based on the developments reported
in [305]. A short introduction to GPR for function prediction as well as further details and
references are provided in Appendix A.9.
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We assume our knowledge of the spectral function ρ(ω) to be described by a GP, written
as

ρ(ω) ∼ GP(µ(ω), C(ω, ω′)) , (5.50)

where µ(ω), C(ω, ω′) denote the mean and covariance functions. Importantly, in this ap-
proach we do not restrict the space of possible solutions by choosing a specific functional
basis, which often leads to spurious artefacts in the reconstruction in order to compen-
sate for unrepresentable features. Instead, the GP defines a distribution over families of
functions with rather generic properties, specified via the kernel parametrization described
below.

The KL integral in (5.48) is a linear transformation that preserves Gaussian statistics.
Hence, given (5.50) one may obtain statistical predictions Gi at NG specified momenta pi
as

Gi ∼ N
(∫

dω K(pi, ω)µ(ω),

∫
dω dω′K(pi, ω)C(ω, ω′)K(pj , ω

′)
)
≡ N

(
µ̃i, C̃ij

)
.

(5.51)
Here, N denotes a multivariate normal distribution, to be distinguished from distributions
over function space denoted by GP. Statistical uncertainties associated with individual
prediction points µ̃i may be computed from the diagonal of the covariance matrix as

σ̃i =
√
C̃ii.

Conversely, the framework also enables inference in the opposite direction. The inherent
analytic tractability associated with Gaussian statistics allows formulating the conditional
distribution for ρ(ω) given observations Gi in closed form. The full expression may then
be derived as

ρ(ω)
∣∣Gi ∼ GP

(
µ(ω) +

NG∑

i,j=1

∫
dη K(pi, η)C(η, ω)

(
C̃ + σ2

n · 1
)−1

ij
(Gj − µ̃j) ,

C(ω, ω′)−
NG∑

i,j=1

∫
dηdη′K(pi, η)C(η, ω)

(
C̃ + σ2

n · 1
)−1

ij
K(pj , η

′)C(η′, ω′)
)
.

(5.52)
The GP in (5.52) encodes our knowledge of the spectral function after making obser-
vations of the propagator and accounting for observational noise with variance σ2

n. The
corresponding expressions for the dressing function instead of the propagator can be im-
mediately obtained by inserting an additional factor of p2

i at every occurrence of the KL
kernel K(pi, ω) in (5.51) and (5.52).

The flexibility of the approach makes it possible to also incorporate further available
prior information in various forms into the predictive distribution in the same manner,
yielding similar though somewhat more complicated expressions. This may include, e.g.,
direct observations of ρ and its derivatives, assumptions about the asymptotic behaviour
(see Section 6.1), or global normalization constraints.

In order for GPs to be useful for modelling, the covariance C(ω, ω′) may be defined
via a so-called kernel function. It is commonly parametrized using few hyperparameters,
which may be subjected to optimization based on the associated likelihood. The mean
function µ(ω) is often set to zero, since its contribution can be fully absorbed by the
kernel. Typically, the latter is the sole focus of the optimization procedure. However, a
custom mean function may still be useful in certain situations in order to incorporate
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Abbildung 5.16.: Plots showing the ghost dressing function (left) and gluon propagator
(right) from 2+1 flavor lattice QCD simulations, extended by functional
computations in Yang-Mills theory and QCD and compared against the
correlators obtained from the reconstructed spectral functions shown in
Figure 5.17. The results agree within the given statistical uncertainties as
shown in the bottom panels, where the posterior GPs for the correlators
are evaluated at the fixed momenta provided by the lattice data, which
is then subtracted leaving the error bars intact. The total mean squared
errors amount to ∼5e–6 for the ghost and ∼4e–5 for the gluon.

prior beliefs about the functional form of the expected solution. This can improve the
calculation by providing a better starting point for the optimization routine.

A frequently used kernel parametrization is the radial basis function (RBF) kernel, also
called squared exponential. It is defined as

C(ω, ω′) = σ2
C exp

(
− (ω − ω′)2

2l2

)
, (5.53)

where the parameter σC controls the overall magnitude and l is a generic length scale.
The RBF kernel has been established as the standard choice for many applications due to
a number of attractive features, such as universality [333] and every function in its prior
being infinitely differentiable. It is also used for our first results on spectral reconstruction
with GPR presented here.

Nevertheless, designing custom kernels for specific problems has been shown to greatly
increase the usefulness of the approach in various settings and is also promising here.
In particular, it may be interesting to construct kernel functions that can be integrated
analytically against the KL kernel, such that the frequency integrals in (5.51) and (5.52)
may be carried out analytically instead of numerically. To this end, one could potentially
employ functions of Breit-Wigner type as done for the spectral function itself in [243]. In
contradistinction, we may use them to instead define a suitable GP kernel, thereby still
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avoiding the restriction to a specific functional basis as previously mentioned. We comment
on this and other possible improvements to our reconstruction approach in the conclusion.

Furthermore, we emphasize that the present approach in principle does not require us to
choose a specific set of nodes ωi. In fact, instead of computing a discrete set of point pre-
dictions or coefficients of a predefined functional basis, the prediction for ρ is obtained as a
function of ω, albeit only implicitly via the kernel formulation. In particular, the GP also
allows computing all the derivatives of the prediction analytically at any point—including
the associated statistical uncertainties—by differentiating the expressions in (5.52) with
respect to ω (as well as ω′ for the covariance). A finite set of nodes ωi is chosen only at
inference time in order to evaluate the GP, however, the choice is completely arbitrary
within the given domain. This property is one of the most attractive features of GPR for
spectral reconstruction and probabilistic function prediction in general.

5.3.3. Input data

In the past two decades, increasing interest in the momentum behaviour of the fundamen-
tal two-point Green’s functions in QCD as well as further correlation functions of higher
order has triggered respective lattice calculations in particular of Yang-Mills and QCD
propagators; see, e.g., [97, 128, 182, 334–345]. The lattice data for the ghost dressing func-
tion and gluon propagator employed here are shown in Figure 5.16. They are obtained
from recent simulations of 2+1 flavor QCD at the physical point [100, 101]; see Appen-
dix A.10.1 for further details and references. Additional input data and benchmarks are
provided by one-parameter families of solutions from functional computations in Yang-
Mills theory and QCD [2], see Section 5.2, and [95, 171, 243], which are matched to the
continuum-extrapolated lattice data as shown in Figures A.5 and A.6; see Appendix A.10.2
for details.

5.3.4. Reconstruction results

The GPR for the reconstruction of the ghost spectral function is performed using the
aforementioned standard RBF kernel. We extend the lattice input data for the dressing
function into the deep IR. Simultaneously, we fix the low-frequency asymptotics of the
spectral function using a direct realtime result in Yang-Mills theory obtained via the spec-
tral ghost DSE, see Section 5.2 and also Appendix A.10.2. This is achieved by treating
the spectral DSE result as an additional observation. Our procedure uniquely determines
the non-zero value of ρc for ω → 0+, but also increases the reliability of the solution in
the most interesting central region with respect to the kernel hyperparameters. Using just
the lattice data without the extension by the spectral DSE result leads to a much higher
variance in the solution space, with widely different asymptotic behaviours of solution
candidates in the IR. The kernel hyperparameters are chosen by optimizing the associa-
ted likelihood of observations with an additional Gaussian hyperprior, which we achieve
through a fine-grained grid scan; see Appendix C.5 for details. The reconstructed spec-
tral function in the left panel ofFigure 5.17 accurately reproduces the dressing function
data within the uncertainties displayed in the left panel of Figure 5.16, with a total mean
squared error of ∼5e–6.

The features of our prediction are strikingly similar to the aforementioned Yang-Mills
result shown in the left panel of Figure A.6 in Appendix A.10, even though only the
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Abbildung 5.17.: Plots showing the continuous part of the ghost (left) and the gluon
spectral function (right) reconstructed from the lattice QCD correlators
shown in Figure 5.16 using GPR. Shaded areas represent the 1σ-bands
of plausible solutions around the mean prediction based on the available
observations and precision. The ghost spectral function ρc features an
additional massless particle pole in the origin; cf. (5.7).

IR limit is incorporated into the reconstruction. This is expected heuristically, since the
ghost only interacts with the quarks indirectly via the gluon vertices, and the effects of
introducing dynamical quarks must hence be of higher order. The similarity is particularly
notable considering that the methods are conceptually very different.

For the reconstruction of the gluon spectral function, the lattice input data are extended
into the UV using an earlier fRG computation [243], which is quantitatively reliable in
this regime. We discuss this in more detail in the next paragraph and in Appendix A.10.2.
As for the ghost, this extension leads to greatly enhanced stability of the reconstruction
with respect to the kernel hyperparameters. In particular, it ensures convergence to zero
for ω →∞, whereas with just the lattice data we often observe convergence to a non-zero
constant and in some cases even pathological divergences. We use a modified frequency
scale in the RBF kernel in order to suppress spurious oscillations in the IR and UV tails.
The hyperparameters are again obtained via optimization of the likelihood with Gaussian
hyperpriors while approximately enforcing the OZS condition; see Appendix C.5 for details.
The reconstruction shown in the right panel of Figure 5.17 accurately reproduces the lattice
data within the given uncertainties, as shown in the left panel of Figure 5.16, with a total
mean squared error of ∼4e–5. While also being fully consistent, deviations from the lattice
propagator are somewhat stronger than for the ghost dressing function and seem to become
more pronounced in the IR. This is likely caused by the comparably large uncertainties of
the lattice data at small momenta.

The peak structure of the spectral function appears similar to an earlier reconstructi-
on of the Yang-Mills propagator in the fRG framework [243], shown in the right panel
of Figure A.6 in Appendix A.10. We emphasize that the UV extension is done with the
Yang-Mills data of [95] instead of the full 2+1 flavor results from [171]. This is detailed in
Appendix A.10.2 and facilitates the comparison with the Yang-Mills reconstruction [243].
In particular, the positions of the leading positive peaks approximately coincide, with
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ω ≈ 0.818 for the present result and ω ≈ 0.835 for the fRG reconstruction. This reflects
the approximate coincidence of the peaks of the Euclidean gluon dressing functions shown
in the left panel of Figure A.5 in Appendix A.10. We also note that a small peak to the
right of the second local minimum is present in both reconstructions. This feature may
be a generic reconstruction artefact since it is not necessitated by theoretical considera-
tions, but is observed in both results from conceptually very distinct methods. However,
the comparably large uncertainties in this region also include plausible solutions without
additional zero-crossings.

We observe significant differences between the two reconstructions mainly in the overall
peak height and width. Generally, we expect the QCD result for the gluon to differ more
strongly from the pure gauge theory than the ghost due to the direct coupling to quarks.
However, differences may also be attributed in part to the limited availability and precisi-
on of data and the resulting difficulty in resolving highly peaked structures. We find that
generating narrower peaks with greater amplitudes by allowing the kernel’s magnitude
parameter σC to increase and the length scale l to decrease leads to stronger oscillations
in the solution. This is a common feature of conceptually similar reconstruction approa-
ches, such as linear regression with a Tikhonov regulariser (also called ridge regression),
which has been applied, e.g., in [261]. Introducing such a regularisation scheme, which is
equivalent to assuming a Gaussian prior, leads to a favouring of solutions that are closer
to zero. This additional bias can introduce the unwanted oscillations. Within the GPR
approach, the kernel hyperparameters provide more detailed control over the regularisa-
tion and can be tuned to deliberately suppress such unphysical features. However, this
may result in reconstructions that are naturally flatter, which must be taken into account
when interpreting and utilizing the result. This demonstrates one of the key advantages
of GPR, namely the possibility to dynamically adjust the resolution depending on the
available amount and quality of the input data, while still matching the observations as
accurately as possible.

Although the obtained spectral functions reproduce the lattice data to high accuracy,
the asymptotic behaviours of the mean predictions in the deep IR and UV differ from the
analytic results derived in [243]. In particular, different scaling exponents are observed,
and the gluon spectral function shows the opposite sign in the UV. Nevertheless, the ana-
lytically expected behaviour is still plausibly contained within the computed errors, which
are comparably large in these regimes. This indicates that not enough prior information
is available to the GP from just the data in order to accurately resolve the tails of the
spectral functions, which may come as no surprise. While this issue does not affect the
reconstruction in the region of interest, it may be problematic for precision computations
that use these results as inputs. In order to directly enforce the correct asymptotics, poten-
tial approaches are the incorporation of the analytically known behaviours into the prior
means of the GPs or finding more suitable choices for the kernel functions. Furthermore,
exploiting the available analytic results to provide additional prior information about the
derivative structure may be particularly helpful in stabilizing the tail behaviour. To achie-
ve this, one may again write down the joint distribution of the predicted spectral function
at any frequency and its associated derivatives to arbitrary order in closed form and derive
the conditional posterior distribution similar to (5.52).
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5.3.5. Conclusion

In this section, we applied Gaussian process regression to the reconstruction of ghost and
gluon spectral functions in 2+1 flavor QCD at the physical point. These spectral functions
are the pivotal building blocks of diagrammatic representations for bound state equations
such as Bethe-Salpeter and Faddeev equations, see, e.g., [120, 266, 267], as well as transport
coefficients, see, e.g., [258, 346].

Importantly, the gluon spectral function has a pronounced quasi-particle peak, the po-
sition of which is related to the mass gap in QCD. This extends previous vacuum and
finite-temperature results in Yang-Mills theory [243, 258] to physical QCD. Our findings
provide non-trivial QCD support to the phenomenological use of quasi-particle gluon spec-
tral functions for transport computations; see [347] for a recent review. Moreover, the
present results can be directly employed as first-principle QCD inputs in order to sys-
tematically improve the respective phenomenological approaches towards a first-principle
treatment of QCD transport processes.

These promising phenomenological applications of the present results also highlight the
necessity of further improving the reconstruction approach itself, for which a number of
potential directions can be envisaged. This includes the aforementioned possibility of de-
signing custom kernels for the problem at hand, potentially with analytic integrability
against the KL kernel. Constructing suitable, expressive kernels may also be automated
and improved through the use of hyperkernels [348] or techniques such as deep kernel lear-
ning [349]. To account for some variability in the kernel hyperparameters, one may replace
the maximum likelihood approach by an integral over parameter space using a suitable
hyperprior which encodes any prior assumptions. Alternatively, optimal hyperparameters
may also be selected based on a data-driven machine learning approach, using datasets
consisting of pairs of correlators and associated spectral functions.

Furthermore, the flexibility of the GPR framework allows the incorporation of various
supplementary constraints derived from theoretical arguments, such as information about
derivatives, known asymptotic behaviours, or normalization conditions. This is expected
to further improve the accuracy and reliability of the reconstruction, in particular for the
IR and UV tails of the spectral functions that are otherwise difficult to resolve. This will
be the subject of future work, accompanied by direct functional computations of further
spectral properties along the lines of [1, 2, 5], see Section 4.1, 5.1 and 5.2.

The immediate next steps in our endeavour towards unveiling realtime properties of
QCD are the application and extension of the present numerical method to quark pro-
pagators as well as correlation functions computed at finite temperature. This will ena-
ble quantitative studies of hitherto theoretically inaccessible non-equilibrium dynamics of
QCD in the transport phase of heavy-ion collisions within a first-principle approach.
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5.4. Quark

This section presents results of [7].

In this section we apply the spectral functional approach to the quark gap equation and
present a direct calculation of the spectral function of light quark flavors in 2+1 flavor va-
cuum QCD using the isospin-symmetric approximation. For the gluon propagator, we use
the Gaussian Process Regression (GPR) reconstruction results for the gluon spectral func-
tion of 2+1 flavor lattice QCD data [100, 101] presented in [3], see Section 5.3. In addition
to the numerical results, we present a general discussion of the impact of the quark-gluon
vertex and the gluon propagator on the analytic structure of the quark propagator. Ba-
sed on this discussion, we formulate conditions under which complex conjugate poles are
present or absent in the quark propagator, and discuss their sources. Reconstructions of
the quark spectral function from Euclidean lattice and DSE data in QCD have been pre-
viously put forward in [350] respectively [351–353]. Investigations of the quark propagator
on the real axis and in the complex plane with various vertex models, also in the context
of solving BSEs in the timelike domain, have been put forward in, e.g., [266, 354–370].

Realtime results for the quark propagator have a wide range of possible direct applica-
tions: in the case of heavy quarks, the propagator can be directly used to calculate the
heavy quark diffusion coefficient, which is a necessary ab-initio input in hydrodynamical
simulations of the quark gluon plasma. In the calculation of the QCD resonance spectrum
from functional methods the quark propagator is needed for general complex momenta.
Using the Källén-Lehmann representation, the quark propagator is readily evaluated in
the full complex momentum plane solely using information on the realtime axis.

This section is organised as follows. A general discussion of the analytic structure of
the quark propagator can be found in Section 5.4.1. In Section 5.4.2, we introduce the
spectral quark propagator DSE. Results for the quark spectral function and a discussion
of the complex structure of the propagator are presented in Section 5.4.3. We conclude
in Section 5.4.4.

5.4.1. Analytic properties of the quark propagator

The quark propagator can be parametrised as

Gq(p) =
1

Zq(p)

−i/p+Mq(p)

p2 +Mq(p)2
, (5.54)

with dressing 1/Zq and mass function Mq. The singularity structure of Gq is encoded in
its universal part

g(p) =
1

p2 +Mq(p)2
. (5.55)

The singularities of the quark propagator appear as roots of the denominator of (5.55).
The dressing function 1/Zq can be assumed to be singularity-free in the complex plane.

By its gapped nature, the universal part (5.55) of the quark propagator has to have
one or more poles close to the gapping scale Mq(0). These poles can be located either on
the first or second Riemann sheet or on their boundary, which is the real axis. On the
boundary and on the first sheet, the poles directly show up in the quark propagator as
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real respectively complex conjugate poles. On the second Riemann sheet, the poles do not
directly show up in propagator, but only leave an imprint on the real axis. In the latter case
as well as when the pole is on the real axis, the quark propagator obeys a Källén-Lehmann
representation. In the vacuum, it can then be described by a single scalar function ρq via

Gq(p) =

∫ ∞

−∞

dλ

2π

ρq(λ)

i/p+ λ
. (5.56)

We drop the spatial momentum argument in the subsequent calculation, as it can be
restored from the ~p = 0 case via a Lorentz boost due to Lorentz invariance.

The quark spectral function ρq can be decomposed into a frequency-even and -odd
component,

ρq(ω) = ρ(d)
q (ω) + ρ(s)

q (ω) , (5.57)

with

ρ(d)
q (−ω) = ρ(d)

q (ω) , ρ(s)
q (−ω) = −ρ(s)

q (ω) . (5.58)

ρ
(d)
q and ρ

(s)
q account for the Dirac respectively scalar part of the propagator,

Gq(p) = −i/p

∫

λ

ρ
(d)
q (λ)

p2 + λ2
+

∫

λ

λ ρ
(s)
q (λ)

p2 + λ2
, (5.59)

with
∫
λ =

∫∞
0 dλ/π, again. The components of the spectral function can be obtained

separately from the propagator via

ρ(d)
q (ω) =

1

2
tr
[
γ0 ImGq(−iω+)

]
, ρ(s)

q (ω) =
1

2
tr
[
ImGq(−iω+)

]
, (5.60)

with ω+ as defined in (4.5). An isolated pole on the real axis shows up as a single Dirac
delta contribution in the spectral function. These contributions are associated with stable
asymptotic vacuum states, located at the pole mass of the corresponding particle. Note
that in gauge theories, these asymptotic states do not necessarily correspond to physically
measurable particles [371]. Continuous contributions to the spectral function usually en-
code the scattering spectrum of the theory. In vacuum, they come with a sharp onset at
the energy of the lowest lying scattering state. The quark propagators analytic structure
has been intensively studied in the literature [355–357, 367, 370].

The spectral representation (5.56) also entails the sum rules

∫

λ
ρ(d)
q (λ) =

1

Zq(p→∞)
,

∫

λ
λ ρ(s)

q (λ) = 0 . (5.61)

Equation (5.61) can be derived in analogy to Appendix A in [2], see Appendix A.8.

5.4.1.1. Singularity structure

In the case of poles on the first sheet, the spectral representation (5.60) is violated. Below,
we summarise the discussion of the analytic structure of the quark propagator presented
in Appendix A.11. This discussion eventually motivates the use of the spectral represen-
tation of the propagator independent of its precise analytic structure.
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−=

Abbildung 5.18.: Quark propagator Dyson-Schwinger equation. Notation as defined in Fi-
gure 2.1. Solid lines represent quark and wiggly lines represent gluon
fields.

Under a small set of well-justified assumptions, which Riemann sheet the poles of the
quark propagator appear on is directly linked to the imaginary part of its mass function
on the real axis. We assume the mass function to be smooth and well-behaved, which is
monotonously decaying for large complex momenta. Note that this usually holds true due
to the logarithmic nature of the branch cut of the propagator. In summary, we find:

The quark propagator shows a pair of complex conjugate poles on the first Riemann
sheet, if

ImMq(ω0) > 0 , for ω2
0 − ReMq(ω0)2 = 0 . (5.62)

We emphasise that the above condition for complex poles in the quark propagator is
an empirical observation based on a generic mechanism which applies under fairly general
conditions in fermionic DSEs. Turning observations such as (5.62) into rigorous statements
is a notoriously hard task in functional methods since analytic structures of correlation
functions are highly truncation-dependent. We discuss this matter for the quark gap equa-
tion in Paragraph 5.4.3.2.2. Details as well as a heuristic derivation of (5.62) are presented
in Appendix A.11.

In (5.62), ω0 is the root of the real part of the universal part g’s (5.55) denominator.
It therefore gives the position of the (quasi-) pole of the quark propagator on the real
axis. If (5.62) is fulfilled, the denominator of g has a root in the upper (and lower) right
half of the complex plane. If Im Mq(ω0) = 0, the quark propagator has a real pole. For
Im Mq(ω0) < 0, the denominator of (5.55) most likely will not have a root, and the complex
poles move to the second Riemann sheet.

In one-loop perturbation theory, (5.62) holds true, and the quark propagator shows
complex poles. There, as well as in other practical calculations, the imaginary part of the
mass function is usually very small in a neighbourhood of ω0, ImMq(ω0)� 1. This entails
that independent of which sheet the complex poles lie on, the (quasi-)pole in the universal
part (5.55) can be well approximated by a real pole at ω0. On the level of the spectral
function, this approximation translates into

ρ(ω) = Rδ(ω − ω0) + ρ̃(ω) , (5.63)

for both vector and scalar component, where R is a residue. We call (5.63) the resonance-
scattering split.

Equation (5.63) represents a central approximation of this work. It is used in obtaining
all numerical results presented in Section 5.4.3. For a detailed discussion of this appro-
ximation we refer to Appendix A.11. There, we also provide the relations between the
respective residues and scattering tails of scalar and vector component of the quark spec-
tral function in the resonance-scattering split (5.63) and the full Minkowski space quark
propagator.
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5.4.2. Spectral quark DSE

In this section, we briefly introduce the spectral quark propagator DSE. This equation is
used in obtaining all numerical and analytical results in this work.

The quark propagator DSE can be parametrised as

Γ
(2)
q̄q (p) = iZ2 /p+ Zmqmq − Σq̄q(p) , (5.64)

with the quark self-energy Σq̄q(p) and the wave function renormalisation Z2 and mass
renormalisation Zmq of the quark. In (5.64) we have used the notation (2.13) for 1PI
correlation functions, derived from the 1PI effective action.

The quark-gluon vertex is proportional to (ta)AB with the gluon color index a and quark
and anti-quark indices A,B. We can write schematically

[Γ
(3)
q̄qA]a(q, p) = taΓµ(q, p) , (5.65)

where we suppressed the color indices of the quark. The quark self-energy Σq̄q in (5.64)
has the general form

Σq̄q(p) = −igsCfδ
abZf1 γµ

∫

q
GµνA (q + p)Gq(q)Γν(q,−p) , (5.66)

with the strong coupling constant gs and Zf1 the quark-gluon vertex renormalisation con-
stant. The combination of (5.64) and (5.66) is depicted in Figure 5.18 with the diagram-
matic rules of Figure 2.1.

In (5.66), the color contractions have already been carried out, yielding the Casimir
operator in the fundamental representation, Cf = 4/3 for SU(3). GA and Gq are the gluon
respectively quark propagator. The following computation is carried out in the Landau
gauge.

We employ the KL representation for the quark and gluon propagators inside the quark
self-energy. Then, we apply the scheme of spectral renormalisation [1], see Section 4.1.
Within this scheme, the momentum integrals in the quark DSE can be solved analytically
via standard dimensional regularisation. As a consequence, the quark gap equation can
be evaluated analytically in the full complex momentum plane, and in particular on the
timelike axis. The remaining spectral integrals also require regularisation, which is provi-
ded by the spectral renormalisation scheme. The finite spectral integrals are straightfor-
wardly evaluated numerically, and the quark spectral function can be obtained by simply
using (5.60).

Due to its genuine realtime nature, spectral renormalisation permits specifying renorma-
lisation conditions in the Euclidean or Minkowski domain. In particular for massive theo-
ries, this allows for on-shell renormalisation. Since the position of the mass (quasi-)pole
of the quark is unknown, we refrain from doing so however, and fix the propagator at a
large perturbative scale µ instead,

Zq(p
2 = µ2) = 1 , Mq(p

2 = µ2) = mq , (5.67)

where mq is the current quark mass. For the explicit calculation we refer to Appendix B.6.
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5.4.2.1. Gluon propagator

In Landau gauge, the gluon propagator is fully transverse,

GµνA (p) = Πµν
⊥ (p)GA(p) , (5.68)

where Πµν
⊥ is the transverse projection operator defined in (5.3). We employ a spectral

representation for the scalar part GA(p) of the gluon propagator (5.11), implying that
all non-analyticities of the gluon propagator are confined to the real momentum axis. In
particular, this entails that the gluon propagator does not have complex poles. In fact, the
complex structure of the gluon propagator is subject of an ongoing debate. Equation (5.11)
is therefore to an assumption. We discuss implications as well as deviations of it by, e.g.,
complex conjugate poles in Paragraph 5.4.3.2.2.

The gluon spectral function ρA represents a non-trivial input for our calculation. We
use reconstruction results of 2+1 flavor lattice QCD data [100, 101] obtained via Gaussian
process regression in [3] for ρA, shown in the right panel of Figure 5.17. The lattice data
corresponds to a decoupling-type solution, i.e., the gluon propagator approaches a finite,
non-zero value in the origin, as shown in the right panel of Figure 5.16.

5.4.2.2. Quark-gluon vertex

The existence of analytic solutions for the momentum loop integrals is at the heart of
spectral functional approaches. This imposes restrictions on the representations of the
correlation functions entering. For example, full vertices or particular momentum chan-
nels thereof can be included via their spectral representations, as done, e.g., in [1] resp.
Chapter 4.

Due to the transversality of the gluon propagator in the Landau gauge, only the trans-
verse part Γµ(p, q) of the quark-gluon vertex Γµ(p, q) enters the gap equation. We define

Γµ(p, q) = Π⊥µν(p+ q)Γν(q, p) , (5.69)

with the transverse projection operator (5.68). While the full quark-gluon vertex can be
expanded in a basis with twelve tensor components, the transverse vertex Γν is expanded
in eight transverse tensor structures,

Γµ(p, q) = gs

8∑

i=1

λi(p, q)Ti(p, q) . (5.70)

Here, q, p are the (incoming) anti-quark and quark momenta respectively and the incoming
gluon momentum is −(p+ q), see, e.g., [171].

While the tensor basis {Ti} is not unique, it can be ordered such that it only hosts three
dominant components [166, 171, 372–374]. Naturally, one of them is the chirally symmetric
classical tensor structure, and we choose T1 = γµ, or rather its transverse projection,

T1(q, p) = −i γµ Π⊥µν(p+ q) . (5.71)

The choice for the dominant components is completed by a further chirally symmetric
tensor structure and one, that breaks chiral symmetry. The dressing λ1 of the classical
tensor structure can be related to the wave function renormalisation of the quark as well
as a scattering kernel via the Slavnov-Taylor identities (STIs), see, e.g., the reviews [54, 56]
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for more details and Section 3.1.6 for a general introduction. The representation of the
STIs and their impact here relies on [166, 171], and we refer to these works for further
discussions.

Roughly speaking, the STIs for the quark-gluon vertex express the four longitudinal
dressings in terms of the quark propagator and additional scattering kernels, that carry
the quantum modifications of BRST transformations. While the general relations are rat-
her complicated, they are significantly reduced under the assumption that the quantum
BRST transformations are approximated well by the classical ones. Indeed, in general the
scattering kernels show a rather mild momentum dependence which supports this appro-
ximation. An exception is triggered by the Schwinger mechanism for confinement that
necessarily leads to longitudinal poles in the ghost-gluon scattering kernels. Without the
scattering kernels, the STI for the quark-gluon vertex takes the simple Abelian form

(pµ + qµ)Γµ(q, p) = gs

[
Γ

(2)
q̄q (q)− Γ

(2)
q̄q (p)

]
, (5.72)

identical to the form of the Ward identity in QED.

The approximation of the quantum BRST transformations as classical ones discus-
sed above are at the heart of the Ball-Chiu construction [375, 376] and variants thereof,
e.g., [377–379], for a discussion see [54]. All these vertices are constructed around a unique
combination of the quark dressings Zq and Mq. The difference between the variants of
this construction is an undetermined additional transverse part dropping out of the STIs.
Effectively, STI vertices rely on the smallness of this additional piece. The construction is
Abelian and also works in U(1) theories such as QED.

Consistent approximations of the quark-gluon vertex, leading to the right amount of
chiral symmetry breaking, are intricate: To begin with, as discussed before, quantitatively
reliable results are only obtained self-consistently from the coupled set of propagator and
quark-gluon vertex DSEs, if we consider at least three out of the eight transverse tensor
structures.

In gauge theories we face the situation that the correct complex structure of propaga-
tors and vertices may only be obtained in a fully gauge consistent approximation, for a
discussion see, e.g., [5] resp. Section 5.1. This suggests an investigation of the quark gap
equation with STI quark-gluon vertices. However, while the dressing of the classical tensor
structure is constrained by the STIs, the dressings of the other two relevant tensor struc-
tures are not. Hence, one may drop them in a first attempt on the complex structure of the
quark. In this case, the physical amount of chiral symmetry breaking can only be obtained
by an infrared enhancement of the dressing λ1. This may introduce an additional complex
structure into the gap equation, whose impact is hard to control. A similar analysis has
been done very thoroughly in the pure Yang-Mills system, see [264]: the ensuing location
and strength of complex singularities of ghost and gluon varied greatly, depending on the
vertex dressings. This suggests that a conclusive study involves a self-consistent compu-
tation using all the three dominant tensor structures and an STI-consistent dressing for
the classical tensor structure. We discuss the complex structure of the quark propagator
in the scenario with STI vertices in Paragraph 5.4.3.2.2. A quantitative computational
analysis of this scenario goes beyond the scope of the present study and will be presented
elsewhere.

Here, we close the remaining gap in approximations studied in the literature: We nume-
rically solve the gap equation with the input of a full realtime gluon propagator augmented
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Abbildung 5.19.: DSE results for the quark propagator in the chiral limit (dashed) and
for light quark flavors (solid). Left: Spectral function in the resonance-
scattering split (5.63). Arrows indicate delta poles. Their height encodes
the relative size of the residues. The numerical values of the pole positions
and residues are given in Table 5.1. Note that the appearance of the
delta poles is due to the resonance-scattering split. The scattering tail is
predominantly negative, as necessitated by the sum rules (5.61). While
the large negative peak in the scattering tail can be understood as part
of the pole structure, the bump at about 1.8 GeV is connected to quark-
gluon scattering. Right: Euclidean dressing and mass function. In the
chiral limit, a constituent quark mass of Mχ(0) = 353 MeV is obtained.
For light quark flavors in the isospin symmetric approximation, we find
Ml(0) = 398 MeV. The dressing function approaches a value above one
in the IR. This feature is investigated in Appendix A.12 and attributed
the use of a classical quark-gluon vertex in Landau gauge.

with classical vertices,

Γν ≈ −igsγν . (5.73)

In this approximation, the gap equation takes the simple form

Σq̄q(p) = −g2
sCfδ

abZf1

∫

λ

∫

q
GµνA (q + p)γµ

1

i/q + λ
ρq(λ)γν . (5.74)

To account for a sufficient amount of chiral symmetry breaking, we amplify the value
of the coupling constant such that the correct constituent quark masses are produced.
Note that such a qualitative procedure necessarily leads to quark propagators with an
enhanced ultraviolet tail. We emphasise that in this work, we do not aim at quantitatively
improving its description in the Euclidean domain. Instead, the purpose of this study is
a non-perturbative, direct investigation of the complex structure of the quark propagator
using a full 2+1 flavor QCD gluon propagator.
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5.4.3. Results

The spectral quark DSE introduced in Section 5.4.2 is solved in 2+1 flavor QCD for light
quark flavors using the isospin-symmetric approximation. For the gluon propagator, we
use the input discussed in Section 5.4.2.1. Our quark-gluon vertex truncation, the classical
vertex approximation, is discussed in detail in Section 5.4.2.2. The strong coupling constant
is set to αs = 1.11 such that in the chiral limit, a dynamical constituent quark mass of
Mχ(0) ≈ 350 MeV is generated. Formally, the current quark mass for light flavors is
fixed through the pion mass mπ and decay constant fπ by the Gell-Mann-Oakes-Renner
(GMOR) relation. Here, we treat mq as a phenomenological parameter instead. For mq =
1.2 MeV, we obtain a constituent quark mass for light quark flavors of Ml(0) ≈ 400 MeV.

The renormalisation conditions (5.67) are employed at µ = 30 GeV. All solutions are
obtained using the resonance-scattering split (5.63).

5.4.3.1. Numerical results

Our results for the quark spectral function for light quark flavors and in the chiral limit are
shown in the left panel of Figure 5.19. Since the resonance-scattering split was employed,
all spectral functions feature a genuine delta pole, with positive residue. The pole position
is identical for both components, since it follows from the universal part of the quark
propagator (5.55).

The peak moves towards larger frequencies going from the chiral limit towards the light
flavors, as expected from the increase of the constituent quark mass. The residues of both
components increase accordingly, since the mass function respectively the peak position
appear in the residues, cf. (A.79). The residues of both components are nearly identical,
as anticipated from (A.80). The numerical values of the peak positions and residues can
be found in Table 5.1. We note that while the constituent quark mass increases about
50 MeV from the chiral limit to light flavors, the pole position moves up about 70 MeV.
Since also the scattering tail grows in amplitude, a larger increase in the pole mass than
in the constituent mass is necessary. The scattering tail is negative and therefore yields a
negative contribution to the value of the mass function in the origin.

The scattering tails of both, vector and scalar components are predominantly negative.
Since the residues are positive, this is necessitated by the quark spectral functions nor-
malisation condition (5.61). Remarkably, for both components we find the sum rules to
be fulfilled with an accuracy of about 1 ‰. We interpret the negative bump directly to
the right of the delta pole as part of the actual pole structure, part of which is appro-
ximated by a delta pole in the resonance-scattering split. We discuss this in more detail
in Section 5.4.1.1.

The second particular structure in the scattering tail is a small bump at about 1.8
GeV, which has opposite sign for vector and scalar components. We relate this structure
to quark-gluon scattering: for the light flavors, its position is approximately at twice the
quark mass pole position ω0 plus the peak position of the gluon spectral function ωA, i.e.,
ωbump ≈ 2ω0 + ωA. Hence, the structure can be understood as a washed-out onset for
quark-gluon scattering. This interpretation is supported by the fact that, when using a
more strongly peaked gluon spectral function, e.g., the Yang-Mills reconstructions results
of [243], the structure becomes much sharper and more pronounced. In the chiral limit,
the bump position is less pronounced and difficult to locate, appears at a similar scale,
however.
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Abbildung 5.20.: Results for the quark propagator in Minkowski space in the chiral limit
(dashed) and for light quark flavors (solid). Left: Mass function. The
imaginary part shows a sharp onset at the respective pole mass mpole,
as shown in the inset. At about 1.8 GeV, the imaginary part shows
a peak, while the real part has a zero crossing. These structures are
attributed to quark-gluon scattering, compare the corresponding bump
in the spectral function in the left panel of Figure 5.19. Right: Dressing
function. The imaginary part shows a (negative) peak at about the quark-
gluon scattering scale as well.

The inset in the left panel of Figure 5.19 shows the ultraviolet tails of both spectral
function components. The opposite sign follows from the different anomalous dimensions
of the quark wave and mass functions.

In the right panel of Figure 5.19 we display the Euclidean quark mass and dressing
function. In the chiral limit, we obtain Mχ(0) = 353 MeV, whereas for the light flavors,
we have Ml(0) = 398 MeV. The dressing function 1/Zq(p) rises above one in the deep IR,
in contrast to results using more sophisticated vertex truncations [166, 171, 373, 380, 381].
We therefore attribute this feature to our vertex truncation, which can be considered too
crude to yield quantitative statements about the Euclidean domain. In Appendix A.12 we
demonstrate that at one-loop level, the IR behaviour of the dressing function is strongly
gauge parameter dependent.

5.4.3.2. Analytic structure

Next, we present a general discussion of the analytic structure of the quark propagator in
light of the numerical findings presented in the previous section. We start by discussing the
effects of our truncation with classical vertices and the resonance-scattering split on the
analytic structure of the result in Paragraph 5.4.3.2.1. In Paragraph 5.4.3.2.2, in particular
the impact of STI vertex constructions and non-spectral gluon propagators are discussed.
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Chiral limit Light flavors

mpole [GeV] 0.412 0.485

R(s) 0.768 1.15

R(d) 0.766 1.15

Tabelle 5.1.: Results for the numerical parameters in the resonance-scattering split (5.63)
describing the pole contribution of the quark spectral functions in Figure 5.19.
We numerically verify that R(s) ≈ R(d), according to (A.80).

5.4.3.2.1. Present truncation Our truncation of the spectral quark DSE, discussed
in detail in Section 5.4.2, along with resonance-scattering split (5.63) allows us to discuss
the analytic structure of the quark propagator within the following scenario:

(i) The gluon propagator obeys a Källén-Lehmann representation and does not exhibit
poles,

(ii) the quark propagator has a pole on the real axis at ω0 = mpole,

(iii) only the classical tensor structure of the quark-gluon vertex contributes and its
dressing is constant.

Note that certainly, (iii) does not hold true for the full quark-gluon vertex. The latter can
be expected to show an imaginary part as well as a branch cut for specific combinations
of real frequencies. As vertex models with (iii) are still used in practical calculations, we
include this situation in the present discussion.

Under the above conditions, the universal part of the propagator (5.55) features a branch
cut with support in [mpole,∞). Since the branch cut of the gluon propagator starts in the
origin, the branch point mpole ∈ R of the quark propagator arises at the same point as
its pole. This can be easily seen from the scalar part of the quark self-energy diagram,
see (B.44). In consequence, the universal part shows a branch point singularity. Note that
this alone does not necessarily violate the KL representation.

In addition to the branch point singularity, the propagator can show complex poles.
As argued in Section 5.4.1, the presence or absence of complex poles depends on the sign
of the mass functions imaginary part in the neighbourhood of the branch point mpole.
If the imaginary part is negative, the poles are on the second Riemann sheet and the
quark propagator obeys the KL representation. If it is positive, the pole are on the first
sheet and the KL representation is violated, see (5.62). In the left panel of Figure 5.20
we display the mass function on the real axis. We find that the imaginary part of the
mass function approaches zero from above at mpole. Although strictly speaking, (5.62)
does not apply here since Im Mq(mpole) = 0, our quark propagator still shows complex
poles. This can be validated by calculating the corresponding spectral function with (5.60)
without the resonance-scattering split (5.63): it shows a negative instead of a positive
peak around mpole, entailing that the propagators branch point singularity is negative.
In consequence, the corresponding Euclidean propagator obtained through the spectral
representation (5.56) does not reproduce the Euclidean results in the right panel of Figu-
re 5.19.

We emphasise that the real pole of the spectral function is a built-in feature of the
resonance-scattering split (5.63) and does not correspond to the quark propagators analytic
structure described above. Rather, our results suggest that the quark propagator can

158



5.4. Quark

be very well approximated by the spectral functions in this approximation, displayed
in Figure 5.19. In contradistinction, the condition for the appearance of complex poles
formulated in (5.62) is general. An evaluation confirming the applicability of the resonance-
scattering split at the level of the Euclidean propagator is presented in Appendix A.11.1.

5.4.3.2.2. STI vertices & non-spectral gluon propagators The full analytic struc-
ture of the quark propagator is a long-standing question. A clear answer is hindered by the
need to truncate the infinite tower of diagrammatic equations for QCD correlation func-
tions in functional approaches. For example, in [264] a strong dependence of the analytic
structure of the gluon propagator on vertex models has been observed via a direct calcula-
tion in Yang-Mills theory for complex frequencies. For the quark propagator such a strong
dependence has been observed in [266, 357, 359, 382], where complex conjugate poles in
the quark propagator where found depending on the vertex model. In the following, we
discuss the impact of the two input correlation functions in the quark gap equation on the
analytic structure of the quark propagator: the quark-gluon vertex and gluon propagator.
The discussion will put focus on sources of complex non-analyticities, which are consistent
approximation of the full quark-gluon vertex and the complex structure of the gluon. To
that end, we will use the examples of an STI vertex construction and a non-spectral gluon
propagator.

Quark-gluon vertex As discussed in Section 5.4.2.2, the quark-gluon vertex is cons-
trained by an STI which implements gauge consistency of the solution. A spectral vertex
model fulfilling the particularly simple Abelian approximation (5.75) of the STI has been
introduced in [383] and reads,

Gq(q)Γµ(q, p)Gq(p) ≈ igs

∫

λ

1

i/q + λ
γµ

1

i/p+ λ
ρq(λ) . (5.75)

Equation (5.75) directly builds on the quark spectral representation (5.56) with the spec-
tral function of the quark propagator ρq. Contracting (5.75) with (p+ q)µ leads to (5.72),
multiplied from the left and right by quark propagators.

The STI vertex (5.75) can be directly used in the gap equation (5.66) when multiplying
the latter with the quark propagator Gq(p). Then, (5.66) reduces to

1 =
(
iZ2 /p+ Zmqmq

)
Gq(p) + g2

sCfZ
f
1

∫

λ

∫

q
GµνA (q + p)γµ

1

i/q + λ
γν

1

i/p+ λ
ρq(λ) . (5.76)

By taking the imaginary part of (5.76), we project onto the spectral function of the quark
propagator in the first term on the right hands side. Hence, the Abelian STI vertex defined
in (5.75) reduces the gap equation from an initially non-linear to a linear equation for the
quark spectral function. This greatly simplifies the task of numerically solving the equation.

In QED, (5.76) can be solved analytically if augmented with a classical spectral function
ρA of a photon, i.e., a simple delta pole, as done in [40]. The resulting spectral function
of the electron has the pole contribution at the electron mass as well as a scattering
tail. Hence, no violation of the KL representation of the electron propagator has been
found there. In turn, the electron propagator derived from the gap equation with classical
vertices (5.74) has complex conjugate poles, in analogy to our results, see the discussion
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in Paragraph 5.4.3.2.1. This shows impressively that gauge consistency of correlation func-
tions plays a pivotal role for the existence of spectral representations. This observation
can also heuristically be linked to the form of the gap equation with STI vertices: the
STI turns the initially non-linear equation for the quark spectral function (5.64) with a
complex solution into a linear one with a real solution (5.76).

Gluon propagator A pivotal ingredient in above discussion is the simple spectral struc-
ture of the photon/gluon propagator. In contrast to the photon spectral function, the
spectral representation of the gluon is far more complicated. An extended representation
features a spectral (KL) part and additional complex singularities.

The spectral part necessarily show negative parts at asymptotically large and small spec-
tral values [243] in contradistinction to the positive photon spectral function. Moreover,
complex poles have been observed in direct realtime calculations of the gluon propagator
in different truncations of Yang-Mills theory [5], see Section 5.1, [264]. It has been argued
in [5] resp. Section 5.1 that these poles render a consistent solution difficult and, as stated
above, might ultimately be linked to inconsistencies in the respective truncation. Finally,
precision reconstructions of Yang-Mills and QCD gluon propagators have been performed
in a purely spectral manner without complex poles [3], see Section 5.3, [243, 258, 300],
and with complex poles [104, 260, 270, 327].

A gauge boson propagator with complex conjugate poles can lead to further complex
conjugate cuts in the quark propagator, violating the KL representation. This has been
shown in [5] resp. Section 5.1 in the ghost-gluon system. The mechanism is very general:
The complex singularities of the gluon propagator are dragged along by the loop momen-
tum integration to form branch cuts in the ghost self-energy. Note that in the same fashion,
the ordinary branch cut on the real axis in polarisation diagrams emerges from integrating
two massive propagators. Therefore, the mechanism also applies in the quark gap equati-
on with bare vertices, and complex conjugate cuts are produced when using a gluon with
complex poles. The analytic structure w.r.t to loop momentum of the integrands in the
gap equation with classical vertices (5.64) and with STI vertex (5.76) is identical, however.
This leads us to the following result about the analytic structure of the quark propagator:

For a gluon with complex conjugate poles, the quark gap equation with either classical
vertices (5.73) or STI vertices (5.75) leads to a violation of the spectral representation of
the quark by complex conjugate cuts.

This observation may have far-reaching consequences for the direct realtime computa-
tion of scattering elements via DSE, Bethe-Salpeter, Faddeev and four-body equations,
which will be discussed elsewhere.

5.4.4. Conclusion

In this section, we computed the quark spectral function of vacuum QCD for light quark
flavors assuming isospin symmetry. The full quark propagator was obtained by solving its
spectral Dyson-Schwinger equation using 2+1 flavor lattice QCD gluon propagator da-
ta [100, 101] and a classical quark-gluon vertex. We employed a spectral representation for
the gluon propagator and used reconstruction results from Gaussian process regression [3],
see Section 5.3, for the gluon spectral function.

In this approximation, the quark propagator shows a pair of complex conjugate poles
located very close to the real axis. Nevertheless, the quark propagator can be very well
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approximated to obey a Källén-Lehmann representation by using an analytic split into
resonance and scattering contribution for the quark spectral function, cf. Section 5.4.1.1.
Within this approximation, the quark spectral function shows a delta pole and a continuous
scattering contribution. While the delta pole features a positive residue, the scattering tail
is predominantly negative. The latter fact is necessitated by the sum rule of the quark
spectral function.

In QED, it has been found that complex poles in the electron gap equation disappe-
ar when using STI-consistent vertex constructions. Similar observations have been made
indirectly in QCD, implying that the quark obeys a spectral representation in this case.
Even in the case of STI-consistent vertices this property is lost again when using a gluon
propagator with complex conjugate poles also, as we argue in Paragraph 5.4.3.2.2.

Our investigation represents a further major step towards understanding the timelike
structure of fundamental correlation functions of QCD. To further deepen this understan-
ding, the impact of different quark-gluon vertex models on the complex structure of the
quark propagator should be studied. Using an STI-consistent vertex construction together
with a full gluon propagator in the spectral quark DSE can be regarded as a natural next
step in this direction. Our approach enables to directly resolve the full complex momentum
plane for different vertex models and gluon propagators.

Our results have a wide range of possible direct applications. In hydrodynamical simu-
lations of the quark gluon plasma, QCD transport coefficients represent necessary input
which can only be calculated from ab initio methods such as functional methods. The
transport coefficients are linked to fundamental correlation functions via Kubo relations.
Of particular interest is the heavy quark diffusion coefficient. Due to their massive nature,
heavy quarks act as probes of the thermodynamic evolution of the quark gluon plasma. Our
calculation for light quarks extends straightforwardly to that of the heavy quark propaga-
tors in realtime. Indeed, the systematic error of the present approximation is significantly
reduced in the latter case, as both the quark propagator and the respective vertex carry
less (chiral) dynamics. The calculation of the QCD hadron spectrum represents another
promising application. Resonances can be determined from functional methods by solving
resonance equations such as the Bethe-Salpeter equation in the timelike domain. As an
input, the fundamental QCD correlation functions in the complex momentum plane are
required. Here, our results for the quark propagator can directly be used.
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In this chapter, we demonstrate how the spectral functional approach introduced in [1],
see Chapter 4, can facilitate the calculation of various observables which directly base on
fundamental realtime correlation function input. The computations cover a broad range of
observables, encompassing transport coefficients, bound states, anomalous magnetic mo-
ments and scattering amplitudes, and directly make use of results for timelike correlators
presented in Chapter 5.

In Section 6.1, basing on [8], we compute the non-perturbative strong coupling constant
in the timelike domain, which finds direct application in the computation of, e.g., physical
scattering amplitudes or the resonance spectrum of QCD. The computation is facilitated
by the reconstruction results of [3], see Section 5.3: Establishing a spectral representation
for the strong coupling constant, we use the reconstructed QCD gluon and ghost spectral
functions to directly compute the spectral function of the coupling. This result is compared
to a direct GPR reconstruction of the spectral function of the coupling constant from lattice
data, demonstrating the reliability of GPR as a tool for spectral reconstruction.

In Section 6.2, we present preliminary results for a two-particle bound state in the
scalar φ4-theory in 2+1 dimensions facilitated by the realtime propagator results from the
spectral DSE discussed in Section 4.1 resp. [1]. With this study, we lay the conceptual
basis for the computation of hadronic resonances in QCD by combination of the spectral
functional approach with resonance equations such as Bethe-Salpeter equations.

In Section 6.3, we compute the hadronic vacuum polarisation (HVP) in the full complex
plane, including the calculation of the quark-photon vertex from a Bethe-Salpeter equati-
on. The HVP represents the leading QCD contribution the anomalous magnetic moment
of the muon, g–2. Our investigation focusses on the connection of the analytic structure of
the HVP to that of its fundamental input correlation functions such as the quark propa-
gator. This could yield insight into existence of complex singularities in the fundamental
correlators, as the analytic structure of the HVP is tightly constrained.

In Section 6.4, we present results for the shear viscosity of Yang-Mills theory, based
on an exact diagrammatic expression for the corresponding shear correlator of the ener-
gy momentum tensor. The shear viscosity is the dominant transport coefficient in the
hydrodynamic evolution of the quark-gluon plasma, representing a crucial input for the
simulation of ultrarelativistic heavy-ion collisions. Our setup only requires realtime gluon
propagator data as an input, and we model the corresponding gluon spectral function by
a Breit-Wigner peak.
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6.1. Non-perturbative timelike strong coupling constant

This section presents results of [8]. The practical calculations were performed in collabo-
ration with PhD student Jonas Turnwald from TU Darmstadt.

Physical scattering processes or the hadronic resonance spectrum represent prominent
examples requiring first-principle input in the form of fundamental correlation functions
in Minkowski spacetime. The strong coupling constant of QCD is a central ingredient in
any of those, as it describes the interaction strength between the fundamental fields. One
of its most salient features is asymptotic freedom, i.e., the decay towards small distances,
which is well captured by perturbation theory. In contrast, the large distance or low energy
behaviour, where the coupling grows large, can only be described via non-perturbative
approaches such as lattice field theory or functional methods.

While the spectral functional approach introduced in [1], see Chapter 4, enables a direct
realtime formulation of functional methods, on the lattice field theory side, direct realtime
calculations are plagued by a severe sign problem. However, Minkowski correlation func-
tions may also be obtained indirectly via spectral reconstruction of Euclidean data. This
requires inverting the Källén-Lehmann (KL) spectral representation. The applicability of
Gaussian process regression (GPR) to inverse problems of this type was discussed in [305].
The method has since been employed for the spectral reconstruction of ghost and gluon
propagator data in [3], see Section 5.3, and the computation of glueball masses in [384].

In this section, we establish a spectral representation for the strong coupling constant
and compute its spectral function, both directly and via spectral reconstruction. The calcu-
lation is facilitated by the reconstruction results for the ghost and gluon spectral functions
of [3], see Section 5.3, based on propagator data from 2+1 flavor lattice QCD calculations
with domain wall fermions at a physical pion mass [100, 101]. In doing so, we improve on
the previous reconstruction approach by incorporating known asymptotic behaviour into
the GP kernel. Based on this data, we also apply GPR directly to the reconstruction of
the Taylor coupling. This non-trivial benchmark of our reconstruction method yields re-
markable agreement between the direct and indirect results, thereby making a strong case
for the reliability of spectral reconstruction via probabilistic inversion with GPR. On the
other hand, our results feature a broad range of applications in the calculation of physical
observables. Knowledge of the coupling constant in the full complex plane is required, e.g.,
in the treatment of hadronic bound states via Bethe-Salpeter equations. Furthermore, in
the calculation of physical scattering amplitudes, the strong coupling in Minkowski space
is a necessary ingredient.

This section is organised as follows. In Section 6.1.1, we connect the timelike strong
coupling to scattering processes and derive its spectral representation. The extension of
our spectral reconstruction approach granting improved control over the asymptotics is
described in Section 6.1.2. Our results are presented in Section 6.1.3, and we conclude in
Section 6.1.4.

6.1.1. Scattering processes & the timelike QCD coupling

Scattering processes and decays in QCD are described in terms of S-matrix elements.
At low energies, the operators of the physical in and out states are complicated objects
in terms of the fundamental QCD degrees of freedom. For instance, a description of the
Compton scattering of protons requires the definition of the proton or, more generally, the
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q

q̄

q

q̄

Abbildung 6.1.: qq̄-scattering process with a one-gluon exchange. At sufficiently large time-
like exchange momenta, this process plays an important role in its respec-
tive S-matrix elements. Consequently, all internal quantities are dressed.
Blue blobs represent full vertices, and the wiggly internal line is a full
gluon propagator.

nucleon operator in terms of its partonic constituents. Since, on the fundamental level, the
partons are related to quarks and gluons, the building blocks of the respective S-matrix
elements are quark-gluon and quark-photon scattering processes.

In most partonic models the fundamental scattering processes are approximated by ef-
fective models for the exchange process, such as one-gluon exchange potentials that carry
the qualitative property of the gluon mass gap in QCD in terms of an effective mass.
Ideally, however, they should be constructed from tree-level processes in QCD with full
propagators and vertices, both of which carry on-shell, timelike, and spacelike momenta.
The final S-matrix is gauge invariant, while the tree-level components making up the indi-
vidual S-matrix element contributions are not. Moreover, the S-matrix admits a spectral
representation, which is not necessarily present for the gauge-fixed correlation functions.

6.1.1.1. Cross-section of quark–anti-quark scattering events and the S-matrix
element

In the present work, we undertake a first step towards such a determination of non-
perturbative S-matrix building blocks in QCD. To that end, we compute the timelike
strong coupling in 2+1 flavor QCD that governs the quark–anti-quark scattering process
depicted in Figure 6.1. This diagram is at the core of many of the scattering processes
used to determine the strong running coupling,

αs(p) =
g2
s(p)

4π
. (6.1)

It is also one of the fundamental building blocks of scattering processes in the Pomeron
model [385–388]—such as the aforementioned Compton scattering of the proton—where it
is typically estimated by one-gluon exchange models. For a review, see [389]; for a recent
application related to the present work, see [390].

Assuming the incoming and outgoing quarks q(p) and anti-quarks q̄(p̄) to be on-shell,
qq̄-scattering is similar to e+e− scattering. We expect this analogy to hold for sufficiently
large timelike exchange momenta p2 & 1 GeV2, whereas for p2 . 1 GeV2 we enter the
hadronic, strongly correlated regime. There, the non-trivial embedding of the scattering
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quarks and anti-quarks in hadrons becomes increasingly relevant, and quark–anti-quark
scattering should be also considered off-shell alongside with further, more complicated
processes; for a formulation in functional approaches, see [387].

Here, we concentrate on the one-gluon exchange diagram as one of the building blocks
of the full S-matrix element. The associated tree-level process shown in Figure 6.1 consists

of two full quark-gluon vertices, Γ
(3)
qq̄A(p1, p2, p) with the on-shell momenta p1, p2 for the

incoming as well as Γ
(3)
qq̄A(p3, p4,−p) with on-shell −p3,−p4 for the outgoing quark and

anti-quark, respectively. The relative minus sign is due to the notational convention in
functional computations treating all momenta as incoming. The momentum p is that of
the exchange gluon with the full gluon propagator GA(p). In combination, this process
can be expressed as

〈q(p3)q̄(p4)|S |q(p1)q̄(p2)〉 '
4∏

i=1

Z−1/2
q (pi)

{[
ūq(p3)Γ

(3)
qq̄A(p3, p4, p)vq(p4)

]a
µ

(6.2)

×GA(p) δab
(
gµν − pµpν

p2

)[
v̄q(p2)Γ

(3)
qq̄A(p1, p2,−p)uq(p1)

]b
ν

}
,

where the (on-shell) quark wave functions Zq originate in the LSZ reduction formula.
Note that the quark and gluon wave functions are defined such that the quark and gluon
propagators Gq(p), GA(p) are proportional to 1/Zq(p), 1/ZA(p), respectively. The scalar
parts of the Euclidean propagators read

GA(p) =
1

ZA(p)

1

p2
, Gq(p) =

1

Zq(p)

1

p2 +M2
q (p)

, (6.3)

where the full propagators are proportional to the identity in color space in the adjoint
(gluon) and fundamental (quark) representations. The gluon propagator in the Landau
gauge also carries the projection operator on the transverse subspace (see (6.2)), and
the quark propagator is multiplied by i /p + Mq(p). With (6.3), the standard LSZ factors

carrying the pole residues are simply Z
−1/2
q , as already used in (6.2).

The S-matrix element (6.2) is renormalisation group (RG) invariant, as required. To see
this explicitly, we reparametrise the vertices in terms of wave functions of the legs and an
RG invariant core,

Γ
(3)
qq̄A(pi, pj , p) = Z

1
2
q (pi)Z

1
2
q (pj)Z

1
2
A(p) Γ̄

(3)
qq̄A(pi, pj , p) , (6.4)

where Γ̄
(3)
qq̄A has the transformation properties of a running coupling, and naturally occurs

in the S-matrix element. Inserting (6.4) into the S-matrix element (6.2) leads us to

〈q(p3)q̄(p4)|S |q(p1)q̄(p2)〉 '
[
ūq(p3)Γ̄

(3)
qq̄A(p3, p4, p)vq(p4)

]a
µ

× 1

p2
δab
(
gµν − pµpν

p2

)[
v̄q(p2)Γ̄

(3)
qq̄A(p1, p2,−p)uq(p1)

]b
ν
. (6.5)

We restrict ourselves to the limit of large transfer momentum p2 ≡ s of the scattering event
with p1p3 = p2p4 = s(1− cos θ)/4 and scattering angle cos θ = p1p3/(|p1||p3|). For small
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Abbildung 6.2.: Spacelike Taylor coupling αs in QCD (left) and its spectral function ρα(ω)
(right). We compare the spectral function computed directly via (6.13)
(red) to that obtained via reconstruction with GPR (blue). The direct
calculation uses the reconstruction results for gluon and ghost spectral
functions from [3] resp. Section 5.3. For the reconstruction, we use the
gluon and ghost propagator data in 2+1 flavor lattice QCD from [100, 101].
Both the input spectral functions and the corresponding lattice data are
displayed in Figure 6.3. The coupling spectral functions obtained via the-
se two complementary approaches share all qualitative features, such as
peak positions and heights as well as asymptotic behaviour. The peak
structure can be connected to the respective peak structure of the gluon
spectral function; see the right panel of Figure 6.3. The error band of the
reconstruction result accounts for the change in the spectral function when
varying the GP kernel parameters, whereas that of the direct calculation
originates from propagating the uncertainty of the input. The Euclidean
lattice data for the Taylor coupling αs are displayed as grey squares in
the left panel. We compare it to the data from its spectral representati-
on (6.11) (red) as well as the reconstruction result (blue), showing that
the representation holds and that the reconstruction accurately describes
the lattice data.

s, we approach the reliability limit of our approximations. We return to the respective
discussion after deriving our results.

Additionally, in a last approximation step we concentrate on the classical tensor struc-
ture γµ T

a in the full quark-gluon vertex,

[
Γ̄

(3)
qq̄A(pi, pj , p)

]a
µ
≈ i γµT

a
√

4παs(s) . (6.6)

Here, T a is the SU(3) generator in the fundamental representation and αs(s), defined in
(6.1), is the strong coupling of the quark-gluon scattering process in the s-channel. On the
equation of motion, the /pi terms vanish, and we obtain

|ūq(p3)γµT
avq(p4) v̄q(p2)γµT

auq(p1)|2 → s2

9

(
1 + cos2 θ

)
, (6.7)

in the high energy limit. In (6.7), we have performed an average/sum over spins and color
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in the initial/final state. With (6.5) and (6.7), we arrive at

|〈q(p3)q̄(p4)|S |q(p1)q̄(p2)〉|2 → 1

9
[4παs(s)]

2 (1 + cos2 θ
)
, (6.8)

with αs(p) defined in (6.1). Equation (6.8) highlights the importance of the strong coupling
constant αs(s) for physical scattering processes. For the remainder of this work, we adopt
the linear momentum argument p =

√
s for the coupling.

In the present work, we shall compute the strong coupling αs(p) and, hence, the above
S-matrix element from its spectral representation for general complex frequencies, inclu-
ding the timelike momenta relevant for (6.8). We utilise that the strong coupling can be
computed from the quark-gluon vertex, the three- and four-gluon vertices, as well as the
ghost-gluon vertex. The computation involves the wave functions Zq(p), ZA(p) of quarks
and gluons as defined in (6.3) and the ghost wave function Zc(p) from (5.5). The avatars
of the strong couplings are then defined as the (symmetric point) dressings of the classical
tensor structures, see (6.4) and (6.6).

A final definition of the strong coupling in the Landau gauge is given by the propagator
or Taylor coupling, that utilises Taylor’s non-renormalisation theorem for the ghost-gluon
vertex. This leads to the Taylor coupling, solely defined by the ghost and gluon dressing
functions,

αs(p) =
g2
s

4π

1

ZA(p)Z2
c (p)

. (6.9)

All strong coupling avatars have the same universal two-loop running but differ for infra-
red momenta; see [166]. For an evaluation of the infrared differences between the Taylor
coupling and the quark-gluon coupling, see [171]. The latter regime is not accessible wi-
thin the present approximation. Hence, we use the Taylor coupling (6.9) for the evaluation
of (6.8). Its corresponding spectral function ρα is depicted in Figure 6.2. It allows us to
compute the coupling αs(p) for complex frequencies including timelike momenta; see Fi-
gure 6.4. Timelike result for the strong coupling in the perturbative domain can be found,
e.g., in [391, 392].

6.1.1.2. Spectral representation

For the computation of (6.9), and hence of (6.8), we require the ghost and gluon propaga-
tors for timelike momenta. We assume that the propagators admit a KL representation,
see (4.3).

The ghost propagator is known to exhibit a massless particle pole in the origin, entailing
a delta pole at vanishing frequency in its spectral function ρc [2], see Section 5.2. The gluon
spectral function ρA is continuous along the whole real frequency axis and is not expected
to show distributional contributions. Taking into account the explicit forms of the spectral
functions, the ghost and gluon dressing functions can be expressed as

1

ZA(p)
= p2

∫ ∞

0

dλ

π

λ ρA(λ)

λ2 + p2
,

1

Zc(p)
=

1

Z0
c

+ p2

∫ ∞

0

dλ

π

λ ρ̃c(λ)

λ2 + p2
, (6.10)
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Abbildung 6.3.: The continuous parts of the ghost (left) and gluon (right) spectral func-
tions obtained in [2] resp. Section 5.3 (see also Section 6.1.1.3), used here
as input for the calculation of the coupling spectral function shown in the
left panel of Figure 6.2 via its spectral representation (6.11). Shaded areas
represent 1σ-bands of the statistical error of the mean prediction based
on the available observations and precision. Note that we improved on
the reconstruction of the gluon spectral function of [2], see Section 5.3, by
including information of the asymptotic IR and UV behaviour; for details,
see Appendix C.7.2. The UV and IR asymptotic regimes are assumed to
be maximally large. This leads to a small reconstruction error without ac-
counting for systematics, which is different from the error in Figure 5.17;
see Appendix C.7.3 for a detailed discussion.

where 1/Z0
c is the residue of the massless delta pole of ρc, and ρ̃c denotes the continuous

part.

Given the existence of a spectral representation, the associated correlation function must
obey certain symmetries and fulfil requirements about its infrared (IR) and ultraviolet
(UV) asymptotics. It can be shown that the existence of spectral representations for the
ghost and gluon propagators implies the existence of such a representation also for the
Taylor coupling as defined in (6.9); see Appendix A.4 for details. Specifically, it is given
by

αs(p) = p2

∫ ∞

0
dλ

λρα(λ)

p2 + λ2
. (6.11)

With (6.11), the strong coupling spectral function is obtained from its retarded correlator
via

ρα(ω) = − 2

ω2
Imαs

(
− i(ω + i0+)

)
. (6.12)

Now we use the definition of the Taylor coupling (6.9) and insert the spectral representa-
tions of ghost and gluon dressing functions (6.10). Then, the spectral function (6.12) of
the coupling can be written as

ρα(ω) = −2 Im

[(∫ ∞

0

dλ

π

λ ρA(λ)

λ2 − ω2 + i0+

)(
1

Z0
c

− ω2

∫ ∞

0

dλ

π

λ ρ̃c(λ)

λ2 − ω2 + i0+

)2 ]
. (6.13)
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Since the Taylor coupling decays logarithmically in the UV, its spectral function obeys a
superconvergence condition [2], see Appendix A.8, [254], given by

∫ ∞

0
dλλρα(λ) = 0 . (6.14)

A treatment of the analytic low-frequency behaviour of continuous parts of the spectral
functions has been initiated in [243]. In particular, it was shown that for correlation func-
tions obeying a KL representation, a simple relation between the IR asymptotics of the
correlator and its spectral function can be derived by differentiating with respect to the
frequency. For the Taylor coupling we explicitly find

lim
ω→0+

∂ωρα(ω) = −2 lim
p→0+

∂p
αs(p)

p2
. (6.15)

Hence, if the coupling approaches zero in the origin faster than p2, we expect the spectral
function to approach zero from below, and vice versa.

6.1.1.3. Lattice data

During the past two decades, lattice QCD results for Landau gauge two-point functions
have advanced to an impressive quantitative level of precision; see, e.g., [97, 128, 182, 334–
341, 343–345, 393, 394]. A recent review of lattice and functional results can be found
in [395]. The lattice ghost dressing function and gluon propagator data used here have be-
en obtained from recent calculations with 2+1 dynamical fermion flavors at the physical
point [100, 101]. In particular, the ensembles of gauge configurations were generated by
the RBC/UKQCD collaboration in [396–400], leveraging the Iwasaki gauge action [401]
and the domain wall fermion action [402, 403] with a pion mass of 139 MeV. This choice of
action (with a particular implementation of the Möbius kernel [404]) exhibits favourable
chiral properties with a much smaller size in the fifth dimension than required by conven-
tional domain wall fermions. These ensembles were utilised in [100, 101] for the calculation
of the ghost and gluon propagators as well as the running of the strong coupling in the
Taylor (miniMOM) scheme [405–407], and an associated effective charge [408].

The continuum limit of the lattice data is only obtained within a proper treatment of
discretisation. For the Landau gauge propagators this is done via an analysis of the physical
scaling violation described in [181], leading to continuum extrapolated propagators with
the correct momentum running. The resulting gluon propagator and ghost dressing data
are displayed in the insets of Figure 6.3. This data alongside with data from functional
Yang-Mills theory and QCD [38, 95, 166, 171] have also been reconstructed in [3], see
Section 5.3.

Since the lattice data for the propagators is available only on different momentum grids,
the coupling, as defined in (6.9), is computed from a GP interpolation of the respective
dressings. These interpolations are performed by direct GPR and therefore assume no
general features of the underlying dressings apart from continuity. From this, we sample
N = 600 logarithmically spaced values for the coupling (including errors) in the interval
0.23 GeV to 2.69 GeV, to be used in the reconstruction. For technical convenience, the
coupling is extended perturbatively in the UV in order to control the amplitude of the UV
asymptotics, see Appendix A.13. A subset of these points is shown in Figure 6.2. Here,
we replace the error with the difference between the values computed as described above,
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and the coupling obtained from the product of the ghost and gluon spectral functions,
described around (6.13) and in Section 6.1.3.

6.1.2. GPR reconstruction with controlled asymptotics

GPR is a popular framework for the probabilistic modelling of functions from a finite
number of data points; see [329, 330] for recent reviews and [331] for a textbook account.
Example applications in high energy physics include the computation of parton distribu-
tion functions [332] and modelling backgrounds in detectors [409]. The method can also
be used to predict solutions to linear inverse problems [305], i.e., when the only availa-
ble data are indirect observations of the desired function after a linear forward process.
This makes the approach suitable for spectral reconstruction. Importantly, it does not in
general require choosing a particular functional basis. This avoids many of the numerical
artefacts like additional peak structures that are commonly encountered when employing
reconstruction algorithms with predetermined families of solutions, due to the presence of
unrepresentable features. We summarise the main concepts in Appendix C.7.1; see also [3]
resp. Section 5.3 and [384] for a comprehensive introduction as well as further details and
references.

As an extension to this approach, in this paper we introduce a novel technical improve-
ment that allows us to explicitly control the asymptotic behaviour of the predictions by
specifying concrete functional forms in the appropriate limits only, without restricting the
expressivity of the GP model in the region of interest. When considering different design
choices for GPs, one often opts for so-called universal kernels. One prominent example
also used in the present study is the radial basis function (RBF) kernel (5.53). The basis
of kernel eigenfunctions of such universal kernels is infinite-dimensional. This allows for
great flexibility in the reconstruction—universal kernels can describe any continuous func-
tion [410]. However, the GPR framework allows us to also incorporate further available
prior information into the predictive distribution. In the context of spectral functions, the
asymptotics in the IR and UV are often analytically tractable with perturbative or func-
tional calculations, as well as formal relations to Euclidean data like (6.15). Hence, it is
beneficial to introduce a bias by reducing the space of kernel eigenfunctions to the known
behaviour of the target function. This can be achieved by applying Mercer’s theorem [411]
and constructing a kernel from the known asymptotic function φ(ω) as

C(ω, ω′) = φ(ω) · φ(ω′) . (6.16)

Since the asymptotic behaviour is only specified in the appropriate limits, the full kernel
is constructed as a combination of universal and restricted kernels using smooth step
functions. With this approach, it becomes possible to smoothly transition between regions
with an unknown functional basis—where a generic kernel like RBF is used—and regions
with a specified basis; see Appendix C.7.2 for further details.
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Abbildung 6.4.: Taylor coupling αs(ω) of 2+1 flavor QCD defined in (6.9) in the complex
frequency right half plane (positive real frequencies), real (left) and ima-
ginary part (right). The imaginary part explicitly shows the branch cut
along the real frequency axis. The corresponding spectral function (red
graph in the right panel of Figure 6.2) corresponds to the imaginary part
of αs at the upper half plane boundary of the branch cut, divided by ω2.
Both, the real and imaginary part, exhibit distinctive peaks which can be
connected to the peak structure of the gluon spectral function; see right
panel of Figure 6.3. The coupling decays logarithmically for increasing |ω|.

6.1.3. Results

Our main result, the spectral function of the Taylor coupling (6.12) in QCD, is displayed
in the right panel of Figure 6.2. It shows two variants: ρGP

α from the reconstruction of the
lattice QCD data via GPR, and ρspec

α from the direct calculation based on the spectral
representations of ghost and gluon propagators (6.13). The associated input spectral func-
tions are shown in Figure 6.3. In this context, we have improved the reconstruction of the
gluon propagator reported in [3] resp. Section 5.3 by explicitly incorporating the known IR
and UV asymptotics with the method described in Section 6.1.2. The error band of ρspec

α is
obtained by propagating the errors of these input data. Importantly, the coupling spectral
functions obtained via these two different approaches agree well within errors and share
all qualitative features, such as peaks and asymptotic behaviour. In both results, we can
identify two prominent peaks of similar size in positive and negative direction at roughly
∼ 0.6 GeV and ∼ 0.8 GeV, along with a smaller positive peak at ∼ 1.1 GeV. The spectral
function ρspec

α (6.13) allows for a direct interpretation of this behaviour: it is connected
to the peak structure of the gluon spectral function, which carries information about the
gluon mass gap; see the right panel of Figure 6.3. This information is extracted reliably
from the lattice data with the GPR reconstruction.

In the reconstruction of the coupling, the correct asymptotic behaviour is enforced by
smooth step functions at transition points µIR and µUV, while fully retaining the flexibility
in the enclosed region where the GP kernel remains unrestricted and universal, see Ap-
pendix C.7.2 for details. As mentioned above, this procedure has also been applied to the
ghost and gluon spectral functions used here. It enhances significantly the stability and
reliability of the prediction by connecting it to analytic results at low and high frequencies,
ensuring agreement with functional and perturbative results in the relevant limits without
reducing the expressivity of the GP model in the domain of interest. While the prediction
shows some variation with the choice of the transition midpoints, the peak positions and
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heights remain remarkably stable; see Figure C.9. Hence, we choose the size of the regions
dominated by the asymptotics to be as large as possible without increasing the χ2 error
of the reconstruction significantly; see Appendix C.7.3 and Figure C.10 for details. Fur-
thermore, changing the parameters controlling the transition to the asymptotic behaviour
accounts for the majority of the variation in the spectral function, while changing the
parameters of the RBF kernel produces errors at least one order of magnitude smaller; see
Appendix C.7.3 for details. The numerical values of all kernel hyperparameters are listed
in Table C.3. Accordingly, the size of the dynamical region carrying information about the
QCD mass gap is minimised, supporting the gluonic quasi-particle picture employed in
various applications such as bound state studies and transport computations. Specifically,
this suggests dismissing smaller negative peaks close to the dominant quasi-particle peak—
they merely reflect the asymptotic behaviour and the superconvergence condition (6.14).
As such, they are sensitive to changes in the gauge fixing parameter and infrared closure.
This suggests that they carry physically relevant information only on a subleading level.

In the left panel of Figure 6.2, we compare the reconstructed Euclidean Taylor couplings
to the result computed from the lattice data for the ghost and gluon propagators, as
described in Section 6.1.1.3. Using the dressing function data obtained in this way, the
resulting coupling is shown to decay towards small and large momenta. In correspondence
to the scale of the peaks of the spectral function—reflecting the mass gap of the theory—
also the peak of the coupling itself appears at ∼ 0.6 GeV.

The blue curve in the left panel of Figure 6.2 represents the GPR reconstruction of the
Taylor coupling lattice data, corresponding to ρGP

α . The red curve represents the coup-
ling obtained via its spectral representation (6.11) using the directly computed spectral
function ρspec

α . The calculation involves finite precision, both in the input data and in
the integration. Hence, we expect a small, but not negligible, relative error. The decent
agreement between this result and the lattice/GPR reconstruction result provides a highly
non-trivial benchmark check. The error is well within our expectations, since the result
obtained from the directly computed spectral function depends on the reconstructions of
the gluon and ghost propagators. If the ghost and gluon spectral functions were describing
their respective propagator data to infinite precision, we would also expect perfect agree-
ment from analytic considerations; see Appendix A.4. Hence, the small difference can be
attributed to systematic uncertainties present in the calculation. Please note that they do
not contribute to the error bands, corresponding to the purely statistical error, shown in
Figure 6.2.

In the inset of the left panel of Figure 6.2, we also show the Taylor coupling divided
by p2 for small Euclidean momenta p. The derivative of this quantity is connected to the
asymptotic behaviour of the spectral function in the IR by (6.15). We observe that in
the region where lattice data are available, the slope of αs/p

2 is negative. In accordance
with the analytic requirement (6.15), the slope of the spectral function is observed to be
positive in this regime.

Finally, in Figure 6.4 we display the real and imaginary parts of the coupling in the
full complex momentum plane. The data are obtained by evaluating the coupling spectral
representation (6.11) with the directly calculated spectral function ρspec

α in the complex
plane. The branch cut in the imaginary part, responsible for the spectral representation, is
clearly visible. As expected, no further non-analyticities in the complex plane are encoun-
tered and the coupling shows the expected decay behaviour towards large frequencies.
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6.1.4. Conclusion

In this section, we have presented results for the spectral function of the strong coupling
constant in QCD obtained through a direct calculation as well as a reconstruction via
GPR. Assuming spectral representations for the ghost and gluon, we have derived the
spectral representation of the Taylor coupling, which is fully determined by the ghost and
gluon dressing functions. With this relation, we have calculated the associated spectral
function as well as the coupling constant itself in the full complex plane. The required
ghost and gluon spectral functions have been obtained from the reconstruction method
put forward here, that takes into account explicitly the known asymptotic infrared and
ultraviolet behaviour. They are depicted in Figure 6.3.

This result is complemented by a direct reconstruction of the Taylor coupling from its
Euclidean data obtained from the spectral representation of the Euclidean ghost and gluon
dressing functions. A comparison of the results, depicted in Figure 6.2, shows the excellent
agreement between both approaches. The independent verification provides strong support
for the accuracy of the result and also underlines the power of probabilistic inversion with
GPR as a spectral reconstruction approach.

By expanding the GP kernel in suitable eigenfunctions based on Mercer’s theorem, we
extend the algorithm previously applied in [3], see Section 5.3 and [384], to now explicitly
enforce the known asymptotic behaviour of the spectral function in the IR and UV. This
substantially improves the reliability of the approach by properly encoding the analytically
tractable regimes into the prediction while preserving the expressivity and universality of
the GP model in the region of interest. The proposed modification is completely generic
and may also be useful in other contexts where some analytic properties of a function to
be modelled are known a priori, in particular if data scarcity is an issue.

Our results find direct application in the calculation of non-perturbative, physical scat-
tering processes, where the strong coupling constant needs to be known at timelike mo-
menta. While neglecting angular dependencies, the Taylor coupling considered here carries
the correct RG running and hence scale-dependence of the strong coupling constant. Fur-
thermore, it encodes genuine non-perturbative information through the input ghost and
gluon dressing functions obtained from 2+1 flavor lattice QCD. This study hence paves the
way for incorporating non-perturbative information from lattice field theory to functional
methods in the calculation of physical, timelike scattering processes.
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6.2. Two-particle bound state of the scalar φ4-theory

This section presents preliminary results of [10]. All practical calculations have been car-
ried out by Andrés Gómez in the context of his Master thesis, which I co-supervised.

Describing and understanding how the hadronic bound state spectrum emerges from the
fundamental QCD degrees of freedom is a key theoretical challenge. Quark models repre-
sent a phenomenological approach to the description of in particular baryonic bound states.
In this approach, gluonic interactions are integrated out and massive constituent quarks
represent the fundamental degrees of freedom; for reviews, see [412, 413]. In lattice field
theory, hadronic bound states are usually studied through their respective Euclidean quark
n-point correlation functions. Fermionic determinants render computations at realistic ba-
re quark masses computationally expensive up to infeasible, however, which is why one
often resorts to quenched approximations where the quarks are treated as static; for recent
reviews on hadronic bound states from lattice QCD, see [33, 34]. In functional approa-
ches, bound states can be approached within the framework of Bethe-Salpeter equations
(BSE) [414, 415]. Directly accessing the hadronic resonances through their respective poles
in the timelike domain once again requires knowledge of the fundamental QCD correlation
functions, which enter the BSE, at real and complex frequencies. Therefore, resonance com-
putations represent another important application for the spectral functional approach.
Other approaches of accessing the timelike region in BSEs involve, e.g., contour deformati-
on or Cauchy’s theorem, see, [94, 233, 266, 355, 357, 358, 360, 361, 363, 365, 366, 368–370].

In this section, we extend the toolbox of direct, timelike resonance computations by com-
bining the BSE framework with the spectral functional approach. To that end, we employ
the BSE of the four-point function in a scalar φ4-theory in 2+1 dimensions to compute a
low-lying two-particle bound state. In our setup, the BSE uses timelike propagator input
from the spectral DSE of the scalar theory discussed in detail in [1] resp. Section 4.1. At
the second order phase transition between the symmetric and broken regime of the theory,
the bound state under investigation has been located at ∼ 1.83 times the single-particle
particle pole mass [247, 248]. Here, we approach the phase transition by considering the
infinite coupling/vanishing mass gap limit of the theory.

This section is structured as follows. In Section 6.2.1, we briefly introduce our spectral
BSE-DSE setup, and discuss explicit truncations thereof in Section 6.2.2. We present our
results in Section 6.2.3 and conclude in Section 6.2.4.

6.2.1. Setup

We study a scalar φ4-theory in d = 2+1. An introduction to the φ4-theory is provided in [1],
see Section 4.1, to which we refer for details. Here, we simply recap the most important
aspects, and focus on the BSE-DSE system that we use to calculate the two-particle bound
state in the scalar theory.

The classical action of our theory is given by

S[ϕ] =

∫
d3x

[
1

2
(∂µϕ)2 +

λφ
4!

(ϕ2 − φ2
0)2

]
, (6.17)

where ϕ refers to the full, fluctuating quantum field, and the action exhibits a Z2-symmetry.
The field expectation value φ0 in (6.17) is determined by the solution to the quantum
equation of motion of the theory (4.97). At φ0 = 0, all odd n-point functions vanish, i.e.,
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= +K K

Abbildung 6.5.: The inhomogeneous BSE for the four-point function, see (6.18a). Notation
as defined in Figure 2.1. The BSE kernel K is discussed in Section 6.2.2.3.

.

Γ(2n+1) ≡ 0. A non-vanishing background φ0 6= 0, however, gives rise to non-vanishing
Γ(2n+1), and most importantly the three-vertex Γ(3).

6.2.1.1. Spectral Dyson-Schwinger equation for the propagator

In our setup, the propagator is determined from the spectral DSE, precisely as in Secti-
on 4.1, see also Figure 4.1, to which we refer for details. The propagator is hence parame-
trised by the Källén-Lehmann representation (4.3) in this section. We discuss particular
truncations to the spectral DSE used in this section in Section 6.2.2.

6.2.1.2. Bethe-Salpeter equation for the four-point function

The four-point vertex obeys the inhomogeneous BSE [416, 417]

Γ(4)(Q, p) = K(Q, p) +

∫

q
K(Q, q)G(q+)G(q−)Γ(Q, q) , (6.18a)

with

q± = q ± Q

2
, (6.18b)

diagrammatically depicted in Figure 6.5. Due to the s-channel kinematics of the equation,
a particularly symmetric momentum configuration for the four-point function is realised,
i.e., Γ(4)(Q, p) := Γ(4)(p+, p−, p+, p−), where Q is the total and p the relative incoming
momentum, and p± is defined in analogy to (6.18b). In (6.18a), λφ is the tree-level four-
vertex, and K(P, k) is the two-particle interaction kernel, using the same notation for the
momentum arguments as for the four-point function.

In proximity of a (bound state) pole, the four-point function can be parametrised via
its Bethe-Salpeter amplitude Ψ,

Γ(4)(Q, p) =
Ψ(Q, p)Ψ̄(Q, p)

Q2 −M2
, (6.19)

corresponding to the residue of the bound state pole. Accordingly, the Bethe-Salpeter
amplitude Ψ can also be understood as measuring the overlap between the bound state
and the four-point function.

Using the parametrisation (6.19), we are lead to the homogeneous BSE in terms of Ψ
by evaluating the inhomogeneous BSE (6.18a) on the bound state pole Q2 = M2,

Ψ(Q, p) =

∫

q
K(Q, q)G(q+)G(q−)Ψ(Q, q), (6.20)

A diagrammatic representation of the homogeneous BSE is given in Figure 6.6.
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= KΨ Ψ

Abbildung 6.6.: The homogeneous Bethe-Salpeter equation for the Bethe-Salpeter wave
function Ψ, defined via (6.19). Notation as defined in Figure 2.1. The
BS wave function is denoted by an orange blob, while the bound state is
marked by a double line. The BSE kernel K is discussed in Section 6.2.2.3.

Solution strategy In practical calculations, the BSE is solved on discrete grids for its
momentum arguments. This allows to recast the BSE as a matrix equation

Ψa =
∑

b

MabΨb , (6.21)

where the indices a and b capture both momentum arguments, and

We resort to the usual procedure of solving the BSE by writing at as an eigenvalue
equation,

Λ(M,λφ)Ψa =MabΨb , (6.22)

from which for a given coupling λφ, the solution is determined by numerically finding the
bound state mass M such that Λ(M,λφ) = 1. For details on the numerical procedure, we
refer to [10].

6.2.2. Scaling truncations

Next, we turn towards the description of the truncations of our BSE-DSE system, see
Section 6.2.1.2, used to study the two-particle bound state in the vicinity of the phase
transition. In order to study the system close to the phase transition, the truncations
which we employ should be suitable to study the infinite coupling limit of the theory.
More precisely, since the system is known to exhibit scaling behaviour close to the phase
transition, it is beneficial to employ truncations in which this scaling behaviour is easy to
observe.

The constant background field φ0 corresponds to the solution of the equation of moti-
on (4.97). It is of particular relevance since it does not only act as an order parameter,
expressing the amount of symmetry breaking, but also appears in practical calculations,
e.g., in the spectral DSE for the propagator, see [1] resp. Section 4.1. φ0 can be accessed by
a Taylor expansion of the effective potential of the theory about φ0 (4.26). The moments
of the effective potential simply correspond to the 1PI correlation functions at vanishing
momentum, cf. (4.27). We again neglect all correlations which vanish classically,

Γ(n>4) ≈ 0 , (6.23)
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= − 1
2 − 1

2 − 1
2 +

Abbildung 6.7.: Dyson-Schwinger equation for the three-point function Γ(3), truncated at
one-loop. Notation as defined in Figure 2.1.

which allows us to link the field expectation value to the remaining vertices Γ(3) and Γ(4)

via

φ0 =
3Γ(3)(0)−

√
9Γ(3)(0)2 − 15Γ(4)(0)m2

cur

Γ(4)(0)
. (6.24)

The curvature mass mcur is defined via (4.28). The sign in the solution of the corresponding
quadratic equation for φ0 is fixed by requiring to obtain the tree-level value φ0 =

√
3/λφm

in the limit λφ/m→ 0.

6.2.2.1. Vertex approximations

Since we are dropping higher correlation functions (6.23), specifying approximations for
the three- and four-point function closes our system of correlation functions. These vertices
feature in the field expectation value in (6.24) as well as in the respective DSE/BSE for
the propagator/four-point function. The approximations we are specifying below will be
used in all of them. Since our focus lies on the infinite coupling limit, for simplicity we
approximate both vertices at all incoming momenta vanishing,

Γ(3)(p1, p2) ≈ Γ(3)(0) , Γ(4)(p1, p2, p3) ≈ Γ(4)(0) . (6.25)

A particularly suitable model for the full four-vertex for studying the large coupling
limit is the s-channel resummation already used in Section 4.1, given by

Γ(4)(p) =
λφ

1 + λφΠfish(p)
, (6.26)

with Πfish(p) defined as in (4.35). This form of the four-vertex (6.26) originates as a so-
lution to the inhomogeneous BSE depicted in Figure 6.5 in an s-channel approximation
for the loop-momentum-independent choice K = λφ for the kernel. Due to its resummati-
on structure, (6.26) exhibits a well-behaved large coupling behaviour, making it suitable
for the study at hand, see also the discussion below. The expansion in bubble diagrams
corresponding to (6.26) is shown in Figure 4.8. We remark that for different choices of
the kernel K, also the resummation (6.26) exhibits the two-particle bound state under
investigation here, see [247, 248].

For determination of the bound state location, we do not want to restrict ourselves
to the type of simplified BSE kernels leading to (6.26). In the homogeneous BSE (6.20),
we employ a more general K, which we discuss in Section 6.2.2.3. Nevertheless, (6.26)
represents a viable model for the s-channel dynamics in particular in the limit of large
coupling. Furthermore, it has the welcome property of admitting a spectral representation,
see (4.36).
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= −1
2 +1

2 +1
2K

Abbildung 6.8.: BSE kernel K as obtained via its 2PI-exact relation (6.30) to the DSE
self-energy from the one-loop diagrams skeleton-expanded DSE, see Figu-
re 4.7. Note that the skeleton expansion violates the 2PI hierarchy under-
lying (6.30). Notation as defined in Figure 2.1.

As a simple model for the three-point function, we employ its corresponding DSE trun-
cated at one-loop, see Figure 6.7. Evaluated at vanishing momentum, it reads

Γ(3)(0) = S(3)[φ0]− 2λφΓ(3)(0)Πfish(0)− S(3)[φ0]Γ(4)(0)Πfish(0)

+ Γ(3)(0)2S(3)[φ0]Πtr(0) , (6.27)

where Πtr is the triangle diagram and S(3)[φ0] = λφφ0. Evaluated at vanishing momentum,
the triangle diagram reads

Πtr(0) =
1

4π

∫

λ1,λ2,λ3

λ1λ2λ3ρ(λ1)ρ(λ2)ρ(λ3)

(λ1 + λ2)(λ2 + λ3)(λ3 + λ1)
. (6.28)

S(3) again depends on the full vertex Γ(3)(0) through φ0, see (6.24). Equation (6.27) can
be solved for Γ(3)(0) analytically, which completes our vertex truncation. The resulting
expression for Γ(3)(0) is rather lengthy and not very illuminating, and will be presented
in [10].

Large coupling scaling Our expansion is constructed to be suitable for studying the
infinite coupling limit, since we wish to study the system close to the phase transition. It
can be explicitly checked that for λφ →∞, the three- and four-point function behave as

Γ(3)(0) =

√
2

3

Πfish(0)

2Πfish(0)− 5
2Γ(2)(0)Πtr(0)

1

Πtr(0)
, Γ(4)(0) =

1

Πfish(0)
. (6.29)

Since both expressions are directly proportional to Feynman diagrams, scaling behaviour
in the propagator will induce a corresponding scaling behaviour in the vertices, including
a non-trivial anomalous dimension, as desired.

6.2.2.2. DSE in the skeleton expansion

We now discuss the explicit truncations for propagator DSE, cf. Figure 4.1. While in the
infinite coupling limit, the full solution of the standard 1PI DSE of course shows the
desired scaling behaviour, due to the classical vertices involved, the single diagrammatic
contributions do not do so by themselves, but only in combination. Accessing the scaling
behaviour in this form hence requires a delicate balance between the diagrams, which
is most certainly destroyed by applying arbitrary truncations. Well suited for studying
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scaling properties in DSEs is the skeleton expansion, in which all vertices are dressed.
This ensures proper scaling behaviour of all diagrams, facilitated by our choice of vertex
approximations, discussed in Section 6.2.2.1. Since the field expectation value φ0 acts as
an order parameter here, we expect it to become small towards the phase transition. This
justifies dropping diagrams in the skeleton expansion with high powers of φ0. For feasibility,
we only consider diagrams up to order φ2

0. The resulting diagrammatic representation of
the propagator DSE in the skeleton expansion is depicted in Figure 4.7

6.2.2.3. BSE kernel

In usual BSE-DSE systems, the inherent 2PI hierarchy connects the BSE kernel K to the
DSE self-energy Σ via

K(q1 + q2, q1 − q2) = 2
δΣ(q1)

δG(q2)
, (6.30)

here with total/relative momentum q1 ± q2; see, e.g., [417]. The derivative in (6.30) cor-
responds to cutting open one internal line of the self-energy diagrams. Resorting to the
skeleton expansion, see Section 6.2.2.2, violates the usual 2PI hierarchy of the diagrams,
and the previous exact connection (6.30) between Σ and K is lost. We will nevertheless
use this relation as a guiding principle for the construction of the kernel here.

Restricting ourselves to the one-loop diagrams of the self-energy for the kernel construc-
tion via (6.30) suggests the following form for K,

K(Q, p) = Kcontact +Kexchange(Q, p) , (6.31a)

with

Kcontact = −1

2
Γ(4)(0) , Kexchange(Q, p) =

1

2
Γ(3)(0)2

[
G(Q) +G(p)

]
, (6.31b)

where we already substituted the vanishing-momentum approximation (6.25) for the ver-
tices discussed in Section 6.2.2.1. The tadpole resp. polarisation diagram in Figure 4.7
gives rise to the contact term resp. t- and u-channel diagrams in Figure 6.8.

Since (6.30) is no longer exact, neither is (6.31b), despite being truncated. We exploit
this fact in order to arrive at an error estimate for our truncation by replacing the full
four-vertex in the contact term of the kernel, Kcontact, by a classical vertex, i.e.,

Kcontact = −λφ
2
. (6.32)

Since the contact term constitutes the dominant contribution, we expect (6.32) to yield a
conservative error estimate.
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6.2. Two-particle bound state of the scalar φ4-theory

Abbildung 6.9.: Evolution of the two-particle bound state position M in units of the single
particle pole mass m. We vary the contact term of the kernel in order to
arrive at an uncertainty band for the bound state mass, see Section 6.2.2.3.
The DSE for the propagator entering the BSE is solved in the skeleton
expansion, see Section 6.2.2.2. The presented results are preliminary.

6.2.3. Results

We display our preliminary results for the evolution of the bound state mass as a function
of the coupling in Figure 6.9. We observe a saturation of the bound state location in the
infinite coupling limit, yielding the result

M

m
≈ 1.85− 1.98 . (6.33)

The error bands are obtained as discussed in Section 6.2.2.3. While the uncertainty is
relatively large, the value for the bound state mass at the phase transition quoted in the
literature, M/m ≈ 1.83 [247, 248], is not included.

In Figure 6.10, we show the value of the background field φ0 as obtained from the
solution of the propagator DSE via (6.24). Towards infinite coupling, φ0 saturates at a
non-zero value. We conclude that within our present truncation, we are not able to reach
the phase transition signalled by φ0 → 0. This might explain the deviation of our result for
the bound state mass from the literature. We further note that the field expectation does
not reach its minimum towards infinite coupling, but at about λφ/m ≈ 100. The origin
of this effect remains to be understood. Comparing with other DSE truncations should
clarify if the effect is a truncation artefact.

On the other hand, we observe that the position of the bound state obtained using the
BSE kernel constructed from the 2PI exact relation (6.30) is in fact relatively close to the
literature value. In contrast, the value obtained using the classical contact kernel (6.32)
differs significantly. Furthermore, it shows a non-monotonicity at about λφ/m ≈ 70 in form
of a clear dip, before increasing again and approach its asymptotic value. While variati-
on of truncations is a well-established technique for uncertainty estimation in functional
approaches, this could also suggest that our particular choice of kernel variation is not
well-chosen.
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6.2. Two-particle bound state of the scalar φ4-theory

Abbildung 6.10.: Evolution of the field expectation value φ0 in units of the single particle
pole mass m. φ0 acts as an order parameter, signalling the symmetry-
broken regime for φ0 6= 0, and is obtained via (6.24). The corresponding
DSE for the propagator is solved in the skeleton expansion, see Secti-
on 6.2.2.2. We observe that φ0 saturates in the infinite coupling limit.
Hence, we do not seem to fully reach the phase boundary between to the
symmetric regime. The presented results are preliminary.

More details on in particular from the DSE solution, including the three- and four-point
function, can be found in [10].

6.2.4. Conclusion

In this section, we computed the mass of the low-lying two-particle bound state of the scalar
φ4-theory in d = 2 + 1. To that end, we used the homogeneous Bethe-Salpeter equation of
the four-point function based on spectral function results from the spectral DSE presented
in Section 4.1. To that end, we solve the corresponding DSE-BSE system over six orders
of magnitude in the coupling parameter λφ, numerically approaching the infinite coupling
limit where the system is expected to exhibit a phase transition. The bound state mass at
the phase transition is known from lattice simulations to be M/m ≈ 1.83. This does not
agree with our estimate M/m ≈ 1.85− 1.98. Possible reasons for this deviation include a
too large distance from the phase boundary, see Figure 6.10, and an unsuitable uncertainty
estimate, see the discussion in Section 6.2.3.

As a natural next step, vertex truncations in which larger classes of diagrams are re-
summed than in the current s-channel resummation (4.34) could be employed. This could
potentially lead to smaller background fields in the infinite coupling limit and hence clo-
ser to the phase transition. Furthermore, more sophisticated kernel variations for error
estimation should be employed.

Despite the observed deviation from the literature value for the bound state mass,
the present study demonstrates how the spectral functional approach can facilitate the
determination of bound states from resonance equations. The current setup therefore con-
stitutes the foundation for future investigation of glueballs and hadronic bound states in
Yang-Mills theory and QCD with spectral functional realtime correlator input.
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6.3. Hadronic vacuum polarisation & g–2

This project originated from a research stay at the Laboratory of Instrumentation and
Experimental Particle Physics (LIP) in Lisbon with Gernot Eichmann. By the time of
completion of this thesis, the investigation presented below was not yet completed. Since
the project constitutes an important potential application of the spectral functional ap-
proach connected to observables, we nevertheless chose to document the work in progress.

The anomalous magnetic moment of the muon aµ, better known as g–2, is one of the
most precisely measured numbers in the Universe. Its theoretical prediction represents an
important success story of the Standard Model of particle physics, combining quantum
corrections from QED, QCD and the weak sector. Here, we will focus on the leading
QCD contribution to g–2, whose calculation in particular involves the hadronic vacuum
polarisation (HVP).

The HVP is commonly assumed to underlie tight restrictions on its analytic structure,
entailing dispersive relations which allow for using high precision Euclidean lattice data for
the corresponding g–2 contribution; for recent reviews, see [418, 419]. The great agreement
between the theoretical prediction and experimental observations for g–2 and the HVP
can be understood as a validation of these dispersive relations and, in consequence, the
assumptions on the analytic structure of the HVP. A violation of these restrictions in a
functional calculation that can be directly connected to complex non-analyticities of the
input correlation functions, such as those in Section 5.1, would represent a strong case
against such complex singularities in the fundamental correlation functions of QCD.

On the other hand, finding that independent of the analytic structure of the input, the
HVP always keeps its analyticity, would allow investigating how complex non-analyticities
present in the input disappear on the level of the HVP. These considerations lead to the
idea of the project discussed in this section. Calculating the HVP requires the full quark
propagator as well as the full quark-photon vertex as an input. While the quark propagator
can be computed quite easily via a Dyson-Schwinger equation, see, e.g., Section 5.4, the
quark-photon vertex is obtained via solving an inhomogeneous Bethe-Salpeter equation
(BSE). The quark-photon vertex also requires the quark propagator as an input. Investi-
gation of the analytic structure of the HVP in dependence of the analytic structure of its
input could hence yield arguments for or against the existence of complex singularities in
particular in the quark propagator.

After briefly introducing the defining relations for aµ and its connection to the HVP
in Section 6.3.1, we detail the calculation of the HVP in Section 6.3.2. In Section 6.3.3,
we dive in into the calculation of the quark-photon vertex from its inhomogeneous BSE,
including the computation of the quark propagator via its DSE.

6.3.1. Anomalous magnetic moment

The anomalous magnetic moment of the muon can be calculated from the muon-photon
vertex Γµmuon, which has the general tensorial decomposition

Γµmuon(Q, q) = iΛ(p+)

[
F1(Q2)γµ + F2(Q2)

i

4mµ
[γµ, /Q]

]
Λ(p−) , (6.34)
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= + + · · ·

Abbildung 6.11.: Leading corrections in powers of the fine structure constant to the muon-
photon vertex (6.34). Notation as defined in Figure 2.1. The leading cor-
rection is obtained by taking the muon propagators in the loop diagram
to be classical.

with the positive energy projector

Λ(p) =
1

2

(
1 +

/p

imµ

)
. (6.35)

In (6.34), Q is the incoming photon momentum, while the in- and outgoing (anti-)muon
momenta p± are defined in analogy to (6.18b).

Since the in- and outgoing muons are physical particles, they are on-shell, and we find

p2
± = −m2

µ ⇒ p2 = −m2
µ −

Q2

4
, (6.36)

where mµ is the muon mass. The on-shell condition for the muon momenta significantly
simplifies the kinematics of the muon-photon vertex, eventually resulting in the simple
two-dimensional tensor basis for the muon-photon vertex (6.34).

The dressing functions F1 and F2 appearing in (6.34) are called Dirac resp. Pauli form
factor. The magnetic moment aµ is obtained from the Pauli form Factor F2 at vanishing
momentum, which can be expanded in powers of the fine structure constant α ≈ 1/137,

aµ = F2(0) =
α

2π
+O(α2) . (6.37)

The corresponding diagrammatic expansion of the muon-photon vertex is depicted in Fi-
gure 6.11. The leading QCD contribution to aµ is given by the first loop diagram, assuming
the muon propagators to be classical, which is of leading order α2. The hadronic vacuum
polarisation Π enters aµ via the dressed photon propagator, cf. Figure 6.12. Naive eva-
luation of the respective one-loop diagram in Figure 6.11 requires knowledge of the HVP
at complex photon momenta Q2 ∈ C. Under the assumption that all non-analyticities of
the HVP are restricted to the real frequency axis, one can derive the following simplified
expression for its g–2 contribution,

aHVP
µ = − α

4πm4
µ

∫ ∞

0
dQ2

(
Q2 + 2m2

µ −
√
Q2
√
Q2 + 4m2

µ

)2

√
Q2
√
Q2 + 4m2

µ

Π(Q2) , (6.38)

only requiring Π to be given at Euclidean photon momenta Q2 > 0. This is the case, e.g.,
in lattice simulations or most functional approaches. Equation (6.38) therefore represents
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Abbildung 6.12.: Diagrammatic representation of the hadronic vacuum polarisation (6.39).
The HVP enters g–2 as the leading QCD contribution to the full photon
propagator in the leading order loop diagram of the muon-photon vertex
depicted in Figure 6.11. Notation as defined in Figure 2.1.

a cornerstone of the theoretical efforts of calculating the muon’s anomalous magnetic mo-
ment. Equation (6.38) has yield theoretical predictions that have been verified to great
accuracy by experiments. By calculating the HVP in the full complex plane, our study
allows for testing if the underlying analyticity assumption holds in functional approaches
independent of truncation schemes. If so, this further could yield insight into possible
mechanisms how complex singularities in the input correlation functions, existing in par-
ticular in the truncation discussed below, are cancelled and do not show up in the HVP.

6.3.2. HVP

The hadronic vacuum polarisation encodes the QCD contribution to the photon self-
energy, see Figure 6.12. It is defined by

Πµν(Q) = e2

∫

q
Tr
[
Z2iγµGq(q+)Γµ(Q, q)Gq(q−)

]
, (6.39)

where e2 = 4πα is the electric charge, Z2 the quark wave function renormalisation and Gq
the full quark propagator, see (5.54). The momenta q± are defined as in (6.18b). Γµ here
represents the dressed quark-photon vertex, which can be parametrised as

Γµ(Q, q) =
4∑

j=1

gj
(
p2, ω,Q2

)
iGµj (Q, p) +

8∑

j=1

fj
(
p2, ω,Q2

)
iTµj (Q, p) , (6.40)

where the gj and fj represent the transverse resp. longitudinal dressing functions of the
quark-photon vertex. The corresponding tensor basis elements Gµj , F

µ
j are defined in Ap-

pendix B.7. The Lorentz traces are carried out explicitly in Appendix B.8 [420].

We can decompose the unrenormalised HVP into a transverse and diagonal part as

Πµν(Q) = Π(Q2)Q2Πµν
⊥ (Q) + Π̃(Q2)δµν , (6.41)

with the transverse projection operator Π⊥ as defined in (3.64). In (6.41), we made explicit
that the dressing functions Π and Π̃ are functions of Q2 and hence Lorentz invariant.
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= + K

Abbildung 6.13.: Inhomogeneous Bethe-Salpeter equation for the quark-photon ver-
tex (6.48). Here, we use the rainbow ladder truncation (6.45) for the
kernel K. Notation as defined in Figure 2.1.

Projecting (6.39) onto the diagonal part of the tensor decomposition (6.41) yields that
the diagonal part vanishes,

Π̃(Q2) ≡ 0 , (6.42)

by means of the WTI for the quark-photon vertex,

QµΓµ(Q, p) = Γ
(2)
q̄q (p+)− Γ

(2)
q̄q (p−) . (6.43)

Unlike for the Abelian STI of the quark-gluon vertex (5.72), we absorbed the gauge coup-
ling into the vertex in (6.43).

We are left with the renormalisation of the transverse part of the HVP. In QED, the per-
turbative domain is the low energy region. The renormalised transverse HVP component
entering the g–2 predictions is hence

ΠR(Q) = Π(Q)−Π(0) . (6.44)

6.3.3. Quark-photon vertex

The quark-photon vertex (QPV) can be determined from its BSE, for a recent review,
see [266]. Here, we employ the rainbow ladder truncation, approximating the BSE kernel
K by a one-gluon exchange. To that end, we define the quark-gluon interaction kernel

g(p) = Z2
2

16π

3

α(p2)

p2
. (6.45)

For the gauge coupling, we employ the Maris-Tandy model [421, 422],

α(p) = πη7x2e−η
2x +

2πγm

(
1− e−p2/Λ2

t

)

ln

[
e2 − 1 +

(
1 + p2/Λ2

QCD

)2
] with x =

p2

Λ2
. (6.46)

The first summand models the infrared behaviour of the interaction, effectively controlling
the dynamical generation of the quark masses. The second term is responsible for the
correct perturbative behaviour. Typical values for the interaction parameters in (6.46) are
η = 1.8, γm = 12/25,Λt = 1 GeV,ΛQCD = 0.234 GeV and Λ = 0.72 GeV.
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Abbildung 6.14.: Ward-Takahashi identities of the quark-photon vertex for Euclidean to-
tal momentum Q2 and relative momentum k2. Plotted are difference in
absolute value of the left and right-hand side of (6.43), numbered accor-
dingly. The dressing functions of the QPV (except for g4) are of order 1.
Hence, the WTIs are well fulfilled. We observed that the fulfilment of the
WTIs improves with finer grids; details on the numerical implementation
are given in Appendix C.8.

In practical calculations, it has been found that the introduction of a Pauli-Villars
cutoff in the interaction kernel is advantageous for the fulfilment of the WTI (6.43), see,
e.g., [266]. This amounts to multiplying the interaction kernel (6.45) by a factor

1

1 + p2/Λ2
PV

. (6.47)

For the cutoff scale, we use ΛPV = 200 GeV.
The resulting BSE with rainbow ladder interaction kernel (6.45) reads

Γµ(Q, p) = Z2iγµ −
∫

q
g(p− q)Παβ

⊥ (p− q)γαGq(q+)Γµ(Q, q)Gq(q−)γβ . (6.48)

The transverse projection operator Π⊥ (3.64) arises from the Landau gauge gluon propa-
gator. The quark propagator Gq represents an input for the equation, which is directly
connected to the quark-photon vertex via the WTI (6.43), however. We will determine the
quark propagator from its Dyson-Schwinger equation in Section 6.3.3.1, and postpone the
details of the calculation to that section. Instead, we focus on the explicit consequences
of the WTI (6.43). To that end, we make use of the decomposition (6.40), splitting the
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Abbildung 6.15.: Solution for the quark DSE in the rainbow ladder truncation (6.50) with
Maris-Tandy interaction (6.46). Left, we show the Euclidean dressing
functions. The mass function shows dynamical chiral symmetry breaking
with a constituent quark mass between 450 and 500 MeV. On the right,
we show the leading complex poles of the quark propagator which are
known to appear in the Maris-Tandy model [354]. These poles are linked
to the complex poles appearing in the hadronic vacuum polarisation,
cf. Figure 6.17.

QPV into longitudinal and transverse tensor structures. Contraction with the photon mo-
mentum in the WTI then projects onto the longitudinal tensor structures, and entails the
explicit relations

g1 =
1

2

(
Zq(q+) + Zq(q−)

)
, g2 = 2

Zq(q+)− Zq(q−)

q2
+ − q2

−
,

g3 = 2
Mq(q−)Zq(q−)−Mq(q+)Zq(q+)

q2
+ − q2

−
, g4 = 0 . (6.49)

Due to the large amount of tensor structure of the quark-gluon vertex, numerically sol-
ving the BSE (6.48) is a costly task. The dynamics is carried by the twelve dressing func-
tions, for which the BSE forms a system of twelve coupled equations. Getting the equation
into a form which can be handled well numerically requires a considerable amount of alge-
braic work, which is detailed in Appendix B.7 [420]. In the following, we will just discuss
the results. Numerical details on the solution of the BSE are discussed in Appendix C.8.

6.3.3.1. Quark propagator DSE

The quark propagator for calculation of the quark-photon vertex is obtained from its
Dyson-Schwinger equation. Since the quark propagator DSE was already introduced in Sec-
tion 5.4, we will be brief here.

The quark DSE has the general form (5.64), for a diagrammatic representation see Fi-
gure 5.18. While in Section 5.4, we were free to specify a truncation for the DSE and
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Abbildung 6.16.: Solution for the quark DSE in the rainbow ladder truncation (6.50) with
Maris-Tandy interaction (6.46). We show the leading complex poles of
the quark propagator, here in the universal part of the quark propaga-
tor (5.55), which are known to appear in the Maris-Tandy model [354].
These poles are linked to the complex poles appearing in the hadronic
vacuum polarisation, cf. Figure 6.17.

employed a full gluon propagator, here, the situation is different. The 2-PI BSE and 1-PI
DSE kernels are related via functional derivative with respect to an internal propagator
line (6.30), see also, e.g., [417, 423]. For a consistent treatment of coupled BSE-DSE sys-
tems like ours, these relations need to be taken into account. Violation of these constraints
typically manifests itself at the level of symmetry identities like the WTI (6.43). For me-
chanisms which are sensitive to the amount of symmetry breaking in the system, such as
dynamical chiral symmetry breaking, a consistent treatment of the kernels is hence crucial.

Since we want to use the quark propagator in the quark-photon vertex BSE, our DSE
truncation is fixed by the truncation specified for the BSE kernel, or vice versa. This is
the rainbow ladder truncation, and the resulting quark self-energy diagram reads

Σq̄q(p) =

∫

q
g(p− q)Παβ

⊥ (p− q)γαGq(q)γβ . (6.50)

The rainbow ladder interaction kernel g is given by (6.45), in which the gauge coupling
again is specified by the Maris-Tandy model (6.46). Renormalisation is performed as
detailed in Appendix B.6.2. We employ a renormalisation scale of µ = 19 GeV with a
current quark mass of mq = 4 MeV.

The resulting solution is displayed in Figure 6.15. The mass function exhibits dynamical
chiral symmetry breaking, yielding a constituent quark mass between 450 and 500 MeV.
In the Euclidean domain, the quark dressing functions of the Maris-Tandy model are
similar to those obtained with a bare quark-gluon vertex and a full gluon propagator, see
right panel of Figure 5.19. The situation is different in the complex plane, however. In
the Maris-Tandy model, the interaction kernel leads to numerous poles in the Re p2 < 0
half-plane, see Figure 6.16 and also [266, 354, 362]. In Section 5.4, however, only a single
pair of complex poles is present in direct vicinity of the real axis. This demonstrates the
strong influence of truncations and particular vertex models on the complex structure of
correlation functions and in particular propagators. Numerical details on the solution of
the DSE are discussed in Appendix C.8.
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Abbildung 6.17.: Renormalised hadronic vacuum polarisation in the upper half of the time-
like region in the complex plane. The sharp structure on the negative real
Q2 is the ρ-meson pole, located at

√
Q2 ≈ 740 MeV. Beyond the ρ-meson

pole, the power method employed for solving the quark-photon vertex
BSE (6.48) no longer converges, resulting in the grey shaded region.
Hence, only the leading singularity can be resolved, as seen in the figure.
The isolated sharp peaks at non-vanishing Im Q2 arise from the complex
singularities of the quark propagator in the Maris-Tandy model (6.46) in
the integration domain, see Figure 6.16 and also [266, 354, 362]. These
complex spikes are expected to vanish when properly treating the quark
propagator’s poles, e.g., via contour deformation or Cauchy’s theorem.

6.3.4. Results

In Figure 6.17, we display the renormalised hadronic vacuum polarisation in the upper half
of the timelike region in the complex plane. The ρ-meson resonance can be identified as
the leading singularity on the negative real Q2 axis. The iteration fails to converge beyond
the first pole, which is a known feature of iterative solution schemes. We can hence identify
the location of the ρ-meson pole as the onset of the grey shaded area on the real axis,
yielding a pole position of about

√
Q2 ≈ 740 MeV.

The sharp peaks at non-vanishing Im Q2 however can be assigned to the improper
treatment of the complex poles of the quark propagator in the Maris-Tandy model, see Fi-
gure 6.16 and also [266, 354, 362]. In the current implementation, integration over internal
momenta in the BSE (6.48) is performed parallelly to the real q2 axis, regardless of possible
poles of the quark propagator in the integration domain. When such a pole is encounte-
red, the integral converges to a wrong result, leading to corresponding spikes in the QPV.
The unphysical peaks of the QPV then propagate into the HVP. While for the ρ-meson
pole visible in Figure 6.17, this is indeed a desired physical effect since this pole in the
QPV is not due to the poles of the quark propagators, for the complex spikes shown this
is not the case. In a proper treatment of the quark propagator’s complex singularities,
these are explicitly taken into account by, e.g., contour deformation or Cauchy’s theorem.
Implementation of these methods will be deferred to future work. That being said, it is
still not clear how the complex singularities of the quark propagator will influence the
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complex structure of the QPV and, in consequence, the HVP. A reasonable scenario is
that these complex poles draw branch cuts in the complex domain, analogous to the case
of complex poles in the gluon propagator discussed in Section 5.1. In this case, the explicit
expression (6.39) for the HVP suggests that these additional complex cuts will directly
show up in the HVP as well. The reason for this is that the external momentum of the
diagram appears without addition of loop momentum in the second argument of the QPV
on the RHS, i.e., is not integrated over. Hence, the complex structure of the QPV w.r.t.
the total momentum Q2, which carries the resonances such as that of the ρ-meson, directly
carries over to the HVP.

6.3.5. Conclusion

In this section, we presented a calculation of the hadronic vacuum polarisation, the leading
QCD contribution to g− 2, in the complex plane. The investigation focusses in particular
on how the analytic structure of the HVP is influenced by the analytic structure of the fun-
damental input correlation functions such as the quark propagator and the quark-photon
vertex. In particular, this could yield insight into how, if so, complex non-analyticities in
the quark propagator and the quark-photon vertex cancel on the level of the HVP. The
assumption that the HVP is an analytic function in the upper half plane is explicitly ex-
ploited in computing the respective contribution to g–2 using Euclidean lattice data. Note
that by the time of completion of this thesis, the investigation presented here was not yet
completed. Since the project constitutes an important example for potential applications
of the spectral functional approach connected to observables, we nevertheless chose to
document the calculation and progress that has been made so far.

The intermediate results presented in this chapter are summarised in Figure 6.17, dis-
playing the HVP in a quadrant of the complex momentum plane. While the leading ρ-
meson pole can be clearly identified, the (non-)existence of complex poles could not be
verified, since the complex peaks appearing in the plot are due to an insufficient numerical
treatment of the complex poles of the quark propagator, cf. Figure 6.16. In order to arrive
at a conclusive statement about the implications of complex poles in the quark propagator
for the complex structure of the HVP, a few steps are necessary.

First, it is necessary to upgrade our numerical routine to correctly account for the
complex poles in the integration domain. Then, if in the discussed scenario it can be shown
that additional complex non-analyticities appear in the HVP, it remains to be studied
how these are affected by the choice of scattering kernel in the QPV BSE. Furthermore,
comparison of different truncations for the quark DSE, also without complex quark poles,
as discussed for the case of STI-consistent vertices in [7] resp. Paragraph 5.4.3.2.2, would
add to understanding the nature of additional non-analyticities in the HVP. Assuming
that no complex singularities show up in the HVP, an investigation of the mechanism
protecting the HVP from the non-analyticities of its input would be in order. Evaluation
of the WTI (6.43) in the complex plane, in particular in the vicinity of the complex
singularities of the QPV and quark propagator, could potentially yield insights about the
connection of such a mechanism to the internal symmetries.

Due to the necessity of resolving the quark propagator in the complex plane makes,
the spectral functional approach, already applied to the quark propagator DSE in [7],
see Section 5.4, could be applied for studying DSE truncations beyond rainbow ladder
Maris-Tandy.
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6.4. Shear viscosity of Yang-Mills theory

This chapter presents results of [11]. All practical calculations have been carried out by
Jakob Dolgner in the context of his Master thesis, which I co-supervised.

Relativistic heavy ion collisions (HIC) represent a central experimental technique for tes-
ting the phase structure as well as dynamical properties of QCD. In modern phenomenolo-
gical approaches to HIC, the dynamical evolution of the quark-gluon plasma is described
by viscous relativistic hydrodynamics, see, e.g., [424–428]. Within the hydrodynamical
description, transport coefficients parametrise the response of the fluid to linear pertur-
bations in particular kinematic channels around local thermal equilibrium. These fluid
properties ultimately follow from the underlying microscopic equilibrium theory, and its
correlation functions. Hence, transport coefficients establish a link between the macros-
copic properties and the microscopic description of QCD, which is formalised within the
Kubo relations [429]. The most important transport coefficients for the hydrodynamical
description of the quark-gluon plasma are the shear and bulk viscosity. In this section, we
are going to focus on the shear channel.

Experimental measurements suggest a relatively small value for the shear viscosity over
entropy ratio [430–434], with a current estimate of 1/(4π) < η/s < 2/(4π) [435]. This
estimate is close to the KSS bound predicting η/s = 1/(4π), which be inferred from
AdS/CFT correspondence [436]. Recent lattice studies tend to predict somewhat larger
values, see [437–440].

In this section, calculate the shear viscosity of SU(3) Yang-Mills theory from Kubo
relations solely based on fundamental realtime correlator input, i.e., the gluon propagator
resp. its spectral function. In doing so, we follow a similar approach to that of [346],
extending the previous calculation by including a temperature dependent normalisation
factor into the calculation of the shear spectral function. This normalisation is determined
by comparing to lattice data for the Euclidean shear channel two-point function, accessible
in our calculation via a spectral representation. For a pedagogical introduction into the
calculation of the shear viscosity in QCD from fundamental correlators, see [441].

6.4.1. Diagrammatic representation of the Kubo relation

Kubo relations link transport coefficients to fundamental, microscopic correlation functi-
ons. Since transport coefficients describe collective, macroscopic properties of the system,
they are inherently linked to long-range behaviour. Emerging from a hydrodynamical fra-
mework, it is natural that the correlation functions featuring in the Kubo relations are
that of the energy-momentum tensor (EMT) of the theory, which is related to the quantum
effective action via

Tµν(x) =
2√
−g(x)

δΓ[Φ, g]

δgµν(x)
. (6.51)

Here, g represents the metric tensor, and Φ captures all fields of the effective action Γ. We
will evaluate (6.51) in flat Minkowski spacetime, i.e., set g = η after differentiation.

In Fourier space, long range behaviour is encoded in the low frequency and momentum
limit. For the case of the shear viscosity, the corresponding Kubo relation reads

η = lim
ω→0

1

20

ρππ(ω, ~p = 0)

ω
, (6.52)
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Abbildung 6.18.: One-loop contribution to the shear correlator in (6.53). Notation as de-
fined in Figure 2.1, with curly lines representing gluon fields. Blue boxes
with n gluon legs represent EMT n-vertices, defined as in (6.58).

where ρππ is the spectral function of the corresponding EMT two-point function, defined
as

ρππ(ω, ~p) =

∫
d4xeipx〈[πij(x)πij(0)]〉 . (6.53)

πij is defined as the spatial traceless part of the EMT, being related to the full EMT by

πij(x) = Tij(x)− δij
3
Tkk(x) . (6.54)

The corresponding spectral representation relating the shear channel spectral function (6.53)
to the Euclidean two-point function reads

C(τ) =

∫
dλ

2π
ρππ(λ,~0)

cosh(λ(β/2− τ))

sinh(λβ/2)
, (6.55)

where C(τ) =
∫
~x〈πij(x)πij(0)〉 for spacelike x. Equation (6.55) will be useful to relate the

computed shear spectral function to Euclidean lattice data later.

The expectation value in (6.53) can be evaluated explicitly by means of the composite
operator identity (2.20),

〈πij [A]πij [A]〉 = πij
[
GAφi ·

δ

δφi
+ A

]
πij
[
GAφi ·

δ

δφi
+ A

]
, (6.56)

with A = 〈A〉, resulting in a seven-loop exact diagrammatic expression for the shear
correlator, cf. [346]. Here, we focus on its dominant one-loop term, depicted in Figure 6.18.
Its corresponding contribution to the shear viscosity (6.53) reads

ρππ(ω, ~p) = Im

∫
d4q

(2π)4
π

(2)
ij (q, p+ q)GA(p+ q)π

(2)
ij (p+ q, q)GA(q) , (6.57)

where the imaginary part results from commutator in (6.53), and we use GA = GAA to
match previous notation. π(n) is an EMT n-vertex, represented by grey squares with n
gluon legs in Figure 6.18, for which we employ the notation (2.13) for functional derivatives,

π
(n)
ij (p1, . . . , pn) =

δnπij
δA(p1) . . . δA(pn)

. (6.58)
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Abbildung 6.19.: Shear viscosity over entropy ratio from the shear Kubo relation (6.52).
We employ a diagrammatic representation for the shear correlator, trun-
cated at one-loop, see Figure 6.18. The input gluon spectral function
is modelled by a Breit-Wigner peak, whose parameters are adjusted by
fitting to the Euclidean lattice shear correlator data of [438]. We com-
pare to the lattice results of [437–440]. The entropy density data is ta-
ken from [447]. A lower bound on η/s, the KSS bound, can be inferred
from AdS/CFT correspondence [436]. The solid blue line is obtained
from viscous hydrodynamical simulations by fitting to measured particle
yields [448].

Here, we approximate the two-point EMT vertices in (6.57) by their classical counter-
parts, i.e., derive the EMT vertices starting from the classical action in (6.51). For the
gluon propagators in (6.57), we employ a spectral representation, cf. (5.11). The frequen-
cy integral can be solved, e.g., at imaginary frequencies via the Matsubara formalism and
then continued to real frequencies or directly in a realtime formalism such as the Keldysh
formalism [442–444]; for pedagogical introductions to both formalisms see, e.g., [445, 446].
We employ the Keldysh formalism here, following the approach of [346]. We refrain from
giving the resulting algebraic expressions here for this reason, and provide them in [11].

6.4.2. Gluon spectral function and temperature dependent normalisation

By truncating the diagrammatic representation for the shear correlator (6.53) at one-loop,
we are neglecting higher loops which contribute to the temperature dependence of the
shear viscosity. This can be partially remedied by introducing a temperature dependent
normalisation factor in (6.53),

ρππ(ω)→ c(T )ρππ(ω) . (6.59)
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The temperature dependent normalisation c(T ) can be fixed by comparing the correspon-
ding Euclidean shear correlator, evaluated with (6.55), to lattice data such as that of [438].
This procedure allows to efficiently incorporate the temperature dependence of higher loop
corrections into the calculation, while only dealing with a simple one-loop computation.
Furthermore, it allows to fix the generally arbitrary global normalisation of correlation
functions from functional approaches, which is usually done by comparing to normalised
results from other methods.

It turned out that with the above procedure, vacuum gluon spectral functions such as the
ones discussed in [3], see Section 5.3, and [243], do not yield values for the shear viscosity
compatible with previous calculations. We will defer the in-depth discussion of possible
reasons for this to a future publication. Instead, in this section we focus on an analytic
model for the gluon spectral function allowing to control features such as peak scale or
width in a temperature dependent manner, given by a combination of Breit-Wigner (BW)
peaks,

ρBW
A (ω, ~p;m, γ) =

1

2ωp

(
2γ~p(

ω − ω~p
)2

+ γ2
~p

− 2γ~p(
ω + ω~p

)2
+ γ2

~p

)
, (6.60a)

with

ω~p =
√
m2 + ~p2 , γ~p =

γ

ω~p
. (6.60b)

Here, we treat the parameters m and γ, related to the peak position and width, as addi-
tional fit parameters when fitting the temperature dependent normalisation c(T ) in (6.59)
to the Euclidean lattice data of [438]. This allows to infer the temperature evolution of
the characteristic features of the gluon spectral function, as the χ2-fits are performed se-
parately for each temperature of the data of [438]. The shape of the vacuum YM spectral
function [243] acts as an orientation for sensible shapes of the BW spectral function, ef-
fectively shrinking the volume of the two-dimensional BW parameter space (m, γ). After
fixing the parameters of our gluon spectral functions by this procedure, we eventually
evaluate the shear viscosity as a function of temperature via (6.52).

6.4.3. Results

In hydrodynamic equations, transport coefficients usually appear in ratio with the entropy
density s. It is common practice to present results for transport coefficients as such a ratio.
We use the entropy density results of [447] for this here.

In Figure 6.19, we display our result for the viscosity over entropy ratio as a function
of temperature in the range T/Tc ∈ [0.9− 1.5], where Tc is the critical temperature. The
temperature range is fixed by the available lattice data for Euclidean shear correlator which
we use to fix the T -dependent normalisation factor of our shear correlator, see Section 6.4.2.

For temperatures above Tc, our result is well compatible with data from various lattice
calculations, predicting a viscosity over entropy ratio of η/s ≈ 0.3. For temperatures below
Tc, the lattice data is surpassed by approximately an order of magnitude, however. We
remark that this type of overshooting of the lattice data close to the phase transition is
a feature already seen in previous studies [346]. Accordingly, for decreasing temperature,
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Abbildung 6.20.: Shear spectral function (6.53) interpolated between different tempera-
tures using Breit-Wigner fits for the gluon spectral function. While all
curves show the same ω4 large frequency behaviour, the IR slope deter-
mining the shear viscosity (6.52) is clearly temperature dependent. The
corresponding viscosities are displayed in Figure 6.19.

our procedure seems to describe the low frequency asymptotics of the shear spectral func-
tion worse than for higher ones. This could be related to the fact that in particular in the
infrared, our model gluon spectral function does not match the analytically known beha-
viour [243]. For decreasing thermal gap, we become more sensitive to this regime, which
could explain the observed deviation. Including higher loop diagrams acting as vertex
corrections could yield insight into this matter.

The shear spectral functions from which the viscosities are obtained via the Kubo rela-
tion (6.52) are shown in Figure 6.20. Note that we interpolated between the shear spectral
functions for the eight different temperatures for which we present viscosity results in Figu-
re 6.19. Describing a physical correlation function, the shear spectral function is positive,
accordingly. The slope of the spectral function in the IR, determining the shear viscosity, is
monotonically decreasing with temperature. At about 1 GeV, the spectral function shows
a dip, which is related to the dominant mass scale of the gluon spectral function. In the
perturbative large frequency domain, the spectral functions fall on top of each other and
show the expected ω4-behaviour, see also [449] for perturbative hard thermal loop (HTL)
results in that regime, for instance.

In Figure 6.21, we display the Euclidean shear correlators corresponding to the spectral
functions shown in Figure 6.20. As detailed in Section 6.4.2, we performed a χ2-fit with
respect to the parameters of the Breit-Wigner gluon spectral function (6.60) entering the
spectral function of the displayed correlators to the respective lattice data of [438]. The
fits agree very well within errors with the lattice data, which is also confirmed by the
reduced χ2-values given in the plot legend. On the basis of the Euclidean correlator, a
Breit-Wigner peak appears to model the gluon spectral function well enough to describe
the data. Inspecting the best fits for the Breit-Wigner parameters width and mass scale
reveals a very mild temperature dependence, and their values are in particular close to
the mass scale and width of the reconstructed gluon spectral function in [243]. It therefore
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Abbildung 6.21.: Euclidean shear correlators for different temperatures corresponding to
the spectral functions shown in Figure 6.20, with the spectral represen-
tation (6.55), compared to lattice results [438]. The width and mass scale
of the Breit-Wigner gluon spectral function (6.60) entering the calcula-
tion of the shear spectral function is fixed by fitting the above displayed
corresponding Euclidean shear correlators to the respective lattice data.
The fits describe the lattice data very well within errors.

remains to be fully understood why results for the viscosity in agreement with the lattice
could only be obtained in case of the Breit-Wigner model for the gluon spectral function,
and not for the reconstruction results discussed in Section 5.3 resp. [3] or that of [243].
Our investigation showed that the EMT spectral function was particularly sensitive gauge
dependent features of the gluon spectral functions such as deep IR and UV behaviour.
The full shear correlator is physical and hence gauge invariant, a property which is hence
violated by our one-loop truncation of its seven-loop exact diagrammatic expansion. Future
investigations could go into the direction of systematically constructing gauge invariant
truncations for the full expansion, guided by invariance under changes of the gluon spectral
function’s gauge variant features.

6.4.4. Conclusion

In this section, we calculated the shear viscosity of Yang-Mills theory from Kubo relations
based on fundamental realtime correlation function input. To that end, we modelled the
gluon spectral function by a Breit-Wigner peak. Our results for the shear viscosity over
entropy ratio, displayed in Figure 6.19, are well compatible with existing results from the
literature. Our approach has the advantage of full access to the shear correlator spectral
function, shown in Figure 6.20, and in consequence also to the corresponding Euclidean
shear correlator, displayed in Figure 6.21. Since the shear correlator is also the subject
of lattice simulations, this yields an additional benchmark for results, representing an
important extension of the approach of [346]. Here, we exploited this feature to fix the
model parameters of the gluon spectral function by a fit of the Euclidean shear correlator
to the corresponding lattice data in a temperature dependent manner. This enabled us
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to include temperature dependent EMT-vertex loop corrections while retaining the low
analytic complexity of our one-loop calculation.

A natural next step in our investigation is to replace the model input for the gluon
spectral function by real data. This data can be obtained via direct calculation, e.g., via
the spectral functional approach, which was applied to Yang-Mills theory in [5], see Sec-
tion 5.1. The calculation was plagued by spurious complex poles in the gluon propagator,
also observed in other realtime DSE approaches [264], preventing the computation of a
gluon spectral function. On the other hand, spectral reconstructions have efficiently re-
constructed gluon spectral functions from Euclidean lattice data for the propagator in for
Yang-Mills theory [243] and QCD [3], see Section 5.3. Our investigation appeared to be sen-
sitive to gauge variant features of these reconstruction results, however. In consequence,
future investigations should involve the construction of gauge invariant truncations the
diagrammatic expansion of the shear correlator.
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7. Summary & Conclusion

In this thesis, we presented advances in the calculation of realtime observables in the
non-perturbative domain of QCD. These observables are of utmost importance for un-
derstanding dynamical properties of the theory, which includes, for instance, transport
phenomena or resonances. From the experimental side, the QCD phase diagram is only
indirectly accessible, e.g., through heavy-ion collisions under lab conditions or in nature
via neutron stars. These extreme and inherent non-equilibrium conditions render dyna-
mical properties crucial for understanding the phase structure of QCD. The theoretical
description of realtime properties is notoriously difficult, since lattice field theory and con-
ventional functional approaches are usually formulated in Euclidean spacetime. To tackle
this issue, we put forward the spectral functional approach, which allows for the efficient
calculation of fundamental correlation functions directly in Minkowski spacetime within
functional, diagrammatic approaches. We demonstrate the power of the spectral functio-
nal approach by computing spectral functions of all fundamental QCD degrees of freedom
and show how they can be used to calculate different physical observables.

The first major part of this thesis is the development of the spectral functional ap-
proach in Chapter 4. This development constitutes the technical and methodical core of
the majority of numerical results presented in this thesis. The spectral functional approach
utilises integral representations for correlation functions, so-called spectral representati-
ons, to analytically solve momentum loop integrals in general diagrammatic expressions
by dimensional regularisation. This grants access to the entire complex momentum plane
and in particular the Minkowski domain of the respective diagram. We applied this techni-
que to Dyson-Schwinger equations and the functional renormalisation group in Section 4.1
and 4.2. For both, we presented results for spectral functions in a scalar φ4-theory, ser-
ving as a proof of concept for computations in more intricate theories such as QCD. The
application of the spectral functional approach to two different functional methods ena-
bled direct comparison between both of them. We observed very good agreement, which
establishes the reliability of our direct functional realtime approach.

In Chapter 5, we used the spectral functional approach for the calculation of fundamen-
tal QCD correlation functions in Minkowski spacetime, which represents a pivotal step on
our avenue to realtime observables in QCD. Since observable correlation functions under-
lie tight restrictions on their analytic structure rooted in locality, causality and unitarity
requirements, it is crucial to understand the analytic structure of the underlying funda-
mental correlators. For this reason, in Section 5.1, we investigated the analytic structure
of the arguably most central correlation functions of Yang-Mills theory, i.e., the gluon and
ghost propagator. We demonstrated how complex non-analyticities in these propagators
can lead to inconsistencies in the solutions of the corresponding coupled set of DSEs. Based
on this, we argued that a mechanism for the cancellation of these complex poles requires
a delicate balance between these singularities and roots in vertex functions, which, if not
imposed by a symmetry, is unlikely to exist. In a scenario without such complex singu-
larities, we found that the spectral representation of the ghost propagator is intact, and
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computed the corresponding spectral function non-perturbatively from its corresponding
DSE in Section 5.2. We proceeded similarly for the case of the quark propagator, who-
se spectral function we calculated in Section 5.4. An important input for the calculation
of the quark spectral function is given by the gluon propagator or spectral function, for
which we used spectral reconstruction results based on 2+1 flavor lattice QCD data using
Gaussian process regression, presented in Section 5.3. The reconstruction also encompasses
results for the ghost spectral function, which shows remarkable agreement with the direct
calculation from the spectral DSE in Section 5.2.

In Chapter 6, we turned towards the computation of observables from fundamental ti-
melike correlation functions. To demonstrate the wide range of potential use cases for the
spectral functional approach, we considered four observables of different types: the strong
coupling constant, a two-particle bound state in the scalar φ4-theory, the anomalous ma-
gnetic moment of the muon and the shear viscosity of Yang-Mills theory. We started with
the discussion of the strong coupling constant of QCD in the timelike domain in Section 6.1,
directly building on the spectral reconstruction results of Section 5.3. We established a
spectral representation for the strong coupling and calculated its spectral function via two
different methods; directly based on the spectral functions of its input correlation functions
and via Gaussian process regression from lattice data, showing very good agreement. Fur-
thermore, we discussed scattering amplitudes that can be calculated directly based on our
results. In Section 6.2, we demonstrated how the spectral functional approach can facilitate
the computation of bound states, which can be described via resonance equations in func-
tional approaches. To that end, we calculate the position of a low-lying two-particle bound
state in a scalar φ4-theory. This investigation lays the groundwork for future investigation
of hadronic resonances in QCD aided by the spectral functional approach. Moreover, we
investigated the complex structure of the hadronic vacuum polarisation (HVP), the lea-
ding QCD contribution to the magnetic moment of the muon, g–2, in Section 6.3. The
motivation for our investigation are the discussed causality and unitarity requirements,
which are exploited in quantitative g–2 calculations to determine the timelike HVP from
Euclidean lattice data via dispersion formulae. A central element of our investigation is
the computation of the full quark-photon vertex in the complex momentum plane. Here,
we only reported on interim results for the purpose of documentation, since the study has
not been finished at the time of completion of this thesis. Finally, in Section 6.4 we turned
towards the QCD transport coefficients, and used Kubo relations to calculate the shear
viscosity as a function of temperature in Yang-Mills theory. The computation features the
gluon propagator at real frequencies as an input, therefore representing a prototypical use
case for direct realtime results from functional approaches. We observed good agreement
within errors with the corresponding lattice data for the relevant temperatures.

To conclude, in this thesis we put forward the spectral functional approach, a novel
technique for the calculation of fundamental realtime correlation functions in functional
approaches, and demonstrated its potential for the calculation of observables in QCD—
ranging from scattering amplitudes over hadronic resonances to transport coefficients. In
the past, access to these observables has often been hindered by the Euclidean nature
of non-perturbative results from lattice simulations or functional approaches. Hence, this
work can be understood as a foundation for future precision calculations of observables
in QCD with functional techniques. An obvious next step in this endeavour is the ex-
tension of the spectral functional approach to finite temperature, which appears to be
even necessary for the calculation of particular transport coefficients. On the avenue to
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quantitative precision, embedding higher vertices in the spectral functional approach will
be a crucial obstacle to overcome. This will most certainly necessitate the construction of
generic spectral representation for higher n-point functions.

Despite the outlined short and long term challenges, the path towards the overarching
goal of precision calculations of QCD observables from functional methods is clearly visible
today. Advancing on this path will require concerted conceptual and numerical efforts,
whose merit will not be limited to QCD, however. The generality of the discussed concepts
promises applicability to strongly correlated quantum systems on the most different energy
scales—from ultracold atoms to quantum gravity.
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A. Additional material

A.1. Expansions around condensates and color averages

In this section we discuss the implementation of expansions around non-trivial conden-
sates in connection to Section 3.2, and comment on the subtleties of the color averaging
procedure associated with the central mass formula in (3.101). To illustrate the properties
and subtleties, we employ two simple examples: spontaneous symmetry breaking in a sca-
lar O(N) theory, and (color) centre symmetry breaking in finite temperature Yang-Mills
theory.

Let us first consider a scalar field theory with an O(N) field φ (including the discrete
Z2 symmetry when N = 1) in the symmetric phase. In the symmetric phase, both, the
effective action Γ[φ], and expectation values of observables, are typically expanded around
φ = φ0, where

φ2
0 = lim

V→∞
1

V

∫

V
〈φ(x)φ(0)〉 , (A.1)

is defined by the order parameter of the theory. The order parameter (A.1) can also be
obtained from

φ0 = lim
J→0
〈φ〉 , (A.2)

where J indicates an external current (or magnetisation) coupled to the field, limJ→0

∫
x Jφ,

which is finally removed. Alternatively, within a finite volume one may use boundary
conditions that break the symmetry, and then take the infinite volume limit.

Either way, the effective action Γ is invariant under the full symmetry group of the
underlying theory by definition, whereas the vacuum state (the solution of the equations
of motion) breaks the symmetry.

Thus, quite importantly, the apparent symmetry breaking in Γ, seemingly induced by
the expansion point, is absent for the full effective action. In turn, a given approximation
scheme may break this symmetry (for example a finite order of a Taylor expansion about
φ = φ0). This symmetry can be restored subsequently by averaging the approximated
effective action Γapp[φ] over the symmetry group, Γ[φ] = 〈Γapp[φ]〉av. Note in this context,
that in our example case of an O(N) theory the averaged expectation value of the field
vanishes, 〈φ〉av = 0, as it must. Moreover, the operator in (A.1) has the full symmetry and
hence does not change under the averaging procedure, while 〈φ〉 does.

In the case of the effective gluon mass, the underlying symmetry is a gauge symmetry.
For this reason we also consider a second, closer, example, the expectation value of the
Polyakov loop 〈L〉 in finite temperature Yang-Mills theory,

L =
1

Nc
Tr P exp{igs

∮
A0(x)} , (A.3)
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where the integral
∮

in (A.3) is over x0 ∈ [0, 1/T ], and the trace is taken in the fundamental
representation. Here, T denotes the temperature and P is the path ordering operator. The
underlying symmetry is the centre symmetry ZNc of the gauge group with L → z L and
z ∈ ZNc . We have the order parameter

L2
0 = lim

V→∞
1

V

∫

V
〈L(0)L†(x)〉 , (A.4)

which is non-vanishing in the confining disordered low temperature phase. Typically, in
both, functional approaches and on the lattice, (A.4) is obtained by an infinitesimal explicit
centre symmetry breaking in the Cartan direction t3, similar to introducing an infinitesimal
explicit breaking of O(N) symmetry described above. In the t3 direction the Polyakov loop
takes real values, and we get

L0 = 〈L(x)〉 , (A.5)

with a real positive L0, which is a non-trivial solution of the equation of motion (of A0)
at finite temperature. The expectation value of the order parameter serves as a physical
expansion point for observables as well as the effective action in functional approaches,
both in first principle QCD computation and low energy effective theories of QCD. In
quantitative approximations the results for observables agree very well with lattice simu-
lations, for the Polyakov loop itself see [178]: The observables are either color-blind in the
first place and hence do not require a color average and are insensitive to it, or, as in the
case of the Polyakov loop, a color direction was singled out for the computation in the
first place.

However, the comparison of gauge-fixed correlation functions or parts of it is more
intricate, as then the averaging is required and may also affect the gauge fixing, for more
details and further literature see in particular [166, 450] and the recent review [63]. This
intricacy also applies in the present situation and makes a direct comparison of the effective
gluon mass difficult.

The lack of a quantitative averaging procedure has forced us to introduce the averaging
factor fav(Nc) in our results, see (3.96) and the definition of the effective gluon mass,
(3.99) and (3.119). In the present work we have only determined its Nc-dependence with
the consistency of the large Nc scaling. As mentioned in the main text, the value of fav(Nc)
is the largest source of systematic error for the effective gluon mass.
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A.2. Massless limit in the scalar theory

The scalar φ4-theory in 2+1 dimensions depends on one dimensionless parameter, λφ/mpole.
In the present work we have shown all results in terms of the respective pole mass. Hence,
the above parameter simply relates to different couplings λφ, measured in units of the pole
mass mpole = 1. If interested in the massless limit of the theory, it is more convenient to
keep the coupling fixed λφ = 1, and to depict all results for different pole masses. For
example, in the work we have used λφ = 5, 10, 20 with mpole = 1, which can be read as
λφ = 1 and mpole = 1/5, 1/10, 1/20. This leads us to the spectral functions for propagator
and four-vertex as well as the respective Euclidean correlators itself of the scalar field, de-
picted or rather redrawn in Figure 4.14. Rescaling the results in this way it gets clear the
massless limit is readily investigated through the limit λφ →∞. For a consistent treatment
of the DSE, the vertices need to be well-defined and have the appropriate scaling proper-
ties in this limit. This is given for the resummed s-channel four-point function that was
introduced in Section 4.1.3.2 and used in calculation of Section 4.1.3.4 and Section 4.1.3.5.

Note that in the skeleton expansion as approximated in Section 4.1, the only other
appearing vertex, which is the three-point function, is obtained directly from Γ(4) and hence
has the same property. The resummation is hence suitable for studying the massless case in
our skeleton expansion. In all diagrams except for the tadpole, all vertices are approximated
at frequency zero. In consequence, they do not carry loop momentum and merely enter as
multiplicative factor, which makes them well under control in the large coupling limit. For
the tadpole however, this is not the case. Here, the four-point function enters via its spectral
representation (4.36). The additive classical contribution drops out by renormalisation,
as it contributes momentum-independently. What is left is the vertex spectral function
contributing to the tadpole loop integral, cf. (4.38). With increasing coupling, this spectral
function gets larger, see Figure 4.10 or Figure 4.12. Since the multidimensional spectral

Classical vertices Skeleton

gpol −3
2Γ(2)(ω = 0)λφ −3

2Γ(2)(ω = 0)Γ(4)(ω = 0)

gsunset −1
6λ

2
φ

1
12Γ(4)(ω = 0)2

gsquint
3
2λ

2
φΓ(2)(ω = 0) 0

gtad 0 1
2

Tabelle A.1.: Prefactors of the propagator DSE diagrams in the different approximation
schemes. The prefactors are obtained by the standard DSE prefactors and
the loop-momentum and spectral parameter independent parts of the ver-
tices. The tadpole factor in the approximation with classical vertices is set
to zero, as the tadpole is absorbed completely in the mass renormalisation.
The sunset prefactor in the skeleton expansion compensates the two-loop
contributions of the tadpole with full four-vertex. In the self-consistent ap-
proximation of Section 4.1.3.5, the skeleton prefactors apply with exception
to the polarisation diagram, which is given by (4.43).
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integrals need to be evaluated numerically, a UV cutoff for the integrals needs to be
chosen that minimises the error caused by doing so. This results in increasingly long-range
integrals for the large coupling limit. The appropriate treatment of these integrals hence
results in a technical obstacle, which will be the subject of a follow-up project. Apart from
the technical aspect, this suggests that the tadpole diagram is the dominant contribution to
the DSE and thus to the spectral function for ω > 3mpole in the s-channel approximation.
As a result, one is left solely with polarisation and tadpole diagram, further simplifying
the setup.
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A.3. Spectral flows in gauge theories

The scope of the spectral Callan-Symanzik flow equations introduced in Section 4.2 also
extends to the particularly interesting case of gauge theories, which we elaborate on in
this section. Especially the non-perturbative infrared regime of QCD has been studied
intensively within the fRG approach [63, 95, 137, 138, 166, 172, 451–454]. In this section
we discuss the application of the spectral renormalisation group to gauge theories at the
example of Yang-Mills theory, for respective works with the spectral DSE see [2, 5] re-
sp. Section 5.2 and Section 5.1. The classical gauge-fixed Yang-Mills action including the
ghost term is given by (3.41) in Landau gauge, i.e., evaluated at ξ = 1, reads

SYM =

∫

x

[
1

4
F aµνF

a
µν − c̄a∂µDab

µ c
b +

1

2ξ
(∂µA

a
µ)2

]
. (A.6)

Generally, setting up spectral flow equations for gauge theories works analogously as for
scalar theories, discussed in Section 4.2.4. The flow equations are derived in the usual
manner, and spectral representations are used for the propagators of all fields, i.e., ghost
and gluon propagator.

A.3.1. Ghost propagator

Formally, the ghost propagator is expected to obey the KL-representation [268, 269], if the
corresponding propagator is causal. A recent direct calculation of the ghost spectral functi-
on with the spectral Dyson-Schwinger equation in [2], which we present in Section 5.2, has
confirmed this expectation. This computation has utilised a spectral representation for the
gluon, which is discussed in Appendix A.3.2. Moreover, recent reconstructions [260, 261]
show no signs of a violation of this property. It is found that the ghost spectral function
exhibits a single particle peak at vanishing frequency with residue 1/Zc, whose value may
depend on the non-perturbative infrared closure of the Landau gauge. Specifically, the
scaling solution is obtained for the limit Zc → 0, see [2, 243] resp. Section 5.2. In this
case, the particle pole in the origin is no longer present. Instead, in the origin there is
the branch point of the non-integer power scaling law branch cut of the scaling solution.
Note that in this case, the ordinary KL representation can no longer be applied, since the
corresponding spectral function would show an IR divergence. For the current discussion,
we will stick to the case of a massless particle pole in the IR.

Independent of the IR behaviour addition, a continuous scattering tail shows up in the
spectral function via the logarithmic branch cut. This leads us to the general form of the
ghost spectral function,

ρc(ω) =
π

Zc

δ(ω)

ω
+ ρ̃c(ω) , (A.7)

where ρ̃c denotes the continuous tail of the spectral function. In [2], see Section 5.2 and
in particular Appendix A.8, it has been shown that the ghost spectral function obeys an
analogue of the Oehme-Zimmermann superconvergence property of the gluon [255, 256].
Expressed in terms of the spectral representation of the dressing, it reads

∫
dλ

π
λ ρ̃c(λ) = − 1

Zc
. (A.8)
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Equation (A.8) entails that the total spectral weight of the ghost vanishes. A generic
discussion can also be found in [2, 254] resp. Section 5.2.

Since the ghost spectral function (A.7) shows a (massless) particle pole, as for scalar
theories, on-shell renormalisation conditions like (4.75) can be applied. This fixes the pole
position of the scale-dependent ghost spectral function to p2 = −k2. In analogy to (A.7),
the flowing ghost spectral function reads

ρc,k(ω) =
π

Zc,k

δ(ω − k) + δ(ω + k)

ω
+ ρ̃c,k(ω) , (A.9)

where ρ̃c,k(ω) has support for |ω| > 2k. In the limit of vanishing cutoff, pole position and
scattering onset move into the origin, and (A.7) is recovered.

A.3.2. Gluon propagator

The above discussion of the ghost spectral function and its existence was done under the
assumption of a spectral representation of the gluon. In contrast to the ghost spectral func-
tion, there is an ongoing debate in the community whether this assumption is justified.
In local QFTs, only the existence of a spectral representation for asymptotic, physical
states is guaranteed. It has been argued that in Landau gauge this also applies to the
gluon propagator [271, 273, 299]. While high precision spectral reconstructions are not in
contradiction to this assumption and do work for the gluon propagator [3, 243, 258, 300]
resp. Section 5.3, extensions with complex conjugate poles are also commonly entertained
in reconstructions, see, e.g., [104, 195, 260, 263, 264, 270, 272, 274–276]. A recent compu-
tation has shown, that the situation is indeed exceedingly intricate: its resolution may only
be possible by also resolving the problem of a consistent non-perturbative gauge fixing [5],
see Section 5.1. The self-consistent implementation of the latter for propagators and ver-
tices is subject to a non-perturbative infrared realisation of the respective Slavnov-Taylor
identities. For a detailed discussion of the complex structure of Yang-Mills theory see [5]
resp. Section 5.1. There, we show that a solution of the Yang-Mills system with a spectral
ghost and a non-spectral gluon would require non-trivial relations between the complex
structures of vertices and propagators. In turn, while less conclusive, in [5] resp. Secti-
on 5.1, it is found that numerical indications that a self-consistent solution system with
spectral representations for both ghost and gluon propagators, if existent, may also require
self-consistent or rather STI-consistent solutions for non-trivial vertices.

In the present chapter we add nothing new to the resolution of this intricate problem,
but simply consider the flow of the gluon spectral function under the assumption of its
existence. Likewise, we assume a spectral representation for the ghost, with a pole at ω2 =
k2, c.f. (A.9). The branch point of the ghost loop contribution to the gluon propagator’s
branch cut lies at ω2 = (2k)2. Due to the massless nature of the ghost, the position of the
branch point in the gluon propagator thus necessarily is in the origin for vanishing cutoff
scale, k = 0. However, due to the lack of a gluon particle peak, a direct identification of
a flowing mass scale k as in the scalar theory Section 4.2.4, is not possible for the gluon.
Consequently, there is no unique way to stop the flow at some kIR = mphys, where the
physical limit of the theory is recovered. Furthermore, the lack of unique gluon mass scale
entails that we cannot use on-shell renormalisation here. Eventually, we wish to recover
the IR behaviour of the gluon propagator known from other non-perturbative studies,
e.g., via functional approaches [93–95]. In consequence, we can define the IR scale only
implicitly, and kIR depends directly on the initial conditions employed. This poses the
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question of how to consistently couple the gluonic flow to that of the ghost. A consistent,
coupled flow is required to simultaneously reach the explicitly resp. implicitly defined IR

scales k
(ghost)
IR = 0 and k

(gluon)
IR . This can be implemented by flowing both equations with a

common scale k down to 0, where the IR limit of the ghost propagator is reached. We then
proceed to further lower k solely in the gluon propagator flow equation down to the point

where we reach k
(gluon)
IR defined by, e.g., scaling as IR behaviour, c.f. [94, 95]. Note that

this procedure needs to be supplemented with an appropriate choice of initial conditions

guaranteeing k
(gluon)
IR ≤ 0. This clarifies that the described procedure of flowing with two

seemingly different scales simply amounts to an implicit choice of initial conditions and
does not lead to an inconsistency between the different flow equations. In such a procedure,
adjusting the initial conditions is similar to common fRG calculations. We therefore expect
a similar fine-tuning problem for the Yang-Mills system as for example encountered in [95].

The proper choice of initial conditions comes in case of the gluon propagator with ano-
ther technical complication. It is well-known that in massive Yang-Mills theory, the gluon
propagator exhibits complex conjugate poles. It has been demonstrated in [5], see Sec-
tion 5.1, that these can also violate the spectral representation of the ghost propagator,
in turn inducing a cascade of non-analyticities in both propagators. Since the Callan-
Symanzik cutoff effectively constitutes a mass term, the construction of an initial condition
respecting the spectral representation poses a crucial challenge. On the other hand, using
modified spectral representations that explicitly take into account complex singularities
as done in Section 5.1, one is able to track the evolution of the complex poles through the
flow. This allows to make a statement about their existence in the full correlation function
at kIR. It has been studied e.g., in [47] how regulator-induced poles vanish in the k → 0
limit in a quantum mechanical system.
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A.4. Spectral representation of general operators

Any product of correlation functions obeying a spectral representation allows for such a
representation itself. This follows from a set of sufficient conditions for the existence of a
spectral representation for an arbitrary correlation function C:

(i) Holomorphicity: C is holomorphic in the upper half plane H = {z | Im z > 0};

(ii) Mirror symmetry: C(z) = C̄(z̄) and Im C(z) = 0 for Im z = 0, Re z > 0;

(iii) Asymptotic decay: |z C(z)| → 0 for |z| → ∞;

(iv) Spectral convergence:

(IR) |z Im C(z)| <∞ for z → 0 ,

(UV) | log z Im C(z)| → 0 for z → −∞ .

Heuristically, (i) and (ii) guarantee that the spectral kernel has the form 1/(z + λ2) and
the spectral function is defined via (4.4). The integration domain is restricted to λ2 > 0 by
(iii). Condition (iv) guarantees the convergence of the spectral integral. We remark that
(iv) only applies to non-distributional contributions.

It is immediately clear that for any two correlation functions C1, C2 satisfying (i)-(iii),
their product C = C1C2 does as well. Similarly, this also applies to (iv) (UV), stating that
the spectral function ρ ∼ Im C decays fast enough for the spectral integral to converge
in the UV, due to (iii). The infrared convergence condition (iv) (IR) does not need to be
fulfilled; consider, e.g., C1 = C2 = (1/z)α with 1/2 < α < 1. Nevertheless, this can be
always remedied by multiplying with an appropriate power of z. Note that this does not
violate the other conditions.

The spectral representation for the strong coupling constant is then constructed as
follows: by the assumption of ghost and gluon propagator obeying the KL representation,
their dressing functions obey (i) and (ii). Since by its definition (6.9) the coupling is
dimensionless, (iii) does not hold. However, division by p2 makes (iii) and (iv) hold true.
Hence, a KL representation for αs(p)/p

2 is constructed. Multiplying this representation
by p2, we obtain the spectral representation for αs (6.11).
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A.5. Integral representation for propagators with multiple
branch cuts

In this section, we construct a general in integral representation for propagators for mul-
tiple branch cuts in the complex plane. To that end, we start by deriving the ordinary
Källén-Lehmann from Cauchy’s theorem and the set of sufficient analytic properties given
in Appendix A.4.

Ordinary Källén-Lehmann representation The analytic structure of a propagator
G obeying the KL representation (4.3) is tightly constrained by the nature of the former
integral representation, see Appendix A.4. With properties (i–iv), the spectral represen-
tation can be derived explicitly via Cauchy’s integral formula. It states for a holomorphic
function G defined an open set U ⊂ C, G : U → C, that the value of G at any point z0

enclosed by an arbitrary, closed rectifiable curve γ in U is given by

G(z0) =
1

2πi

∮

γ
dz

G(z)

z − z0
. (A.10)

We want to find γ such that we can use (A.10) for all z0 ∈ C, for which the easiest
choice would be the circle around the origin CR and taking R → ∞. Since ImG(z) 6= 0
for z < 0, G is discontinuous along the negative real axis according to (ii). Hence, we
explicitly need to exclude this region from the integration contour. This can be done by
going from negative infinity towards the origin along just above the negative real axis,
turning at the origin and then returning to negative infinity along below the real axis. We
can then recast (A.10) as

G(z0) =
1

2πi
lim
R→∞

(∫

CR
dz

G(z)

z − z0
−
∫ R

0
dz
G(−z + iε)

z + z0 − iε
+

∫ R

0
dz
G(−z − iε)

z + z0 + iε

)
, (A.11)

where in the second term, the integration boundaries were interchanged, and we substitu-
ted z → −z in the last two terms. Due to (iii), the first term vanishes according to Jordan’s
Lemma. Exploiting the mirror symmetry (ii), we can combine the latter two terms, since
their real parts cancel. We find that

G(z0) =

∫ ∞

0

dz

2π

2 ImG(−z − iε)

z + z0
, (A.12)

which is the well-known Källén-Lehmann representation. Note that formally, G receives
another contribution in the limit ε→ 0 due to the opposite signs of ε in the denominators
in the last two terms of (A.11), which is

−
∫ ∞

0

dz

π
ReG(−z − iε)

ε

(z + z0)2 + ε2
. (A.13)

Generally, limε→0 ε/((z + z0)2 + ε2) is a representation of the delta distribution δ(z +
z0). Here, however, for ε → 0 this term vanishes since z = −z0 is not contained in the
integration domain. By definition of Cauchy’s formula, z ∈ γ, while z0 is enclosed by γ.

213



A.5. Integral representation for propagators with multiple branch cuts

Im p2

Re p2

!R

γ0

γ1

γ2

Abbildung A.1.: Integration contour γ in Cauchy’s theorem (A.10) for construction of an
integral representation of the ghost propagator from Appendix A.6.1,
which uses an input gluon propagator with complex conjugate poles.
Branch cuts are marked with red lines. The ghost propagator shows
the ordinary branch cut along the negative real axis and two additio-
nal branch cuts, starting at χ and χ̄ and stretching in parallel to the real
axis towards negative infinity, compare also Figure A.2. All branch cuts
are explicitly excluded from the integration contour by the γi’s.

Propagators with multiple branch cuts In the case of a gluon propagator with
complex conjugate poles as considered in Appendix A.6.1, the ghost propagator shows
two additional branch cuts, see Figure A.2. These additional cuts start at p2 = −χ2

and −χ̄2 respectively and stretch parallel to the real axis towards negative infinity. This
general integral representation for propagators with multiple branch cuts Bi can now be
constructed in analogy to (A.10)–(A.12). By the existence of additional branch cuts we
need to relax property (i), still assuming holomorphicity everywhere except for the cuts,
however. As for the derivation of the KL representation above, this is done by choosing
the integration contour to wind around the cuts by simply excluding these additional
branch cuts from the integration contour γ. We go from the cuts asymptotic limit to
the branch point χi infinitesimally above/below the cut, turning at the branch point at
returning the same path just infinitesimally below/above the cut. For the case of the
ghost propagator of Appendix A.6.1 which has three branch cuts, the integration contour
is displayed in Figure A.1.

The full integration contour can then conveniently be written as

γ = lim
R→∞

CR
⊕

i

γi , (A.14)

where γ0 is the contour winding around the usual branch cut of the KL representation
along the negative real axis. As before, due to property (iii), the integration along CR
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vanishes. From (A.10), by above choice of γ we arrive at

G(z0) =
1

2πi

∑

i

∫

γi

dz
G(z)

z − z0
. (A.15)

We now split γi into the parts above/below the cut, which we call B+/−
i = Bi ± iε, such

that γi = B+
i

⊕B−i . Since we integrate along the path in the mathematically positive
direction, if the asymptotic value at infinity of the cut Bi, B∞i , lies in the left half plane,
γi starts above the cut with B+

i . The direction of integration is then such that we integrate
along B+

i from B∞i +iε to χi+iε, and then go back along B−i from χi− iε to B∞i − iε. If the
asymptotic value lies in the right half plane, this works vice versa, going along B−i from
B∞i − iε to χi − iε first and then back. Plugging in the split of γi explicitly and assuming

the appropriate directionality along B+/−
i , we arrive at

G(z0) =
1

2πi

∑

i

∫

B+
i

⊕B+
i

dz
G(z)

z − z0
(A.16)

=
1

2πi

∑

i

∫

Bi
dz
G(z + iε)−G(z − iε)

z − z0
,

where in the second line we used that we integrate along B+/−
i in opposite directions.

With the general integral representation (A.16) for propagators with multiple branch
cuts at hand, we can now directly arrive at the modified spectral representation for the
ghost propagator (A.26). With the complex structure as shown in Figure A.2, the cor-
responding integration contour γ is sketched in Figure A.1. As demonstrated in (A.11)
and (A.12), the branch cut B0 just yields the usual KL part GKL

c . B1 and B2 then consti-
tute the modification of the ordinary spectral representation, explicitly given by

Gχc (z0) =
1

2πi

∫

B1
⊕B2

dz
Gc(z + iε)−Gc(z − iε)

z − z0
(A.17)

=
−1

2πi

(∫ −∞−χ2

−χ2

dz
Gc(z + iε)−Gc(z − iε)

z − z0
+

∫ −∞−χ̄2

−χ̄2

dz
Gc(z + iε)−Gc(z − iε)

z − z0

)

=
1

2πi

∫ ∞

0
dz

(
Gc(−z − χ2 − iε)−Gc(−z − χ2 + iε)

z + χ2 + z0

+
Gc(−z − χ̄2 − iε)−Gc(−z − χ̄2 + iε)

z + χ̄2 + z0

)
.

Note that in (A.17), we already dropped the contributions corresponding to (A.13) here
when combining the dominators with different signs of ε. We can now use that Gc is only
discontinuous in its imaginary part across the branch cuts B1 and B2, such that, as for the
KL branch cut, the real parts in the propagator difference in the denominators of (A.17)
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cancel. We find that

Gχc (z0) =
1

2π

∫ ∞

0
dz





2 Im
[
Gc(−z − χ2 + iε)−Gc(−z − χ2 − iε)

]

z + χ2 + z0

+
2 Im

[
Gc(−z − χ̄2 + iε)−Gc(−z − χ̄2 − iε)

]

z + χ̄2 + z0



 . (A.18)

Exploiting the mirror symmetry (ii), we finally arrive at

Gχc (z0) =
1

2π

∫ ∞

0
dz

(
1

z + χ2 + z0
+

1

z + χ̄2 + z0

)

× 2 Im
[
Gc(−z − χ2 + iε)−Gc(−z − χ2 − iε)

]
. (A.19)

With Gc = GKL
c +Gχc , we end up with the modified spectral representation for the ghost

propagator, which is

Gc(z0) =

∫ ∞

0

dz

2π

{
ρKL
c (z)

p2 + z2
+ ρχc (z)

(
1

z + χ2 + z0
+

1

z + χ̄2 + z0

)}
(A.20a)

with

ρχc (z) = 2 Im
[
Gc(−z − χ2 + iε)−Gc(−z − χ2 − iε)

]
(A.20b)

and ρKL
c the usual KL spectral function (4.4).
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A.6. Propagation of non-analyticities through the coupled
YM system

In this section, we provide details on the analytic calculation showing the propagation of
non-analyticities through the coupled YM system present in Section 5.1.

A.6.1. Ghost DSE

As a starting point of the following investigation, we study the effect of a single pair of
complex conjugate poles in the gluon propagator on the ghost propagator. This is done
via the spectral ghost DSE, set up in Section 5.4.2. Owing to the spectral-non-spectral
split (5.33), for the complex conjugate pole contribution to the gluon propagator we then
explicitly have

GχA(p) =
Rχ

p2 + χ2
+

R̄χ
p2 + χ̄2

, (A.21)

where one of the poles is located at p2 = −χ2 and has residue Rχ. The relevant correction
to the fully spectral part of the ghost loop ∼ GKL

A GKL
c is then ∼ GχAGKL

c . We assume the
ghost propagator to be given solely by its classical contribution, i.e.

GKL
c ≈ Gcl

c with Gcl
c (p) =

1

p2
. (A.22)

For the ghost spectral function, this corresponds to just having the massless pole with
residue 1/Zc = 1 in the origin, cf. (5.7). Note that the results of the following discussion
are not altered by also including scattering tails for ghost and gluon spectral functions
due to superposition with the contributions of (A.22). For the same reason, the follo-
wing investigation is independent of particular infrared scenarios of Yang-Mills such as
scaling/decoupling or massive solutions.

With choice (A.22) and the complex conjugate pole gluon propagator (A.21), we arrive
at the ghost self-energy

Σ
(1)
c̄c (p) = g2Nc

∫

q

(
p2 − (p · q)2

q2

)
Gcl
c (p+ q)GχA(q)

= g2Nc

∫

q

(
p2 − (p · q)2

q2

)
1

(p+ q)2

×
(

Rχ
p2 + χ2

+
R̄χ

p2 + χ̄2

)
, (A.23)

which is readily integrated analytically via dimensional regularisation in analogy to Ap-
pendix B.5 with the appropriate choice of the gluon and ghost spectral functions. The
respective gluon and ghost spectral functions of the propagators (A.21) and (A.22) read,

ρA(ω) = ρχA(ω) ,

ρc(ω) = ρcl
c (ω) , (A.24a)
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Abbildung A.2.: Ghost self energy Σc̄c in the complex plane as defined in (A.23), yielding
two additional branch cuts in the ghost propagator. In Σc̄c, a gluon pro-
pagator with a pair of complex conjugate poles (A.21) is used. This choice
directly results in two additional branch cuts, running parallelly to the
negative real axis. Hence, we observe a violation of the ghost propagators
Källén-Lehmann representation induced by a pair of complex conjugate
poles in the gluon propagator.

with

ρχA(ω) =π
[
Zχδ(ω

2 − χ2) + Z̄χδ(ω
2 − χ̄2)

]
,

ρcl
c =πδ(ω2) . (A.24b)

The δ-distributions for complex arguments χ2, χ̄2 ∈ C in the gluon spectral functions
should then be understood as

∫ ∞

0
dω δ(ω − χ)Φ(ω) = Φ(χ) , (A.25)

for a test function Φ(ω). Evidently, the complex frequencies χ, χ̄ are not inside the spectral
integration domain ω ∈ [0,∞). In order to make sense in a distributional sense, a proper
integration contour for the spectral integration has to be chosen, since the complex con-
jugate pole positions are not element of the usual spectral integration domain, for details
see Appendix A.5.

The analytic result for the ghost self-energy (A.23) is depicted in the full complex
p2-plane in Figure A.2. In addition to the usual branch cut along the negative p2-axis,
two additional branch cuts are present, and are clearly visible in Figure A.2. Starting
at their respective branch points at χ and χ̄, the additional cuts extend parallelly to the
negative real axis towards infinity. In consequence, the KL representation is violated, since
it requires all non-analyticities to be confined to the negative real p2-axis.

In the absence of a KL spectral representation one can devise an alternative integral
representation for the ghost propagator. This representation will maintain the analytical
solvability of loop momentum integrals featuring ghost propagators despite violation of
its spectral representation. In consequence, also in a scenario like shown in Figure A.2
functional equations can still be evaluated on the real frequency axis. Given the comple-
te complex structure of Σc̄c, this can be done in analogy to the construction of the KL
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representation (4.3) by help of Cauchy’s integral theorem. We end up with a modified spec-
tral representation for the ghost propagator by excluding also the two additional branch
cuts from the circular integration contour with radius R → ∞ around the origin. In the
spectral-non-spectral split (5.33), this leads us to a non-spectral contribution of the ghost
propagator given by

Gχc (p) =

∫

λ
ρχc (λ)

( 1

p2 + λ2 + χ2
+

1

p2 + λ2 + χ̄2

)
. (A.26a)

We also introduced the additional spectral function ρχc defined via

ρχc (ω) = Im
[
G(−i

√
ω2 + χ2 + i0+)−G(−i

√
ω2 + χ2 − i0+)

]
. (A.26b)

Note that in the Källén-Lehmann case, the imaginary parts of the two propagators in
(A.26b) are related by mirror (anti)symmetry. Here, this symmetry is spoiled by the fact
the branch cuts are shifted into the complex plane through the appearance of the complex
mass parameter χ. The spectral functions encoding the weight of the branch cuts in the
upper and lower half are related by this exact mirror symmetry, however. This symmetry
has been exploited in obtaining (A.26), since there only one spectral function appears. The
full derivation of the modified spectral representation (A.26) as well as its generalisation
to an arbitrary number of branch cuts is presented in Appendix A.5.

In Figure A.3, we compare the directly computed Euclidean ghost propagator corre-
sponding to the ghost self-energy defined in (A.23) with its KL as well as its modified
spectral representation. The violation of the KL representation by the complex conjugate
poles of the gluon propagator is validated. In addition, the validity of the modified spectral
representation (A.26) is confirmed. In particular, this confirms the analytic structure of
the ghost self-energy presented in Figure A.2, since the modified spectral representation
is a direct consequence.

A.6.2. Gluon DSE

We proceed with the analysis of the complex structure of Yang-Mills theory by investiga-
ting the back-propagation of a pair of complex conjugate poles in the gluon propagator
into the spectral gluon DSE: in the ghost loop we insert the modified spectral represen-
tation (A.26) for the ghost, and investigate the contribution of the additional cuts. For a
complete picture, the complex conjugate gluon propagator poles also have to be fed back
via the gluon loops. The latter part will be deferred to future work, however, since the
feedback of the additional cuts in the ghost propagator suffices to arrive at a conclusive
picture. Nevertheless, we will provide the relevant expressions in this section. Note also
that the tadpole is absorbed in the renormalisation.
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Direct Euclidean
Modified spec. rep.
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Abbildung A.3.: Violation of the ghost propagators Källén-Lehmann representation by
using a gluon propagator featuring a pair of complex conjugate poles
and validation of the ghost propagators modified spectral representati-
on (A.26). The solid line represents the ghost dressing function computed
directly via the spectral Euclidean DSE (5.28), using a complex conjuga-
te pole gluon propagator. The squared points are obtained from the cor-
responding realtime DSE via the ordinary spectral representation (4.3)
(blue) and the modified spectral representation (A.26), also taking into
account the two additional branch cuts (comp. Figure A.2) induced by the
gluon propagators complex conjugate poles. While the dressing function
obtained from the modified spectral representation matches the directly
computed Euclidean ghost dressing perfectly, the Källén-Lehmann one is
clearly off. Note that this not only proves the violation of the ordinary
spectral representation, but in particular validates the result for the ghost
self-energy (A.23) presented in Figure A.2.

Ghost loop We use the spectral DSEs set-up Section 5.4.2, similarly to Appendix A.6.1
and concentrate on the leading order correction GKLGχ. The computation and the analy-
tic results are deferred to Appendix B.5. In the spectral gluon DSE, we now consider the
modified spectral representation for the ghost, where the non-spectral part Gχc is consti-
tuted by (A.26). For the spectral part of the ghost propagator, we again only consider the
classical contribution, see (A.22). This leads us to

D(1)
ghost = g2Nc

∫

q

(
q2 − (p · q)2

p2

)
Gχc (p+ q)GKL

c (q)

= g2Nc

∫

λ
ρχc (λ)

∫

q

(
q2 − (p · q)2

p2

) 1

(p+ q)2

( 1

q2 + λ2 + χ2
+

1

q2 + λ2 + χ̄2

)
.

(A.27)

Again, the loop momentum integral in (A.27) can be evaluated analytically via dimensional
regularisation, see Appendix B.5.2. The result is obtained by adding to copies of the
expression for the ghost loop quoted in Appendix B.5.2 where one spectral parameter
is taken to zero and the other one is substituted such that the ordinary KL kernel is
transformed into that of the modified spectral representation (A.26) featuring in (A.27).
In explicit, this is λ1 → 0 and λ2 →

√
λ2

2 + χ2 resp.
√
λ2

2 + χ̄2. The validity range of this
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Abbildung A.4.: Contribution to the ghost loop Dghost in the complex plane as defined
in (A.27), causing additional branch cuts in the gluon propagator. In

D(1)
ghost, one of the ghost propagators is given by the violation of the spec-

tral representation Gχc of the ghost propagator, as defined in (A.26). The
modification of the ordinary spectral representation is constituted by two
additional branch cuts in the ghost propagator (comp.Figure A.2), which
are themselves induced by a pair of complex conjugate poles in the gluon
propagator through the ghost DSE (5.28). In consequence, a consistent
solution of Yang-Mills theory with one or more pairs of complex conjuga-
te poles in the gluon propagator (on top of the usual branch cut) is ruled
out, since we were able to show that a pair of complex conjugate poles
always produces an additional, corresponding pair of branch cuts.

substitution is discussed in Appendix B.5.4, since by above the substitutions the spectral
parameters are effectively complex.

We now aim for a closed symbolic form for (A.27), which necessitates analytic access
to the spectral integral. For the present purpose of studying the complex structure, it suf-
fices to choose a well-behaved trial spectral function ρχc = ρ(trial) with appropriate decay
behaviour. Here, a convenient choice is ρ(trial)(λ) = 1/(1 + λ2). The superficially diver-
gent spectral integral is rendered finite via application of spectral BPHZ regularisation,
see Section 5.1.2.3. We emphasise that both the procedure of spectral regularisation and
the choice of ρ(trial), do not affect the complex structure of the diagram.

In the right panel of Figure A.4 we show the leading order correction (A.27) in the
complex momentum plane. We find two additional branch cuts, stretching in parallel to
the real axis from p2 = −χ2 and −χ̄2 towards negative real infinity. Thus, a pair of
complex conjugate poles in the gluon propagator also leads to additional branch cuts
in the gluon propagator. This can be seen via the modified spectral representation for
the ghost propagator (A.26), itself induced by the complex conjugate poles of the gluon
propagator via the ghost DSE, see Appendix A.6.1.

At order (Gχc )2, the contribution to the ghost loop arising from the complex conjugate
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pole gluon propagator reads

D(2)
ghost = g2Nc

∫

q

(
q2 − (p · q)2

p2

)
Gχc (q)Gχc (p+ q)

= g2Nc

∫

λ1,λ2

ρχc (λ1)ρχc (λ2)

∫

q

(
q2 − (p · q)2

p2

)(
1

q2 + λ2 + χ2
+

1

q2 + λ2 + χ̄2

)

×
(

1

(p+ q)2 + λ2 + χ2
+

1

(p+ q)2 + λ2 + χ̄2

)
. (A.28)

Equation (A.28) involves two spectral integrals, obstructing a fully analytic evaluation
of this contribution. Inspecting the analytic structure of the integrand in comparison
to the GχcGKL

c -contribution of (A.27), we see that the previously massless classical ghost
propagator is replaced by the modified spectral kernel 1/(p2+λ2+χ2) and 1/(p2+λ2+χ̄2).
The complex structure of these integrals is dominated by the imaginary parts of the
logarithmic terms, that occur after evaluating the momentum integrals via dimensional
regularisation. Hence, we anticipate, that the complex structure of this contribution is
similar to that of the leading order correction shown in Figure A.4.

The direct investigation of this term is not performed here, as the leading order contri-
bution already shows two additional branch cuts. The latter are already inconsistent with
the assumption of a single pair of complex conjugate poles in the gluon propagator, which
was the starting point of this investigation. Nonetheless, in the following we will also quote
the expressions for the complex conjugate poles induced corrections to the gluon loop for
the sake of completeness.

Gluon loop The first order contribution in GχA to the gluon loop is given by

D(1)
gluon = g2Nc

∫

q
V (p, q)GχA(q)GKL

A (p+ q)

= g2Nc

∫

λ
ρKL
A (λ)

∫

q
V (p, q)

1

(p+ q)2 + λ2

(
Rχ

q2 + χ2
+

R̄χ
q2 + χ̄2

)
, (A.29)

with V (p, q) as defined in (5.25). The O(GχA
2
) contribution is given by

D(2)
gluon = g2Nc

∫

q
V (p, q)GχA(q)GχA(p+ q)

= g2Nc

∫

q
V (p, q)

(
Rχ

q2 + χ2
+

R̄χ
q2 + χ̄2

)(
Rχ

(p+ q)2 + χ2
+

R̄χ
(p+ q)2 + χ̄2

)
. (A.30)

The computation of D(1)
gluon and D(2)

gluon in the full complex momentum plane requires the
evaluation of the respective momentum integrals for two arbitrary complex masses χ, χ̄
and momenta p2. The analytic evaluation of this integral is significantly more challenging
than with just one complex mass parameter, as for the ghost loop (A.27). In particular,
the employed technique of Feynman parametrisation is not applicable in this scenario, as
we discuss in Appendix B.5.4.

However, we have already shown in Appendix A.6.1, that a complex conjugate pole gluon
propagator leads to additional branch cuts in the gluon propagator via the ghost loop.
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Thus, the input assumption of a spectral function plus a pair of complex conjugate poles
for the gluon propagator is violated independently of the complex structure of the gluon
loop Dgluon. While an investigation of the effect of the complex conjugate pole contribution
of the gluon propagator on the complex structure of the gluon loop might nevertheless
yield additional valuable insight into the analytic structure of Yang-Mills theory, we defer
this to future work. Still, we remark that in our opinion a cancellation between the shifted
branch cuts of Dghost and those possibly existing in Dgluon cannot be expected. This would
require the vertices to compensate for the different weights of the cuts, since the ghost
diagram cuts are induced by the ghost and the (possible) gluon diagram cuts by the gluon
propagator.
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A.7. Ghost loop with massive non-integer power
propagators

The scaling solution of Yang-Mills theory is characterised by the IR behaviour of the ghost
and gluon propagator dressing functions as

lim
p→0

ZA(p) ∼ (p2)−2κ , lim
p→0

Zc(p) = (p2)κ , (A.31)

while for a decoupling behaviour, we have

lim
p→0

ZA(p) ∼ 1

p2
, lim

p→0
Zc(p) = Zc , (A.32)

A particularly useful analytic form of the ghost propagator which allows to smoothly
interpolate between scaling and decoupling behaviour in the IR is given by

Gc(p,m) =
1

p2(p+m)κ
, (A.33)

with the non-integer scaling exponent 0 < κ < 1. The scaling solution is realised for
m → 0. Non-perturbative studies of Yang-Mills theories suggest κ ≈ 0.57 [95]. In an
approximation with bare vertices, the value of κ can be determined analytically from the

DSE to be κ = 93+
√

1201
98 ≈ 0.59535 [92].

In cases like the scaling or decoupling scenario where the infrared behaviour of a propa-
gator is known, it can be beneficial to analytically split off the IR part as G = GIR + ∆G.
Here, we study the ghost loop Dghost in the gluon DSE where the ghost propagator is
entirely given by the IR parametrisation of (A.33), reading

Dghost = g2NcZ̃1

∫

q

(
q2 − (p · q)2

p2

) 1

q2

1

(p+ q)2

1

(q2 +m2)κ
1

((p+ q)2 +m2)κ
. (A.34)

Analytic solutions of integrals of this kind have, to our knowledge, not been quoted in
the literature so far. The non-integer exponent κ increases the difficulty of the integral
enormously. Since only the non-integer part of the propagator power carries the mass
m, from the mathematical perspective (A.34) represents a Feynman diagram with four
propagators in a particular momentum-configuration with two massive propagators of
the same mass. The large number of propagators renders the approach of introducing
Feynman parameters as in Appendix B.5 non-feasible. A more powerful technique to solve
integrals of this kind has been proposed by Davydychev and Boos [455], representing
massive denominators by Mellin-Barnes integrals as

1

(k2 +m2)α
=

1

(k2)α
1

Γ(α)

1

2πi

∫ i∞

−i∞
ds
(m2

k2

)s
Γ(−s)Γ(α+ s) , (A.35)

which follows from the Barnes integral representation of the hypergeometric function
F1 0

(
a
∣∣z
)
. A pedagogical introduction to the technique can be found e.g. in [456]. The

generalised hypergeometric function of one variable is defined by

FA B

( a1, . . . , aA
b1, . . . , bB

∣∣∣z
)

=

∞∑

j=0

(a1)j . . . (aA)j
(b1)j . . . (bB)j

zj

j!
, (A.36)
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where (a)j = Γ(a+ j)/Γ(a) is the Pochhammer symbol.
Using (A.35) for the non-integer power propagators in (A.34) and dropping the prefactor

g2NcZ̃1, we get

Dghost =
−1

4π2

1

Γ(κ)2

∫ i∞

−i∞
ds

∫ i∞

−i∞
dt (m2)s+tΓ(−s)Γ(−t)Γ(κ+ s)Γ(κ+ t)IMB

ghost(p,m) ,

(A.37a)

with

IMB
ghost =

∫

q

(
q2 − (p · q)2

p2

) 1

(q2)κ+s+1

1

((p+ q)2)κ+t+1
. (A.37b)

Defining k = p+ q, we can rewrite the momentum integral as

IMB
ghost =

1

2

∫

q
P(p, q, k)

1

(q2)κ+s+1

1

(k2)κ+t+1
(A.38a)

where

P(p, q, k) = q2 + k2 − 1

2
p2 − 1

2p2

(
k4 − 2k2q2 + q4

)
. (A.38b)

Equation (A.38) is now evaluated with help of the well-known integration formula

∫
ddq

(2π)d

( 1

q2

)d/2−α( 1

p2

)α−β( 1

k2

)β
=

1

(4π)d/2
Γ(α)Γ(d2 − β)Γ(β − α)

Γ(β)Γ(d2 − α)Γ(d2 + α− β)
. (A.39)

Convergence of (A.39) is only ensured for Re(α) > 0, Re(β − α) > 0 and Re(β) <
d/2. Although the convergence requirements do not hold for all summands of P defined
in (A.38) separately, it holds for its initial form P = q2− (p · q)2/p2. Application of (A.39)
is hence justified, and setting d = 4 we find

IMB
ghost(p,m) =

3

2(4π)2
(p2)1−2κ−s−tΓ(s+ t+ 2κ+ 2)Γ(2− s− κ)Γ(2− t− κ)

Γ(s+ κ+ 1)Γ(t+ κ+ 1)Γ(4− s− t− 2κ)
. (A.40)

Using Γ(z+1) = zΓ(z) and the result of the momentum integration (A.40), (A.37) becomes

Dghost =
−3

128π4

1

Γ(κ)2

∫ i∞

−i∞
ds

∫ i∞

−i∞
dt
(m2

p2

)s+t
(p2)1−2κ (A.41)

× Γ(−s)Γ(−t)Γ(s+ t+ 2κ+ 2)Γ(2− s− κ)Γ(2− t− κ)

(s+ κ)(t+ κ)Γ(4− s− t− 2κ)
.

The two remaining integrals in (A.41) along the imaginary axis can be evaluated via
the residue theorem, closing the integration contour at real positive/negative infinity for
p2 > m2/p2 < m2. This step can be automated using the Mathematica packages MB [457]
and MBsums [458]. The result is quoted as

Dghost =
−3

128π4

1

Γ(κ)2





(m2)1−2κMIR(p,m) p < 4m

(p2)1−2κMUV(p,m) else
. (A.42)
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The functions M are given by the sums of the residues of (A.41), and explicitly read

MIR =MIR
1 +MIR

2 +MIR
3 (A.43)

with

MIR
1 =

−1

24

( p2

m2

)2
Γ(κ)Γ(κ+ 1) F3 2

( 1, 1, 1 + κ
2, 5

∣∣∣− p2

m2

)
,

MIR
2 = −

∞∑

n1,n2=0

(−1)n1+n2Γ(n1 + n2 + κ+ 1)
(
m2

p2

)−n1

n1!(n1 + 2)!n2!(n2 + 2)!(n1 + n2 + 1)!Γ(n2 + κ+ 1)Γ(−n1 − n2 + 2− κ)

×
[
(n2 + 1)!Γ(−n2 − 2− κ)Γ(n2 + κ+ 1)(n1 + n2)!(n1 + n2 + 2)!Γ(−n1 − n2 + 2− κ)

− (n2 + 2)!Γ(2− κ− n2)Γ(n2 + κ)(n1 + n2 + 1)!Γ(−n1 − n2 + 1− κ)

× Γ(n1 + n2 + 2κ− 1)
]
,

MIR
3 = Γ(κ)2

(
1

2(κ− 1)
+

1

6

p2

m2

[1

6

(
ψ(κ)− log

m2

p2
+ γE

)
− 11

6

])
, (A.44)

where ψ is the digamma function and

MUV
1 =

∞∑

n1,n2=0

(−1)n1+n2
(
m2

p2

)n1+n2Γ(−κ− n1 + 2)Γ(−κ− n2 + 2)Γ(2κ+ n1 + n2 − 1)

(κ+ n1)(κ+ n2)Γ(n1 + 1)Γ(n2 + 1)Γ(−2κ− n1 − n2 + 4)
,

MUV
2 =

∞∑

n1,n2=0

(−1)n1+n2(n1 + 1)!
(
m2

p2

)−κ+n1+n2+2
Γ(κ− n1 − 2)Γ(−κ− n2 + 2)

n1!(n1 + 2)!n2!Γ(−κ− n1 − n2 + 2)Γ(κ+ n2 + 1)

× Γ(κ+ n2)Γ(κ+ n1 + n2 + 1) ,

MUV
3 =

∞∑

n1,n2=0

(−1)n1+n2(n2 + 1)!
(
m2

p2

)−κ+n1+n2+2
Γ(−κ− n1 + 2)Γ(κ+ n1)

n1!n2!(n2 + 2)!Γ(κ+ n1 + 1)Γ(−κ− n1 − n2 + 2)

× Γ(κ− n2 − 2)Γ(κ+ n1 + n2 + 1) . (A.45)

The double sums appearing in (A.44) and (A.45) can be represented as Kampé de Fériet
functions, which generalise the hypergeometric function of two variables to

FA:B;B′
C:D;D′

( a1, . . . , aA : b1, . . . , bB; b′1, . . . , b
′
B′

c1, . . . , cC : d1, . . . , dD; d′1, . . . , d
′
d′

∣∣∣z1, z2

)
= (A.46)

∞∑

j1,j2=0

(a1)j1+j2 . . . (aA)j1+j2(b1)j1 . . . (bB)j1(b′1)j2 . . . (b
′
B′)j2

(c1)j1+j2 . . . (cC)j1+j2(d1)j1 . . . (dD)j1(d′1)j2 . . . (d
′
D′)j2

zj11 z
j2
2

j1!j2!
,

by identifying the respective Pochhammer symbols. Since in numerical implementations
special functions such as the Kampé de Fériet function defined in (A.46) are often evaluated
via their series representation, we do not reformulate the double sums in (A.44) and (A.45)
here. The presented analytic result can be validated by evaluating (A.34) numerically. Note
that in particular, with the above expressions at hand, also here we can directly evaluate
the diagram at real frequencies ω.
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A.8. Spectral sum rules from perturbative dressing
functions

In a general manner, given a KL representation, the normalisation relation for the corre-
sponding spectral function can be inferred from the perturbative behaviour of the propa-
gator. Multiplying (4.3) by p2, one has

1

Z(p)
= p2

∫
dλ2

π

ρ(λ)

p2 + λ2
=

∫
dλ2

π

ρ(λ)

1 + λ2/p2
. (A.47)

In the UV, the behaviour of the dressing function Z(p) can be inferred from perturbation
theory, limp→∞ 1/Z(p) = Z−1

∞ . For large p2, we can also expand the integrand, yielding

Z−1
∞ = lim

p→∞

∞∑

n=0

(−1)n
∫
dλ2

π
ρ(λ)

(
λ2

p2

)n

=

∫
dλ2

π
ρ(λ) + lim

p→∞
∆(p) , (A.48)

defining

∆(p) =
∞∑

n=1

(−1)n(p2)−n
∫
dλ2

π
ρ(λ)λ2n . (A.49)

We want to show limp→∞∆(p) = 0 in order to obtain a normalisation condition for
ρ via (A.48) using the known perturbative asymptotics of the corresponding dressing
function. In doing that, we first note that for the spectral integral in the left term of the
lower line in (A.48) to converge, the spectral function must obey

lim
ω→∞

ρ(ω)ω2 logω2 → 0 . (A.50)

If this requirement does not hold, ρ cannot be normalised in the above form.
Based on the assumption of the existence of above representation (A.47), ρ can be taken

to be integrable on [0,∞). We choose a scale Λ such that for frequencies λ > Λ, ρ is given
solely by the leading UV behaviour of its corresponding propagator via (4.4), see also [243].
Denoting the known UV asymptotics as ρUV, we then distinguish

ρ(ω) =

{
ρΛ(ω) if ω ≤ Λ ,

ρUV(ω) else ,
(A.51)

where ρUV now obeys (A.50). Note that by the nature of the spectral function being
a tempered distribution, it can have distributional contributions such as (higher order)
poles. These are allowed in our consideration as long as integrability is not violated. The
parametrisation (A.51) is chosen such that these contributions are contained in ρΛ. We
now split the spectral integration interval of (A.49) along the split of the spectral function
and conclude for finite Λ that

∫ Λ

0

dλ2

π
ρΛ(λ)λ2n <∞ ∀n ≥ 1 , (A.52)

227



A.8. Spectral sum rules from perturbative dressing functions

such that for large momenta, the contribution (A.52) to the spectral representation of the
dressing function vanishes,

lim
p→∞

(p2)−n
∫ Λ

0

dλ2

π
ρΛ(λ)λ2n → 0 . (A.53)

Hence, in the limit of large p we are only left with spectral integral over ρUV contributing
to ∆(p) in (A.49). Taking into account the known asymptotics of ρUV from (A.50) however,
we find that

lim
p→∞

(p2)−n
∫ ∞

Λ

dλ2

π
ρUV(λ)λ2n < C lim

p→∞
(p2)−n

∫ ∞

Λ

dλ2

π

λ2n−2

log λ2
, (A.54)

where the lower line can already be anticipated to vanish for arbitrary constants C. Ho-
wever, this can also be shown rigorously by noting that upon substitution, the last line
of (A.54) can be expressed as the exponential integral function E1,

∫ ∞

Λ

dλ2

π

λ2n−2

log λ2
= − 1

π
E1(−n log λ2)

∣∣∣
∞

Λ
. (A.55)

The contribution from the lower integral boundary is finite and thus vanishes in (A.54).
For the upper limit we utilise the asymptotic expansion of the exponential integral and
plug this back into (A.54), yielding, while dropping the constant prefactor,

lim
p→∞

(p2)−n E1(−n log p2) = lim
p→∞

(p2)−n
en log p2

−n log p2

∞∑

m=0

m!

(n log p2)m

= lim
p→∞

∞∑

m=0

−m!

(n log p2)m+1
→ 0 . (A.56)

In conclusion, recalling (A.49), we arrive at

lim
p→∞

∆(p) = 0 , (A.57)

which, with (A.48), eventually yields the desired normalisation for the spectral function,

∫
dλ2

π
ρ(λ) = Z−1

∞ . (A.58)

We thus see that, in the fairly general case where ρ can be normalised via the integral
in (A.58), the normalisation is given by the value of the dressing function at infinity.
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A.9. Introduction to GPR

This section serves as a brief introduction to GPR for function prediction using a finite
number of direct or indirect observations, based primarily on [305]. We adopt the notation
used in the main text for consistency, however, the general formalism presented here is also
applicable outside the specific context of spectral reconstruction for quantum field theory.
For a modern, comprehensive textbook treatment of the topic, we refer the interested
reader to [331]. For a brief, pedagogical introduction to GPR with simple code examples,
we recommend [459]. In the context of inverse theory, [460] provides a recent review.

We first discuss GPR for the case where direct observations are available for the function
to be modelled. We assume our knowledge of the function ρ(ω) to be encoded in a GP
with mean and covariance functions µ(ω), C(ω, ω′), denoted by

ρ(ω) ∼ GP
(
µ(ω), C(ω, ω′)

)
, (A.59)

where the covariance is assumed to be symmetric, i.e. C(ω, ω′) = C(ω′, ω). As per the
definition of a GP, any finite set of function evaluations at N sample points ωi follows a
multivariate normal distribution,



ρ(ω1)

...
ρ(ωN )


 ∼ N






µ(ω1)

...
µ(ωN )


 ,



C(ω1, ω1) . . . C(ω1, ωN )

...
. . .

...
C(ωN , ω1) . . . C(ωN , ωN )





 . (A.60)

Similarly, we can write down the joint distribution of a set of observations ρ̂i at points
ω̂i and the value of the function at an arbitrary point ω as

(
ρ(ω)

ρ̂

)
∼ N

((
µ(ω)

µ̂

)
,

(
C(ω, ω) ĈT (ω)

Ĉ(ω) Ĉ + σ2
n · 1

))
, (A.61)

where boldface type denotes vector and matrix quantities. Here, we have defined µ̂ ≡ µ(ω̂i),
Ĉi(ω) ≡ C(ω̂i, ω), and Ĉij ≡ C(ω̂i, ω̂j). σ

2
n defines the point-wise variance of additional

measurement noise which may be present in the observations ρ̂. Due to the analytic trac-
tability of multivariate Gaussian distributions, the conditional distribution of function
values ρ(ω) given observations ρ̂ may then be derived as

ρ(ω)|ρ̂ ∼ N
(
µ(ω) + ĈT (ω)

(
Ĉ + σ2

n · 1
)−1

(ρ̂− µ̂) ,

C(ω, ω)− ĈT (ω)
(
Ĉ + σ2

n · 1
)−1

Ĉ(ω)

)
.

(A.62)

The covariance is parametrized by a suitable kernel function, whereby one may encode any
prior beliefs about the types of solutions one expects by choosing an appropriate form for
the problem at hand. For an introduction to constructing GP kernels of various types as
well as strategies to apply and combine them, we recommend the kernel cookbook [461].

A kernel’s hyperparameters, denoted here by α̂, may be subjected to optimization by
maximizing the associated likelihood,

p(ρ̂|α) =
(

(2π)N det
(
Ĉα + σ2

n · 1
))− 1

2
exp

(
−1

2
(ρ̂− µ̂)T

(
Ĉα + σ2

n · 1
)−1

(ρ̂− µ̂)

)
,

(A.63)

229



A.9. Introduction to GPR

where we have written Ĉα̂ to emphasise the dependence on the hyperparameters. Instead
of directly maximizing p(ρ̂|α) as a function of α̂, one conventionally minimises the negative
log likelihood (NLL),

− log p(f̂ |α) =
1

2
(ρ̂− µ̂)T

(
Ĉα + σ2

n · 1
)−1

(ρ̂− µ̂) +
1

2
log det

(
Ĉα + σ2

n · 1
)

+
N

2
log 2π .

(A.64)
Since simply finding and employing the maximum likelihood configuration of hyperpara-
meters may ignore relevant additional structures in the distribution, one can also integrate
out α̂ using suitable hyperpriors to account for some variability.

Based on the formulation of GPR for direct observations ρ̂ at points ω̂, one can derive
the expressions for inference from indirect observations Ĝ at points p̂ as discussed in the
main text by applying the forward process of the associated linear inverse problem, in our
case the KL integral defined in (4.3). This involves all terms related to the observations
that depend on the discrete set of points ω̂, which are promoted back to the continuous
domain and subsequently integrated out to yield the nodes p̂ instead.
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Abbildung A.5.: Plots showing ghost (left) and gluon (right) dressing functions in 2+1
flavor QCD and Yang-Mills (YM) theory, obtained from the lattice simu-
lations and functional computations discussed in Appendix A.10.

A.10. Input Data for the spectral reconstruction of ghost
and gluon

Combining the data from lattice simulations and functional computations as described in
Section 5.3 requires matching the scales through renormalisation. Here, we always rescale
the functional methods results to match the lattice data in the appropriate regime.

A.10.1. Lattice simulations

The lattice data employed in Section 5.3 for the reconstruction were obtained from lat-
tice configurations generated by the RBC/UKQCD collaboration, and firstly introduced
in [396–400], with 2+1 dynamical quark flavors using the Iwasaki [401] and domain wall
fermion [402, 403] actions, respectively for the gauge and quark sectors, at the physi-
cal point (a pion mass amounting to 139 MeV) by the particular implementation of the
Möbius kernel [404]. These developments were then exploited in [100, 101] in order to
calculate the gluon and ghost propagators as well as the strong coupling in a particular
scheme [405–407], and an effective charge stemming from it [408]. A description of this
calculation is given, for instance, in [341].

In computing propagators that properly feature the physical running with momenta,
data should be thoroughly cured of lattice regularisation artefacts. In particular, as ex-
plained in [100], our results are obtained after a careful scrutiny of discretization artefacts,
thereby accounting for the continuum-limit extrapolation, following [181]. As a notewor-
thy remark, a recent work [182] has revealed the key role played by the procedure of [181]
for an adequate removal of discretization artefacts in achieving a consistent description of
Yang-Mills two- and three-point correlators, involving both lattice and DSE results.
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Abbildung A.6.: Plots comparing the continuous part of the ghost (left) and the gluon
spectral function (right) from different approaches in 2+1 flavor QCD
and Yang-Mills (YM) theory, as discussed in the results section and Ap-
pendix A.10. The ghost spectral function ρc features an additional mass-
less particle pole in the origin; cf. (5.7).

The resulting ghost dressing function and gluon propagator data are displayed in Fi-
gure 5.16, respectively. They are compared against their counterparts obtained from eva-
luating (4.3) for the reconstructed spectral functions shown in Figure 5.17, as well as the
results from functional methods described in the following section. The dressing functions
of all input datasets are compared in Figure A.5 to further illustrate their similarities and
differences.

A.10.2. Functional methods

We briefly summarize results from functional computations in Yang-Mills theory and
QCD that are employed in Section 5.3 to provide additional prior information for the
reconstruction. For reviews on the application of functional methods in this context, see
e.g. [37, 63, 135, 136].

We use the realtime Yang-Mills results from [2] to extend the lattice QCD data of the
ghost dressing function into the deep infrared, as shown in the left panel of Figure A.5.
The approach also provides direct access to the associated spectral function, which we
employ to fix the low-frequency asymptotic behaviour of the reconstruction. It is obtained
via the spectral ghost DSE, building upon the technique of spectral renormalisation [1],
see Section 4.1. Making use of (4.3) for the ghost and gluon propagator, the momentum
integrals appearing in the loop diagrams of the ghost propagator DSE can be solved
analytically. This preserves the full analytic momentum dependence and allows evaluating
the equation on the real momentum axis. The spectral function can then be directly
extracted from the realtime propagator DSE via (4.4); see the left panel of Figure A.6
for a comparison to the reconstruction result of the present work. As input gluon spectral
function, the reconstruction result of [243] based on the scaling solution obtained via
the fRG in [95] is used. Assuming a spectral representation for the gluon propagator, in
both scaling and decoupling scenario the infrared behaviour of the gluon spectral function
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follows directly from the propagator [243]. We utilise this to modify the given scaling
spectral function such that we obtain a decoupling-type gluon propagator matching the
value of the given lattice propagator well within the given uncertainties. Due to its mild
momentum dependence, the ghost-gluon vertex is assumed to be classical.

The lattice QCD data for the gluon propagator are extended towards the UV using
earlier results from functional computations in Yang-Mills theory [95]. Differences to the
2+1 flavor QCD result for the gluon propagator reported in [171], being based on [166],
are comparably small in the relevant momentum range. A stronger deviation can be ob-
served in the dressing functions, as shown in the right panel ofFigure A.5. Despite these
differences, the reconstruction still produces remarkably reliable results, cf. the right pa-
nel of Figure 5.17. Nevertheless, we aim to replace the Yang-Mills UV extension by the
2+1 flavor QCD data from [171] in order to further optimize the accuracy of the result
and mitigate any potential issues. For related results and further correlation functions
see [38, 39, 374, 462]. More specifically, the fRG results in [95] are derived within an ad-
vanced approximation where the momentum dependence of all vertices is approximated
at the symmetric point, for respective DSE results see [93]. For our purposes, this data
set provides the optimal trade-off for momentum range versus accuracy. Due to the high
numerical precision, the results are particularly well-suited as an input for spectral recon-
struction. The Yang-Mills data have already been employed for this purpose in [243], and
we use this earlier reconstruction for comparison; see the right panel of Figure A.6. In
summary, the extension of the 2+1 flavor lattice data with the high precision Yang-Mills
data up to momenta p2 = 102 GeV2 allows a more direct comparison (in terms of scales)
with the Yang-Mills reconstruction in [243], while only modifying the large frequency tail
of the gluon spectral function for frequencies ω & 5 GeV, see Figure A.6.
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A.11. Resonance-scattering split of the quark spectral
function

The singularity structure of the quark propagator in Section 5.4 is entirely determined by
its universal part g. For real frequencies, it reads

g(ω+) =
1

Mq(ω+)2 − ω2
+

. (A.65)

In (A.65) and in the following, we make use of the notation Mq(ω+) = Mq(p = −iω+),
with the retarded limit ω+ = ω + i0+. If Gq obeys the KL representation, so does g, with
a spectral function

ρg(ω) = 2 Im g(ω+) . (A.66)

Since in (A.65) the retarded limit ω+ is considered, the subsequent discussion applies to
the complex upper half plane. The pole(s) of the quark propagator appear as the roots of
the denominator of (A.65). We distinguish three cases: real, complex and no roots. For a
real root,

ω0 −Mq(ω0) = 0 , (A.67)

with ω0 ∈ R, one simply obtains an ordinary massive particle pole. Already at one-loop
order in perturbation theory however, the mass function Mq obtains a non-vanishing ima-
ginary part on the positive real axis, such that a real root is no longer possible. We consider
this imaginary part to be a small, constant imaginary perturbation in a neighbourhood of
the previously real pole ω0 of the mass function in (A.67), i.e.,

Mε(ωc) = Mq(ωc)± iε for |ωc − ω0| � 1 , (A.68)

with ε � 1 and ωc ∈ C now. In (A.68), Mq is to be understood as the real part of Mε,
i.e., Mq(ω) ∈ R. Then, Mq has no branch cut, we can omit the retarded limit reminding
us which side of the branch cut we are on and simply write Mq(ω) on the real axis. Due
to the propagators mirror symmetry, also the mass function obeys

Mε(ω̄c) = M̄ε(ωc) . (A.69)

With (A.68), the quark propagators complex poles are given by the solution to

ωc −Mε(ωc) = 0 . (A.70)

Since we are working in the upper half plane, we have Im ωc > 0. Then, as Mε obeys (A.69),
(A.70) only has a solution for Im Mε > 0, i.e. the plus case in (A.68). In this case, the
complex poles appear on the first Riemann sheet, and show up in the propagators. For the
Im M < 0 case, the complex poles are located on the second Riemann sheet, and hence
do not appear in calculations.

For the quark spectral representation, above consideration have the following conse-
quences: For Im Mε < 0, the spectral representation is intact. The corresponding universal
quark spectral function shows a distinct, sharp positive peak structure around ω0 plus a
scattering continuum. We will focus on the peak structure in the following.
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Since the imaginary part of the mass function (A.68) is small, due to the Sokhotski-
Plemelj theorem,

lim
ε→0

Im
1

(Mq(ω)± iε)2 − ω2
= ± π

2ω0
δ(ω − ω0) , (A.71)

the peak is well approximated by a delta distribution. Note that also in (A.71), we only
considered the positive frequency contribution. We thus have

ρg(ω) ≈ π

ω0
δ(ω − ω0) . (A.72)

On the contrary, for Im Mε > 0 the KL representation is violated by the complex poles. In
this case, the universal part of the quark propagator (A.65) can be described by a modified
spectral representation which explicitly takes the complex poles into account. On the real
axis, it reads

g(ω+) =
1

(ω0 + iε)2 − ω2
+

+
1

(ω0 − iε)2 − ω2
+

+

∫

λ

λ ρg(λ)

λ2 − ω2
+

, (A.73)

with ρg as defined in (A.66). As for the Im Mε > 0 case, with (A.71) we find that the
spectral functions ρg shows a sharp peak around ω0 with negative residue

ρg(ω) ≈ − π

ω0
δ(ω − ω0) . (A.74)

In this case, the universal part (A.73) then evaluates to

g(ω+) ≈ 1

(ω0 + iε)2 − ω2
+

+
1

(ω0 − iε)2 − ω2
+

− 1

ω2
0 − ω2

+

. (A.75)

Taking the imaginary part in (A.75), we recover (A.74).
Note that the real pole part in (A.73) enters with a minus sign. Since ε� 1 in (A.75), for

any complex frequency not in the direct vicinity of ω0, the real pole effectively cancels on
of the complex poles. In other words, the complex pole universal part (A.75) is practically
indistinguishable from a single massive propagator, i.e.,

g(ωc) ≈
1

ω2
0 − ω2

c

for |ωc − ω0| & ε , (A.76)

which applies in particular on the Euclidean axis. From the perspective of a generic lower
limit on the numerical resolution in the complex plane, the approximation (A.76) is there-
fore well justified. It says that the sum of the two complex poles with positive residue and
the negative real quasi-pole is well approximated by a single real positive pole. In terms
of the spectral function, this has the consequence that the spectral representation of the
universal part and hence of the quark propagator itself is restored. The spectral function
is then simply given by the Im Mε < 0 case (A.72).

Above considerations suggest that in the case of a small imaginary part in the mass func-
tion, independent of its sign and the resulting particular analytic structure, the quark pro-
pagator can be well approximated to obey a KL representation. In this case, the universal
spectral function is well represented by an analytical split into a genuine pole contribution
plus a continuous scattering tale, which is

ρg(ω) =
π

ω0
δ(ω − ω0) + ρ̃g(ω) , (A.77)
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Abbildung A.7.: Evaluation of the quality of the resonance-scattering split (5.63) intro-
duced in Section 5.4.1. We consider the Euclidean mass and dressing
function and compare their difference in absolute value from the spec-
tral representation to that directly obtained from the spectral Euclidean
DSE. The deviation in the mass function does not supersede 10 MeV,
while that for the dressing function is about 10−3. Comparing to the ab-
solute values of mass and dressing function Figure 5.19, we conclude that
the resonance-scattering split represents the quark propagator quantita-
tively very well.

with scattering tail ρ̃g. In terms of the Dirac and mass components of the spectral function,
this pole-tail split reads

ρ(d/s)(ω) = R(d/s)δ(ω − ω0) + ρ̃(d/s)(ω) . (A.78)

The scattering contribution ρ̃(d/s) was neglected in above consideration but does not influ-
ence the discussion, as the quasi-pole structure is extremely sharp and distinct. The pole
structure dominates the entire IR behaviour of the propagator in the sense of a gapping,
while the scattering tail gets relevant towards in the UV and in particular carries the
perturbative information. We emphasise that the applicability of this split depends on the
imaginary part of the mass function and always has to be tested empirically.

In the pole-tail split (A.78), the residues R(d/s) are given by

R(d) = πω0 Re
1

Zq(ω0)
, R(s) = πRe

Mε(ω0)

Zq(ω0)
. (A.79)

Note that since Mq(ω0) = ω0 ± iε, we have

R(d) ≈ R(s) . (A.80)

The scattering tails in (A.77) are still given by (5.60), augmented with a suitable lower for
the spectral tail such that the pole contribution is not included. This cut-off is related to
the width of the pole and hence to the distance of the complex poles to the real axis. The
numerical value for the cut-off used in our implementation is specified in Appendix C.6.4.
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A.11.1. Quality of the approximation

The validity of the resonance-scattering split is tested by comparing the Euclidean mass
and dressing function obtained through the spectral representation (5.56) with the spec-
tral functions shown in Figure 5.19 against their counterparts obtained directly from the
spectral Euclidean DSE. In Figure A.7, we show their absolute difference. If the spectral
representation is intact, the difference should be zero within the accuracy of our numerical
integration. Our numerical integration routine aims at relative accuracy of about 10−3.
We conclude that the approximation works well on a quantitative level. The error from
neglecting the imaginary part of the poles is visible in particular in the mass function, but
seems to be of negligible size.
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Abbildung A.8.: Gauge parameter dependence of the quark dressing function 1/Z at one-
loop order in perturbation theory using a small gluon mass mA = 10
MeV. A strong dependence of the IR asymptotic behaviour on the gauge
parameter is observed. In Feynman gauge (ξ = 1), the dressing function is
smaller than one in the deep IR. Similar to our non-perturbative Landau
gauge results, in Landau gauge (ξ = 0) the dressing function rises above
one.

A.12. Gauge parameter dependence of the quark dressing
function

The infrared asymptotics of our result for the quark dressing function 1/Zq presented
in Section 5.4, see Figure 5.19, differs qualitatively from that in other works in Landau
gauge. Our result approaches a value above one, while in, e.g., [166, 171, 373, 380, 381]
it is found that the dressing function saturates below one in the deep IR. In contrast
to former references though, we only consider a classical quark-gluon-vertex in order to
facilitate the realtime calculation. It is known that at one-loop order in perturbation
theory, the dressing function does not receive quantum corrections. In Figure A.8 we
demonstrate the gauge parameter dependence of the IR behaviour of the quark dressing
function in one-loop perturbation theory using a small gluon mass of mA = 10 MeV.
Although we are not using a massive gluon in obtaining our DSE results Figure 5.19, our
gluon propagator has a characteristic mass scale given by the peak position of its spectral
function, cf. the right panel of Figure 5.17. In conclusion, we attribute the IR behaviour
of our quark dressing function to the combination of the classical quark-gluon-vertex with
a gapped gluon propagator. Including other tensor structures as well as a momentum-
dependent dressing functions in the quark-gluon-vertex, we expect the IR value of the
dressing function to drop below one, as seen in [171].
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A.13. Asymptotic behaviour of the strong coupling

Here, we provide details on the asymptotic IR and UV behaviour of the strong coupling
spectral function, computed in Section 6.1.

For the gluon and the ghost propagators, the leading order IR and UV asymptotics
are known analytically; see [243] and references therein. In the infrared, the decoupling
solution of the ghost is characterised by a constant propagator dressing Zc ≡ Zc(p = 0).
On the other hand, the gluon propagator is dominated by the ghost loop polarisation
diagram in the IR, since the gluon propagator itself has a mass gap and decouples in the
infrared. This results in a p2 log p2 contribution in the IR regime; for a detailed discussion
thereof, see [243].

Using the definition of the strong coupling (6.9), we see that it has the same, but
negative, IR behaviour as the inverse gluon dressing, up to a constant contribution from
the ghost dressing. From (6.15), we can then infer the asymptotic behaviour of the spectral
function as

ρα,IR(ω) ∼ ω2 , (A.81)

analogously to [243]. The UV asymptotic behaviour of the strong coupling is well known
from perturbative calculations and reads

αs,UV(p) ∼ 1

log(p2)
. (A.82)

The asymptotic behaviour of the spectral function follows directly from (6.12), and we
obtain

ρα,UV(ω) ∼ − 1

ω2(π2 + log(ω2)2)
. (A.83)
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B. Analytical supplements

B.1. Spectral properties of Laplacians

In this section we comment on the background-covariant Laplacians employed in Secti-
on 3.2, which were used for the momentum dependence of the Landau-gauge propagators
in (3.126) and (B.10). Their explicit form follows from the gauge-invariant background
field effective action [463] and is given by

DT µν = −D2δµν + 2ig Fµν , DLµν = −DµDν , (B.1)

and Dgh = −D2. The transverse Laplacian also contains the spin-1 coupling to the back-
ground field.

The traces over the Laplace-type operators in (B.10) can be evaluated upon introduction
of Laplace transforms using standard heat-kernel techniques. The subtleties arising from
the presence of a self-dual background are discussed in-depth in e.g. [167, 464, 465]. Here,
we just quote the relevant spectra in self-dual backgrounds from [148],

Spec
{
−D2

}
= Fl(n+m+ 1), n,m = 0, 1, 2, . . .

Spec
{
DT

}
=

{
Fl(n+m+ 2) , multiplicity 2
Fl(n+m) , multiplicity 2

(B.2)

where Fl = |νl|F/
√

2. Here, dividing by
√

2 accounts for the multiplicity in a self-dual
formulation of Fµν , and νl are the eigenvalues to the adjoint color matrix nata. The co-
variant spin-1 Laplacian DT has a double zero mode for n = m = 0 which is due to the
symmetry between color-electric and color-magnetic field. The spectral problem of the
longitudinal Laplacian DL can be mapped onto that of −D2, such that (B.2) is sufficient
for the calculation in the main part of the paper, see e.g. [167, 464, 465]. The trace Tr′ is
defined as that without the zero mode, and for a general function F we get,

Tr′F(DT) = 2

N2
c−1∑

l=1

(
Fl
4π

)2




∞∑

n,m=0

F
(
Fl(n+m+ 2)

)
+

∞∑

n=0

∞∑

m=1

F
(
Fl(n+m)

)

+

∞∑

n=1

F
(
nFl
)
}

= 4

N2
c−1∑

l=1

(
Fl
4π

)2 ∞∑

n,m=0

F
(
Fl(n+m+ 1)

)
= 4 TrxcF(−D2), (B.3)

where the trace Tr sums over momentum or spacetime, internal indices and Lorentz indices
of the respective field mode. Equation (B.3) displays an isospectrality relation between
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−D2 and the non-zero eigenvalues of DT. As a consequence, all gluon and ghost modes
except for the two zero modes couple in the same fashion to the selfdual background. This
allows us to compute (B.10).
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Abbildung B.1.: RG consistency of the effective potential Weff(F a), shown for integrating
the effective potential (B.4) starting from different initial cutoff scales
kUV = 20, 18, 15 GeV to k = 0. The result is independent of the initial
scale (RG consistency).

B.2. UV Asymptotics of the effective potential and
regulator independence

The present work utilises the ghost and gluon propagators from [95]; which has been
obtained within a quantitative approximation to the full Yang-Mills system. There, and
in respective works in QCD, [166, 172, 373] it has been checked that the choice of the
regulator is of subleading importance for the propagators at vanishing cutoff scale, which
is one of the self-consistency checks that goes into an estimate of the systematic error.

As mentioned at the end of Appendix B.3, the relatively sharp regulator here delays the
onset of UV asymptotics and hence the onset cutoff scale k & kon of the regime in which
the effective potential reduces to the classical form (3.132). For the sake of convenience
we recall it,

Wk(F
a)

k&kon−→ F 2

16παs(k)
, αs(k) =

1

4π

g2
s

ZA,k
, (B.4)

with ZA,k = ZA,k(p = 0). In this regime the flow is simply a linear function in F 2 with
the slope ∂t1/(16παs). Hence, for large cutoff scales we have,

∂tWk(F
a)→ −∂tαs(k)

αs(k)

1

16παs(k)
F 2 . (B.5)

The coupling αs in (B.4) is the background coupling which has the same (two-loop) uni-
versal β-function as the fluctuation coupling αs,fluc = g2

s/(4πZa Z
2
c ) computed in [95].

However, the equivalence of the perturbative β-functions still allows for a global rescaling
αs = γ̄ αs,fluc whose value is checked by comparing the two flows for k → kUV,

γ̄ = lim
F 2→0

16πα2
s,fluc

∂tαs,fluc

∂tWk

F 2
≈ 1 . (B.6)
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Abbildung B.2.: Effective Potential Wk(F
a), defined in (3.131), for F a = Fδa3 as a func-

tion of F 2 obtained from integrating the flow with the regulator (B.8). In
comparison to Figure B.3b the regulator is much smoother, which trans-
lates to the smoothness in kon & k & 1 GeV.

This fixes our initial condition, and in Figure B.3 we show both, the respective integrated
flow, Figure B.3a, and the full cutoff dependent effective potential that also involves the
initial condition, Figure B.3b. The integrated flow from the UV scale kUV = 20 GeV to a
general cutoff scale k is given by

Wk(F
a)−WkUV

(F a) = −
∫ kUV

k

dk

k
∂tWk(F

a) . (B.7)

One clearly sees the linear dependence on F 2 for k → kUV. At lower scales k → kon with
kon ≈ 14 GeV the transition regime sets in, in which the integrated flow resolves the shape
function. Finally, for physical cutoff scales k . 1 GeV, the form of the shape function gets
irrelevant, and the integrated flow is getting smooth again. This shows very impressively
that the information about the shape function is integrated out and disappears in the
physical limit k → 0.

We have also checked that the effective potential Weff(F a) is RG consistent [58, 176].
This is the simple requirement that Weff(F a) does not vary if the flow is initiated at
another cutoff scale kUV. Accordingly, it is a consistency check on the initial effective
potential WkUV

. Figure B.1 depicts the physical effective potential Weff(F a), obtained
from computations with kUV = 15, 18, 20 GeV. The initial effective potentials are given
by (B.4), where the scale dependency of the coupling αs is obtained from the 1-loop
beta function of the background coupling. These computations confirm the quantitative
validity of the one-loop estimate for WkUV

for these large initial cutoff scales. In turn, for
lower cutoff scales, the one-loop form is gradually lost which can be easily seen by the
substructure (in F 2) of the flow.
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Finally, we also report on results for the effective potential obtained by integrating the
flow with a smoother regulator

Rk(p) = k2 e−p
2/k2

. (B.8)

Such a regulator decreases the numerical effort considerably. Note that this is not a self-
consistent computation as it also requires cutoff dependent propagators computed with
the same regulator (B.8). However, we use this as a stability test of our results, and hence
a further systematic error control. The respective result for the cutoff dependent effective
potential is shown in Figure B.2, and one clearly sees that the use of a smoother regulator
removes the substructures in the flow. The minimum value of F 2 at k = 0 is given by

〈F 2〉λ3 = 0.93(14) GeV4 , (B.9)

to be compared with (3.137). These values compare well, which informs our estimate of
the systematic error.
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B.3. Flow of the effective potential

Here we provide some details of the computation of the integrated flow (3.131) of the
effective potential, (3.128a) from the flow equation (3.126) and the propagators (3.129).
Inserting the latter into (3.126) yields,

∂tWk(F
a) =

3

2
Tr

∂tR
⊥
a (DT )

DTZa,k(DT ) +R⊥a (DT )
+

1

2
Tr

∂tR
‖
a(−D2)

−D2 +R
‖
a(−D2)

+
1

2
Tr P0

∂tR
⊥
a (−D2)

−D2 Za,k(−D2) +R⊥a (−D2)
− Tr

∂tRc(−D2)

−D2Zc,k(−D2) +Rk,c(−D2)

− 3

2
Tr

∂tR
⊥
a (p2)

p2 Za(p2) +R⊥a (p2)
− 1

2
Tr

∂tR
‖
a(p2)

p2 Za(p2) +R
‖
a(p2)

− Tr
∂tRc(p

2)

p2 Zc,k(p2) +Rk,c(p2)
, (B.10)

where the contributions in the first line are the glue contributions, and P0 denotes the
projection on the zero-mode. The traces in (B.10) sum over momenta or spacetime, as
well as internal and Lorentz indices of the respective field modes. We have three covariant
transverse modes and one covariant longitudinal mode, the trivial gauge mode. The term in
the second line is the ghost contribution, and the field-independent subtraction in the third
line normalises the potential to Wk(F

a = 0) = 0. We choose the regulator in consistency
with the input data. The regulators in [95] are defined as,

Ra,k(p) = p2 r(x)
(
Z̃a,kΠ

⊥(p) + Π‖(p)
)
,

Ra,k(p) = p2 r(x)Z̃c,a . (B.11)

with the projection operators Π⊥,‖ defined in (3.105). In (B.11), x is the dimensionless
momentum variable, x = p2/k2, and the shape function r(x) used in [95] is given by,

r(x) =

(
1

x
− 1

)
1

1 + e
x−1
a

, a = 2× 10−2 . (B.12)

The shape function (B.12) is a smoothened version of the Litim shape function, [466]. The
cutoff dependent prefactors Z̃a/c are given by

Z̃a,k = Za,k([k
n + k̃n]1/n) , Z̃c,k = Zc,k(k) , (B.13)

with k = 1 GeV. The choice (B.13) ensures that the regulators have the same (average)
momentum scaling as the two-point functions, regulators proportional to the respective
wave function renormalisations of the fields are RG-adapted, see [58]. Moreover, the scale
k = 1 GeV is introduced for computations convenience; it leads to a gluon regulator, that
does not diverge at p = 0 for k → 0. While even a singular regulator choice at p = 0 does
not contribute to the momentum integral, it complicates the numerics.
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B.3. Flow of the effective potential

(a) Integrated UV Flow of the effective po-
tential, Wk(F a)−WkUV

(F a), defined in
(B.7), for F a = Fδa3 as a function of
F 2. Here, kUV = 20 GeV. The substruc-
ture for kon & k & 1 GeV resolves the
shape of the regulator (B.12).

(b) Effective Potential Wk(F a), defined in
(3.131), for F a = Fδa3 as a function
of F 2 in the regime 0 ≤ k ≤ kUV =
20 GeV. The substructure for kon & k &
1 GeV resolves the shape of the regulator
(B.12). For k = 0 see also Figure 3.1.

Abbildung B.3.: Cutoff dependence of the effective potential.

In [166] the regulator was used as it optimises fully momentum dependent approxima-
tions, see [58]. However, the resolution of (B.10) requires the computation of TrF(−D2)
and TrF(−DT ) in terms of the discrete Eigenvalues or spectrum of the Laplacians −D2

and DT . The spectral properties of the Laplacians are discussed in Appendix B.1, see also
[148].

The optimisation of the approximation in terms of its momentum dependence as used
in [166] comes at the price that soft but sharp regulators delay the onset of the asympto-
tic ultraviolet scaling in the presence of a discrete momentum spectrum, see [467]. Here,
asymptotic UV scaling entails, that the effective action reduces to the classical one with a
running prefactor, see (3.132). Indeed, for non-analytic regulators such as the Litim regu-
lator or the sharp regulator the asymptotic UV scaling. In Appendix B.2 we investigate
the asymptotic UV scaling in the present set up as well as the regulator (in)dependence
of our results.
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B.4. Scalar theory self-energy calculation

Analytic expressions for the spectral integrands of the spectral scalar propagator DSE in
Section 4.1, (4.22) before and after analytic continuation:

Polarization:

Ipol(p;λ1, λ2) =
1

4πp
arctan

(
p

λ1 + λ2

)
,

Ipol(ω;λ1, λ2) =
1

4πω

[
artanh

(
ω

λ1 + λ2

)
+ i arg

(
1− ω

λ1 + λ2

)] (B.14)

Sunset:

Isun(p;λ1, λ2, λ3) =
1

(4π)2

(
1

2
log

(
1

(λ1 + λ2 + λ3)2 + p2

)

− λ1 + λ2 + λ3

p
arctan

(
p

λ1 + λ2 + λ3

))
,

Isun(ω;λ1, λ2, λ3) =
1

(4π)2

(
1

2
log

(
1

(λ1 + λ2 + λ3)2 − ω2

)

− λ1 + λ2 + λ3

ω

[
artanh

(
ω

λ1 + λ2 + λ3

)
+ i arg

(
1− ω

λ1 + λ2 + λ3

)])

(B.15)
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Squint:

Isquint(p;λ1, λ2, λ3, λ4) =
1

(8π)2ωλ4

(
2 log

(
λ2 + λ3 + λ4

λ2 + λ3 − λ4

)
artanh

(
ω

λ1 + λ4

)

+ i

[
Li2

(
ip− λ1 − λ4

λ2 + λ3 − λ4

)
− Li2

(
ip− λ1 + λ4

λ2 + λ3 + λ4

)

+ Li2

(−ip− λ1 + λ4

λ2 + λ3 + λ4

)
− Li2

(−ip− λ1 − λ4

λ2 + λ3 − λ4

)])
,

Isquint(ω;λ1, λ2, λ3, λ4) =
1

(8π)2ωλ4

(
Re

[
2 log

(
λ2 + λ3 + λ4

λ2 + λ3 − λ4

)
artanh

(
ω

λ1 + λ4

)

− Li2

(
ω − λ1 − λ4

λ2 + λ3 − λ4

)
+ Li2

(−ω − λ1 − λ4

λ2 + λ3 − λ4

)

+ Li2

(
ω − λ1 + λ4

λ2 + λ3 + λ4

)
− Li2

(−ω − λ1 + λ4

λ2 + λ3 + λ4

)]

− i θ
(
ω − |λ1 + λ4|

)
Im

[
2 log

(
λ2 + λ3 + λ4

λ2 + λ3 − λ4

)
artanh

(
ω

λ1 + λ4

)

− Li2

(
ω − λ1 − λ4

λ2 + λ3 − λ4

)
+ Li2

(−ω − λ1 − λ4

λ2 + λ3 − λ4

)

+ Li2

(
ω − λ1 + λ4

λ2 + λ3 + λ4

)
− Li2

(−ω − λ1 + λ4

λ2 + λ3 + λφ

)])
.

(B.16)
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B.5. Yang-Mills self-energy calculation

In this section, we detail the analytic solution of the loop momentum integrals of the
Yang-Mills self-energy diagrams in Section 5.1, (5.25) in the spectral DSEs (5.20) at the
example of the ghost self energy diagram Σc̄c. Starting at (5.24), we express the ghost-gluon
diagram as

Σc̄c(p) = g2δabCA

∫

λ1,λ2

ρA(λ2)ρc(λ2) I(p, λ1, λ2) , (B.17)

with the now dimensionally regularised momentum integral

I(p, λ1, λ2) =

∫

q

(
p2 − (p · q)2)

q2

)
1

q2 + λ2
1

1

(p+ q)2 + λ2
2

. (B.18)

The measure is now
∫
q =

∫
ddq/(2π)d.

B.5.1. Momentum integration

Next, we employ partial fraction decomposition

1

q2

1

q2 + λ2
=

1

λ2

( 1

q2
− 1

q2 + λ2

)
, (B.19)

and introduce Feynman parameters, i.e. utilise

1

AB
=

∫ 1

0
dx

1

xA+ (1− x)B
. (B.20)

Upon a shift in the integration variable q → q−xp and after some manipulation, we arrive
at

I(p, λ1, λ2) =

∫

q,x

2∑

i=0

(q2)i

[
Ai

(q2 + ∆̃1)2
+

Bi

(q2 + ∆̃2)2

]
, (B.21)

with

∆̃1 = (1− x)λ2
1 + xλ2

2 + x(1− x)p2 ,

∆̃2 = ∆̃1 − xλ2
2 . (B.22)

We will not make all intermediate results explicit, such as giving the full expressions for Ai
and Bi, which are functions of external momentum p, the spectral parameter λ1 as well as
the Feynman parameter x. Ultimately, the complete final result will be stated explicitly.

The momentum integrals are now readily solved via the standard integration formula-
tion,

∫
ddq

(2π)d
q2m

(q2 + ∆)n
=

1

(4π)d/2
Γ(m+ d

2)Γ(n− d
2 −m)

Γ(d2)Γ(n)
∆m+d/2−n , (B.23)

with m a non-negative and n a positive integer.
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B.5.2. Feynman parameter integration

Reordering the expression in powers of the Feynman parameter x and taking the limit
d→ 4− 2ε, we arrive at

I(p, λ1, λ2) =

(
1

ε
+ log

4πµ2

eγE

)
3∑

i=0

α
(f)
i − α

(g)
i

i+ 1
−
∫

x

3∑

i=0

xi
(
α

(f)
i log ∆̃1 − α(g)

i log ∆̃2

)

+O(ε) , (B.24)

with γE the Euler-Mascheroni constant. The coefficients αi and βi do not depend on x,
and will be given down below. We can solve the Feynman parameter integrals analytically
and simplify the first sum to obtain the final result,

I(p, λ1, λ2) =

(
1

ε
+ log

4πµ2

eγE

)
3

4
p2 −

3∑

i=0

[
α

(f)
i fi − α(g)

i gi
]
. (B.25)

The coefficients α
(f,g)
i are defined as follows:

α
(f)
0 =

p2

2
, α

(g)
0 = 0 ,

α
(f)
1 = −p

2(p2 − 5λ2
1 + λ2

2)

2λ2
1

, α
(g)
1 = − p2(p2 + λ2

2)

2λ2
1

,

α
(f)
2 =

3p2(3p2 − 2λ2
1 + 2λ2

2)

2λ2
1

, α
(g)
2 =

3p2(3p2 + 2λ2
2)

2λ2
1

,

α
(f)
3 = −4p4

λ2
1

, α
(g)
3 = − 4p4

λ2
1

, (B.26)

The functions fi and gi carry the branch cuts ultimately giving rise to the spectral function
and are defined by integrals over the Feynman parameter x via

fi =

∫ 1

0
dxxi log ∆̃1 , gi =

∫ 1

0
dxxi log ∆̃2 , (B.27)

yielding
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f0 =
ζ

2p2
Dcut + 2 log λ2 +

p2 − λ2
1 + λ2

2

p2
log
(λ1

λ2

)
− 2 ,

f1 =
1

4p4ζ
Dcut

[(
(λ1 − λ2)2 + p2

)(
(λ1 + λ2)2 + p2

)(
p2 − λ2

1 + λ2
2

)]

+ log λ2 −
p2 − λ2

1 + λ2
2

2p2
+

(λ2
1 − λ2

2)2 + 2λ2
2p

2 + p4

2p4
log
(λ1

λ2

)
− 1

2
,

f2 =
1

6p6ζ
Dcut

[
(λ2

1 − λ2
2)4 + p6(λ2

1 + 4λ2
2)− 2λ2

2p
4(λ2

1 − 3λ2
2)

+ p2(λ2
1 − λ2

2)2(λ2
1 + 4λ2

2) + p8
]

+
1

3
log λ2

2 −
λ2

2 − λ2
1 + p2

6p2

− (λ2
1 − λ2

2)2 + 2λ2
2p

2 + p4

3p4

+
3λ2

2p
2(λ2

2 − λ2
1 + p2)− (λ2

1 − λ2
2)3 + p6

3p6
log
(λ1

λ2

)
− 2

9
,

f3 =
1

8p8ζ
Dcut

[(
(λ1 − λ2)2 + p2

)(
λ2

2 − λ2
1 + p2

)(
λ4

1 + λ4
2 + p4 + 2λ2

2(p2 − λ2
1)
)

×
(
(λ1 + λ2)2 + p2

)]

− 1

8
log(−λ2

2) +
1

4
log(λ2

2) +
λ2

1 − 13λ2
2

12p2
− λ4

1 − 8λ2
1λ

2
2 + 7λ4

2

8p4
+

(λ2
1 − λ2

2)3

4p6
− 7

12

+
log(−λ2

1)

8p8

[(
λ2

1 − λ2
2

)4
+ p4

(
6λ4

2 − 4λ2
1λ

2
2

)
+ 4λ2

2p
2
(
λ2

1 − λ2
2

)2
+ 4λ2

2p
6 + p8

]

− log(−λ2
2)

8p8

[
λ8

1 + λ8
2 + 4λ6

2(p2 − λ2
1) + 2λ4

2

(
3λ4

1 − 4λ2
1p

2 + 3p4
)

+ 4λ2
2(p2 − λ2

1)
(
λ4

1 + p4
)]
, (B.28)

where we defined

Dcut = log
(
ζ + λ2

1 − λ2
2 + p2

)
− log

(
ζ + λ2

1 − λ2
2 − p2

)
+ log

(
ζ − λ2

1 + λ2
2 + p2

)

− log
(
ζ − λ2

1 + λ2
2 − p2

)
, (B.29a)

with

ζ =

√
λ4

2 +
(
λ2

1 + p2
)2

+ 2λ2
2

(
p2 − λ2

1

)
, (B.29b)
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and

g0 = log λ2
2 −

(
λ2

2 + p2
)

log−λ2
2

p2
+
(λ2

2

p2
+ 1
)

log
(
− λ2

2 − p2
)
− 2 ,

g1 =
1

2p4

[
− p2

(
λ2

2 + 2p2
)

+ p4 log λ2
2 − log−λ2

2

(
λ2

2 + p2
)2

+
(
λ2

2 + p2
)2

log
(
− λ2

2 − p2
)]
,

g2 = − 1

18p6

[
15λ2

2p
4 + 6λ4

2p
2 − 6p6 log λ2

2 + 6 log−λ2
2]
(
λ2

2 + p2
)3

− 6
(
λ2

2 + p2
)3

log
(
− λ2

2 − p2
)

+ 13p6
]
,

g3 =
1

24p8

[
− p2

(
6λ6

2 + 26λ2
2p

4 + 21λ4
2p

2 + 14p6
)

+ 6p8 log λ2
2 − 6 log−λ2

2

(
λ2

2 + p2
)4

+ 6
(
λ2

2 + p2
)4

log
(
− λ2

2 − p2
)]
. (B.30)

The gluon and ghost loops Dgluon and Dghost featuring in the gluon self-energy ΣAA

defined in (5.22) are computed analogously. As for the ghost self-energy, we first define

Dgluon(p) = g2δabCA

∫

λ1,λ2

ρA(λ2)ρA(λ2) Iglu(p, λ1, λ2) , (B.31a)

Dghost(p) = g2δabCA

∫

λ1,λ2

ρc(λ2)ρc(λ2) Ighost(p, λ1, λ2) . (B.31b)

We just quote the results for the momentum integrals Iglu and Ighost as

Iglu(p, λ1, λ2) =

(
1

ε
+ log

4πµ2

eγE

)[
25

12
p2 +

3

2

(
λ2

1 + λ2
2

)
]

−
4∑

i=0

(
β

(f)
i fi + β

(h)
i hi − β(g)

i gi − β(j)
i ji

)
, (B.32a)

Ighost(p, λ1, λ2) =

(
1

ε
+ log

4πµ2

eγE

)[
1

12
p2 +

1

4

(
λ2

1 + λ2
2)

]
−Fghost . (B.32b)
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The coefficients β
(·)
i are defined as

β
(f)
0 =

27
(
λ4

1 − 3λ2
1λ

2
2

)
+ 6p4 + 6p2

(
6λ2

1 + 5λ2
2

)

8λ2
2

,

β
(f)
1 = − 3

4λ2
1λ

2
2

[
9
(
λ3

1 − λ1λ
2
2

)2
+ p6 + p4

(
6λ2

2 − 7λ2
1

)

+ p2
(
5λ4

2 − 3λ4
1 − 20λ2

1λ
2
2

)]
,

β
(f)
2 =

3

8λ2
1λ

2
2

[
2p6 + 9

(
λ2

1 − λ2
2

)2(
λ2

1 + λ2
2

)

+ p4
(
79λ2

2 − 11λ2
1

)
+ p2

(
62λ4

2 − 58λ4
1 − 40λ2

1λ
2
2

)]
,

β
(f)
3 = −

15p2
[
− 2λ4

1 + 2λ4
2 + p2

(
2λ2

1 + 5λ2
2

)]

2λ2
1λ

2
2

,

β
(f)
4 =

105p4
(
λ2

1 + λ2
2

)

8λ2
1λ

2
2

, (B.33a)

β
(g)
0 = 0 ,

β
(g)
1 = − 3p2

(
p2 + λ2

2

)(
p2 + 5λ2

2

)

4λ2
1λ

2
2

,

β
(g)
2 =

3
(
2p6 + 79p4λ2

2 + 62p2λ4
2 + 9λ6

2

)

8λ2
1λ

2
2

,

β
(g)
3 = − 15

(
5p4 + 2p2λ2

2

)

2λ2
1

,

β
(g)
4 =

105p4

8λ2
1

, (B.33b)

β
(h)
0 =β

(h)
3 = β

(h)
4 = 0 ,

β
(h)
1 = − β(h)

2 = − 3p6

4λ2
1λ

2
2

, (B.33c)

β
(j)
0 =

3
(
2p4 + 12p2λ2

1 + 9λ4
1

)

8λ2
2

,

β
(j)
1 = − 3

(
p6 − 7p4λ2

1 − 3p2λ4
1 + 9λ6

1

)

4λ2
1λ

2
2)

,

β
(j)
2 =

3
(
2p6 − 11p4λ2

1 − 58p2λ4
1 + 9λ6

1

)

8λ2
1λ

2
2

,

β
(j)
3 =

15p2
(
− p2 + λ2

1

)

λ2
2

,

β
(j)
4 =

105p4

8λ2
2

. (B.33d)
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The functions fi and gi appearing in (B.32a) have already been defined in (B.28) and (B.30).
The functions hi and ji are given by

h0 = 2h1 = −2 + log p2 ,

h2 =
1

18

(
− 13 + 6 log p2

)
,

h3 =
1

12

(
− 7 + 3 log p2

)
,

h4 = − 149

300
+

1

5
log p2 , (B.34)

as well as

j0 =
λ2

1

[
log
(
λ2

1 + p2
)
− log λ2

1

]

p2
− 2 + log

(
λ2

1 + p2
)
,

j1 =
λ4

1 log λ2
1 − 2p4 + λ2

1p
2 +

(
p4 − λ4

1

)
log
(
λ2

1 + p2
)

2p4
,

j2 =
1

18p6

[
− 13p6 + 3p4λ2

1 − 6p2λ4
1 − 6λ6

1 log λ2
1

+ 6
(
p6 + λ6

1

)
log
(
p2 + λ2

1

)]
,

j3 =
1

24p8

[
− 14p8 + 2p6λ2

1 − 3p4λ4
1 + 6p2λ6

1

+ 6λ8
1 log λ2

1 + 6
(
p8 − λ8

1

)
log
(
p2 + λ2

1

)]
,

j4 =
1

300p10

[
− 149p10 + 15p8λ2

1 − 20p6λ4
1 + 30p4λ6

1

− 60p2λ8
1 − 60λ10

1 log λ2
1 + 60

(
p10 + λ10

1

)
log
(
p2 + λ2

1

)]
. (B.35)

The function Fghost in (B.31a) is defined as

Fghost =
1

36

(
− 24

(
λ2

1 + λ2
2

)
− 6

(
λ2

1 − λ2
2

)2

p2
+ 6
[
3
(
λ2

1 + λ2
2

)
+ p2

]
log λ2

2 − 10p2

+
3

p4

{[
λ4

1 + λ2
1

(
4p2 − 2λ2

2

)
+
(
λ2

2 + p2
)2](

p2 − λ2
1 + λ2

2

)

×
(

log
(
− λ2

1

)
− log

(
− λ2

2

))

− 2iζ3

[
arctan

(
p2 + λ2

1 − λ2
2

iζ

)
+ arctan

(
p2 − λ2

1 + λ2
2

iζ

)]})
. (B.36)

B.5.3. Real frequencies

For realtime expressions of the DSE diagrams, we need (B.25) and (B.32a) at real fre-
quencies ω, i.e. I(ω, λ1, λ2) := I(−i(ω + i0+)). From the definitions of the respective
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functions and coefficients, the corresponding realtime expressions are obtained by repla-
cing p → −i(ω + iε) and explicitly taking the limit ε ↘ 0. The calculations here were
performed in Wolfram Mathematica 12.1 with the convention Im log x = π for x < 0
for the logarithmic branch cut. In this case, for the ghost self-energy (B.25) as well as Ighost

in (B.32a) taking the above limit corresponds to the mere substitution p → iω. For Iglu

in (B.32a) this is not the case due to symbolic manipulations that have been performed
in order to simplify the expressions. Here, appropriate imaginary parts need to be added
in order to get the correct limit when explicitly taking the limit ε ↘ 0. Note that the
manual addition of appropriate imaginary parts might also be necessary for other branch
cut conventions.

B.5.4. Complex frequencies and spectral masses

The non-trivial analytic solutions of the Feynman parameter integrals in this work (Appen-
dix B.5.2), such as (B.24), always require numerical cross-check. Especially for arbitrary
complex spectral values and frequencies λ2

1/2, p
2 ∈ C, this is crucial. This becomes clear

when considering the in Appendix B.5 presented solutions for the loop momentum integrals
of the diagrams in this work. For λ2

1/2, p
2 ∈ C, (B.25) and (B.32a) generally do not need

to hold. We will discuss this at the example of the calculation presented in Appendix B.5.
While, after introduction of Feynman parameters (B.20), the solution of momentum in-
tegration (B.23) is still valid for λ2

1/2, p
2 ∈ C, this is generally not true for the analytic

solution of the Feynman parameter integral in (B.24). For the diagrams involved in this
work, the (non-trivial) Feynman parameter integrals takes the general form

J iFP(p) =

∫ 1

0
dxxi log

(
(1− x)λ2

1 + xλ2
2 + x(1− x)p2

)
. (B.37)

For certain combinations λ2
1/2, p

2, the integration contour in (B.37), which is the straight
line connecting 0 and 1, is now crossing the logarithmic branch of the integrand. To
study the case of a pair of complex conjugate poles, the case λ2 = λ̄1 is of particular
interest. There, for p2 ≤ 2 Reλ2

1, the integration contour always crosses the branch cut.
In this case, the Feynman parameter integral in (B.37) becomes ill-defined. The reason
for that lies in the introduction of Feynman parameters in the first place. The Feynman
trick (B.20) is only valid if the straight line connecting A and B does not cross the origin,
i.e. the RHS of (B.20) has no (non-integrable) pole in the integration contour. For the
above described case of λ2 = λ̄1 and p2 < 2 Reλ2

1, this is exactly what happens, however.
After a shift in the loop momentum, the order of the momentum and Feynman parameter
integration are interchanged. For λ2 = λ̄1 and p2 < 2 Reλ2

1, there always exists a value
of the loop momentum q for which the Feynman parameter integration contour crosses
a non-integrable pole. Since the q integration is performed first, this pole manifests itself
as a branch cut in the Feynman parameter integration. The Feynman parameter integral
becomes ill-defined, since the Feynman trick (B.20) is not well-defined in the first place in
this case and can not be used to solve the momentum integral in this case.

For certain combinations of λ2
1/2, p

2 ∈ C the branch cuts resulting from poles in the
Feynman parameter integration domain can be avoided by contour deformation for the
Feynman parameter integral. The Feynman parameter x is then integrated between 0 and
1 along an arbitrary curve in the complex plane which avoids the branch cut(s). In that
case, a numeric solution of the Feynman parameter in can be well treated numerically
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along with possible spectral integrals. In Section 5.1.3, we apply the described contour
deformation to verify the analytic solutions for the Feynman parameter integrals. The
development of a systematic procedure for finding contours avoiding these branch cuts is
deferred to the future.

A possible other approach to tackle the momentum integral for arbitrary complex
spectral parameters and frequencies lies in the Mellin-Barnes representation of propa-
gators (A.35), which also holds for complex masses. In Appendix A.7, we utilise this
representation to calculate the ghost loop of the gluon DSE in a particular parametri-
sation of the ghost propagator (A.33) involving a massive non-integer propagator power
part.
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B.6. Quark self-energy calculation

In this section, we detail the calculation of the quark self-energy in the spectral quark
DSE in Section 5.4.

(5.59) makes explicit how the components of the spectral function are related to those
of the propagator, i.e.,

∫

λ

ρ
(d)
q (λ)

p2 + λ2
=

1

Zq(p)

1

p2 +Mq(p)2
,

∫

λ

λρ
(s)
q (λ)

p2 + λ2
=
Mq(p)

Zq(p)

1

p2 +Mq(p)2
. (B.38)

We will use (5.59) in the following calculation of the spectral quark self-energy diagram.
Using a bare quark-gluon vertex, the diagram reads

Σq̄q(p) = −g2Cfδ
abγµ

∫

q
Πµν
⊥ (q)GA(q)Gq(p+ q)γν . (B.39)

Employing a split into the Dirac and mass components for the self-energy,

Σq̄q = Σ
(s)
q̄q + i/pΣ

(d)
q̄q , (B.40)

one obtains

Γ
(2)
q̄q (p) = i/p

(
1− Σ

(d)
q̄q

)
+m− Σ

(s)
q̄q (p) , (B.41)

By the fact that
(

Γ
(2)
q̄q

)−1
= Gq, we can now identify

Zq(p) = 1− Σ
(d)
q̄q (p) ,

Mq(p) =
1

Zq(p)

(
m− Σ

(s)
q̄q (p)

)
. (B.42)

B.6.1. Analytic calculation of the momentum integral

Using spectral representations for quark, (5.59), and gluon, (5.11), in the self-energy (B.39),
one obtains

Σq̄q(p) = − g2Cfδ
abγµ

∫

λA,λq

λAρA(λA)λqρ
(s)
q (λq)

∫

q
Πµν
⊥ (q)γν

1

q2 + λ2
A

1

(p+ q)2 + λ2
q

+ ig2Cfδ
abγµ

∫

λA,λq

λAρA(λA)ρ(d)
q (λq)

∫

q
Πµν
⊥ (q)

(
/p+ /q

)
γν

1

q2 + λ2
A

1

(p+ q)2 + λ2
q

.

(B.43)

Using the split into Dirac and mass part of the self-energy (B.40), we identify

Σ
(s)
q̄q (p) = − g2Cfδ

ab

∫

λA,λq

dµ
(s)
λ I(s)(p, λA, λq) ,

/pΣ
(d)
q̄q (p) = g2Cfδ

ab

∫

λA,λq

dµ
(d)
λ I(d)(p, λA, λq) , (B.44a)
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where we defined the spectral measures

dµ
(d)
λ :=λAρA(λA)ρ(d)(λq) ,

dµ
(s)
λ :=λAρA(λA)λqρ

(s)
q (λq) , (B.44b)

and introduced the momentum integral functions

I(s)(p, λA, λq) = γµ

∫

q
Πµν
⊥ (q)γν

1

q2 + λ2
A

1

(p+ q)2 + λ2
q

,

I(d)(p, λA, λq) = γµ

∫

q
Πµν
⊥ (q)

(
/p+ /q

)
γν

1

q2 + λ2
A

1

(p+ q)2 + λ2
q

. (B.44c)

Performing the Lorentz contractions and commutation of the Dirac structure yields

I(s)(p, λA, λq) = (d− 1)

∫

q

1

q2 + λ2
A

1

(p+ q)2 + λ2
q

,

I(d)(p, λA, λq) =

∫

q
τ (d) 1

q2 + λ2
A

1

(p+ q)2 + λ2
q

, (B.45a)

with

τ (d) = /p (3− d) + /q

(
1− d− 2

p · q
q2

)
. (B.45b)

In order to get rid of the 1/q2-term in τ (d), we apply partial fraction decomposition. This
yields

I(d)(p, λA, λq) =

∫

q

(
τ

(d)
1

1

q2 + λ2
A

+ τ
(d)
2

1

q2

)
1

(p+ q)2 + λ2
q

, (B.46a)

where

τ
(d)
1 = /p (3− d) + /q

(
1− d− 2

p · q
λ2
A

)
, τ

(d)
2 = −2/q

p · q
λ2
A

. (B.46b)

In a next step, we perform the Feynman trick on each product of two propagator kernels,

1

q2 + η2
1

1

(p+ q)2 + η2
2

=

∫

x

1

(q2 + ∆(η1, η2, p))
2 ,

∆(η1, η2, p) = xη1 + (1− x) η2 + x(1− x)p2 , (B.47)

where
∫
x :=

∫ 1
0 dx. Performing the Feynman trick (B.47) necessitates shifting the loop

momentum as q → q−xp. This also shifts the tensor structure functions τ . Also dropping
off powers of loop momentum q, which vanish under the integral, and symmetrizing /q(p ·
q) = /pq2/d, yields

τ
(d)
1 → /pτ̃

(d)
1 with τ̃1 =

[
3− d+

2

d

p2

λ2
A

+ x

(
d− 1 + 2x

p2

λ2
A

)]
,

τ
(d)
2 → /pτ̃

(d)
2 with τ̃

(d)
2 =

[
−2

d

q2

λ2
A

− 2x
p2

λ2
A

]
, (B.48)
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such that eventually

I(s)(p, λA, λq) = (d− 1)

∫

q

∫

x

1

(q2 + ∆(λA, λq, p))
2 ,

I(d)(p, λA, λq) = /p

∫

q

∫

x
τ̃

(d)
1

1

(q2 + ∆(λA, λq, p))
2 + τ̃

(d)
2

1

(q2 + ∆(0, λq, p))
2 . (B.49)

The momentum integrals can now be evaluated using standard integration formulae. Re-
ordering the resulting expression in powers of the Feynman parameter x and taking the
limit d→ 4− 2ε, we arrive at

I(s)(p, λA, λq) =
3

(4π2)

(
1

ε
+ log

4πµ2

eγE
−
∫

x
log ∆(λA, λq, p)

)
+O(ε) ,

I(d)(p, λA, λq) =
/p

(4π)2

{(
1

ε
+ log

4πµ2

eγE

) 3∑

i=0

αi + βi
i+ 1

−
∫

x

3∑

i=0

xi (αi log ∆(λA, λq, p) + βi log ∆(0, λq, p))

}
+O(ε) ,

(B.50)

with γE the Euler-Mascheroni constant. The coefficients αi and βi appearing in the Dirac
part I(d) of (B.49) do not depend on x, and will be given down below. Since we work in
Landau gauge, the one-loop anomalous momentum is expected to vanish, i.e.,

3∑

i=0

αi + βi
i+ 1

= 0 , (B.51)

serving as a consistency check for our calculation. Indeed, we find them to satisfy the
condition (B.51).

The Feynman parameter integrals can be solved analytically. Using (B.51) and dropping
the 1/ε term as well as the O(ε) contribution, we obtain the final result,

I(s)(p, λA, λq) =
3

(4π2)

(
log

4πµ2

eγE
− f0

)
, I(d)(p, λA, λq) = − /p

(4π)2
(αifi + βigi) ,

(B.52)

with i = 0, ..., 3. Using Cf(SU(3)) = 4/3 and g2 = 4παs, we ultimately arrive at

Σ
(s)
q̄q (p) = − αs

4π

4

3
δab3

∫
dµ

(s)
λ

(
log

4πµ2

eγE
− f0

)
,

Σ
(d)
q̄q (p) = − αs

4π

4

3
δab
∫

dµ
(d)
λ (αifi + βigi) . (B.53)

The analytic result agrees quantitatively with that of [468]. Performing above calculation
for arbitrary values of the gauge fixing parameter ξ, we reproduce the well-known one-loop
perturbation theory results for wave function renormalisation Zψ = 1− αsCfξ.

260
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The coefficients αi, βi implicitly defined in (B.50) read

α0 = − 2 , α1 = −
p2

0 − 4λ2
A + λ2

q

λ2
A

, α2 =
3p2

0

λ2
A

,

β0 = 0 , β1 =
p2

0 + λ2
q

λ2
A

, β2 = −3p2
0

λ2
A

. (B.54)

The functions fi and gi are defined as in Appendix A of [5] with λ1 = λA, λ2 = λq.

B.6.2. Spectral renormalisation

The quark self-energy diagram is linearly divergent. While the momentum integrals are
finite due to dimensional regularisation, the spectral integrals are not. This is due to the
fact that the dimensional limit ε→ 0 is taken before performing the spectral integrals. This
is necessary however in order to solve the spectral integrals in a fully numerical fashion. In
consequence, the spectral integrals require regularisation. To that end, we apply spectral
BPHZ renormalisation. This scheme renormalises the spectral integral by subtracting a
Taylor expansion of the spectral integrand such that the integral converges. For details
on the procedure, we refer to [1]. Below, we only provide the renormalised expressions
corresponding to the renormalisation conditions (5.67).

Since the superficial degree of divergence of the quark self-energy is one, it is sufficient
to subtract the 0th order Taylor expansion. The renormalised DSE reads

Γ
(2)
q̄q (p) = i/p+m−

(
Σq̄q(p)− Σq̄q(µ)

)
. (B.55)

B.6.3. Evaluation at real frequencies

In order to obtain the realtime expression for the quark self-energy diagram, in all coef-
ficients αi, βi as well as in the functions fi and gi the substitution p0 → −i(ω + i0+) is
performed. The limit 0+ is taken analytically. It is crucial to stay on the correct side of
the branch cut. A cross-check if this is the case is can be done by comparing the analytic
limit to the numeric expression using a small, finite (positive) value for 0+.
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B.7. Solving the quark-photon vertex BSE

The algebraic expressions presented in this section were provided by [420].

In this section, we will detail how the quark-photon vertex BSE in Section 6.3.3 is solved.

B.7.1. Basis transformations

The tensor basis of the quark-photon vertex is twelve-dimensional. A particularly useful
basis is given by a split into transverse and longitudinal tensor structures Tµj resp. Gµj ,
which we employ in (6.40) and repeat here,

Γµ(Q, p) =
4∑

j=1

gj(p
2, ω,Q2)iGµj (Q, p) +

8∑

j=1

fj(p
2, ω,Q2)iTµj (Q, p) , (B.56)

with the respective dressing functions gj , fj . The basis elements explicitly read

Gµ1 = γµ, Tµ1 = tµνQQγ
ν , Tµ5 = tµνQQiqν ,

Gµ2 = qµ/q, Tµ2 = ω tµνQQ
i

2

[
γν , /q

]
, Tµ6 = tµνQQq

ν
/q

Gµ3 = iqµ, Tµ3 =
i

2
[γµ, Q] , Tµ7 = ω tµνQqγ

ν

Gµ4 = ω
i

2

[
γµ, /q

]
, Tµ4 =

1

6
[γµ, /Q, q] , Tµ8 = tµνQq

i

2

[
γν , /q

]
, (B.57)

where

ω = q ·Q = z|q||Q|, tµνab = a · bδµν − bµaν . (B.58)

The commutators are defined as

[A,B] = AB −BA , [A,B,C] = [A,B]C + [B,C]A+ [C,A]B . (B.59)

Writing the quark-photon vertex as

Γµ(Q, p) =
12∑

j=1

Fj(p
2, ω,Q2)itµj (Q, p) , (B.60)

with Fj ∈ {gj , fj} and tµj ∈ {G
µ
j , T

µ
j }, we notice that the basis (B.57) is not orthonormal,

1

4
Tr
[
t̄µi (Q, p)tµj (Q, p)

]
6= δij . (B.61)

This makes it unsuitable for practical numerical calculations. An orthonormal basis can
be constructed efficiently by going to the coordinate frame defined by,

Qµ =
√
Q2




0
0
0
1


 , kµ =

√
p2




0
0√

1− z2

z


 , k′µ =

√
q2




0√
1− z′2

√
1− y2√

1− z′2y
z′


 .

(B.62)
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There, we can define the vectors

dµ = Q̂µ =
Qµ√
Q2

, rµ = k̂⊥
µ

=
kµ⊥√
k2
⊥

, kµ⊥ = kµ − k ·Q
Q2

Qµ , (B.63)

implying

dµ =




0
0
0
1


 , rµ =




0
0
1
0


 , r′µ =




0√
1− y2

y
0


 , (B.64)

which are orthonormal, as can be easily verified.
Next, we define transversely projected γ-matrices by

γµ⊥ = γµ − dµ/d− rµγ,
(
γµ⊥
)′

= γµ − dµ/d− r′µ/r′ , (B.65)

eventually allowing us to express the quark-photon vertex in the desired orthonormal
tensor basis as

Γµ(Q, p) =
12∑

j=1

aj(p
2, z,Q2)iτµj (Q, p) , (B.66)

with

τµ1 =
1√
2
γµ⊥ , τµ5 = rµ1 , τµ9 = dµ1 ,

τµ2 =
1√
2
γµ⊥/d , τµ6 = rµ/d , τµ10 = dµ/d ,

τµ3 =
1√
2
γµ⊥/r , τµ7 = rµ/r , τµ11 = dµ/r ,

τµ4 =
1√
2
γµ⊥/r/d , τµ8 = rµγ/d , τµ12 = dµγ/d . (B.67)

The basis (B.67) indeed obeys

1

4
Tr τ̄µi τ

µ
j = δij . (B.68)

Perform the change of basis from (B.57) to (B.67), the new dressing functions aj can be
related to the old ones via

g1 = a10 −
z

s
a11, g2 =

1

p2zs
a11, g3 = − i

pz
a9, g4 =

i

p2Qzs
a12 , (B.69)

and

f1 =
1

Q2s2

(
a1√

2
+ zs (a6 + a11)− z2a7 − s2a10

)
, f5 = − i

pQ2s

(
a5 −

s

z
a9

)
,

f2 = − i

p2Q3s2

(
a2√

2
− a8 +

s

z

(
a3√

2
+ a12

))
, f6 = − 1

p2Q2s2

(
a1√

2
− a7 +

s

z
a11

)

f3 =
i√
2Q

(
−a2 +

z

s
a3

)
, f7 = − 1

p2Q2s2

(
a1√

2
− a7 +

s

z
a6

)

f4 =
1√

2pQs
a4, f8 =

i

p2Qs2

(
a2√

2
− a8

)
. (B.70)
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The combination of the two quark propagators and the QPV on the RHS of the BSE (6.48)
has exact same momentum and tensor structure as the QPV itself. Hence, it must have
the same tensor decomposition, and we can write

Gq(p+)Γµ(Q, p)Gq(p−) =

12∑

j=1

bj(p
2, z,Q2)iτj(Q, p) . (B.71)

Substituting this into the RHS of the BSE (6.48) while working with the same tensor
decomposition for the QVP (B.66), we can exploit the orthonormality relations (B.68) to
arrive at a purely scalar form of the equation,

ai
(
p2, z,Q2

)
= Z2a

0
i +

12∑

j=1

∫

q
g(p− q)Kij

(
p2, q2, z, z′, y,Q2

)
bj
(
q2, z′, Q2

)
,

bi
(
p2, z,Q2

)
=

12∑

j=1

Gij
(
p2, z,Q2

)
aj
(
p2, z,Q2

)
, (B.72)

where the kernels Kij , Gij are given by

Kij

(
p2, q2, z, z′, y,Q2

)
= Tαβl

1

4
Tr
{
τ̄µi (Q, p)γατµj (Q, q) γβ

}

Gij
(
p2, z,Q2

)
=

1

4
Tr
{
τ̄µi (Q, p)S (p+) τµj (Q, p)S (p−)

}
, (B.73)

and a0
i = 1

4 Tr τ̄µi γ
µ.

B.7.2. Lorentz traces

The Lorentz traces in (B.73) can be worked out explicitly. The inhomogeneous term in
the BSE reads

a0
i =

1

4
Tr {τ̄µi γµ} =





√
2 i = 1

1 i = 7, 10

0 else.

. (B.74)

For the sake of a more compact notation, using l = p− q, we define

u =p
√

1− z2 , u′ = q
√

1− z′2, V =
pz − qz′

l2
,

w =
u2

l2
, w′ =

u′2

l2
, X =

uu′

l2
. (B.75)
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The kernel entries of (B.73) are then completely determined by

K11 = − 1 + y2

2
− y

(
1− y2

)
X, K16 =

√
2
(
1− y2

)
u′V,

K22 = − 1 + y2

2

(
1− 2l2V 2

)
+ y

(
1− y2

)
X, K61 = −

√
2
(
1− y2

)
uV,

K33 = y
(
1− 2l2V 2

)
−
(
1− y2

)
X, K17 = − 1− y2

√
2

(
1 + 2w′ − 2yX

)
,

K44 = y +
(
1− y2

)
X, K71 = − 1− y2

√
2

(1 + 2w − 2yX),

K55 = 3y, K23 =
(
2yu−

(
1 + y2

)
u′
)
V,

K66 = − y
(
1 + 2l2V 2

)
, K32 = −

(
2yu′ −

(
1 + y2

)
u
)
V,

K77 = − y2
(
3− 2l2V 2

)
+ 2y

(
1− y2

)
X, K67 = 2y

(
u′ − yu

)
V,

K88 = y2 − 2y
(
1− y2

)
X, K76 = − 2y

(
u− yu′

)
V , (B.76)

and

K28 = K71 +
√

2
(
1− y2

)
,

K82 = K17 +
√

2
(
1− y2

)
,

K38 = −K61,

K83 = −K16,




K99

K10,10

K10,11

K11,10

K11,11

K12,12




=
1

y




K55

K66

K67

K76

K77

K88



, (B.77)

and all other elements zero.

The propagator kernel can be decomposed as

Gij
(
p2, z,Q2

)
= σv

(
p2

+

)
σv
(
p2
−
)
G̃ij

(
p2, z,Q2

)
. (B.78)

Defining

ΣM =
M
(
p2

+

)
+M

(
p2
−
)

2
, ∆M =

M
(
p2

+

)
−M

(
p2
−
)

p2
+ − p2

−
, M̄2 = M

(
p2

+

)
M
(
p2
−
)
,

(B.79)

we can write the kernel entries G̃ij as

G̃11 = M̄2 + p2 − Q2

4
, G̃12 = iQ

(
ΣM − 2p2z2∆M

)
,

G̃22 = M̄2 −
(
1− 2z2

)
p2 − Q2

4
, G̃13 = − 2ip2Qz

√
1− z2∆M ,

G̃33 = M̄2 +
(
1− 2z2

)
p2 +

Q2

4
, G̃23 = 2p2z

√
1− z2,

G̃44 = M̄2 − p2 +
Q2

4
, G̃24 = 2ip

√
1− z2ΣM ,

G̃14 = − pQ
√

1− z2 G̃34 = ipz
(
Q2∆M − 2ΣM

)
, (B.80)

265



B.7. Solving the quark-photon vertex BSE

The other elements follow from the fact that G is symmetric,




G55

G56

G66

G77

G78

G88




=




G99

G9,10

G10,10

G11,11

G11,12

G12,12




=




G44

G34

G33

G22

G12

G11



,




G57

G58

G67

G68


 =




G9,11

G9,12

G10,11

G10,12


 = −




G24

G14

G23

G13


 , (B.81)

and all other elements vanish.
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B.8. Calculating the hadronic vacuum polarisation

The algebraic expressions in this section were provided by [420].

In this section, we details the calculation of the hadronic vacuum polarisation carried out
in Section 6.3.2.

Substituting (6.40) into (6.39) yields

Πµν
0 (Q) = 4e2Z2

∫

q

gq(q+)qq(q−)

Zq(q+)Zq(q−)




4∑

j=1

gjG
µν
j +

8∑

j=1

fjT
µν
j


 , (B.82)

where

Gµνj =
1

4
Tr
[
iγµ
(
−iq+ +M(q2

+)
)

iGνj
(
−iq− +M(q2

−)
)]
,

Tµνj =
1

4
Tr
[
iγµ

(
−iq+ +M(q2

+)
)

iT νj
(
−iq− +M(q2

−)
)]
. (B.83)

Here and in the following, we parametrise the four-dimensional momentum integral as
∫

q
=

∫
d4q

(2π)4
=

1

(2π)4

∫ ∞

0
dq2q2

∫ 1

−1
dz
√

1− z2

∫ 1

−1
dy

∫ 2π

0
dφ . (B.84)

The transverse and diagonal parts of the HVP (6.41) can be projected onto via

Π0(Q) =
δµν − 4Πµν

‖ (Q)

3Q2
Πµν

0 (Q) , Π̃0(Q2) = Πµν
‖ (Q)Πµν

0 (Q) , (B.85)

with the longitudinal projection operator Πµν
‖ as defined in (3.64). Explicitly carrying out

the projections in (B.85) yields that the diagonal part vanishes by means of the WTI,
see (6.42). The transverse part takes the form

Π0(Q2) = 4e2Z2

∫

k

gq(q+)qq(q−)

Zq(q+)Zq(q−)




4∑

j=1

gjcj +

8∑

j=1

fjdj


 , (B.86)

where the functions cj , dj are defined by

cj =
δµν − 4Πµν

‖ (Q)

3Q2
Gµνj , dj =

δµν − 4Πµν
‖ (Q)

3Q2
Tµνj . (B.87)

Explicitly, they read

c1 =
1

2
+ V, d3 = Z ,

c2 =
1

4
(w + 2VX−) , d4 = w ,

c3 = −q2z2∆M −VΣM , d5 = −wΣM ,

c4 = q2z2
(
ΣM +Q2V∆M

)
, d6 = w

(
q2 − 1

2
X+

)
,

d1 = w −X+, d7 = −q2z2X+ ,

d2 = q2Q2z2 (Z− 2w∆M ) , d8 = q2Z−wΣM . (B.88)

267



B.8. Calculating the hadronic vacuum polarisation

In (B.88), we made use of the definitions

X± = q2 − Q2

4
±
(
Σ2
M − q2Q2z2∆2

M

)
,

Z = ΣM − 2q2z2∆M ,

w =
2q2

3

(
1− z2

)
,

V =
2q2

3Q2

(
1− 4z2

)
. (B.89)
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C. Numerical procedures

In this appendix, we present details on the numerical procedures used in the investigations
presented in this thesis. To allow for a clear assignment, the structure of this appendix
follows that of the main body of this thesis. Accordingly, the following sections carry the
names of the respective sections in the thesis.

C.1. Mass generation for the gluon

In this section, we elaborate on the numerical procedures of Section 3.2.

C.1.1. Fitting procedure

Formally, the coefficient Zcond in (3.117) is defined via an operator product expansion of
the gluon propagator, and stems from the local operator (3.87). The present computation
of the effective potential Weff is detailed in Appendix B.2, Appendix B.1, Appendix B.3
and uses the scaling propagator from [95]. The latter is obtained within a quantitative ap-
proximation of the coupled set of functional equations for Yang-Mills correlation functions,
for respective DSE results see [93]. In [95], also decoupling solutions have been computed
including a lattice-type solution, for respective lattice propagators see [98, 182].

The extraction of the p4-coefficient stemming from (3.87) requires the distinction of
the infrared dynamics in the propagator, which in the present approach relates to the
emergence of the color condensates, from the coefficients of the local operators. This mixing
for small momenta makes it impossible to extract the p4-coefficient in an expansion about
p = 0 without further information on the momentum dependence of the condensate.
We shall evaluate the propagator for sufficiently large momentum scales, for which the

Zcond [GeV−2]

scaling (fRG) 0.168(31)

decoupling (lattice) 0.129(19)

decoupling (fRG) 0.1147(22)

Estimate 0.149(19)

Tabelle C.1.: Extrapolation results for the wave function renormalisation Zcond at p = 0
based on the fit results for Zcond(pmin) as a function of the lower fit interval
bound pmin, see Figure C.1. The final estimate is obtained as the average
of the scaling fRG and decoupling lattice data. In order to conservatively
estimate possible systematic uncertainties (see text), we use the separate
scaling fRG and lattice results as error bars.
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Abbildung C.1.: Linear extrapolation of Zcond to the lower fit interval bound pmin = 0,
yielding Zcond = 0.149(19). The explicit fit results for Zcond are obtained
via a fit of (C.1) to the scaling fRG data of [95] (blue squares), and to
the lattice data of [128, 182] (green squares). Zcond, being defined as the
operator product expansion coefficient should be extracted at p = 0: we
extract this information from an extrapolation of the fit results towards
p = 0 (red squares), and use as a minimal pmin ≈ 0.8 GeV, below which
the details of the implementation of the IR dynamics begin to matter.
The triangular data points mark fit results for pmin below the fit regime
for the interpolation. The final estimate for Zcond ((C.5) and (3.141))
is obtained as the mean of the lattice and scaling fRG results for Zcond,
whose numerical values can be found in Table C.1.

condensate vanishes, 〈F 〉 → 0. The cutoff scale resembles the momentum scale p, indeed
it is introduced in the two-point function itself as a momentum cutoff. Hence, we deduce
from the flow of the minimum ofWeff depicted in Figure 3.3, that the condensate vanishes
for p & 1/2 GeV. Accordingly, we determine Zcond from fits

Zfit
a (p2) =

Zm
p2

+ Zp2 + Zcond p
2 (C.1)

to the gluon wave function Za(p
2) in the momentum regime

p ∈ [pmin , pmax] , (C.2)

with

pmin ∈ [0.77, 1.27] GeV , pmax ∈ [1.95, 2.23] GeV , (C.3)

where the range of values for pmin is adapted to the data points of the sparse fRG data.
The upper bound pmax is chosen such, that the interval sustains a Taylor expansion

while containing a sufficient amount of data points for fitting, also adapted to the fRG
data points. Its maximum value is further constrained by the UV boundary of the lattice
data from [182], which are used for comparison as well as the error estimate, together with
the lattice data from [128].

The constants Zm, Zp2 and Zcond in (C.1) are fit parameters. Here Zm takes care of
the infrared gapping dynamics, and Zp2 related to a standard (infrared) wave function
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C.1. Mass generation for the gluon

renormalisation. Both parts carry the details of the IR behaviour of the propagator and
may vary largely for different solutions. In turn, the coefficient Zcond should not.

We perform the fits for different values of the lower fitting interval bound pmin. For every
fit, pmax is varied between the points in the pmax interval, comp. (C.3). In addition, we
transform the lattice and fRG data sets into the respective (inverse) dressing function and
inverse propagator, and fit those with the respective fit functions corresponding to (C.1).
This provides us with a Zcond(pmin) given as the average over the single fit results for the
different values of pmax and representations of the data set, with uncertainty given by the
standard deviation.

Eventually, we extract the wave function renormalisation Zcond at p = 0 via a limiting
procedure as

Zcond = lim
pmin→0

Zcond(pmin) . (C.4)

The limit is obtained within an extrapolation of the Zcond(pmin) discussed below. We
extract Zcond from both, the scaling fRG data of [95] and the lattice solution [182], see Fi-
gure C.1 and Table C.1 for the numerical values. We also provide Zcond from a lattice-type
fRG decoupling solution for comparison in Table C.1. When lowering the lower fit interval
bound pmin, the results for Zcond differ more and more. This can be attributed to the
different infrared behaviour of the two data sets. Accordingly, we exclude as many incom-
patible data points as possible from the extrapolation fit regime while keeping enough
data for a meaningful prediction of Zcond(p = 0).

As the data from [95] are relatively sparse and hence the respective Zcond(pmin) and
the extrapolation show large error bars, we support this extrapolation with one obtained
from dense fRG data provided in [96, 469]. While the approximation used in the latter
computations is not as sophisticated as that used in [95], it allows for a relatively quick
production of dense data. The scaling solution of [96] yields Zcond = 0.166(33), which
agrees extremely well with the scaling solution estimate of [95], comp. Table C.1.

Our final estimate for Zcond is obtained by averaging the scaling fRG and lattice result,
yielding

Zcond = 0.149(19) . (C.5)

The error bars are given by the separate extrapolation results for scaling fRG and lattice
data in order to incorporate systematic uncertainties such as the influence of the different
infrared behaviours.
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Abbildung C.2.: Example of a convergent iteration of the scalar DSE with classical ver-
tices. The curves were not rescaled by the respective mass poles to de-
monstrate convergence of the iteration also for the pole mass. Instead,
renormalisation was done at µ = 0. Units thus given by the input pa-
rameters. The spectral functions are alternating, approaching the final
orange curve (left). 20 iterations have been performed. The curves from
iterations 10 to 19 were left out as they were graphically indistinguishable
from the final curve. An iterative behaviour as displayed is taken to be
convergent, i.e. signalling a solution to the DSE where left and right-hand
side of the equation coincide. The corresponding pole positions also con-
verge very quickly (right). Left of the convergence boundary, assuming a
(relative) precision of 10−4, all points are identical.

C.2. Spectral Dyson-Schwinger equations

This section elaborates on the numerical procedures in Section 4.1.
In order to compute the spectral integrals in (4.22), the integrands Ij are discretised on

suitable, evenly spaced momentum grids of usually around 100 points. The grids are chosen
differently for each diagram such that peaked or discontinuous structures like the onset
jumps in the imaginary parts are ideally resolved. The spectral integrations are performed
numerically in Mathematica with standard global adaptive integration strategies using
a relative precision goal of 10−3. All diagrams are interpolated separately in real and
imaginary part in order to treat the sharp onset of the imaginary parts properly. All
interpolations are performed using B-splines up to order 2 as all interpolants are real due
to the split of real and imaginary part. The spectral function is then computed from the
interpolated diagrams.

For a given set of parameters, convergence was usually reached within less than 10 ite-
rations. Figure C.2 demonstrates convergent behaviour. We estimate the relative precision
of our routine to be ≥ 10−4. Based on that, all mass poles shown in the right panel of Figu-
re C.2 left of the convergence boundary are indistinguishable. Normalising the scattering
onsets of all spectral functions in the left panel to be identical, the continuous tail also
converges pointwise beyond the convergence boundary, based on above precision estimate.
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Abbildung C.3.: Spectral difference ∆GA on the real (left) and imaginary (right) frequen-
cy axis. Squares indicate the numerical values of ∆GA, while solid lines
mark the corresponding fit Gapprox

A by a pole on the real frequency axis,
cf. (5.36). The best fit for the spectral difference is constructed on the
level of the dressing function, as displayed above. The fit describes the
Euclidean well. On the Minkowski axis, only the asymptotic tails are fit-
ted, and the fit works well in this regime. In the mid-momentum regime
of the real axis however, numerous wiggles suggests that multiple pairs
of complex conjugate poles are present. The region is explicitly excluded
from the fit.

C.3. Complex structure of Yang-Mills theory

This section details the numerical procedures in Section 5.1.

C.3.1. Spectral difference

This appendix discusses the fitting procedure that is used to take the spectral diffe-
rence (5.34), i.e., the difference between the spectral and full gluon propagator, into ac-
count. The spectral difference is evaluated on both real and imaginary frequency axis. The
obtained result is fit with a simple pole on the real frequency axis, comp. (5.36), using Ma-
thematica’s NonlinearModelFit routine. We select Newton’s method for the optimisation
and explicitly specify gradient and hessian of the fit function. The trust region method is
employed for step control. Further, we assign weights wi to the (real and imaginary) fre-
quency grid points. It turned out to be beneficial for the convergence to choose wi = |p2

0|,
where p0 stands for both real or imaginary frequencies. This results simply in fitting the
spectral difference of the gluon dressing function instead of the propagator. In consequence,
the fitting routine puts a lot more weight on the UV instead of the IR, which is the case
when fitting the propagator. The fact that this increases stability can be well understood
considering that the effect of the deep IR behaviour of the gluon propagators in the DSE
diagrams (comp. Figure 5.2) is relatively subleading compared to the UV behaviour.

In order to assess the quality of the employed fit, it is hence sensible to consider the
spectral difference for the gluon dressing function, as shown in Figure C.3. The left panel
shows the spectral difference as compared to the fit on the realtime axis. The grey shaded
area is explicitly excluded from the fit, such that only the asymptotic tails are taken into
account. As emphasised in Section 5.1.5.1, it can be clearly seen that the employed fit
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Abbildung C.4.: Evolution of the pole positions (red) and residues (blue) of the spec-
tral difference fit GχA defined in (5.36) under change of m2

A. The residues
mirror the spectral violations Vspec defined in (5.38) and shown in Figu-
re 5.7. If the spectral violation is negative, i.e. the Källén-Lehmann part
GχA is smaller than the full gluon propagator GA, the spectral difference
and, correspondingly the residue, are positive, and vice versa. Decrea-
sing stability of the iteration and worsening fit precisions towards smaller
m2
A, which can be also seen when comparing the spectral difference ∆GA

and its fit GχA, shown in Figure C.3, also manifest themselves in non-
monotonous behaviour of χ.

function is not able to capture the full structure of the spectral difference. The asymptotic
tails are well fit, however. Taking a closer look at the excluded region in fact suggest the
existence of multiple pairs of complex conjugate poles. A single complex conjugate pole
term accounts for each one local maximum and minimum in the spectral difference. A
rough estimate for the number of (leading order) pairs of poles can thus be obtained by
just counting positive/negative peaks.

The Euclidean spectral difference for the gluon dressing is displayed in the left panel
of Figure C.3. As for the asymptotic regions on the real frequency axis, the fit works well
here. However, comparing the fit quality between the different values of m2

A, the worst fit
is obtained for smallest m2

A.

C.3.2. Spectral integration

This section elaborates on the numerical treatment of the spectral integrals, which are of
the form

∫

{λi}

∏

i

λiρi(λi)Iren

(
p, {λi}

)
, (C.6)

where Iren is the renormalised spectral integrand (comp. (5.28) or (5.30)), are evalua-
ted numerically on a logarithmic momentum grid of 100-200 grid points with boundary
(pmin, pmax) = (10−4, 102), identically for the Euclidean and Minkowski axis. We use a
global adaptive integration strategy with default multidimensional symmetric cubature
integration rule. After spectral integration, the diagram is interpolated with splines in
the Euclidean and Hermite polynomials in the Minkowski domain, both of order 3. The
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Abbildung C.5.: Convergence of a gluon (left) and ghost (right) spectral function through
iteration of the DSE for m2

A = −1.1. As an initial guess, the solution for
m2
A = −1 is used. The colour coding indicates the iteration number niter.

After about 10 iterations, the curves become visually indistinguishable,
i.e. the iteration converges.

spectral function is then computed from the interpolants. Note that, a priori, due to (4.4),
the domain of the ghost spectral function is given by the momentum grid. The integra-
tion domain of the spectral integral of the ghost spectral parameter has to be bounded
by (pmin, pmax), in order to not rely on the extrapolation of the spectral function beyond
the grid points. Due to numerical oscillations at the very low end of the grid, we choose
(λmin
c , λmax

c ) = (10−3.5, 102). Convergence of the integration result with respect to increase
of the integration domain has been explicitly checked.

C.3.3. Spectral integrands

The numerical performance of the spectral integrations presented in Appendix B.5 is
sped-up by up to two orders of magnitude by using interpolating functions of the nume-
rical data. The interpolants are constructed by first discretising the integrand inside the
three-dimensional (p, λ1, λ2) cuboid defined by p ∈ 10{−4,2}, λ1,2 ∈ 10{−4,4}. As for the
momentum grid for the spectral integration, we use the same cuboid for the real- and
imaginary-time domain. We use 60 grid points in the momentum and 160 grid points in
the spectral parameter integration, both with logarithmic grid spacing. For the realtime
expressions, we divide into real and imaginary part of the integrands. Both real and ima-
ginary parts of the discretised Minkowski as well as the Euclidean expressions are then
interpolated by three-dimensional splines inside the cuboid. The resulting interpolating
functions are then used in the spectral integration.

C.3.4. Convergence of iterative solution

The iterative procedure applied to solve the coupled system of DSEs in this work is de-
scribed in Section 5.1.2.5. For each value of m2

A, the iterations is initiated with spectral
functions from the previous (larger) value of m2

A. It converges rapidly, see Figure C.5.
The very first initial guess for the gluon spectral function has been obtained heuristically
by trial-and-error from previous iteration results and has not been stored. For the ghost
spectral function, a massless pole in the origin with residue 1 was used.
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C.3.5. Scale setting and normalisation

In order to provide data which can be compared to the lattice, we need to fix the mo-
mentum scale and global normalisation of both fields. This is done by introducing two
rescaling factors via

Z
(lat)
c/A (pGeV) =Nc/A Zc/A(c · pinternal) , (C.7)

The normalisation of ghost and gluon field Nc/A as well as (common) momentum rescaling
factor c are then determined by fitting the Euclidean ghost and gluon dressing functions
in (C.7) to the Yang-Mills fRG data of [95], which is itself properly rescaled to match the
lattice data of [98]. For the gluon, during the fit an additional constant term ∆m2

A needs

to be allowed on the level of Γ
(2)
AA in order to compensate for possible differences in the

constant part of Γ
(2)
AA. Note that this term is only introduced to correctly determine NA

and c, and is removed again after rescaling.
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Abbildung C.6.: Convergence of an exemplary spectral function through iteration of the
DSE. The colour coding indicates the iteration number niter. After about
10 iterations, the curves become visually indistinguishable, i.e., the itera-
tion converges.

C.4. Ghost

This section elaborates on the numerical treatment of the spectral integrals as well as the
spectral integrands in Section 5.2.

C.4.1. Spectral integration and convergence

The spectral integrals of the form

∫

{λi}

∏

i

λiρi(λi)Iren

(
p, {λi}

)
, (C.8)

where Iren is the renormalised spectral integrand (comp. (5.28) or (5.30)), are evaluated
numerically on a logarithmic momentum grid of about 200 grid points with boundary
(pmin, pmax) = (10−4, 102), identically for the Euclidean and Minkowski axis. We use a
global adaptive integration strategy with default multidimensional symmetric cubature
integration rule. After spectral integration, the diagram is interpolated with splines in
the Euclidean and Hermite polynomials in the Minkowski domain, both of order 3. The
spectral function is then computed from the interpolants. Note that, a priori, due to (4.4),
the domain of the ghost spectral function is given by the momentum grid. The integration
domain of the spectral integral of the ghost spectral parameter has to be bounded by
(pmin, pmax), in order to not rely on the extrapolation of the spectral function beyond
the grid points. Due to numerical oscillations at the very low end of the grid, we choose
(λmin
c , λmax

c ) = (10−3.5, 102). Convergence of the integration result with respect to increase
of the integration domain has been explicitly checked.

For the gluon spectral integral, the situation is different, as the spectral function is
given in an algebraic form from [243]. We use the integration boundary (λmin

A , λmax
A ) =

(10−4, 102).
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Abbildung C.7.: Ghost spectral functions (solid lines) compared to their fits via an-
satz (5.47). The best fit parameters are listed in Table C.2. The change
of sign around 1.2 GeV is an imprint of the oscillations of the input
reconstructed gluon spectral function from [243] and is discussed in Ap-
pendix C.4.4.

C.4.2. Spectral integrands

The numerical performance of the spectral integrations presented in Appendix B.5 is
sped-up by up to two orders of magnitude by using interpolating functions of the nume-
rical data. The interpolants are constructed by first discretising the integrand inside the
three-dimensional (p, λc, λA) cuboid defined by p ∈ 10{−4,2}, λc/A ∈ 10{−4,4}. As for the
momentum grid for the spectral integration, we use the same cuboid for the real- and
imaginary-time domain. We use 60 grid points in the momentum and 160 grid points in
the spectral parameter integration, both with logarithmic grid spacing. For the realtime
expressions, we divide into real and imaginary part of the integrands. Both real and ima-
ginary parts of the discretised Minkowski as well as the Euclidean expressions are then
interpolated by three-dimensional splines inside the cuboid. The resulting interpolating
functions are then used in the spectral integration.

C.4.3. Convergence of iterative solution

The DSE is solved iteratively, as described in Section 5.1.2.5. It is initiated with a classical

spectral function, ρ
(0)
c (ω) = π δ(ω2). It converges rapidly, see Figure C.6.

C.4.4. Spectral fits

As discussed in Section 6.1.3, we provide a ready-to-use analytic fit formula for the
ghost spectral function, see (5.47). For our best fit we use N = 3, the fit parameters
for the ghost spectral functions for all input gluon propagators are listed in Table C.2.
We show the spectral functions and their respective fits on a log-log scale in Figure C.7.
For GA(0) [GeV−2] = 4.4 and 1.9, the spectral functions feature a change of sign between
1.2 and 1.3 GeV. These wiggles are imprints of the oscillations in the input reconstructed
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1.9
4.4

(lat)
GA(0) δpeak

1.89930
1.61917
1.13871

δ1
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3.91085
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γc
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Γ̂peak
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Γ̂1
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Γ̂3
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ZUV
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ρ̂0
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cpeak
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c1
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c2

-1.1422
-0.0321321
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c3

1.13776
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0.00148406

νUV

13.5935
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νIR
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-195.657

ν1
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80.9258
7800.45

ν2

-28.7442
-13.3501

- 6.45

Λ̂UV

1.92012
2.18064
0.967466

Λ̂IR

0.374992
0.0775041
0.0816488

Λ̂1

0.0998299
0.0721607
-0.0648268

Λ̂2

0.759367
0.762104

0

Tabelle C.2.: Best fit parameters for the ansatz (5.47) of the spectral functions for the
different solutions. As indicated in the top right cell, in each cell the first line
contains the fit parameter of the ghost spectral function corresponding to the

lattice-like input gluon propagator G
(lat)
A , the second to GA(0) = 4.4 GeV−2

and the last line to the scaling-like GA(0) = 1.9 GeV−2.

gluon spectral function of [243], and can be understood as numerical artefacts from the re-
construction process. However, in order to match the original Euclidean dressing function
1/Zc(p) in the UV (comp. Figure 5.13), it is necessary to keep the respective oscillatory
behaviour in the fit.
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C.5. Spectral reconstruction of ghost and gluon

In this section, we comment on certain points of the numerical implementation of Sec-
tion 5.3 in more detail. We first address numerical aspects of the optimisation and a
discussion of the required computational effort. Subsequently, we provide further informa-
tion about data usage, kernel design choices and theoretical constraints for the particular
reconstructions reported in Section 5.3.

C.5.1. Hyperparameter optimisation and computational cost

To find optimal values for the kernel’s hyperparameters, we perform a fine-grained grid
scan of the NLL with additional hyperpriors where necessary. Alternatively, the NLL may
also be minimized with a gradient-based ansatz using a standard optimizer such as L-
BFGS. However, mapping out the posterior distribution in more detail tends to be highly
instructive for the problem at hand. It is also less prone to numerical problems such as
unstable directions and violation of positive definiteness of the covariance, as these can be
identified early on, and should hence be preferred when feasible. This is also where the bulk
of the computational effort goes, as it involves calculating for each individual grid point
the comparably expensive inverse and determinant of the covariance matrix, which naively
scales like O(N3). For very large datasets where their direct evaluation becomes infeasible,
one may resort to cheaper linear solvers for the inverse and stochastic approximations of
the determinant, but this is unlikely to become necessary in this particular context. Cost
may also be mitigated by scanning the parameter space hierarchically, starting at low
resolution and zooming into the interesting regions.

The whole procedure is trivially parallelisable, as each grid point can be treated inde-
pendently. At the scale of the present work, each instance was handled by a standard CPU
node with low performance requirements. Some first tests were also conducted on a single
machine, where mapping out the parameter space for each reconstruction with medium re-
solution took a few hours at most. In comparison to finding the optimal hyperparameters,
the subsequent inference step is negligibly cheap. Of course, the total computational effort
for the reconstruction is dwarfed by the requirements of the large-scale lattice simulations
described in Appendix A.10.1, which are orders of magnitude more expensive.

C.5.2. Reconstruction Details

C.5.2.0.1. Ghost In the case of the ghost spectral function, we treat the low-frequency
asymptotics extracted from the direct DSE computation in Yang-Mills theory as an ad-
ditional observation for the GP. This is only possible for the ghost, as a similarly direct
determination of the Yang-Mills gluon spectral function is currently not available. The
procedure is implemented by including the value of ρ at ω = 0 in the construction of
the joint distribution of observations and predictions. In particular, one needs to compute
additional expressions for the covariances of the point ρ(0) and the correlator data. This
requires some programming headache, but carries no further conceptual difficulty.

As stated in the main text, we use the standard RBF kernel and identify optimal hyper-
parameters via a high-resolution grid scan. We note an unstable direction in the magnitude
parameter σC , which is cured by subjecting it to a zero-mean Gaussian hyperprior. As an
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Abbildung C.8.: Heatmap of the NLL as a function of the RBF kernel hyperparameters
σC , l for the reconstruction of the ghost spectral function, with an addi-
tional zero-mean Gaussian hyperprior for σC . A unique minimum can be
identified, which provides the optimal values used for the results shown
in the left panels of Figure 5.16 and 5.17.

illustrative example, the heatmap for the NLL including this additional regularization
term for σC is shown in Figure C.8.

C.5.2.0.2. Gluon In the case of the gluon spectral function, no realtime result in Yang-
Mills theory is available to fix the asymptotics. However, as an additional theoretical
constraint we require the solution to respect the aforementioned OZS condition defined in
(5.49). While one might expect this to further complicate the reconstruction, it actually
helps in narrowing down the space of plausible solutions. The condition can simply be
enforced approximately by treating it as an additional indirect observation and checking
it a posteriori. The associated transformation is here just the convolution with ω instead
of the KL integral. We confirm that the OZS condition is fulfilled with a relative accuracy
of ∼1%, computed by evaluating the ratio of the left-hand side of (5.49) and the same
expression using the modulus of the integrand, i.e.

∫∞
0 dω |ωρA(ω)|.

As mentioned in the main text, we find it helpful to modify the standard RBF kernel by
non-linearly rescaling the frequency as ω → ω̃ = ω4(1 +ω4)−1 before computing the squa-
red distance. This leads to a strongly improved asymptotic stability of the reconstructed
spectral function, in particular at large frequencies, compared to just using ω itself. The
procedure may be interpreted either as a non-stationary modification of the kernel or as
a preprocessing step for the data to the same effect.
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C.6. Quark

This section elaborates on the numerical procedure of Section 5.4.

C.6.1. Iterative procedure

The spectral DSE is solved using a power iteration. The RHS of the DSE (5.64) is eva-

luated for a given quark spectral function ρ
(i)
q , where the superscript (i) now relates to the

iteration number and not the component of the quark spectral function. We then calculate

the spectral function of the next iteration ρ
(i+1)
q via (5.60). This procedure is iterated until

convergence of the pole position as well as the spectral tail by eyesight is reached. The ite-
ration is initialised with quark spectral function corresponding to the classical propagator.
In terms of vector and scalar component, they read

ρ(d/s)(ω) =
π

2
δ(ω −m) . (C.9)

Note that we omitted the ω < 0 contributions in (C.9). They can be obtained via the
symmetry relations (5.58).

C.6.2. Analytic structure during iterative solution

In this work, we solve the DSE iteratively via a power method, as described in Appen-
dix C.6.1. There arises a subtlety when solving the DSE this way while employing the
resonance-scattering split (A.78). Although the solution must exhibit a branch point sin-
gularity, this property usually does not hold while solving the equation. Staring from an
initial guess for the spectral function with pole position ω0, the pole positions ωi of sub-
sequent iterations moves to the right, i.e., ωi > ω0. Thus, ωi will always lie within the
support of the mass functions imaginary part, such that instead of a branch point singu-
larity, a very sharp peak appears. Once converged however, the pole position is no longer
moving and directly lies on the branch point, and the branch point singularity appears.
Technically, this property could be enforced by renormalisation during the iterations, i.e.,
we could use on-shell renormalisation to fix the pole position to always lie on the branch
point. Since, while keeping the coupling constant fixed, this would modify the scales of
our system which are already fixed by the gluon propagator input, we refrain from doing
so.

C.6.3. Determination of residues

Formally, the residues of the delta pole contributions in the resonance-scattering split (5.63)
are related to the quark propagator by (A.79). It turned out to be numerically more stable
to determine them by a fit to the Euclidean propagator data instead. For that, a momen-
tum scale pfit needs to be chosen. For the residue of the scalar part, we chose pfit = µ = 30
GeV. This ensured that also the propagator obtained from the spectral representation
respects the renormalisation condition for the mass function. This is in fact important for
numerical stability. The mass function becomes very small in the UV. A lack of numeri-
cal precision can violate positivity of the Euclidean mass function (obtained through the
spectral representation) in the UV. These negative parts introduce unstable directions in
the iteration which must be avoided in order to avoid a solution.

For the vector part, we specified pfit = 1 GeV.
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C.6.4. Spectral integration domain

In the resonance-scattering split (5.63), an onset for scattering tail needs to be chosen such
that the spectral representation is well satisfied. This needs to be done such that the pole
contribution has decayed sufficiently without neglecting relevant scattering contributions.
The onset scale is chosen such that the resonance-scattering split is reproduces the Eucli-
dean propagator as good as possible, see Appendix A.11.1. We use ωonset = mpole + 0.1
GeV, where mpole is the pole position of the respective resonance contribution.
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Abbildung C.9.: Behaviour of the spectral function when varying the midpoints µIR/UV

of the transition kernels to the asymptotic IR (left) and UV regimes
(right). The respective values of the parameters are colour-coded. The
resulting scan of the spectral functions is compared to the final result with
maximally enhanced asymptotics, displayed with a dashed blue line. The
error band obtained by varying the parameters of the asymptotics—as
indicated in Figure C.10—is given by the shaded blue area.

C.7. Non-perturbative timelike strong coupling constant

In this section, we comment on certain points of the numerical implementation of Sec-
tion 6.1 in more detail. We start with a brief recap of the GPR basics, followed by a
discussion of the incorporation of asymptotic information and details on the hyperpara-
meter optimisation.

C.7.1. GPR basics

Here, we briefly summarise the main aspects of the GPR reconstruction procedure. For a
more detailed overview, we refer to earlier works [3, 384] as well as Appendix A.9.

We assume our knowledge of the spectral function ρ(ω) before making observations of
the correlator to be described by a GP prior, written as

ρ(ω) ∼ GP(µ(ω), C(ω, ω)) , (C.10)

where µ,C denote the mean and covariance. The conditional posterior distribution for ρ(ω)
given observations of the propagator Gi at NG discrete Euclidean frequencies pi ≡ [p]i can
be derived in closed form,

ρ(ω)|G(p) ∼GP
(
wT (ω)(W + σ2

n1)−1G(p),

k(ω, ω)−wT (ω)(W + σ2
n1)−1w(ω)

)
, (C.11)

where

[w]i(ω) =

∫
dω′K(pi, ω

′)C(ω′, ω) ,

[W ]ij =

∫
dω′dω′′K(pi, ω

′)K(pj , ω
′′)C(ω′, ω′′) . (C.12)
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This is essentially equivalent to a standard result in probability theory for the closed-form
expression of a conditional multivariate normal distribution, but defined with a continuum
of random variables due to being a Gaussian process, as well as additional applications of
the integral transformation one seeks to invert. The equivalence becomes more concrete
in practice when the GP is evaluated for a finite set of predictions; however, the choice of
inference points ω is arbitrary within the given domain. In the above expressions, µ(ω) has
been set to zero since a GP can be fully specified by its second-order statistics and the prior
mean can be absorbed into C. The GP in (C.12) encodes our knowledge of the spectral
function after making observations of the correlator and accounting for observational noise
with variance σ2

n.
The covariance C(ω, ω′) is commonly defined via a so-called kernel function with few

hyperparameters, which may be subject to optimisation based on the associated likelihood.
A widely used parametrisation is the radial basis function (RBF) kernel, defined in (5.53).

C.7.2. Incorporating asymptotic information

With the knowledge of the IR and UV asymptotics, cf. Appendix A.13, an appropriate bias
can be introduced. It is chosen such that the kernel is restricted to the specified functional
basis as described in Section 6.1.2, while retaining the flexibility of the RBF kernel CRBF,
see (5.53), in the central region.

In order to achieve a smooth transition between the biased and unbiased kernels, we
employ smooth step functions of the form

θ±(ω;µ, `) =
1

1 + exp(±2(ω − µ)/`)
. (C.13)

The full kernel can then be written simply as a sum of the individual contributions,

k(ω, ω′) = kRBF(ω, ω′) + kIR(ω, ω′) + kUV(ω, ω′) , (C.14)

where

kRBF(ω, ω′) = θ+
IR(ω) θ+

IR(ω′) θ−UV(ω) θ−UV(ω′)CRBF(ω, ω′)

kIR(ω, ω′) = θ−IR(ω) θ−IR(ω′) ρIR(ω) ρIR(ω′)

kUV(ω, ω′) = θ+
UV(ω) θ+

UV(ω′) ρUV(ω) ρUV(ω′) .

The midpoints of the transition functions θIR/UV are specified by µIR/UV and their steepness
is controlled by `IR/UV.

C.7.3. GP kernel hyperparameters

Since the hyperparameters of the GP kernel control the behaviour of the resulting spectral
function, their choice is a pivotal step in the reconstruction. They are commonly determi-
ned via numerical optimisation by minimising (conventionally) the negative log-likelihood
(NLL),

− log p(ρ̂|σ) =
1

2
ρ̂T
(
Wσ + σ2

n1
)−1

ρ̂+

1

2
log det(Wσ + σ2

n1) +
N

2
log 2π , (C.15)
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Abbildung C.10.: Scans of the bias parameters defined in (C.14). We compare the quality
of the dressing reconstruction—quantified by χ2—when varying the mid-
point positions of the bias transition µIR/UV (left) as well as its steepness
`IR/UV (right). The values of the bias parameters chosen for the recon-
struction are marked by crosses. This choice maximises the size of the
regions dominated by the coupling infrared and ultraviolet asymptotics
while producing small χ2 reconstructions of the data. Additionally, the
parameters are then scanned in the flat directions, indicated by the hori-
zontal bars, in order to obtain the error estimation for the reconstruction
results shown in Figure 6.2.

where the dependence on the kernel hyperparameters σ is emphasised by an index.
The number of hyperparameters increases significantly when including the bias term

that enforces the correct asymptotics (C.14). Hence, the two parameters of the bare RBF
kernel are chosen first by minimising (C.15). The asymptotics are then introduced in the far
IR/UV and shifted towards the centre, all while monitoring the quality of the interpolation
of the dressing by computing χ2 at each step. We compare χ2 instead of the NLL for
different bias parameters, since the second term in (C.15) constitutes a complexity penalty
term. When considering an explicit functional basis, such a term is inherently in opposition
to the constraint for the analytically known asymptotics and is therefore excluded. We
observe that the bias kernel parameters have an open direction towards vanishing bias, e.g.,
for small µIR and large µUV. Spectral functions with µUV > 1.5 GeV show a growing number
of smaller oscillations in the UV which are a remnant of the global length scale introduced
in the RBF kernel; see the right panel ofFigure C.9. Accordingly, models in this parameter
region can be ruled out as sensible descriptions of the underlying physics of the coupling.
For µIR < 0.25 GeV, the resulting spectral functions do not change significantly; see the
left panel of Figure C.9. The change of χ2 when varying the asymptotic kernel parameters
is shown in Figure C.10, with the final settings used for the reconstruction indicated by
crosses. These parameters are explicitly chosen to maximise the regions dominated by the
asymptotics, without significantly increasing the error of the coupling reconstruction. All
final parameters of the GP model used to compute the results reported in this work are
listed in Table C.3.

The error estimation for the spectral function via the covariance of the posterior dis-
tribution does not include the systematic error that arises from the choice of the model,
in particular regarding different values of the hyperparameters. However, we observe that
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Parameter σRBF lRBF µUV `UV µIR `IR

Value 67.399 0.074 0.890 0.137 0.637 0.090

Tabelle C.3.: Hyperparameters for the combined RBF and fixed-asymptotics kernel, as
defined in (C.14) and (5.53).

enforcing the maximally large asymptotic regimes leads to the predicted posterior cova-
riance being comparatively small as the model is now highly restricted; see the right panel
of Figure 6.3. Hence, the error is estimated by varying the bias parameters in a region
where χ2 is small, but the effect of different parameter choices is non-negligible, while
unphysical oscillations remain largely suppressed. This region is marked in Figure C.10 by
horizontal bars. When considering µUV larger than indicated in this region, a substantial
amount of oscillations is introduced in the spectral function as mentioned above. For µIR

smaller than indicated in the left panel of Figure C.10, the spectral function vanishes in the
IR. However, it can then differ from the expected ω2 behaviour. The largest variations in
the resulting spectral functions under these changes of the hyperparameters are then used
as error estimates for the reconstruction results shown in Figure 6.2. Since the deviations
of the predictions at the edges of the parameter space tend to be maximised in particular
regions for certain parameter combinations, e.g., when µUV and `UV are both small, the
error band shows a few distinct kinks.
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C.8. Hadronic vacuum polarisation & g–2

In this section we give numerical details on the implementation of Section 6.3.

C.8.1. Quark-photon vertex & HVP

We solve the quark-photon vertex BSE (6.48) via a power method, i.e., substituting the
result of the RHS back into RHS until convergence is reached. While this technique is
numerically efficient, it becomes unstable close to resonances due to its iterative nature.
Alternatively, matrix inversion could be employed, which is much more costly, however.

The internal momentum integrals are computed via Gauss Legendre quadrature in each
integration variable. For that, we parametrise the integrals as

∫

q
=

∫
d4q

(2π)4
=

1

(2π)4

1

2

∫

Λ2
IR

Λ2
UVdqq

2

∫ 1

−1
dz
√

1− z2
∫ 1

−1
dy

∫ 2π

0
dφ , (C.16)

where the infrared and ultraviolet momentum cutoffs the system are chosen as ΛIR = 10−3
GeV, ΛUV = 10−3 GeV. The φ integral can simply be performed right away since no
integrand depends on it.

For the y and z integrals, we use 16 grid points each. For the q2 integral we employ
a logarithmic grid with 128 grid points in order to resolve the peaked structure of the
integrand and in particular the Maris-Tandy coupling (6.46) properly.

The momentum integral of the HVP (6.39) is treated as the internal ones of the quark-
photon vertex, as described above.

C.8.2. Quark DSE

The quark DSE for the quark-photon vertex Section 6.3.3.1 is solved via Gauss Legendre
quadrature as well with the parametrisation (C.16) with 512 grid point for the logarithmic
k2-grid and 32 grid point for the z-grid. Here, both φ and y can be integrated out befo-
rehand. The DSE is solved via a power method as, as is the BSE. We employ the same
values for the momentum cutoffs for the DSE as for the BSE described in Appendix C.8.1.

For timelike and complex external momenta Q, the quark propagator is needed at com-
plex external momenta, cf. (6.48). The range of these momenta can be deduced from the
combination of external momentum Q of the QPV BSE and the parametrisation of the
internal momentum integrals, as discussed in Appendix C.8.1.
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Manfred Salmhofer danke ich für seine Bereitschaft, das Zweitgutachten für diese Doktor-
arbeit zu verfassen.
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[237] G. Markó, U. Reinosa, and Z. Szép, “O(N) model within the Φ-derivable
expansion to order λ2: On the existence and UV/IR sensitivity of the solutions to
self-consistent equations,” Phys. Rev. D92, 125035 (2015),
arXiv:1510.04932 [hep-ph].

[238] L. Shen, J. Berges, J. Pawlowski, and A. Rothkopf, “Thermalization and
dynamical spectral properties in the quark-meson model,” (2020),
arXiv:2003.03270 [hep-ph].

[239] J. Berges, S. Schlichting, and D. Sexty, “Dynamic critical phenomena from spectral
functions on the lattice,” Nucl. Phys. B 832, 228 (2010), arXiv:0912.3135 [hep-lat].

[240] A. Windisch, R. Alkofer, G. Haase, and M. Liebmann, “Examining the Analytic
Structure of Green’s Functions: Massive Parallel Complex Integration using
GPUs,” Comput. Phys. Commun. 184, 109 (2013), arXiv:1205.0752 [hep-ph].

306

http://dx.doi.org/10.1016/j.nuclphysa.2018.08.017
http://dx.doi.org/10.1016/j.nuclphysa.2018.08.017
http://arxiv.org/abs/1807.04952
http://dx.doi.org/ 10.1103/PhysRevD.98.094002
http://dx.doi.org/ 10.1103/PhysRevD.98.094002
http://arxiv.org/abs/1807.11708
http://dx.doi.org/10.1103/PhysRevD.98.094031
http://arxiv.org/abs/1808.08535
http://dx.doi.org/10.1103/PhysRevD.104.025005
http://arxiv.org/abs/1910.09369
http://arxiv.org/abs/2112.12652
http://dx.doi.org/10.1103/PhysRevD.51.7026
http://arxiv.org/abs/hep-ph/9501262
http://dx.doi.org/10.1103/PhysRevD.100.094001
http://arxiv.org/abs/1907.05402
http://dx.doi.org/10.1103/PhysRevD.105.034025
http://dx.doi.org/10.1103/PhysRevD.105.034025
http://arxiv.org/abs/2109.00755
http://dx.doi.org/10.1103/PhysRevD.106.034030
http://arxiv.org/abs/2204.08424
http://dx.doi.org/10.1103/PhysRevD.101.056009
http://arxiv.org/abs/1912.07565
http://dx.doi.org/ 10.1103/PhysRevD.92.125035
http://arxiv.org/abs/1510.04932
http://arxiv.org/abs/2003.03270
http://dx.doi.org/ 10.1016/j.nuclphysb.2010.02.007
http://arxiv.org/abs/0912.3135
http://dx.doi.org/10.1016/j.cpc.2012.09.003
http://arxiv.org/abs/1205.0752


Literaturverzeichnis

[241] A. Windisch, T. Gallien, and C. Schwarzlmüller, “Deep reinforcement learning for
complex evaluation of one-loop diagrams in quantum field theory,” Phys. Rev. E
101, 033305 (2020), arXiv:1912.12322 [hep-ph].

[242] A. K. Rajantie, “Feynman diagrams to three loops in three-dimensional field
theory,” Nucl. Phys. B480, 729 (1996), [Erratum: Nucl. Phys.B513,761(1998)],
arXiv:hep-ph/9606216 [hep-ph].

[243] A. K. Cyrol, J. M. Pawlowski, A. Rothkopf, and N. Wink, “Reconstructing the
gluon,” SciPost Phys. 5, 065 (2018), arXiv:1804.00945 [hep-ph].

[244] E. Kraus, “Renormalization of the Electroweak Standard Model to All Orders,”
Annals Phys. 262, 155 (1998), arXiv:hep-th/9709154.

[245] K. Fukushima and J. M. Pawlowski, “Magnetic catalysis in hot and dense quark
matter and quantum fluctuations,” Phys. Rev. D 86, 076013 (2012),
arXiv:1203.4330 [hep-ph].

[246] V. Agostini, G. Carlino, M. Caselle, and M. Hasenbusch, “The Spectrum of the
(2+1)-dimensional gauge Ising model,” Nucl. Phys. B484, 331 (1997),
arXiv:hep-lat/9607029 [hep-lat].

[247] M. Caselle, M. Hasenbusch, and P. Provero, “Nonperturbative states in the 3-D
phi**4 theory,” Nucl. Phys. B556, 575 (1999), arXiv:hep-lat/9903011 [hep-lat].

[248] M. Caselle, M. Hasenbusch, P. Provero, and K. Zarembo, “Bound states and
glueballs in three-dimensional Ising systems,” Nucl. Phys. B623, 474 (2002),
arXiv:hep-th/0103130 [hep-th].
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gluon exchange in pp elastic scattering at TeV energies,” (2022),
arXiv:2212.04007 [hep-ph].

[391] K. A. Milton and O. P. Solovtsova, “Analytic perturbation theory: A New
approach to the analytic continuation of the strong coupling constant alpha-s into
the timelike region,” Phys. Rev. D 57, 5402 (1998), arXiv:hep-ph/9710316.

[392] A. I. Alekseev, “Strong coupling constant to four loops in the analytic approach to
QCD,” Few Body Syst. 32, 193 (2003), arXiv:hep-ph/0211339.

[393] A. Athenodorou, D. Binosi, P. Boucaud, F. De Soto, J. Papavassiliou,
J. Rodriguez-Quintero, and S. Zafeiropoulos, “On the zero crossing of the
three-gluon vertex,” Phys. Lett. B 761, 444 (2016), arXiv:1607.01278 [hep-ph].
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