
INAUGURAL – DISSERTATION

zur
Erlangung der Doktorwürde

der
Gesamtfakultät für Mathematik, Ingenieur- und

Naturwissenschaften
der

RUPRECHT – KARLS – UNIVERSITÄT

HEIDELBERG

vorgelegt von

Adrian Wolny, M.Sc.
geboren in Kraków, Polen

Tag der mündlichen Prüfung:
27.04.2023

Learning Instance Segmentation from Sparse Supervision

Advisor: Prof. Dr. Fred A. Hamprecht

Abstract

Instance segmentation is an important task in many domains of automatic image processing,
such as self-driving cars, robotics and microscopy data analysis. Recently, deep learning-
based algorithms have brought image segmentation close to human performance. However,
most existing models rely on dense groundtruth labels for training, which are expensive, time
consuming and often require experienced annotators to perform the labeling. Besides the
annotation burden, training complex high-capacity neural networks depends upon non-trivial
expertise in the choice and tuning of hyperparameters, making the adoption of these models
challenging for researchers in other fields.

The aim of this work is twofold. The first is to make the deep learning segmentation
methods accessible to non-specialist. The second is to address the dense annotation problem by
developing instance segmentation methods trainable with limited groundtruth data. In the first
part of this thesis, I bring state-of-the-art instance segmentation methods closer to non-experts
by developing PlantSeg: a pipeline for volumetric segmentation of light microscopy images of
biological tissues into cells. PlantSeg comes with a large repository of pre-trained models and
delivers highly accurate results on a variety of samples and image modalities. We exemplify
its usefulness to answer biological questions in several collaborative research projects. In the
second part, I tackle the dense annotation bottleneck by introducing SPOCO, an instance
segmentation method, which can be trained from just a few annotated objects. It demonstrates
strong segmentation performance on challenging natural and biological benchmark datasets at
a very reduced manual annotation cost and delivers state-of-the-art results on the CVPPP [100]
benchmark.

In summary, my contributions enable training of instance segmentation models with limited
amounts of labeled data and make these methods more accessible for non-experts, speeding up
the process of quantitative data analysis.

5

Zusammenfassung

Die Instanzsegmentierung ist eine wichtige Aufgabe in vielen Bereichen der automatischen Bil-
danalyse, etwa bei selbstfahrenden Autos, in der Robotik und bei der Analyse von Mikroskopie
Datensätzen. In jüngster Zeit haben Algorithmen, die auf Deep Learning basieren, die Bild-
segmentierung in die Nähe menschlicher Leistung gebracht. Die meisten der bestehenden
Modelle sind jedoch auf vollständig annotierte Grundwahrheit für das Training angewiesen,
deren Erstellung teuer und zeitaufwendig ist und häufig nicht ohne Expert*innenwissen zu
leisten ist. Abgesehen dieser hohen Annotationskosten erfordert das Training komplexer neu-
ronaler Netze mit hoher Kapazität spezielle Fachkenntnisse bei der Wahl und Einstellung
von Hyperparametern, was die Anwendung dieser Modelle für Forscher*innen aus anderen
Bereichen zu einer Herausforderung macht.

Diese Arbeit hat zwei Ziele. Erstens sollen die Deep-Learning-Segmentierungsmethoden
auch fachfremden Nutzern zugänglich gemacht werden. Zweitens soll das Problem der Er-
fordernis von vollständig annotierter Grundwahrheit durch die Entwicklung von Instanzseg-
mentierungsmethoden angegangen werden, die mit begrenzten Grunddaten trainiert werden
können. Der erste Teil beschreibt die Entwicklung des Programms Plantseg, das Nicht-Experten
modernste Instanzsegmentierungsmethoden zugänglich macht. Plantseg implementiert eine
Pipeline zur volumetrischen Segmentierung von lichtmikroskopischen Bildern biologischer
Gewebe in Zellen. Es ermöglicht die Anwendung einer Vielzahl an vortrainierten Modellen und
liefert hochpräzise Ergebnisse bei einer Vielzahl von verschiedenen mikroskopischen Proben
und Bildmodalitäten. Der Nutzen für die Beantwortung biologischer Fragen wird am Beispiel
mehrerer gemeinschaftlicher Forschungsprojekte veranschaulicht. Im zweiten Teil wird eine
Lösung zum Problem der vollständig annotierten Grundwahrheit vorgestellt: SPOCO, eine
Methode zur Instanzsegmentierung, die mit nur wenigen annotierten Objekten trainiert werden
kann. SPOCO zeigt eine starke Segmentierungsleistung auf anspruchsvollen natürlichen und
biologischen Benchmark-Datensätzen bei sehr geringen manuellen Annotationskosten und
liefert Spitzenergebnisse auf dem CVPPP [100] Benchmark.

Zusammenfassend ermöglichen die hier vorgestellten Beiträge das Training von Instanzseg-
mentierungsmodellen mit einer begrenzten annotierten Grundwahrheit und machen diese
Methoden für Nicht-Experten zugänglich. Dadurch wird letztlich der Prozess der quantitativen
Datenanalyse beschleunigt.

6

Acknowledgments

First and foremost, I would like to thank my supervisors, Doctor Anna Kreshuk and Professor
Fred Hamprecht for their guidance during my PhD. I want to thank Anna for supervising me
from the beginning of my PhD, first as a postdoc in Fred’s lab and then as a group leader
at EMBL. Her curiosity, passion and excellent mentoring is the driving force behind many
successful scientific projects. I feel extremely fortunate to have joined her lab at EMBL as one
of the first PhD students. She created an open and collaborative environment and gave me the
chance to work on exciting, multi-disciplinary projects. I wish to thank Fred for the opportunity
to conduct research in his lab. Talented people and a broad range of topics pursued in his group
provided the perfect conditions to start my scientific journey.

I would also like to extend my thanks to other members of the Kreshuk Lab. In particular,
Constantin Pape for his broad technical expertise and all the effort he has put into our joint
research projects. Qin Yu for his help and commitment to finish SPOCO experiments. Dominik
Kutra for his kindness, conversations in German and all the excellent vinyl records he sent me
during the Covid lockdown. Fynn Beuttenmüller, Alex Matskevytch, Valentyna Zinchenko,
Johannes Hugger and all other members of the lab with whom I shared interesting conversations
and memorable moments during group retreats.

Many thanks to the members of the Image Analysis and Learning Lab at Heidelberg Univer-
sity. Especially, Lorenzo Cerrone for our joint work on PlantSeg. Manuel Haussmann, Roman
Remme and Sebastian Damrich for many stimulating discussions. I also want to thank Professor
Ullrich Köthe for agreeing to review this thesis.

I feel fortunate to have collaborated with many amazing researchers from Plant Morphody-
namics consortium. Professor Alexis Maizel who introduced me to the fascinating world of
plant morphogenesis. Kudos to Professor Kay Schneitz, Richard Smith, Athul Vijayan, Rachele
Tofanelli, Tejasvinee Mody, Marion Louveaux, Christian Wenzl and Sören Strauss for our
joint projects. I would also like to thank Vladyslav Bondarenko, Takafumi Ichikawa, Dimitri
Fabrèges and Takashi Hiiragi for our fruitful collaboration at EMBL.

I would like to express my gratitude to my parents for their support and trust in my life’s
decisions.

My special thanks go to my wife, Agata, for her unconditional love, support and bringing
happiness to every moment of my live. Her encouragement to pursue my dreams is the very
reason this work came into being.

7

Contents

1 Introduction 11
1.1 Machine Learning for Image Segmentation 14

1.1.1 Graph-based Instance Segmentation 15
1.1.2 Embedding-based Instance Segmentation 16

1.2 Contributions . 18

2 PlantSeg: Pipeline for Volumetric Instance Segmentation 21
2.1 Introduction . 21
2.2 Methods . 23

2.2.1 Cell Boundary Segmentation . 25
2.2.2 Segmentation Using Graph Partitioning 28

2.3 Results . 31
2.3.1 Performance on External Plant Datasets 31
2.3.2 Performance on a Non-plant Benchmark 35
2.3.3 PlantSeg Applications in Developmental Biology 37

2.4 PlantSeg in Collaborative Research Projects 41
2.4.1 Ex vivo Development of Mammalian Embryo 42
2.4.2 The Role of Embryo-Uterus Interactions in Mouse Embryogenesis . . 44
2.4.3 Microscopy-based Detection of SARS-CoV-2 Antibodies 46

2.5 Conclusion . 48

3 SPOCO: Semi-Supervised Instance Segmentation 51
3.1 Introduction . 51
3.2 Related Work . 53
3.3 Methods . 54

3.3.1 Full Supervision . 54
3.3.2 Positive Unlabeled Supervision . 56
3.3.3 Clustering . 60

3.4 Results . 62
3.4.1 CVPPP Challenge . 63

9

3.4.2 Cityscapes Challenge . 64
3.4.3 3D Light Microscopy Datasets . 66
3.4.4 Electron Microscopy Datasets . 69
3.4.5 Training with Limited Annotation Budget 70
3.4.6 Clustering Comparison . 72

3.5 Ablation Study of SPOCO . 74
3.5.1 Ablation of Loss Functions . 75
3.5.2 G-network Ablations . 76
3.5.3 Adversarial Training . 79
3.5.4 Cityscapes Single-class vs Class-agnostic 80
3.5.5 Momentum Coefficient Exploration 81
3.5.6 Kernel Threshold Exploration . 82

3.6 Network Architecture and Training Parameters 83
3.7 Conclusion . 86

4 Software 89
4.1 pytorch-3dunet . 89
4.2 PlantSeg . 91
4.3 Open Source Contributions . 92

5 Conclusion 93

10

1 Introduction

The goal of computer vision is to interpret the content of digital images and videos in a way
similar to the human visual system. One of the key task required to automate understanding of
complex visual environment is instance segmentation. It is a type of image segmentation tech-
nique that delineates individual objects within an image and assigns them different categories
as a function of their appearance. Instance segmentation is very challenging due to diverse
shape patterns, obscured boundaries between objects and variable number of instances in an
image. Also, in contrast to object detection, each instance cannot simply be described by a
bounding box, but has to be represented by a pixel-wise mask.

Instance-level segmentation has a wide range of applications in various fields, from robotics
and autonomous driving, where it can be used to identify objects within the environment for
tasks such as grasping, navigation and obstacle avoidance [144, 149], to medical imaging,
where segmentation and identification of different cell types is helpful in diagnosing a variety
of diseases [91, 107]. Biological imaging provides a particularly large set of use cases for
the instance segmentation task, with imaging modalities ranging from natural photographs
for phenotyping [100] to electron microscopy for analysis of cellular ultrastructure [146]. For
instance, modern microscopy captures terabytes of high-resolution volumetric images of plants
and animals, and automatic segmentation of individual cells is needed to study the geometry
and interactions of individual cells within a tissue or organism. It provides valuable insights
into the organization and function of cells and tissues. By analyzing cell segmentation, we can
better understand the processes that drive development of living systems and identify potential
areas for further research. See Figure 1.1 for examples of instance segmentation tasks appearing
in urban scene understanding, developmental biology and plant phenotyping.

11

A
B

C D

Figure 1.1: Examples of instance segmentation problems explored in this thesis. (A) segmentation of
dynamic objects, such as people, cars, trucks, etc. in urban environment [30] (Section 3.4).
(B) segmentation of cells in a confocal volume of a developing plant ovule (Section 2.3):
(left) input signal, (middle) cell membranes predicted by a neural network, (right) segmented
cells. (C) cells segmented from a 3D light sheet microscopy image of an emerging lateral root
(Section 2.3): (left) 3D image of the primordium, (upper right) segmented primordial cells,
(lower right) sample cross section with input signal and segmentation. (D) segmentation of
individual leafs of a plant growing in a pot [100] (Section 3.4).

Within the last decade deep learning has achieved significant success in a variety of com-
puter vision tasks, including instance segmentation [26, 57, 80]. However, one of the major
bottlenecks of deep learning for segmentation is the need for large-scale densely annotated
images for neural network training. Collecting and annotating such datasets is very costly,
labor intensive and requires specialized software and tools. This task is especially difficult for
biomedical images which vary in imaging modalities and acquisition settings and necessitate
trained annotators who are capable of accurately identifying and labeling objects of interests.

12

As an example, the groundtruth segmentation for the lateral root dataset shown in Figure 1.1
C took an expert biologist around 5 months to create. In addition, no large public data collec-
tions (e.g. ImageNet [32], Cityscapes [30]) are available for pre-training. Another obstacle
to widespread adoption of modern deep learning-based segmentation methods lies in their
accessibility. They are complex multi-step procedures, which involve training neural networks
and post-processing to convert the network outputs into final segmentation. Those techniques
require a high level of expertise and only a handful of software packages strive to make them
accessible to non-expert users in biology and medical sciences.

In this thesis, I address the problems of accessibility and annotation bottleneck of modern
instance segmentation methods. To this end, I have developed a user-friendly segmentation tool
for microscopy (Chapter 2). Initially developed for the electron microscopy connectomics, this
techique is aimed to segment 3D confocal and light-sheet microscopy images. I have performed
extensive ablation studies and took important design decisions, reducing the complexity for
the end users. Our package comes with a large number of convolutional neural networks,
pre-trained on multiple microscopy image domains, which can be used directly on novel
segmentation problems, shortening the path to scientific discovery. I also make the training of
2D and 3D segmentation networks more accessible by creating a popular software package for
this purpose (see Chapter 4).
I have also introduced a novel instance segmentation method, which does not require dense
labeling and can be trained from a small subset of annotated objects in the image (Chapter 3).
Our approach is general-purpose and can be applied to both natural and microscopy images. It
is particularly useful in 3D microscopy images which commonly contain hundreds of objects
of interests, such as cells, neurons or organelles or in medical imaging, where different patient
populations render dense groundtruth creation prohibitive. Our method can be used in those
challenging settings to produce high quality instance segmentation at a very reduced annotation
cost. I demonstrate the versatility of methods developed in this thesis in multiple collaborative
projects.

In the next section, I provide an more formal definition of the image segmentation prob-
lem and summarize two families of machine learning algorithms used to solve the instance
segmentation task. I use both techniques in this work.

13

1.1 Machine Learning for Image Segmentation

Image segmentation aims to group the pixels in the image into meaningful regions. There are
several types of this problem: semantic segmentation associates every pixel of an image with
a class label, e.g. {road, person, car, building, sky}. Here multiple objects of the same class
are considered a single region in the image. In contrast, instance segmentation distinguishes
between instances of the same class and assigns each pixel to a specific instance label, e.g.
{person1, person2, person3, ...} or background. Panoptic segmentation combines semantic
and instance segmentation. In this approach pixels belonging to countable objects such as
people, animals, cars, are assigned individual instance labels (e.g. {person1, person2, car1,
...}), whereas pixels belonging to regions of similar texture are given semantic labels (e.g.
{grass, sky, road}). Our main task of instance segmentation often requires solving semantic
segmentation first, therefore in the following, I provide a brief overview of modern techniques
used to solve both tasks.

State-of-the-art image segmentation methods are based on deep learning: a subfield of
machine learning which uses neural networks to learn representations of the input data, useful
to solve a given task. Those models are organized into layers of non-linear functions stacked
on top of each other. Each successive layer automatically learns increasingly meaningful
representations by being exposed to training data. Each layer is parameterized by its weights
and learning is the process of adjusting the weights, such that for a given input, the network’s
output is close to the expected target value. We measure the discrepancy between the network
prediction and the target value using a loss function, e.g. cross entropy. The value of the loss
function is being minimized by updating the weights using a combination of backpropagation
algorithm [50] and stochastic gradient descent [114] or its variants [71, 34, 87]. The weights
are being updated until a stop criterion is met.

Convolutional neural networks (CNNs) is a class of model architectures commonly used for
computer vision applications. CNNs are composed of multiple convolutional layers, where each
layer learns local patters found in a small region of the input, e.g. 3× 3 pixels for 2D images.
This spatially local processing reduces the number of learnable parameters and introduces
shift invariance. By stacking convolutional layers on top of each other, we increase the spatial
context of the network, also known as the receptive field. In contrast to image classification
networks which predict a class label per image, semantic segmentation networks have to predict
a label for each pixel in the image. For this purpose a fully convolutional network (FCN) [86]
was proposed. Modern semantic segmentation models have improved the FCN, by introducing
the encoder-decoder architecture with skip connections [113] and feature pyramids [82]. In
particular, the U-Net architecture [113, 21] has been highly successful in solving semantic
segmentation problems for microscopy and is used as a base model for methods presented in
this thesis.

14

Semantic segmentation networks mentioned above require a fixed number of labels and use
loss functions which are not permutation invariant. Therefore those models cannot be directly
applied to instance segmentation, where instance labels are permutation invariant and vary in
numbers. Various multi-step pipeline have been proposed instead. Proposal-based methods [57,
55] such as Mask R-CNN are a popular choice for instance segmentation in natural images.
However, they have not been adopted for microscopy imaging due to difficulties segmenting
complex non-convex shapes and lack of pre-trained backbones. A well-known paradigm is
to start from the semantic segmentation of instance boundaries serving as a foreground class,
followed by graph partitioning methods. This technique have been used for natural images [72]
and is especially popular for microscopy [8, 46, 77, 106]. I present an overview of this method
in Section 1.1.1 and further in Chapter 2, where I use it for 3D microscopy segmentation. Other
approaches are based on embedding networks [38, 16] which learn pixel level representation
that can easily be clustered into instances with a simple post-processing step. I review those
methods in Section 1.1.2 and extend this technique in Chapter 3, where I introduce our weakly-
supervised instance segmentation.

1.1.1 Graph-based Instance Segmentation

One way to represent images, is in terms of a graph G = (V,E) with nodes V and edges E.
One can choose a grid graph, where edges connect neighboring pixels, or a region adjacency
graph, where nodes correspond to “superpixels”, i.e. perceptually meaningful group of pixels,
and edges connect adjacent superpixels. The edge weight can be interpreted as the probability
of the adjacent nodes belonging to the same instance. Edge weights can be derived from the
node properties or given by the edge classifier. The instance segmentation is given by grouping
the nodes into instances based on the weights associated with the edges. Seeded watershed [31,
97, 96] and graph-based agglomeration [39, 45, 105] are two important examples of graph-
based segmentation methods. An important limitation of both watershed and agglomerative
clustering is that they can only work with positive (attractive) edge weights. As a consequence,
an additional stopping criteria, such as seed points for watershed or weight thresholds for
agglomerative methods are required to partition the graph. Finding these hyperparameters is
challenging task in itself, particularly for large graphs with unknown number of instances.
Other methods like Multicut [5, 72, 147, 1, 2] can use both positive and negative affinities and
can be formulated as a constrained optimization problem, removing the need for an auxiliary
stopping criterion. Formally, let ye = yu,v ∈ {0, 1} be a binary indicator variable for each
edge e = {u, v} ∈ E. This variable specifies which edges are “cut”, i.e. ye = 1 if edge
e = {u, v} runs between two clusters and ye = 0 if the edge is within a single cluster. The
vector y ∈ {0, 1}|E| is called a Multicut. Let C be the set of all cycles of the graph G. The

15

minimum Multicut is defined as

y∗ = min
y∈{0,1}|E|

∑
e∈E

weye (1.1)

such that ∀C ∀e ∈ C : ye ≤
∑

e′∈C\{e}

ye′ (1.2)

The constraints in Equation 1.2 force each cycle to have none or at least two cut edges. They
ensure that the set of cut edges is a valid partitioning. The Multicut is NP-hard in general, due
to the exponential number of constraints in Equation 1.2, however efficient approximate solvers
exist [7, 68, 69].

The methods presented in Chapter 2 use the seeded watershed to generate superpixels for
a region adjacency graph and a neural network to predict the edge weights. This graph is
partitioned using Multicut solvers or agglomerative clustering methods.

1.1.2 Embedding-based Instance Segmentation

An image can also be represented as a set of vectors at the pixel level. This is the main
idea behind embedding-based models for instance segmentation. These methods usually have
two stages. First, a vector representation is learned for each pixel, then based on the learned
representations, the pixels are grouped together using a clustering algorithm. Specifically, a
fully convolutional network f : R3 → RD maps each pixel into a D-dimensional vector space,
where pixels belonging to the same objects are close together in that space and pixels from
different objects are separated by a wide margin. The separation in the embedding space can be
achieved with a contrastive learning objective [38, 16]. Given the embedding vectors ep for
each pixel p, the authors of [38] use the following similarity measure between pixels p and q:

σ(p, q) =
2

1 + exp(∥ep − eq∥22)
(1.3)

and train the embedding network by minimizing the following loss:

L = − 1

N

∑
p,q∈S

[1{yp=yq} log(σ(p, q)) + 1{yp ̸=yq} log(1− σ(p, q))] (1.4)

where N is the number of pixels in the image and yp is the instance label of pixel p. Since the
complexity of this loss is O(N2) only a sub-set of pixels is used for computation.

16

A more tractable loss, given in [16], consists of two main components illustrated in Fig-
ure 1.2. The pull force pulls together embeddings of pixels belonging to the same objects.
To counterbalance the pull force and prevent everything collapsing to a single cluster in the
embedding space, the push term pushes apart the centers of the clusters in the embedding space.
This can be express in the following way:

Lpull =
1

C

C∑
k=1

1

Nk

Nk∑
i=1

[∥µk − ei∥2 − δv]
2
+ (1.5)

Lpush =
1

C(C − 1)

C∑
k=1

C∑
l=1

k ̸=l

[2δd − ∥µk − µl∥2]
2
+ (1.6)

L = Lpull + λLpush (1.7)

where C is the number of objects in the image, Nk the size of object k, δv, δd are margin
hyperparameters and [x]+ = max(0, x) is the rectifier function. After network convergence
the instance segmentation of a given image is generated by clustering the network outputs.
Mean-shift [28] and HDBSCAN [17] are commonly used for this task.

Figure 1.2: Schematic overview of the push and pull forces, the main components of the discriminative
loss from [16]. (Left) Input image and corresponding pixel embeddings predicted by the
FCN (embedding vectors are PCA-projected into RGB space for visualization). (Right)
The pull force pulls embeddings (blue and yellow dots) towards their corresponding cluster
centers, whereas the push force pushes cluster centers away from each other. Both forces are
are hinged: they are only active up to a certain distance denoted by the circles around the
cluster centers.

17

Pixels embeddings described above are non-spatial, i.e. no notion of pixel coordinates is used
during training. Spatial awareness can be introduced by passing pixel coordinates to the network
[85] or by explicitly predicting foreground areas and, for pixels in those, the direction to the
object center [102, 26] or the distance to the object boundary [3]. Spatial embeddings require
more complex post-processing and have difficulties segmenting occluded and variable-sized
objects.

In this thesis, I use the formulation from [16] and show in Chapter 3 that it allows sampling
individual instances in the image in a differentiable way. This differentiable instance sampling
enables a loss function to be applied on individual instances and moves us closer towards
single-stage, end-to-end learning for instance segmentation. I use this sampling technique to
learn pixel embeddings with an additional self-supervised component and remove the dense
annotation requirement.

1.2 Contributions

In this thesis, I develop deep learning-based instance segmentation methods, which are less
demanding in terms of the amount of training data, and which are accessible to non-experts. I
deliver highly accurate results for both natural and microscopy imaging domains.

In Chapter 2, I introduce PlantSeg [142]: an easy to use tool for volumetric instance seg-
mentation of light microscopy data. Our pipeline is based on previous work done in electron
microscopy images of neural tissue, where a combination of a strong boundary predictor and
graph partitioning methods has been shown to outperform other methods. PlantSeg delivers
highly accurate results on a variety of samples and image modalities. It comes with large
number of pre-trained models which can be used out-of-the-box for solving novel segmentation
problems.

In Chapter 3, I give a detailed overview of SPOCO [141]: label-efficient, embedding-
based instance segmentation algorithm. Our formulation enables training the neural networks
with positive unlabeled supervision, a form of sparse labelling which allows for a more
diverse training set and is more natural for human annotator. Our method provides highly
accurate segmentation on challenging natural and microscopy dataset at a very reduced manual
annotation cost and delivers state-of-the-art results on the CVPPP [100] benchmark.

Techniques introduced in this work have been used to deliver high-quality segmentation in a
number of collaborative research projects. In Section 2.4, I highlight applications of PlantSeg
to problems in developmental biology and detection of virus specific antibodies. First, based
on PlantSeg’s pre-trained CNNs repository I developed a simple, iterative training procedure,
which minimized expensive 3D proofreading and enabled high quality segmentation of mouse
embryo cells [61]. Second, PlantSeg pipeline helped exploring the role of embryo-uterus

18

interaction in mouse embryogenesis [15]. Finally, the tools I developed were useful for analysis
of microscopy-based assay for detection of SARS-CoV-2 antibodies in human serum [107].

In Chapter 4, I briefly describe a number of software projects I have created and contributed
to, which bring state-of-the-art algorithms closer to the end user. In particular, the pytoch-3dunet
package I developed has become highly popular among practitioners of image analysis and has
been used in (bio)medical research [119]. It comes with a simple to use config-based interface
and reduces the complex task of network training and inference to preparing the training and
test data in the right format. PlantSeg, SPOCO, pytorch-3dunet and other software projects
related to this thesis have been open-sourced on GitHub.

As part of this work, I have also contributed to the creation of two 3D training datasets
of confocal and light-sheet microscopy images (see Figure 1.1 B, C and Chapter 2 for more
details). Both datasets are shared publicly to encourage further research in large-scale cell
segmentation in developmental biology.

19

2 PlantSeg: Pipeline for Volumetric
Instance Segmentation

In Chapter 1, I described the importance of instance segmentation in many application domains
and the lack of easily accessible state-of-the-art segmentation pipelines to researchers in fields,
such as developmental biology. Here, I present PlantSeg: a pipeline for volumetric segmentation
of plant tissues into cells. It follows a graph-based image partitioning (see Section 1.1.1): an
approach used to successfully segment neuroimages in the past [1, 77, 8, 45]. PlantSeg not
only delivers accurate segmentation results, but given its large repository of models trained on
fixed and live images coming from different microscope modalities, it can be used to segment
novel 3D datasets directly, significantly reducing the time needed for quantitative analysis of
volumetric images.

I present PlantSeg applications in the context of developmental biology, which requires
accurate segmentation of individual cells in volumetric images as a basis for further analysis of
cellular dynamics.

This chapter is based on the publication [142], where several authors have contributed. I have
created the package for the network training, chosen the model architecture appropriate for
different image modalities and run the experiments. Lorenzo Cerrone has equally contributed
to the experiments presented in the paper and implemented the graphical user interface. Addi-
tionally, based on the segmentation results from PlantSeg: Athul Vijayan and Rachele Tofanelli
performed the analysis of cell number in the ovule primordia, Amaya Vilches Barro and Marion
Louveaux analysed the asymmetric division of the lateral root founder cell, Susanne Steigleder
and Amaya Vilches Barro manually curated the ground truth segmentation for the later root
dataset, Christian Wenzl performed cell size comparison between the mutant and the wild
type of Arabidopsis thaliana, Sören Strauss, David Wilson-Sánchez and Rena Lymbouridou
analyzed the leaf growth and differentiation.

2.1 Introduction

Large-scale quantitative study of morphogenesis in a multicellular organism entails an accurate
estimation of the shape of all cells across multiple specimen. State-of-the-art light microscopes
allow for such analysis by capturing the anatomy and development of plants and animals in

21

terabytes of high-resolution volumetric images. With such microscopes now in routine use,
segmentation of the resulting images has become a major bottleneck in the downstream analysis
of large-scale imaging experiments. A few segmentation pipelines have been proposed [40,
122], but these either do not leverage recent developments in the field of computer vision or are
difficult to use for non-experts.

With a few notable exceptions, such as the Brainbow experiments [138], imaging cell shape
during morphogenesis relies on staining of the plasma membrane with a fluorescent marker.
Segmentation of cells is then performed based on their boundary prediction. In the early
days of computer vision, boundaries were usually found by edge detection algorithms [18].
More recently, a combination of edge detectors and other image filters was commonly used as
input for a machine learning algorithm, trained to detect boundaries [90]. Currently, the most
powerful boundary detectors are based on Convolutional Neural Networks (CNNs) [86, 73,
145]. In particular, the U-Net architecture [113] has demonstrated excellent performance on 2D
biomedical images and has later been further extended to process volumetric data [21].

Once the boundaries are found, other pixels need to be grouped into objects delineated
by the detected boundaries. For noisy, real-world microscopy data, this post-processing step
still represents a challenge and has attracted a fair amount of attention from the computer
vision community [130, 105, 8, 140, 45]. If centroids ("seeds") of the objects are known or
can be learned, the problem can be solved by the watershed algorithm [31, 22]. For example,
in [35] a 3D U-Net was trained to predict cell contours together with cell centroids as seeds
for watershed in 3D confocal microscopy images. This method, however, suffers from the
usual drawback of the watershed algorithm: misclassification of a single cell centroid results in
sub-optimal seeding and leads to segmentation errors.

Recently an approach combining the output of two neural networks and watershed to detect
individual cells showed promising results on segmentation of cells in 2D [136]. Although
this method can in principle be generalized to 3D images, the necessity to train two separate
networks poses additional difficulty for non-experts.

While deep learning-based methods define the state-of-the-art for all image segmentation
problems, only a handful of software packages strive to make them accessible to non-expert
users in biology (reviewed in [101]). Notably, the U-Net segmentation plugin for ImageJ [37]
conveniently exposes U-Net predictions and computes the final segmentation from simple
thresholding of the probability maps. CDeep3M [53] and DeepCell [132] enable, via the
command-line, the thresholding of the probability maps given by the network, and DeepCell
allows instance segmentation as described in [136]. Although not available at the time of
PlantSeg development, CellPose [123], a general segmentation algorithm for cellular data, has
been introduced recently. More advanced post-processing methods are provided by the ilastik
Multicut workflow [13], which can be integrated with CNN-based prediction.

Here, I present PlantSeg, a deep learning-based pipeline for volumetric instance segmentation

22

of dense plant tissues at single-cell resolution. PlantSeg processes the output from the micro-
scope with a CNN to produce an accurate prediction of cell boundaries. Building on the insights
from previous work on cell segmentation in electron microscopy volumes of neural tissue [8, 45,
129], the second step of the pipeline delivers an accurate segmentation by solving a graph parti-
tioning problem. I trained PlantSeg on 3D confocal images of fixed Arabidopsis thaliana ovules
and 3D+t light sheet microscope images of developing lateral roots, two standard imaging
modalities in the studies of plant morphogenesis. I investigated a range of network architectures
and graph partitioning algorithms and selected the ones which performed best with regard to
manually annotated ground truth. PlantSeg was benchmarked on a variety of datasets covering
a range of samples and image resolutions. Overall, PlantSeg delivers excellent results on unseen
data and, as I show through quantitative and qualitative evaluation, even non-plant datasets do
not necessarily require network retraining. Combining the repository of accurate neural net-
works trained on the two common microscope modalities and going beyond just thresholding or
watershed with robust graph partitioning strategies is the main strength of the package. PlantSeg
is an open-source tool which contains the complete pipeline for segmenting large volumes.
Each step of the pipeline can be adjusted via a convenient graphical user interface while expert
users can modify configuration files and run PlantSeg from the command line. Users can also
provide their own pre-trained networks for the first step of the pipeline using a popular 3D U-
Net implementation (https://github.com/wolny/pytorch-3dunet), which was
developed as a part of this project. Although PlantSeg was designed to segment 3D images,
2D data can be segmented as well. Besides the tool itself, all training data1 together with the
pre-trained networks are publicly available.

2.2 Methods

The segmentation pipeline consists of two major steps (see Figure 2.1). In the first step
(Section 2.2.1), a fully convolutional neural network is trained to predict cell boundaries.
Afterwards, a region adjacency graph is constructed from the pixels with edge weights computed
from the boundary predictions. In the second step (Section 2.2.2), the final segmentation is
computed as a partitioning of this graph into an unknown number of objects. Graph-based
segmentation methods have been outlined in Section 1.1.1. This design is based on a body
of work on segmentation of cells in electron microscopy images of neural tissue, where
similar methods have been shown to outperform more simple post-processing of the boundary
maps [8, 45, 129]. My main contribution is a collection of accurate CNNs for cell membrane
segmentation combined with a number of robust graph partitioning strategies in a single cell
segmentation package. I trained the networks on two core datates (see below) of confocal

1All datasets used to support the findings of this study have been deposited in https://osf.io/uzq3w

23

https://github.com/wolny/pytorch-3dunet
https://osf.io/uzq3w

and light sheet microscopy images, two common modalities used to study plant and animal
morphogenesis. I open-sourced the two datasets to enable further development of efficient cell
segmentation algorithms. I have also performed extensive ablation studies, which guided the
choice of default hyperparameters, hiding complexity from the end users.

Neural Network Graph Partitioning

Input Boundary Predictions Segmentation

Figure 2.1: Segmentation of plant tissues into cells using PlantSeg. First, PlantSeg uses a 3D UNet
neural network to predict the boundaries between cells. Second, a volume partitioning
algorithm is applied to segment each cell based on the predicted boundaries. The neural
networks were trained on ovules (top, confocal laser scanning microscopy) and lateral root
primordia (bottom, light sheet microscopy) of Arabidopsis thaliana.

Datasets To make PlantSeg as generic as possible, I used both fixed and live samples
for design, validation and testing of the models. The confocal and light sheet stacks, two
microscope modalities common in studies of morphogenesis, were employed.

The first dataset consists of fixed Arabidopsis thaliana ovules at all developmental stages
acquired by confocal laser scanning microscopy with a voxel size of 0.075× 0.075× 0.235
µm. 48 volumetric stacks with hand-curated ground truth segmentation were used. A complete
description of the image acquisition settings and the ground truth creation protocol is reported
in [126].

The second dataset is composed of three time-lapse videos showing the development of
Arabidopsis thaliana lateral root primordia (LRP). Each recording was obtained by imaging
wild-type Arabidopsis plants expressing markers for the plasma membrane and the nuclei
[135] using a light sheet fluorescence microscope (LSFM). Stacks of images were acquired
every 30 minutes with constant settings across movies and time points, with a voxel size of
0.1625× 0.1625× 0.250 µm. The first movie consists of 52 time points of size 2048 × 1050

24

× 486 voxels. The second movie consists of 90 time points of size 1940 × 1396 × 403 voxels
and the third one of 92 time points of size 2048 × 1195 × 566 voxels. The ground truth was
generated for 27 images depicting different developmental stages of LRP coming from the
three movies (see below).

The two datasets were acquired on different types of microscopes and differ in image quality.
To quantify the differences I used the peak signal-to-noise (PSNR) and the structural similarity
index measure (SSIM) [59]. I computed both metrics using the input images and their ground
truth boundary masks; higher values show better quality. The average PSNR measured on the
light sheet dataset was 22.5 ± 6.5 dB (average ± SD), 3.4 dB lower than the average PSNR
computed on the confocal dataset (25.9 ± 5.7). Similarly, the average SSIM is 0.53 ± 0.12
for the light sheet, 0.1 lower than 0.63 ± 0.13 value measured on the confocal images. Both
datasets thus contain a significant amount of noise. LSFM images are noisier and more difficult
to segment, not only because of the noise, but also due to part of nuclear labels being in the
same channel as membrane staining.

Groundtruth Creation I briefly describe the groundtruth creation process for the challeng-
ing lateral root primorida dataset.

I started by segmenting the cell membranes using sparse user input (scribbles) with the Auto-
context Workflow [128] of ilastik software [13]. Then, based on the membrane segmentation, I
segmented individual cells using ilastik’s Multicut Workflow [8]. The initial cell segmentation
was refined iteratively as shown in Figure 2.2. First, the segmentation was manually proofread
in selected regions by an expert biologists using Paintera [54] software. Second, a CNN was
trained, using the PlantSeg package, to predict the cell boundaries on the manually corrected
regions. Third, the full PlantSeg pipeline was applied to the entire dataset resulting in a more
accurate segmentation of the image. From this point, the procedure of manual correction,
CNN training and PlantSeg segmentation was repeated multiple times, until an accurate cell
segmentation was reached. In the end, the ground truth segmentation was created for 27 out of
234 volumes across three movies. The whole process took around 5 months to complete.

2.2.1 Cell Boundary Segmentation

Being the current state of the art in bioimage segmentation, U-Net [113] was chosen as the base
model architecture for predicting the boundaries between cells. Aiming for the best performance
across different microscope modalities, I explored various aspects of neural network training
such as: the network architecture, loss function, data augmentation, normalization layers and
the size of patches used for training.
With regard to the network architecture, I compared the regular 3D U-Net as described in [21]
with a Residual U-Net from [77]. I tested two loss functions commonly used for the semantic

25

Figure 2.2: The groundtruth creation process. Starting from the input image (1), an initial segmentation
is created with ilastik’s Autocontext and Multicut Workflow (2). After a round of manual
proofreading (3a) a 3D UNet is trained for boundary segmentation (3b). Then, PlantSeg
is used to segment the volume (3c). Steps 3a, 3b and 3c are repeated until a final round of
manual proofreading (4) which results in the groundtruth labels (5).

segmentation task: binary cross-entropy (BCE) (LBCE) [113] and Dice loss (LDice) [124], as
well as their linear combination termed BCE-Dice. The patch size and normalization layers
were investigated jointly by comparing training on a single large patch, versus training on
multiple smaller patches per network iteration. Group normalization [143] and standard batch
normalization [62] were chosen in the single-patch and multi-patch settings respectively. I used
random horizontal and vertical flips, random rotations in the XY-plane, elastic deformations
[113] and noise augmentations (additive Gaussian, additive Poisson) of the input image during
training in order to increase the network generalization on unseen data.

For the final PlantSeg package, I trained one set of CNNs on the ovules and the other on the
lateral root, due to substantial difference in the two datasets.
In the ovule dataset, 39 stacks were randomly selected for training, two for validation and seven
for testing. In the LRP dataset, 27 time points were randomly selected from the three videos
for training, two time points were used for validation and four for testing.

In more detail, the 2D and 3D U-Nets were trained to predict the binary cell bound-
aries. Ground truth boundaries were generated from the ground truth cell labeling by the
find_boundaries(·) function from the Scikit-image package [131]. Resulting 2 voxels-thick
boundaries between labeled regions were additionally processed with Gaussian smoothing to

26

reduce the high frequency components in the boundary image. It helps to prevent over-fitting
and makes the boundaries thicker, increasing the amount of foreground signal during training.
Transforming the label image Sx into the boundary image Ix is given by Equation 2.1.

Ix =

{
1 if Φ(Sx) ∗Gσ > 0.5

0 otherwise
(2.1)

Where Φ(·) transforms the labeled volume into the boundary image, Gσ is the isotropic
Gaussian kernel and ∗ denotes a convolution operator. I use σ = 1.0 in the experiments.
Both standard and residual U-Net architectures were trained using Adam optimizer [71] with
β1 = 0.9, β2 = 0.999, L2 penalty of 0.00001 and initial learning rate ϵ = 0.0002. Networks
were trained until convergence for 150K iterations, using the PyTorch framework [108]. For
validation during training, I used the adjusted Rand (ARand) error computed between the ground
truth segmentation and segmentation obtained by thresholding the probability maps predicted
by the network and running the connected components algorithm. The learning rate was being
reduced by a factor of 2 once the learning stagnated during training, i.e no improvements
were observed on the validation set for a given number of iterations. Network with lowest
ARand error was selected. For training with small patch sizes I used batch normalization and 4
patches of shape 100× 100× 80 per network iteration. When training with a single large patch
(size 170× 170× 80) batch normalization statistics are noisy, so I replaced batchnorm with
groupnorm layers. All networks use the same layer ordering where the normalization layer is
followed by the 3D convolution and a rectified linear unit (ReLU) activation. This order of
layers consistently performed better than alternative orderings. During training and inference,
input images were standardized by subtracting mean intensity and dividing by the standard
deviation.
The performance of CNNs is sensitive to changes in voxel size and object sizes between training
and test images [104]. For that reason I also trained the networks using the original datasets
downscaled by a factor of 2 and 3 in the XY dimension.

All released networks were trained according to the procedure described above using a
combination of binary cross-entropy and Dice loss:

L = LBCE + λLDice (2.2)

(λ = 1 in my experiments). 3D U-Nets trained at different scales of the two core datasets
(light-sheet lateral root, confocal ovules) are made available as part of the PlantSeg package.
For completeness, 2D U-Nets trained using the Z-slices from the original 3D stacks are also
published, enabling segmentation of 2D images with PlantSeg.

27

During inference I parsed the volume patch-by-patch with a 50% overlap between consecu-
tive tiles and average the probability maps. This strategy prevents checkerboard artifacts and
reduces noise in the final prediction. The code used for training and inference can be found at
https://github.com/wolny/pytorch-3dunet.

The best performing CNN architectures and training procedures is illustrated by the preci-
sion/recall curves evaluated at different threshold levels of the predicted boundary probability
maps (see Figure 2.3). Training with a combination of binary cross-entropy and Dice loss
performed best on average across the two datasets in question contributing to 3 out of 6 best
performing network variants. BCE-Dice loss also generalized well on the out of sample data
described in Section 2.3.1. Due to the regularity of cell shapes, the networks do not benefit
from broader spatial context when only cell membrane signal is present in input images. Indeed,
training the networks with bigger patch sizes does not noticeably increase the performance as
compared to training with smaller patches. 4 out of 6 best performing networks use smaller
patches and batch normalization (Batch-Norm) whereas only 2 out of 6 use bigger patches
and group normalization (Group-Norm). Residual U-Net architecture (3D-ResUnet) performed
best on the LRP dataset (Figure 2.3 (B)), whereas standard U-Net architecture (3D-Unet) was
better on the ovule datasets (Figure 2.3 (A)). In conclusion, choosing the right loss function
and normalization layers increased the final performance on the task of boundary prediction on
both microscope modalities.

2.2.2 Segmentation Using Graph Partitioning

After the cell boundaries are predicted, segmentation of the cells can be formulated as a
generic graph partitioning problem. The boundary predictions produced by the CNN are treated
as a graph G(V,E), where nodes V are represented by the image voxels, and the edges E
connect adjacent voxels. The weight w ∈ R+ of each edge is derived from the boundary
probability maps. Solving the partitioning problem directly at voxel-level is computationally
expensive for volumes of biologically relevant size. To make the computation tractable, the
voxels are clustered into so-called supervoxels by running the DT watershed [31] on the
distance transform of the boundary map. For this, I threshold the boundary probability maps
at a given value δ to get a binary image (δ = 0.4 was chosen empirically in my experiments).
Then I compute the distance transform from the binary boundary image, apply a Gaussian
smoothing (sigma = 2.0) and assign a seed to every local minimum in the resulting distance
transform map. After supervoxels are generated with the watershed transform, the region
adjacency graph (RAG) is constructed. In the region adjacency graph each node represents a
supervoxel and edges connect adjacent supervoxels. The edge weights are computed by using
the mean value of the probabilities maps along the boundary. Finally, the region adjacency
graph is partitioned into an unknown number of segments to deliver a segmentation. I tested

28

https://github.com/wolny/pytorch-3dunet

0.5 0.6 0.7 0.8 0.9 1.0
Recall

0.5

0.6

0.7

0.8

0.9

P
re

ci
si

o
n

Ovules

3D-Unet, Lbce, Batch-Norm

3D-Unet, Ldice, Batch-Norm

3D-Unet, Lbce + Ldice, Batch-Norm

3D-Resunet, Lbce, Group-Norm

3D-Resunet, Lbce + Ldice, Group-Norm

3D-Resunet, Lbce + Ldice, Batch-Norm

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Recall

0.4

0.5

0.6

0.7

0.8

0.9

P
re

ci
si

o
n

LRPA B

0.5 0.6 0.7 0.8 0.9 1.0
Recall

0.5

0.6

0.7

0.8

0.9

P
re

ci
si

o
n

Ovules

3D-Unet, Lbce, Batch-Norm

3D-Unet, Ldice, Batch-Norm

3D-Unet, Lbce + Ldice, Batch-Norm

3D-Resunet, Lbce, Group-Norm

3D-Resunet, Lbce + Ldice, Group-Norm

3D-Resunet, Lbce + Ldice, Batch-Norm

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Recall

0.4

0.5

0.6

0.7

0.8

0.9

P
re

ci
si

o
n

LRPA B

Figure 2.3: Precision-recall curves for different CNN variants on the ovule (A) and lateral root primordia
(LRP) (B) datasets. Six training procedures that sample different type of architecture (3D
U-Net vs. 3D Residual U-Net), loss function (BCE vs. Dice vs. BCE-Dice) and normalization
(Group-Norm vs. Batch-Norm) are shown. Those variants were chosen based on the accuracy
of boundary prediction task: 3 best performing models on the ovule and 3 best performing
models on the lateral root datasets. Points correspond to averages of seven (ovules) and four
(LRP) values and the shaded area represent the standard error.

four different partitioning strategies: Multicut [66], hierarchical agglomeration as implemented
in GASP average (GASP) [4], Mutex watershed (Mutex) [140] as well as the distance transform
watershed [31] as a baseline since similar methods have been proposed previously [35, 136].

To quantify the accuracy of the four segmentation strategies I use Adapted Rand error
(ARand) for the overall segmentation quality and two other metrics based on the variation
of information [95], measuring the tendency to over-split (VOIsplit) or over-merge (VOImerge).
GASP, Multicut and Mutex watershed consistently produced accurate segmentation on both
datasets with low ARand errors and low rates of merge and split errors (Figure 2.4 A-C). As
expected the watershed tends to over-segment with higher split error and resulting higher
ARand error. Multicut solves the graph partitioning problem in a globally optimal way and is
therefore expected to perform better compared to greedy algorithms such as GASP and Mutex
watershed. However, in this case the gain was marginal, probably due to the high quality of the
boundary predictions.

The performance of PlantSeg was also assessed qualitatively by expert biologists. The

29

segmentation quality for both datasets is very satisfactory. For example in the lateral root
dataset, even in cases where the boundary appeared masked by the high brightness of the
nuclear signal, the network correctly detected it and separated the two cells (Figure 2.4 D,
green box). On the ovule dataset, the network is able to detect weak boundaries and correctly
separate cells in regions where the human expert fails (Figure 2.4 E , green box). The main
mode of error identified in the lateral root dataset is due to the ability of the network to remove
the nuclear signal which can weaken or remove part of the adjacent boundary signal leading
to missing or blurry cell contour. For example, the weak signal of a newly formed cell wall
close to two nuclei was not detected by the network and the cells were merged (Figure 2.4 D,
red box). For the ovule dataset, in rare cases of very weak boundary signal, failure to correctly
separate cells could also be observed (Figure 2.4 E, red box).

Taken together, my analysis shows that segmentation of plant tissue using graph partitioning
handles robustly boundary discontinuities present in plant tissue segmentation problems.

30

DTWS GASP MultiCut Mutex
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

A
R

a
n
d
 E

rr
o
r

LRP

Ovules

Input Ground Truth PlantSeg

DTWS GASP MultiCut Mutex
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

V
O

I
M

e
rg

e
 E

rr
o
r

DTWS GASP MultiCut Mutex
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

V
O

I
S
p
lit

 E
rr

o
r

A B C

D

E

Figure 2.4: Segmentation using graph partitioning. (A-C) Quantification of segmentation produced
by Multicut, GASP, Mutex watershed (Mutex) and DT watershed (DT WS) partitioning
strategies. The Adapted Rand error (A) assesses the overall segmentation quality whereas
VOImerge (B) and VOIsplit (C) assess erroneous merge and splitting events (lower is better).
Box plots represent the distribution of values for seven (ovule, magenta) and four (LRP,
green) samples. (D, E) Examples of segmentation obtained with PlantSeg on the lateral root
(D) and ovule (E) datasets. Green boxes highlight cases where PlantSeg resolves difficult
cases whereas red ones highlight errors. I obtained the boundary predictions using the
generic-confocal-3d-unet for the ovules dataset and the generic-lightsheet-3d-unet for the
root. All agglomerations have been performed with default parameters. 3D superpixels
instead of 2D superpixels were used.

2.3 Results

Having trained the networks on the core datasets, I evaluated the effectiveness of the pipeline on
external datasets of plant (Section 2.3.1) and animal tissues (Section 2.3.2) without retraining
the CNNs.

2.3.1 Performance on External Plant Datasets

To test the generalization capacity of PlantSeg, I assessed its performance on data for which no
network training was performed. To this end, I took advantage of the two publicly available

31

Dataset PlantSeg (default parameters) PlantSeg (tuned parameters)

ARand VOIsplit VOImerge ARand VOIsplit VOImerge

Anther 0.328 0.778 0.688 0.167 0.787 0.399

Filament 0.576 1.001 1.378 0.171 0.687 0.487

Leaf 0.075 0.353 0.322 0.080 0.308 0.220

Pedicel 0.400 0.787 0.869 0.314 0.845 0.604

Root 0.248 0.634 0.882 0.101 0.356 0.412

Sepal 0.527 0.746 1.032 0.257 0.690 0.966

Valve 0.572 0.821 1.315 0.300 0.494 0.875

Table 2.1: Quantification of PlantSeg performance on the 3D Digital Tissue Atlas, using PlantSeg . The
Adapted Rand error (ARand) assesses the overall segmentation quality whereas VOImerge and
VOIsplit assess erroneous merge and splitting events. The petal images were not included in
the analysis. They are very similar to the leaf and the ground truth is fragmented, making it
difficult to evaluate the results in an objective way. Segmented images are computed using
GASP partitioning with default parameters (left table) and fine-tuned parameters (right table).

datasets: Arabidopsis 3D Digital Tissue Atlas (https://osf.io/fzr56) composed of
eight stacks of eight different Arabidopsis thaliana organs with hand-curated groundtruth,
as well as the developing leaf of the Arabidopsis [42] with 3D segmentation given by the
SimpleITK package [88]. The input images from the digital tissue atlas are confocal stacks
of fixed tissue with stained cell contours and thus similar to the images of the Arabidopsis
ovules, whereas the images of the leaf were acquired through the use of live confocal imaging.
It’s important to note that the latter image stacks contain highly lobed epidermal cells, which
are difficult to segment with classical watershed-based algorithms. The confocal stacks were
processed by PlantSeg and the resulting segmentation assessed qualitatively. Quantitative
assessment was performed only for the digital tissue atlas, where the ground truth labels are
available.

32

https://osf.io/fzr56

Input Segmentation Fox et al. PlantSeg

Input PlatSeg Boundary Predictions PlantSeg

Figure 2.5: Qualitative results on the highly lobed epidermal cells from [42]. First two rows show the
visual comparison between the SimpleITK (middle) and PlantSeg (right) segmentation on
two different image stacks. PlantSeg’s results on another sample is shown in the third row.
In order to show pre-trained networks’ ability to generalized to external data, I additionally
depict PlantSeg’s boundary predictions (third row, middle). I obtained the boundary predic-
tions using the generic-confocal-3d-unet and segmented using GASP with default values. A
value of 0.7 was choosen for the under/over segmentation factor.

33

A
n
th

e
r

Ground Truth PlantSegInput

V
a
lv

e
Le

a
f

S
e
p

a
l

R
o
o
t

Fi
la

m
e
n
t

Pe
d

ic
e
l

Figure 2.6: PlantSeg segmentation of different plant organs of the 3D Digital Tissue Atlas dataset, not
seen in training. The input image, ground truth and segmentation results using PlantSeg are
presented for each indicated organ.

34

Qualitatively, PlantSeg performed well on both datasets, giving satisfactory results on all
organs from the 3D Digital Tissue Atlas, correctly segmenting even the oval non-touching
cells of the anther and leaf: a cell shape not present in the training data (Figure 2.6). PlantSeg
yielded especially good segmentation results when applied to the complex epidermal cells,
visibly outperforming the results obtained using the SimpleITK framework (Figure 2.5).

Quantitatively, the performance of PlantSeg out of the box (default parameters) on the 3D
Digital Tissue Atlas is on par with the scores reported on the LRP and ovules datasets on the
anther, leaf, and the root, but lower for the other tissues (Table 2.1, left). Default parameters have
been chosen to deliver good results on most type of data, however a substantial improvement
can be obtained by parameter tuning. In case of the tissue 3D Digital Tissue Atlas (1) scaling
the voxel size to reduce the resolution gap between the training data and the 3D Tissue Atlas
and (2) increasing the over-segmentation factor to 0.7, improved segmentation by a factor of
two as measured with the ARand error (Table 2.1, right). It should be noted that the ground
truth included in the dataset was created for analysis of the cellular connectivity network,
with portions of the volumes missing or having low quality ground truth (see e.g filament and
sepal in Figure 2.6). For this reason, the performance of PlantSeg on these datasets may be
underestimated.

Altogether, PlantSeg performed well qualitatively and quantitatively on datasets acquired by
different groups, on different microscopes, and at different resolutions than the training data.
This demonstrates the generalization capacity of the pre-trained models from the PlantSeg
package.

2.3.2 Performance on a Non-plant Benchmark

For completeness, I compared PlantSeg performance with state-of-the-art methods on an open
benchmark consisting of 2D+t videos of membrane-stained developing Drosophila epithelial
cells [43]. Treating the movie sequence as 3D volumetric images not only resembles the plant
cell images shown in this study, but also allows to pose the 2D+t segmentation as a standard
3D segmentation problem.

I compared the performance of PlantSeg on the 8 movies of this dataset to the four reported
pipelines: MALA [46], Flood Filling Networks (FFN) [63], Moral Lineage Tracing (MLT)
[64, 111] and Tissue Analyzer (TA) [43]. PlantSeg was evaluated in two settings. In the first
one, I did not train the CNNs on the benchmark datasets, but used the CNNs provided with
the PlantSeg package. This experiment gives an estimate of how well the pre-trained networks
generalize to non-plant tissues. For the second evaluation, I retrained the network on the
benchmark’s training set to compare with state-of-the-art. Note that unlike other methods
reported in the benchmark, I do not introduce additional constraints to account for the data
being 2D+t rather than 3D, i.e. I do not enforce the lineages to be moral [43].

35

For the first experiment, peripodial cells were segmented using the 3D U-Net trained on the
ovule dataset together with GASP segmentation, whereas proper disc cells were segmented with
2D U-Net trained on the ovule dataset in combination with Multicut algorithm. Both networks
are part of the PlantSeg package. Qualitative results are shown in Figure 2.7: PlantSeg produces
highly accurate segmentation on both the peripodial and proper imaginal disc cells. A few
over-segmentation (peripodial cells) and under-segmentation (proper disc) errors are marked in
the figure. This impression is confirmed by quantitative benchmark results in Table 2.2.

For the second experiment, I trained the network on the ground truth labels included in
the benchmark (PlantSeg (trained)). Here, my pipeline is comparable to state-of-the-art. The
difference in SEG metric between “vanilla” PlantSeg and PlantSeg (trained) is 6.9 percent
points on average, which suggests that for datasets sufficiently different from the ones PlantSeg
networks were trained on, re-training the models might be necessary. Looking at the average
run-times of the methods reported in the benchmark shows that PlantSeg pipeline is clearly the
fastest approach with the average run-time of 3 min per movie when run on a server with a
modern GPU versus 35 min (MALA), 42 min (MLT) and 90 min (FFN).

I argue that the collection of pre-trained networks and graph partitioning algorithms make
PlantSeg versatile enough to work well on wide variety of membrane stained tissues, beyond
plant samples.

Method PERIPODIAL PROPER DISC

MALA 0.907 ± 0.029 0.817 ± 0.009

FFN 0.879 ± 0.035 0.796 ± 0.013

MLT-GLA 0.904 ± 0.026 0.818 ± 0.010

TA - 0.758 ± 0.009

PlantSeg 0.787 ± 0.063 0.761 ± 0.035

PlantSeg (trained) 0.885 ± 0.056 0.800 ± 0.015

Table 2.2: Epithelial Cell Benchmark results. I compare PlantSeg to four other methods using the
standard SEG metric [93] calculated as the mean of the Jaccard indices between the reference
and the segmented cells in a given movie (higher is better). Mean and standard deviation
of the SEG score are reported for peripodial (3 movies) and proper disc (5 movies) cells.
Additionally, I report the scores of PlantSeg pipeline executed with a network trained explicitly
on the epithelial cell dataset (last row).

36

Input PlantSeg

Ground Truth

A

B

Figure 2.7: Qualitative results on the Epithelial Cell Benchmark. From top to bottom: Peripodial cells
(A), Proper disc cells (B). From left to right: raw data, ground truth segmentation, PlantSeg
segmentation results. PlantSeg provides accurate segmentation of both tissue types using
only the networks pre-trained on the Arabidopsis ovules dataset. Red rectangles show sample
over-segmentation (A) and under-segmentation (B) errors. Boundaries between segmented
regions are introduced for clarity and they are not present in the pipeline output.

2.3.3 PlantSeg Applications in Developmental Biology

Together with my collaborators, I demonstrate the usefulness of PlantSeg on four concrete
biological applications that require accurate extraction of cell geometries from complex, densely
packed 3D tissues. First, PlantSeg allowed to sample the variability in the development of
ovules in a given pistil and reveal that those develop in a relatively synchronous manner
(Figure 2.8). Second, PlantSeg allowed the precise computation of the volumes of the daughter
cells resulting from the asymmetric division of the lateral root founder cell. This division results
in a large and a small daughter cells with volume ratio of ∼ 2

3 between them (Figure 2.10).
Third, segmentation of the epidermal cells in the shoot apical meristem revealed that these

37

cells are enlarged in the bce mutant compared to wild type (Figure 2.11). Finally, we showed
that PlantSeg can be used to improve the automated surface segmentation of time-lapse leaf
stacks which enables different downstream analyses such as growth tracking at cell resolution
(Figure 2.9).

#1 #2 #3 #4 #5 #6 #7 #8
Ovule primordium

0

25

50

75

100

125

150

175

200

N
u
m

b
e
r

o
f

ce
lls

#1 #2 #3 #4 #5 #6 #7 #8
Ovule primordium

0

10

20

30

40

50

P
D

 e
x
te

n
si

o
n
 (

m
)

BA

C

#4

#5

#6
#7

#8

#3

#2

#1

Figure 2.8: Ovule primordium formation in Arabidopsis thaliana. (A) 3D reconstructions of individually
labelled stage 1 primordia of the same pistil are shown (stages according to [117]). Scale
bar: 20µm. The arrow indicates an optical mid-section through an unlabeled primordium
revealing the internal cellular structure. The raw 3D image data were acquired by confocal
laser scanning microscopy according to [126]. Using MorphographX [6], quantitative analy-
sis was performed on the three-dimensional mesh obtained from the segmented image stack.
Cells were manually labelled according to the ovule specimen (from #1 to #8). (B, C)
Quantitative analysis of the ovule primordia shown in (A). (B) shows a graph depicting the
total number of cells per primordium. (C) shows a graph depicting the proximal-distal (PD)
extension of the individual primordia (distance from the base to the tip). Analysis indicates
that ovule primordium formation within a pistil is relatively uniform, with some variability,
i.e. primordia #6 and #8 exhibited a smaller number of cells.

38

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

50 100 150 200

A B C
MorphoGraphX

PlantSeg

projected
signal

seeding watershed

wall prediction 3D segmentation

D E F
Lobeyness

1 1.12

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1.02 1.03 1.04 1.05

Po
si

ti
o
n
 o

n
 t

h
e
 P

ro
x
im

a
l-

D
is

ta
l
A

x
is

Lobeyness Cell Area (um²)

0 300

Cell Extension (%)

A. thaliana

C. hirsuta

Figure 2.9: Creation of cellular segmentations of leaf surfaces and downstream quantitative analyses. (A-
C) Generation of a surface segmentation of a C. hirsuta leaf in MorphoGraphX assisted by
PlantSeg. (A) Confocal image of a 5-day-old C. hirsuta leaf (leaf number 5) with an enlarged
region. (B) Top: Segmentation pipeline of MorphoGraphX: a surface mesh is extracted from
the raw confocal data and used as a canvas to project the epidermis signal. A seed is placed
in each cell on the surface for watershed segmentation. Bottom: PlantSeg facilitates the
segmentation process in two different ways (red arrows): By creating clean wall signals
which can be projected onto the mesh instead of the noisy raw data and by projecting the
labels of the 3D segmentation onto the surface to obtain accurate seeds for the cells. Both
methods reduce segmentation errors with the first method to do so more efficiently. (C) Fully
segmented mesh in MorphoGraphX. (D-F) Quantification of cell parameters from segmented
meshes. (D) Heatmap of cell growth in an A. thaliana 8th-leaf 4 to 5 days after emergence.
(E) Comparison of cell lobeyness between A. thaliana and C. hirsuta 600-µm-long leaves.
(F) Average cell lobeyness and area in A. thaliana and C. hirsuta binned by cell position
along the leaf proximal-distal axis. Scale bars: 50µm (A, C), 100µm (D, E), 5µm (inset in
A, B). Overall, A. thaliana leaves showed higher cell size and lobeyness than C. hirsuta.39

Figure 2.10: Asymmetric cell division of lateral root founder cells. (A) Schematic representation of
Arabidopsis thaliana with lateral roots (LR). The box depict the region of the main root
that initiates LRs. (B) 3D reconstructions of LR founder cells seen from the side and from
the front at the beginning of recording (t) and after 12 hours (t+12). The star and brackets
indicate the two daughter cells resulting from the asymmetric division of a LR founder
cell. (C) Half-violin plot of the distribution of the volume ratio between the daughter cells
for 3 different movies (#1, #2 and #3). The average ratio of 0.6 indicates that the cells
divided asymmetrically.

40

A B

wt: #1 wt: #2 wt: #3 mut: #1 mut: #2 mut: #3

0

50

100

150

200

250

300

350

C
e
ll

V
o
lu

m
e

(
m

3
)

wt

mut

C

Figure 2.11: Volume of epidermal cell in the shoot apical meristem of Arabidopsis. Segmentation of
epidermal cells in wildtype (A) and bce mutant (B). Cells located at the center of the
meristem are colored. Scale bar: 20µm. (C) Quantification of cell volume (µm3) in 3
different wildtype and bce mutant specimens. The mean volume of epidermal cells in the
bce mutant is increased by roughly 50%.

2.4 PlantSeg in Collaborative Research Projects

In this section, I highlight applications of PlantSeg to problems in developmental biology and
detection of virus specific antibodies. In each of the three projects my method automates cell
segmentation and thus enables further analysis such as the study of cellular dynamics and cell
type classification. In each case, I briefly describe my contributions and the biological insights
enabled by the quantitative analysis of the segmentation results.

First, in Section 2.4.1 I describe my contribution to the publication [61] by Takafumi Ichikawa
et al. In this work, together with Dimitri Fabrèges and Rene Snajder, I have used PlantSeg
for automated segmentation of 3D time-lapse images of mouse embryo at the early stage of
development. Given the difficulties in creating high quality dense groundtruth segmentation of
3D microscopy images, I proposed and implemented an iterative, human-in-the-loop, network
training scheme which minimizes the manual proofreading and still achieves high quality
segmentation results. Dimitri Fabrèges was responsible for setting up a large scale grid search
for finding optimal hyperparameters for final segmentation.

Second, in Section 2.4.2 I show how PlantSeg helped with segmentation of the challenging
3D light microscopy images of mouse embryo developing in artificial uterus [15] by Vladyslav
Bondarenko et al. My contributions include segmentation of fixed 3D images of cell nuclei and
live 3D images of cell membranes in an ex vivo system.

Finally, in Section 2.4.3 I describe my contribution to [107], a microscopy-based assay for
SARS-CoV-2 antibodies detection. Here, PlantSeg routines were used in the image analysis
pipeline developed to automatically score antibody response of human sera. This work was

41

spearheaded by Constantin Pape, who implemented a batch processing workflow https:
//github.com/hci-unihd/batchlib for scalable analysis of the high-throughput
screening data, Vibor Laketa, who designed the assay and acquired the images and Roman
Remme, who implemented the infected cell classification. My contributions involve groundtruth
creation, training the CNNs for cell segmentation, creation of a simple application for labeling
the faulty images and setting up a central database for storing all intermediate results to ensure
full reproducibility of the experiments.

Apart from the publications mentioned in this section, I also helped to generate a three-
dimensional atlas of developing plant ovule in [134]. Here, together with Lorenzo Cerrone, I
trained neural networks for cell membrane prediction and made them available via PlantSeg
for large scale segmentation of 3D confocal stacks of fixed ovules. The resulting atlas enables
quantitative spatio-temporal analysis of cellular and gene expression patterns at cellular and
tissue resolution.

2.4.1 Ex vivo Development of Mammalian Embryo

In [61] the authors developed an ex vivo 3D culture in gel which allows the study of mammalian
development around the time of implantation. The 3D system permits the live-imaging of the
mouse embryo with light-sheet microscopy, which opens the possibility to study the cellular
dynamics through automatic cell segmentation. Based on the quantitative analysis of this
cellular dynamics the authors revealed the importance of the mechano-chemical interactions
between embryonic and extra-embryonic tissues during early mammalian development.

Automatic Cell Segmentation The segmentation pipeline used to process the 3D images
of the mTmG membrane signal consists of four steps. In the first step the 3D input images are
down-sampled by a factor of 4 along the XY axes. The dimension of the resulting images is
512× 512× 400 voxels with a physical voxel size of 0.832× 0.832× 1.000µm3 (X, Y, Z).
In the second step, a dedicated neural network trained with the PlantSeg framework is used
to generate a probability map of cell membrane locations. In the third step the probability
maps are segmented using a set of algorithms provided by PlantSeg. The best segmentation
algorithm and its corresponding hyper-parameters were found by a custom-made pipeline
which explored thousands of different configuration parameters simultaneously using EMBL’s
computing cluster. In the final step, the epiblast (EPI) cells are manually selected from the
segmented stack through visual inspection, manually corrected when appropriate, and used
for further analysis. An overview of the pipeline steps applied to a sample image is shown in
Figure 2.12.

Since no ground truth segmentation was initially available, the high performance of our
pipeline was achieved by the following iterative procedure. In the first iteration a pre-trained

42

https://github.com/hci-unihd/batchlib
https://github.com/hci-unihd/batchlib

raw input boundary predictions segmentation EPI extract

Figure 2.12: Sample image of a representative mouse embryo developing during the first 24h segmented
with PlantSeg. A down-sampled cross-section from a sample light-sheet volume (left),
boundary predicted by a dedicated PlantSeg’s CNN (middle), segmentation produced
by GASP image partitioning (right). Input image from Takafumi Ichikawa, Hiiragi Lab,
EMBL. Scale bar: 50 µm.

neural network available in the PlantSeg package was used to generate the initial membrane
probability maps. In particular, I used a CNN trained on the Arabidopsis ovules dataset named
confocal_unet_bce_dice_ds2. Having the cell boundary prediction, the initial segmentation
was produced with PlantSeg. The segmentation results were improved by visually choosing
and cropping around the most correctly segmented regions and using those segments as pseudo
labels to train a dedicated neural network for the membrane prediction task. The process
of choosing the best segmentation results and re-training the network was performed four
times. The resulting network was used together with the PlantSeg pipeline to produce the final
segmentation results. This iterative self-training procedure of (1) predicting the boundaries, (2)
segmenting with PlantSeg, (3) choosing the best outcomes as pseudo labels and (4) training
the boundary network with the pseudo labels was partially motivated by [47]. In this work
the authors use a form of knowledge distillation in which the student network, parameterized
identically as the teacher network, is trained to match the output distribution of the teacher.
Using this training procedure iteratively, the authors show that after a few iterations students
outperform their teachers by significant margins. My scheme is similar in that it uses an iterative
self-training with the teacher and the student networks of the same capacity. It differs in several
aspects. In the first iteration, the student is trained from a “noisy” labels produced by a teacher
network trained on a different data distribution, i.e. the teacher was trained on confocal images
of plant tissue and used to predict the boundaries in the light-sheet images of animal tissue.
The number of segmentation mistakes is reduced by a human who chooses the most plausible
segmentation results, which are then used as a training data for future generations. This human-
in-the-loop self-training procedure, shown in Figure 2.13, allowed the PlantSeg pipeline to
achieve high quality segmentation results without the need of expensive manual correction of
individual cells in 3D.

43

To sum up, the segmentation results given by the iterative, PlantSeg-based procedure enabled
further analysis of the interactions between embryonic and extra-embryonic tissues in early
embryogenesis.

segm
entation
+

quality control

.......

segm
entation
+

quality control

Step 1 Step k

Figure 2.13: Human-in-the-loop self-training procedure used to train the boundary predictor without
groundtruth labels. A teacher network T0 is chosen from the PlantSeg package for initial
cell membranes prediction f0(x) on the input images X0. The resulting predictions are
segmented with PlantSeg, followed by a manual quality control where a human annotator
selects the most correctly segmented regions (X1, Y1), which are used to train the student
network S1. In the next generation the student becomes the teacher an the procedure
is repeated. k = 4 iterations were performed to achieve a satisfactory predictor of cell
membranes.

2.4.2 The Role of Embryo-Uterus Interactions in Mouse Embryogenesis

In [15], Vladyslav Bondarenko et al. introduced an engineered uterus-like environment which
allows to study the embryo-uterus interaction ex vivo. My main contribution to this work
was segmentation of cells and nuclei in live (light-sheet) and fixed (confocal) images. The
segmentation problem was especially challenging, due to a significant amount of noise present
in both image modalities. Representative images of the embryos together with the PlantSeg
segmentation results are shown in Figure 2.14.
The segmentation results formed the basis for cell counting and cell tracking, which were
used to explore the coordination between embryo growth and trophoblast migration. I have

44

made the neural networks used to segment the cells and nuclei available via the BioImage
Model Zoo https://bioimage.io. The training data can be downloaded from https:
//zenodo.org/record/6546550.

Nuclei Cell Membranes
P
la

n
tS

e
g

 S
e
g

m
e
n
ta

ti
o
n

R
a
w

 I
n
p

u
t

Figure 2.14: Sample segmentation of the nuclei and cells captured during the early stage of mouse em-
bryo development in artificial uterus. LEFT: Sample cross-section from the 3D immunoflu-
orescence image of cell nuclei (top) and the corresponding PlantSeg segmentation (bottom).
RIGHT: A cross-section from a sample light-sheet volume of the plasma-membrane (top)
and the segmentation produced by PlantSeg (bottom). Input images from Vladyslav Bon-
darenko, Hiiragi Lab, EMBL.

45

https://bioimage.io
https://zenodo.org/record/6546550
https://zenodo.org/record/6546550

Nuclei Segmentation The 3D confocal volumes were acquired with LSM780 and LSM880
in a confocal mode with a voxel size of 0.207× 0.207× 1µm3 (X, Y, Z). A 3D U-Net [21]
was trained with a multi-task objective of predicting the binary nuclei mask in the first output
channel and the nuclei outlines in the second channel. The outline predictions were used to
segment the individual nuclei using PlantSeg’s MutexWS [140] partitioning algorithm. The
nuclei mask predictions were used to remove the spurious instances in the background. Sample
results in Figure 2.14 (left).

Model training was performed iteratively with an increasing amount of training data. Starting
from four initial groundtruth volumes, in each iteration, I trained the network and performed
the segmentation. The results were manually corrected and included in the training set for the
next iteration. In total, 22 training and 13 validation data volumes were used for the final model
training.

Membrane-based Cell Segmentation The 3D light-sheet images were acquired with
MuVi-SPIM. A dedicated 3D U-Net was trained to predict the foreground membrane mask,
which was used for the final cell segmentation with PlantSeg’s GASP agglomeration algorithm
(Figure 2.14 (right)). The groundtruth for the network training was bootstrapped by initially
segmenting the stacks with pre-trained PlantSeg models (confocal_unet_bce_dice_ds2x), fol-
lowed by manual correction of the erroneous cells. In total, four annotated stacks were used for
training and one for validating the network. Both nuclei and membrane U-Nets were trained
until convergence for 100K iterations, using the PyTorch framework [108]. The models with
the best score on the validation set were selected.

In summary, my contributions to segmentation of challenging images of early stages of mouse
embryo development captured ex vivo enabled accurate tracking and counting of cells of interest
and further insights about the embryo-uterus interaction in periimplantation development.

2.4.3 Microscopy-based Detection of SARS-CoV-2 Antibodies

An outbreak of the novel pathogenic coronavirus SARS-CoV-2 and its rapid spread pose a
global health emergency. Here, I briefly describe my contribution to [107] which introduces a
microscopy-based assay for detection of SARS-CoV-2 specific antibodies in human samples.
The possibility to detect antibodies against the viral proteins together with a robust image
analysis workflow resulted in specific, sensitive assay. Such quantitative serological assays are
needed for a better understanding of the immune response against the virus. The procedure
described here provides a general framework for the application of quantitative high-throughput
microscopy to rapidly develop serological assays for emerging virus infections.

46

Immunofluorescence Assay Analysis Workflow Cells infected with SARS-CoV-2
are used in the immunofluorescence (IF) assay as samples. The cells were seeded into 96-well
plates and immunostained using anti-dsRNA antibody and patient serum. Images were acquired
using an automated widefield microscope.
To get a measure for specific antibody binding we performed segmentation of cells and
classified them into infected and non-infected categories based on the dsRNA staining. Then
fluorescence intensities were measured in the serum channel per cell as a proxy for the amount
of bound antibodies for both infected and non-infected cells. The ratio between intensity values
in infected and non-infected cells is used to score the SARS-CoV-2 antibody response. My
main contribution was to train the cell segmentation models for the later step of infected cell
classification. In order to train the models, we manually labelled cells and annotated them as
infected/non-infected in 10 images chosen from five positive and five control specimens.

In more detail the analysis workflow works as follows: First, images with obvious artefacts
such as large dust particles or dirt and out-of-focus images were manually discarded. Then,
images were processed to correct for the uneven illumination profile in each channel. Next, we
segmented individual cells with a seeded watershed algorithm [14], using nuclei segmented
via StarDist [116] as seeds and boundary predictions from a U-Net [113, 142] trained with the
PlantSeg package. This approach was evaluated using leave-one-image-out cross-validation on
the groundtruth images and resulted in an average precision [36] of 0.77± 0.08. Combined
with extensive automatic quality control, which discards outliers in the results, the segmentation
was found to be of sufficient quality for the analysis.

Then, the segmented cells were classified into infected and non-infected, by measuring the
95th percentile intensities in the dsRNA channel. Cells were marked as infected if this value
exceeded 4.8 times the noise level, determined by the mean absolute deviation. This factor and
the percentile were determined empirically using grid search on the manually annotated images.
Using leave-one-out cross validation on the image level, we found that this approach yields an
average F1-score of 84.3%. Figure 2.15 presents an overview of all the steps of the analysis.

47

Figure 2.15: Image processing pipeline used to detect SARS-CoV-2 antibodies in immunofluorescence
images of human sera. First, images with acquisition defects are discarded. Then, a pre-
processing step corrects for barrel artifacts. Subsequently, cell segmentation is computed
via seeded watershed, where seeds are generated by the StarDist [116] nuclei segmentation
and cell contours are predicted using a neural network. Finally, using the virus marker
channel each cell is classified as infected or not infected and we compute the scoring.
A final automated quality control identifies and discards anomalous results. Figure from
[107].

In summary, my contributions to the image analysis pipeline increased the throughput of the
described IF-based assay for detection of SARS-CoV-2 specific antibodies in human serum. The
strategy presented provides a general framework for serological testing based on quantitative
high-throughput microscopy.

2.5 Conclusion

In this chapter, I presented PlantSeg, a simple, powerful, and versatile tool for cell segmentation.
It implements a multi-step pipeline, where a fully convolutional neural network predicts cell

48

boundaries, then the predicted boundary image is converted into a superpixel representation
and finally the graph-based merging of superpixels delivers the final segmentation.

PlantSeg was trained on various 3D confocal and light sheet images and delivers high-quality
segmentation on external datasets never seen during training as shown by both qualitative and
quantitative benchmarks. I experimented with different U-Net designs and hyperparameters, as
well as different graph partitioning algorithms, and equip PlantSeg with the ones that generalize
the best. This is illustrated by the excellent performance of PlantSeg, without retraining of
the CNNs, on a variety of plant tissues and organs imaged using confocal microscopy (3D
Cell Atlas Dataset) including the highly lobed epidermal cells ([42]). The high accuracy of
PlantSeg has also been shown empirically in an independent study [67]. Besides the plant data,
I compared PlantSeg to the state-of-the-art on an open benchmark for the segmentation of
epithelial cells in the Drosophila wing disc. Using only the pre-trained networks, PlantSeg
performance was shown to be close to the benchmark leaders, while additional training on the
benchmark’s data has narrowed the gap even further.

Accurate and versatile extraction of cell outlines rendered possible by PlantSeg opens the
door to rapid and robust quantitative morphometric analysis of plant cell geometry in complex
tissues. This is particularly relevant given the central role plant cell shape plays in the control
of cell growth and division [110].

I also highlighted three collaborative studies, demonstrating the versatility of the package
in different areas of biological research. In two studies, PlantSeg was applied to segment
volumetric time-lapse images of developing mouse embryo, which enabled the study of cellular
dynamics. In the third publication, PlantSeg routines were utilized in the image analysis pipeline
developed to automatically score antibody response in human sera.

Unlike intensity-based segmentation methods used, for example, to extract DAPI-stained
cell nuclei, the approach presented in this chapter relies on boundary information derived
from cell contour detection. While this approach grants access to the cell morphology and
cell-cell interactions, it brings additional challenges to the segmentation problem. Blurry or
barely detectable boundaries lead to discontinuities in the membrane structure predicted by
the network, which in turn might cause cells to be under-segmented. The segmentation results
produced by PlantSeg on new datasets are not fully perfect and still require proof-reading to
reach 100% accuracy.
If nuclei are imaged along with cell contours, nuclear signal can be leveraged for improving the
segmentation. One way to achieve this is based on lifted multicut formulation [60], which we
have explored [106]. In there, additional repulsive edges are introduced in the region adjacency
graph between nodes corresponding to the different nuclei. This modification is based on a
rule that a single cell contains only one nuclei. In [106], we have demonstrated that this setup
helps prevent false merge errors in cell segmentation. I added the lifted multicut segmentation
scheme, together with the networks trained to predict nuclei in 3D light-sheet images to the

49

PlantSeg package.
During the development of PlantSeg, very few benchmark datasets were available to the

community for plant cell segmentation tasks, a notable exception being the 3D Tissue Atlas.
To address this gap, me and my collaborators publicly release the core datasets of Arabidopsis
ovules and lateral root, together with the corresponding hand-curated groundtruth. We hope
that the release of these datasets can catalyze future development and evaluation of cell instance
segmentation algorithms.

50

3 SPOCO: Semi-Supervised Instance
Segmentation

In Chapter 1, we recognized the high cost of dense, pixel-wise annotations used for CNNs
training as a major obstacle for deep learning-based instance segmentation. Acquiring such
training datasets is not only difficult and time consuming, but especially for biomedical images,
it requires domain experts to perform the annotations. In this chapter, I propose to address the
dense annotation bottleneck by introducing a semi-supervised segmentation approach. It does
not require dense groundtruth and can be trained from just a handful of annotated objects. I
consider the challenging case of positive-unlabeled supervision, where only a few objects of
interests are labeled in a given image and everything else is unlabeled. Such annotations are
much cheaper to create for human annotator and allow for greater variability in the training data.
I extend an embedding-based approach described in Section 1.1.2 and introduce a novel self-
supervised consistency loss for the unlabeled parts of the training data. I evaluate the proposed
method on 2D and 3D segmentation problems in different microscopy modalities as well as
on the Cityscapes and CVPPP instance segmentation benchmarks, achieving state-of-the-art
results on the latter. This chapter is based on the publication [141].

3.1 Introduction

Instance segmentation is important for many application domains, forming the basis for the
analysis of individual object appearance. Biological imaging provides a particularly large set of
use cases for the instance segmentation task, with imaging modalities ranging from natural pho-
tographs for phenotyping to electron microscopy for detailed analysis of cellular ultrastructure.
The segmentation task is often posed in crowded 3D environments or their 2D projections with
multiple overlapping objects. Additional challenges – compared to segmentation in natural
images – come from the lack of large, publicly accessible, annotated training datasets that could
serve for general-purpose backbone training. Most microscopy segmentation networks are
therefore trained from scratch, using annotations produced by domain experts in their limited
time.

Over the recent years, several weakly supervised segmentation approaches have been intro-
duced to lighten the necessary annotation burden. For natural images, image-level labels can

51

serve as a surprisingly strong supervision thanks to the popular image classification datasets
which include images of individual objects and can be used for pre-training [27]. There are
no such collections in microscopy (see also Figure 3.5 for a typical instance segmentation
problem example where image-level labels would be of no help). Semi-supervised instance
segmentation methods [11, 10, 24] can create pseudo-labels in the unlabeled parts of the dataset.
However, these methods require (weak) annotation of all the objects in at least a subset of
images – a major obstacle for microscopy datasets which often contain hundreds of tightly
clustered objects, in 3D.

The aim of my contribution is to address the dense annotation bottleneck by proposing a
different kind of weak supervision for the instance segmentation problem: providing mask
annotations only for a subset of instances in the image, leaving the rest of the pixels unlabeled.
This “positive unlabeled” setting has been explored in image classification and semantic seg-
mentation problems [83, 78], but - to the best of my knowledge - not for instance segmentation.
Intrinsically, the instance segmentation problem is very well suited for positive unlabeled
supervision: as I show empirically (Section 3.4.5), sampling a few objects in each image
instead of labeling a few images densely exposes the network to a more varied training set with
better generalization potential. This is particularly important for datasets with sub-domains
in the raw data distribution, as it can ensure all sub-domains are sampled without increasing
the annotation time. Furthermore, in crowded microscopy images which commonly contain
hundreds of objects, and especially in 3D, dense annotation is significantly more difficult and
time consuming than sparse annotation, for the same total number of objects annotated. The
main obstacle for training an instance segmentation method on sparse object mask annotations
lies in the assignment of pixels to instances that happens in a non-differentiable step which
precludes the loss from providing supervision at the level of individual instances. To lift this
restriction, I propose a differentiable instance selection step which allows us to incorporate
any (differentiable) instance-level loss function into non-spatial pixel embedding network [16]
training (Figure 3.1). I show that with dense object mask annotations and thus full supervision,
application of the loss at the single instance level consistently improves the segmentation
accuracy of pixel embedding networks across a variety of datasets. For my main use case of
weak positive unlabeled (PU) supervision, I propose to stabilize the training from sparse object
masks by an additional instance-level consistency loss in the unlabeled areas of the images.
The conceptually simple unlabeled consistency loss, inspired by [56, 125], does not require the
estimation of class prior distributions or the propagation of pseudo-labels, ubiquitously present
in PU and other weakly supervised segmentation approaches [133, 81]. In addition to training
from scratch, my approach can deliver efficient domain adaptation using a few object masks in
the target domain as supervision.

In summary, I address the instance segmentation task with a CNN that learns pixel embed-
dings and propose the first approach to enable training with weak positive unlabeled supervision,

52

where only a subset of the object masks are annotated and no labels are given for the back-
ground. To this end, I introduce: (1) a differentiable instance selection step which allows
to apply the loss directly to individual instances; (2) a consistency loss term that allows for
instance-level training on unlabeled image regions, (3) a fast and scalable algorithm to convert
the pixel embeddings into final instances, which partitions the metric graph derived from the
embeddings. I evaluate my approach on natural images (CVPPP [100] , Cityscapes [30]) and
microscopy datasets (2D and 3D, light and electron microscopy), reaching the state-of-the-art
on CVPPP and consistently outperforming strong baselines for microscopy. On all datasets, the
bulk of CNN performance improvement happens after just a fraction of training objects are
annotated.

3.2 Related Work

Proposal-based methods such as Mask R-CNN [57] are a popular choice for instance segmen-
tation in natural images. These methods can be trained from weak bounding box labels [70,
79, 121, 103]. However, as they require a pre-trained backbone network and have difficulties
segmenting complex non-convex shapes, they have not become the go-to segmentation tech-
nique for microscopy imaging. There, instance segmentation methods commonly start from the
semantic segmentation [113], followed by a (non-differentiable) post-processing [8, 46, 77,
106].

Semantic instance segmentation with embedding networks was introduced by [38, 16].
The embeddings of [16] have no explicit spatial or semantic component. [38] predicts a
seediness score for each pixel in addition to the embedding vector. The main advantage of pixel
embedding-based segmentation methods lies in their superior performance for overlapping
objects and crowded environments, delivering state-of-the-art results in many benchmarks,
including those for biological data [92]. Furthermore, they achieve a significant simplification
of the pipeline: the same method can now be trained for intensity-based and for boundary-
based segmentation. my approach continues this line of work and employs non-spatial pixel
embeddings.

Like the original proposal of [16], all modern embedding networks require fully segmented
images for training and compute the loss for the whole image rather than for the individual
instances. Even when the supervision annotations are weak, such as scribbles or saliency masks,
they are commonly used to create full object proposals or pseudo-labels to allow the loss to
be applied to the whole image [48, 133, 81]. Such methods exploit object priors learned by
their components which have been pre-trained on large public datasets. At the moment, such
datasets or pre-trained backbones are not available for microscopy images. Another popular
approach to weak supervision is to replace mask annotations by bounding boxes [70] which

53

are much faster to produce. Given a pre-trained backbone, bounding boxes can be reduced to
single point annotations [75], but for training every object must be annotated, however weakly.
The aim of my work is to lift this requirement and enable instance segmentation training with
positive unlabeled supervision.

Positive unlabeled learning targets classification problems where negative labels are un-
available or unreliable [84, 9]. Three approaches are in common use: generation of negative
pseudo-labels, biased learning with class label noise in unlabeled areas and class prior incorpo-
ration (see [9] for detailed review). PU learning has recently been extended to object detection
[12] and semantic segmentation problems [78]. My approach enables PU learning for instance
segmentation problems via an instance-level consistency loss applied to the unlabeled areas.

The core of my approach consists of the differentiable single instance selection step per-
formed during training. Here, I have drawn inspiration from [102], where the clustering
bandwidth is learned in the network training which allows to optimize the intersection-over-
union loss for each instance. Still, as the network also needs to be trained to predict a seed
map of cluster centers for inference, this method cannot be trained on partially labeled images.
Differentiable single instance selection has also been proposed by AdaptIS [120]. However,
this method does not use a learned pixel embedding space and thus requires an additional
sub-network to perform instance selection. Importantly, AdaptIS does not introduce PU training
and relies on a pre-trained backbone network which is not readily available for microscopy
images.

3.3 Methods

3.3.1 Full Supervision

Given an image I = {I1, ..., IC} composed of C objects (including background), Nk pixels in
Ik, N =

∑C
k=1Nk pixels in the image and an embedding network f : R3 → RD which maps

pixel i into a D-dimensional embedding vector ei, the discriminative loss [16] is defined by
the pull force and the push force terms1:

Lpull =
1

C

C∑
k=1

1

Nk

Nk∑
i=1

[∥µk − ei∥ − δv]
2
+ (3.1)

Lpush =
1

C(C − 1)

C∑
k=1

C∑
l=1

k ̸=l

[2δd − ∥µk − µl∥]2+ (3.2)

1Similarly to [16] a regularization term (1
C

∑C
k=1∥µk∥) which keeps the embeddings bounded is added to the

final loss with a small weight of 0.001. For clarity, I omit this term in the text

54

where ∥·∥ is the L2-norm and [x]+ = max(0, x) is the rectifier function. The pull force
Lpull (Equation 3.1) brings the object’s pixel embeddings closer to their mean embedding µk,
while the push force Lpush (Equation 3.2) pushes the objects away, by increasing the distance
between mean instance embeddings. Note that both terms are hinged, i.e. embeddings within
the δv-neighbourhood of the mean embedding µk are no longer pulled to it. Similarly, mean
embeddings which are further apart than 2δd are no longer repulsed.

Figure 3.1: Differentiable instance selection for non-spatial embedding networks. First, I sample an
anchor point randomly or guided by the groundtruth instances. Second, I compute a distance
map in the embedding space from the anchor point to all image pixels. In the final step, a
kernel function (Equation 3.3) transforms the distance map to the “soft” instance mask.

I exploit the clustering induced by this loss to select pixels belonging to a single instance and
apply auxiliary losses at the instance level (Figure 3.2). Crucially, I find that given an instance
Ik it is possible to extract a “soft” mask Sk for the current network prediction of the instance Ik
in a differentiable way (Figure 3.1). I select an anchor point for Ik at random and project it into
the learned embedding space to recover its embedding ak, which I term “anchor embedding”.
I compute the distance map from all image pixel embeddings to the anchor embedding and
apply a Gaussian kernel function ϕ : RD × RD → R to “softly” select the pixels within the
δv-neighborhood of ak (δv is the pull term margin in Equation 3.1):

Sk = {ϕ(ei,ak) | i = 1, ..., N}

ϕ(ei,ak) = exp

(
−∥ei − ak∥2

2σ2

) (3.3)

I require the embeddings within the distance δv from the anchor embedding ak have a kernel
value greater than a predefined threshold t ∈ (0, 1), i.e. ϕ(ei,ak) ≥ t ⇐⇒ ∥ei − ak∥ ≤ δv.
I can thus determine σ2: substituting ∥ei − ak∥ = δv in Equation 3.3, I get exp

(
− δ2v

2σ2

)
= t,

i.e. σ2 = −δ2v
2 ln t . I choose t = 0.9 in my experiments and refer to Section 3.5.6 for a detailed

exploration of this hyperparameter.

55

I can now formulate a loss on the instance level, where the objective is to minimize the
discrepancy between the predicted masks Sk and the the corresponding groundtruth masks
Ik. I choose the Dice loss [99] to compare the predicted mask to the groundtruth mask. The
corresponding object level loss is given by:

Lobj =
1

C

C∑
k=1

D(Sk, Ik) (3.4)

where D is the Dice loss:

D(Sk, Ik) = 1−
2
∑N

i piqi∑N
i p2i +

∑N
i q2i

(3.5)

in which pi and qi represent pairs of corresponding pixel values of the predicted mask Sk and
groundtruth mask Ik. Combining the losses in Equation 3.1, Equation 3.2 and Equation 3.4, I
get:

LSO = αLpull + βLpush + λLobj (3.6)

which I refer to as the Single Object contrastive loss (LSO). I use α = β = 1 (similar to [16])
and λ = 1 in my experiments. I set the pull and push margin parameters to δv = 0.5, δd = 2.0.

While Equation 3.4 employs the Dice loss, my approach is not limited to Dice and can be
used with any differentiable loss function at the single instance level, e.g. binary cross-entropy.
Additionally, I explored the adversarial approach and trained a discriminator to distinguish the
object masks coming from the differentiable instance selection method or from the groundtruth.
The results of the adversarial regularization are shown in Table 3.3. Implementation details can
be found in Section 3.5.3, the results are shown in Table 3.3.

3.3.2 Positive Unlabeled Supervision

To enable training from positive unlabeled supervision, I introduce two additional loss terms:
one to push each cluster away from the pixels in the unlabeled region and the other to enforce
embedding space consistency in the unlabeled region. For an unlabeled region U which can
contain both background and unlabeled instances, I define an additional “push” term:

LU_push =
1

C

C∑
k=1

1

NU

NU∑
i=1

[δd − ∥µk − ei∥]2+ (3.7)

where C is the number of labeled clusters/instances and NU is the number of pixels in the
unlabeled region U .

56

Since there is no direct supervision applied onto the unlabeled part of the image, the fully
convolutional embedding network propagates the high frequency patterns present in there into
the feature space. This is especially apparent for natural images and microscopy images with
complex background structures, e.g. electron microscopy (see Figure 3.3 top left and Figure 3.6
top, col 3). To overcome this issue, I introduce the embedding consistency term. Given two
different embedding networks f and g, I perturb the input image x with two different random,
location- and shape-preserving augmentations t and t′ and pass it through f and g respectively.
The resulting vector fields f(t(x)) and g(t′(x)) come from the same input geometry, hence
they should result in consistent instance segmentation after clustering, also in the unlabeled part
of the input. To enforce this consistency I randomly sample an anchor point from the unlabeled
region, project it into the f - and g-embedding spaces, to get anchor embeddings af and ag and
compute two “soft” masks Sf and Sg according to Equation 3.3. Similarly to Equation 3.4 the
embedding consistency is given by maximising the overlap of the two masks, using the Dice
loss (D):

LU_con =
1

K

K∑
k=1

D(Sf
k , S

g
k) (3.8)

where K is the number of anchor points sampled from the unlabeled region U such that the
whole region is covered by the union of extracted masks, i.e. U ≈

⋃K
k=1 S

f
k ∪ Sg

k . Having
considered different variants of g-network including: weight sharing (with and without dropout)
and independent training, I choose a momentum-based scheme [56, 51] where the network
g (parameterized by θg) is implemented as an exponential moving average of the network f
(parameterized by θf). The update rule for θg is given by: θg ← mθg +(1−m)θf . f is trained
by back-propagation. I refer to Section 3.5.2 for extensive ablations of the g-network types
and Section 3.5.5 for the choice of a momentum coefficient m ∈ [0, 1). Briefly, momentum
variant provides the fastest convergence rate, improves training stability and is motivated by
prior work [125, 20]. Significance of the embedding consistency term in weakly supervised
setting is illustrated in Figure 3.3. Note how the complex patterns present in the background
(e.g. the flower pot) are propagated into the embedding space of the network trained without the
consistency term (top, column 2), leading to spurious objects in the background after clustering
(middle, column 2). In contrast, the same network trained with the embedding consistency
loss results in crisp embeddings, homogeneous background embedding and clear background
separation with no false positives (column 3). I confirm this observation by PCA-projecting
the embeddings of background pixels onto 2D subspace (bottom). Network trained sparsely
with the consistency term implicitly pulls background pixels into a single cluster, similar to the
fully supervised network where the background pull is enforced by the loss. In contrast, the
network trained without the consistency loss does not form a tight background cluster in the

57

feature space. In addition, with a limited annotation budget of a certain number of objects, I
achieve (see Section 3.4.5) much better segmentation accuracy with objects distributed across
many images than with a few images fully labeled. The latter is prone to over-fitting, whereas a
more diverse training set and the presence of the strong consistency regularizer in the former
enables it to train from just a few object mask annotations. My weakly supervised loss, termed
Sparse Single Object loss (LSSO), is given by:

LSSO = L̂SO + γ · LU_push + δ · LU_con (3.9)

In my experiments I use γ = δ = 1.
Table 3.2 shows that using the consistency term (Equation 3.8) in a fully-supervised setting,
in addition to the instance-based term (Equation 3.4) improves the segmentation accuracy at
the expense of longer training times. Figure 3.2 gives a graphical overview of the training
procedure which I term SPOCO (SParse Object COnsistency loss). Extensive ablation study
of the individual loss terms can be found in Section 3.5.1. In the experiments, I use the term
SPOCO to refer to the fully-supervised training (taking all groundtruth objects including the
background object). SPOCO@p refers to the weakly supervised positive unlabeled setting,
in which a fraction p ∈ (0, 1] of objects (excluding background) is taken for training. The
background label is never selected in the weakly supervised setting, i.e. SPOCO@1.0 means
that the network was trained with all labeled objects, excluding background.

58

Figure 3.2: Overview of training procedure. Two augmented views of an input image are passed through
two embedding networks f(·) and g(·) respectively. Anchor pixels inside labeled objects
(blue dots) are sampled and their corresponding instances are extracted as shown in Fig-
ure 3.1. Discrepancy between extracted objects and groundtruth objects is minimized by
the instance-based loss. Another set of anchors (yellow triangles) is sampled exhaustively
from the unlabeled region and for each anchor two instances are selected based on the out-
puts from f(·) and g(·). Discrepancy between instances is minimized using the embedding
consistency loss.

59

Figure 3.3: Different training schemes, left to right: SPOCO@0.1 trained without embedding con-
sistency; SPOCO@0.1 trained with embedding consistency; SPOCO trained with full
supervision (including the background label). TOP: PCA-projected embeddings; MIDDLE:
corresponding clustering results; BOTTOM: background pixel embeddings PCA-projected
onto 2D subspace.

3.3.3 Clustering

To create the final instance segmentation, the pixel-wise embeddings are clustered in a post-
processing step. Mean-shift [28] and HDBSCAN [17] are commonly used for this task [16, 74,
109]. In this work, I experimented with two additional clustering schemes: (1) a hybrid approach
called consistency clustering, where initial mean-shift clusters are refined to conform with the
pull-push loss formulation (Sec 3.3.1) (2) partitioning [140] of a metric graph derived from
pixel embeddings [76]. Embeddings from networks f and g are used together in (1), all other
clustering methods use the f -embeddings only. See Section 3.4.6 for a detailed comparison of
different clustering methods.

60

Consistency Clustering The procedure for Consistency Clustering is described in algo-
rithm 1. It works by passing two augmented versions of the input through the networks f and g,
producing embeddings Ef and Eg respectively. I cluster Ef using mean-shift with bandwidth set
to the pull force margin δv. Then for each segmented object Sk, I randomly select M anchor
points and for each anchor I extract a new object Ŝm

k by taking a δv-neighborhood around the
anchor in the Eg space. If the median intersection-over-union (IoU) between Sk and each of the
Ŝm
k objects is lower than a predefined threshold, I discard Sk from the final segmentation. This

is based on the premise that clusters corresponding to the real objects should remain consistent
between Ef and Eg.

Input: Set of mean-shift segmented objects S, embeddings from the g-network
Eg = {e0, e1, ..., eN}, IoU threshold tIoU , number of anchors per object to
sample M

Output: New set of segmented objects Ŝ
Ŝ = {};
for Sk ∈ S do
Ak = {a1

k, ...,a
M
k | am

k ∈ Eg} - anchors of Sk;
IIoU = {};
for am

k ∈ Ak do
Ŝm
k = {si | si = ∥ei − am

k ∥ < δv};
IIoU ∪ IoU(Ŝm

k , Sk);

if med(IIoU) > tIoU then
Ŝ = Ŝ ∪ {Sk};

return Ŝ;
Algorithm 1: Consistency Clustering algorithm

Graph-based partitioning The affinity graph-based method proceeds similar to [76]: I
convert the embedding space into a graph partitioning problem by introducing a grid-graph
that contains a node for each pixel and connects all direct neighbor pixel via edges. Following
[77] and [140] I introduce additional long-range edges that connect pixels that are not direct
neighbors in a fixed offset pattern. Following [76] I derive the edge weight wij , or affinity,
between pixel i and j from the embedding vector ei and ej via

wij = 1−max(
2δd − ∥ei − ej∥

2δd
, 0)2. (3.10)

61

Here, δd is the hinge from Equation 3.2 and I use the L2 norm to measure the distance in
the embedding space. This weight is derived from the distance term (Equation 3.2) and is
maximally attractive (0) when the embedding distance is zero and becomes maximally repulsive
(1) for embedding distances larger than 2δd. I obtain an instance segmentation with the Mutex
Watershed algorithm [140], which operates on long-range affinity graphs. I introduce long-
range edges between all pixel pairs with distance 3, 9 and 27 across all dimensions. This choice
yields good segmentation results empirically.

3.4 Results

I evaluate my method using the following benchmark datasets:
CVPPP. I use the A1 subset of the popular CVPPP dataset [100] which is part of the LSC
competition. The task is to segment individual leaf instances of a plant growing in a pot. The
dataset consists of 128 training images with public groundtruth labels and 33 test images with
no publicly available labels. Test images come with a foreground mask which can be used
during inference.
Cityscapes. I use Cityscapes [30] to demonstrate the performance of my method on a large-
scale instance-level segmentation of urban street scenes. There are 2975 training images, 500
validation images, and 1525 test images with fine annotations. I choose 8 semantic classes:
person, rider, car, truck, bus, train, motorcycle, bicycle and train the embedding networks
separately for each class using the training set in the full and weak supervision setting.
Light microscopy (LM) datasets. To evaluate the performance of my approach on a challeng-
ing boundary-based segmentation task I selected a 3D LM dataset of the ovules of Arabidopsis
thaliana from [142], with 48 image stacks in total: 39 for training, 2 for validation and 7 for
testing. Additionally, I use the 3D A. thaliana apical stem cells from [139] in a transfer learning
setting. The images are from the same imaging modality as the ovules dataset (confocal, cell
membrane stained), but differ in cell type and image acquisition settings. I choose the Ovules
dataset as the source domain and Stem cells as the target (plant1, plant2, plant4, plant13,
plant15 are used for fine-tuning and plant18 for testing).
Electron microscopy (EM) datasets. Here, I test my method in the transfer learning setting on
the problem of mitochondria segmentation. An important difference between light and electron
microscopy from the segmentation perspective lies in the appearance of the background which
is simply dark and noisy for LM and highly structured for EM. The source domain (VNC
dataset) [49] is a small annotated 20× 1024× 1024 volume of the Drosophila larva acquired
with voxel size of 50× 5× 5nm. I use 13 consecutive slices for training and keep 7 slices for
validation. As target domain I use the 3D MitoEM-R dataset from the MitoEM Challenge [137]
a 500 × 4096 × 4096 volume at 30 × 8 × 8 nm resolution extracted from rat cortex. Slices

62

(0-399) are used for fine-tuning and (400-499) for testing.
I present the fully- and semi-supervised results on the CVPPP, Cityscapes and LM datasets in

Section 3.4.1, Section 3.4.2 and Section 3.4.3 respectively. Transfer learning results on the LM
and EM datasets are shown in Section 3.4.3 and Section 3.4.4. In Section 3.4.5 I demonstrate
that given a limited annotation budget of a certain number of objects my method outperforms
its fully-supervised counterpart.

Setups Any fully convolutional architecture with dense outputs could be used as an embed-
ding network. I choose the U-Net [113, 21]. The depth of the U-Net is chosen such that the
receptive field of features in the bottleneck layer is greater or equal to the input patch size. In
all experiments, I train the networks from scratch without using any per-trained backbones.
I use the Adam [71] optimizer with initial learning rate 0.0002 and weight decay 0.00001.
Data augmentation consists of random crops, random flips, random scaling and random elastic
deformations. For the momentum contrast embedding network, I additionally use additive
Gaussian noise, Gaussian blur and color jitter as geometry preserving transformations.

In transfer learning experiments, the source network is always trained with the full groundtruth.
On the target domain, I reduce the learning rate by a factor of 10 compared to the source net-
work and use only a small fraction of the objects. VNC dataset is too small to train a 3D U-Net,
so I perform EM segmentation in 2D, slice-by-slice. I also downsample VNC dataset by factor
1.6 in XY to match the voxel size of the target MitoEM data.

A detailed description of the network architecture, training procedure and hyperparameter
selection can be found in the Section 3.6.

3.4.1 CVPPP Challenge

Table 3.1 shows the results on the test set. The challenge provides foreground masks for test set
images and I assume they have been used by authors of [16, 112, 74] in test time inference.
In this setting, SPOCO outperforms [74] and the current winner of the leaderboard on the
A1 dataset, keeping the advantage even in the case when the foreground mask is not given,
but learned by another network (“predicted FG”). Even without using the foreground mask in
the final clustering, SPOCO is close to [74] in segmentation accuracy, achieving much better
average difference in counting score (|DiC|). I evaluate weakly supervised predictions without
the foreground mask as I cannot easily train a semantic network without background labels.
Nevertheless, even when training with only 10% of the groundtruth instances (SPOCO@0.1),
the Symmetric Best Dice (SBD) as compared with the fully supervised SPOCO (without
FG) drops only by 10 percent points. Qualitative results from SPOCO@0.1 can be seen in
Figure 3.3 (column 3), where the single under-segmentation error is present in the top left part

63

of the image. HDBSCAN with min_size = 200 is used for clustering in this case. Visual
results and performance metrics for other clustering methods can be found in Section 3.4.6.

Method SBD |DiC|
Discriminative loss [16] 0.842 1.0

Recurrent attention [112] 0.849 0.8
Harmonic Emb. [74] 0.899 3.0

SPOCO (GT FG) 0.932 1.7

SPOCO (pred FG) 0.920 1.6

SPOCO (w/o FG) 0.886 1.3

SPOCO@0.1 0.788 ± 0.017 5.4 ± 0.3

SPOCO@0.4 0.824 ± 0.003 3.2 ± 0.5

SPOCO@0.8 0.828 ± 0.010 1.6 ± 0.2

Table 3.1: Results on the CVPPP test set. Segmentation (SBD) and counting (|DiC|) scores for fully
supervised SPOCO are reported in 3 different clustering settings: (1) with the groundtruth
foreground mask, (2) with the predicted foreground mask (3) without the foreground mask.
Results for semi-supervised setting SPOCO@p (no foreground mask) are presented for 10%,
40% and 80% of randomly selected groundtruth instances.

3.4.2 Cityscapes Challenge

I train my method with sparse (SPOCO@0.4) and full supervision and compare it with the fully-
supervised contrastive framework [16]. In [16] authors trained a single model with multiple
classes, applying the loss only within a given semantic mask. Since groundtruth semantic
masks are not available when training from sparsely labeled instances, I train one model
(including my implementation of [16]) for each semantic class. For inference, I use pre-trained
semantic segmentation model (DeepLabV3 [23]) to generate semantic masks and cluster the
embeddings only within a given semantic mask. After initial mean-shift clustering I merge
every pair of clusters if the mean cluster embeddings are closer than δd (push force hinge in
Equation 3.2). Average Precision at 0.5 intersection-over-union computed on the validation
set can be found in Table 3.2. My method outperforms [16] with only 40% of the groundtruth
objects of each semantic class used for training. This is true for all classes apart from person,
car and bicycle where the model requires larger number of annotated objects to reach high
precision. Importantly, using consistency term in the fully-supervised setting improves the score
by a large margin. The performance of SPOCO@0.4 is almost as good as the fully-supervised

64

Class Discriminative loss [16] SPOCO@0.4 SPOCO w/ con SPOCO w/o con

person 0.275 0.230 0.260 0.270

rider 0.392 0.396 0.451 0.448

car 0.416 0.301 0.331 0.363

truck 0.486 0.558 0.604 0.527

bus 0.504 0.601 0.637 0.530

train 0.375 0.594 0.656 0.490

motorcycle 0.382 0.405 0.464 0.461

bicycle 0.267 0.214 0.266 0.255

average 0.387 0.412 0.459 0.418

Table 3.2: Segmentation results on the Cityscapes validation set. Average and per-class AP@0.5 scores
are reported. SPOCO w/ con - fully-supervised SPOCO with the consistency term, SPOCO
w/o con - fully-supervised SPOCO without the consistency term.

SPOCO without the consistency term. I hypothesize that strong regularization induced by
the consistency term is crucial for classes with small number of instances. Figure 3.4 shows
qualitative results on a few samples from the validation set. Network trained with discriminative
loss frequently over-segments large instances (trucks, buses, trains). A common mistake in
crowded scenes for both methods is the merging of neighboring instances. Segmentation
scores at different sampling rates, comparison with a class-agnostic training setting as well as
qualitative results can be found in the Section 3.5.4.

65

Figure 3.4: Segmentation results for randomly selected images of different semantic classes on the
Cityscapes validation set.

3.4.3 3D Light Microscopy Datasets

I compare SPOCO to the method of [142]: a 3-step pipeline of boundary prediction, supervoxel
generation and graph agglomeration. Following [142], Adapted Rand Error [44] is used for
evaluating the segmentation accuracy. As shown in Table 3.3, the performance of SPOCO is
close to that of the much more complex 3-step PlantSeg pipeline. An additional adversarial loss
term (SPOCO with Lwgan, see Section 3.5.3) brings another performance boost and improves
SPOCO accuracy beyond the [142] level.

Note that SPOCO trained with 10% of the groundtruth instances already outperforms
the original embedding network with discriminative loss [16]. See Figure 3.5 (top row) for
qualitative results on a randomly sampled test set patch.

66

Method ARand error

PlantSeg [142] 0.046

Discriminative loss [16] 0.074

SPOCO 0.048

SPOCO with Lwgan 0.042
SPOCO@0.1 0.069

SPOCO@0.4 0.060

SPOCO@0.8 0.057

Table 3.3: Evaluation on a 3D light microscopy dataset of Arabidopsis ovules [142]. The Adapted Rand
Error (ARand error) averaged over the 7 test set 3D stacks is reported. Bottom part of the
table shows the scores achieved in the weakly supervised settings.

Table 3.4 shows SPOCO performance in a transfer learning setting, when fine-tuning a
network trained on the Ovules dataset to segment the Stem dataset. The Ovules network trained
only on source data does not perform very well, but just 5% of the target groundtruth annotations
brings a two-fold improvement in segmentation accuracy. Results in Table 3.3 and Table 3.4
are based on HDBSCAN (min_size = 550) clustering.

Method ARand error

Stem 0.074

Ovules 0.227

Ovules+Stem@0.01 0.141 ± 0.002

Ovules+Stem@0.05 0.109 ± 0.002

Ovules+Stem@0.1 0.106 ± 0.004

Ovules+Stem@0.4 0.093 ± 0.003

Table 3.4: Evaluation on a 3D light microscopy dataset in a transfer learning setting. Ovules dataset acts
as the source domain, Stem dataset as the target domain. Performance is measured by the
Adapted Rand Error (lower is better). Mean ± SD are reported across 3 random samplings of
the instances from the target dataset.

Qualitative results are shown in Figure 3.5 (bottom row). Note how the output embeddings
from the Ovules network fine-tuned with just 1% of cells from the target dataset are less crisp

67

due to the domain gap, but the clustering is still able to segment them correctly.

Figure 3.5: Light microscopy segmentation in standard and transfer learning settings. TOP: samples
from the 3D Ovules (left) and Stem (right) datasets; MIDDLE: segmentation of a selected
patch (A) from the source domain; BOTTOM: output of the source (Ovules) network fine-
tuned with 1% of instances from the target (Stem) and the corresponding segmentation of a
selected patch (B).

68

3.4.4 Electron Microscopy Datasets

Table 3.5 continues the evaluation of SPOCO performance in a transfer learning setting. I
report the average precision at 0.5 IoU threshold (AP@0.5) and the mean average precision
(mAP). Similar to the LM case, just 1% of annotated objects in the target dataset bring a 1.5
fold improvement in the mean average precision compared to the network trained on source
VNC domain only. A comparison to a network trained only on MitoEM (Table 3.5 bottom)
shows that fine-tuning does significantly improve performance for low amounts of training
data (1% of the target). With 10% of the annotated objects, fine-tuned VNC network does not
reach the performance of the SPOCO@0.1 trained directly on MitoEM (target) due to reduced
learning rate. Figure 3.6 illustrates the EM experiments. The VNC-net only partially recovers
4 out of 7 groundtruth instances and also produces a false positive. MitoEM@0.05 without
consistency loss only recovers 2 instances, while the version with the consistency loss recovers
the correct segmentation. Embeddings clustered with HDBSCAN (min_size = 600).

Method AP@0.5 mAP

MitoEM 0.560 0.429

VNC 0.234 0.137

VNC+MitoEM@0.01 0.368 ± 0.022 0.247 ± 0.022

VNC+MitoEM@0.05 0.398 ± 0.007 0.277 ± 0.006

VNC+MitoEM@0.10 0.389 ± 0.013 0.268 ± 0.007

MitoEM@0.01 0.088 ± 0.045 0.046 ± 0.025

MitoEM@0.05 0.403 ± 0.055 0.280 ± 0.046

MitoEM@0.10 0.481 ± 0.008 0.340 ± 0.007

Table 3.5: Evaluation on MitoEM dataset (target) fine-tuned from the VNC net (VNC+MitoEM@p)
and trained from scratch (MitoEM@p) with different sampling ratios. The performance is
measured with an average precision (AP@0.5, mAP). Mean ± SD are reported across 3
random samplings of the instances from the target dataset.

69

Figure 3.6: Electron microscopy segmentation in transfer learning setting. TOP: samples from the
source (VNC, left) and target (MitoEM, right) datasets; MIDDLE: the input image and
the RGB-projected embeddings: trained on VNC only, VNC-pretrained + MitoEM@0.05-
finetuned without the embedding consistency, same but with the embedding consistency,
trained on MitoEM only; BOTTOM: groundtruth and predicted segmentations.

3.4.5 Training with Limited Annotation Budget

Choosing a fixed annotation budget of N ground truth instances I can objectively compare
the weakly supervised training with the dense, fully supervised one. I set N = 16, which
corresponds to roughly 1% of the objects from the CVPPP training set containing 1683 objects
spread across 103 files (I use train/val script described in Section 3.5.2). In the dense setup I
randomly choose a single groundtruth file with 16 objects and dense labeling (including the

70

background label), whereas in the sparse setting I randomly sample 16 objects from the whole
training set, resulting in 16 files, each with only one object labeled. On the densely labeled
image, I train using the fully supervised loss Equation 3.6, while on the sparsely annotated
images I train using the weakly supervised loss Equation 3.9.

Segmentation metrics and embeddings emerging the two training schemes are shown in
Table 3.6. The network trained from dense annotations is prone to over-fitting and result in
visible artifacts in the embedding space. On the other hand, exposing the network to a much
more varied training set in the sparse setting and the presence of a strong consistency regularizer
results in a feature space of much better quality. Quantitative comparison confirms that the
sparse significantly outperforms the dense setting in terms of segmentation and counting scores.

Training scheme SBD |DiC|
1% dense 0.380 9.8

1% sparse 0.691 2.2

Table 3.6: TOP: segmentation performance computed for the networks trained with limited annotation
budget on the CVPPP validation set. Embeddings within the foreground semantic mask were
clustered with mean-shift algorithm. BOTTOM: qualitative comparison of the embeddings
trained in the dense and sparse setting. Four sample images where chosen from the CVPPP
validation set.

71

3.4.6 Clustering Comparison

Quantitative comparison of 4 different clustering algorithms: HDBSCAN (min_size = 200),
Mean-shift (with bandwidth set to δv = 0.5), Consistency Clustering (tIoU = 0.6) and affinity-
based clustering are shown in Table 3.7. I report the segmentation and counting scores as
well as runtimes on the CVPPP validation set. I used the embedding networks trained using
SPOCO@0.1 (i.e. 10% of randomly selected ground truth objects) and SPOCO (trained with
full supervision).

Mean-shift has a high recall (correctly recovers most instances), but low precision (it tends
to over-segment the image around the boundary of the objects, see Figure 3.7) resulting in high
number of false positives and inferior counting scores. Consistency clustering significantly
improves the initial mean-shift segmentation resulting in the best segmentation metric for the
network trained with weak supervision (SPOCO@0.1). Affinity-based (Mutex Watershed)
and density-based (HDBSCAN) methods have similar segmentation scores, with the former
achieving much better counting performance in both full (SPOCO) and weak (SPOCO@0.1)
supervision. The affinity-based approach has much lower runtimes compared to the other
clustering methods.

Clustering SBD |DiC| t [s]

SPOCO@0.1

Consistency 0.729 ± 0.086 2.7 ± 1.7 252.3

HDBSCAN 0.653 ± 0.077 5.7 ± 1.7 82.3

Mean-shift 0.356 ± 0.048 20.7 ± 6.2 201.2

Affinity-based 0.615 ± 0.061 2.6 ± 2.3 0.45
SPOCO

HDBSCAN 0.834 1.6 164.7

Mean-shift 0.541 10.92 121.9

Affinity-based 0.833 0.88 0.4

Table 3.7: Performance and runtime comparison of the clustering methods on the CVPPP validation
set. I compare the results for SPOCO@0.1, where mean ± SD are reported across 3 random
samplings of the ground truth objects as well as fully supervised SPOCO (bottom), for which
I report results from a single training.

Similarly, Table 3.8 shows comparison of 3 clustering algorithms: HDBSCAN (min_size =
600), Mean-shift (bandwidth = δv) and affinity-based on the Ovules test set. I skip the

72

consistency clustering, since the embedding network is trained in the full supervision setting. I
notice that for the dense tissue segmentation problems, HDBSCAN classifies the low density
areas between the cells as noise, and additional post-processing is required in order to fill
the empty space. Results reported in Table 3.3 and Figure 3.5 are based on the watershed
post-processing. Here, for fair comparison with other methods I don’t use the watershed post-
processing on the HDBSCAN clustering results (see Figure 3.5 bottom). Overall, the parameter-
free, affinity-based clustering is much faster than other methods under consideration and
provides the best performance-runtime ratio. The downside of HDBSCAN is its sensitivity to
the min_size hyperparameter, longer running times and the need for additional post-processing
for dense tissue segmentation problems.

Method (Ovules) Arand error t [s]

HDBSCAN 0.133 95.0

Mean-shift 0.102 279.2

Affinity-based 0.086 0.9

Table 3.8: Performance (Adapted Rand Error) and runtime comparison of the clustering methods on the
ovules test set. Embedding network trained with fully supervised SPOCO.

Qualitative results on samples from the CVPPP and Ovules datasets are illustrated in
Figure 3.7.

73

Figure 3.7: Qualitative comparison of different clustering schemes on the samples from the CVPPP
validation set (top) and Ovules test set (bottom). Fully supervised SPOCO was used to train
embeddings.

3.5 Ablation Study of SPOCO

In this section, I investigate the importance of different loss components as well as the choice
of the g-network and their impact on the training dynamics and the final segmentation.

74

3.5.1 Ablation of Loss Functions

I study the impact of different loss variants and the choice of g(·) network on the final
performance of my method. Table 3.9 presents segmentation and counting scores (CVPPP test
set) with different loss variants. HDBSCAN with min_size = 200 and no foreground mask
was used for clustering the network outputs in all cases. I see that when only a few ground
truth objects are used for training (10%, 40%) the consistency term LU_con (Equation 3.8) has
a much stronger impact on the final segmentation performance than the unlabeled “push” term
LU_push (Equation 3.7). The absence of LU_push term worsens the segmentation and counting
scores in all experiments.

Loss function SBD |DiC|
SPOCO@0.1 0.788 ± 0.017 5.4 ± 0.3

SPOCO@0.1 w/o LU_push 0.734 ± 0.042 8.5 ± 0.4

SPOCO@0.1 w/o LU_con 0.720 ± 0.037 6.3 ± 0.1

SPOCO@0.4 0.824 ± 0.003 3.2 ± 0.5

SPOCO@0.4 w/o LU_push 0.779 ± 0.045 3.0 ± 0.7

SPOCO@0.4 w/o LU_con 0.738 ± 0.019 2.1 ± 0.1

SPOCO@0.8 0.828 ± 0.010 1.6 ± 0.2

SPOCO@0.8 w/o LU_push 0.797 ± 0.014 1.9 ± 0.4

SPOCO@0.8 w/o LU_con 0.810 ± 0.010 2.1 ± 0.2

Table 3.9: Ablation study of different loss variants. I report segmentation (SBD) and counting (|DiC|)
scores on the CVPPP test set. Ablation of the LU_con LU_push term in the semi-supervised
setting is reported for 10%, 40% and 80% of randomly selected ground truth objects. Mean
± SD are reported across 3 random samplings of the ground truth objects.

In transfer learning setting, the embedding network trained on the source domain is fine-
tuned on the target domain with just a few groundtruth objects. Results on the EM data, where
VNC dataset [49] is the source and the MitoEM [137] is the target domain (Table 3.10) show
significant drop in segmentation scores across all experiments if the embedding consistency is
removed from the loss.

75

Method AP@0.5 mAP

SPOCO@0.01 0.368 ± 0.022 0.247 ± 0.022

SPOCO@0.01 w/o LU_con 0.306 ± 0.014 0.210 ± 0.008

SPOCO@0.05 0.398 ± 0.007 0.277 ± 0.006

SPOCO@0.05 w/o LU_con 0.319 ± 0.002 0.227 ± 0.002

SPOCO@0.10 0.389 ± 0.013 0.268 ± 0.007

SPOCO@0.10 w/o LU_con 0.301 ± 0.012 0.212 ± 0.007

Table 3.10: Ablation of the consistency term LU_con in the transfer learning setting with 1%, 5%, 10%
of groundtruth objects (target domain). Average precision measured on the target task of
MitoEM mitochondria segmentation is reported. VNC dataset serves as a source domain.
Mean ± SD are reported across 3 random samplings of the instances from the target dataset.

To finalize the ablation study, I trained the network in a fully-supervised setting using the
consistency regularization from the weakly-supervised setup. Table 3.11 shows the comparison
between all four variants. Using the consistency term LU_con together with the instance-
based term Lobj on the Cityscapes validation set gives the highest mAP@0.5 score of 0.459
as compared to 0.387 (discriminative loss), 0.418 (discriminative loss + Lobj) and 0.429
(discriminative loss + LU_con). For CVPPP the SBD metric on the validation set improves from
0.847 (full supervision as in [16]) to 0.852 (discriminative loss + Lobj), to 0.853 (discriminative
loss + Lobj) and to 0.849 (discriminative loss + Lobj + LU_con).

Loss function CVPPP Cityscapes

Discriminative Loss [16] 0.847 0.387

Discriminative Loss + Lobj 0.852 0.418

Discriminative Loss + LU_con 0.853 0.429

Discriminative Loss + Lobj + LU_con 0.849 0.459

Table 3.11: Weakly-supervised regularization in the fully-supervised setting. SBD (CVPPP datasets)
and mAP@0.5 (Cityscapes dataset) computed on the validation sets.

3.5.2 G-network Ablations

I experiment with different types of the g network used in the consistency loss to better
understand its effect. Apart from the momentum g described in Section 3.3.2 I consider three

76

other variants: (1) weights are shared between f and g, i.e. θg = θf , (2) g shares the weights
with f , but uses spatial dropout [127] in the bottleneck layer of the U-Net architecture, (3) g
uses independent set of weights trained by back-propagation.
For the purpose of this ablation, I split the CVPPP A1 training set into 103 randomly selected
images used for training and report the results on the remaining 25 images.

Table 3.12 shows the segmentation and counting scores for the HDBSCAN-clustered em-
beddings together with training dynamics for different variants of g. “Dropout” variant shows
a good initial convergence rate, but overfits quickly and has the worse final performance.
“Trained” and “shared” variants show comparable average scores, however the variance is much
larger for the “trained”, which is prone to training instabilities. “Momentum” outperforms
the others by a large margin and has the fastest convergence speed. Figure 3.8 shows the
PCA-projected netork outputs for two randomly selected CVPPP images (test set) and five
different settings. One can see that sparse training without the consistency loss (column 2) fails
to separate the background. Using dropout g leads to artifacts in the unlabeled region. “Shared”
and “trained” variants of g (columns 4 and 5) provide limited background separation, but fail to
produce crisp embeddings. The “momentum” variant (column 6) is able to correctly separate
the background.

77

g-network SBD |DiC|
Shared 0.602 ± 0.016 6.0 ± 0.6

Dropout 0.507 ± 0.060 7.9 ± 0.9

Trained 0.591 ± 0.131 5.7 ± 2.0

Momentum 0.649 ± 0.045 4.5 ± 1.6

Table 3.12: TOP: segmentation performance computed for different types of g-network on the
CVPPP validation set. BOTTOM: comparison between g-network variants during training.
SPOCO@0.1 used for training, mean ± SD across 3 random samplings of the groundtruth
objects is shown.

78

Figure 3.8: Qualitative comparison of the PCA-projected outputs from the network f for different
training setups: (col 2) no consistency term, (col 3) dropout g, (col 4) shared g, (col 5)
trained g, (col 6) momentum g. Two images from the CVPPP test set were randomly
selected. SPOCO@0.1 was used for training.

3.5.3 Adversarial Training

As mentioned in Section 3.3.1 the differentiable object selection can be used as a basis for the
the adversarial training. I this case, the pixel embedding network plays the role of the generator:
it generates object masks for randomly selected anchor points, whereas a separate discriminator
network learns to distinguish between the groundtruth masks and generated masks.

For adversarial training I use Wasserstein GAN with gradient penalty (WGAN-GP) [52]
objective function given by:

VD(G,D) = Ex̃∼Pg [D(x̃)]− Ex∼Pr [D(x)] + λEx̂∼Px̂
[(∥∇x̂D(x̂)∥−1)2] (3.11)

for the critic D, and:

VG(G,D) = −Ex̃∼Pg [D(x̃)] (3.12)

for the generator G. In our case the final loss for the generator, i.e. the embedding network, is a
linear combination of the embedding objective and the WGAN loss:

Ladv = Lemb + ζVG(G,D) (3.13)

with Lemb is either LSO (full supervision) defined in Equation 3.6 or LSSO (weak supervision)
defined in Equation 3.9. In the equations above: Pr is the distribution of ground truth mask,
Pg is the distribution of predicted “soft” masks and Px̂ is the sampling distribution (uniformly

79

sampling along straight lines between pairs of points sampled from the data distribution Pr

and the generator distribution Pg). Table 3.15 (middle-bottom) shows the architecture of the
critic used in the Ovules dataset experiments. Training of the embedding network and the
critic is done using the Adam optimizer with β1 = 0.5, β2 = 0.9 and initial learning rate
of 0.0001 for both networks. I use ncritic = 5 iterations per each iteration of the embedding
network. I use λ = 10 (gradient penalty weight) and ζ = 0.1 in my experiments. In order to
prevent uninformative gradients from the critic at the beginning of the training process, Lwgan

is enabled after the warm-up period of 50K iterations.
In my experiments, adversarial training does not by itself bring a significant performance

improvement over the Dice-based loss. However using the combination of both can be ben-
eficial as I show in Table 3.3: the combined loss outperforms a much more complex 3-step
state-of-the-art segmentation pipeline. This finding is similar to [89] where authors use an
adversarial approach to train a semantic segmentation model. My approach differs, because the
discriminator focuses more on the individual object properties instead of the global statistics of
the semantic mask predicted by the network.

3.5.4 Cityscapes Single-class vs Class-agnostic

In Table 3.13, I compare two different training setups at different object sampling ratios for
the Cityscapes dataset: (1) single-class reported in the main text, where embedding network is
trained on objects from a single semantic class and (2) class-agnostic where all objects from
all classes are used to train a single embedding network. The class-agnostic training works
better for riders, cars, motorcycles and bicycles at all sampling levels. The single-class training
is better for trucks, buses, and trains. I hypothesize that the class-agnostic setup learns better
representation of objects from correlated classes (e.g. person and rider, motorcycle and bicycle),
but it is detrimental to trucks, buses and trains due to heavy class imbalance. A per-class
weighting of the instance-based term could be beneficial in the class-agnostic setting, which I
leave for future work.

80

Method person rider car truck bus train motorcycle bicycle average
single-class@0.1 0.190 0.360 0.236 0.438 0.481 0.490 0.424 0.204 0.353

class-agnostic@0.1 0.197 0.430 0.282 0.243 0.276 0.167 0.468 0.261 0.291

single-class@0.4 0.230 0.396 0.301 0.558 0.601 0.594 0.405 0.214 0.412
class-agnostic@0.4 0.207 0.459 0.332 0.260 0.336 0.223 0.471 0.266 0.319

single-class@1.0 0.260 0.451 0.331 0.604 0.637 0.656 0.464 0.266 0.459
class-agnostic@1.0 0.259 0.463 0.410 0.370 0.395 0.378 0.478 0.296 0.381

Table 3.13: Comparison of SPOCO trained in a single-class vs class-agnostic settings at different
sampling ratios. Shown are mAP@0.5 scores computed on the Cityscapes validation set.

3.5.5 Momentum Coefficient Exploration

In this experiment, I explore the effect of the momentum coefficient m used in the momentum
update of the g-network parameters (see Section 3.3.2). I use the train/val split of the CVPPP
training set described in Section 3.5.2. Similar to [56] I show in Table 3.14 that the large
momentum (m = 0.999) performs best. I hypothesize that using slowly moving g moving acts
as a strong regularizer which prevents the embedding network f to adapt too quickly to the
spare ground truth signal.

81

m SBD |DiC|
0.99 0.615 ± 0.042 5.2 ± 0.8

0.995 0.622 ± 0.116 5.4 ± 0.7

0.999 0.649 ± 0.045 4.5 ± 1.6

Table 3.14: The effect of the momentum coefficient value m on the SPOCO performance. (top) Seg-
mentation and counting scores. (bottom) Evolution of the validation score during training.
SPOCO@01 was used for training. Mean ± SD across 3 random samplings of the ground
truth objects is shown.

3.5.6 Kernel Threshold Exploration

Figure 3.9 illustrates the effect of the kernel threshold parameter t (Equation 3.3) on the
SPOCO model performance. Choosing a large value (e.g. t = 0.9) leads to a crisper, more
separable embeddings than smaller values (e.g. t ∈ {0.25, 0.5, 0.75}). The difference in the
final segmentation performance between a small and a large value of t is especially apparent
in the sparse annotation regime. Indeed, when training with only 10% (SPOCO@0.1) or 40%
(SPOCO@0.4) of ground truth objects, the mean SBD score improvement between t = 0.5
and t = 0.9 is 0.044 and 0.054 respectively. Although the performance gain is less pronounced
when more supervision is provided (for SPOCO@0.8 the mean SBD reaches a plateau for
t ≥ 0.5), models trained with higher values of t are more robust as shown by the low variance
of the SBD score. In my experiments, values of t greater than 0.95 lead to training instabilities.

82

Figure 3.9: Effect of the kernel threshold t on the segmentation performance at different ground truth
objects sampling rates (0.1, 0.4, 0.8). SBD scores measured on the CVPPP validation set
are shown for models trained with four values of t: 0.25, 0.5, 0.75, 0.9. Mean ± SD are
reported across 3 training runs for each (sampling rate, kernel threshold) pair. HDBSCAN
(min_size = 200) is used for clustering.

3.6 Network Architecture and Training Parameters

The structure of the U-Net embedding network used for each dataset is described using the
convolutional building block shown in Figure 3.10. The number of convolutional blocks in
the encoder/decoder part of U-Net is chosen such that the receptive field of features in the
last encoder layer is equal to or slightly bigger than the input size. I use group normalization
[143] for 3D and electron microscopy experiments and batch normalization for CVPPP and
Cityscapes datasets [62].

Details of the architectures used in experiments on different benchmark datasets as well as
the architecture of the WGAN disriminator used in the adversarial setting (Section 3.5.3) are
shown in Table 3.15.

Unless otherwise specified, Adam optimizer [71] with an initial learning rate of 0.0002,
weight decay 10−5, β1 = 0.9 and β2 = 0.999 was used for training. Learning rate was reduced
by a factor of 0.2 when the validation loss stopped improving after a dataset-dependent number
of iterations. Training was stopped when the learning rate dropped below 10−6 or maximum
number of iterations was reached.

83

I use 16-dimensional embedding space in all my experiments except Cityscapes, where 8-
dimensional embeddings are used. Input images were globally normalized to zero mean and a
unit standard deviation unless stated otherwise.

Figure 3.10: The convolutional block consist of two convolutional layers, optionally preceded by the
normalization layer (BN for batchnorm, GN for groupnorm), and followed by the ReLU
activation function. I use ConvBN, ConvGN or Conv to refer to the convolutional block
with batchnorm [62], groupnorm [143] or no normalization layers respectively.

84

x ∈ RH×W×3

ConvBN, 16, MP 2×2

ConvBN, 32, MP 2×2

ConvBN, 64, MP 2×2

ConvBN, 128, MP 2×2

ConvBN, 256, MP 2×2

ConvBN, 512, Up 2×2

Concat, 256 + 512

ConvBN, 256, Up 2×2

Concat, 128 + 256

ConvBN, 128, Up 2×2

Concat, 64 + 128

ConvBN, 64, Up 2×2

Concat, 32 + 64

ConvBN, 32, Up 2×2

Concat, 16 + 32

ConvBN, 16

1×1 conv, d

x ∈ RD×H×W×1

ConvGN, 64, MP 2×2

ConvGN, 128, MP 2×2

ConvGN, 256, MP 2×2

ConvGN, 512, Up 2×2

Concat, 256 + 512

ConvGN, 256, Up 2×2

Concat, 128 + 256

ConvGN, 128, Up 2×2

Concat, 64 + 128

ConvGN, 64

1×1 conv, d = 16

x ∈ [0, 1]D×H×W×1

Conv, 64, MaxPool 2×2

Conv, 128, MaxPool 2×2

Conv, 256, MaxPool 2×2

Conv, 512, Upsample 2×2

dense layer, 1

x ∈ RH×W×1

ConvGN, 16, MP 2×2

ConvGN, 32, MP 2×2

ConvGN, 64, MP 2×2

ConvGN, 128, MP 2×2

ConvGN, 256, MP 2×2

ConvGN, 512, MP 2×2

ConvGN, 1024, Up 2×2

Concat, 512 + 1024

ConvGN, 512, Up 2×2

Concat, 256 + 512

ConvGN, 256, Up 2×2

Concat, 128 + 256

ConvGN, 128, Up 2×2

Concat, 64 + 128

ConvGN, 64, Up 2×2

Concat, 32 + 64

ConvGN, 32, Up 2×2

Concat, 16 + 32

ConvGN, 16

1×1 conv, d = 16

Table 3.15: U-Net architectures used for different benchmark datasets. In each table: first row corre-
sponds to the input image dimension, subsequent rows show the operation name and the
number of output channels after the operation, Up denotes nearest-neighbor upsampling, MP
denotes max pooling operation and Concat denotes channel-wise concatenation of the output
for a given decoder layer with the output from the corresponding encoder layer. d refers to
the dimensionality of the output embeddings. LEFT: U-Net architecture for CVPPP and
Cityscapes datasets. (H,W) = (448, 448), d = 16 for CVPPP and (H,W) = (384, 768),
d = 8 for Cityscapes. MIDDLE-TOP: U-Net architecture for Ovules and Stem datasets,
(D,H,W) = (40, 64, 64). MIDDLE-BOTTOM: WGAN-GP critic architecture on Ovules
dataset, (D,H,W) = (40, 64, 64). Here, ReLU was replaced by leaky ReLU activation
function with α = 10−2. RIGHT: U-Net architecture for VNC and MitoEM datasets,
(H,W) = (448, 448).

85

CVPPP Table 3.15 (left) shows the 2D U-Net architecture used in the experiment. All
networks were trained for up to 80K iterations (unless the stopping criteria was not satisfied
before) with a minibatch size of 4. Input images were randomly scaled, flipped horizontally and
vertically and cropped to 448×448 pixels. Before passing to f(·) and g(·) networks, random
color jitter and Gaussian blur were applied.

Cityscapes See Table 3.15 (left) for an overview of 2D U-Net architecture for the Cityscapes
semantic instance segmentation task. All networks were trained for up to 90K iterations with a
minibatch size of 16. The network output dimension was set to 8. Input images were randomly
cropped to 358×768 patches. Random flipping and scaling (ratio in [0.5, 2.0]), Gaussian
blurring, color jitter and random conversion to grayscale was applied to the input before passing
it to f(·) and g(·) networks.

Light microscopy datasets 3D U-Net architecture used for the light microscopy datasets
is shown in Table 3.15 (middle-top). Ovules networks were trained for up to 200K iterations
(or until the stopping criteria was satisfied) with a minibatch size of 8. Stem networks were
fine-tuned with a fixed, reduced learning rate of 0.00002 for 100K iterations. 3D patches
of shape 40×64×64 (ZYX axes ordering) were used. Patches were augmented with random
rotations, flips and elastic deformations. Gaussian noise was added to the input before passing
through f(·) and g(·) networks.
For a fair comparison with other methods I do not stitch the patches to recover the whole
volume, but evaluate on the patch-by-patch basis.

Electron microscopy datasets 2D U-Net architecture for the VNC and MitoEM datasets
is shown in Table 3.15 (right). The source VNC network was trained for up to 100K iterations
with a minibatch size of 4. MitoEM networks were fine-tuned with a fixed, reduced learning
rate of 0.00002 for 100K iterations. 2D patches of shape 448×448 were used. Patches were
augmented with random rotations, flips and elastic deformations. Gaussian noise was added to
the input before passing through f(·) and g(·) networks.

3.7 Conclusion

I presented a novel approach to weak supervision for instance segmentation tasks which enables
training in a positive unlabeled setting. Here, only a subset of object masks are annotated with
no annotations in the background and the loss is applied directly to the annotated objects via
a differentiable instance selection step. The unlabeled areas of the images contribute to the
training through a self-supervised instance-level consistency loss. This setup, which allows

86

to do instance segmentation using just a small number of positive labeled instances, shows
great potential in the fields of perception, bio and medical image analysis where accessing
high-quality training data is always a bottleneck.

I demonstrate the advantage of single-instance losses in a fully supervised setting, reaching
state-of-the-art performance on the CVPPP benchmark and improving on strong baselines in
several microscopy datasets. Weak positive unlabeled supervision is evaluated on the Cityscapes
instance segmentation task and on biological datasets from light and electron microscopy, 2D
and 3D, in direct training and in transfer learning. In all cases, the network demonstrates
strong segmentation performance at a very reduced manual annotation cost. To the best of my
knowledge, this is the first work to consider the positive-unlabelled supervision for the instance
segmentation task.

In the future, I plan to explore the possibility of fully self-supervised pre-training using the
consistency loss and an extended set of augmentations. This would open up the possibility for
efficient fine-tuning of the learned feature space with point supervision for both semantic and
instance segmentation tasks.

Limitations. The main drawback of the proposed approach is the lack of a universal cluster-
ing method to assign instance labels to pixels based on their embeddings. The existing methods
all have benefits and drawbacks; there is no consistent winner that would work robustly across
all segmentation benchmarks.

87

4 Software

As part of this thesis, I created or contributed to multiple open-source software projects that help
researchers and practitioners segment, analyze and visualize 2D and 3D biological datasets. In
this chapter, I briefly describe the most popular of these projects and their main functionalities.

4.1 pytorch-3dunet

I created pytorch-3dunet a popular library for training dense segmentation networks. It provides
a Pytorch [108] implementation of the various CNN architectures (e.g. 3D U-Net [21], Residual
3D U-Net [77]) and training routines for semantic segmentation and regression problems in 2D
and 3D. Using the software, users can train complex networks and run predictions on their data
without writing a single line of code. It provides common functionalities for neural network
training and inference accessible via a convenient config-based interface. A sample YAML
configuration file is shown in Listing 1. The user can specify the most common aspects of
the training and prediction process, such as choosing the network architecture, optimization
algorithm, loss function, data loader and data augmentation. The package supports parallel
execution across multiple GPUs. At the time of writing this thesis the project has more than
1.3k stars on GitHub and has been extensively used by researchers (e.g. [119]) and machine
learning practitioners. The source code together with a detailed documentation is available on
GitHub: https://github.com/wolny/pytorch-3dunet.

89

https://github.com/wolny/pytorch-3dunet

1 model:
2 # model class
3 name: UNet3D
4 # number of input channels to the model
5 in_channels: 1
6 # number of output channels
7 out_channels: 1
8 # number of initial feature maps
9 f_maps: 32

10 # apply element-wise sigmoid after the final 1x1x1 conv
11 final_sigmoid: true
12 # loss function configuration
13 loss:
14 name: BCELoss
15 # optimizer configuration
16 optimizer:
17 learning_rate: 0.0002
18 weight_decay: 0.00001
19 # learning rate scheduler configuration
20 lr_scheduler:
21 name: ReduceLROnPlateau
22 # training directory and stopping criteria
23 trainer:
24 checkpoint_dir: CHECKPOINT_DIR
25 max_num_epochs: 1000
26 max_num_iterations: 150000
27 # data loaders configuration
28 loaders:
29 ...

Listing 1: An example of a YAML configuration file used for training a 3D segmentation network. User
can specify various hyperparameters such as: the model architecture (l. 1-11), loss function (l.
13-14), parameters of the Adam [71] optimizer (l. 16-18), learning rate decay (l. 20-21) and
stopping criteria (l. 25-26). Configuration of data loaders and augmentation pipeline has been
omitted for clarity.

90

4.2 PlantSeg

Together with Lorenzo Cerrone I created PlantSeg a pipeline for volumetric segmentation of bio-
logical tissues into cells described in Chapter 2. The package comes with a large number of neu-
ral networks pre-trained on confocal and light-sheet microscopy datasets of fixed and live plant
tissues. It relies on pytorch-3dunet for neural network predictions (Section 4.1) and elf library
(https://github.com/constantinpape/elf), developed by Constantin Pape, for
graph-based image partitioning. Figure 4.1 illustrates the main components of the graphical user
interface (GUI). It allows the user to easily configure all steps of the segmentation pipeline, such
as: selecting the neural network model and specifying hyperparameters of the partitioning algo-
rithm. The source code, descriptions of the hyperparameters and detailed documentation of the
software can be found on GitHub: https://github.com/hci-unihd/plant-seg.
PlantSeg package is being actively developed and in the future we plan to extend it with a basic
segmentation proofreading functionality and the SPOCO weakly supervised training scheme
(Chapter 3).

A B C D

Figure 4.1: Graphical user interface of PlantSeg allows to configure all steps of the segmentation pipeline,
i.e. pre-processing (A), model selection (B), partitioning algorithm (C) and post-processing
(D).

91

https://github.com/constantinpape/elf
https://github.com/hci-unihd/plant-seg

4.3 Open Source Contributions

Apart from developing pytorch-3dunet and Plantseg, I have also implemented new functionali-
ties in several well-known, open sources projects, in particular:

• I contributed to ilastik1 a highly popular interactive learning and segmentation toolkit [13].
It leverages both shallow and deep machine learning algorithms to solve segmentation,
tracking and and counting of cells and other objects of interests. In this project, I have
made several improvements to the backend engine and the graphical user interface.

• I co-authored ilastik4ij2 a plugin for Fiji3, a well known biological-image analysis
software [115]. The plugin is a wrapper around ilastik workflows (pixel classification,
object classification, tracking), which allows them to be executed in Fiji. It also provides
the functionality to read and modify the HDF5 file format [41].

• I also contributed to MorphoGraphX4 a feature-rich application for the visualization and
analysis of biological datasets [6]. Here, I helped to develop a plugin for the HDF5 data
storage.

1https://www.ilastik.org
2https://github.com/ilastik/ilastik4ij
3https://imagej.net/software/fiji
4https://morphographx.org/

92

https://www.ilastik.org
https://github.com/ilastik/ilastik4ij
https://imagej.net/software/fiji
https://morphographx.org/

5 Conclusion

In this work, I have developed a tool for segmenting tissues into cells accessible to both
novice and expert users (Chapter 2). This method, based on the CNN boundary predictors
and graph partitioning algorithms, delivers accurate segmentation across different light mi-
croscopy datasets. Its robustness has been confirmed in an independent study [67] and I have
demonstrated its utility to answer biological research questions in several collaborative studies
[134, 118, 107, 61, 15]. I have also introduced SPOCO (Chapter 3), a semi-supervised instance
segmentation, where a combination of contrastive learning and novel self-supervised objective
allows to train embedding networks from sparse object annotations. Apart from state-of-the-art
results on the CVPPP benchmark [100], my method uses positive unlabeled learning, a kind
of weak supervision previously unexplored for the instance segmentation problems. It can be
trained with sparse annotations directly, without relying on pre-trained backbones or saliency
detectors and also demonstrates strong performance in transfer learning problems. Overall, I
have developed instance segmentation tools and techniques, which are easily accessible and
can be trained from sparse groundtruth data.

Future Work Due to their limited generalizability, the current machine learning systems
need a very large amount of manually annotated data for training. Because of the difficulty in
collecting large, expert-annotated datasets in areas of modern microscopy and medical imaging,
I expect weakly-supervised methods such as SPOCO to play an important role for segmentation
in these challenging domains. In particular, datasets with sub-domains, such as microscopy data
with various fluorescent staining and acquisition settings, or medical imaging with different
patient populations and health conditions, make an interesting use cases for SPOCO. In these
settings, positive unlabeled supervision in each sub-domain can improve generalization without
increasing the annotation time.

I believe that self-supervised learning (SSL) is one of the most promising ways to reduce
the need for labeled examples. This technique obtains supervisory signals from the data itself,
which allows the models to learn from orders of magnitude more data. It had great success in
advancing the field of natural language processing [98, 33, 29], computer vision [56, 51, 25, 19,
20, 148] and protein structure prediction [65]. Recently, these methods have been adapted to
semantic segmentation [48], but so far has been under-explored for instance segmentation. Here,
SPOCO with its differentiable object sampling and self-supervised consistency objective offers

93

interesting perspectives. One research direction is to explore more complex data augmentations,
crucial for learning good representations [25], together with SPOCO self-supervised consistency
objective in order to learn good pixel representations in an unsupervised fashion. Such pixel-
level representations can be fine-tuned for the downstream visual tasks, such as semantic,
instance or panoptic segmentation. Another research direction is using my differentiable
instance sampling procedure (Section 3.3) to mine object mask proposals for self-training.
More specifically, one could sample a number of anchor pixels and their corresponding instance
masks from the image, then choose the most confident objects as pseudo-labels for label
propagation [81, 133, 150] or teacher-student knowledge distillation [58].

Another technique to reduce the cost of dense pixel-wise labelling is combining shallow
classifiers trained with scribble annotations, with the performance of deep CNNs. I have
contributed to this research direction in [94], where a CNN is trained to correct the errors of a
shallow model in a transfer learning setting. Based on these findings, one could incorporate
other types of weak training signal, e.g. scribbles or point annotations, into SPOCO formulation
to deliver stronger constraints in the unlabeled regions.

On the practical side, given the extensive use of the PlantSeg package for microscopy data
analysis I envision its further development, such as including the proofreading functionality
and integration with SPOCO for fast segmentation of biological data with minimal supervision.

In summary, approaches like SPOCO, combining differentiable instance selection and self-
supervised learning, should be explored as a viable solution for instance segmentation in
challenging domains with limited data.

94

Publications

As part of this work I have contributed to the following peer-reviewed publications:

[1] Stuart Berg et al. “ilastik: interactive machine learning for (bio)image analysis.” In:
Nature Methods 16.12 (Dec. 2019), pp. 1226–1232. URL: https://doi.org/10.
1038/s41592-019-0582-9.

[2] V. Bondarenko et al. “Coordination Between Embryo Growth and Trophoblast Migra-
tion Upon Implantation Delineates Mouse Embryogenesis.” In: bioRxiv (2022). eprint:
https://www.biorxiv.org/content/early/2022/06/16/2022.06.
13.495767.full.pdf. URL: https://www.biorxiv.org/content/
early/2022/06/16/2022.06.13.495767.

[3] Takafumi Ichikawa et al. “An ex vivo system to study cellular dynamics underlying
mouse peri-implantation development.” In: Developmental Cell 57.3 (2022), 373–
386.e9. URL: https://www.sciencedirect.com/science/article/
pii/S1534580721010431.

[4] Alex Matskevych, Adrian Wolny, Constantin Pape, and Anna Kreshuk. “From Shallow
to Deep: Exploiting Feature-Based Classifiers for Domain Adaptation in Semantic
Segmentation.” In: Frontiers in Computer Science 4 (2022). URL: https://www.
frontiersin.org/article/10.3389/fcomp.2022.805166.

[5] Constantin Pape, Alex Matskevych, Adrian Wolny, Julian Hennies, Giulia Mizzon,
Marion Louveaux, Jacob Musser, Alexis Maizel, Detlev Arendt, and Anna Kreshuk.
“Leveraging domain knowledge to improve microscopy image segmentation with lifted
multicuts.” In: Frontiers in Computer Science 1 (2019), p. 6.

[6] Constantin Pape, Roman Remme, Adrian Wolny, Sylvia Olberg, Steffen Wolf, Lorenzo
Cerrone, Mirko Cortese, Severina Klaus, Bojana Lucic, Stephanie Ullrich, et al.
“Microscopy-based assay for semi-quantitative detection of SARS-CoV-2 specific
antibodies in human sera: A semi-quantitative, high throughput, microscopy-based
assay expands existing approaches to measure SARS-CoV-2 specific antibody levels in
human sera.” In: BioEssays 43.3 (2021), p. 2000257.

95

https://doi.org/10.1038/s41592-019-0582-9
https://doi.org/10.1038/s41592-019-0582-9
https://www.biorxiv.org/content/early/2022/06/16/2022.06.13.495767.full.pdf
https://www.biorxiv.org/content/early/2022/06/16/2022.06.13.495767.full.pdf
https://www.biorxiv.org/content/early/2022/06/16/2022.06.13.495767
https://www.biorxiv.org/content/early/2022/06/16/2022.06.13.495767
https://www.sciencedirect.com/science/article/pii/S1534580721010431
https://www.sciencedirect.com/science/article/pii/S1534580721010431
https://www.frontiersin.org/article/10.3389/fcomp.2022.805166
https://www.frontiersin.org/article/10.3389/fcomp.2022.805166

[7] Lilli Marie Schütz, Marion Louveaux, Amaya Vilches Barro, Sami Bouziri, Lorenzo
Cerrone, Adrian Wolny, Anna Kreshuk, Fred A Hamprecht, and Alexis Maizel. “In-
tegration of Cell Growth and Asymmetric Division during Lateral Root Initiation in
Arabidopsis thaliana.” In: Plant and Cell Physiology 62.8 (Mar. 2021), pp. 1269–1279.
eprint: https://academic.oup.com/pcp/article-pdf/62/8/1269/
41119202/pcab038.pdf. URL: https://doi.org/10.1093/pcp/
pcab038.

[8] Athul Vijayan, Rachele Tofanelli, Sören Strauss, Lorenzo Cerrone, Adrian Wolny,
Joanna Strohmeier, Anna Kreshuk, Fred A Hamprecht, Richard S Smith, and Kay
Schneitz. “A digital 3D reference atlas reveals cellular growth patterns shaping the
Arabidopsis ovule.” In: eLife 10 (Jan. 2021). Ed. by Sheila McCormick, Christian S
Hardtke, Sheila McCormick, and Dolf Weijers, e63262. URL: https://doi.org/
10.7554/eLife.63262.

[9] Adrian Wolny, Qin Yu, Constantin Pape, and Anna Kreshuk. “Sparse Object-Level
Supervision for Instance Segmentation With Pixel Embeddings.” In: Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). June
2022, pp. 4402–4411.

[10] Adrian Wolny et al. “Accurate and versatile 3D segmentation of plant tissues at cel-
lular resolution.” In: eLife 9 (July 2020). Ed. by Christian S Hardtke, Dominique
C Bergmann, Dominique C Bergmann, and Moritz Graeff, e57613. URL: https:
//doi.org/10.7554/eLife.57613.

96

https://academic.oup.com/pcp/article-pdf/62/8/1269/41119202/pcab038.pdf
https://academic.oup.com/pcp/article-pdf/62/8/1269/41119202/pcab038.pdf
https://doi.org/10.1093/pcp/pcab038
https://doi.org/10.1093/pcp/pcab038
https://doi.org/10.7554/eLife.63262
https://doi.org/10.7554/eLife.63262
https://doi.org/10.7554/eLife.57613
https://doi.org/10.7554/eLife.57613

Bibliography

[1] Bjoern Andres, Jorg H Kappes, Thorsten Beier, Ullrich Kothe, and Fred A Hamprecht.
“Probabilistic Image Segmentation with Closedness Constraints.” In: Computer Vision
(ICCV), 2011 IEEE International Conference on. IEEE. 2011, pp. 2611–2618.

[2] Bjoern Andres, Thorben Kroeger, Kevin L Briggman, Winfried Denk, Graham Knott,
Ullrich Koethe, and Fred A Hamprecht. “Globally Optimal Closed-surface Segmenta-
tion for Connectomics.” In: Proc. Europ. Conf. Comp. Vision (2012), pp. 1–14.

[3] M. Bai and R. Urtasun. “Deep Watershed Transform for Instance Segmentation.” In:
2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2017,
pp. 2858–2866.

[4] Alberto Bailoni, Constantin Pape, Steffen Wolf, Thorsten Beier, Anna Kreshuk, and
Fred A Hamprecht. “A generalized framework for agglomerative clustering of signed
graphs applied to instance segmentation.” In: arXiv preprint arXiv:1906.11713 (2019).

[5] Nikhil Bansal, Avrim Blum, and Shuchi Chawla. “Correlation clustering.” In: Mach.
Learn. 56.1-3 (2004), pp. 89–113.

[6] Pierre Barbier de Reuille et al. “MorphoGraphX: A platform for quantifying morpho-
genesis in 4D.” In: eLife 4 (May 2015). Ed. by Dominique C Bergmann, e05864. URL:
https://doi.org/10.7554/eLife.05864.

[7] Thorsten Beier, Thorben Kroeger, Jorg H Kappes, Ullrich Kothe, and Fred A Ham-
precht. “Cut, glue & cut: A fast, approximate solver for multicut partitioning.” In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
2014, pp. 73–80.

[8] Thorsten Beier, Constantin Pape, Nasim Rahaman, and Timo et al. Prange. “Multicut
brings automated neurite segmentation closer to human performance.” In: Nature
Methods 14.2 (2017), pp. 101–102.

[9] Jessa Bekker and Jesse Davis. “Learning from positive and unlabeled data: A survey.”
In: Machine Learning 109.4 (2020), pp. 719–760.

[10] Miriam Bellver, Amaia Salvador, Jordi Torres, and Xavier Giro-i-Nieto. “Mask-guided
sample selection for semi-supervised instance segmentation.” In: Multimedia Tools and
Applications 79.35 (2020), pp. 25551–25569.

97

https://doi.org/10.7554/eLife.05864

[11] Miriam Bellver, Amaia Salvador, Jordi Torres, and Xavier Giró i Nieto. “Budget-aware
semi-supervised semantic and instance segmentation.” In: The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR) Workshops, 2019. 2019, pp. 93–102.

[12] Tristan Bepler, Andrew Morin, Micah Rapp, Julia Brasch, Lawrence Shapiro, Alex
J Noble, and Bonnie Berger. “Positive-unlabeled convolutional neural networks for
particle picking in cryo-electron micrographs.” In: Nature methods 16.11 (2019),
pp. 1153–1160.

[13] Stuart Berg et al. “ilastik: interactive machine learning for (bio)image analysis.” In:
Nature Methods 16.12 (Dec. 2019), pp. 1226–1232. URL: https://doi.org/10.
1038/s41592-019-0582-9.

[14] Serge Beucher and Fernand Meyer. “The morphological approach to segmentation:
the watershed transformation.” In: Optical Engineering-New York-Marcel Dekker
Incorporated 34 (1992), pp. 433–433.

[15] V. Bondarenko et al. “Coordination Between Embryo Growth and Trophoblast Migra-
tion Upon Implantation Delineates Mouse Embryogenesis.” In: bioRxiv (2022). eprint:
https://www.biorxiv.org/content/early/2022/06/16/2022.06.
13.495767.full.pdf. URL: https://www.biorxiv.org/content/
early/2022/06/16/2022.06.13.495767.

[16] Bert De Brabandere, Davy Neven, and Luc Van Gool. Semantic Instance Segmentation
with a Discriminative Loss Function. 2017. arXiv: 1708.02551 [cs.CV].

[17] Ricardo JGB Campello, Davoud Moulavi, and Jörg Sander. “Density-based clustering
based on hierarchical density estimates.” In: Pacific-Asia conference on knowledge
discovery and data mining. Springer. 2013, pp. 160–172.

[18] J. Canny. “A Computational Approach to Edge Detection.” In: IEEE Transactions on
Pattern Analysis and Machine Intelligence PAMI-8.6 (Nov. 1986), pp. 679–698.

[19] Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Piotr Bojanowski, and Ar-
mand Joulin. “Unsupervised Learning of Visual Features by Contrasting Cluster Assign-
ments.” In: Advances in Neural Information Processing Systems. Ed. by H. Larochelle,
M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin. Vol. 33. Curran Associates, Inc.,
2020, pp. 9912–9924. URL: https://proceedings.neurips.cc/paper/
2020/file/70feb62b69f16e0238f741fab228fec2-Paper.pdf.

[20] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bo-
janowski, and Armand Joulin. “Emerging Properties in Self-Supervised Vision Trans-
formers.” In: CoRR abs/2104.14294 (2021). arXiv: 2104.14294. URL: https:
//arxiv.org/abs/2104.14294.

98

https://doi.org/10.1038/s41592-019-0582-9
https://doi.org/10.1038/s41592-019-0582-9
https://www.biorxiv.org/content/early/2022/06/16/2022.06.13.495767.full.pdf
https://www.biorxiv.org/content/early/2022/06/16/2022.06.13.495767.full.pdf
https://www.biorxiv.org/content/early/2022/06/16/2022.06.13.495767
https://www.biorxiv.org/content/early/2022/06/16/2022.06.13.495767
https://arxiv.org/abs/1708.02551
https://proceedings.neurips.cc/paper/2020/file/70feb62b69f16e0238f741fab228fec2-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/70feb62b69f16e0238f741fab228fec2-Paper.pdf
https://arxiv.org/abs/2104.14294
https://arxiv.org/abs/2104.14294
https://arxiv.org/abs/2104.14294

[21] Ozgun Cciccek, Ahmed Abdulkadir, Soeren S Lienkamp, Thomas Brox, and Olaf
Ronneberger. “3D U-Net: learning dense volumetric segmentation from sparse annota-
tion.” In: International conference on medical image computing and computer-assisted
intervention. Springer. 2016, pp. 424–432.

[22] Lorenzo Cerrone, Alexander Zeilmann, and Fred A. Hamprecht. “End-To-End Learned
Random Walker for Seeded Image Segmentation.” In: 2019 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR). 2019, pp. 12551–12560.

[23] Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian Schroff, and Hartwig
Adam. “Encoder-Decoder with Atrous Separable Convolution for Semantic Image
Segmentation.” In: Proceedings of the European Conference on Computer Vision
(ECCV). Sept. 2018.

[24] Long Chen, Weiwen Zhang, Yuli Wu, Martin Strauch, and Dorit Merhof. “Semi-
supervised Instance Segmentation with a Learned Shape Prior.” In: Interpretable and
Annotation-Efficient Learning for Medical Image Computing. Springer, 2020, pp. 94–
102.

[25] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. “A sim-
ple framework for contrastive learning of visual representations.” In: International
conference on machine learning. PMLR. 2020, pp. 1597–1607.

[26] Bowen Cheng, Maxwell D Collins, Yukun Zhu, Ting Liu, Thomas S Huang, Hartwig
Adam, and Liang-Chieh Chen. “Panoptic-DeepLab: A Simple, Strong, and Fast Base-
line for Bottom-Up Panoptic Segmentation.” In: CVPR. 2020.

[27] Hisham Cholakkal, Guolei Sun, Fahad Shahbaz Khan, and Ling Shao. “Object Count-
ing and Instance Segmentation With Image-Level Supervision.” In: 2019 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR). 2019, pp. 12389–
12397.

[28] Dorin Comaniciu and Peter Meer. “Mean shift: A robust approach toward feature space
analysis.” In: IEEE Transactions on pattern analysis and machine intelligence 24.5
(2002), pp. 603–619.

[29] Alexis Conneau, Kartikay Khandelwal, Naman Goyal, Vishrav Chaudhary, Guillaume
Wenzek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer, and Veselin
Stoyanov. “Unsupervised Cross-lingual Representation Learning at Scale.” In: Pro-
ceedings of the 58th Annual Meeting of the Association for Computational Linguistics.
Online: Association for Computational Linguistics, July 2020, pp. 8440–8451. URL:
https://aclanthology.org/2020.acl-main.747.

99

https://aclanthology.org/2020.acl-main.747

[30] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler,
Rodrigo Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele. “The Cityscapes
Dataset for Semantic Urban Scene Understanding.” In: Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR). June 2016.

[31] Jean Cousty, Gilles Bertrand, Laurent Najman, and Michel Couprie. “Watershed cuts:
Minimum spanning forests and the drop of water principle.” In: IEEE transactions on
pattern analysis and machine intelligence 31.8 (2008), pp. 1362–1374.

[32] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. “Imagenet: A
large-scale hierarchical image database.” In: 2009 IEEE conference on computer vision
and pattern recognition. Ieee. 2009, pp. 248–255.

[33] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. “BERT: Pre-
training of Deep Bidirectional Transformers for Language Understanding.” In: Pro-
ceedings of the 2019 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1 (Long and
Short Papers). Minneapolis, Minnesota: Association for Computational Linguistics,
June 2019, pp. 4171–4186. URL: https://aclanthology.org/N19-1423.

[34] John Duchi, Elad Hazan, and Yoram Singer. “Adaptive subgradient methods for online
learning and stochastic optimization.” In: Journal of machine learning research 12.7
(2011).

[35] Dennis Eschweiler, Thiago Vallin Spina, Rohan C. Choudhury, Elliot Meyerowitz,
Alexandre Cunha, and Johannes Stegmaier. “CNN-based Preprocessing to Optimize
Watershed-based Cell Segmentation in 3D Confocal Microscopy Images.” In: CoRR
abs/1810.06933 (2018). arXiv: 1810.06933. URL: http://arxiv.org/abs/
1810.06933.

[36] Mark Everingham, Luc Van Gool, Christopher KI Williams, John Winn, and Andrew
Zisserman. “The pascal visual object classes (voc) challenge.” In: International journal
of computer vision 88.2 (2010), pp. 303–338.

[37] Thorsten Falk, Dominic Mai, Robert Bensch, Özgün Çiçek, Ahmed Abdulkadir, Yas-
sine Marrakchi, Anton Böhm, Jan Deubner, Zoe Jäckel, Katharina Seiwald, et al.
“U-Net: deep learning for cell counting, detection, and morphometry.” In: Nature
methods 16.1 (2019), p. 67.

[38] Alireza Fathi, Zbigniew Wojna, Vivek Rathod, Peng Wang, Hyun Oh Song, Sergio
Guadarrama, and Kevin P. Murphy. Semantic Instance Segmentation via Deep Metric
Learning. 2017. arXiv: 1703.10277 [cs.CV].

100

https://aclanthology.org/N19-1423
https://arxiv.org/abs/1810.06933
http://arxiv.org/abs/1810.06933
http://arxiv.org/abs/1810.06933
https://arxiv.org/abs/1703.10277

[39] Pedro F. Felzenszwalb and Daniel P. Huttenlocher. “Efficient Graph-Based Image
Segmentation.” In: Int. J. Comput. Vision 59.2 (2004), pp. 167–181.

[40] Romain Fernandez, Pradeep Das, Vincent Mirabet, Eric Moscardi, Jan Traas, Jean-Luc
Verdeil, Grégoire Malandain, and Christophe Godin. “Imaging plant growth in 4D:
robust tissue reconstruction and lineaging at cell resolution.” In: Nature Methods 7.7
(2010), pp. 547–553. URL: https://doi.org/10.1038/nmeth.1472.

[41] Mike Folk, Gerd Heber, Quincey Koziol, Elena Pourmal, and Dana Robinson. “An
overview of the HDF5 technology suite and its applications.” In: Proceedings of the
EDBT/ICDT 2011 Workshop on Array Databases. 2011, pp. 36–47.

[42] Samantha Fox et al. “Spatiotemporal coordination of cell division and growth during
organ morphogenesis.” In: PLOS Biology 16.11 (Nov. 2018), pp. 1–48. URL: https:
//doi.org/10.1371/journal.pbio.2005952.

[43] J Funke, L Mais, A Champion, N Dye, and D Kainmueller. “A Benchmark for Epithelial
Cell Tracking.” In: Computer Vision – ECCV 2018 Workshops (2019).

[44] Jan Funke, Stephan Saalfeld, Davi Bock, Srini Turaga, and Eric Perlman. Circuit
Reconstruction from Electron Microscopy Images. URL: https://cremi.org/
(visited on 08/27/2020).

[45] Jan Funke, Fabian Tschopp, William Grisaitis, Arlo Sheridan, Chandan Singh, Stephan
Saalfeld, and Srinivas C Turaga. “Large scale image segmentation with structured loss
based deep learning for connectome reconstruction.” In: IEEE transactions on pattern
analysis and machine intelligence 41.7 (2018), pp. 1669–1680.

[46] Jan Funke, Fabian David Tschopp, William Grisaitis, Arlo Sheridan, Chandan Singh,
Stephan Saalfeld, and Srinivas C Turaga. “A deep structured learning approach to-
wards automating connectome reconstruction from 3d electron micrographs.” In: arXiv
preprint arXiv:1709.02974 (2017).

[47] Tommaso Furlanello, Zachary Lipton, Michael Tschannen, Laurent Itti, and Anima
Anandkumar. “Born Again Neural Networks.” In: Proceedings of the 35th International
Conference on Machine Learning. Ed. by Jennifer Dy and Andreas Krause. Vol. 80.
Proceedings of Machine Learning Research. PMLR, Oct. 2018, pp. 1607–1616. URL:
https://proceedings.mlr.press/v80/furlanello18a.html.

[48] Wouter Van Gansbeke, Simon Vandenhende, Stamatios Georgoulis, and Luc Van Gool.
Unsupervised Semantic Segmentation by Contrasting Object Mask Proposals. 2021.
arXiv: 2102.06191 [cs.CV].

101

https://doi.org/10.1038/nmeth.1472
https://doi.org/10.1371/journal.pbio.2005952
https://doi.org/10.1371/journal.pbio.2005952
https://cremi.org/
https://proceedings.mlr.press/v80/furlanello18a.html
https://arxiv.org/abs/2102.06191

[49] Stephan Gerhard, Jan Funke, Julien Martel, Albert Cardona, and Richard Fetter. Seg-
mented anisotropic ssTEM dataset of neural tissue. London, UK, 2013. URL: https:
//www.zora.uzh.ch/id/eprint/91121/.

[50] Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. Deep learning.
Vol. 1. 2. MIT press Cambridge, 2016.

[51] Jean-Bastien Grill et al. “Bootstrap Your Own Latent - A New Approach to Self-
Supervised Learning.” In: Advances in Neural Information Processing Systems. Ed. by
H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin. Vol. 33. Curran Asso-
ciates, Inc., 2020, pp. 21271–21284. URL: https://proceedings.neurips.
cc/paper/2020/file/f3ada80d5c4ee70142b17b8192b2958e-Paper.
pdf.

[52] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron C
Courville. “Improved Training of Wasserstein GANs.” In: Advances in Neural In-
formation Processing Systems. Ed. by I. Guyon, U. V. Luxburg, S. Bengio, H. Wal-
lach, R. Fergus, S. Vishwanathan, and R. Garnett. Vol. 30. Curran Associates, Inc.,
2017. URL: https://proceedings.neurips.cc/paper/2017/file/
892c3b1c6dccd52936e27cbd0ff683d6-Paper.pdf.

[53] Matthias G. Haberl et al. “CDeep3M–Plug-and-Play cloud-based deep learning for
image segmentation.” In: Nature Methods 15.9 (2018), pp. 677–680. URL: https:
//doi.org/10.1038/s41592-018-0106-z.

[54] Philipp Hanslovsky, Vanessa Leite, Stephan Saalfeld, Igor Pisarev, Jan Funke, To-
bias Pietzsch, Ulrik Günther, John Bogovic, Uwe Schmidt, and Juan Nunez-Iglesias.
saalfeldlab/paintera paintera-0.20.1. Sept. 2019. URL: https://doi.org/10.
5281/zenodo.3458575.

[55] Zeeshan Hayder, Xuming He, and Mathieu Salzmann. “Boundary-Aware Instance
Segmentation.” In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). July 2017.

[56] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. “Momentum
Contrast for Unsupervised Visual Representation Learning.” In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). June
2020.

[57] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. “Mask r-cnn.” In:
Proceedings of the IEEE international conference on computer vision. 2017, pp. 2961–
2969.

102

https://www.zora.uzh.ch/id/eprint/91121/
https://www.zora.uzh.ch/id/eprint/91121/
https://proceedings.neurips.cc/paper/2020/file/f3ada80d5c4ee70142b17b8192b2958e-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/f3ada80d5c4ee70142b17b8192b2958e-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/f3ada80d5c4ee70142b17b8192b2958e-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/892c3b1c6dccd52936e27cbd0ff683d6-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/892c3b1c6dccd52936e27cbd0ff683d6-Paper.pdf
https://doi.org/10.1038/s41592-018-0106-z
https://doi.org/10.1038/s41592-018-0106-z
https://doi.org/10.5281/zenodo.3458575
https://doi.org/10.5281/zenodo.3458575

[58] Geoffrey Hinton, Oriol Vinyals, and Jeffrey Dean. “Distilling the Knowledge in a
Neural Network.” In: NIPS Deep Learning and Representation Learning Workshop.
2015. URL: http://arxiv.org/abs/1503.02531.

[59] A. Horé and D. Ziou. “Image Quality Metrics: PSNR vs. SSIM.” In: 2010 20th Inter-
national Conference on Pattern Recognition. Aug. 2010, pp. 2366–2369.

[60] Andrea Horňáková, Jan-Hendrik Lange, and Bjoern Andres. “Analysis and optimization
of graph decompositions by lifted multicuts.” In: International Conference on Machine
Learning. 2017, pp. 1539–1548.

[61] Takafumi Ichikawa et al. “An ex vivo system to study cellular dynamics underlying
mouse peri-implantation development.” In: Developmental Cell 57.3 (2022), 373–
386.e9. URL: https://www.sciencedirect.com/science/article/
pii/S1534580721010431.

[62] Sergey Ioffe and Christian Szegedy. “Batch Normalization: Accelerating Deep Network
Training by Reducing Internal Covariate Shift.” In: Proceedings of the 32nd Interna-
tional Conference on Machine Learning. Ed. by Francis Bach and David Blei. Vol. 37.
Proceedings of Machine Learning Research. Lille, France: PMLR, July 2015, pp. 448–
456. URL: https://proceedings.mlr.press/v37/ioffe15.html.

[63] Michal Januszewski, Jeremy Maitin-Shepard, Peter Li, Jörgen Kornfeld, Winfried
Denk, and Viren Jain. “Flood-Filling Networks.” In: CoRR abs/1611.00421 (2016).
arXiv: 1611.00421. URL: http://arxiv.org/abs/1611.00421.

[64] Florian Jug, Evgeny Levinkov, Corinna Blasse, Eugene W. Myers, and Bjoern Andres.
“Moral Lineage Tracing.” In: CoRR abs/1511.05512 (2015). arXiv: 1511.05512.
URL: http://arxiv.org/abs/1511.05512.

[65] John Jumper et al. “Highly accurate protein structure prediction with AlphaFold.” In:
Nature 596.7873 (Aug. 2021), pp. 583–589. URL: https://doi.org/10.1038/
s41586-021-03819-2.

[66] Jörg Kappes, Markus Speth, Björn Andres, Gerhard Reinelt, and Christoph Schn.
“Globally optimal image partitioning by multicuts.” In: Energy Minimization Methods
in Computer Vision and Pattern Recognition. Springer. 2011, pp. 31–44.

[67] Anuradha Kar, Manuel Petit, Yassin Refahi, Guillaume Cerutti, Christophe Godin, and
Jan Traas. “Assessment of deep learning algorithms for 3D instance segmentation of
confocal image datasets.” In: bioRxiv (2021). eprint: https://www.biorxiv.
org/content/early/2021/06/10/2021.06.09.447748.full.pdf.

[68] Brian W Kernighan and Shen Lin. “An efficient heuristic procedure for partitioning
graphs.” In: The Bell system technical journal 49.2 (1970), pp. 291–307.

103

http://arxiv.org/abs/1503.02531
https://www.sciencedirect.com/science/article/pii/S1534580721010431
https://www.sciencedirect.com/science/article/pii/S1534580721010431
https://proceedings.mlr.press/v37/ioffe15.html
https://arxiv.org/abs/1611.00421
http://arxiv.org/abs/1611.00421
https://arxiv.org/abs/1511.05512
http://arxiv.org/abs/1511.05512
https://doi.org/10.1038/s41586-021-03819-2
https://doi.org/10.1038/s41586-021-03819-2
https://www.biorxiv.org/content/early/2021/06/10/2021.06.09.447748.full.pdf
https://www.biorxiv.org/content/early/2021/06/10/2021.06.09.447748.full.pdf

[69] Margret Keuper, Evgeny Levinkov, Nicolas Bonneel, Guillaume Lavoué, Thomas
Brox, and Bjorn Andres. “Efficient decomposition of image and mesh graphs by lifted
multicuts.” In: Proceedings of the IEEE International Conference on Computer Vision.
2015, pp. 1751–1759.

[70] Anna Khoreva, Rodrigo Benenson, Jan Hosang, Matthias Hein, and Bernt Schiele.
“Simple does it: Weakly supervised instance and semantic segmentation.” In: Pro-
ceedings of the IEEE conference on computer vision and pattern recognition. 2017,
pp. 876–885.

[71] Diederik P. Kingma and Jimmy Ba. “Adam: A Method for Stochastic Optimization.”
In: Proc. ICLR (2014).

[72] Alexander Kirillov, Evgeny Levinkov, Bjoern Andres, Bogdan Savchynskyy, and
Carsten Rother. “InstanceCut: From Edges to Instances With MultiCut.” In: Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
July 2017.

[73] Iasonas Kokkinos. “Pushing the Boundaries of Boundary Detection using Deep Learn-
ing.” In: ICLR 2016. 2015.

[74] Victor Kulikov and Victor Lempitsky. Instance Segmentation of Biological Images
Using Harmonic Embeddings. 2020. arXiv: 1904.05257 [cs.CV].

[75] Issam H. Laradji, Negar Rostamzadeh, Pedro O. Pinheiro, David Vazquez, and Mark
Schmidt. “Proposal-Based Instance Segmentation With Point Supervision.” In: 2020
IEEE International Conference on Image Processing (ICIP). 2020, pp. 2126–2130.

[76] Kisuk Lee, Ran Lu, Kyle Luther, and H. Sebastian Seung. “Learning and Segmenting
Dense Voxel Embeddings for 3D Neuron Reconstruction.” In: IEEE Transactions on
Medical Imaging (2021), pp. 1–1.

[77] Kisuk Lee, Jonathan Zung, Peter Li, Viren Jain, and H Sebastian Seung. “Superhuman
accuracy on the SNEMI3D connectomics challenge.” In: arXiv preprint arXiv:1706.00120
(2017).

[78] Laurent Lejeune and Raphael Sznitman. A Positive/Unlabeled Approach for the Segmen-
tation of Medical Sequences using Point-Wise Supervision. 2021. arXiv: 2107.08394
[cs.CV].

[79] Qizhu Li, Anurag Arnab, and Philip HS Torr. “Weakly-and semi-supervised panoptic
segmentation.” In: Proceedings of the European conference on computer vision (ECCV).
2018, pp. 102–118.

104

https://arxiv.org/abs/1904.05257
https://arxiv.org/abs/2107.08394
https://arxiv.org/abs/2107.08394

[80] Yi Li, Haozhi Qi, Jifeng Dai, Xiangyang Ji, and Yichen Wei. “Fully Convolutional
Instance-Aware Semantic Segmentation.” In: 2017 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). 2017, pp. 4438–4446.

[81] Di Lin, Jifeng Dai, Jiaya Jia, Kaiming He, and Jian Sun. “ScribbleSup: Scribble-
Supervised Convolutional Networks for Semantic Segmentation.” In: 2016 IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR) (2016), pp. 3159–3167.

[82] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He, Bharath Hariharan, and Serge
Belongie. “Feature pyramid networks for object detection.” In: Proceedings of the
IEEE conference on computer vision and pattern recognition. 2017, pp. 2117–2125.

[83] B. Liu, Y. Dai, X. Li, W.S. Lee, and P.S. Yu. “Building text classifiers using positive
and unlabeled examples.” In: Third IEEE International Conference on Data Mining.
2003, pp. 179–186.

[84] Bing Liu, Yang Dai, Xiaoli Li, Wee Sun Lee, and Philip S Yu. “Building text classifiers
using positive and unlabeled examples.” In: Third IEEE International Conference on
Data Mining. IEEE. 2003, pp. 179–186.

[85] Rosanne Liu, Joel Lehman, Piero Molino, Felipe Petroski Such, Eric Frank, Alex
Sergeev, and Jason Yosinski. “An intriguing failing of convolutional neural networks
and the coordconv solution.” In: Advances in Neural Information Processing Systems.
2018, pp. 9605–9616.

[86] Jonathan Long, Evan Shelhamer, and Trevor Darrell. “Fully convolutional networks for
semantic segmentation.” In: Proceedings of the IEEE conference on computer vision
and pattern recognition. 2015, pp. 3431–3440.

[87] Ilya Loshchilov and Frank Hutter. “Decoupled Weight Decay Regularization.” In:
International Conference on Learning Representations. 2019. URL: https : / /
openreview.net/forum?id=Bkg6RiCqY7.

[88] Bradley Lowekamp, David Chen, Luis Ibanez, and Daniel Blezek. “The Design of
SimpleITK.” In: Frontiers in Neuroinformatics 7 (2013), p. 45. URL: https://www.
frontiersin.org/article/10.3389/fninf.2013.00045.

[89] Pauline Luc, Camille Couprie, Soumith Chintala, and Jakob Verbeek. Semantic Seg-
mentation using Adversarial Networks. 2016. arXiv: 1611.08408 [cs.CV].

[90] A. Lucchi, K. Smith, R. Achanta, G. Knott, and P. Fua. “Supervoxel-Based Segmen-
tation of Mitochondria in EM Image Stacks With Learned Shape Features.” In: IEEE
Transactions on Medical Imaging 31.2 (Feb. 2012), pp. 474–486.

105

https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://www.frontiersin.org/article/10.3389/fninf.2013.00045
https://www.frontiersin.org/article/10.3389/fninf.2013.00045
https://arxiv.org/abs/1611.08408

[91] Amirreza Mahbod, Gerald Schaefer, Benjamin Bancher, Christine Loew, Georg Dorffner,
Rupert Ecker, and Isabella Ellinger. “CryoNuSeg: A dataset for nuclei instance segmen-
tation of cryosectioned H&E-stained histological images.” In: Computers in Biology
and Medicine 132 (2021), p. 104349. URL: https://www.sciencedirect.
com/science/article/pii/S0010482521001438.

[92] L Mais, P Hirsch, and D Kainmueller. “PatchPerPix for instance segmentation.” In:
Lecture Notes in Computer Science 12370 (2020), pp. 288–304.

[93] Martin Maška et al. “A benchmark for comparison of cell tracking algorithms.” In:
Bioinformatics 30.11 (Feb. 2014), pp. 1609–1617. eprint: http://oup.prod.
sis.lan/bioinformatics/article-pdf/30/11/1609/17143058/
btu080.pdf. URL: https://doi.org/10.1093/bioinformatics/
btu080.

[94] Alex Matskevych, Adrian Wolny, Constantin Pape, and Anna Kreshuk. “From Shallow
to Deep: Exploiting Feature-Based Classifiers for Domain Adaptation in Semantic
Segmentation.” In: Frontiers in Computer Science 4 (2022). URL: https://www.
frontiersin.org/article/10.3389/fcomp.2022.805166.

[95] Marina Meilua. “Comparing clusterings by the variation of information.” In: Learning
theory and kernel machines. Springer, 2003, pp. 173–187.

[96] Fernand Meyer. “Minimum spanning forests for morphological segmentation.” In:
Mathematical morphology and its applications to image processing. 1994, pp. 77–84.

[97] Fernand Meyer. “Topographic distance and watershed lines.” In: Signal processing
38.1 (1994), pp. 113–125.

[98] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. “Dis-
tributed Representations of Words and Phrases and their Compositionality.” In: Ad-
vances in Neural Information Processing Systems. Ed. by C.J. Burges, L. Bottou,
M. Welling, Z. Ghahramani, and K.Q. Weinberger. Vol. 26. Curran Associates, Inc.,
2013. URL: https://proceedings.neurips.cc/paper/2013/file/
9aa42b31882ec039965f3c4923ce901b-Paper.pdf.

[99] Fausto Milletari, Nassir Navab, and Seyed-Ahmad Ahmadi. V-Net: Fully Convolutional
Neural Networks for Volumetric Medical Image Segmentation. 2016. arXiv: 1606.
04797 [cs.CV].

[100] Massimo Minervini, Andreas Fischbach, Hanno Scharr, and Sotirios A. Tsaftaris.
“Finely-grained annotated datasets for image-based plant phenotyping.” In: Pattern
Recognition Letters (2015), pp. -. URL: http://www.sciencedirect.com/
science/article/pii/S0167865515003645.

106

https://www.sciencedirect.com/science/article/pii/S0010482521001438
https://www.sciencedirect.com/science/article/pii/S0010482521001438
http://oup.prod.sis.lan/bioinformatics/article-pdf/30/11/1609/17143058/btu080.pdf
http://oup.prod.sis.lan/bioinformatics/article-pdf/30/11/1609/17143058/btu080.pdf
http://oup.prod.sis.lan/bioinformatics/article-pdf/30/11/1609/17143058/btu080.pdf
https://doi.org/10.1093/bioinformatics/btu080
https://doi.org/10.1093/bioinformatics/btu080
https://www.frontiersin.org/article/10.3389/fcomp.2022.805166
https://www.frontiersin.org/article/10.3389/fcomp.2022.805166
https://proceedings.neurips.cc/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf
https://proceedings.neurips.cc/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf
https://arxiv.org/abs/1606.04797
https://arxiv.org/abs/1606.04797
http://www.sciencedirect.com/science/article/pii/S0167865515003645
http://www.sciencedirect.com/science/article/pii/S0167865515003645

[101] Erick Moen, Dylan Bannon, Takamasa Kudo, William Graf, Markus Covert, and David
Van Valen. “Deep learning for cellular image analysis.” In: Nature Methods 16.12
(2019), pp. 1233–1246. URL: https://doi.org/10.1038/s41592-019-
0403-1.

[102] Davy Neven, Bert De Brabandere, Marc Proesmans, and Luc Van Gool. “Instance
segmentation by jointly optimizing spatial embeddings and clustering bandwidth.” In:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
2019, pp. 8837–8845.

[103] Kazuya Nishimura, Ryoma Bise, et al. “Weakly supervised cell instance segmentation
by propagating from detection response.” In: International Conference on Medical
Image Computing and Computer-Assisted Intervention. Springer. 2019, pp. 649–657.

[104] Nanne van Noord and Eric Postma. “Learning scale-variant and scale-invariant fea-
tures for deep image classification.” In: Pattern Recognition 61 (2017), pp. 583–592.
URL: http://www.sciencedirect.com/science/article/pii/
S0031320316301224.

[105] Juan Nunez-Iglesias, Ryan Kennedy, Stephen M Plaza, Anirban Chakraborty, and
William T Katz. “Graph-based active learning of agglomeration (GALA): a Python
library to segment 2D and 3D neuroimages.” In: Frontiers in neuroinformatics 8 (2014),
p. 34.

[106] Constantin Pape, Alex Matskevych, Adrian Wolny, Julian Hennies, Giulia Mizzon,
Marion Louveaux, Jacob Musser, Alexis Maizel, Detlev Arendt, and Anna Kreshuk.
“Leveraging domain knowledge to improve microscopy image segmentation with lifted
multicuts.” In: Frontiers in Computer Science 1 (2019), p. 6.

[107] Constantin Pape, Roman Remme, Adrian Wolny, Sylvia Olberg, Steffen Wolf, Lorenzo
Cerrone, Mirko Cortese, Severina Klaus, Bojana Lucic, Stephanie Ullrich, et al.
“Microscopy-based assay for semi-quantitative detection of SARS-CoV-2 specific
antibodies in human sera: A semi-quantitative, high throughput, microscopy-based
assay expands existing approaches to measure SARS-CoV-2 specific antibody levels in
human sera.” In: BioEssays 43.3 (2021), p. 2000257.

[108] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. “Py-
torch: An imperative style, high-performance deep learning library.” In: arXiv preprint
arXiv:1912.01703 (2019).

107

https://doi.org/10.1038/s41592-019-0403-1
https://doi.org/10.1038/s41592-019-0403-1
http://www.sciencedirect.com/science/article/pii/S0031320316301224
http://www.sciencedirect.com/science/article/pii/S0031320316301224

[109] Christian Payer, Darko Štern, Marlies Feiner, Horst Bischof, and Martin Urschler.
“Segmenting and Tracking Cell Instances with Cosine Embeddings and Recurrent
Hourglass Networks.” In: Medical Image Analysis 57 (Oct. 2019), pp. 106–119.

[110] Carolyn G. Rasmussen and Marschal Bellinger. “An overview of plant division-plane
orientation.” en. In: New Phytologist 219.2 (July 2018), pp. 505–512. URL: http:
//doi.wiley.com/10.1111/nph.15183 (visited on 01/23/2019).

[111] Markus Rempfler, Jan-Hendrik Lange, Florian Jug, Corinna Blasse, Eugene W. My-
ers, Bjoern H. Menze, and Bjoern Andres. “Efficient Algorithms for Moral Lineage
Tracing.” In: CoRR abs/1702.04111 (2017). arXiv: 1702.04111. URL: http://
arxiv.org/abs/1702.04111.

[112] Mengye Ren and Richard S. Zemel. End-to-End Instance Segmentation with Recurrent
Attention. 2017. arXiv: 1605.09410 [cs.LG].

[113] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. “U-Net: Convolutional Networks
for Biomedical Image Segmentation.” In: Proc. MICCAI (2015), pp. 234–241.

[114] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. “Learning representa-
tions by back-propagating errors.” In: nature 323.6088 (1986), pp. 533–536.

[115] Johannes Schindelin, Ignacio Arganda-Carreras, Erwin Frise, Verena Kaynig, Mark
Longair, Tobias Pietzsch, Stephan Preibisch, Curtis Rueden, Stephan Saalfeld, Ben-
jamin Schmid, et al. “Fiji: an open-source platform for biological-image analysis.” In:
Nature methods 9.7 (2012), pp. 676–682.

[116] Uwe Schmidt, Martin Weigert, Coleman Broaddus, and Gene Myers. “Cell detection
with star-convex polygons.” In: International Conference on Medical Image Computing
and Computer-Assisted Intervention. Springer. 2018, pp. 265–273.

[117] Kay Schneitz, Martin Hülskamp, and Robert E. Pruitt. “Wild-type ovule development
in Arabidopsis thaliana: a light microscope study of cleared whole-mount tissue.” In:
The Plant Journal 7.5 (1995), pp. 731–749. eprint: https://onlinelibrary.
wiley.com/doi/pdf/10.1046/j.1365-313X.1995.07050731.x. URL:
https://onlinelibrary.wiley.com/doi/abs/10.1046/j.1365-
313X.1995.07050731.x.

[118] Lilli Marie Schütz, Marion Louveaux, Amaya Vilches Barro, Sami Bouziri, Lorenzo
Cerrone, Adrian Wolny, Anna Kreshuk, Fred A Hamprecht, and Alexis Maizel. “In-
tegration of Cell Growth and Asymmetric Division during Lateral Root Initiation in
Arabidopsis thaliana.” In: Plant and Cell Physiology 62.8 (Mar. 2021), pp. 1269–1279.
eprint: https://academic.oup.com/pcp/article-pdf/62/8/1269/

108

http://doi.wiley.com/10.1111/nph.15183
http://doi.wiley.com/10.1111/nph.15183
https://arxiv.org/abs/1702.04111
http://arxiv.org/abs/1702.04111
http://arxiv.org/abs/1702.04111
https://arxiv.org/abs/1605.09410
https://onlinelibrary.wiley.com/doi/pdf/10.1046/j.1365-313X.1995.07050731.x
https://onlinelibrary.wiley.com/doi/pdf/10.1046/j.1365-313X.1995.07050731.x
https://onlinelibrary.wiley.com/doi/abs/10.1046/j.1365-313X.1995.07050731.x
https://onlinelibrary.wiley.com/doi/abs/10.1046/j.1365-313X.1995.07050731.x
https://academic.oup.com/pcp/article-pdf/62/8/1269/41119202/pcab038.pdf
https://academic.oup.com/pcp/article-pdf/62/8/1269/41119202/pcab038.pdf

41119202/pcab038.pdf. URL: https://doi.org/10.1093/pcp/
pcab038.

[119] Zhao Shi et al. “A clinically applicable deep-learning model for detecting intracranial
aneurysm in computed tomography angiography images.” In: Nature Communications
11.1 (Nov. 2020), p. 6090. URL: https://doi.org/10.1038/s41467-020-
19527-w.

[120] Konstantin Sofiiuk, Olga Barinova, and Anton Konushin. “Adaptis: Adaptive instance
selection network.” In: Proceedings of the IEEE/CVF International Conference on
Computer Vision. 2019, pp. 7355–7363.

[121] Chunfeng Song, Yan Huang, Wanli Ouyang, and Liang Wang. “Box-driven class-
wise region masking and filling rate guided loss for weakly supervised semantic
segmentation.” In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. 2019, pp. 3136–3145.

[122] Johannes Stegmaier, Fernando Amat, William C Lemon, Katie McDole, Yinan Wan,
George Teodoro, Ralf Mikut, and Philipp J Keller. “Real-time three-dimensional cell
segmentation in large-scale microscopy data of developing embryos.” In: Developmen-
tal cell 36.2 (2016), pp. 225–240.

[123] Carsen Stringer, Tim Wang, Michalis Michaelos, and Marius Pachitariu. “Cellpose:
a generalist algorithm for cellular segmentation.” In: Nature Methods 18.1 (2021),
pp. 100–106.

[124] Carole H. Sudre, Wenqi Li, Tom Vercauteren, Sébastien Ourselin, and M. Jorge Cardoso.
“Generalised Dice overlap as a deep learning loss function for highly unbalanced
segmentations.” In: CoRR abs/1707.03237 (2017). arXiv: 1707.03237. URL: http:
//arxiv.org/abs/1707.03237.

[125] Antti Tarvainen and Harri Valpola. “Mean teachers are better role models: Weight-
averaged consistency targets improve semi-supervised deep learning results.” In: arXiv
preprint arXiv:1703.01780 (2017).

[126] Rachele Tofanelli, Athul Vijayan, Sebastian Scholz, and Kay Schneitz. “Protocol
for rapid clearing and staining of fixed Arabidopsis ovules for improved imaging by
confocal laser scanning microscopy.” In: Plant Methods 15.1 (2019), p. 120. URL:
https://doi.org/10.1186/s13007-019-0505-x.

[127] Jonathan Tompson, Ross Goroshin, Arjun Jain, Yann LeCun, and Christoph Bregler.
“Efficient Object Localization Using Convolutional Networks.” In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR). June 2015.

109

https://academic.oup.com/pcp/article-pdf/62/8/1269/41119202/pcab038.pdf
https://academic.oup.com/pcp/article-pdf/62/8/1269/41119202/pcab038.pdf
https://academic.oup.com/pcp/article-pdf/62/8/1269/41119202/pcab038.pdf
https://doi.org/10.1093/pcp/pcab038
https://doi.org/10.1093/pcp/pcab038
https://doi.org/10.1038/s41467-020-19527-w
https://doi.org/10.1038/s41467-020-19527-w
https://arxiv.org/abs/1707.03237
http://arxiv.org/abs/1707.03237
http://arxiv.org/abs/1707.03237
https://doi.org/10.1186/s13007-019-0505-x

[128] Z. Tu and X. Bai. “Auto-Context and Its Application to High-Level Vision Tasks
and 3D Brain Image Segmentation.” In: IEEE Transactions on Pattern Analysis and
Machine Intelligence 32.10 (Oct. 2010), pp. 1744–1757.

[129] Srinivas C Turaga, Kevin L Briggman, Moritz Helmstaedter, Winfried Denk, and
H Sebastian Seung. “Maximin affinity learning of image segmentation.” In: Proc. NIPS
(2009), pp. 1865–1873.

[130] Srinivas C Turaga, Joseph F Murray, Viren Jain, Fabian Roth, Moritz Helmstaedter,
Kevin Briggman, Winfried Denk, and H Sebastian Seung. “Convolutional networks
can learn to generate affinity graphs for image segmentation.” In: Neural computation
22.2 (2010), pp. 511–538.

[131] Stefan Van der Walt, Johannes L Schönberger, Juan Nunez-Iglesias, François Boulogne,
Joshua D Warner, Neil Yager, Emmanuelle Gouillart, and Tony Yu. “scikit-image:
image processing in Python.” In: PeerJ 2 (2014), e453.

[132] David A. Van Valen, Takamasa Kudo, Keara M. Lane, Derek N. Macklin, Nicolas T.
Quach, Mialy M. DeFelice, Inbal Maayan, Yu Tanouchi, Euan A. Ashley, and Markus
W. Covert. “Deep Learning Automates the Quantitative Analysis of Individual Cells in
Live-Cell Imaging Experiments.” In: PLOS Computational Biology 12.11 (Nov. 2016),
pp. 1–24. URL: https://doi.org/10.1371/journal.pcbi.1005177.

[133] Paul Vernaza and Manmohan Chandraker. “Learning Random-Walk Label Propagation
for Weakly-Supervised Semantic Segmentation.” In: 2017 IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR) (July 2017). URL: http://dx.doi.
org/10.1109/CVPR.2017.315.

[134] Athul Vijayan, Rachele Tofanelli, Sören Strauss, Lorenzo Cerrone, Adrian Wolny,
Joanna Strohmeier, Anna Kreshuk, Fred A Hamprecht, Richard S Smith, and Kay
Schneitz. “A digital 3D reference atlas reveals cellular growth patterns shaping the
Arabidopsis ovule.” In: eLife 10 (Jan. 2021). Ed. by Sheila McCormick, Christian S
Hardtke, Sheila McCormick, and Dolf Weijers, e63262. URL: https://doi.org/
10.7554/eLife.63262.

[135] Amaya Vilches Barro et al. “Cytoskeleton Dynamics Are Necessary for Early Events of
Lateral Root Initiation in Arabidopsis.” In: Current Biology 29.15 (2019). 00000, 2443–
2454.e5. URL: http://www.sciencedirect.com/science/article/
pii/S0960982219307663 (visited on 10/10/2019).

110

https://doi.org/10.1371/journal.pcbi.1005177
http://dx.doi.org/10.1109/CVPR.2017.315
http://dx.doi.org/10.1109/CVPR.2017.315
https://doi.org/10.7554/eLife.63262
https://doi.org/10.7554/eLife.63262
http://www.sciencedirect.com/science/article/pii/S0960982219307663
http://www.sciencedirect.com/science/article/pii/S0960982219307663

[136] Weikang Wang, David A. Taft, Yi-Jiun Chen, Jingyu Zhang, Callen T. Wallace, Min
Xu, Simon C. Watkins, and Jianhua Xing. “Learn to segment single cells with deep
distance estimator and deep cell detector.” In: Computers in Biology and Medicine 108
(2019), pp. 133–141. URL: http://www.sciencedirect.com/science/
article/pii/S0010482519301143.

[137] D. Wei et al. “MitoEM Dataset: Large-scale 3D Mitochondria Instance Segmentation
from EM Images.” In: International Conference on Medical Image Computing and
Computer Assisted Intervention. 2020.

[138] Tamily A. Weissman and Y. Albert Pan. “Brainbow: New Resources and Emerging
Biological Applications for Multicolor Genetic Labeling and Analysis.” en. In: Genetics
199.2 (Feb. 2015). 00056, pp. 293–306. URL: https://www.genetics.org/
content/199/2/293 (visited on 01/13/2020).

[139] Lisa Willis, Yassin Refahi, Raymond Wightman, Benoit Landrein, José Teles, Kerwyn
Casey Huang, Elliot M. Meyerowitz, and Henrik Jönsson. “Cell size and growth
regulation in the Arabidopsis thaliana apical stem cell niche.” In: Proceedings of
the National Academy of Sciences 113.51 (2016), E8238–E8246. eprint: https:
//www.pnas.org/content/113/51/E8238.full.pdf. URL: https:
//www.pnas.org/content/113/51/E8238.

[140] Steffen Wolf, Constantin Pape, Alberto Bailoni, Nasim Rahaman, Anna Kreshuk,
Ullrich Köthe, and Fred Hamprecht. “The Mutex Watershed: Efficient, Parameter-Free
Image Partitioning.” In: Proc. ECCV’18 (2018).

[141] Adrian Wolny, Qin Yu, Constantin Pape, and Anna Kreshuk. “Sparse Object-Level
Supervision for Instance Segmentation With Pixel Embeddings.” In: Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). June
2022, pp. 4402–4411.

[142] Adrian Wolny et al. “Accurate and versatile 3D segmentation of plant tissues at cel-
lular resolution.” In: eLife 9 (July 2020). Ed. by Christian S Hardtke, Dominique
C Bergmann, Dominique C Bergmann, and Moritz Graeff, e57613. URL: https:
//doi.org/10.7554/eLife.57613.

[143] Yuxin Wu and Kaiming He. “Group Normalization.” In: Proceedings of the European
Conference on Computer Vision (ECCV). Sept. 2018.

[144] Christopher Xie, Yu Xiang, Arsalan Mousavian, and Dieter Fox. “Unseen object
instance segmentation for robotic environments.” In: IEEE Transactions on Robotics
37.5 (2021), pp. 1343–1359.

111

http://www.sciencedirect.com/science/article/pii/S0010482519301143
http://www.sciencedirect.com/science/article/pii/S0010482519301143
https://www.genetics.org/content/199/2/293
https://www.genetics.org/content/199/2/293
https://www.pnas.org/content/113/51/E8238.full.pdf
https://www.pnas.org/content/113/51/E8238.full.pdf
https://www.pnas.org/content/113/51/E8238
https://www.pnas.org/content/113/51/E8238
https://doi.org/10.7554/eLife.57613
https://doi.org/10.7554/eLife.57613

[145] Saining Xie and Zhuowen Tu. “Holistically-Nested Edge Detection.” In: 2015 IEEE
International Conference on Computer Vision (ICCV). 2015, pp. 1395–1403.

[146] C. Shan Xu et al. “An open-access volume electron microscopy atlas of whole cells
and tissues.” In: Nature 599.7883 (Nov. 2021), pp. 147–151. URL: https://doi.
org/10.1038/s41586-021-03992-4.

[147] Julian Yarkony, Alexander Ihler, and Charless C Fowlkes. “Fast planar correlation
clustering for image segmentation.” In: Proc. ECCV’12. 2012, pp. 568–581.

[148] Jure Zbontar, Li Jing, Ishan Misra, Yann LeCun, and Stéphane Deny. “Barlow Twins:
Self-Supervised Learning via Redundancy Reduction.” In: Proceedings of the 38th
International Conference on Machine Learning, ICML 2021, 18-24 July 2021, Virtual
Event. Ed. by Marina Meila and Tong Zhang. Vol. 139. Proceedings of Machine
Learning Research. PMLR, 2021, pp. 12310–12320. URL: http://proceedings.
mlr.press/v139/zbontar21a.html.

[149] Ziyu Zhang, Sanja Fidler, and Raquel Urtasun. “Instance-Level Segmentation for
Autonomous Driving With Deep Densely Connected MRFs.” In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR). June 2016.

[150] Yi Zhu, Karan Sapra, Fitsum A. Reda, Kevin J. Shih, Shawn Newsam, Andrew Tao,
and Bryan Catanzaro. Improving Semantic Segmentation via Video Propagation and
Label Relaxation. 2018. URL: https://arxiv.org/abs/1812.01593.

112

https://doi.org/10.1038/s41586-021-03992-4
https://doi.org/10.1038/s41586-021-03992-4
http://proceedings.mlr.press/v139/zbontar21a.html
http://proceedings.mlr.press/v139/zbontar21a.html
https://arxiv.org/abs/1812.01593

	Abstract
	Zusammenfassung
	Acknowledgments
	1 Introduction
	1.1 Machine Learning for Image Segmentation
	1.1.1 Graph-based Instance Segmentation
	1.1.2 Embedding-based Instance Segmentation

	1.2 Contributions

	2 PlantSeg: Pipeline for Volumetric Instance Segmentation
	2.1 Introduction
	2.2 Methods
	2.2.1 Cell Boundary Segmentation
	2.2.2 Segmentation Using Graph Partitioning

	2.3 Results
	2.3.1 Performance on External Plant Datasets
	2.3.2 Performance on a Non-plant Benchmark
	2.3.3 PlantSeg Applications in Developmental Biology

	2.4 PlantSeg in Collaborative Research Projects
	2.4.1 Ex vivo Development of Mammalian Embryo
	2.4.2 The Role of Embryo-Uterus Interactions in Mouse Embryogenesis
	2.4.3 Microscopy‐based Detection of SARS‐CoV‐2 Antibodies

	2.5 Conclusion

	3 SPOCO: Semi-Supervised Instance Segmentation
	3.1 Introduction
	3.2 Related Work
	3.3 Methods
	3.3.1 Full Supervision
	3.3.2 Positive Unlabeled Supervision
	3.3.3 Clustering

	3.4 Results
	3.4.1 CVPPP Challenge
	3.4.2 Cityscapes Challenge
	3.4.3 3D Light Microscopy Datasets
	3.4.4 Electron Microscopy Datasets
	3.4.5 Training with Limited Annotation Budget
	3.4.6 Clustering Comparison

	3.5 Ablation Study of SPOCO
	3.5.1 Ablation of Loss Functions
	3.5.2 G-network Ablations
	3.5.3 Adversarial Training
	3.5.4 Cityscapes Single-class vs Class-agnostic
	3.5.5 Momentum Coefficient Exploration
	3.5.6 Kernel Threshold Exploration

	3.6 Network Architecture and Training Parameters
	3.7 Conclusion

	4 Software
	4.1 pytorch-3dunet
	4.2 PlantSeg
	4.3 Open Source Contributions

	5 Conclusion

