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I. Abstract 

 

Robust identification of neoepitopes is crucial for the efficacy and safety of immunotherapy, the most 

promising treatment strategy for several cancer types. Current approaches have provided limited 

numbers of immunogenic and tumor-specific targets, thus preventing the broad application of 

targeted immunotherapy. Here, the focus on somatic mutation-derived neoantigens often overlooks 

possible neoepitopes originating from mRNA processing events. A potential new source of tumor-

specific peptides is alternative pre-mRNA splicing, a widely dysregulated process in several cancer 

subtypes. However, there is limited insight regarding the potential of alternative splicing to generate 

peptides that are also presented on the cell surface. Thus, in this thesis, I aimed to investigate how 

perturbation of the splicing machinery contributes to the neoepitope repertoire in tumor cells. 

 

To explore alternative splicing-derived neoantigens, I performed immunopeptidomics to determine 

the HLA-I ligandome of wild-type RPE-1 cells and RPE-1 cell lines carrying common cancer mutations. 

To facilitate the presentation of alternative splicing-derived neoepitopes, I treated these cell lines with 

the splicing inhibitor GEX1A. I then performed HLA-I immunopurification to recover HLA-I-bound 

peptides of these cells, followed by peptide identification through mass spectrometry. To be able to 

identify non-canonical peptides from mass spectra, I generated sample-specific custom reference 

databases based on matching RNA-seq data. This strategy allowed me to identify more than 8,000 

unique HLA-I-presented peptides per cell line.  

In parallel, I specifically identified neoepitopes originating from aberrant alternative splice events. By 

performing differential splicing analysis between the various conditions, I obtained thousands of 

differentially regulated splice junction events. Particularly in cells treated with the splicing inhibitor 

GEX1A, alternative splicing analysis revealed numerous novel, non-annotated splice events. To 

examine whether these dysregulated events were translated into novel peptides, I subsequently 

mapped the candidate peptides to the differential splice events. With this strategy, I was able to 

identify and validate several alternative splicing-derived neoepitope candidates that exhibited a high 

immunogenic potential in in vivo immunization assays. 

 

In conclusion, my work demonstrates that pharmacological modulation of the splicing machinery has 

the potential to promote the presentation of neoepitopes derived from alternative splice variants. 

These findings have potential implications for immunotherapy of cancer types with low tumor 

mutational burden. Exploring the splicing-derived neopeptidome could reveal novel therapeutic 

targets and serve as a predictive biomarker for response to immune checkpoint blockade therapy. 

 

Note: A previous version of this abstract was published at CIMT 2021 Conference 
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II. Zusammenfassung 

 

Die Krebsimmuntherapie ist die zurzeit vielversprechendste Behandlungsmethode für eine Vielzahl 

von Tumorerkrankungen. Für die Wirksamkeit und Sicherheit einer zielgerichteten Therapie ist die 

Identifizierung von Neoepitopen essenziell. Allerdings waren bisherige Strategien, diese 

tumorspezifischen Peptide zu identifizieren, nur begrenzt erfolgreich. Da hier der Fokus vor allem auf 

Neoepitopen liegt, die aus Veränderungen der DNA-Sequenz resultieren, werden andere 

Mechanismen, die Neoepitope hervorbringen können, oftmals vernachlässig. Eine vielversprechende 

weitere Quelle für Neoepitope ist der Prozess des alternativen prä-mRNA Spleißens, welcher in vielen 

Krebsarten beeinträchtigt ist. Allerdings gibt es bisher nur wenige Einblicke, inwiefern diese 

alternativen Spleißevents Peptide produzieren können, die dann auf der Zelloberfläche als Neoepitope 

präsentiert werden können. Daher hatte meine Doktorarbeit das Ziel, herauszufinden, ob die 

Beeinträchtigungen des Spleißprozesses in Tumorzellen deren Neoepitopanzahl erweitern und 

dadurch die Anwendung von Krebsimmuntherapien verbessern kann.  

 

Mithilfe von Immunopeptidomics habe ich das HLA-I-Ligandom in RPE-1-Zelllinien erforscht, wobei ich 

sowohl Wildtyp-Zelllinien untersucht habe als auch Zellen mit Defekten im DNA-

Reparaturmechanismus, welche häufig in Tumorzellen auftreten. Diese Zellen habe ich mit dem Spleiß-

Inhibitor GEX1A behandelt, um den deregulierten Spleiß-Phänotypen in Krebszellen nachzustellen. 

Dies sollte zu vermehrter Präsentation von Peptiden führen, die durch alternative Spleißevents 

entstehen. Mithilfe einer HLA-I-Immunopurifikation konnte ich die HLA-I gebundenen Peptide 

aufreinigen und deren Peptidsequenzen mittels Massenspektrometrie analysieren. Dafür habe ich 

basierend auf RNA-Sequenzierungsdaten spezifische Datenbanken generiert, welche mir ermöglicht 

haben, auch neuartige, nicht annotierte Peptide zu identifizieren. Insgesamt konnte ich so mehr als 

8000 verschiedene HLA-I-Peptide für jede Zelllinie detektieren.  

Zusätzlich habe ich das Transkriptom dieser Zellen analysiert, um alternative Speißevents zu 

identifizieren, indem ich eine differentiale Spleißanalyse zwischen den einzelnen Konditionen 

durchgeführt habe. Dadurch konnte ich tausende deregulierte Spleißevents entdecken, besonders in 

den Zellen, welche mit Spleiß-Inhibitor behandelt wurden. Diese Spleißevents habe ich in 

Peptidsequenzen translatiert, um anschließend die HLA-I-Peptide damit abzugleichen. Dadurch konnte 

ich mehrere Neoepitope feststellen, die von alternativen Spleißevents stammen. Schließlich habe ich 

die Immunogenität dieser alternativen Spleiß-Neoepitope mithilfe von in vivo Experimenten 

untersucht, wodurch ich das hohe immunogene Potential der Kandidaten nachweisen konnte. 
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In meiner Doktorarbeit konnte ich zeigen, dass die pharmakologische Modulation des RNA-

Spleißprozesses das Potential aufweist, Neoepitope zu generieren, die durch alternative Spleißevents 

entstehen. Die Ergebnisse meiner Arbeit eröffnen neue therapeutische Möglichkeiten für die 

Krebsimmuntherapie auf. Insbesondere in Krebsarten, die kaum somatische Mutationen aufweisen, 

können Neoepitope, die von alternativen Spleißevents stammen, neue Behandlungenstrategien 

ermöglichen. Außerdem könnte die durch fehlerhaftes Spleißen verursachte Tumorlast ein neuer 

prädiktiver Biomarker für die Therapie mit Immuncheckpoint-Inhibitoren werden.  
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1. Introduction 

 

1.1 Alternative mRNA splicing 
 

1.1.1 Conventional mRNA splicing 

Almost all human premature mRNA transcripts undergo RNA splicing as a crucial part of their 

maturation process to remove non-coding intronic regions from the exonic coding regions within the 

transcript before it is translated into protein (Gallego-Paez et al., 2017). In 99% of human introns, this 

task is carried out by the major spliceosome, a tightly regulated machinery consisting of five small 

ribonucleoprotein complexes (snRNPs) (Dvinge et al., 2016). The remaining 1% introns are targeted by 

the minor spliceosome consisting of a different snRNP composition with similar functional properties. 

The assembly of spliceosomes is promoted by the recognition of splice sites through conserved 

nucleotide elements in the pre-mRNA (Figure 1). These short sequence motifs mainly occur at exon-

intron boundaries. The donor or 5’ splice site is characterized by a GU sequence element, the acceptor 

or 3’ splice site by an AG sequence element. In addition, a polypyrimidine tract and a branch point 

facilitate the recruitment of the spliceosome (Figure 1). 

 

The spliceosomal assembly is further coordinated by cis-acting sequence elements that are bound by 

trans-acting serine/arginine-rich (SR) proteins and heterogeneous nuclear ribonucleoproteins 

(hnRNPs), which can both either promote or suppress splicing depending on the vicinity at the mRNA 

binding site (Zhang and Manley, 2013). Apart from SR protein and hnRNPs, the recruitment of the 

spliceosome is governed by various other RNA-binding proteins (RBPs) (Fu and Ares, 2014) as well as 

by alterations in the expression levels of spliceosomal components (Saltzman et al., 2011). Studies that 

aimed to reveal the complexity of the regulatory system of the splicing machinery identified more than 

200 proteins associated with the spliceosome (Wahl et al., 2009) and detected hundreds of regulatory 

sequence motifs (Barash et al., 2010). To date, the exact number of splicing factors and other 

regulators of the splicing machinery remains unknown. Indeed, splicing is mediated by the complex 

interplay between cis-regulatory elements and trans-acting proteins, especially at alternative splice 

sites (Wang and Aifantis, 2020).  
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Figure 1 | Mechanism and regulation of mRNA splicing. Assembly of the spliceosome is facilitated by specific 
sequence elements and governed by exonic or intronic regulatory elements. U1 small nuclear ribonucleoprotein 
(U1 snRNP) recognizes a GU sequence element at the 5’ end of the intron, the splice donor site. Recognition of 
the splice acceptor site at the 3’ end of the intron by U2 snRNP is facilitated by various splicing factors that bind 
to the AG sequence element and the further upstream polypyrimidine tract and branch point. The spliceosomal 
assembly is promoted or prevented by the binding of serine/arginine-rich (SR) proteins, heterogeneous nuclear 
ribonucleoproteins (hnRNPs), and RNA binding motif (RBM) proteins to exonic and intronic regulatory elements 
which affect splice site choices and thus alternative splicing. (B) Two concatenated transesterification reactions 
remove the intronic sequence during canonical RNA splicing. The first step generates a lariat-shaped structure 
with a phosphodiester bond between the splice donor site and the branch point 15-30 nucleotides upstream of 
the 3’ end of the intron. In the second step, the intron is released as lariat and the 5’ exon and the 3’ exon are 
spliced together. ESE/ESS = exonic splicing enhancer/silencer; ISE/ISS = intronic splicing enhancer/silencer; SF1 = 
splicing factor 1; SF3B1 = splicing factor 3B subunit 1 (SF3B1); SRSF1/2 = serine/arginine-rich splicing factor 1/2; 
U2AF1/2 = U2 Small Nuclear RNA Auxiliary Factor 1. Figures reprinted and adapted from (Bonnal et al., 2020) 
with permission from Springer Nature under license number 5241381017664.  

 

1.1.2 The biological significance of alternative splicing  

In addition to canonical intron splicing, exonic elements can be assembled differently so that several 

distinct transcripts can be derived from a similar mRNA precursor sequence. This process of alternative 

splicing was first discovered in the primary transcript of human adenovirus type 2, which comprises 

almost the whole viral genome but is spliced into numerous smaller mRNA transcripts (Chow et al., 

1977). While the first alternatively spliced transcripts were identified through an electron microscope, 

the advances in genomic sequencing allow a far more comprehensive assessment of the alternative 

splicing landscape. In 2021, more than 900 different mRNA transcripts of human adenovirus 2 were 

identified using long-read sequencing (Westergren Jakobsson et al., 2021). This highlights how 

alternative splicing can enhance the coding capacity of an organism, a principle that was found to 

A. 

B. 
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increase with organismal complexity (Lee and Rio, 2015). In humans, nearly 95% of genes produce at 

least one alternative transcript isoform (Pan et al., 2008; Wang et al., 2008).  

 

The alternative mRNA transcripts not only differ in stability, localization, or translation, but alternative 

splicing can also introduce changes in the reading frame, thereby producing distinct protein isoforms 

with different cellular functionalities (Baralle and Giudice, 2017). Thus, alternative splicing is helpful 

for cells to obtain proteins with different functions from the same genetic information at different 

developmental stages, for example. Indeed, it has been demonstrated that alternative splicing is 

necessary for cell differentiation, lineage determination, tissue identity acquisition and maintenance, 

as well as organ development (Gallego-Paez et al., 2017; Wang et al., 2008). Similar to conventional 

RNA splicing, the process of alternative splicing is tightly regulated by cis- and trans-acting regulatory 

elements. Hence, the expression of a particular splicing factor during cell development can change 

splice patterns by influencing splice site selection. Dependent on the selected splice site, different 

types of splice events can occur (Figure 2). Thereby, alternative splicing networks mediate the 

transition from embryonic to adult functions (Baralle and Giudice, 2017). Investigating these splicing 

transitions is crucial for understanding pathological mechanisms implicated in human diseases, such 

as cancer, where the highly orchestrated splicing machinery is largely affected by mutations and 

dysregulations. 

 

 

Figure 2 | Different classes of alternative mRNA processing events and their implication in cancer. The 
expression of alternative isoforms is modulated by different splice site choices. Tumor cells exploit perturbations 
in their splicing machinery to promote the expression of isoforms that facilitate tumor growth and survival. Figure 
reprinted from (Bonnal et al., 2020) with permission from Springer Nature under license number 5241381017664. 
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1.2 Aberrant alternative splicing – the 15th hallmark of cancer? 
 

Considering the crucial process of RNA splicing in gene regulation and the essential role of alternative 

splicing in cellular processes such as proliferation, survival, and differentiation, it is unsurprising that 

altered splice patterns are associated with many human malignancies (Wang and Aifantis, 2020). These 

alterations result from mutations and dysregulated expression of spliceosomal components and 

regulators (Baeza-Centurion et al., 2019; Jayasinghe et al., 2018), causing an increase in splicing burden 

leading to alternative junction usage in patients (Kahles et al., 2018). Given its significant contribution 

to cancer pathogenesis, aberrant alternative splicing was described as an underappreciated hallmark 

of cancer (Bonnal et al., 2020; Farina et al., 2020; Ladomery, 2013; Oltean and Bates, 2014; Seiler et 

al., 2018a). 

 

1.2.1 Dysregulation of oncogenes and tumor suppressors 

At post-transcriptional level, tumorigenesis is frequently promoted by activation of oncogenes or loss 

of tumor suppressor function. Here, MYC is a prominent oncogenic transcription factor whose function 

is frequently altered in cancer cells (Wang and Aifantis, 2020). MYC can induce the expression of 

spliceosomal components, such as snRNPs, leading to splicing changes associated with cancer cell 

survival (Koh et al., 2015). In addition, splicing of important tumor suppressor genes was found to be 

impaired in cancer patients due to somatic nucleotide variants (SNVs), which affect splice site 

recognition, causing intron retention and thus degradation of tumor protein P53 (TP53) transcripts 

(Jung et al., 2015). In general, several TP53/p53 isoforms are known to have implications for cancer 

biology and were associated with cancer therapy and patient prognosis (Vieler and Sanyal, 2018). 

 

A pan-cancer splicing analysis of cancer patient data from The Cancer Genome Atlas (TCGA) reported 

that aberrant alternative transcripts are frequently found across tumors compared to normal tissue 

(Kahles et al., 2018). Indeed, oncogenes in cancer cells often undergo isoform switches to enhance 

tumorigenesis. For example, cancer cells modulate isoform usage of the BCL2L1 gene, favoring the 

expression of the longer protein isoform BCL-XL, which blocks apoptosis over the shorter BCL-XS 

isoform with tumor suppressor function (Danial, 2007). Isoform switches also facilitate tumors to 

develop resistance against cancer therapies, as observed in melanoma tumors which adapt to B-Raf 

inhibitor treatment by expressing splice variants of the oncogene BRAFV600E missing the RAS-binding 

domain (Poulikakos et al., 2010).  
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Cancer cells generate these aberrant splicing patterns by overburdening the splicing machinery, 

resulting in the generation of cancer-specific isoforms (Kahles et al., 2018). Hence, several SR proteins, 

hnRBPs, and other RBPs are known to function as proto-oncogenes or tumor suppressors and their 

activity is frequently exploited by cancer cells to promote tumor growth (Zhang and Manley, 2013). A 

genomic and transcriptomic analysis revealed broad alterations in the expression of RBPs important 

for the regulation of (alternative) splicing (Sebestyén et al., 2016). For example, downregulation of 

serine/arginine-rich splicing factor 3 (SRSF3), which governs splicing of TP53, produces an alternative 

spliced p53 isoform that promotes p53-mediated cellular senescence (Tang et al., 2013).  

 

In addition to dysregulated expression of splicing factors, it was reported that 119 splicing factor genes 

are recurrently mutated across various cancer types with a significant impact on splice patterns of 

patients (Seiler et al., 2018a). Since these mutations result in loss or gain of gene function, they play a 

tumor-suppressive or oncogene-like role in cancer development and undermine the role of aberrant 

alternative splicing for tumorigenesis.   

 

1.2.2 Mutations in core spliceosomal proteins 

Mutations in the core components of the spliceosome are recurrently found across cancer types, 

especially in hematopoietic malignancies (Yoshida et al., 2011). More recently, it has been summarized 

that spliceosomal genes are also recurrently mutated in solid tumor types (Dvinge et al., 2016). The 

most frequently occurring spliceosomal mutations are found in four genes: splicing factor 3B subunit 

1 (SF3B1), U2 Small Nuclear RNA Auxiliary Factor 1 (U2AF1), serine/arginine-rich splicing factor 2 

(SRSF2), and zinc finger CCCH-type, RNA-binding motif and, serine/arginine-rich 2 (ZRSR2). While 

ZRSR2 mutations result in loss of function, mutations in the other spliceosomal components cause an 

alteration or gain of gene function (Yoshida et al., 2011). Notably, mutations in spliceosomal genes are 

thought to be mutually exclusive, potentially due to functional redundancy or synthetic lethality 

(Dvinge et al., 2016). 

 

One of the most frequently mutated spliceosomal components is SF3B1, which is part of the SF3b 

complex and responsible for recruiting U2 snRNP by recognizing the intronic branchpoint sequence. 

Here, the mutations cause alterations on SF3B1 residue K700, resulting in mis-splicing of genes through 

selection of cryptic 3’ splice sites (Wang et al., 2016). By analyzing the transcriptome of SF3B1-mutated 

tumors of chronic lymphocytic leukemia, this study revealed that cancer cells can modulate DNA 

damage response and Notch signaling pathways through mis-spliced variants resulting from SF3B1 

mutations. In addition, SF3B1-mutated patients express mis-spliced variants of the non-canonical BAF 
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complex subunit Bromodomain-containing protein 9 (BRD9) (Inoue et al., 2019). Mis-splicing results in 

the inclusion of a poison exon within BRD9 transcripts, leading to degradation by nonsense-mediated 

decay. Depletion of BRD9 transcripts was shown to promote tumor growth (Inoue et al., 2019). Thus, 

mutations in spliceosomal components could not only have a bystander role in disease progression but 

also could be drivers of tumorigenesis.  

 

Another example of spliceosome alterations that drive tumor growth is the occurrence of mutations 

at residues S34 and Q157 of U2AF1. These mutations are located within two zinc finger domains and 

affect the 3’ splice site recognition of U2AF1 (Yoshida et al., 2011). Instead of interacting with the AG 

dinucleotide element at 3’splice sites, mutated U2AF1 recognizes alternative splice site motifs 

resulting in differentially spliced exons (Ilagan et al., 2015). Hence, U2AF1 mutations can promote 

tumorigenesis by affecting splicing of various cellular pathways such as DNA damage and apoptosis 

(Ilagan et al., 2015). 

 

Apart from SF3B1 and U2FA1, SRSF2 is another core spliceosomal proto-oncogene found frequently 

mutated in cancers, especially in hematopoietic malignancies such as chronic myelomonocytic 

leukemia (Yoshida et al., 2011). SRSF2 promotes splicing by binding exonic elements to recruit 

additional splicing factors such as U2AF1 for spliceosomal assembly (Wang and Aifantis, 2020). 

Canonically, SRSF2 binds the CCNG or GGNG sequence motif through its RNA recognition motif domain 

at similar affinities. However, recurrent mutations in P95 cause a shift in preference of SRSF2 binding 

towards the CCNG motif leading to specific exon inclusion or exclusion (Kim et al., 2015). This causes 

widespread splicing aberrancies, including mis-splicing of Enhancer of zeste homolog 2 (EZH2), leading 

to aberrant transcripts targeted for degradation. The loss of EZH2 was associated with impaired 

hematopoiesis, highlighting the clinical importance of SRSF2 mutations (Kim et al., 2015). The SRSF2 

mutation-dependent changes are well-known to cause myelodysplastic syndromes; however, mutated 

SRSF2 was also connected to more aggressive types of blood cancer such as acute myeloid leukemia 

(AML). A recent transcriptome study of AML patients identified an overlap of mutations in SRSF2 and 

isocitrate dehydrogenase (NADP(+)) 2 (IDH2), which together contribute to AML pathogenesis by 

affecting epigenetic processes as well as RNA splicing (Yoshimi et al., 2019). This highlights how the 

interplay between spliceosomal mutations and other genetic alterations can drive tumorigenesis. 
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In contrast to the proto-oncogenic function of the other spliceosomal genes described before, ZRSR2 

is considered to have a tumor-suppressive role. ZRSR2 is responsible for accurate 3’ splice site 

recognition to promote the excision of major and minor classes of introns (Shen et al., 2010). Mutations 

in ZRSR2 are found on the entire length of the gene, resulting in in-frame stop codons and thus loss-

of-function of the ZRSR2 gene (Yoshida et al., 2011). Notably, these splicing defects only affect 

processing of U12-type introns but do not involve U2-type introns (Madan et al., 2015). Since 

dysregulated U12-type intron splicing has been associated with contributing to various hematopoietic 

malignancies (Wang and Aifantis, 2020), ZRSR2 mutations are another example of how alterations in 

the core spliceosomal machinery facilitate tumorigenesis.  

 

 

 

 

Figure 3 | Dysregulation of RNA splicing by spliceosomal mutations and aberrant expression of splicing factors 
and oncogenes. Left: Core components of the spliceosome are frequently mutated in cancer and thus affect splice 
site recognition leading to the expression of tumorigenic isoforms. Right: Aberrant expression of RNA-binding 
proteins (RBPs) which modulate RNA splicing or the activation of oncogenes can introduce cancer-associated 
changes in RNA splicing patterns. Figure reprinted and adapted from (Wang and Aifantis, 2020) with permission 
from Elsevier under license number 5241391049967. 
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1.2.3 Therapeutic targeting of the spliceosomal machinery 

Given the critical contribution of dysregulated splicing for tumorigenesis, many therapeutic 

approaches have been undertaken to target spliceosomal perturbations in cancer over the past years 

(Figure 4). Since the spliceosomal process is essential for cell survival, but its efficiency or fidelity is 

reduced in various cancer types, tumor cells are more susceptible to further perturbations of the 

splicing machinery (Bonnal et al., 2020). This susceptibility provides a therapeutic window targeted by 

small-molecule spliceosomal inhibitors, which broadly prevent the assembly of the spliceosome. The 

first compounds identified to modulate splicing were discovered from bacterial strains in the early 

1990s, but the anti-tumor activity of the so-called herboxidienes, spliceostatines, and pladienolides 

was described a decade later (Schneider-Poetsch et al., 2021). Although numerous compounds have 

been submitted to clinical trials in the past, no splicing inhibitors are in clinical use yet due to severe 

side effects. Initial clinical trials of inhibitors such as E7107 targeting the SF3b complex unexpectedly 

exhibited toxicity of bilateral optic neuritis (Hong et al., 2013). However, a more recent study in which 

the SF3b complex inhibitor H3B-8800 is evaluated across various leukemias reported no such toxicities 

(Steensma et al., 2021).  

 

Apart from targeting the core components of the spliceosome, small molecules aim at interfering with 

post-translational modifications of splicing factors. For example, kinase inhibitors developed to broadly 

inhibit phosphorylation of SR proteins by SR protein kinases (SRPK) and CDC2-like kinase (CLK) families 

exhibit anti-angiogenic potential (Ohe and Hagiwara, 2015). 

 

In addition to directly targeting spliceosomal components, pharmacological inhibitors of splicing-

associated factors are tested. For example, since MYC-overexpressing tumor cells directly modulate 

the expression of PRMT5 to increase the expression of spliceosomal genes, they are more susceptible 

to PRMT5 inhibition (Koh et al., 2015). Hence, a PRMT5 inhibitor is evaluated for its anti-tumor effect 

across various cancer types in clinical trials (Fedoriw et al., 2019).  

 

Recent therapeutic approaches include targeted protein degradation of spliceosomal components by 

proteolysis targeting chimeras (PROTACS). For instance, sulfonamides have demonstrated an anti-

tumor effect in clinical trials before, but the mechanism of action was unraveled recently. Here, a study 

showed that the sulfonamide compound indisulam interacts with DDB1- and CUL4-associated factor 

15 (DCAF15) to promote degradation of RNA-binding protein 39 (RBM39) (Han et al., 2017). This 

splicing factor was described to play a central role in AML, and pharmacological degradation of RBM39 
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has been shown to have an antileukemic effect (Wang et al., 2019). More recently, indisulam was 

shown to increase anti-tumor immune response by generating cancer neoepitopes originating from 

aberrant splice patterns (Lu et al., 2021). While indisulam is currently undergoing clinical trials, the 

question remains whether PROTACs can be engineered to target other RBP splicing factors. 

 

With the recent success of modulating splice events with antisense oligonucleotide (ASO) therapy, also 

approaches in cancer therapy focus on targeting specific mRNA molecules. ASOs are short single-

stranded DNA sequences designed to match the target RNA sequence and can have three different 

mechanisms of action (Schoch and Miller, 2017). First, ASOs were designed to pair with target 

transcripts to trigger RNAse H-mediated mRNA degradation. This is the method of choice for diseases 

associated with accumulation of specific RNA/protein, such as neurodegenerative disorders. In cancer, 

targeting the Mushashi RNA-binding protein 1 (MSI1) with ASOs has been reported to reduce tumor 

growth in a patient-derived xenograft model of pancreas (Fox et al., 2016).  

 

Vice versa, in the second strategy ASOs are used to restore protein function, which is impaired by 

dysfunctional splicing. Here, ASOs directly modulate specific splice events and change alternative splice 

patterns by binding exon-intron junctions which was shown to affect recruitment and binding of 

splicing factor or splice site detection (Havens and Hastings, 2016). A proof-of-concept example of this 

type of therapy is the FDA-approved ASO Nursinersen to treat spinal muscular atrophy. Nursinersen 

promotes the inclusion of exon 7 in transcripts of survival of motor neuron 2, preventing its 

degradation and restoring protein levels which results in a milder disease outcome (Rigo et al., 2012). 

Also, in cancer, ASOs have been designed to target splice events associated with anti-tumor effects. As 

described earlier, tumor suppressor BRD9 is mis-spliced in cancer, leading to nonsense-mediated 

decay of aberrant mRNA transcripts and thus reduced protein functionality. By preventing the inclusion 

of the poison exon, ASOs stabilize BRD9 transcripts, which was shown to decrease tumor growth (Inoue 

et al., 2019).  

 

The third option to use ASOs includes targeting microRNAs to inhibit their function in regulating gene 

expression through binding mRNA targets (Schoch and Miller, 2017). ASOs are designed to bind to 

microRNA targets and promote their degradation to prevent their interaction with mRNA transcripts. 

Since microRNAs can act as oncogenes or tumor suppressors, miRNA-based therapeutic strategies are 

currently being evaluated for their use in cancer treatment (Shah et al., 2016).  
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Figure 4 | Therapeutic strategies to target RNA splicing in cancer. The antitumor effect of RNA splicing 
modulation has been described for several cancer types. Current clinical approaches focus on pharmacological 
modulation of splicing. Small molecules either directly inhibit the assembly of the core spliceosome by binding to 
core components such as SF3B1 or inhibit splicing-associated factors like PRMT5. In addition, proteolysis targeting 
chimeras (PROTACS) are developed to promote degradation of specific splicing factors. For example, degradation 
of RNA-binding protein 39 (RBM39) leads to antileukemic effects. In a pre-clinical approach, antisense 
oligonucleotides (ASOs) were able to restore the expression of the tumor suppressor Bromodomain-containing 
protein 9 (BRD9), which is frequently mis-spliced in cancer. Ub = Ubiquitin. Figure reprinted and adapted from 
(Wang and Aifantis, 2020) with permission from Elsevier under license number 5241391049967. 

 

Overall, several therapeutic strategies have been developed to target dysregulated splicing in cancer. 

Although most therapies have shown limited success in the clinic so far, recent advances in 

understanding the splicing mechanisms provided new exciting therapeutic approaches, such as 

PROTACS targeting RBP splicing factors. Importantly, tumor cells can develop resistance against 

splicing-based therapies and can also modulate RNA splicing to escape immune-based therapies (Wang 

and Aifantis, 2020). Thus, a better understanding of how tumor cells promote these resistance 

mechanisms will further contribute to the efficacy of cancer therapies. 
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1.3 The role of cancer neoantigens for immunotherapy 
 

The recent advances in the field of immunotherapy make it the most promising treatment strategy for 

several different cancer types. In 2013, the Science magazine recognized cancer immunotherapy as 

‘breakthrough of the year’, highlighting its potential in the fight against human malignancies (Couzin-

Frankel, 2013). Furthermore, James P. Allison and Tasuku Honjo received the Nobel Prize in Physiology 

and Medicine in 2018 for their discovery of cancer therapy by inhibition of negative immune regulation 

(The Nobel Assembly at Karolinska Institutet, 2018). To date, several dozen immunotherapies have 

been approved for several cancer types. The success of immunotherapeutic approaches is based on 

their immune-modulatory functions, aiming to enhance anti-tumor immune response. Here, tumor-

specific neoepitopes play a crucial role in the efficacy and safety of cancer immunotherapies. These 

short peptides are exclusively presented by cancer cells and thus have the ability to activate T cell-

mediated cytotoxicity, thereby promoting the elimination of neoepitope-presenting tumor cells. 

 

1.3.1 Surface presentation of neoantigens 

With the advent of next-generation sequencing, researchers have discovered that the genomic 

instability within tumors leads to thousands of different somatic mutations. While most of them are 

passenger mutations and do not contribute to tumorigenesis, more than 140 genes have been 

identified that directly promote tumor growth and survival (Yarchoan et al., 2017a). Beyond that, 

nonsynonymous mutations alter the amino acid coding sequence, resulting in mutant proteins 

exclusively expressed in tumor cells (Figure 5). Like all other endogenously expressed proteins, mutant 

proteins are degraded by the proteasome and cleaved into short peptide sequences. These short 

peptides have a length of 8-11 amino acids and can be presented on specific human leukocyte antigen 

class I (HLA-I) receptors on the cell surface as snapshots of the total proteome of a cell (Gfeller et al., 

2018a). Here, the peptides are recognized as antigens by CD8+ cytotoxic T cells, which can discriminate 

between self-antigens derived from canonical, endogenous proteins, and non-self-antigens derived 

from mutant protein sequences (Murphy and Weaver, 2016). During their maturation, T cells are 

negatively selected against self-antigens, which are shared between all normal cells, to avoid 

autoreactive T cell response. In contrast, T cells have not encountered non-self-peptides before and 

can thus exhibit a strong binding affinity towards these so-called neoepitopes (Murphy and Weaver, 

2016). Binding the T cell receptor (TCR) to the neoepitope activates T cell expansion and recruits other 

immune cells, eventually eliminating the neoepitope-presenting cell. Hence, the immune system can 

selectively target neoepitope-presenting cells, which makes the identification of neoepitopes of high 

therapeutic interest to promote immune-mediated tumor elimination (Waldman et al., 2020). 
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Figure 5 | Processing and presentation of antigens on HLA class I. Endogenous peptides are labeled for 
proteasomal degradation by ubiquitination. The proteasome cleaves proteins into short peptide sequences, which 
can be further processed by peptidases resulting in short peptides of 8-11 amino acids. These peptides enter the 
endoplasmic reticulum (ER) through the transporter associated with antigen processing (TAP) complex. In the ER, 
peptides bind to human leukocyte antigen class I (HLA-I) if their sequence matches the specific binding pattern of 
the HLA-I subtype. The HLA-I:peptide complexes are delivered through the Golgi complex to the cell surface, where 
CD8+ cytotoxic T cells recognize presented peptides as antigens. T cell receptors (TCRs) bind with a higher affinity 
to neoantigens, inducing an immune response against the neoantigen-presenting cell. TIL = tumor-infiltrating 
lymphocytes. Reprinted and adapted from (Yarchoan et al., 2017a) with permission from Springer Nature under 
license number 5237000258875. 

 

1.3.2 Types of tumor antigens and their role in immunotherapy 

Since neoepitopes are selectively expressed in tumors and completely absent in normal cells, they are 

also called tumor-specific antigens (TSAs). This selective expression makes TSAs an attractive target 

for immunotherapy. This has been already demonstrated by the infusion of CD8+ cells targeting mutant 

KRAS, which mediated effective antitumor response in patients (Tran et al., 2016). Notably, TSAs can 

not only arise from genetic alterations but also from oncogenic viral proteins. Viral neoantigens, such 

as the oncoproteins E6 and E7 of human papilloma virus (HPV), are attractive targets for 

immunotherapeutic approaches and were shown to facilitate immune activation in HPV-associated 

cancers (Aggarwal et al., 2019). However, most TSAs are derived from unique mutations specific to 

individual tumors. This prevents the broad application of immunotherapy because it does not only 

make the identification of neoantigens challenging, but the highly personalized therapy goes along 

with high treatment cost (Yarchoan et al., 2017a).   

 

For these reasons, tumor-associated antigens (TAAs) were initially thought to be favorable targets for 

immunotherapy since they are shared between patients and are found in several tumor types (Frankiw 

et al., 2019). However, most therapeutic approaches to target TAAs remained unsuccessful. Although 
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TAAs are overexpressed on tumor cells, they can also be presented on normal cells at lower levels 

(Ward et al., 2016). Hence, immune cells are unresponsive to many TAAs due to clonal deletion of 

autoreactive B and T cells as a mechanism of central and peripheral tolerance (Coulie et al., 2014). Still, 

some TAA-specific T cells can avoid negative selection, but their TCRs usually have no high affinity for 

the presented TAA (Stone et al., 2015). Since TCR binding affinity is correlated with T cell cytotoxicity 

and activation, the immune response against TAAs might be less pronounced compared to TSAs (Tian 

et al., 2007). 

 

Moreover, TAA-targeting immunotherapies can cause severe collateral damage to non-target tissues 

because they are also expressed on normal cells. There are several cases of autoimmune toxicities 

reported, for example, a therapeutic approach to target ERRB2 using chimeric antigen receptor (CAR) 

T cells recognizing overexpressed erb-b2 receptor tyrosine kinase 2 (ERBB2/HER2) caused respiratory 

failure and death in a metastatic colon patient since CAR T cells also induced an immune response 

against lung epithelial cells which probably also expressed ERBB2 at low levels (Morgan et al., 2010). 

Similar to TAAs, cancer/testis antigens (CTAs) were targeted by immunotherapies. CTAs are also 

shared between patients, but their expression is limited to specific tumor types (Yarchoan et al., 

2017a). It was thought that CTAs have a high specificity because they are selectively expressed on 

tumor cells but absent on normal cells, except in reproductive tissues. However, studies reported 

severe side effects in clinical cases using adoptive cell therapies directed against CTAs, such as 

melanoma-associated antigen 3 (MAGE-A3) (Cameron et al., 2013; Linette et al., 2013).  

 

These reports highlight the importance of tumor antigens being exclusively expressed in tumor cells to 

avoid cross-reactivity, suggesting that TSAs are the preferred target for new immunotherapeutic 

approaches to avoid both immune tolerance and autoimmune toxicity.  

 

1.3.3 Neoantigens and the immune response  

With the mechanisms of antigen presentation and clonal selection of immune cells, the immune 

system has developed a powerful ability to identify and target non-self-antigens on cancer cells. Here, 

antitumor T cell response is mainly driven by the recognition of neoantigens. The central role of 

neoantigens was supported when researchers discovered that T cells in melanoma patients 

predominately respond to TSAs resulting from nonsynonymous mutations rather than to TAAs 

resulting from expression changes (Lennerz et al., 2005). In addition, adoptive cell therapies where 

antitumor lymphocytes were expanded ex vivo and then infused into the patient identified 

neoantigens as the leading cause of antitumor response (Zhou et al., 2005). Since then, several 
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immunotherapies have been developed that specifically target neoantigens. For example, the TCRs of 

CAR T cells are genetically engineered to bind a specific neoantigen of interest. However, these 

adoptive cell therapies are highly personalized and cost-intensive because most neoantigens arise 

from unique mutations and are not shared between patients (Yarchoan et al., 2017a).  

 

Although antitumor immune response occurs naturally, tumor cells escape immune surveillance to 

evade immune destruction, a concept described as a hallmark of cancer (Hanahan and Weinberg, 

2011). Thus, more current immunotherapeutic strategies aim to enhance the natural antitumor 

immune response rather than targeting a specific neoantigen. Here, immune checkpoint inhibitors 

demonstrated clinical efficacy and have proven that the immune system can effectively eliminate 

cancer cells (Figure 6A). Although all tumor antigens theoretically could contribute to antitumor T cell 

response, TSAs have been identified as main T cell targets in melanoma patients treated with immune 

checkpoint inhibitor (Gros et al., 2016). 

 

The relevance of neoantigens for immunotherapies is further supported by the correlation between 

clinical response rates to immune checkpoint inhibitors and the frequency of somatic mutations 

(Figure 6B). Cancers formed due to certain mutagens like UV light or tobacco exhibit a high tumor 

mutational burden (TMB). Consequently, non-small-cell lung cancer and melanoma patients respond 

well to immune checkpoint blockade due to the high number of potential neoantigen targets arising 

from numerous somatic mutations (Yarchoan et al., 2017a). Similarly, a small subset (> 5%) of 

colorectal cancer patients with mismatch repair deficiency (MMR-D) shows a decent response. In 

contrast, the majority of colorectal cancer patients do not respond to immune checkpoint inhibition 

(Yarchoan et al., 2017a). Although the TMB seems to be an important clinical marker, the patient’s 

response rate cannot be entirely explained by the somatic mutation frequency. This suggests that 

other factors contribute to the success of immune checkpoint therapy. In addition, the TMB varies 

across different tumor types and patients. Many solid tumor types, such as melanoma, carry numerous 

somatic mutations and are thus considered immunologically ‘hot’ tumors. In contrast, especially 

hematological malignancies exhibit a low TMB and are thus immunologically ‘cold’. The different 

response rates of immune checkpoint inhibitors for different tumor types highlight the need for 

additional immunotherapeutic targets that can contribute to the antitumor immune response and/or 

can be specifically targeted by immunotherapeutic approaches.  
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Figure 6 | Immune checkpoint inhibition enhances antitumor response in highly mutated cancers. (A) T cells 
induce an antitumor immune response when their T cell receptors (TCRs) bind to non-self-antigens (neoantigens) 
presented by human leukocyte antigen class I (HLA-I) on the tumor cell surface. Tumors aim at escaping immune 
surveillance by upregulating programmed death ligand 1 (PD-L1) to inhibit T cell activation. Immune checkpoint 
inhibitors target this negative feedback pathway by binding to PD-L1 or programmed death protein 1 (PD1), 
thereby enhancing the antitumor T cell response. (B) Correlation of somatic mutation frequency and objective 
response rate (ORR) to PD1-PDL1 inhibition across various solid tumor types. The available clinical data suggest 
a clinical benefit of highly mutated tumors for immune checkpoint inhibition therapy, probably due to a high 
number of potential neoepitopes arising from nonsynonymous mutations. The line of best fit is represented as a 
blue dashed line on the graph. MCC = Merkel cell carcinoma, RCC = renal cell carcinoma, NSCLC = non-small-cell 
lung cancer, SCLC = small-cell lung cancer, MMR-D/P = mismatch repair-deficient/proficient. Figure 6B reprinted 
from (Yarchoan et al., 2017a) with permission from Springer Nature under license number 5237000258875. 

 

 

1.4 Alternative splicing-derived neoantigens 
 

Conventionally, it is thought that neoantigens arise from aberrant protein expression resulting from 

nonsynonymous mutations. However, the focus on somatic mutation-derived targets often overlooks 

possible neoepitopes originating from mRNA processing events. An unexplored source for neoantigens 

is alternative pre-mRNA splicing, a widely dysregulated process in several cancer subtypes. Changes in 

splicing patterns promote the expression of tumor-specific splice isoforms, giving rise to potential 

neoepitopes with promising features (Figure 7). The recent advances in next-generation sequencing 

methods and bioinformatic tools enabled exploration of the transcriptome for neoepitope discovery 

and highlighted that investigation of the alternative splicing landscape in cancer can expand the target 

space for immunotherapeutic approaches.  

 

 

 

A. B. 
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Figure 7 | Aberrant alternative splicing as a source of cancer neoepitopes. The splicing machinery of tumors is 
widely affected by mutations of core spliceosomal components and dysregulated expression of splicing factors. 
Changes in splice junction usage generate tumor-specific transcript variants which can be translated into proteins. 
Proteasomal degradation of aberrant proteins results in short peptides of 8-11 amino acids that can function as 
neoepitopes if presented by human leukocyte antigen class I (HLA-I). These splicing-derived neoepitopes are 
thought to have superior features over conventional neoepitopes derived from somatic mutations and other 
genetic alterations. INDEL = insertion or deletion (of bases). 

 

1.4.1 The advantages of splicing-derived neoepitopes over conventional neoantigens 

Neoepitopes resulting from dysregulated alternative splicing have been described to have distinct 

advantages over mutation-derived neoantigens (Smith et al., 2019). Splicing-derived neoepitopes are 

predicted to occur frequently across different cancers due to the wide dysregulation of alternative 

splicing in tumors driven by loss-of-function mutations in tumor suppressor gene-like factors and 

hotspot mutations in oncogene-like splicing factors (Seiler et al., 2018a). A recent study reported that 

at least one splicing-derived neoepitope was found in 68% of breast and ovarian cancer patients, 

whereas only 30% of the tumors contained a target-derived from SNVs (Kahles et al., 2018). Somatic 

mutations can only give rise to a limited number of novel peptide sequences, while one single splice 

event can give rise to a multitude of different novel peptide sequences. Cancer mutations creating 

tumor-specific splice junctions generate approximately twice as many neoepitopes per event as 

nonsynonymous mutations (Jayasinghe et al., 2018). This dramatically increases the chances that a 

peptide will match the binding pattern of an HLA-I allotype and can be presented on the cell surface.  

Moreover, peptide sequences originating from aberrant splice events can be very dissimilar from the 

canonical sequence. In the case of SNV, the novel peptide sequences usually only differ in one single 

amino acid. In contrast, alternative splicing can generate neoepitopes that are entirely different from 

any canonical peptide sequence. The greater dissimilarity towards self-peptides can be advantageous 

for the immunogenic properties of splicing-derived neoepitopes (Smith et al., 2019).  
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Furthermore, splicing-derived neoepitopes are predicted to be shared between patients because 

transcripts of splice variants are found across multiple tumors (Pellagatti et al., 2018). In contrast, 

conventional neoantigens result from unique mutations specific to individual tumors and thus can only 

be targeted by highly personalized, patient-specific therapeutic approaches, which prevents the broad 

application of immunotherapy (Yarchoan et al., 2017a). Hence, expanding the neoepitope repertoire 

by identifying splicing-derived peptides would allow a more universal immunotherapeutic approach. 

In conclusion, neoepitopes originating from alternative splice events in tumors are particularly 

interesting targets due to their high immunogenic potential and their occurrence across multiple 

patients and thus have the potential to increase the target space for cancer immunotherapies.  

 

 

1.4.2 Computational approaches and their limitations to identify splicing-derived neoepitopes  

In 2018, the evidence was growing that peptides originating from dysregulated splice events in cancer 

significantly contribute to the tumor neoepitope repertoire. The first attempts to identify splicing-

derived neoepitopes focused on computational strategies (Figure 8). A computational approach to 

identify splice-site-creating mutations across several thousand TCGA tumors predicted numerous 

potential neoepitopes which could arise from these events (Jayasinghe et al., 2018). Another study 

also aimed to identify neoepitopes from tumor-specific splice events across TCGA patients and further 

matched obtained neoepitope candidates to mass spectrometry data from the Clinical Proteomic 

Tumor Analysis Consortium (Kahles et al., 2018). Although this study already demonstrated that tumor-

specific splice events can significantly increase the target space for immunotherapies, it might still 

underestimate the full potential of splicing-derived neoepitopes. For mass spectrometry sample 

preparation, trypsin was used to cleave full-length protein into small peptide fragments at arginine or 

lysine residues. However, these two amino acids are encoded by the conserved nucleotides at exon-

exon boundaries. Thus, trypsin has a cleavage bias towards exon-exon junctions and the junction-

spanning peptides are likely lost in Trypsin-digested datasets (Wang et al., 2018). Accordingly, it was 

reported that splice junction-spanning peptides are underrepresented in mass spectrometry datasets 

(Caron et al., 2015). Hence, conventional mass spectrometry datasets are not suitable for the 

identification of neoepitopes from tumor-specific splice junctions.  
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Figure 8 | Computational-based strategy for the identification of neoantigens derived from dysregulated splice 
events in cancer patients. Current strategies to identify neoepitopes derived from differential splicing changes 
rely on computational prediction methods. These approaches start with the identification of aberrant splice 
events from RNA-seq data of patient tumor tissues. Candidate splice events are then translated into peptide 
sequences and matched to publicly available mass spectrometry datasets. TCR = T cell receptor. Reprinted from 
(Frankiw et al., 2019) with permission from Springer Nature under license number 5241391326960. 

 

1.4.3 Immunopeptidomics for discovery of splicing-derived neoepitopes 

In general, solely computational approaches have only yielded a limited number of neoepitope 

candidates with the potential to induce an in vivo immune response because most of the candidates 

are not presented by HLA-I receptors in vivo (Schmidt et al., 2017). Although HLA binding prediction 

tools have significantly evolved over the past years, the quality of results varies depending on the HLA 

subtype due to limited availability of training datasets (Jurtz et al., 2017). To date, mass spectrometry 

is the only analytical methodology that allows the direct identification of HLA-I peptides naturally 

presented in vivo (Bassani-Sternberg and Coukos, 2016; Chong et al., 2020). Mass spectrometry-driven 

exploration of the immunopeptidome has a significant advantage: it avoids the caveats of error-prone 

computational approaches by providing direct evidence of peptide binding independent of HLA binding 

prediction tools. In addition, this approach addresses the limited sensitivity of mass spectrometry since 

it only analyzes the immunopeptidome instead the complete proteome of the cell. This also 

circumvents the above-described enzymatic sample digest, thereby preserving splice junction-

spanning peptide sequences. 
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For a mass spectrometry-driven exploration of the immunopeptidome, HLA- I immunoaffinity 

purification (HLA-I IP) is the most suitable experimental approach to recover HLA-I peptides for mass 

spectrometry analysis (Bassani-Sternberg and Coukos, 2016). Here, HLA-I complexes are extracted 

from cell lysates and the bound peptides are subsequently purified, leading to highly enriched input 

samples for mass spectrometry analysis. Still, it is debated whether the sensitivity of an explorative 

mass spectrometry approach is sufficient to detect splicing-derived neoepitopes since most alternative 

splicing events are found in low abundant transcripts (Pickrell et al., 2010). However, a recent study 

focusing on neoepitopes derived from cancer-specific intron retention events in melanoma patients 

could predict several candidates that were later identified in melanoma immunopeptidomics datasets 

(Smart et al., 2018). More recently, another study used immunopeptidomics to identify hundreds of 

tumor-specific, non-canonical peptides by generating sample-specific reference databases, which 

facilitated the identification of non-canonical peptides from mass spectrometry datasets (Chong et al., 

2020). These reports suggest that mass spectrometry-based immunopeptidomics is the most 

promising experimental strategy to identify neoepitopes from tumor-specific splice events.  

 

 

1.5 Aim of the thesis 
 

Cancer immunotherapy is the most promising treatment strategy for treating several different cancer 

types. For the efficacy and safety of immunotherapeutic approaches, the identification of tumor-

specific neoepitopes plays a crucial role. However, conventional approaches have only yielded a 

limited amount of highly immunogenic targets. Here, the focus on somatic mutation-derived 

neoantigens often overlooks possible neoepitopes originating from mRNA processing events. 

Alternative mRNA splicing is widely dysregulated across several cancer types, generating tumor-

specific splice events which can give rise to highly immunogenic peptides. These splicing-derived 

neoepitopes have several advantages over mutation-derived neoepitopes and can significantly 

increase the target space for immunotherapy.  

However, the prediction of peptides originating from tumor-specific splice events is more challenging 

and complex than neoepitope prediction from non-synonymous mutations. Computational strategies 

for the discovery of splicing-derived neoepitopes have been described as error-prone and incomplete. 

Instead, the recent advantages in mass spectrometry-based immunopeptidomics allow direct 

identification of HLA-I peptides naturally presented in vivo. Combined with sample-specific reference 

databases, it enables the detection of tumor-specific, non-canonical peptides as promising targets for 

cancer immunotherapy.  
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In this thesis, I describe my efforts to establish a workflow for which I combined high throughput HLA-

I IP, high-resolution mass spectrometry, and custom computational pipelines for an explorative 

approach to identify neoepitopes derived from aberrant alternative splice events (Figure 9). 

My first aim was to establish an immunopeptidomics pipeline allowing me to explore the 

immunopeptidome of cell lines with different splicing burdens. This also included the generation of 

sample-specific reference libraries based on matching RNA-seq data. These custom databases enabled 

the identification of non-canonical, not-annotated peptides from raw mass spectrometry data. 

My second aim was to analyze the transcriptome and identify all relevant, significantly differentially 

spliced events that can give rise to potential neoepitopes. I then generated sample-specific peptide 

libraries by translating the genetic information of identified splice events into peptide sequences.  

Eventually, I wanted to combine these two efforts and match potential neoepitopes obtained from the 

immunopeptidomics workflow with the peptide reference library to specifically identify neoepitope 

candidates originating from differential splice events.  

Ultimately, I aimed to explore whether I could obtain neoepitopes with highly immunogenic properties 

from aberrant splice events. In addition, I wanted to evaluate how many potential new targets are 

generated by an increase in the splicing burden and whether this could be a predictive biomarker for 

response to immune checkpoint inhibitor therapy. 

 

 

Figure 9 | Mass spectrometry-based exploration of the immunopeptidome of cell lines with different splicing 
burdens. Cells were treated with a splicing inhibitor to recapitulate the spliceosomal stress that tumor cells 
experience. HLA-I immunoaffinity purification (HLA-I IP) recovered HLA-I-bound peptides from cell lysates. 
Subsequently, peptides were analyzed by mass spectrometry and their sequence detection was facilitated by 
sample-specific reference databases based on matching RNA-seq data. In parallel, an alternative splicing analysis 
was performed to detect dysregulated splice events between the conditions. By combining transcriptomic and 
proteomic data, splicing-derived neoepitopes were identified.   
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2. Materials & Methods 

2.1 Cell culture 
 

2.1.1 Cell lines 

Cell culture experiments were performed under a sterile Herasafe laminar flow hood (Thermo Fisher 

Scientific, Waltham, USA). K562 WT cells as well as K562 cells harboring the K700E mutation in the 

splicing factor gene SF3B1 were retrieved from Queens University Belfast, United Kingdom. The K562 

U2AF1S34F cell line was generated by Team RSC at BioMed X Institute, Heidelberg. All K562 cell lines 

were cultivated in RPMI 1640 (ATCC modification) supplemented by 10% fetal bovine serum and 1% 

Gibco Penicillin-Streptomycin (Thermo Fisher Scientific, Waltham, USA). 

RPE-1 WT and TP53 knockout cell lines were obtained from Team DDC (BioMed X Institute, Heidelberg, 

Germany). RPE-1 TP53-/- + MSH2-/- knockout cells were generated by Team DDC. RPE-1 TP53-/- + 

POLEP286R cells were generated by Nadja Ballin from Team DDC (BioMed X Institute, Heidelberg, 

Germany). All RPE-1 cell lines were cultivated in DMEM/F-12 GlutaMAX supplement containing 10% 

fetal bovine serum and 1% Gibco Penicillin-Streptomycin (Thermo Fisher Scientific, Waltham, USA). 

All cell lines were cultured at 37 °C and 5% CO2 in the Heracell VIOS 160i CO2 incubator (Thermo Fisher 

Scientific, Waltham, USA). Cell growth was monitored under an inverted light microscope and cells 

were passaged 2-3 times a week. K562 suspension cell lines were passaged when reaching an 

approximate density of 1 million cells per ml. K562 cells were transferred to a 50 ml falcon, 

resuspended thoroughly, and counted using the Z1 Cell Counter (Beckman Coulter, Brea, USA). 

Approximately 100,000 cells per ml were transferred to a new culture flask containing fresh media. For 

passaging or harvesting adherent RPE-1 cell lines, cells were washed with pre-warmed phosphate-

buffered saline (PBS) before they were detached by incubation in TrypLE Express Enzyme (1X, no 

phenol red; Thermo Fisher Scientific, Waltham, USA) for 5-10 min. Detached cells were resuspended 

in media and split at 1:10 or 1:16.  

 

Table 1 | Human cell lines used for HLA-I IP experiments 

Cell line Source Comment 

K562 WT Queens University Belfast MTA #CCRCB1704 

K562 SF3B1K700E Queens University Belfast MTA #CCRCB1704 

K562 U2AF1S34F Team RSC Derived from K562 WT 

RPE-1 WT EMBL - EMBLEM MTA Team DDC 

RPE-1 TP53-/- EMBL - EMBLEM MTA Team DDC 

RPE-1 TP53-/- MSH2-/- Team DDC Two clones: T2, T6 

RPE-1 TP53-/- POLEP286R Team DDC Two clones: T16, T17 
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2.1.2 Cell seeding concentrations 

To determine cell densities suitable for HLA-I IP experiments, adherent RPE-1 cell lines were seeded in 

different densities (40-100,000 cells/ml) on white 96-well microplates (BRANDplates, transparent 

bottom, Sigma Aldrich, St. Louis, USA). 4,000-10,000 cells were seeded in 100 µl seeding volume in 

each well. Cell growth was monitored for 48 h using the IncuCyte S3 Live Cell Imaging and Analysis 

System (Sartorius, Göttingen, Germany). Cell images were analyzed using the IncuCyte software 

version 2019B (Sartorius, Göttingen, Germany). Following parameters were applied to the confluency 

mask for RPE-1 cell detection:  

• Segmentation adjustment = 1.1 

• Hole fill = 300 µm² 

• Adjust size = -1 pixel 

• Area filter = minimum 500 µm² 

Growth curves were generated based on confluency values derived from image analysis. For future 

experiments, cell densities were chosen that guaranteed in 90-100% confluency after 24 h growth. 

Notably, RPE-1 cell lines could continue growing into dense clusters as there was no contact growth 

inhibition observed. 

 

2.1.3 Reagents for in vitro cell treatment 

Herboxidiene spliceosome inhibitor GEX1A was obtained from Focus Biomolecules, Plymouth Meeting, 

USA. The lyophilized drug was reconstituted in dimethyl sulfoxide (DMSO) (Carl Roth, Karlsruhe, 

Germany) to a stock concentration of 10 mM. Working dilutions were prepared freshly by diluting the 

stock in media.  

Recombinant human IFN-γ was obtained from PeproTech, Cranbury, USA. The lyophilized IFN-γ stock 

was reconstituted in dH2O to 1 mg/ml. The stock was further diluted 1:10 in PBS containing 1 % FBS to 

100 µg/ml. 

 

 

2.1.4 Optimization of IFN-γ-induced HLA-I expression in K562 cells 

Induction of HLA-I expression of K562 cells by IFN-γ was evaluated by determining protein levels via 

western blot. First, K562 cells were seeded on 6-well plates. For K562 WT and U2AF1S34F cell lines, 

500,000 cells (500,000 cells/ml) were seeded per well. For K562 SF3B1K700E cells, 600,000 cells (600,000 

cells/ml) were seeded per well to compensate the slower proliferation rate of this cell line. Cells were 

stimulated with different amount of IFN-γ (0, 10, 50, 100 ng/ml). After 48 h, cells were harvested, and 

samples were prepared for western blot analysis.  
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For time course experiments, K562 WT cells 500,000 cells (500,000 cells/ml) were seeded in 6-well 

plate format and stimulated with 50 ng/ml IFN-γ along with matching non-treated control samples. 

Samples were harvested after 24 h and after 48 h and HLA-I protein levels were evaluated by Western 

blot. Moreover, the media of additional samples was replaced after 24 h. Samples were cultured in 

IFN-γ-free media for additional 24 and 48 h before they were harvested, and HLA-I levels were 

evaluated by western blot.  

 

2.1.5 Sample preparation for flow cytometry measurement 

Cell surface HLA-I expression was evaluated by flow cytometry measurements. For K562 WT and 

U2AF1S34F cell lines, 500,000 cells (500,000 cells/ml) were seeded per well in a 6-well plate format. For 

K562 SF3B1K700E cells, 600,000 cells (600,000 cells/ml) were seeded per well to compensate the slower 

proliferation rate of this cell line. K562 cell lines were stimulated with 50 ng/ml IFN-γ to induce HLA-I 

expression. After 24 h, K562 cells were harvested and counted. RPE-1 cell lines were detached and 

counted. For each sample, 250,000 cells were used as input for cell staining. One additional sample of 

K562 WT and RPE-1 WT cells serving as unstained controls. First, all samples were washed with 500 µl 

PBS and centrifuged at for 5 min at 300 x g at 4 °C. Supernatants were discarded and Fc Receptor 

Blocking Solution was added. Each sample was resuspended in 2 µl Human TruStain FcX (BioLegend, 

San Diego, USA) reagent diluted in 100 µl HBSS+++ (w/o calcium, magnesium, no phenol red) and 

incubated for 20 min at 4 °C. Next, 1.25 µl of APC anti-human HLA-A,B,C antibody was added per 

sample (for 250,000 cells). Again, samples were incubated for 20 min at 4°C. Subsequently, samples 

were centrifuged at for 5 min at 300 x g at 4 °C and washed with PBS. After pelleting cells again, PBS 

was discarded and cells were resuspended in 200 µl HBS+++ containing 1 µl SYTOX Blue Dead Cell Stain 

(1:2000, 0.5 µM).  

 

Flow cytometry measurements were performed on a FACS Aria II Cell Sorter (BD Biosciences, Franklin 

Lakes, USA). After successful fluidics startup, a new experiment was setup. Fluorochrome 

compensation was not necessary since there was no overlap between APC and BV-421 spectra. 

Following gating strategy was applied: FSC-A/SSC-A -> FSC-W/-H -> SSC-W/-H -> fluorochromes 

First, unstained controls were measured, and the gating and the voltage for individual parameters 

were adjusted accordingly. Next, the stained positive controls were acquired. Then, stained samples 

were measured, and 50,000 events were recorded per sample. Result data was exported and analyzed 

using the FlowJo software (BD Biosciences, Franklin Lakes, USA). 
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2.1.6 GEX1A dose response curves 

Dose response curves were determined by viability assays in a 96-well plate format. For K562 WT and 

U2AF1S34F cell lines, 5,000 cells (50,000 cells/ml) were seeded per well. For K562 SF3B1K700E cells, 6,000 

cells (60,000 cells/ml) were seeded per well to compensate the slower proliferation rate of this cell 

line. Different morphologies between RPE-1 cell lines resulted in specific seeding concentrations: WT 

& TP53-/- = 17.500 cells/ml; TP53-/-+MSH2-/- & TP53-/-+POLEP286R clone #17 = 15.000 cells/ml; TP53-/-

+POLEP286R clone #16 = 10.000 cells/ml. 

 

To achieve spliceosomal inhibition, 50 µl GEX1A dilution was added to the cell seeding volume of 100 

µl. GEX1A stock was diluted to 750 nM (1.5x) and six 1:1 dilutions were prepared in a serial dilution. 

50 µl of each dilution were added to the plates in quadruplicates, resulting in a total volume of 150 µl 

per well. Non-treated control cells received additional 50 µl of fresh media. After 48 h, viability assays 

were performed following the instructions of the CellTiter-Glo 2.0 Assay protocol (Promega, Madison, 

USA). First, a 1:1 mix of media and CellTiter-Glo 2.0 reagent was prepared. Cell supernatant was 

aspirated and 100 µl of the mix were added per well. Plates were incubated for cell lyses shaking for 5 

min at RT. Subsequently, luminescence was recorded at 485 nmEx/520 nmEm using the GloMax 

Microplate Reader (Promega, Madison, USA). After subtraction of the background signal, the average 

value of non-treated cells was determined. Next, individual values were divided by the average control 

value to obtain the ratio of cells alive in treated conditions compared to the non-treated control. The 

results were further analyzed using GraphPad Prism (v8.43, Graphpad Software Inc., San Diego, USA). 

Values were normalized and a nonlinear fit curve was applied to the data to determine GR50 values. 

Final values were plotted in a dose response curve from which GEX1A doses for HLA-I IP experiments 

were determined.  

 

2.1.7 Sample preparation for HLA-I immunoaffinity purification (HLA-I IP) 

For HLA-I IP experiments, cells were cultured in bulk to obtain around 100 million cells per sample. 

K562 suspension cells were expanded in T175 flasks (Figure 10). For K562 WT and U2AF1S34F cell lines, 

50 million cells (250,000 cells/ml) were seeded per flask. For K562 SF3B1K700E cells, 60 million cells 

(300,000 cells/ml) were seeded per flask to compensate the slower proliferation rate of this cell line. 

Cells were added to a total culture volume of 200 ml and stimulated with 50 ng/ml IFN-γ to induce 

HLA-I expression. After 24 h, half of the samples were treated with 10 nM GEX1A. The other half served 

as non-treated controls. After 24 h of GEX1A treatment and a total culture time of 48 h, cells were 

harvested. K562 cells were resuspended thoroughly to prevent cell clumping. Cells were distributed to 

4x 50 ml falcons chilled on ice. Aliquots of 1 ml of each sample were taken for Western blot analysis. 
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The aliquots were further processed as described in Section 2.4.1. For replicate #3 additional aliquots 

of 7.5 ml were taken as input for RNA-seq analysis which were processed as described in Section 2.4.1. 

The remaining cell suspension samples (50 ml falcons) were centrifuged for 5 min at 300 x g at 4 °C. 

Supernatants were aspirated and the four cell pellets of each sample were pooled by resuspending 

them in a total of 15 ml ice-cold PBS. Each cell suspension was transferred into a new 15 ml falcon and 

centrifuged for 5 min at 300 x g at 4 °C. Supernatants were aspirated, cell pellets were snap-frozen in 

liquid nitrogen and stored at -80 °C.  

 

 

Figure 10 | Cell culture workflow for generating K562 samples as input for HLA-I IP. 

 

Adherent RPE-1 cells were expanded in 5-layer Rectangular Straight Neck Cell Culture Multi-Flasks 

(Thermo Fisher Scientific, Waltham, USA). For RPE-1 WT and TP53-/- cell lines 5 million cells were 

seeded per flask and for TP53-/-+MSH2-/- as well as TP53-/-+POLEP286R cell lines 4 million cells were 

seeded per flask (Figure 11). Notably, for the tetraploid TP53-/-+POLEP286R clone T16 only 3 million cells 

were seeded per flask. 10 ml of cell suspension containing the respective cell numbers were added to 

the 5-layer flasks and 200 ml of DMEM/F-12 medium was added. Cells were expanded for 72 h at 37 

°C and 5% CO2 inside a cell incubator. Then, fresh media was prepared containing 63 nM GEX1A and 

added to the flask. The control flask received normal media without drug. After 24 h of treatment, cells 

were harvested. The media was discarded, and flasks were rinsed with 50-100 ml PBS. Cells were 

detached using 32 ml enzyme-free cell dissociation buffer. After 10-15 min incubation at 37 °C and 5% 

CO2 inside a cell incubator, 18 ml medium were added and the whole suspension was transferred into 
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a T75 flask. 5-layer flasks were rinsed with additional 50 ml PBS and the suspension was transferred 

into the same T75 flask. All cell suspensions were resuspended thoroughly to prevent cell clumps and 

then transferred into 2x 50 ml falcons and chilled on ice.  

 

Aliquots of 2 ml of each sample were taken for Western blot analysis. The aliquots were centrifuged 

for 5 min at 300 x g at 4 °C, supernatants were aspirated, and the pellets washed with ice-cold PBS. 

After pelleting the cells again and aspirating supernatants, pellets were snap-frozen in liquid nitrogen 

and stored at -80 °C. For all replicates, additional aliquots of 8 ml were taken as input for RNA-seq 

analysis which were processed as described in Section 2.4.1. The remaining cell suspension samples 

(50 ml falcons) were centrifuged for 5 min at 300 x g at 4 °C. Supernatants were aspirated and pellets 

were resuspended in 7.5 ml ice-cold PBS. Since samples were split between two falcons, both cell 

suspensions of paired falcons were pooled by transferring cell suspensions into a new 15 ml falcon. 

Eventually, falcons were centrifuged for 5 min at 300 x g at 4 °C, supernatants were aspirated, and cell 

pellets were snap-frozen in liquid nitrogen and stored at -80 °C.  

 

 

Figure 11 | Cell culture workflow for generating RPE-1 samples as input for HLA-I IP. 
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2.1.8 Additional K562 samples for RNA-seq 

Since RNA-seq aliquots were only processed for replicate #3 of samples prepared for HLA-I IP, 

additional samples were generated to serve as input for RNA-seq. This follow-up experiment was 

designed to reproduce the experimental conditions of the bulk experiment in a 6-well plate format. 

For K562 WT and U2AF1S34F cell lines, 500,000 cells (500,000 cells/ml) were seeded per well. For K562 

SF3B1K700E cells, 600,000 cells (600,000 cells/ml) were seeded per well to compensate the slower 

proliferation rate of this cell line. Cells were stimulated with 50 ng/ml IFN-γ. After 24 h, half of the 

samples were treated with GEX1A while the other half served as non-treated controls. After 24 h of 

treatment, cells were harvested, lysed in RNAzol for subsequent RNA extraction. In addition, 1 ml 

aliquot was taken for western blot analysis.  

 

 

2.2 HLA-I immunopurification (HLA-I IP) 
 

2.2.1 Antibody purification 

Supernatants of HB-95 hybridoma cells producing anti-HLA-I antibody W6/32 were obtained from 

Jonas Becker. W6/32 antibody was purified from the supernatants using Sepharose A beads in gravity 

flow columns as described previously (Bassani-Sternberg, 2018). First, empty Poly-Prep columns (Bio-

Rad, Hercules, USA) were rinsed with 9 ml of 1% SDS solution followed by 40 ml of dH2O. Next, 4 ml of 

50% Sepharose-Protein A beads solution were added to the column and the preservation buffer was 

allowed to drain. The beads were washed once using 9 ml of 100 mM Tris-HCl (pH 8.0) buffer. After 

preparation of the columns, column tips were closed, and cell culture supernatant was added. The 

supernatant was allowed to flow through the column enabling binding of W6/32 antibodies to 

Sepharose Protein A beads. Subsequently, beads were washed once using 9 ml of 100 mM Tris-HCl (pH 

8.0) buffer and then a second time using 9 ml of 20 mM Tris-HCl (pH 8.0). Then, W6/32 antibodies were 

eluted with 8x 1 ml of 0.1 N acetic acid (pH 3.0) from the beads into eight individual tubes containing 

300 µl of 1 M Tris-HCl (pH 8.0) to neutralize the solution. Tubes were gently vortexed, and the IgG 

concentration of each fraction was measured using a NanoDrop 2000/2000c spectral photometer 

(Thermo Fisher Scientific, Waltham, USA). High IgG-containing fractions were pooled, and aliquots 

were prepared containing 10 mg of W6/32 antibody per tube. These tubes were subsequently used 

for antibody cross-linking procedures. Low antibody-containing fractions were pooled and used as 

primary antibodies for western blot analysis. Purified W6/32 antibody aliquots were stored at -20 °C. 
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2.2.2 Antibody cross-linking 

W6/32 antibodies were covalently coupled to Sepharose-Protein A beads for HLA-I IP experiments. 

Cross-linking was supposed to reduce co-elution and potential clogging of columns during the 

immunopurification process. The cross-linking with dimethyl pimelimidate (DMP; Thermo Fisher 

Scientific, Waltham, USA) was performed in gravity flow columns following the instructions of a 

previously published study (Bassani-Sternberg, 2018). First, empty Poly-Prep columns (Bio-Rad, 

Hercules, USA) were rinsed with 9 ml of 1% SDS solution followed by 40 ml of dH2O. Next, 4 ml of 50% 

Sepharose-Protein A beads solution were added to the column and the preservation buffer was 

allowed to drain. The beads were washed once using 9 ml of 100 mM Tris-HCl (pH 8.0) buffer. After 

preparation of the column, the column tip was closed, and 10 mg W6/32 antibody diluted in 5 ml of 

100 mM Tris-HCl (pH 8.0) buffer were added. Beads were resuspended in antibody solution and the 

mixture was incubated by slowly rotating the column at 8 rpm for 30 min at RT. Subsequently, the 

buffer was allowed to drain from the column and an aliquot of the flowthrough was collected and its 

protein concentration determined a NanoDrop 2000/2000c spectral photometer (Thermo Fisher 

Scientific, Waltham, USA) to ensure W6/32 antibody coupling to the beads. Next, beads were washed 

with 0.2 M sodium borate buffer (pH 9.0) to remove residual amines from the Tris buffer before the 

column tip was closed again. The beads were resuspended in 2 ml of a freshly prepared 40 mM DMP 

solution, resulting in a final DMP concentration of 20 mM. This mixture incubated by slowly rotating 

the column at 8 rpm for 30 min at RT. After cross-linking the antibody to the beads, unreacted DMP 

was quenched by washing the beads with 5 ml of 0.2 M ethanolamine (pH 8.0). The column tip was 

closed, another 5 ml of of 0.2 M ethanolamine (pH 8.0) were added and remaining unreacted DMP 

was further quenched by slowly rotating the column at 8 rpm for 2 h at RT. Then, beads were washed 

with 9 ml of PBS containing 0.02% sodium azide. Finally, beads were covered with 2 ml of PBS 

containing 0.02% sodium azide and stored at 4 °C until further usage. 

 

2.2.3 High-throughput immunopurification of HLA-I:peptide complexes 

The high-throughput HLA-I IP was performed following the instructions for the immunopeptidomics 

workflow described in a previous study (Chong et al., 2018). Lysates from frozen pellets were directly 

prepared before the HLA-I IP was performed. 1 ml of HLA lysis buffer (Table 2) was added to frozen 

pellets and samples were thawed on ice. After 15-20 min, additional 1 ml lysis buffer was added, cells 

were resuspended and transferred into fresh 2 ml tubes. The tubes were incubated for 45 min at 4 °C 

before the lysates were cleared by centrifugation at 21,000 x g for 30 min at 4 °C.   
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For the high-throughput immunopurification of HLA-I-bound peptides from the samples, an empty 96-

well filter microplate with 3 μm glass fiber and 10 μm polypropylene membranes (Agilent, Santa Clara, 

USA) was loaded with W6/32-coupled Sepharose-Protein A beads. First, the filter plate was washed 

with 1 ml of 100% acetonitrile (I; Sigma Aldrich, St. Louis, USA) per well, followed by 1 ml of 0.1% 

trifluoracetic acid (TFA; Sigma Aldrich, St. Louis, USA) per well. Solutions were prepared by diluting 

reagents in Optima LC/MS Grade Water (Thermo Fisher Scientific, Waltham, USA) and washes were 

performed by applying 3-5 psi using the Positive Pressure-96 Processor (Waters, Milford, USA). Then, 

the filter plate was equilibrated by washing the columns (psi = 3-5) with 2 ml of 0.1 M Tris-HCl (pH 8.0) 

per well. The cross-linked Sepharose Protein A-W6/32 beads were resuspended using low-retention 

ART filter tips and 150 µl were loaded onto each column. Beads were slowly washed (psi = 1-2) by 

adding 1 ml 0.1 M Tris HCL (pH 8.0). Next, beads were conditioned with 400 µl HLA lysis buffer per well.  

After preparation of the filter plate, the cleared cell lysates were loaded onto the columns and allowed 

to flow through by gravity at 4 °C. The flow-through was collected in a special 96-deep well collection 

plate (Agilent, Santa Clara, USA). Then, columns were washed (psi = 3) several with buffers containing 

different salt concentrations:  

1. 8x 1 ml/well 150 mM sodium chloride in 20 mM Tris-HCl (pH 8.0) 

2. 8x 1 ml/well 400 mM sodium chloride in 20 mM Tris-HCl (pH 8.0) 

3. 8x 1 ml/well 150 mM sodium chloride in 20 mM Tris-HCl (pH 8.0) 

4. 4x 1 ml/well 20 mM Tris-HCl (pH 8.0). 

For the elution of HLA-I:peptide complexes, a Sep-Pak tC18 96-well plate with 100 mg sorbent per well 

and 37-55 µm particle size (Waters, Milford, USA) was prepared. Columns were conditioned by 

washing (psi = 3) with 1 ml 80% ACN in 0.1% TFA per well and then with 2 ml 0.1 % TFA per well. Then, 

the filter plate was stacked on top of the Sep-Pak tC18 96-well plate and HLA-I: peptide complexes 

were eluted from the filter plate by slowly washing (psi = 1-2) 2x with 500 µl 1% TFA. The complexes 

were captured by the Sep-Pak tC18 96-well plate which was washed (psi = 2-3) 2x with 1 ml 0.1% TFA 

per well. For final elution of HLA-I-bound peptides, the plate was stacked on top of a 96-deep well 

collection plate and eluted 2x with 400 µl 28% ACN in 0.1% TFA. Eluted peptides were transferred into 

1.5 ml tubes, dried by vacuum centrifugation, and stored at -80 °C until mass spectrometry analysis. 
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Table 2 | Composition of the HLA-I lysis buffer (adapted from Chong et al., 2018). 

Reagent Supplier Stock 
MW 
[Da] 

Solubility 
Final 

concentration 
Dilution 

Sodium 
deoxycholate 

Thermo 
Fisher 

Scientific, 
Waltham, 

USA 

5 g 414.6 
50 mg/ml 

in H2O 
0.25 % / 

0.125 mg/ml 
1:20 

Iodoacetamide 
Sigma 

Aldrich, St. 
Louis, USA 

5 g 184.96 
10-100 
mM in 
H2O 

0.2 mM 1:100 

Ethylenediamine-
tetraacetic acid 

(EDTA) 

Sigma 
Aldrich, St. 
Louis, USA 

0.5 M 292.24 - 1 mM 1:50 

Octyl-β-D-
glucopyranoside 

Sigma 
Aldrich, St. 
Louis, USA 

250 mg 292.37 
100 mg/ml 

in H2O 
1.0 % / 1 
mg/ml 

1:10 

Halt Protease and 
Phosphatase 

Inhibitr Cocktail 

Thermo 
Fisher 

Scientific, 
Waltham, 

USA 

-  - 1x 1:100 

 

 

 

2.3 Biochemical and molecular biology methods 
 

2.3.1 Western blot analysis 

2.3.1.1 Cell lysis & sample preparation 

Cell suspensions were centrifuged for 5 min at 300 x g at 4 °C, supernatants were aspirated, and the 

pellets washed with ice-cold PBS. Cells were pelleted again, and supernatants were aspirated before 

pellets were snap-frozen in liquid nitrogen and stored at -80 °C.  

Cells lysis was accomplished by adding HLA-I lysis buffer (Table 2) which stabilized HLA-I molecules 

(Chong et al., 2018) in a concentration of 100 µl per 1 million cells. Lysis buffer was always prepared 

fresh from reagent stocks. During cell lysis, samples were kept under constant agitation (1000 rpm) for 

30-60 min at 4 °C. Lysed samples were centrifuged at 14,000 x g for 20 min at 4 °C. Samples were 

chilled on ice and 90% of the supernatant was transferred into a fresh tube. Protein content was 

determined by BCA assay, or samples were directly prepared for SDS-PAGE. 
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2.3.1.2 Bicinchoninic acid (BCA) assay 

Protein concentrations of samples were determined following the user guide instructions of the Pierce 

BCA Protein Assay Kit (Thermo Fisher Scientific, Waltham, USA). A serial dilution of bovine serum 

albumin (BSA) in HLA-I lysis buffer was used as standard curve. Samples were pre-diluted 1:5 in HLA-I 

lysis buffer to fit in the dynamic range of the assay. 25 µl of sample or standard was to 96-wells in 

duplicates. BCA working reagent solution as prepared by mixing Reagent A with B in a 50:1 mix. 200 µl 

working reagent solution was added to each well and the plate was incubated for 30 min at 37 °C. The 

plate was brought back to RT and absorbance was measured at 562 nm using the GloMax Microplate 

Reader (Promega, Madison, USA). Background absorbance was subtracted from the results and the 

sample protein concentrations were determined based on absorbance in reference to the BSA 

standard curve.  

 

2.3.1.3 Protein gel electrophoresis & Western blot 

For protein separation by gel electrophoresis, the NuPAGE system and reagents were used (Thermo 

Fisher Scientific, Waltham, USA). Samples were denatured by adding 4x NuPAGE LDS Sample Buffer + 

10x NuPAGE Sample Reducing Agent containing 500 mM dithiothreitol (DTT) and boiled for 10 min at 

70 °C. The NuPAGE system was used to separate proteins by molecular mass. The gel chamber was 

filled with NuPAGE MES SDS Running Buffer (20x) diluted 1:20 in dH2O, and 500 µl NuPAGE Antioxidant 

was added. Then, samples containing 10-40 µg protein were loaded on NuPAGE 4-12% Bis-Tris gels 

(1.5 mm x 10/15 wells). In addition, 5 µl of PageRuler Plus Prestained Protein Ladder (10 to 250 kDa) 

was loaded as reference. Proteins were separated at constant 150 V for 90 min. 

After successful protein separation, the gel was dismounted and stored in running buffer. For 

transferring proteins onto a membrane, the user guide instruction for the Bio-Rad Trans-Blot Turbo 

Transfer System (Bio-Rad, Hercules, USA) were followed. Trans-Blot Turbo Transfer Pack containing a 

pre-activated PVDF membrane (0.2 µm) and the gel were mounted onto the cassette. Proteins were 

transferred from the gel to the membrane using the program ‘High MW’ (1.3 A constant current, up 

to 25 V) of the Trans-Blot Turbo Transfer device. After the run, the PVDF membrane was stored in TBS-

T. 

 

2.3.1.4 Membrane detection 

PVDF membranes were blocked using 5% (w/v) milk powder (Carl Roth, Karlsruhe, Germany) in TBS-T 

for 1 h at RT to prevent unspecific binding of antibodies. After rinsing the membranes with TBS-T, 

membranes were cut around the 70 kDa marker and specific proteins were probed by incubation with 
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primary antibodies. The upper part of the membrane containing proteins >70 kDa was incubated with 

rabbit polyclonal anti-Vinculin antibody (Cell Signaling Technology, Danvers, USA) diluted 1:2000 in 1% 

BSA (w/v) in TBS-T. The bottom part was incubated with mouse monoclonal anti-HLA-ABC antibody 

(W6/32) diluted 1:2000 in 1% BSA (w/v) in TBS-T. After overnight incubation, membranes were washed 

three times with TBS-T for 10 min and incubated with secondary antibody (anti-mouse or anti-rabbit, 

see Table 10) diluted 1:5000 in 1% (w/v) milk powder solution for 1 h. Unbound antibodies were 

washed off by rinsing the membranes three times for 5 min with TBS-T. For enhanced 

chemiluminescence (ECL) detection via horseradish peroxidase (HRP) SuperSignal West Femto 

Maximum Sensitivity Substrate (Thermo Fisher Scientific, Waltham, USA) was used in a 1:1 mix of 

Solution A and B. The signal was detected by the FUSION FX Imaging System (Vilber Lourmat, 

Eberhardzell, Germany) using the High Sensitivity program. 

 

2.3.2 HLA-I haplotyping 

gDNA were isolated from cells following the user guide of the GeneJET Genomic DNA Purification Kit 

(Thermo Fisher Scientific, Waltham, USA). Sample concentrations of isolated gDNA were determined 

by the NanoPhotometer NP80 (Implen, Munich, Germany). Aliquots with 25 ng/µl with a total volume 

of 120 µl were prepared and sent for sequencing by DKMS Life Science Lab GmbH (Dresden, Germany) 

to determine the specific HLA-I allele types of each cell line. 

 

2.3.3 RT-PCR validation of splice events 

Computationally predicted differential splice events identified from RNA-seq data were experimentally 

validated by reverse transcription polymerase chain reaction (RT-PCR). 

RPE-1 cells were seeded in 10 cm culture dishes so that they reached 95% confluency on the following 

day of treatment (RPE-1 WT = 1.9 M; TP53-/- cells 1.75 M cells). Cells were cultured at 37 °C and 5% CO2 

inside a cell incubator and treated with different concentrations of GEX1A (0, 10, 30, 60 nM). After 24 

h of treatment, cells were lysed by adding 2 ml of RNAzol RT (Sigma Aldrich, St. Louis, USA) to each 

plate and stored at -80 °C. RNA was isolated from the samples as described in Section 2.4.2. RNA 

concentrations were determined by measuring the absorbance of samples at 260 nm and 280 nm using 

the NanoPhotometer NP80 (Implen, Munich, Germany). Samples were diluted to a target 

concentration of 150 ng/µl and 0.75 µg RNA was used as input for cDNA synthesis. 

 

Reverse transcription of sample RNA into cDNA was performed by following the protocol for the 

ProtoScript II First Strand cDNA Synthesis Kit (New England Biolabs, Ipswich, USA). First, primer mix 

was added to the RNA sample and the sample mixes were denatured at 65 °C for 5 min. Then, 
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Protoscript II reaction mix as well as RNase inhibitor were added. After 1 h incubation of the samples 

at 42 °C, the enzyme was heat inactivated at 80 °C for 5 min. cDNA samples were stored at -20 °C. 

 

cDNA samples were used as input for RT-PCR. The presence of candidate splice event was evaluated 

by amplifying the region of interest resulting in PCR products with different lengths. For exon skipping 

events, forward primers were designed binding the upstream exon and reverse primers binding the 

downstream exon. In case of full intron retention, primers were designed to bind the upstream and 

downstream exon. All primers fulfilled following properties: length of 20-24 bases, 40-60% G/C 

content, 1-2 G/C pairs at start and end, and a similar melting temperature (Tm) of 58-60 °C.  

Splice events region were amplified following the protocol for the protocol for OneTaq Quick-Load 2X 

Master Mix with Standard Buffer (New England Biolabs, Ipswich, USA). As input for RT-PCR, 75 ng or 

100 ng of sample cDNA were used and amplified using the Thermocycler (Bio-Rad, Hercules, USA). 

 

Table 3 | Thermocycling conditions for amplification of splice event regions. 

Step Temperature Time 

Initial denaturation 94 °C 30 sec 

30 cycles 

94 °C 20 sec 

54 °C (optimized for all 
primers) 

30 sec 

68 °C 1 minute per kb 

68 °C 5 min 

Hold 4 °C ∞ 

 

 

2.4 RNA sequencing & data processing 
 

2.4.1 Sample preparation 

Cell suspensions were centrifuged for 5 min at 300 x g at 4 °C, supernatants were aspirated, and pellets 

were resuspended in 1 ml of RNAzol RT (Sigma Aldrich, St. Louis, USA) for cell lysis. After 20 min 

incubation at RT, samples were stored at -20 °C. 

 

2.4.2 RNA isolation 

RNA was isolated from lysed samples following the user manual for RNAzol RT RNA Isolation Reagent 

(Sigma-Aldrich, St. Louis, USA) for sample preparation and isolation of total RNA. For homogenization 

of samples, 0.4 ml of water per 1 ml RNAzol was added and samples were shaken for 15 sec before 
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incubation for 15 min at RT. DNA, protein, and polysaccharides were precipitated by centrifugation of 

samples at 12,000 x g for 15 min at RT. 1 ml of the supernatant was transferred to a 2 ml tube and RNA 

was precipitated by adding 1 ml of isopropanol per 1 ml supernatant. After storing samples for 10 min 

at RT, they were centrifuged at 12,000 x g for 10 min at RT. The supernatant was decanted, and the 

RNA pellet was washed 2x by adding 75% ethanol (v/v) and centrifugation at 8,000 x g for 3 min at RT. 

The ethanol was carefully removed, and the RNA pellets were resuspended in nuclease-free water 

(New England Biolabs, Ipswich, USA). Samples were stored at -80 °C. 

 

2.4.3 RNA concentrations & quality measurements 

As first estimation, RNA concentrations were determined by measuring the absorbance of samples at 

260 nm and 280 nm using the NanoPhotometer NP80 (Implen, Munich, Germany). Based on these 

results, samples were diluted, and precise RNA concentrations were determined following the 

instructions of the Qubit RNA BR Assay Kit (Thermo Fisher Scientific, Waltham, USA). In brief, the Qubit 

working solution was prepared by diluting the RNA BR Reagent 1:200 in RNA BR Buffer. 198 µl of 

working solution were added to sample tubes, 190 µl to standard tubes. 10 µl of each standard A and 

B were added to respective standard tubes and 2 µl of diluted RNA samples to sample tubes. Tubes 

were briefly vortexed and incubated for 2 min at RT before they were measured by the Qubit 3.0 

Fluorometer (Thermo Fisher Scientific, Waltham, USA). Standard curve was determined by acquiring 

Qubit standards. Then, samples tubes were acquired to determine the RNA content. Final RNA 

concentrations were calculated based on sample dilution factors. 

 

Besides, RNA quality was measured using the 2100 Bioanalyzer (Agilent, Santa Clara, USA) following 

the instructions of the RNA 6000 Nano Kit Guide (Agilent, Santa Clara, USA). First, the electrodes were 

decontaminated with 350 µl RNaseZAP (Thermo Fisher Scientific, Waltham, USA) and cleaned with 350 

µl of nuclease-free water (New England Biolabs, Ipswich, USA). For the preparation of the gel, 550 µl 

of Agilent RNA 6000 Nano gel matrix were loaded into the top receptacle of a spin filter and centrifuged 

at 1500 x g for 10 min. Next, 1 µl of RNA 6000 Nano dye concentrate was added to a 65 µl aliquot of 

filtered gel. After vortexing, the gel-dye mix was centrifuged at 13,000 x g for 10 min. 9 µl of the mix 

was added at the specific well bottom of an RNA chip placed on the chip priming station. The chip was 

pressurized by using the syringe to cast the gel. After loading the gel-dye mix, 5 µl RNA 6000 Nano 

Marker was loaded into each sample well and in the ladder well. Then, the 1 µl of previously diluted 

samples were loaded. In addition, 1 µl of RNA ladder was added to the ladder well. After vortexing the 

chip, it was inserted in the Agilent 2100 Bioanalyzer. RNA quality was measured using the 

EukaryoteTotal RNA Nano setup of the 2100 Expert Software (Agilent, Santa Clara, USA). 
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2.4.4 RNA sample preparation for RNA-seq 

For each sample, 3000 ng RNA was prepared in a 100 ng/µl dilution in nuclease-free 1.5 ml tubes based 

on concentrations measured with QUBIT. RNA spike-ins were added as control probes. Iso Mix E2 of 

the SIRV Set 1 (Lexogen, Vienna, Austria) was resuspended 1:10 in 10 µl nuclease-free water and then 

diluted 1:10 in nuclease free water, obtaining a 1:100 dilution (0.303 ng/µl). For each sample 

containing 3000 ng RNA, 2.97 µl of diluted spike-ins were added to each sample (Table 4). Final RNA 

concentrations of the sample were measured by QUBIT. Samples were stored at -80 °C before sample 

submission for sequencing.  

 

Table 4 | Calculations for RNA spike-ins added to RNA-seq samples. 

 

 

 

 

2.4.5 RNA sequencing 

The generated K562 libraries were sequenced pair-end with read length of 75 bp using a HiSeq2000 

V4 (Illumina, San Diego, USA) at the Genomics Core Facility at European Molecular Biology Laboratory 

(EMBL, Heidelberg, Germany). RPE-1 libraries were shipped to Novogene (Cambridge, UK) and 

sequenced pair-end with read length of 150 bp using a NovaSeq 6000 system (Illumina, San Diego, 

USA). 

RNA-seq data summarized in SRA files were transformed to fastq format in bash using the command: 

fasterq -dump SRRxxxxxx -e 10 (e = number of threads). Adapter trimming for each sample pair was 

performed using the bash command: trim_galore --illumina --fastqc --paired $NAME1 $NAME2 (NAME 

= file name). 

 

m SIRV = 0.01 (F SIRV reads) x 0.03 (F target RNA) x X ng (m RNA input)

V SIRV = 30 pg (m SIRV) / 25.2 pg/µl (C SIRV)

Parameters Calculation

m RNA input total RNA conc. 3000 ng m SIRV 0.9

F target RNA mRNA fraction 0.03 = 3% V SIRV 2.97

F SIRV reads SIRV fracton of mRNA 0.01 = 1%

C SIRV 1:10 Stock resuspended in 10 µl 3.03 ng/µl

C SIRV 1:100 1:10 of resuspended 0.303 ng/µl --> Prepare 40 µl of a 1:100 dilution

C SIRV 1:1000 1:10 of 1:100 0.0303 ng/µl  for sufficient spike-in for 12 samples

Formulas
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2.4.6 STAR alignment 

RNA-seq reads were aligned to the human genome using the Spliced Transcripts Alignment to a 

Reference (STAR) software (v2.7.0; Dobin et al., 2013). As reference, the human genome release 32 

(GRCh38.p13) was used containing the comprehensive gene annotation originally created on the 

GRCh38 reference chromosomes, mapped to the GRCh37 primary assembly. Reference annotation 

files were obtained from GENCODE (Frankish et al., 2019). STAR alignment was performed for paired-

end reads executing the following the bash scripts in the ‘01_RNAseq_analysis’ folder on the RSC 

GitHub repository: 

1. Reads were aligned to transcriptome (1st pass) 

Script: 01A_STAR_GRCh37_1st-pass_paired-end_ACK.sh 

2. Reference genome was indexed 

Script: 01B_IndexingGenome2ndpass.sh 

3. Reads were aligned to indexed transcriptome and quantified 

Script: 01C_STAR_GRCh37_2nd-pass_paired-end.ACK.sh 

Importantly, overhangs were adjusted according to read length (K562 = 74 nt, RPE-1 = 149 nt). 

 

2.4.7 Gene expression analysis 

Gene expression analysis based on quantified reads was performed using the DESeq2 package (Love 

et al., 2014). The whole workflow is summarized in the R script 

‘02_Differential_gene_expression_analysis.R’ available in the ’01_RNAseq_analysis’ folder on the RSC 

GitHub repository. In brief, ‘ReadsPerGene.out.tab’ files obtained from STAR alignment were imported 

into R Studio and a count matrix was generated. In addition, an annotation data frame was generated 

to include information about the different sample groups. Count matrix and annotation data frame 

served as input for gene expression analysis. Gene identifiers and features were obtained from the 

Ensembl repository using the biomaRt package (Durinck et al., 2009). Based on DESeq2 results, samples 

were clustered based on gene expression in a principal component analysis (PCA) using the factoextra 

package (Kassambara and Mundt, 2020). Gene set enrichment analysis was performed using the 

clusterProfiler package (Yu et al., 2012). To show enrichment of specific gene sets in the treated 

condition, gene set enrichment (GSEA) plots were produced using the enrichmentplot package (Yu et 

al., 2012). The pathfindR package (Ulgen et al., 2019) was utilized to highlight enrichment of genes of 

specific pathways. 
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2.5 Mass spectrometry 
 

2.5.1 Mass spectrometry data acquisition 

Lyophilized samples were reconstituted in 10 µl of 0.1% formic acid and 9 µl were injected as input for 

tandem mass spectrometry analysis. The liquid chromatography-mass spectrometry directly combined 

with a mass spectrometry (LC-MS/MS) was performed on an UltiMate 3000 RSLCnano System (Thermo 

Fisher Scientific, Waltham, USA) directly coupled to an Orbitrap Fusion Lumos (Thermo Fisher 

Scientific, Waltham, USA). MS analysis was accomplished following the instructions for higher-energy 

collisional dissociation (HCD) measurements described in a previous study (Becker et al., 2021). Sample 

measurements were executed by the EMBL Proteomics Core Facility, Heidelberg, Germany. 

 

2.5.2 Peptide sequence validation 

To confirm peptide sequences of neoepitope candidates, mass spectra of experimentally determined 

peptide sequences were compared to mass spectra of synthetic peptide standards. Synthetic peptides 

were ordered as SpikeTides serving as reference peptides for targeted proteomics (JPT Peptide 

Technologies, Berlin, Germany). Lyophilized synthetic peptides were delivered as pool in a single cryo 

vial containing 19 nmol of each of the 24 candidate peptides. For mass spectrometry data acquisition, 

lyophilized peptide mix were diluted to a concentration of 100 fmol/μl in 0.1 % LC-MS grade formic 

acid and 3 μl were used per injection. The same acquisition parameters were used as applied before 

for acquisition of the experimental datasets. 

 

After mass spectrometry data acquisition, raw data was analyzed using PEAKS Studio X applying the 

same parameters as used for experimental data described in Section 2.7.1. The data for matched 

fragment ions (‘PSM-ions.txt’) for synthetic standards as well as for spectra from previous 

experimental runs were exported and imported into R Studio. All spectra of experimental replicates of 

a candidate peptide were compared to all spectra from the synthetic standards control by following 

the R Script ‘Peptide_sequence_validation.R’ adapted from Daniel Zolg (Zolg et al., 2017) and Jonas 

Becker (Becker et al., 2021). Next, experimental mass spectra were compared to all spectra from their 

synthetic counterpart. To validate spectra similarity between biological and synthetic measurements, 

Pearson’s correlation coefficients were determined for every pair of matched fragment ions. Besides, 

the peptide retention time differences were calculated. The intensities of the spectra pair with the 

highest correlation were normalized and visualized using the ggplot2 package (Wickham, 2016). 
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2.6 Generation of custom reference peptide libraries 
 

For the detection of non-canonical splice junction-derived peptides, custom reference libraries were 

generated based on RNA-seq information to complement peptide information found in UniProt. All 

scripts are available in the ‘02_Custom_ref_DBs’ folder on the RSC GitHub repository: 

‘https://github.com/MauerLab’.  

 

2.6.1 Splice Junction-derived Database (SJDB) 

The SJDB contained all possible short peptides sequences originating from splice junctions annotated 

by STAR alignment. Splice junction regions were extended to capture surrounding nucleotide sequence 

and was converted into bed12 files executing the bash script ‘SJDB_01_convertSJ2junctionregion.sh’. 

In brief, coordinates of splice junctions annotated in ‘SJ.out.tab’ files generated by STAR were extended 

for each region of interest. Coordinates were extended 29 nucleotides upstream of start coordinates 

and 29 nucleotides downstream of end coordinates. Length of 29 nucleotides was chosen since most 

HLA-I binders have a length between 8-10 amino acids/24-30 nucleotides (Gfeller et al., 2018b) and at 

least one nucleotide was required to be junction-spanning. Based on the extended coordinates, 

nucleotide sequences for regions surrounding splice junctions were retrieved using the ‘getfasta’ 

command from BEDTools (Quinlan and Hall, 2010). All splice junction information was summarized in 

one bed12 file per sample. The files were filtered based on read counts applying the bash script 

‘SJDB_02_filter_bed12_5reads.sh. Only junctions were selected that had robust read evidence (>= 5 

reads).  

 

Next, the genomic information was translated into peptide sequences using the R script 

‘SJDB_03_SJDB_generation.R’. The nucleotide sequences were split into individual characters and then 

translated into all three reading frames using the R package SeqinR (Charif and Lobry, 2007). Sequences 

after stop codons and peptide sequences < 8 aa were eliminated. Duplicates were removed because 

an accumulation of similar peptide sequences in the reference library would affect peptide 

identification during PEAKS analysis. All peptide sequences originating from splice junction across all 

samples were saved in one master FASTA file that was imported as new reference library in PEAKS 

Studio X.  
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2.6.2 TransDecoder reference library 

The workflow for this de novo proteome assembly was adapted from ProteomeGenerator (Cifani et al., 

2018). First, a sample-specific transcriptome was assembled using StringTie (Pertea et al., 2015). 

Sorted bam files from previous STAR alignment served as input for the bash script 

‘TransDecoder_01_stringtie_generate.sh’. The threshold of the minimum read coverage allowed for 

predicted transcript was varied (-c 1/5) as well as the length of the side bases of junction-spanning 

reads (-a 1/5/10). Resulting gtf files of individual samples were combined by running the bash script 

‘TransDecoder_02_stringtie_merge.sh’ applying default parameters. Similar to STAR alignment, 

human genome release 32 (GRCh38.p13) obtained from GENCODE was used as reference.  

 

Based on the results from StringTie, a de novo proteome was generated using TransDecoder (Haas, 

2018). The instructions are summarized in ‘TransDecoder_03_TransDecoder_workflow.docx’ The 

transcript structure GTF file was converted to an alignment GFF3-formatted file using the 

‘gtf_to_alignment_gff3.pl’ command in bash. Then, a transcript FASTA file was generated based on the 

reference genome and the merged gtf file from StringTie using the ‘gtf_genome_to_cdna_fasta.pl’ 

command in bash. Then, ‘TransDecoder.LongOrfs’ was executed to predict coding regions from the 

transcript FASTA file. As an additional step, homology searches as open reading frame (ORF) retention 

criteria were included. A reference proteome containing SwissProt and TrEMBL protein sequences was 

obtained from UniProt (Bateman et al., 2021). This proteome was indexed and the ORF sequences 

were searched against this reference using BLASTp (Camacho et al., 2009). Only peptide sequences 

from the longest ORFs were kept. Besides, additional sequences were included by predicting 

sequences likely originating from coding regions using the bash command ‘TransDecoder.Predict’. The 

results were saved as FASTA and formatted to serve as reference library for peptide identification in 

PEAKS Studio X. 
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2.7 Peptide identification from mass spectrometry data 
 

All scripts are available in the ‘03_Peptide_identification’ folder on the RSC GitHub repository: 

‘https://github.com/MauerLab’. 

2.7.1 Peptide identification by PEAKS  

Peptide sequence identification from mass spectrometry data was performed using PEAKS Studio X 

(v10.0; Bioinformatics Solutions, Waterloo, Canada). Default refinement options were applied to raw 

mass spectrometry data. Peptide identification was achieved by de novo sequence-assisted database 

search selecting the ‘HCD fragmentation’ method and setting thresholds for precursor mass error 

tolerance to 10 ppm and fragment mass error tolerance to 0.02 Da. The spectra were searched against 

the UniProt database (20,659 entries, February 2019) or against custom reference libraries. To include 

peptides with posttranslational modifications, terminal acetylation (+42.01 Da), oxidation of 

methionine (+15.99 Da), and carbamidomethylation of cysteine (+57.02 Da) were selected as variable 

modification options. Since protein samples were not enzymatically digested before, ‘no enzyme’ was 

selected for enzyme specificity. In addition, contaminations were filtered out by searching spectra 

against a database containing sequences of common contaminants. ‘De novo spectra’ exhibiting a local 

confidence score > 50% and were not detected in the initial search against UniProt were used as input 

for multi-round searches against custom reference libraries.  

Before data export, results were filtered by contaminants and decoy sequences. Additionally, only 

sequences with a length between 8-15 amino acids were kept. Identified peptide sequences were then 

exported with an FDR cut-off of 5%. Results were later also filtered in R Studio for peptide sequences 

passing an FDR cut-off of 1%.  

PEAKS analysis was performed with support from Jonas Becker at the Molecular Medicine Partnership 

Unit of the Heidelberg University Hospital and European Molecular Biology Laboratory (EMBL, 

Heidelberg, Germany).  

 

2.7.2 PEAKS data processing 

PEAKS data was loaded into R Studio and modified as described in the R script 

‘01_PEAKS_data_processing.R’. Column names were adjusted to the respective sample names and 

only peptides sequences with 8-12 amino acids were kept since this is the expected length of HLA-I 

binders (Gfeller et al., 2018b). The processed files were merged to a single file containing all peptides 

identified from the different reference libraries. Duplicates and peptides without any accession were 

removed. Peptides with post-translational modifications were only kept if the peptide did not occur in 

the unmodified version. After these filtering steps, the results were saved as csv file. In addition, the 



Materials & Methods 

 

 41 

data was subset to keep only peptide information of a specific cell line (e.g. WT samples). Besides, 

peptides were filtered based on FDR cut-offs (1% or 5%). 

 

2.7.3 Quality control of immunopeptidomics data 

The processed data was subjected to different quality control measures commonly used in the field 

of immunopeptidomics. 

 

2.7.3.1 Peptide hydrophobicity indices 

Peptide hydrophobicity is an established and orthogonal parameter for validation of peptide 

identifications (Rolfs et al., 2019). Sequence-specific hydrophobicity indices of peptides are supposed 

to correlate with their experimentally observed retention times (Krokhin et al., 2006). Hydrophobicity 

indices of predicted peptides were calculated using the web-based Sequence Specific Retention 

Calculator (SSRCalc version Q; Krokhin et al., 2006). Processed data from PEAKS output was adapted 

to the input format of the SSRCalc online tool and saved as FASTA file as described in the R script 

‘02A_Hydropobicity_vs_rentention_time.R’. SSRCalc was executed with following parameters: 100 Å 

C18 column, 0.1% formic acid (2015 Model), none label deltas, free cysteine (no protection). The 

results were imported, combined, and visualized in a scatter plot using ggplot2 (Wickham, 2016). 

Pearson’s correlation coefficient between hydrophobicity indices and retention times was calculated 

to validate peptide identification. 

 

2.7.3.2 GibbsCluster analysis of peptide sequences 

Shared peptide sequence motifs characteristic for binding to HLA-I subtypes were detected by k-means 

clustering of peptide sequences using the web tool GibbsCluster (v2.0; Andreatta et al., 2017) with 

default parameters for HLA-I binders. Processed PEAKS data was adapted to the input format of the 

online tool using the R script ‘02B_GibbsCluster_analysis.R’. In the GibbsCluster online tool, numbers 

of clusters were set to 1-5, motif length to 9, penalty factor for inter-cluster similarity to 0.8, and weight 

on small clusters to 5. Pre-calculated amino acids frequencies from UniProt were used as background. 

The resulting clusters were visualized by sequence logos generated using the web tool Seq2Logo (v2.0; 

Thomsen and Nielsen, 2012). The Kullback-Leibler logo type was selected in which amino acids are 

represented as their probability, enriched amino acids as positive, and depleted amino acids as 

negative. The sequence motifs were compared to computational predicted motifs for the respective 

HLA-I allele subtype obtained from the NetMHCpan website.  
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2.7.3.3 HLA-I binding prediction 

The quality of identified peptides was further determined by performing an HLA-I binding prediction 

using the command line version of NetMHCpan (v4.0; Jurtz et al., 2017). The workflow is summarized 

in the R script ‘02C_HLA_binding_prediction.R. First, a FASTA file of identified peptide sequences was 

generated. In addition, a text file with HLA-I allele information was created. HLA binding prediction 

was performed by executing the bash script ‘02C_Run_netMHCpan.sh’. NetMHCpan was executed 

with standard parameters considering 8-12mer peptides as potential binders and the rank threshold 

for strong binders was set to < 0.5% and for weak binders to < 2%. The results were saved as xls files 

and imported into R Studio. In case several versions of the same peptide were identified as binders of 

the same HLA-I allele, only the best-ranked peptide sequence with its corresponding binding affinity in 

nM was kept. Likewise, in case peptide sequences were predicted to bind multiple HLA-I alleles, the 

peptide was matched to the allele with the highest binding affinity. The results of the HLA-I binding 

prediction were visualized in a stacked bar plot using ggplot2 (Wickham, 2016). 

In addition, peptide-binding affinities were ranked for specific HLA-I subtypes and visualized. The data 

for the binding prediction towards the specific HLA-I subtype were selected and peptide entries were 

ranked based on their binding affinity values (KD in nM) and then plotted on a log scale using ggplot2 

(Wickham, 2016). 

 

2.7.4 Immunopeptidome overlap analysis 

Numbers of shared peptides between replicates were determined by comparing identified peptides of 

each sample group following the R script ‘03A_Peptide_overlap_between_replicates.R. A binary data 

frame was generated for qualitative analysis, transforming the values for mass spectra areas into 1. In 

case no peptide was detected, the non-existing value was transformed into 0. Then, a sample list was 

created for each sample group. The total number of peptides for the sample group and each replicate 

were determined. Peptide overlap between replicates was visualized in Venn diagrams using the R 

packages gplots (v3.0.3, Warnes et al., 2020). In addition, heatmaps were generated to visualize the 

sample distance using the ComplexHeatmap package (v1.20.0; Gu et al., 2016). Replicates were 

assigned to their respective sample group and peptides found across all replicates were excluded 

(background subtraction). Next, size factors for each sample were generated to normalize column 

entries by column sum, i.e. total number of peptides per replicate. Normalized values were used to 

visualize sample distances in a heatmap. 

In addition, the immunopeptidome overlap between whole sample groups was determined following 

a strategy similar to the one explained above (‘03B_Peptide_overlap_between_conditions.R’). 
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Moreover, the overlap of identified peptides between the K562 and the RPE-1 datasets was 

determined using the R script ‘03C_Peptide_overlap_between_datasets.R’. 

 

2.7.5 Gene expression of identified peptides 

To evaluate whether identified peptides originated from highly expressed genes, peptide information 

was combined with gene expression data following the R script ‘04_Expression_of_peptide_genes.R’. 

First, gene names of identified peptides were obtained from biomaRt search (Durinck et al., 2009). In 

addition, the normalized gene counts from STAR alignment were imported into R Studio and also 

subjected to biomaRt search to translate Ensembl identifiers into gene names. Only protein-coding 

genes were selected. Peptide and gene expression information was merged and the expression of 

peptide-matched genes and genes without peptide evidence was visualized in histograms using 

ggplot2 (Wickham, 2016). 

 

 

2.8 Differential alternative splicing analysis 
 

All scripts are available in the ‘04_Splicing_analysis’ folder on the RSC GitHub repository: 

‘https://github.com/MauerLab’. 

2.8.1 Salmon analysis 

Salmon (v1.6.0; Patro et al., 2017) was used as a tool to quantify the expression of transcripts/isoforms 

from RNA-seq data. As reference, a decoy-indexed transcriptome was generated based on the human 

genome release 32 (GRCh38.p13) obtained from GENCODE by executing the bash script 

‘03A_Generate_salmon_index.sh’. Reads from fastq files were mapped to this reference by running 

Salmon (‘03B_Run_Salmon_GRCh37_gencode_paired-end.sh’). The ‘quant.sf’ files were assigned to 

respective samples and then imported into R Studio using the tximport package (Soneson et al., 2016). 

Based on the Salmon results, sample groups were clustered by PCA using the factoextra package 

(Kassambara and Mundt, 2020) to visualize group differences. The workflow is summarized in the R 

script ‘03C_Salmon_results_PCA.R’ available in the ‘01_RNAseq_analysis’ folder on the RSC GitHub 

repository.  

 

2.8.2 rMATS analysis 

For the identification of the different types of alternative splice events from RNA-seq data, replicate 

Multivariate Analysis of Transcript Splicing (rMATS, v4.0.2) was performed (Shen et al., 2014). 



Materials & Methods 

 

44 

Reference text files were created to be able to compare fastq files of different sample groups. rMATS 

analysis was carried out in Python (van Rossum, 2015). As genomic reference, the human genome 

release 32 (GRCh38.p13) from GENCODE was used, which was previously indexed by STAR alignment 

to include the annotation of novel splice junction (ACK_index). The executed bash commands can be 

found in the bash script ‘A01_python_run_rMATS.sh’. 

 

After performing rMATS analysis, the JCEC results files were imported into R Studio including both 

junction-spanning counts (JC) and exon counts (EC) as final output. Splice events with an FDR value of 

≥ 0.05 and inclusion level difference of ≥ 0.1 were excluded from the results. Numbers of significantly 

differentially spliced events were determined for individual splice event type and the results were 

visualized as box plots using ggplot2 (Wickham, 2016). Instructions for data visualization are 

summarized in the R script ‘A02_rMATS_analysis.R’. 

 

2.8.3 JunctionSeq analysis 

Differential alternative splice events were identified by determining differential usage of exons and 

splice junctions between the sample groups. This exon/junction expression analysis from RNA-seq data 

was achieved by following the instruction of the JunctionSeq pipeline (Hartley and Mullikin, 2016). 

First, raw counts were generated from RNA-seq data via QoRTs (Hartley and Mullikin, 2015). 

Annotation files were created for samples groups and the sorted bam files were processed executing 

the bash script ‘B01.1_bam_processing.sh. The --stranded option was applied since the RNA-seq data 

was strand-specific. The original GTF annotation file human genome release 32 (GRCh38.p13) from 

GENCODE was used as genomic reference. 

 

After read alignment, results were loaded into R Studio and library size factors were extracted. Next, 

gene and (novel) splice junction counts were generated via QoRTs by executing the bash script 

‘B01.2_create_flat_annotation_with_novel_junctions.sh’. Here, also read counts for novel splice 

junctions were produced but low-coverage junctions (< 5 reads) were filtered out by executing the 

command –minCount 5. The resulting GFF flat annotation file and the count tables, along with the 

sample decoder files, were loaded into R Studio. JunctionSeq analysis was performed to detect 

differentially expressed splice events between the sample groups. The whole workflow is summarized 

in the R script ‘B01.3_JunctionSeq_analysis.R. 

The significantly differentially expressed splice events were loaded into R Studio and the number and 

type of splice events were determined. Splice events were considered significant if they passed 
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following threshold: FDR ≤ 0.05 and logFC ≥ 2 The results of the JunctionSeq analysis were visualized 

in a volcano plot using ggplot2 (Wickham, 2016). 

2.8.4 DJExpress analysis 

The DJExpress workflow was used as an alternative method to determine differential splice junction 

expression between sample groups (Paez & Mauer, 2022). The SJ.out.tab files from previous STAR 

alignment were loaded into R Studio. The human genome release 32 (GRCh38.p13) reference file from 

GENCODE was modified by annotating novel splice junctions based on read alignment information. 

Next, samples were prepared for analysis by defining the control samples and filtering splice junctions 

based on read coverage (> 5 reads). Junctions were considered significantly expressed when they 

passed the cut-offs: FDR ≤ 0.05 and logFC ≥ 2. The whole workflow is summarized in the R script 

‘C01_DJExpress_analysis.R’. 

 

2.8.5 Alternative splicing peptide libraries 

Results from DJExpress analysis were loaded into R Studio and peptide sequences were retrieved from 

genomic coordinates of significantly altered splice events. The result files were transformed into bed 

file format and the splice events were classified into upregulated and downregulated junctions. The 

genomic coordinates of upregulated splice events were each extended by 29 nucleotides since most 

HLA-I binders have a length between 8-10 amino acids/24-30 nucleotides (Gfeller et al., 2018b) and at 

least one nucleotides was supposed to be junction-spanning. After adapting the coordinates, one bed 

file was saved containing the updated start coordinates and the other containing the updated end 

coordinates. For both files genomic sequences were retrieved by bedtools (Quinlan and Hall, 2010) 

producing two sequences for each splice event. Obtained sequences were merged by matching their 

feature identifiers.  

 

The obtained bed files containing the combined genomic sequence information of differential splice 

events were then translated into peptide sequences. Genomic sequences were split into individual 

characters and then translated into all three reading frames using the R package SeqinR (Charif and 

Lobry, 2007). Sequences after stop codons and peptide sequences < 8 amino acids were eliminated. 

The data frame was prepared to serve as input for matching neoepitopes to differential splice events. 

The whole workflow is summarized in the R script ‘C03_DJExpress_peptide_library.R’. 
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2.8.6 Sashimi plots 

The command line tool rmats2sashimiplot (Xie et al., 2015) was utilized to visualize read coverage of 

candidate splice events based on sorted bam files obtained from STAR alignment. To compare splice 

events between sample groups, the read information of all replicates was combined. Sashimi plots 

were produced by providing genomic coordinates of a splice event (instead of rMATS output files) and 

a GFF annotation file matching of the human genome release 32 (GRCh38.p13) which was previously 

used for STAR alignment. Splice events were displayed in Sashimi plots when they passed the filter for 

read coverage (> 5 reads). The bash command script ‘Sashimi_plots_RPE1.WT_grouped.sh’ is available 

in the folder ‘06_Candidate_validation’ on the RSC GitHub repository. 

 

2.9 Identification of splicing-derived neoepitopes 
 

All scripts are available in the ‘05_Neoepitope_identification’ folder on the RSC GitHub repository: 

‘https://github.com/MauerLab’. 

2.9.1 Neoepitope identification 

Peptides were considered neoepitopes when they were exclusively and robustly detected in samples 

treated with splicing inhibitor GEX1A. To identify peptides specific for each sample group, a binary data 

frame was generated, transforming the values for mass spectra areas into 1. In case no peptide was 

detected, the non-existing value was transformed into 0. Then, a sample list was created containing 

the two sample groups of interest. Immunopeptidomes of the two sample groups were compared and 

only peptides were selected that exclusively appeared in the GEX1A-treated condition. Of these 

GEX1A-specific peptides, only those were kept, which were detected in at least 2 out of 3 replicates. 

The remaining peptides were saved as csv for downstream analysis. The workflow for neoepitope 

selection from peptide data is explained in the R script ‘01_Neoepitope_identification_from_PEAKS.R’. 

 

2.9.2 Splicing-derived neoepitope identification 

After neoepitope identification, peptide candidates were compared against the alternative splicing 

peptide libraries to determine which neoepitopes could be matched to aberrant splice events. Peptide 

libraries generated in Section 2.8.5 and previously identified neoepitope candidates from Section 2.9.1 

were imported into R Studio. Here, neoepitope candidates were matched against all possible peptide 

sequences derived from differential splice events. The information about successfully matched 

neoepitope candidates was saved as csv files. The workflow is described in the R script 

‘02B_Find_neoepitopes_in_DJExpress_results.R’. Subsequently, all matched neoepitope candidates 
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identified from different sample groups were merged using the R script 

‘03B_Merge_all_DJExpress_neoepitopes.R’.  

 

In addition, a GSEA was performed to determine whether neoepitopes originate from differential gene 

expression due to GEX1A treatment following the R script ‘04_Gene_expression_of_neoepitopes.R’. 

Gene identifiers of neoepitopes were obtained from the Ensembl repository using the biomaRt 

package (Durinck et al., 2009). The peptide information was combined with gene expression data of 

protein-coding genes obtained from DESeq2 analysis (Section 2.4.7). Gene set enrichment analysis was 

performed using the clusterProfiler package (Yu et al., 2012) and visualized in enrichment plots. 

 

 

2.10 Immunogenicity assays of neoepitope candidates 
 

Immunogenicity assays were primarily performed by Alejandro Hernandez-Sanchez at the Applied 

Tumor Biology Department at Heidelberg University Hospital’s Institute of Pathology. 

 

2.10.1 Mouse model 

HLA-A2.1/HLA-DR1-transgenic H-2 class I-/class II-knockout mice (A2.DR1 mice; Pajot et al., 2004) were 

provided by the Institute Pasteur (Paris, France). The mice were hosted by the Animal Care Facilities at 

German Cancer Research Center (DKFZ, Heidelberg, Germany) and received a standard chow diet and 

water ad libitum. For the experiments, age-matched groups of male mice were used. 

2.10.2 In vivo immunization  

Peptides for in vivo immunization experiments were synthesized by the ‘GMP and T Cell Therapy Unit’ 

at the German Cancer Research Center (DKFZ, Heidelberg, Germany) following GMP standards. HPLC-

purified peptides were reconstituted in DMSO, obtaining a target concentration of 20 µg/µl. A2.DR1 

mice were immunized to a total of 100 µg peptide. Candidate peptides were vaccinated in a group of 

two with a 50 µg injection amount for each candidate peptide (Table 5). 100 µg of viral HPV16 epitope 

E7 11-19 peptide served as positive control. Peptide pools or single peptides were mixed with 20 μg of 

the adjuvant CpG ODN 1826 (TIB Molbiol, Berlin, Germany) reconstituted in sterile PBS. Mice were 

injected intradermally three times with peptide mixes at seven-day intervals. Seven days after the last 

immunization, mice were euthanized by CO2 inhalation. 
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Table 5 | Vaccination groups for immunization experiments of A2.DR1 mice. 

Peptide Function Origin 
Group 

(n = 6 mice) 

SLAKALYEA candidate ANXA1 2 

KLNEYLLQY candidate PSMA4 2 

ILDNGEWTV candidate CCNB1 3 

GMIIGPPRV candidate UBE2V2 3 

KILDNGEWTV candidate CCNB1 4 

GMLPDPKNV neg. control ANT1 4 

YMLDLQPET pos. control HPV16-E7 1 

 

 

2.10.3 Splenocyte isolation 

Mice were dissected under aseptic conditions and the spleens were transferred to sterile ice-cold PBS 

supplemented with 10% FBS. The tissue was disrupted by passing through a 40 μm cell strainer to 

obtain a cell suspension. Cell suspensions were pelleted by gentle centrifugation at 300 x g for 5 min 

at 4 °C. Supernatants were discarded and pellets were resuspended in 1 ml of 1X Red Blood Cell (RBC) 

lysis buffer (Sigma-Aldrich; St. Louis, USA). Samples were incubated for 5 min at RT to eliminate 

erythrocytes before 9 ml Gibco RPMI 1640 [+] L-Glutamine supplemented with 10% FBS and 1% 

Penicillin-Streptomycin were added. Cells were pelleted by gentle centrifugation at 300 x g for 5 min 

at 4 °C. The cell pellet was resuspended in 1 ml Gibco RPMI 1640 [+] L-Glutamine supplemented with 

10% FBS and 1% Penicillin-Streptomycin and kept on ice. Cell suspensions were counted and adjusted 

to 2x106 cells/ml. Isolated splenocytes were either directly used in ELIspot assays or were co-cultured 

in the presence of candidate peptides at 37 °C, 5% CO2 to serve as input for T cell killing assays. 

 

2.10.4 Ex vivo IFN-γ ELISpot 

IFN-γ ELISpot assays were performed ex vivo using isolated splenocytes. The assays were performed 

with support from Alejandro Hernandez-Sanchez of the Applied Tumor Biology at the University 

Hospital Heidelberg, Germany.  

First, MultiScreenHTS-IP plates (Merck, Darmstadt, Germany) were activated with 70 µl of 70% ethanol 

per well for 5 min and washed five times with sterile PBS. The plates were coated with 100 µl purified 

rat anti-mouse IFN-γ antibody (1:200 in PBS; BD Biosciences, Franklin Lakes, USA) and incubated 

overnight at 4 °C. The next day, coated plates were washed four times with PBS and blocked with 200 

µl RPMI Medium 1640 supplemented with 10% FBS and 1% Gibco Penicillin-Streptomycin for 1 h at 37 
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°C. Next, 2 µg of a specific peptide were diluted in 50 µl assay medium and directly added to respective 

wells. To each well 2x106 splenocytes in 50 µl assay medium were added and incubated for 16-20 h at 

37 °C. After incubation, the splenocyte-peptide mix was removed, and the plates were washed five 

times with PBS. Next, the plates were coated with 100 µl biotinylated rat anti-mouse IFN-γ antibody 

(1:500 in PBS; BD Biosciences, Franklin Lakes, USA) for 1 h at RT. Subsequently, plates were washed 

seven times with PBS. To label bound biotinylated antibodies, 100 µl AKP Streptavidin (1:500 in PBS; 

BD Biosciences, Franklin Lakes, USA) were added and the plates were incubated for 30 min at RT in the 

dark. This was followed by six washing steps with PBS before 1-Step NBT/BCIP Substrate Solution (100 

µl/well; Thermo Fisher Scientific, Germany) was added to start the enzymatic reaction. Plates were 

incubated up to 15 min depending on the color development and the reaction was eventually stopped 

by adding dH2O. The plates were dried overnight and analyzed using the CTL ImmunoSpot Reader 

(ImmunoSpot, Cleveland, USA). As positive control for IFN-γ production, the known T cell activator 

Concanavalin A (2 µg/ well; Merck, Darmstadt, Germany) was used in all performed experiments. 

Results were visualized in GraphPad Prism (v8.43, Graphpad Software Inc, San Diego, USA). 

 

2.10.5 T cell killing assay 

Remaining splenocytes isolated of each animal of a vaccination group (Table 5) which were not used 

for ELISpot assays were pooled to have a sufficient amount of input material for T cell killing assays. 

The splenocytes were cultured in lymphocyte media consisting of RPMI media supplemented with 10 

mM HEPES, 10% FBS, 2 mM glutamine, 1% sodium pyruvate, 1% non-essential amino acids, 50 µM β-

mercaptoethanol, and combined antibiotics. Peptides for which a strong T cell observation was 

observed in ELISpot assays were added to the cells at 100 nM final concentration. Splenocytes of the 

control Group 1 were divided and either stimulated with HPV16 epitope E7 as positive control or the 

MYH11.1 peptide as negative control. Group 2 splenocytes were challenged with the ANXA1 peptide 

and Group 4 with the CCNB1 #2 peptide. Splenocytes of Group 3 were incubated with both CCNB1 #1 

and UBE2V2 peptides. After 72 h, splenocytes were stimulated with 10 IU/ml interleukin 2 (BioLegend, 

San Diego, USA) for 96 h. After one week in culture, CD8+ T cells were isolated following the instructions 

of the CD8a+ T Cell Isolation Kit, mouse (Miltenyi, Bergisch Gladbach, Germany). 

 

In parallel, target cells derived from the A2.DR1 cell line were labeled and loaded with peptides. Cell 

labeling was achieved using either CellTrace CFSE Cell Proliferation Kit or CellTrace FarRed Cell 

Proliferation Kit (both Thermo Fisher Scientific, Waltham, USA). The 10 mM CFSE stock was pre-diluted 

1:100 in PBS and the 1mM FarRed stock was pre-diluted 1:10 to obtain a working concentration of 1 

mM each. Cell were stained using a concentration of 1x106 cells/ml by incubation with 20 µl of CFSE 
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and 2.5 µl of the FarRed dilution for 15 min at 37 °C. After staining, cells were washed twice with 1 ml 

RPMI 10% FBS-supplemented per 1x106 cells and finally resuspended in 1 ml RPMI 10% FBS-

supplemented media per 1x106 cells. 1 ml per well of labeled cell suspension was transferred into a 6-

well plate. 2 ml of RPMI Medium 1640 supplemented with 10% FBS and 1% Gibco Penicillin-

Streptomycin were added per well and cells were incubated for 24 h at 37 °C, 5% CO2. The following 

day, peptides were loaded onto target cells. Cells were processed and resuspended in 1 ml peptide 

solution diluted in RPMI 10% FBS-supplemented media obtaining a final concentration of 10 µM 

peptide per sample. Target cell peptide mix was incubated for 90 min at 37 °C, 5% CO2 and 

subsequently washed and resuspended in RPMI 10% FBS-supplemented media. 1,000 of both CFSE- 

and FarRed-labeled cells were transferred per sample onto a 96-well plate.  

 

Isolated CD8+ T cells were prepared in RPMI media supplemented with 10% and 20 IU/ml IL-2 and were 

added at different concentrations to the target cells. Effector and target cells were co-cultured at 37 

°C, 5% CO2 for 48 h. After incubation time, supernatants were transferred onto a new 96-well plate 

and cells were pelleted at 300 x g for 5 min. In parallel, adherent cells were detached by trypsinization 

and added to the new 96-well plate. Cells were again pelleted and then resuspended in 100 µl FACS 

buffer per well. T cell killing of labeled target cells was evaluated by flow cytometry using the 

FACSCanto II (BD Biosciences, Franklin Lakes, USA).  
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2.11 Software, Programs, and R packages 
 

Table 6 | R packages used for this study. 

Package Version Source 

biomaRt 2.38.0 Durinck et al., 2009 

clusterProfiler 3.10.0 Yu et al., 2012 

ComplexHeatmap 1.20.0 Gu et al., 2016 

DESeq2 1.22.2 Love et al., 2014 

dplyr 1.0.0 Wickham et al., 2020 

enrichplot 1.2.0 Yu et al., 2012 

factoextra 1.0.7 Kassambara and Mundt, 2020 

fgsea 1.8.0 Sergushichev, 2016 

ggplot2 3.0.3 Wickham, 2016 

gplots 3.0.3 Warnes et al., 2020 

JunctionSeq 1.5.4 Hartley and Mullikin, 2016 

magrittr 1.5 Wickham & Bache, 2014 

msigdbr 7.1.1 Dolgalev, 2020 

pathfindR 1.6.3 Ulgen et al., 2019 

pheatmap 1.0.12 Kolde, 2019 

RColorBrewer 1.1.2 Neuwirth, 2014 

rlang 0.4.6 Henry & Wickham, 2020 

SeqinR 1.0.2 Charif and Lobry, 2007 

tidyr 1.1.0 Henry & Wickham, 2020 

tximport 1.10.0 Soneson et al., 2016 

 

Statistical data analysis and visualization were performed in R (v3.5.1, R Core Team, 2018). All R 

packages used are listed in Table 7. R and bash scripts are available on the RSC GitHub repository: 

‘https://github.com/MauerLab’. 
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Table 7 | Programs and software used for this study. 

Software Version Reference 

2100 Expert Software  B.02.11 (SR1) Agilent, Santa Clara, USA 

BEDTools 2.17.0 (Quinlan and Hall, 2010) 

BLASTp 2.2.31+ (Camacho et al., 2009) 

GibbsCluster 2.0 (Andreatta et al., 2017) 

GraphPad Prism 8.43 
Graphpad Software Inc, San Diego, 
USA 

NetMHCpan 4.0 (Jurtz et al., 2017) 

PEAKS Studio X 10.0 
Bioinformatics Solutions Inc., 
Waterloo, Canada 

Python 2.7 (van Rossum, 2015) 

QoRTs 1.3.6 (Hartley and Mullikin, 2016) 

R  3.5.1 (R Core Team, 2018) 

rMATS 4.0.2 (Shen et al., 2014) 

rmats2sashimiplot 2.0.4 (Xie et al., 2015) 

Salmon 1.6.0 (Patro et al., 2017) 

Seq2Logo 2.0 (Thomsen and Nielsen, 2012) 

Sequence Specific Retention Calculator 
(SSRCalc) 

Q (Krokhin et al., 2006) 

STAR software V2.7.0 2.7.0 (Dobin et al., 2013) 

StringTie 2.1.1 (Pertea et al., 2015) 

TransDecoder 5.5.0 (Haas, 2018) 

 

 

 

2.12 Equipment and reagents 
 

Table 8 | Important materials used for this study. 

Material Supplier 

10 μm polypropylene membranes Agilent, Santa Clara, USA 

5-layer Rectangular Straight Neck Cell Culture Multi-Flasks Thermo Fisher Scientific, Waltham, USA 

96-deep well collection plate Agilent, Santa Clara, USA 

96-well filter microplate with 3 μm glass fiber and 10 μm 
polypropylene membranes 

Agilent, Santa Clara, USA 

Acclaim PepMap 100 C18, 5μm, 300 μm i.d. x 5 mm, 100 Å Thermo Fisher Scientific, Waltham, USA 

MultiScreenHTS-IP plates Merck, Darmstadt, Germany 

nanoEase MZ HSS T3 column, 100 Å, 1.8 μm, 75 μm x 250 
mm 

Waters, Milford, USA 

Poly-Prep columns Bio-Rad, Hercules, USA 

Sep-Pak tC18 96-well Plate, 100 mg Sorbent per Well, 37-
55 µm Particle Size 

Waters, Milford, USA 



Materials & Methods 

 

 53 

 

 

Table 9 | Equipment used for this study. 

Device Supplier 

2100 Bioanalyzer  Agilent, Santa Clara, USA 

CTL ImmunoSpot Reader ImmunoSpot, Cleveland, USA 

FACSCanto II BD Biosciences, Franklin Lakes, USA 

FUSION FX Imaging System  Vilber Lourmat, Eberhardzell, Germany 

GloMax Microplate Reader  Promega, Madison, USA 

Heracell VIOS 160i CO2 incubator  Thermo Fisher Scientific, Waltham, USA 

Herasafe cell culture hood Thermo Fisher Scientific, Waltham, USA 

NanoDrop 2000/2000c spectral photometer Thermo Fisher Scientific, Waltham, USA 

NanoPhotometer® NP80 Implen, Munich, Germany 

Orbitrap Fusion Lumos  Thermo Fisher Scientific, Waltham, USA 

PCR machine Bio-Rad, Hercules, USA 

Positive Pressure-96 Processor  Waters, Milford, USA 

Qubit 3.0 Fluorometer  Thermo Fisher Scientific, Waltham, USA 

Trans-Blot Turbo Transfer System Bio-Rad, Hercules, USA 

UltiMate 3000 RSLCnano System Thermo Fisher Scientific, Waltham, USA 

 

 

Table 10 | Antibodies used for this study. 

Antibody Source Catalogue number 

Vinculin Antibody (rabbit) 
Cell Signaling Technology, 
Danvers, USA 

#4650, RRID = AB_10559207 

AKP Streptavidin 
BD Biosciences, Franklin Lakes, 
USA 

#554065 

Biotin Mouse Anti-Human IFN-γ 
BD Biosciences, Franklin Lakes, 
USA 

#554550, RRID = AB_395472 

Purified Rat Anti-Mouse IFN-γ 
BD Biosciences, Franklin Lakes, 
USA 

#559065, RRID = AB_2123177 

Anti-rabbit IgG, HRP-linked 
Antibody #7074 

Cell Signaling Technology, 
Danvers, USA 

#7074, RRID: AB_2099233 

Anti-mouse IgG, HRP-linked 
Antibody 

Cell Signaling Technology, 
Danvers, USA 

#7076, RRID = AB_330924 

Mouse monoclonal anti-HLA-ABC 
antibody (W6/32) 

(Barnstable et al., 1978) self-supplied 
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Table 11 | Reagents used for this study. 

Reagent Source 

1-Step™ NBT/BCIP Substrate Solution  Thermo Fisher Scientific, Waltham, USA 

1X Red Blood Cell (RBC) lysis buffer  Sigma-Aldrich; St. Louis, USA 

Acetonitrile Sigma Aldrich, St. Louis, USA 

CD8a+ T Cell Isolation Kit, mouse Miltenyi, Bergisch Gladbach, Germany 

CellTiter-Glo 2.0 Assay  Promega, Madison, USA 

CellTrace CFSE Cell Proliferation Kit Thermo Fisher Scientific, Waltham, USA 

CellTrace FarRed Cell Proliferation Kit Thermo Fisher Scientific, Waltham, USA 

Concanavalin A Merck, Darmstadt, Germany 

CpG ODN 1826  TIB Molbiol, Berlin, Germany 

DMEM/F-12 GlutaMAX Thermo Fisher Scientific, Waltham, USA 

Ethylenediaminetetraacetic acid Sigma Aldrich, St. Louis, USA 

fetal bovine serum (FBS) Thermo Fisher Scientific, Waltham, USA 

GeneJET Genomic DNA Purification Kit Thermo Fisher Scientific, Waltham, USA 

Gibco Penicillin-Streptomycin Thermo Fisher Scientific, Waltham, USA 

Halt Protease and Phosphatase Inhibitor Cocktail, EDTA-free Thermo Fisher Scientific, Waltham, USA 

Human TruStain FcX  BioLegend, San Diego, USA 

Iodoacetamide Sigma Aldrich, St. Louis, USA 

Milk powder Carl Roth, Karlsruhe, Germany 

Nuclease-free water New England Biolabs, Ipswich, USA 

NuPAGE 4-12% Bis-Tris gels (1.5 mm x 10/15 wells)  Thermo Fisher Scientific, Waltham, USA 

NuPAGE Antioxidant  Thermo Fisher Scientific, Waltham, USA 

NuPAGE LDS Sample Buffer (4x) Thermo Fisher Scientific, Waltham, USA 

NuPAGE MES SDS Running Buffer (20x)  Thermo Fisher Scientific, Waltham, USA 

NuPAGE Sample Reducing Agent (10x) Thermo Fisher Scientific, Waltham, USA 

Octyl-β-D-glucopyranoside Sigma Aldrich, St. Louis, USA 

OneTaq Quick-Load 2X Master Mix with Standard Buffer New England Biolabs, Ipswich, USA 

Optima LC/MS Grade Water  Thermo Fisher Scientific, Waltham, USA 

PageRuler Plus Prestained Protein Ladder (10 to 250 kDa)  Thermo Fisher Scientific, Waltham, USA 

Pierce BCA Protein Assay Kit  Thermo Fisher Scientific, Waltham, USA 

ProtoScript II First Strand cDNA Synthesis Kit New England Biolabs, Ipswich, USA 

Qubit 3.0 Fluorometer  Thermo Fisher Scientific, Waltham, USA 

Qubit RNA BR Assay Kit Thermo Fisher Scientific, Waltham, USA  

Recombinant Mouse IL-2 BioLegend, San Diego, USA 

RNA 6000 Nano Kit Agilent, Santa Clara, USA 

RNaseZAP Thermo Fisher Scientific, Waltham, USA 

RNAzol RT Sigma Aldrich, St. Louis, USA 

RPMI 1640 (ATCC modification) Thermo Fisher Scientific, Waltham, USA 

SIRV Set 1 Lexogen, Vienna, Austria 

Sodium deoxycholate Thermo Fisher Scientific, Waltham, USA 

SpikeTides JPT Peptide Technologies, Berlin, Germany 

SuperSignal West Femto Maximum Sensitivity Substrate  Thermo Fisher Scientific, Waltham, USA 

Trans-Blot Turbo Transfer Pack with PVDF membrane (0.2 µm)  Bio-Rad, Hercules, USA 

Trifluoracetic acid  Sigma Aldrich, St. Louis, USA 
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2.13 Primers and synthetic peptide sequences 
 

 

Table 12 | Primers used for validation of alternative splice variants by RT-PCR. CDS = coding DNA sequence 

Gene forward primer reverse primer 

ANXA1 CTGAAGAGAGATCTGGCCAAAGAC GGATAGCTTCTGGTGGTAAGGATG 

ANXA1 CDS CAGAAGCCCAAGTCTCCACTG CTGATCATAGCTTGAGACCATCAAG 

CCNB1 GATGTCGAGCAACATACTTTGGC GAACTAGTGCAGAATTCAGCTGTG 

PSM4A CCAAGTTGAATATGCCATGGAAGC GCTGTAACCAACTGCTCACAAG 

TUBA1A CTGGTGTCCAGATTGGCAATG CCTCGGGCATAGTTATTGGCAG 

UBE2V2 GTAAAAGTCCCTCGCAATTTCCG GAAGCTCTTGCAGGACAACTTTG 

 

 

Table 13 | Synthetic peptides used for peptide sequence validation and immunogenicity assays. 

Gene 
Peptide 

sequence 
Supplier for peptide 
sequence validation 

Supplier for immunogenicity assays 

ANXA1 SLAKALYEA 
JPT Peptide 
Technologies, Berlin, 
Germany 

GMP and T Cell Therapy Unit, German Cancer 
Research Center, Heidelberg, Germany 

PSMA4 KLNEYLLQY 
JPT Peptide 
Technologies, Berlin, 
Germany 

GMP and T Cell Therapy Unit, German Cancer 
Research Center, Heidelberg, Germany 

CCNB1 #1 ILDNGEWTV 
JPT Peptide 
Technologies, Berlin, 
Germany 

GMP and T Cell Therapy Unit, German Cancer 
Research Center, Heidelberg, Germany 

UBE2V2 GMIIGPPRV 
JPT Peptide 
Technologies, Berlin, 
Germany 

GMP and T Cell Therapy Unit, German Cancer 
Research Center, Heidelberg, Germany 

CCNB1 #2 KILDNGEWTV 
JPT Peptide 
Technologies, Berlin, 
Germany 

GMP and T Cell Therapy Unit, German Cancer 
Research Center, Heidelberg, Germany 

ANT1 GMLPDPKNV 
JPT Peptide 
Technologies, Berlin, 
Germany 

GMP and T Cell Therapy Unit, German Cancer 
Research Center, Heidelberg, Germany 

HPV16-E7 YMLDLQPET - 
GMP and T Cell Therapy Unit, German Cancer 
Research Center, Heidelberg, Germany 
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3. Results 

 

3.1 HLA-I typing of model cell lines 
 

Self-peptides and neoepitopes are presented on the cell surface by HLA-I molecules. However, the 

immunopeptidome of patients and cell lines can be very individual due to different HLA haplotypes. 

Based on their sequence, HLAs can be classified into various subtypes by gene, allele group, and specific 

HLA protein (Figure 12A). These features contribute to the extreme diversity of HLA molecules. For 

example, the IPD and IMGT/HLA database reported that 23,002 different HLA-I alleles were identified 

as of September 2021 (www.hla.alleles.org; Robinson et al., 2015). The HLA-I subtypes occur in varying 

frequencies, with some rare and others very common. For example, a study by Deutsche 

Knochenmarkspenderdatei (DKMS) revealed that the HLA-A*02:01 subtype was most common and 

occurred at a frequency of 26.7% in the German bone marrow registry including 39,689 donors (Figure 

12B). In contrast, 127 of the 140 detected HLA-A alleles in the dataset occurred with a frequency of 

less than 1% (Allele Frequency Net Database; Gonzalez-Galarza et al., 2020). The differences in the 

sequences of HLA subtypes influence peptide binding because ligands need to match a specific binding 

motif to be able to be presented on a respective HLA receptor (Figure 12C). Consequently, the 

immunopeptidome composition heavily depends on the HLA haplotype.  

 

 

Figure 12 | Diversity of HLA-I alleles influences peptide binding. (A) HLA nomenclature (Marsh et al., 2010). (B) 
Top 10 most occurring HLA-A alleles found in the German bone marrow registry (n = 39,689) provided by the 
DKMS and available in the Allele Frequency Net Database (Gonzalez-Galarza et al., 2020). (C) Structural view of 
HLA-B14:02 in complex with a peptide (Bassani-Sternberg et al., 2017). 

A. 

B. 

C. 

http://www.hla.alleles.org/
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To allow antigen matching to specific HLA-I alleles, I determined the HLA-I haplotype of model cell lines 

used in this study by genomic DNA haplotyping. All K562 cell lines exhibited the same haplotype 

independent of splicing factor mutations (Table 14). Here, the haplotyping results were compared to 

predicted haplotypes annotated in the TRON Cell Line Portal. The HLA typing results for K562 cells 

matched the HLA-A alleles predicted from the NCI-60 Human Tumor Cell Lines Screen by high-

resolution sequence-based typing (Adams et al., 2005). Also, the results for HLA-B and HLA-C allele 

groups matched, but there were non-resolved ambiguities for the identification of the specific HLA 

proteins in the literature reference. Besides, I compared the haplotyping results to HLA typing from 

seq2HLA based on RNA-seq data (Boegel et al., 2014). This delivered matching results for HLA-C alleles, 

but seq2HLA predictions for HLA-A and HLA-B alleles did not match other haplotyping results from 

DKMS or NCI-60. Moreover, I determined the HLA-I haplotype of RPE-1 cells since I could not find any 

information about it in publicly available datasets. Both tested RPE-1 cell lines carried the same HLA-I 

subtypes (Table 14). To summarize, the DKMS haplotyping of our model cell lines resolved existing 

ambiguities in K562 cells and provided novel information for RPE-1 cells.   

 

Table 14 | HLA-I haplotypes of K562 and RPE-1 cell lines. Haplotyping was performed by Deutsche Knochenmark-
spenderdatei (DKMS) using isolated gDNA samples and was compared to haplotypes found in public databases. 
* = Non-resolved ambiguities; ** = Ambiguity on 4-digit level, chosen allele had the highest number of reads. 

Cell line 
HLA-A 

Allele 1 

HLA-A 

Allele 2 

HLA-B 

Allele 1 

HLA-B 

Allele 2 

HLA-C 

Allele 1 

HLA-C 

Allele 2 
Source Reference 

K562 WT 11:01:01 31:01:02 18:01:01 40:01:02 03:04:01 05:01:01 DKMS 
own 

experiment 

K562 

SF3B1K700E 
11:01:01 31:01:02 18:01:01 40:01:02 03:04:01 05:01:01 DKMS 

own 

experiment 

K562 

U2AF1S34F 
11:01:01 31:01:02 18:01:01 40:01:02 03:04:01 05:01:01 DKMS 

own 

experiment 

K562 WT 11:01:01 31:01:02 18* 40* 03* n/a NCI-60 
(Adams et 

al., 2005) 

K562 WT 24:02** 26:02** 81:01 35:18 03:04 05:01 seq2HLA 
(Boegel et 

al., 2014) 

         

RPE-1 WT 01:01:01 02:01:01 07:02:01 08:01:01 07:01:01 07:02:01 DKMS 
own 

experiment 

RPE-1 

TP53-/- 
01:01:01 02:01:01 07:02:01 08:01:01 07:01:01 07:02:01 DKMS 

own 

experiment 
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3.2 HLA-I expression in cell models 
 

Apart from carrying different HLA alleles, HLA expression levels vary across cell lines (Boegel et al., 

2014). Thus, the HLA-I expression was determined across all cell line models to ensure peptide 

presentation on the cell surface for HLA-I immunoaffinity purification (HLA-I IP) experiments. 

 

3.2.1 HLA-I expression in K562 cell lines 

K562 cells do not naturally express HLA-I at baseline, but HLA-I expression can be induced by IFN-γ 

stimulation (Sutherland et al., 1985). Indeed, I did not detect HLA-I expression at protein level of non-

stimulated K562 cells as revealed by western blot analysis (Figure 13A). Stimulation of K562 WT cells 

with 50 ng/ml IFN-γ resulted in a robust HLA-I expression after 24 hours of treatment. HLA-I expression 

levels further increased when the IFN-γ stimulation was prolonged to 48 hours. After removing the 

IFN-γ stimulation, HLA-I expression abated in a time-dependent manner (Figure 13A). This 

demonstrates that HLA-I expression can be induced and maintained by IFN-γ stimulation. 

Furthermore, I examined the effect of the SF3B1K700E splicing factor mutation on HLA-I expression. At 

low IFN-γ concentrations, the HLA-I expression of the SF3B1K700E cell line was lower compared to WT 

cells after 24 hours of INF-γ stimulation (Figure 13B). However, this effect was abolished when K562 

cell lines were treated with higher doses of IFN-γ (Figure 13C). Accordingly, HLA-I expression levels did 

not differ in samples treated with 50 or 100 ng/ml IFN-γ, suggesting saturation of HLA-I expression at 

higher IFN-γ concentrations. Concluding from these results, a concentration of 50 ng/ml IFN-γ to 

achieve a consistent HLA-I expression across all K562 cell lines. 
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Figure 13 | Induction of HLA-I expression in K562 cells by IFN-γ stimulation. (A) Western blot detection of HLA-I 
protein levels in K562 cells before and after stimulation with 50 ng/ml IFN-γ. (B) Comparison of HLA-I expression 
levels in K562 SF3B1K700E cells to K562 WT cells in response to 50 ng/ml IFN-γ stimulation for 24 h. (C) Detection 
of HLA-I protein levels in K562 cell lines in response to 0, 5, 50, and 100 ng/ml IFN-γ stimulation.  

 

After successfully confirming HLA-I expression by western blot, I used flow cytometry analysis to assess 

HLA-I presentation on the cell surface of K562 cell lines. This analysis revealed a shift in the signal of 

IFN-γ-stimulated K562 WT cells compared to unstimulated cells, indicating an increase in HLA-I surface 

expression (Figure 14A). All three K562 cell lines showed similar intensities of signal shift, although the 

response of SF3B1K700E cells was slightly attenuated (Figure 14A-C). Overall, the IFN-γ-induced shift did 

not result in a separated population as the signals of both groups overlapped. In contrast, HCT-116 

cells naturally expressing HLA-I clearly distinguished from the K562 negative control (Figure 14D). This 

suggested that IFN-γ stimulation was able to induce HLA-I expression in K562 cells, but to a lower 

extent compared to cells naturally expressing HLAs. 

 

B.A. 

C. 
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Figure 14 | Induction of HLA-I surface expression of K562 cell lines in response to IFN-γ stimulation. (A-C) Flow 
cytometry analysis of HLA-I surface expression of K562 cell lines in response to IFN-γ stimulation (50 ng/ml for 48 
h). (D) Comparison of HLA-I surface expression between K562 cells stimulated with 50 ng/ml IFN-γ for 48 h and 
HCT-116 cells naturally expressing HLA-I.  

 

 

3.2.2 HLA-I expression of RPE-1 cell lines 

Next, I investigated HLA-I levels in RPE-1 cell lines included in the study, which all naturally expressed 

HLA-I (Figure 15). Furthermore, treatment with the splicing inhibitor GEX1A had no impact on HLA-I 

expression levels since no difference in protein level was detected between non-treated and GEX1A-

treated samples (Figure 15). Similar to the different K562 cell lines, HLA-I expression levels slightly 

differed between RPE-1 cell lines (Figure 15). The expression was more pronounced in WT and MSH2-

/- cells. In addition, two bands instead of a single band were detected in all samples. The double bands 

were more prominent in the aged knockout/mutation cell lines. These were likely caused by different 

HLA-I fragments resulting from sample degradation, which were detected by the pan-HLA-I W6/32 

antibody (Wiesch and Meyers, 2001). Thus, the data suggested that HLA-I expression was not affected 

by GEX1A treatment. 
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Figure 15 | HLA-I expression levels in RPE-1 cell lines. Western Blot detection of HLA-I protein expression in RPE-
1 cell lines treated with 0 nM or 63 nM GEX1A for 24 h. 

 

To investigate the impact of mutations/knockouts of components of the DDR pathway on HLA-I surface 

expression, I analyzed RPE-1 cell lines by flow cytometry. All cell lines demonstrated a strong HLA-I 

surface expression reflected by the positive signal shift of labeled samples (Figure 16A). Differences in 

the intensities of the signal shift between wild-type and knockout/mutation cell lines might be 

explained by different cell morphologies influencing the signal measurement. Especially the RPE-1 

POLEP286R T16 cell line exhibited a broader signal range, most likely resulting from the different cell 

morphology caused by its tetraploidy. Accordingly, the increased cell size of RPE-1 POLEP286R heavily 

affects cell scattering (Figure 16B). Nevertheless, all RPE-1 cell lines exhibited a strong HLA-I surface 

expression and were thus suitable cell models for following HLA-I IP experiments.   

 

Figure 16 | Differences in HLA-I surface expression and cell morphology of RPE-1 cell lines. (A) Flow cytometry 
analysis of HLA-I surface expression of RPE-1 cell lines. (B) Cell morphology differences of tetraploid RPE-1 
POLEP286R T16 cell line compared to RPE-1 WT cells visualized in cell scatter plots. 

A. B. 
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3.3 Enzyme-free detachment of adherent cells 
 

To harvest RPE-1 cell lines for HLA-I IP experiments, I used trypsinization as a standard procedure for 

cell detachment from culture dishes. However, this enzymatic digestion process could damage cell 

surface proteins such as HLA-I (Zhang et al., 2012). Thus, a previous study used a mechanical scraping 

strategy to detach cells for HLA-I IP (Becker et al., 2021). To estimate how scraping affected cell 

viability, I measured RPE-1 and HCT-116 cell viability by flow cytometry. Following a stringent gating 

strategy to identify viable cells, 88.7% of RPE-1 cells detached with TrypLE were viable (Figure 17). In 

contrast, only 35.4% of cells detached by scraping were viable. To eliminate the possibility that the 

RPE-1 cell line is particularly sensitive to scraping, they were compared to HCT-116 cells. Accordingly, 

much higher cell viability was obtained when HCT116 cells were detached using TrypLE instead of cell 

scraping (76.7% vs. 45.6 %). The flow cytometry results demonstrated that mechanical cell scraping 

caused a decrease in cell viability and consequently, less input material would be available for HLA-I IP 

experiments. 

 

 

 

Figure 17 | Impact of cell detachment method on cell viability. RPE-1 WT and HCT-116 cells were detached by 
incubation in TrypLE for 5 min or by cell scraping. Detached cells were stained with SYTOX Blue Dead Cell Stain 
allowing the quantification of viable cells via flow cytometry analysis.  
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Additionally, I determined the effect of cell detachment on the immunopeptidome diversity. Similar 

numbers of RPE-1 cells obtained from mechanical detachment, TrypLE, or enzyme-free buffer were 

processed by HLA-I IP and subsequently analyzed by mass spectrometry (Figure 18A). Identification of 

HLA-I-bound peptides revealed the highest immunopeptidome diversity in the sample detached using 

enzyme-free buffer (4850 peptides, Figure 18B). In samples where cells were detached by scraping and 

TrypLE, lower numbers of unique peptides were identified (3844 and 3456 peptides). Although cell 

scraping might not have a considerable impact on immunopeptidome diversity compared to TrypLE 

detachment, it still reduced the number of viable cells serving as input for immunopeptidomics 

experiments.  

 

 

Figure 18 | Impact of cell detachment method on immunopeptidome diversity. (A) Adherent RPE-1 WT cells 
were detached by cell scraping or by incubation in TrypLE or enzyme-free buffer for 10 min. Samples were 
processed by HLA-I IP and captured peptides subsequently analyzed by mass spectrometry. (B) Number of unique 
identified HLA-I-bound peptides discovered by PEAKS search against the UniProt database.  

 

 

Concluding from these results, I used enzyme-free buffer to detach adherent RPE-1 cells for HLA-I IP 

experiments for the following reasons:  

i) Enzyme-free buffer eliminated the possibility of enzymatic cleavage of surface proteins 

ii) Cell scraping caused cell death and thereby decreased the input amount for HLA-I IP and 

further could not be applied in 5-layer flasks 

iii) Samples treated with enzyme-free buffer showed the highest immunopeptidome diversity 

in test experiments 
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3.4 Pharmacological splicing inhibition 
 

The phenotype of aberrant alternative splicing in tumor cells was recapitulated by treating cells with 

small molecule inhibitors of the splicing machinery. Such splicing inhibitors limit the availability of 

active core spliceosomal components, thereby mimicking overburdening of the splicing machinery, a 

frequently observed condition in cancer cells (Kahles et al., 2018). To determine a suitable treatment 

dose for immunopeptidomics experiments, growth rate (GR) inhibition was determined for each cell 

line. 

 

3.4.1 Splicing inhibition in K562 cell lines 

First, I evaluated the dose-response of GEX1A treatment for K562 WT cells and cell lines carrying 

mutations in splicing factors SF3B1 and U2AF1. Dose-response curves revealed that splicing factor 

mutant cell lines were slightly more susceptible to splicing inhibition by GEX1A (Figure 19). This was 

reflected in a decreased cell survival after 24 hours of treatment. Consequently, the GR50 value of K562 

WT cells (27.95 nM) was higher than those of K562 SF3B1K700E cells (20.88 nM) and K562 U2AF1S34F cells 

(23.02 nM). However, these differences did not reach statistical significance. Thus, for HLA-I IP 

experiments, all cell lines were treated with the GR25 value of K562 WT cells (10 nM) highlighted in 

Figure 19. 

I chose the final concentration based on the results of WT cells. The other cell lines were treated with 

the same dose of GEX1A to resemble treatment conditions in patients. 

 

 

Figure 19 | Dose response curve of K562 cell lines treated with GEX1A for 48 h. Cell viability was determined by 
CellTiter-Glo measurements at start and end of drug treatment. 
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3.4.2 Splicing inhibition in RPE-1 cell lines 

Moreover, I evaluated the dose-response of GEX1A treatment for RPE-1 WT cells, RPE-1 cells with loss 

of tumor suppressor TP53, and RPE-1 cells with genetic deficiencies in the DNA damage repair pathway 

(Figure 20). Loss of TP53 made RPE-1 cells more susceptible to GEX1A treatment indicated by the lower 

GR50 value of TP53 knockout cells compared to WT cells (21.48 nM vs. 31.15 nM). Along with this, TP53 

knockout cells carrying additional defects in the DNA damage repair machinery were even more 

susceptible to GEX1A treatment (MSH2-/- = 17.03 nM and POLEP286R = 13.78 nM).  

In previous HLA-I IP experiments with K562 cells, I observed no cell death after 24-48 h of treatment, 

even at higher GEX1A concentrations. Instead, the differences in cell numbers of treated samples 

resulted from affected cell proliferation due to GEX1A treatment. Thus, I chose the GR75 value of RPE-

1 WT cells (63 nM) for RPE-1 HLA-I IP experiments to obtain an even more prevalent aberrant splicing 

phenotype in these RPE-1 samples.  

 

 

Figure 20 | Dose-response curve of RPE-1 cell lines treated with GEX1A for 48 h. Cell viability was determined 
by CellTiter-Glo measurements at start and end of drug treatment. 
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3.5 Recovery of cell immunopeptidomes 
 

To explore the immunopeptidome of cells with splicing perturbations, I recovered HLA-I-presented 

peptides by HLA-I immunopurification (HLA-I IP). This directed approach is the only unbiased 

methodology allowing to examine the repertoire of naturally presented peptides (Bassani-Sternberg, 

2018). Following this procedure, I isolated HLA-I molecules from samples by immunoaffinity-based 

purification using anti-HLA-I antibodies. Subsequently, I extracted HLA-I peptides, which were then 

analyzed by mass spectrometry. 

 

3.5.1 Antibody purification & cross-linking 

To obtain enough material for all HLA-I IP assays, I needed to have sufficient amounts of W6/32 HLA-I 

antibody available. Thus, I purified W6/32 HLA-I antibody at large scale from cell culture supernatants 

of HB-95 hybridoma cells, which are engineered for antibody production (Bassani-Sternberg, 2018; 

provided by Jonas Becker). After following the antibody purification protocol, eluates were pooled and 

tested for IgG content. In total, the purification yielded 20 mg of W6/32 HLA-I antibody from 200 ml 

cell supernatant, which was sufficient to perform all HLA-I IP experiments carried out in this study. 

To capture HLA-I molecules during the HLA-I IP, I cross-linked W6/32 HLA-I antibodies w to Sepharose 

beads. I chose Sepharose A-coated beads since protein A possesses a strong binding affinity towards 

IgG-type antibodies such as W6/32. Since protein A specifically recognizes the Fc region of antibodies, 

the beads also ensured correct orientation of bound antibodies and thereby improved 

immunopurification efficiency. To determine cross-linking efficiency, I compared the protein content 

of W6/32 antibody aliquots and flow-through samples. The IgG content of flow-through samples after 

the cross-linking procedure showed complete protein depletion, indicating efficient antibody coupling 

to Sepharose A beads (Figure 21). 

 

Figure 21 | Quality control of chemical cross-linking of W6/32 HLA-I antibodies. W6/32 antibody concentration 
of aliquots measured before (blue) and after (red) chemical cross-linking to Sepharose A beads. 
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3.5.2 HLA-I immunopurification (HLA-I IP) 

Next, I used the W6/32-coupled Sepharose beads to purify HLA-I molecules from protein lysates. I 

loaded the beads on the column, added protein lysates, and let it run through by gravity. Afterwards, 

I determined the HLA-I content of the flow-throughs to examine the efficacy of HLA-I binding to the 

beads. In K562 cells, only faint bands of HLA-I were detected in flow-through samples, whereas the 

signal was much stronger in the positive control (Figure 22A). Similarly, the HLA-I content in flow-

through of RPE-1 samples was drastically depleted compared to the positive control (Figure 22B). 

Notably, all samples showed partial protein degradation since the workflow did not allow sample 

processing directly after cell lysis. The western blot results demonstrated that the HLA-I molecules 

were successfully captured by the W6/32-cross-linked beads. Still, a small amount of HLA-I was still 

detected in all flow-through samples, which suggests that the amount of input protein oversaturated 

the columns. Taken together, the strategy was successful in extracting HLA-I molecules from protein 

lysates. Subsequently, HLA-I-bound peptides were eluted, and their sequences were analyzed by mass 

spectrometry. 

 

 

Figure 22 | HLA-I content of cell lysates after HLA-I IP. Western blot detection of HLA-I in flow-through samples 
of (A) K562 cell lines and (B) RPE-1 cell lines. Positive control samples were not subjected to HLA-I IP.  

 

 

 

 

 

 

 

 

 

 

A. B. 



Results 

 

68 

3.6 Peptide identification by PEAKS search 
 

Mass spectrometry measurements provide raw peptide spectra which subsequently need to be 

converted into peptide sequences. Since my experimental approach aimed to identify non-canonical 

peptides, it was essential to choose a strategy that did not rely on canonical reference databases to 

match the experimental mass spectrometry data. Otherwise, it would only be possible to detect 

annotated peptide sequences but not novel peptides originating from aberrant alternative splice 

events. Thus, I chose PEAKS Studio X (Bioinformatics Solutions Inc., Waterloo, Canada) because it uses 

de novo peptide sequencing to determine a peptide sequence without using a reference database 

(Tran et al., 2019). Here, peptide sequences were first derived from mass spectra by de novo peptide 

sequencing. The obtained de novo peptide sequences were then searched in common or custom 

reference library databases to identify matching peptide entries. 

 

3.6.1 Peptide identification quality control 

For PEAKS analysis, I followed the ‘decoy-fusion’ approach, which allowed me to obtain a very accurate 

false discovery rate (FDR) for peptide identification. The decoy database contained random peptide 

sequences retrieved from the reference database. The FDR value indicated the proportion of detected 

decoy sequences during peptide identification via peptide-spectrum matches (PSMs) (Figure 23A). The 

proportion of detected decoy sequences grew exponentially, and the peptide identification was 

abrupted after 281,647 discovered PSMs included 5% sequences from the decoy database.  

The quality of identified peptides was represented by the PEAKS peptide score (-10lgP). Target PSMs 

exhibited a high PEAKS score, whereas lower-scoring PSMs contained a larger proportion of identified 

decoy sequences (Figure 23B). I further confirmed the quality of PSMs by the deviation of precursor 

mass. Target PSMs exhibited a precursor mass error between -2.5 and 2.5 parts per million (ppm) 

which increased with lower scores (Figure 23C). Here, peptides exhibiting high PEAKS scores were 

centered around the mass error of zero, whereas lower-scoring peptides scattered similar to decoy 

peptides. Thus, the PEAKS score reflects the quality of identified peptides since low-scoring peptides 

exhibited similar properties to decoy peptides. 
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Figure 23 | Impact of FDR cut-offs on the identification of PSMs from PEAKS search. (A) FDR curve of PSMs with 
X axis describing the number of PSMs and Y axis showing the corresponding FDR. (B) Distribution of PEAKS peptide 
score of PSMs (-10lgP) (C) Scatter plot of PEAKS peptide score vs. precursor mass error (ppm). 

 

 

To identify the best FDR threshold, I exported the resulting PSMs from the search against the UniProt 

database with 5% and 1% FDR value cut-offs. I plotted the number of identified peptides against the 

PEAKS peptide score (Figure 24A+B), resembling the distribution pattern observed for PSMs (Figure 

24B). Here, I noticed that the number of peptides drastically increased with lower FDR cut-off values. 

To validate identified peptides obtained from different FDR cut-offs, I determined peptide 

hydrophobicity indices as this is an established and orthogonal parameter to evaluate the quality of 

peptide identification (Rolfs et al., 2019). The 13,066 peptides identified from the PSMs with a 1% FDR 

exhibited a tight correlation (R² = 0.95) between peptide hydrophobicity and their observed retention 

time during mass spectrometry measurements (Figure 24C). Only a few dozen peptides did not follow 

this correlation. By relaxing the FDR cut-off to 5%, additional 4,864 peptides were obtained. However, 

this increase in peptide numbers was accompanied by a poorer correlation between predicted 

hydrophobicities and retention times of peptides (R² = 0.85). Hundreds of peptides did not correlate, 

indicating incorrect peptide identification (Rolfs et al., 2019). These findings suggested that the 

substantial increase in the number of identified peptides obtained from relaxed FDR thresholds (Figure 

A. 

B. C. 
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24B) partly resulted from the identification of false-positive peptide sequences. Consequently, the 1% 

FDR threshold was applied for multi-round searches to only assign PSMs with a high PEAKS score to 

reference entries from the UniProt database. I then searched the remaining unassigned PSMs against 

the custom reference libraries, as later explained in section 3.6.5. 

 

 

 

Figure 24 | Impact of FDR cut-offs during PEAKS search on the quality of identified peptides. (A) Distribution of 
peptides by PEAKS score identified with 1% FDR (n = 13,066). (B) Distribution of peptides by PEAKS score identified 
with 5% FDR (n = 17,930). (C) Scatter plot of peptide retention time vs. hydrophobicity index for peptides identified 
with 1% FDR (R² = 0.95). (D) Scatter plot of peptide retention time vs. hydrophobicity index for peptides identified 
with 5% FDR (R² = 0.85). 
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3.6.2 GibbsCluster analysis 

GibbsCluster analysis is another quality control step to confirm the accuracy of identifying peptides 

from PEAKS search. Here, I evaluated whether sequence motifs of identified peptides matched the 

predicted binding motifs of HLA-I receptors. Every HLA allele subtype has a distinct binding pattern 

that peptides need to fulfill to be able to be presented as ligand on HLA receptors (Figure 12C). HLA-I 

ligands have a length between 8-11 amino acids and are typically 9-mers (Gfeller et al., 2018a). 

Peptides interact with the HLA binding pocket through crucial residues at positions 2 or 3 and/or 9, 

leading to a characteristic binding sequence motif. 

 

I clustered peptides based on sequence similarity and the three largest groups were represented by 

sequence logos (Figure 25). The top three sequence logos identified for K562 samples matched the 

predicted binding motifs of HLA*A31:01, HLA*B:40:01, and HLA*C05:01, which all three matched the 

HLA-I subtypes detected by HLA haplotyping (Figure 25A). Similarly, being binders of HLA*A01:01, 

HLA*A02:01, and HLA*B07:02, peptide motifs of the three largest clusters of RPE-1 samples matched 

the RPE-1 haplotype (Figure 25B). Hence, GibbsCluster analysis supported the accuracy of PEAKS 

peptide identification from PSMs since detected peptide-binding patterns were in line with predicted 

sequence motifs.  

 

 

Figure 25 | HLA-I binding motifs of identified peptides revealed by GibbsCluster analysis. (A) Predicted binding 
motifs of top three clusters of peptides identified from K562 cells compared to predicted binding motifs of given 
K562 HLA-I subtypes. (B) Predicted binding motifs of top three clusters of peptides identified from RPE-1 cells 
compared to predicted binding motifs of given RPE-1 HLA-I subtypes. 

A. B. 
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3.6.3 HLA-I binding prediction 

After identifying common peptide motifs from the peptide datasets, I performed HLA-I binding 

prediction to model binding of identified peptides to HLA-I receptors. Here, NetMHCpan uses artificial 

neural networks to match short peptide sequences to binding profiles of specific HLA-I subtypes of a 

cell line. 

Indeed, I was able to confirm that the majority of identified peptides were predicted HLA-I binders 

(Figure 26). For RPE-1 WT samples, 83.1% of total peptides (1% FDR) were matched to HLA-I subtypes 

of RPE-1 cells, while only 16.9% of peptides were non-predicted binders (Figure 26A). Changing the 

FDR threshold to 5% resulted in the identification of additional 4,864 peptides, but also the proportion 

of non-predicted binders increased to 27.2% (Figure 26B). From the additional 4,864 peptides, only 

2,188 peptides (45%) were predicted binders. Accordingly, more than half of the additionally identified 

peptides were non-predicted binders, suggesting the detection of false-positive peptide sequences. 

Similar results were obtained for K562 WT samples. Here, 89.8% of peptides identified with 1% FDR 

were predicted HLA-I binders (Figure 26C), whereas only 82.1% of peptides identified with 5% FDR 

were predicted HLA-I binders (Figure 26D).  

Notably, I detected a higher proportion of predicted binders in K562 samples compared to RPE-1 

samples. This could be explained by the different haplotypes of the cell lines. The accuracy of HLA-I 

binding prediction heavily depends on the HLA-I subtype. For example, RPE-1 cells express the 

HLA*A:02:01 subtype, one of the most frequent alleles found in humans (Figure 26B). Accordingly, 

binding prediction can draw on many data and is thus more stringent than for other alleles. In addition, 

HLA*A:02:01 is known to present a variety of different antigens. Given the 2% rank threshold, peptides 

needed a minimum binding constant (KD) of 272 nM to be identified as predicted binder of 

HLA*A:02:01, which was very stringent compared to all other alleles (Figure 26F). For instance, 

peptides were predicted binders of HLA*A:01:01 when exhibiting a binding constant of 6668 nM or 

lower – almost a 25-fold difference in binding affinity (Figure 26E). This highlights the limitations of the 

computational HLA-I binding prediction approach. Consequently, also non-predicted binders could be 

HLA-I ligands. 

Nevertheless, HLA-I binding prediction provided a confident indication about the quality of identified 

peptides. Concluding from the results, I chose the 1% FDR threshold for PEAKS peptide identification 

from UniProt, confirming the previous observations made for hydrophobicity correlations (Section 

3.6.1). 
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Figure 26 | Computational HLA-I binding prediction of identified peptides. (A) Distribution of peptide length and 
HLA-I subtype clustering of peptides identified from RPE-1 mass spectra data searched against UniProt with 1% 
FDR cut-off and (B) 5% FDR cut-off. (C) Distribution of peptide length and clustering to HLA-I subtypes of peptides 
identified from K562 mass spectra data searched against UniProt with 1% FDR and (D) 5% FDR. (E) Ranking of 
predicted peptide binding affinities for the RPE-1 HLA-A*01:01 subtype. (F) Ranking of predicted peptide binding 
affinities for the RPE-1 HLA-A*02:01 subtype. KD = Dissociation constant. 

A. B. 

C. D. 

E. F. 
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3.6.4 Similarity of immunopeptidomes between replicates, sample groups, and datasets 

To provide information about peptide diversity and how robust peptides were detected across 

different replicates, I explored the composition of immunopeptidomes of sample groups. Given the 

limited sensitivity of mass spectrometry, only a certain number of mass spectra per time can be 

identified from peptide samples. For immunopeptidomics, it is especially challenging to detect a wide 

range of individual peptides because HLA-I-bound peptides are very similar in their sequence length 

and amino acid composition.  

 

To explore the diversity of recovered immunopeptidoms, I processed the PEAKS search results and 

plotted the numbers of unique identified peptides of each replicate (Figure 27).  

In K562 replicates, I identified 2,791 peptides on average (Figure 27A). A variance of a few hundred 

peptides was observed between replicates of a sample group. SF3B1 sample groups exhibited the 

highest variance. In one replicate of the GEX1A-treated SF3B1 mutant sample group, there were almost 

twice as many peptides identified as in the other two replicates (Figure 27A). Despite using similar cell 

numbers as input for the HLA-I IP, the peptide diversity of SF3B1 sample groups was lower compared 

to WT or U2AF1 sample groups.  

RPE-1 cell lines generally exhibited a greater immunopeptidome diversity than K562 cell lines (Figure 

27B). Here, I detected 3,759 unique peptides in cancer-like RPE-1 sample groups on average. The RPE-

1 WT sample groups with around 6,000 unique peptides obtained per replicate showed exceptionally 

high immunopeptidome diversity. The variance between replicates of MSH2-/- and POLEP286R cell lines 

was higher. Especially the number of unique peptides identified from replicates of the MSH2-/- T6 

sample groups differed by thousands of peptides (Figure 27B). Overall, peptide identification yielded 

different numbers of peptides both between sample groups and between replicates.  

 

Figure 27 | Number of unique peptides identified per sample from immunopeptidomics. (A) Number of HLA-I-
binding peptides of K562 cell lines identified from independent biological and technical replicates (n = 3). (B) 
Number of HLA-I-binding peptides of RPE-1 cell lines identified from independent biological and technical 
replicates (n = 3). Dashed lines represent the average number of peptides found in cancer(-like) cell lines. 
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To evaluate how the different sample sizes impacted the similarity of independent biological 

replicates, I compared the recovered immunopeptidomes in a Venn diagram. The overlap of non-

treated K562 WT replicates revealed that 47.4% of all unique identified peptides were discovered in 

all three replicates (Figure 28A). Similarly, 45.3% of all peptides identified from non-treated RPE-1 WT 

samples were detected in all three replicates (Figure 28B). The major factor influencing replicate 

overlap was the variance in the number of detected peptides. For example, non-treated MSH2-/- T6 

samples only shared 28.6% of unique peptides identified in all replicates because many peptides were 

not detected in replicate #3 with exceptionally low peptide numbers (Figure 28C). These findings 

indicate that similar peptide numbers were critical for a high similarity between immunopeptidomes.  

 

 

 

 

Figure 28 | Replicate overlap of identified peptides recovered by immunopeptidomics. (A) Overlap of K562 WT 
NT replicates. (B) Overlap of RPE-1 WT NT replicates. (C) Overlap of RPE-1 MSH2-/- T6 NT replicates. Venn 
diagrams illustrate replicate overlap and do not reflect actual proportions. Peptide overlaps of all 16 sample 
groups are displayed in supplement figure 1 in the appendix of this thesis. 
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For a better visualization of the differences between individual replicates, I compared the 

immunopeptidome of all samples by hierarchical clustering. I considered peptides found in all 

replicates as background and eliminated from this analysis. This comprised 679 of total 13,066 

identified peptides. Then, I normalized replicates by their size factors and the sample differences were 

visualized in a distance matrix (Figure 29).  

Notably, the WT sample groups clustered together, while the GEX1A treatment had no clear impact on 

clustering of the samples. Instead, the similarity between samples largely depended on the number of 

identified peptides. Replicates with high peptide diversity showed a high similarity to one another. In 

contrast, hierarchical clustering revealed that both samples of MSH2-/- T6 replicate #2, the two samples 

with the lowest number of identified peptides, were very distinct from all other samples (Figure 29). 

These results suggest that a comparable number of peptides is required for robust peptide detection 

across samples. 

 

 

Figure 29 | Similarity of immunopeptidomes of different RPE-1 sample groups. Peptides of each sample groups 
were normalized by sample size factors and compared by hierarchical clustering. Peptides shared among all 
sample groups were considered as background. 
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In addition to comparing individual replicates, I explored the proportion of peptides shared between 

treatment conditions (Figure 30A). Combined, I identified 5,047 unique peptides in non-treated and 

GEX1A-treated K562 WT cells (Figure 30B). More than 60% of all unique peptides were shared between 

the two sample groups. Notably, 84.9% of peptides found in GEX1-treated samples were also identified 

in the non-treated sample condition. Vice versa, only 67.4% of peptides from non-treated samples 

were detected in the GEX1A-treated condition because the non-treated sample group contained 

almost thousand more peptides. In RPE-1 WT samples, I identified 10,362 unique peptides from which 

2 out of 3 peptides (67.6%) were shared between non-treated and GEX1A-treated sample groups 

(Figure 30C). Again, I detected more unique peptides in the non-treated condition and consequently 

86% of peptides from treated samples were found in non-treated samples, but only 76.8% vice versa. 

In general, the overlap between treatment conditions was substantial but there were also hundreds 

of peptides exclusively found in the GEX1A-treated condition (Figure 30D-H). Notably, these 

treatment-specific peptides were of special interest represent the pool of potential neoepitope 

candidates. 
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Figure 30 | Overlap of identified peptides between treatment conditions. (A) Peptides not shared between 
conditions were considered ‘canonical peptides’ whereas peptides only present in the treated condition were 
considered ‘neoepitopes’. (B) Overlap of K562 WT non-treated and GEX1A-treated sample groups. (C) Overlap of 
RPE-1 WT non-treated and GEX1A-treated sample groups. (D-H) Overlap of non-treated and GEX1A-treated 
sample groups of RPE-1 cell lines harboring mutations and defects in the DNA repair pathway. Venn diagrams 
illustrate replicate overlap and do not reflect actual proportions. 

 

To evaluate the specificity of recovered immunopeptidomes for a cell line, I explored the overlap of 

discovered peptides between the K562 and the RPE-1 dataset. Notably, only 77 (0.7%) out of total of 

10,993 unique peptides were shared between K562 and RPE-1 WT samples (Figure 31A). The 

tremendous difference in the immunopeptidomes between these cell lines can be explained by their 

different haplotypes, resulting in the presentation of peptides with very different sequence motifs 

(Figure 31B+C). This observation highlights that the HLA-I IP approach facilitated the accurate recovery 

and identification of peptides specific for the haplotype of a respective cell line. 
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Figure 31 | Differences in immunopeptidome compositions between K562 and RPE-1 datasets. (A) Overlap 
between identified peptides in K562 WT and RPE-1 WT samples. (B) HLA-I binding profiles of the K562 haplotype. 
(C) HLA-I binding profiles of the RPE-1 haplotype. 

 

3.6.5 Custom reference databases 

Canonical reference databases such as UniProt only contain annotated protein information. However, 

the investigated samples likely included novel peptide sequences originating from non-annotated 

splice events caused by spliceosomal perturbations. Thus, custom references libraries were generated 

based on matching RNA-seq information. These additional reference databases also contained peptide 

sequences produced by non-canonical splice events, complementing the protein information found in 

UniProt.  

Two approaches were followed to design sample-specific reference databases. First, the TransDecoder 

workflow included the assembly of a de novo proteome based on RNA-seq data. Second, the splice 

junction database (SJDB) contained all short junction-spanning peptides that could be produced from 

splice junctions identified from RNA-seq data. 

Searching mass spectra against different reference databases yielded different numbers of unique 

peptides (Figure 32A). PEAKS search against UniProt, the most comprehensive reference of the three 

databases, detected 9,142 unique peptides in RPE-1 non-treated WT samples applying a 1% FDR 

threshold. Using the TransDecoder database, 6,831 unique peptides were identified. The PEAKS score 

threshold (-10lgP) for the 1% FDR cut-off slightly increased, which could be explained by the different 

library sizes. Consequently, the PEAKS score threshold of the SJDB search was extremely high because 

this library was limited to short peptide sequences, which affected quality control during PEAKS search. 

The SJDB search only delivered 813 peptides using the same settings as for the other approaches. 

Notably, 91.6% of peptides identified by the SJDB were also found by UniProt (Figure 32B). Even a 

higher proportion (98.2%) of peptides identified by TransDecoder were also found by UniProt, 

indicating the similarity of the de novo assembled proteome and the UniProt reference. Thus, the 

custom reference libraries could only slightly increase the peptide search space. 
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Notably, there was also a substantial overlap between both custom databases. However, only nine 

peptides were shared from the peptides exclusively detected by the custom libraries. Taken together, 

these data suggest that the best strategy for peptide matching is to combine all reference libraries in 

a concatenated, multi-round PEAKS search to allow peptide identification from the largest possible 

search space. 

 

Figure 32 | Comparison of different reference libraries used for peptide identification. (A) Number of peptides 
detected in non-treated RPE-1 WT samples identified from different reference databases samples (FDR cut-off =  
1%).  (B) Overlap of identified peptides from different reference databases. -10lgP = PEAKS peptide score. 

 

 

3.6.6 Quality control of custom database peptides 

Peptides identified from these multi-round searches also underwent quality control steps. Peptides 

obtained from PEAKS search with a 1% FDR threshold exhibited a tight correlation (R² = 0.95) between 

their observed retention times and their predicted hydrophobicity indices (Figure 33A). Particularly 

peptides detected by custom reference databases showed an excellent correlation (R² = 0.98). Relaxing 

the FDR threshold to 5% during PEAKS search resulted in a weaker correlation between the two 

parameters (R² = 0.85), especially for peptides identified from UniProt (Figure 33B). In contrast, the 

custom library peptides still exhibited a tight correlation (R² = 0.94), suggesting that low numbers of 

false-positive peptides were identified from TransDecoder and SJDB databases. Consistently, HLA-I 

binding prediction confirmed the quality of identified peptides (Figure 33C). From the 12,127 unique 

peptides, 87.1% of UniProt peptides (1% FDR) were predicted HLA-I binders. Accordingly, 85.2% of 

custom database peptides (5% FDR) were predicted binders of RPE-1 HLA-I receptors. Consequently, 

UniProt peptides were filtered by a 1% FDR cut-off, while custom database peptides were selected 

with a more relaxed 5% FDR threshold. These data highlight that multi-round searches allow accurate 

peptide identification from custom reference databases.  

 

 

Reference 
database 

-10lgP for 
1% FDR 

Identified 
peptides 

UniProt 15.4 9,142 

TransDecoder 17.3 6,831 

SJDB 37.2 813 
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Figure 33 | Quality control of peptides identified from multi-round searches using custom reference databases. 
(A) Scatter plot of peptide retention time vs. hydrophobicity index for peptides identified with 1% FDR cut-off (R² 
= 0.95) and (B) peptides identified with 5% cut-off (R² = 0.85). (C) HLA-I binding prediction revealing the 
distribution of peptide length and HLA-I subtype clustering of peptides identified from UniProt with 1% FDR cut-
off and from (D) custom reference databases identified with 5% FDR cut-off. 
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3.6.7 Neoepitope candidate identification 

Potential neoepitopes candidates were identified by comparing the immunopeptidomes of different 

sample groups. All unique peptides found in all three replicates of RPE-1 WT non-treated and GEX1-

treated samples were visualized in a barcode plot (Figure 34). As observed before, most of the total 

10,380 peptides were present in both sample groups (n = 6,955). Peptides exclusively detected in the 

GEX1A-treated condition were considered as potential neoepitope candidates. To increase robustness, 

peptides were required to be detected in at least 2 out of 3 GEX1A-treated replicates to be considered 

neoepitope candidates. Applying these criteria, 366 neoepitope candidates were obtained from RPE-

1 WT samples. Additionally, other sample groups were also filtered for neoepitopes yielding several 

hundreds of peptides that were robustly detected in the GEX1A-specific group (Table 15). Overall, 

several hundreds of peptides were identified as potential neoepitope candidates. 

 

 

Figure 34 | Bar code plot highlighting the distribution of identified peptides between replicates and sample 
groups of RPE-1 WT samples. Each bar represents a single peptide. Shared peptides were found at least once in 
both conditions, specific peptides were exclusively detected in one condition. For neoepitope identification, 
GEX1A-specific peptides were filtered for peptides which were detected in ≥ 2/3 GEX1A-treated RPE-1 replicates. 

 

Table 15 | Neoepitope candidates identified exclusively in ≥ 2/3 GEX1A-treated RPE-1 replicates.  

Sample group WT TP53-/- MSH2-/- T2 MSH2-/- T6 
POLEP286R 

T16 
POLEP286R T17 

No. of 

neoepitopes 
366 728 751 382 217 402 
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3.7 Impact of gene expression on identified peptides 
 

In parallel with the exploration of the immunopeptidome, I analyzed the transcriptome of cells with 

splicing perturbations. Before I explored the changes in the alternative splicing landscape, I determined 

how gene expression was affected by GEX1A treatment and how this impacted neoepitope 

identification. 

 

3.7.1 Correlation between peptide frequency and gene expression 

To determine the origin of previously identified neoepitope candidates, I next evaluated how many of 

them possibly resulted from expression changes of the respective protein. Since protein expression 

correlates well with protein expression (Liu et al., 2016), I used RNA-seq data sets to determine 

transcript abundance as a proxy for protein levels. Here, I assigned all peptides detected in the GEX1A-

treated condition to their genes of origin. More than 99% of all peptides identified in GEX1A-treated 

RPE-1 WT samples were successfully matched to expressed protein-coding genes (Figure 35A). The 

remaining 1% unmatched peptides were assigned to pseudogenes or genes not found to be expressed 

in GEX1A-treated RPE-1 WT cells. Similar results were obtained when only peptides were taken into 

consideration that were robustly detected in at least 2 out of 3 replicates Figure 35B). To examine the 

effect of gene expression on peptide detection, the distribution of gene expression frequency was 

visualized (Figure 35C). For most highly expressed genes, a matching peptide was found in the 

immunopeptidomics dataset. The lower the expression, the lower the proportion of genes for which 

peptides were identified. Again, the same observations were made using a more stringent peptide cut-

off (Figure 35D). Notably, for low-abundantly expressed genes (log2 < 5), only very few peptides were 

identified, highlighting the limited sensitivity of the mass spectrometry approach.  

Moreover, I examined the expression changes of genes assigned to neoepitope candidates of RPE-1 

WT samples (Figure 35E). All of the 1,187 neoepitopes identified in Figure 34 were assigned to 1,040 

protein-coding genes expressed in RPE-1 WT cells. The expression changes between the GEX1A-treated 

and the non-treated sample group suggested an enrichment in neoepitope-producing genes in the 

GEX1A-treated condition. This trend became significant when only the 366 neoepitopes were 

considered, which were robustly detected in at least 2 out of 3 replicates (Figure 35F). The GSEA results 

indicate that most peptides that were exclusively detected in the treated condition potentially resulted 

from gene expression changes in response to GEX1A treatment. The analysis revealed that peptides 

detected by mass spectrometry mainly originated from abundantly expressed genes. Consequently, 

many neoepitope candidates likely result from gene expression changes between the sample groups 

and not from differential alternative splice events. 
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Figure 35 | Gene expression frequency of peptide-associated genes. (A) Overlap of all identified HLA-I peptides 
matched to protein-coding genes expressed in the GEX1A-treated RPE-1 WT sample group. (B) Overlap of HLA-I 
peptides detected in ≥2/3 replicates matched to protein-coding genes expressed in the GEX1A-treated RPE-1 WT 
sample group. (C) Gene expression frequency of genes for which HLA-I peptides were found (red) and not found 
(blue) in ≥1/3 RPE-1 WT replicates or (D) in ≥2/3 RPE-1 WT replicates. (E) GSEA of genes assigned to identified 
neoepitopes present in ≥1/3 RPE-1 WT GEX1A replicates or (F) in in ≥2/3 RPE-1 WT GEX1A replicates. 
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3.7.2 Gene expression analysis 

The gene expression differences between the sample groups were further analyzed by DESeq2 to 

obtain insights into the impact of splicing perturbations on sample group separation. Normalized gene 

expression data was used to cluster samples in a principal component analysis (PCA). Here, samples 

from K562 cell lines were clearly separated based on treatment conditions by the first principal 

component (Figure 36A). The influence of GEX1A treatment on differential gene expression was 

further investigated by a Gene Set Enrichment Analysis (GSEA). The GSEA revealed that inhibition of 

the core splicesome resulted in an enrichment of cellular processes associated with transcription and 

splicing itself (Figure 36B).  

Following the observations made for K562 cells, RPE-1 sample groups were clearly separated from each 

other (Figure 36C). Here, RPE-1 WT cells were compared against RPE-1 TP53-/- cells to investigate 

whether the separation of sample groups was primarily influenced by the genotype or instead by 

GEX1A treatment. The first principal component clearly separated RPE-1 sample groups by GEX1A 

treatment (NT vs. GEX1A), while in the second principal component, sample groups were separated by 

genotype (WT vs. TP53-/-). The PCA suggested that RPE-1 cells with different genotypes shared a higher 

similarity in their gene expression profiles than non-treated and GEX1A-treated RPE-1 cells. In line with 

the results obtained from K562 cells, GSEA between GEX1A-treated and non-treated RPE-1 sample 

groups revealed a significant enrichment of cellular processes associated with transcription and 

splicing (Figure 36D).  

From these data, it was concluded that gene expression differences between treated and non-treated 

sample groups need to be considered for differential splicing analysis. Splice events could occur more 

frequently due to elevated gene expression while their inclusion levels remain unaltered. 
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Figure 36 | Effect of splicing inhibition on gene expression profiles. (A) PCA based on gene expression of non-
treated and GEX1A-treated K562 WT cells separated samples based on treatment condition. (B) GSEA of non-
treated vs. GEX1A-treated K562 WT cells. (C) PCA based on gene expression of non-treated and GEX1A-treated 
RPE-1 WT cells separated samples based on treatment condition and genotype. (D) GSEA of non-treated vs. 
GEX1A-treated RPE-1 WT cells. PCA was performed on normalized gene expression data obtained from DESeq2. 
GSEA was performed on ranked gene expression differences obtained from DESeq2. The percentage of a PCA 
variable describes how much it contributes to the variability in the dataset. 

 

 

3.7.3 Impact of IFN-γ stimulation on gene expression 

In addition, the effect of IFN-γ stimulation on gene expression of K562 cells was investigated. IFN-γ 

stimulation successfully induced the expression of HLA-I genes (Figure 37A). Except for HLA-C, no 

baseline gene expression was detected in the absence of IFN-γ. Besides, IFN-γ stimulation affects the 

expression of a wide range of different genes. Thus, the IFN-γ-treated samples from the K562 cell lines 

used for HLA-I IP experiments were compared against previously published sequencing data of 

unstimulated K562 cell lines (Seiler et al., 2018b). PCA revealed the differences in gene expression 

profiles between the datasets as these were clearly separated by the first principal component (Figure 

37B). In the second principal component, non-stimulated samples were separated based on their 

A. 
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SF3B1 genotype. This separation was absent in IFN-γ-stimulated samples indicating that the strong 

inflammatory gene expression could mask mutation-related expression changes. Indeed, GSEA 

between non-stimulated and IFN-γ-treated K562 WT samples revealed that the most enriched cellular 

processes were associated with pro-inflammatory pathways (Figure 37C). These findings were 

important to consider when interpreting the results of the alternative splicing analysis of K562 cell lines 

at a later stage. Here, the strong IFN-γ-induced inflammatory response could also mask the differential 

alternative splicing phenotype between the sample groups.  

 

 

Figure 37 | Effect of IFN-γ stimulation on gene expression of K562 cells. (A) Box plot of normalized read counts 
of the HLA genes detected in non-treated and IFN-γ-stimulated K562 WT cells. T-test was applied to evaluate 
statistical significance: *** = p-value < 0.001. (B) PCA of IFN-γ-stimulated and non-treated K562 cell lines. The 
percentage of a PCA variable describes how much it contributes to the variability in the dataset. (C) GSEA plots of 
gene ontology pathways found significantly enriched between IFN-γ-stimulated and non-treated K562 WT cells.  
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3.8 Differential alternative splicing analysis 
 

To unravel the effect of spliceosomal perturbation on the alternative splicing landscape, I performed 

a differential splicing analysis between the sample groups. This was crucial to identify differentially 

expressed splice events that could produce novel peptide sequences and thus contribute to the 

neoepitope repertoire of GEX1A-treated cells. 

 

3.8.1 Isoform expression analysis by Salmon 

For an initial analysis, I explored the changes in the alternative splicing landscape by performing an 

isoform expression analysis using Salmon and evaluated the differences between sample groups by 

PCA. 

First, the effect of IFN-γ stimulation on isoform expression profiles between the K562 sample groups 

was investigated (Figure 38A). The sample groups were mainly separated in the PC1 due to INF-γ 

stimulation. The non-stimulated sample groups were separated by genotype, while this effect was 

absent in IFN-γ-stimulated K562 cells (Figure 38A). These data resembled the results obtained from 

gene expression analysis, where the strong inflammatory gene expression could mask mutation-

related expression changes. In contrast, splicing perturbation induced by GEX1A had a more 

pronounced effect and affected isoform expression profiles in both IFN-γ-stimulated and non-

stimulated K562 cells (Figure 38B). 

Apart from K562 cell lines, I could also determine the treatment-induced changes in isoform 

expression, which separated RPE-1 cell lines in the PC1 (Figure 38C). In addition, the PC2 separated cell 

lines based on genotype. Notably, GEX1A treatment caused a greater separation between WT and 

TP53-/- cell lines indicating more pronounced isoform expression differences. To set these alterations 

into relation, RPE-1 samples were compared to K562 samples (Figure 38D). This revealed that the cell 

type mainly influenced the differences in isoform expression. Splicing inhibition was only able to 

separate sample groups in the PC2. Nevertheless, GEX1A treatment caused induced pronounced 

changes in isoform expression, which were further explored by differential splicing analysis. 
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Figure 38 | Differences in isoform expression profiles between cell lines and treatment conditions. (A) PCA 
based on isoform expression of non-treated and IFN-γ-stimulated K562 WT and SF3B1K700E cell lines separated 
samples based on IFN-γ stimulation. (B) PCA based on isoform expression of non-treated and splicing inhibitor-
treated K562 WT cells separated sample groups based on treatment conditions. (C) PCA based on isoform 
expression of non-treated and splicing inhibitor-treated RPE-1 WT and TP53-/- cell lines separated sample groups 
based on both GEX1A treatment and genotype. (D) PCA based on isoform expression of non-treated and splicing 
inhibitor-treated RPE-1 WT and K562 WT cell lines separated sample groups based on both GEX1A treatment and 
genotype. PCA was performed on normalized isoform expression data obtained from Salmon. 
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3.8.2 rMATS differential splicing analysis 

To explore the different types of splice events induced by perturbation of the splicing machinery, an 

rMATS analysis was performed. Analyzing alternative splicing differences between K562 WT GEX1A-

treated vs. non-treated samples resulted in 12,221 significantly differential splice events (Figure 39A). 

Approximately two-thirds of all events were exon skipping (SE) events, followed by mutually exclusive 

exon (MXE) events. These two splice types showed a positive value for their average inclusion level 

difference, indicating that most of these exonic events were included in GEX1A-treated samples. In 

contrast, the differences in alternative splicing between K562 WT and K562 SF3B1K700E cells were very 

subtle since only 60 differentially spliced events were detected by rMATS analysis (Figure 39B). This 

finding was in line with the previous observation that IFN-γ stimulation masked mutation-related 

changes in the alternative splicing landscape of K562 cells (Figure 37).  

Accordingly, the splicing differences between different genotypes were much more pronounced 

between RPE-1 samples. rMATS analysis of RPE-1 TP53-/- vs. WT cells delivered 5,083 differentially 

spliced events (Figure 39D). Still, the most remarkable difference in the alternative splicing landscape 

was detected between RPE-1 WT GEX1A-treated and non-treated samples resulting in a total of 33,864 

splice events (Figure 39C). As observed for K562 cells, approximately two-thirds of identified splice 

events were exon skipping (SE) events, followed by mutually exclusive exon (MXE) events.  

Overall, rMATS analysis revealed that distinct changes in the alternative splicing landscape were 

achieved by treating cells with the splicing inhibitor GEX1A for a short time of 24 hours. RPE-1 cells 

were treated with 63 nM GEX1A corresponding to the GR75 value, while K562 cells were treated with 

only 10 nM GEX1A corresponding to the GR25 value. The higher number of events identified in RPE-1 

samples than K562 samples (33,864 vs. 12,221 events) also demonstrated that a higher dose of GEX1A 

yielded more pronounced changes in alternative splicing patterns. In both cell lines, exon skipping 

events were the most frequently occurring splice event, which was detected in response to GEX1A 

treatment. 
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Figure 39 | rMATS analysis demonstrating the impact of splicing inhibition and different genotypes on the 
alternative splicing landscape. Number of alternative splice events and inclusion level differences of (A) K562 WT 
non-treated vs. GEX1A-treated cells, (B) K562 WT vs. SF3B1K700E cells, (C) RPE-1 WT non-treated vs. GEX1A-treated 
cells, (D) RPE-1 WT vs. TP53-/- cells. Cut-offs: FDR ≤ 0.05 & inclusion level difference ≥ 0.1. A3SS/A5SS = alternative 
3’/5’ splice site; MXE = mutually exclusive exon; RI = retained intron; SE = skipped exon. 

 

3.8.3 JunctionSeq differential splicing analysis 

The rMATS analysis only provides insights into inclusion level differences of splice events. However, 

this strategy is limited to the detection of frequently occurring alternative splice events. Inclusion level 

differences do not allow for detecting lower abundant splice events if they do not appear in a particular 

proportion to the canonical event. However, especially transcripts of novel splice events do not occur 

very frequently. Although these splice events might not be very relevant for the biological function of 

a gene/protein in the cell, these aberrant transcripts can become relevant if they are translated into 

non-canonical peptide sequences. To be able to reveal all relevant splice events, JunctionSeq analysis 

was performed. Here, significant splice events were determined by fold change differences of splice 

junction expression levels between the sample groups instead of inclusion level differences.  

In K562 cells, 14,792 significantly differential splice events were identified between non-treated and 

GEX1A-treated samples (Figure 40A). The majority of splice events (75.5%) were detected in the 

treated condition. Almost 60% of the events were connected to splice junctions and among them, 30% 

of all events were novel, non-annotated splice junctions (Figure 40B). Many of these novel splice 

C. 
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events exhibited an extremely high fold change (logFC ± 20) because they were specific to one 

condition. Similar to the results of the rMATS analysis, the alternative splicing phenotype was even 

more pronounced in RPE-1 cells, likely due to a higher dose of GEX1A treatment. Almost twice as many 

(33,227) differential splice events were found in RPE-1 cells (Figure 40C). Again, 3 out of 4 splice events 

were found to be upregulated in GEX1A-treated cells. Compared to K562 cells, a higher proportion of 

novel splice events (42.5%) were identified in RPE-1 cells in response to GEX1A treatment, suggesting 

that a higher splicing inhibitor concentration generated more aberrant non-annotated transcripts. The 

JunctionSeq analysis provided many differential splice events, including several low abundant novel 

splice junctions. 

 

 

Figure 40 | JunctionSeq analysis identified thousands of differential splice events induced by splicing inhibition. 
(A) Volcano plot of differentially regulated splice events in GEX1A-treated K562 cells. (B) Number of splice events 
of GEX1A-treated K562 cells classified by feature type. (C) Volcano plot of differentially regulated splice events in 
GEX1A-treated RPE-1 cells. (D) Number of splice events of GEX1A-treated RPE-1 cells classified by feature type. 
Cut-offs: pAdj ≤ 0.05 & logFC ≥ 2. 
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3.8.4 DJExpress differential splicing analysis 

A major point to consider for the differential splicing analysis was the altered gene expression between 

the conditions due to GEX1A treatment, as it has been shown above (Section 3.7.2). However, 

JunctionSeq does not detect changes in the overall gene expression (Hartley and Mullikin, 2016). This 

can become crucial since increased splice junction expression can not only result from differential 

splicing but also elevated gene expression. This was an important aspect for identifying splicing-

derived neoepitopes considering most of the detected neoepitopes originated from altered gene 

expression levels (Figure 35). To include these gene expression changes between analyzed sample 

groups in the differential splicing analysis, the Limma-based DJExpress pipeline was developed 

(Gallego-Paez & Mauer, 2022).  

 

The DJExpress analysis discovered 190,107 splice junctions in RPE-1 WT samples, from which 19,072 

showed significant changes in junction usage between non-treated and GEX1A-treated samples (Figure 

41A). As observed before, GEX1A treatment resulted in a higher proportion of upregulated splice 

events: 17,067 junctions showed a significantly higher differential usage. In comparison, only 2,005 

junctions were significantly more often excluded in transcripts of GEX1A-treated cells. Additionally, 

the DJExpress analysis determined whether gene expression changes explained the altered frequency 

of a detected splice event. The correlation between junction expression of sample groups (absolute 

logFC) and relative junction expression within a specific gene (relative logFC) of RPE-1 WT samples was 

visualized in a 9-square scatter plot (Figure 41B). Here, grey points comprise junction without 

differential expression or differential usage. The red and blue highlighted events represent junctions 

with similar values of absolute and relative logFCs. This reflects changes in splicing patterns between 

experimental conditions without confounding alterations in the total expression of the gene (Gallego-

Paez & Mauer, 2022). The junctions colored in green indicate that the differences in junction 

expression or usage between sample groups could be explained – at least partially – by altered gene 

expression levels or vice versa.  

 

The correlation between altered gene expression and junction usage was particularly important for 

K562 samples because IFN-γ stimulation strongly affected gene expression levels, which can potentially 

mask alternative splicing events (Figure 37). However, the majority of significant splice events could 

not be explained by altered gene expression but resulted from differential junction usage (Figure 41D). 

In total, 143,806 splice junctions were detected, from which 2,604 junctions exhibited different 

junction usage between non-treated and GEX1A-treated K562 samples (Figure 41C). Most of the 

junctions (n = 2,239) showed a significantly higher differential usage in the treated condition, while 

only 365 junctions were significantly more often excluded in response to GEX1A treatment. These data 
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illustrate that DJExpress analysis was able to determine differential splice events independent of the 

overall expression of the corresponding gene. 

 

 

Figure 41 | DJExpress analysis reveals differential splice junction usage in response to GEX1A treatment. (A) 
Volcano plot of differential junction expression between RPE-1 sample groups. (B) Quadrant scatter plot 
visualizing the categorization of junction events of RPE-1 samples. (C) Volcano plot of differential junction 
expression between K562 sample groups. (D) Quadrant scatter plot visualizing the categorization of junction 
events of K562 samples. Cut-offs: logFC ≥ 2; FDR ≤ 0.05; minimum junction read coverage = 5. 

 

 

In addition, the intensity of the changes in the splicing landscape between the sample groups was 

examined. As observed in the previous differential splicing analyses, a higher dose of GEX1A resulted 

in a more pronounced differential splicing phenotype reflected by the number of detected splice 

events in K562 and RPE-1 cells. K562 WT samples were treated with a GR25 dose of GEX1A, resulting in 

2,279 differentially used junctions, while 19,072 junctions were obtained in RPE-1 WT samples treated 

with the GR75 dose of GEX1A (Table 16). Although treated with a similar dose of GEX1A, 7,403 

additional differentially spliced junctions were detected in RPE-1 TP53-/- samples compared to WT 
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samples, indicating that TP53-/- cells were more sensitive to splicing inhibition. Overall, GEX1A 

treatment caused distinct changes in the splicing pattern of RPE-1 and K562 cells. In contrast, DJExpress 

analysis between RPE-1 WT and TP53-/- cells derived only 126 differentially used junctions. Similarly, 

only 1,007 significant splice events were detected between GEX1A-treated RPE-1 WT and TP53-/- cells. 

However, most splice junctions were found here due to GEX1A treatment in both conditions. Notably, 

the DJExpress analysis detected tens of thousands of novel splice junctions which were not annotated 

in the UniProt reference genome (Table 16). The analysis also identified junctions where read evidence 

was only found in the treated condition, here called neojunctions. Overall, GEX1A treatment induced 

the most significant changes in the splicing landscape. Thousands of differentially spliced events were 

detected by DJExpress analysis which could be the origin of previously identified neoepitopes. 

 

Table 16 | Results statistics of DJExpress analysis between RPE-1 and K562 sample groups. Non-annotated 
junctions were not found in UniProt annotation. Junctions with read evidence exclusively in the treated condition 
were called ‘neojunctions’. 

DJExpress analysis 
Identified 

junctions 

Non-annotated 

junctions 
Neojunctions 

Significant junctions 

(down/upregulated) 

RPE-1 WT 

GEX1A vs. NT 
190,107 41,020 10,168 2,005/17,067 

RPE-1 TP53-/- 

GEX1A vs. NT 
198,232 48,944 10,547 2,796/24,476 

RPE-1 TP53-/- NT 

vs. RPE-1 WT NT 
180,251 28,714 2,347 66/60 

RPE-1 TP53-/- GEX1A 

vs. RPE-1 WT GEX1A 
200,119 55,804 1,813 112/895 

K562 WT 

GEX1A vs. NT 
143,806 19,236 4,413 365/2,239 
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3.9 Identification of alternative splicing-derived neoepitopes 
 

3.9.1 Generation of peptide reference libraries for aberrant splice events 

To identify alternative splicing-derived neoepitopes, the previously identified candidate peptides were 

matched to differential splice events detected by DJExpress. The genomic information of the 

differential splice events was transformed into peptide sequences. Only junctions with significant 

differential expression between the conditions – independent of alterations in gene expression – were 

considered for the analysis (Table 17). Importantly, the approach was limited to upregulated (included) 

junctions. In the case of downregulated (excluded) junctions, the resulting sequence could not be 

determined undoubtedly. The junction coordinates of filtered DJExpress events were expanded by 

generating overhangs of 29 nucleotides resulting in junction-spanning sequences, which were then 

translated into all three reading frames (Figure 42). The length of 29 nucleotides was chosen since 

most HLA-I binders have a length between 8-10 amino acids/24-30 nucleotides (Gfeller et al., 2018b) 

and at least one nucleotide was required to be junction-spanning. Nevertheless, the absence of a 

junction would consequently increase the expression of neighboring junctions, and thus the 

corresponding splice event would also be represented in the final peptide sequence library.  

These Alternative Splicing Peptide Libraries were individually generated for each sample group. Each 

library derived from differential junction expression events in response to GEX1A treatment contained 

tens of thousands of unique peptide sequences (Table 17). Except for the library generated from RPE-

1 TP53-/- NT vs. WT NT, which was limited to 78 peptide sequences since only 35 splice events were 

obtained after filtering. In general, the size of the databases correlated with the number of 

differentially expressed junctions of each sample group. These peptide libraries contained all possible 

peptide sequences that could be generated from differential splice events and were used to match 

neoepitopes to differential splice events. 
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Figure 42 | Translation of significant splice events from alternative splicing analysis into peptide information. 
Sample-specific peptide sequence libraries were generated from significantly upregulated splice events in the 
GEX1A-treated condition, which were not explained by altered gene expression (cut-offs: logFC ≥ 2; FDR ≤ 0.05). 
Only peptide sequences ≥ 8 amino acids were included in final libraries. 

 

Table 17 | Number of peptide sequences of sample-specific Alternative Splicing Peptide Libraries derived from 
DJExpress analysis. 

DJExpress 

analysis 

RPE-1 WT 

GEX1A vs. NT 

RPE-1 TP53-/- 

GEX1A vs. NT 

RPE-1 TP53-/- NT 

vs. RPE-1 WT NT 

K562 WT 

GEX1A vs. NT 

Filtered sig. 

splice events 
15,034 21,324 35 992 

No. peptide 

sequences 
34,911 49,669 78 2,307 

 

3.9.2 Identification of splicing-derived neoepitopes  

Using the Alternative Splicing Peptide Libraries, it was possible to determine which of the previously 

identified neoepitope candidates originated from differentially regulated alternative splice events. The 

short peptide sequences of neoepitope candidates were searched in the peptide libraries derived from 

differential junction expression events. Following this strategy, several splicing-derived neoepitopes 

were identified across all sample groups (Table 18). The MSH2-/- T2 sample group provided the most 

neoepitope candidates and consequently delivered the highest number of splicing derived 

neoepitopes (n = 18) of all groups. In contrast, only two candidates were obtained from the WT sample 

group. Notably, the proportion of splicing-derived neoepitopes discovered from neoepitope 
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candidates was higher in cell lines carrying genetic deficiencies in the DNA damage repair pathway 

(Table 18)). Overall, neoepitope candidates were matched to 23 unique splice events. Here, one 

specific peptide matched two different splice events within the same gene. Also, two candidates were 

assigned to the same splice event. Twelve peptide candidates were identified from the canonical 

GENCODE annotation while the custom reference databases contributed 11 peptides to the overall 23 

identified splicing-derived neoepitope candidates (Figure 43A). 

 

Table 18 | Number of splicing-derived neoepitopes per sample group. Neoepitope candidates found in ≥ 2/3 
replicates treated with GEX1A were assigned to differential splice events (DJExpress results) by searching for 
matching peptide sequences in Alternative Splicing Peptide Libraries. 

Sample group WT TP53-/- MSH2-/- T2 MSH2-/- T6 
POLEP286R 

T16 
POLEP286R T17 

No. of 

neoepitopes 
366 728 751 382 217 402 

Splicing-derived 

neoepitopes 
2 7 18 5 4 10 

Proportion 0.55% 0.96% 2.4% 1.31% 1.84% 2.49% 

 

3.9.3 Filtering pipeline for neoepitope candidates 

The 23 neoepitope candidates were then subjected to manual filtering (Figure 43B). At peptide level, 

this included a BLASTp search against the human proteome to confirm that a neoepitope candidate 

could only arise from one specific splice event. BLASTp search assigned 18 peptides to their protein 

accessions. The remaining five peptides did not share 100% sequence similarity with any database 

entry, making them ideal neoepitope candidates.  

Moreover, it was crucial to determine the novelty of candidate peptide sequences. By looking at the 

differential splice events, it was evaluated whether the sequence indeed originated from an aberrant 

splice event in the GEX1A-treated condition. Here, 13 peptide sequences were found to be derived 

from the canonical splice event and were thus no longer considered neoepitopes. Notably, all twelve 

peptides identified from the UniProt reference database were among them. Consequently, the 

number of candidates was reduced to ten peptides which all originated from custom reference 

libraries (Figure 43C). The sequences of remaining candidates contained one to eight novel 

nucleotides, distinguishing them from the canonical isoform (Table 19).  
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Figure 43 | Filtering approach for neoepitope candidates of RPE-1 sample groups identified from DJExpress 
results. (A) Number of candidate peptides identified from different reference libraries. (B) Neoepitope candidates 
were evaluated on peptide and splicing level to select the most promising candidates (C) Number of selected 
candidate peptides identified from each custom reference library.  

 

Table 19 | Peptide information of filtered neoepitope candidates of RPE-1 sample groups identified from 
DJExpress analysis. Amino acids varying from canonical isoform are labeled red.  

Peptide Novelty 
Reference 

database 
BLASTp result Assigned gene 

SLAKALYEA novel 5 nt TransDecoder no match ANXA1 

YLLSREENAF novel 8 nt SJDB no match ATP6V0E1 

ILDNGEWTV novel 1 nt TransDecoder CCNB1 CCNB1 

KILDNGEWTV novel 1 nt TransDecoder CCNB1 CCNB1 

YIGDIHPLL novel 2 nt TransDecoder no match CYB5B 

YIDIEARTRY novel 1 nt SJDB DIS3L DIS3L 

KLNEYLLQY novel 5 nt SJDB no match PSMA4 

ELFQRPNAL novel 1 nt TransDecoder PUM1 PUM1 

GMIIGPPRV novel 1 nt SJDB UBE2V2/UBE2V1 UBE2V2 

SYSDIVRIY novel 8 nt SJDB no match UBE4B 
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HLA-I binding prediction revealed binding affinities of candidate peptides to specific HLA-I subtypes of 

RPE-1 cells (Table 20). All candidates matched the binding pattern of at least one HLA-I allele. Five out 

of ten candidates were predicted binders of HLA-A*02:01, followed by HLA-A*01:01 and HLA-C*07:02. 

Three other peptides were also predicted binders of HLA-C alleles but exhibited a better affinity 

towards HLA-A or HLA-B alleles. Notably, there was no predicted binder of HLA-B*07:02 among the 

candidate peptides, although HLA-B*07:02 binders made up the second biggest peptide cluster 

identified by GibbsClustering (Figure 25). 

 

Table 20 | HLA-I binding prediction results of filtered neoepitope candidates of RPE-1 sample groups identified 
from DJExpress analysis. Numbers represent KD values in nM. Coloring: dark green = best predicted binding allele; 
light green = predicted binding allele 

Peptide 

HLA-

A*01:01 

HLA-

A*02:01 

HLA-

B*07:02 

HLA-

B*08:01 

HLA-

C*07:01 

HLA-

C*07:02 

SLAKALYEA  8.5     

YLLSREENAF    596.1   

ILDNGEWTV 4904.8 5     

KILDNGEWTV  19     

YIGDIHPLL  19.5   2130 738.1 

YIDIEARTRY 87.4      

KLNEYLLQY 1446.5     3077.9 

ELFQRPNAL    40.6 2377.4 1505.4 

GMIIGPPRV  41     

SYSDIVRIY     605.3 166.1 

 

 

Moreover, the associated splice events of neoepitope candidates were examined. In line with the 

previous results from the rMATS analysis (Figure 39), eight of ten splice events were exon skipping 

events (Table 21). In addition, one peptide derived from a mutually exclusive exon (MXE) event and 

another from an alternative 3’ splice site were identified. Six splice events were annotated in 

GENCODE, while four novel, non-annotated splice events were discovered. All splice events showed a 

strong differential expression between treatment conditions independent of altered expression of the 

related gene (Table 21), passing the previous selection criteria. Very low median expression was 

detected for nine out of ten splice events in the non-treated control group. Three splice events were 

even labeled as ‘neojunction’ since there was no read evidence for the splice event detected in the 

non-treated condition. In contrast, the splice event of ATP6V0E1 was also robustly detected in non-
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treated samples. Thus, this candidate needed to be considered with care since the peptide could 

potentially also be produced in the control condition. In general, there was a difference observed in 

the abundance of differentially expressed splice events. The exon skipping event in ANXA1 was 

extremely evident which was reflected by the high median expression in the treated condition (Table 

21). In contrast, neojunction events such as exon skipping in DIS3L were lowly abundant.  

 

Table 21 | Splice event information of filtered neoepitope candidates of RPE-1 sample groups. The values for 
sample median junction expression and logFC were obtained from DJExpress analysis. Amino acids varying from 
canonical isoform are labeled red. MXE = mutually exclusive exon; SS = splice site 

Peptide Gene 
Splice event 

type 
Annotation 

median 

expr. NT 

median 

expr. GEX1A 

logFC 

DJExpress 

SLAKALYEA ANXA1 
exon 8 

skipping 

non-

annotated 
14 5956 10.14 

YLLSREENAF ATP6V0E1 
MXE exon 3 

(last exon) 
GENCODE 109 731 2.58 

ILDNGEWTV CCNB1 
exon 8 

skipping 
GENCODE 4 124 5.24 

KILDNGEWTV CCNB1 
exon 8 

skipping 
GENCODE 4 124 5.24 

YIGDIHPLL CYB5B 
exon 3+4 

skipping 
GENCODE 0 79 8.87 

YIDIEARTRY DIS3L 
exon 10 

skipping 

non-

annotated 
0 31 5.20 

KLNEYLLQY PSMA4 
exon 5 

skipping 
GENCODE 13 499 6.10 

ELFQRPNAL PUM1 
exon 3-7 

skipping 
GENCODE 14 114 2.95 

GMIIGPPRV UBE2V2 
exon 3 

skipping 

non-

annotated 
9 86 3.07 

SYSDIVRIY UBE4B 
alt. 3’ SS 

exon 4 

non-

annotated 
0 29 6.42 

 

The differential splice events and their abundance was further evaluated by Sashimi plots of raw read 

counts to visualize junction read coverage (Figure 44). This visualization highlighted the strong read 

evidence for the novel ANXA1 exon skipping event (Figure 44A). Also read coverage was found for the 
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occurrence of the other splice events. For the exon skipping events in CCNB1 and DIS3L, read evidence 

was exclusively found in GEX1A-treated samples (Figure 44C+E). The splice events in ATP6V0E1, CYB5B, 

PSMA4, PUM1, and UBE2V2 were also detected in the non-treated condition but occurred to a much 

lower extend (Figure 44B,D,F,G,H). Except for ATP6V0E1, where the Sashimi plot illustrated the 

relatively high read coverage of the MXE event in non-treated samples (Figure 44B). Notably, the novel 

alternative 3’ splice site in the UBE4B gene was not detected although read coverage for the specific 

region were detected as indicated by an elevated read count in the treated samples (Figure 44I). 

Overall, Sashimi plots confirmed the occurrence of all detected differential splice events and 

highlighted their different abundance in GEX1A-treated and non-treated samples. 
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Figure 44 | Sashimi plots of differential splice events with matching neoepitopes. (A)-(G) Read coverage of 
detected splice event in the non-treated (BLUE) and GEX1A-treated (RED) condition. Numbers represent read 
counts. Read files of three replicates per condition were grouped and averaged. RPKM: Reads per kilobase of 
transcript per Million mapped reads. 

 

3.10 In vitro validation of neoepitope candidate splice events 

 

3.10.1 Validation of differential splice events by RT-PCR 

The computational detected splice events of neoepitope candidates were reproduced in an 

independent experiment under similar conditions and experimentally validated by RT-PCR. The regions 

surrounding splice events were amplified by RT-PCR to detect different isoforms resulting from 

differential splicing (Figure 45A). Following this strategy, two additional isoforms were detected, 

derived from aberrant splicing of the ANXA1 exon 8 region upon GEX1A treatment of RPE-1 cells (Figure 

45C). In the non-treated samples, only the canonical sequence was detected, whereas two additional 

isoforms appeared in GEX1A-treated samples in a dose-dependent manner. The lower band with a size 

of 159 bp belonged to the skipped exon 8 isoform. Besides confirming the presence of the novel exon 

8 skipping event, the top band (~300 bp) gave evidence for a predicted intron retention event in the 

surrounding of ANXA1 exon 8. However, this intron retention event was not significantly differentially 

expressed, while three exon skipping events were detected across the whole ANXA1 gene (Figure 45B). 

These three events resulted in several transcript isoforms, which were successfully detected by RT-PCR 

(Figure 45D). 
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Figure 45 | Validation of a novel differential splicing event in the ANXA1 gene by RT-PCR. (A) Illustration of the 
non-annotated differential splice event of exon 8 skipping in ANXA1. (B) Splice plot of ANXA1 illustrating 
differential junction expression across the gene between GEX1A-treated and non-treated RPE-1 cells. Red dots 
indicate significant different junction usage independent of gene expression.  (C) RT-PCR products resulting from 
amplification of the region surrounding ANXA1 exon 8 in response to GEX1A treatment. (D) RT-PCR products 
resulting from amplification of the coding sequence of ANXA1 in response to GEX1A treatment. RT-PCR was 
performed on amplified cDNA from RPE-1 cells treated with 0, 10, 30, or 60 nM GEX1A for 24 h. PCR products 
were separated by electrophoresis to identify different splice isoforms based on their length. 

 

 

Following the same strategy, I validated splice events associated with other neoepitope candidates. 

For example, differential exon skipping events of CCNB1, PSMA4, and UBE2V2 were confirmed by RT-

PCR (Figure 46). In addition to the canonical transcript isoform, evidence for the skipped exon isoform 

was detected for these three genes in response to GEX1A treatment. All three events were previously 

predicted by DJExpress analysis to be significantly differentially expressed, as highlighted in the splice 

plots of Figure 46. Besides, an annotated intron retention event in TUBA1A was investigated. This event 

was predicted to be significantly differentially expressed by JunctionSeq analysis but not by DJExpress 

analysis. RT-PCR revealed no evidence of this intron retention event in TUBA1A in response to GEX1A 

treatment in RPE-1 cells. In general, read evidence of this splicing event was low and likely elevated 

due to an enhanced TUBA1A gene expression in GEX1A-treated samples. These data support the 

notion that DJExpress analysis can efficiently prevent the detection of false-positive differential splice 

events resulting from gene expression changes between sample groups. 

 

A. 
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Figure 46 | Validation of candidate splice events by RT-PCR. Differential splice events were highlighted in splice 
plots. Regions surrounding differential splice events of CCNB1, PSMA4, UBE2V2, and TUBA1A were amplified from 
cDNA of RPE-1 TP53-/- samples treated with 0 nM or 60 nM GEX1A for 24 h. PCR products were separated by 
electrophoresis to identify different splice isoforms based on their length. Red arrows mark junctions of interest. 

 

 

3.10.2 Identification of differential splice events in TCGA patient data 

Since alternative splice events were discovered in cell models, the presence of novel splice events was 

explored in TCGA patient data to investigate their clinical potential. Indeed, novel splice events such 

as exon 8 skipping of ANXA1 were detected in patient data and found to be differentially expressed 

across several cohorts (Figure 47A). Here, isoform expression separated patients into two groups, with 

the smaller subgroup of patients exhibiting high expression of the skipped exon 8 variant. Several head 

and neck cancer (HNSC) patients showed increased expression levels of this novel isoform, indicated 

by high expression variance inside the cohort. To examine the impact of the expression of the 

alternative ANXA1 exon 8 isoform, a survival analysis was performed on patients expressing the 

HLA*02:01 allele (Figure 47B). Patients possessing high expression levels of the ANXA1 exon 8 variant 

exhibited a significantly better prognosis (p = 0.0068) which was reflected in median survival of 2200 

days. In contrast, patients with low expression levels had a poorer outcome reflected in median 

survival of only 1100 days. 
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Figure 47 | Detection of the non-annotated ANXA1 exon 8 skipping event in TCGA patient data. (A) Variance in 
the expression of novel ANXA1 exon 8 skipped isoform across TCGA cohorts. Normalized (norm.) junction 
expression describes the expression of the junction of interest in relation to the average expression levels of all 
junctions within the gene. (B) Survival of HLA-A*02:01-expressing HNSC patients (n = 231) based on skipped 
ANXA1 exon 8 isoform expression. Groups for survival analysis were separated by median isoform expression. 
Survival probability describes the ratio between the number of participants surviving and the number of 
participants at risk. 

  

Junction expression of differential splice events of all candidates was checked in TCGA patients 

expressing the required HLA-I allele for peptide presentation (Table 22). This revealed that six 

candidate splice events were differentially expressed between patients of multiple cohorts and normal 

tissue. In four cases, this differential junction expression had a significant impact on the survival of the 

patients, similar to the ANXA1 event displayed in Figure 47B. In contrast, splice events of CYB5B, DIS3L, 

and UBEE4B were not found differentially expressed between patients and normal tissue. Thus, the 

respective neoepitope candidates were not considered for subsequent immunogenicity assays. The 

detection of candidate splice events in TCGA data demonstrated that those events also occur in 

patients, highlighting their clinical potential. 
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Table 22 | Detection of differentially expressed splice events in TCGA data. Patient data comprises junctions 
differentially expressed in cancer patients compared to a normal tissue control (CCLE). For each event, only 
patients were selected that expressed the matching HLA-I subtype for the respective candidate peptide. BLUE = 
junction event differentially expressed; RED = differential junction event expression detected with significant 
impact on patient survival (p < 0.05); WHITE = junction not found / not differentially expressed between patients 
and normal tissue. 

 

 

 

 

 

 

 

 

 

Cohort ANXA1 ATP6V0E1 CCNB1 CYB5B DIS3L PSMA4 PUM1 UBE2V2 UBE4B

ACC

BLCA

BRCA

CESC

CHOL

COADREAD

DLBC

GBM

HNSC

KIPAN

LGG

LIHC

LUAD

LUSC

MESO

OV

PAAD

PCPG

PRAD

SARC

SKCM

STES

TGCT

THCA

THYM

UCEC

UCS

UVM
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3.11 Immunogenicity assays of candidate neoepitopes 
 

The immunopeptidomics workflow combined with the differential splicing analysis provided ten 

neoepitope candidates. As final step of the pipeline, I performed immunogenicity assays in 

collaboration with Alejandro Hernandez-Sanchez to evaluate the immunogenic potential of predicted 

differential splicing-derived candidates. The T cell response towards neoepitopes was determined by 

in vivo immunization assays using the HLA-A*02:01-transgenic mouse model (Pajot et al., 2004). These 

A2.DR1 mice are deficient for mouse MHC molecules and instead carry human HLA-A*02:01 and HLA-

DR1 alleles. This enables A2.DR1 mice to present peptides identified from human cell models on the 

cell surface. Thus, this model system is suitable to evaluate the immunogenicity of human neoepitope 

candidates.  

However, the approach is limited to evaluating peptides binding to the HLA-A*02:01 subtype. 

According to HLA-I binding analysis, five candidates were predicted binders of this subtype and were 

thus suitable for the in vivo immunization approach (Table 20). However, A2.DR1 mice were not 

immunized with the YIGDIHPLL peptide from CYB5B since the matching splice event was not detected 

in patient data (Table 22). Instead, the KLNEYLLQY peptide from PMSA4 was included in the vaccination 

rounds (Table 23). Although this was not a predicted binder of HLA-A*02:01, this peptide originated 

from an interesting differential splice event and was a predicted binder of the sister allele HLA-A*01:01 

with a similar binding motif. In addition, mice were vaccinated with two control peptides. As negative 

control, the GMLPDPKNV peptide from ANT1 was included. This peptide was not only found in both 

treatment conditions of RPE-1 cells but also shares the same sequence in mouse and human. As 

positive control, the YMLDLQPET peptide from HPV16-E7 induced an immune response in mice. For 

immunogenicity assays, we immunized the mice with two peptides per group to evaluate the T cell 

response in mice (Table 23). 

Table 23 | Peptides used for immunization experiments of A2.DR1 mice. 

Peptide 

HLA-A*02:01  

K
D 

[nM] 
Function Origin 

Group 

(n = 6 mice) 

SLAKALYEA 8.5 candidate ANXA1 2 

KLNEYLLQY 4432 candidate PSMA4 2 

ILDNGEWTV 4.98 candidate CCNB1 3 

GMIIGPPRV 41 candidate UBE2V2 3 

KILDNGEWTV 19 candidate CCNB1 4 

GMLPDPKNV 165 neg. control ANT1 4 

YMLDLQPET 22.3 pos. control HPV16-E7 1 
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3.11.1 Validation of candidate peptide sequences  

Before we immunized the animals with candidate peptides, I validated all peptide sequences. Due to 

the limited sensitivity and specificity of the LC-MS/MS approach, the detection of short peptides with 

similar sequence patterns can still be error-prone. To verify the peptide sequences of neoepitope 

candidates, I compared their experimental mass spectra to respective synthetic references. Synthetic 

peptide standards were measured by mass spectrometry using the exact same parameters and 

conditions as applied for the experimental data. Eventually, I determined the correlation of matched 

fragment ions between experimental and synthetic spectra (Figure 48). All candidates showed a tight 

correlation between the individual ion fragments, which was reflected by high Pearson’s correlation 

values (R² > 0.95). In addition, differences in retention times of experimental data and synthetic 

peptides were limited to just a few minutes. This indicated that predicted peptides and synthetic 

standards shared physiochemical properties. Following this validation strategy, experimental peptide 

sequences of all six peptides used for immunization experiments were confirmed. 

 

 

Figure 48 | Validation of peptide sequences of identified neoepitope candidates and control peptide used for 
immunogenicity assays. (A-F) Synthetic standards based on experimentally predicted peptides were identified 
from mass spectrometry data. Ion fragments detected from experimental spectra (top) were compared to ion 
fragments of synthetic peptide spectra (bottom).  

A. B. 

C. D. 

E. F. 
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3.11.2 Evaluation of T cell response by ELISpot 

To determine the potential of candidate peptides to induce T cell activity, we performed ELISpot assays 

to capture IFN-γ production by activated T cells. We challenged isolated splenocytes from immunized 

mice with the T cell activator Concanavalin A (ConA) to determine the general capacity of T cells. 

ELISpot analysis revealed that this successfully induced T cell activation while no T cell response was 

observed for samples incubated with the negative control peptide or without peptide (Figure 49A). 

However, the magnitude of response varied between animals in Group 1. Mice #1-3 showed a more 

pronounced response than mice #4-5. Consistently, mice #4-5 also showed a weaker response towards 

the positive HPV16-E7 control peptide than mice #1-3. Mice of Group 2 vaccinated with ANXA1 and 

PSM4A peptides delivered a robust response to T cell activation by ConA (Figure 49B). In addition, a 

strong T cell response was observed when splenocytes were stimulated with the ANXA1 peptide. In 

contrast, the immune response was feeble in samples incubated with the PSMA4 peptide. All animals 

of Group 3 showed very pronounced T cell activation in response to stimulation with peptides of both 

CCNB1 # 1 and UBE2V2 (Figure 49C). Likewise, the second peptide of CCNB1 was able to induce a strong 

T cell response (Figure 49D). In contrast, T cells were not activated by the stimulation with the ANT1 

peptide, which was derived from a canonical sequence found in both mouse and human. The ELISpot 

assays demonstrated that four of the five candidate peptides were able to induce a T cell response in 

mice. 

 

 

A

B
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Figure 49 | T cell response to immunization of A2.DR1 mice with candidate neoepitopes. Ex vivo IFN-γ ELISpot 
of isolated splenocytes (2x106/well) challenged with (A) HBV16-E7 positive control peptide; (B) neoepitope 
candidates ANXA1 + PSMA4; (C) neoepitope candidates CCNB1 #1 + UBE2V2; (D) neoepitope candidates CCNB1 
#2 + ANT1. Stimulation with T cell activator Concanavalin A (ConA) was used as positive control. The SIINFEKL 
peptide, as known binder to H2-kb in mice, served as control peptide. A no peptide control was used as 
background reference.  

 

We quantified the results of the ELISpot assays to compare the T cell activation in response to the 

different candidate peptides (Figure 50). The ANT1 peptide was derived from a canonical sequence 

and was thus not able to induce T cell response. In contrast, the positive control peptide derived from 

HPV16-E7 induced a strong immune response reflected by approximately 200 IFN-γ spots per 1x106 

cells. The ANXA1 peptide induced a T cell response with a similar magnitude. In contrast, the PSMA4 

peptide was not successful in elucidating a strong immune response. Both neoepitope candidates from 

CCNB1 as well as the UBE2V2-derived candidate showed a very pronounced T cell response with up to 

twice as many spots as observed in the positive control. These data provide evidence that splicing-

derived neoepitopes indeed possess a high immunogenic potential. 

 

 

 

C. 

D. 
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Figure 50 | Quantification of ex vivo IFN-γ ELISpot results. Spots on membranes were counted for each replicate 
and normalized to 1x106 cells. 

 

 

3.11.3 Functional T cell killing assays 

We further investigated whether the neoepitope candidates had not only the potential to activate T 

cell response but were also capable of inducing specific T cell-mediated killing of the neoepitope-

presenting cells. These T cell killing assays were performed by Alejandro Hernandez-Sanchez, who 

isolated splenocytes and cultured them for a week in the presence of a candidate peptide. Afterwards, 

CD8+ T cells primed for a specific peptide were isolated from splenocytes and co-cultured with target 

cells derived from the A2.DR1 cell line. Half of the target cells were loaded with a candidate peptide 

and labeled with CFSE. The other half was labeled with FarRed and loaded with Survivin, which T cells 

recognized as self-peptide. Target and effector cells were co-cultured for 48 h in different cell ratios. 

The following flow cytometry analysis revealed that the CD8+ T cells primed against the HBV16-E7 

peptide specifically eliminated target cells presenting the very same peptide (Figure 51). The higher 

the concentration of CD8+ T cells in the sample, the more peptide-presenting target cells were 

eliminated. 
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Figure 51 | Flow cytometry analysis revealed specific elimination of peptide-loaded target cells by primed CD8+ 
T cells. A2.DR1 target cells were labeled with CFSE and loaded with peptides of interest or labeled with FarRed 
and loaded with Survivin (control). After 48 h of co-culturing, the ratio between the two populations was 
calculated for each sample to determine the percentage of target cells eliminated by primed CD8+ T cells. 

 

We determined the percentage of T cell-specific killing by calculating the ratio of target and control 

cells in relation to the same ratio measured in the control sample in the absence of CD8+ T cells. The 

results were plotted as T cell killing curves (Figure 52). In the positive control, up to 70% of target cells 

loaded with the HBV16-E7 peptides were eliminated by CD8+ T cells (Figure 52A). Also, target cells 

presenting the ANXA1 peptide were eliminated, but only up to 40% in a ratio of 40:1 of effector to 

target cells (Figure 52B). The three other candidate peptides (UBE2V2, CCNB1 #1 & #2) achieved an 

even higher elimination rate, with more than 80% of eliminated target cells in the highest T cell 

concentration (Figure 52C-E). The highest percentage of killing was observed for target cells presenting 

the UBE2V2 peptide. Here, CD8+ T cells were able to eliminate close to 100% of target cells in the 40:1 

condition presenting this candidate peptide (Figure 52D).  

 

Overall, the T cell killing assays demonstrated the ability of splicing-derived neoepitopes to elicit an 

immune response and CD8+ T cell-mediated killing in vivo, thereby highlighting their potential to serve 

as functional targets for T cell-mediated elimination of aberrant tumor cells for cancer 

immunotherapy. 
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Figure 52 | Percentage of specific killing of peptide-loaded target cells by primed CD8+ T cells. Percent of cells 
eliminated in different ratios of CD8+ T cells and target cells loaded with peptides derived from (A) HBV16-E7, (B) 
ANXA1, (C) CCNB1 #1 and UBE2V2, (D) CCNB1 #2. Data points represent the means with standard deviation of 
technical duplicates/triplicates.  
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4. Discussion 

 

With the work in my thesis, I aimed to investigate whether an increase in splicing burden generates 

aberrant splicing-derived peptides that can function as neoepitopes for cancer immunotherapy. To 

accomplish this, I established an immunopeptidomics pipeline which allowed me to explore the 

immunopeptidome of cell lines with different splicing burdens. This also included the generation of 

sample-specific reference libraries based on matching RNA-seq data. These custom databases enabled 

the identification of non-canonical, not-annotated peptides from raw mass spectrometry data. 

In addition, I analyzed the transcriptome and identified all relevant significantly differentially spliced 

events that can give rise to potential neoepitopes. I then generated sample-specific peptide libraries 

by translating the genetic information of identified splice events into peptide sequences. Eventually, I 

combined these two efforts and matched potential neoepitopes obtained from the 

immunopeptidomics workflow with the peptide reference library to specifically identify neoepitope 

candidates originating from differential splice events.  

 

Ultimately, I explored whether I could obtain neoepitopes with highly immunogenic properties from 

aberrant splice events. In addition, I wanted to evaluate how many potential new targets are generated 

by an increase in the splicing burden and whether this could be a predictive biomarker for response to 

immune checkpoint inhibitor therapy. 

 

4.1 The immunopeptidomics approach captures splicing-derived peptides 
 

Current strategies to identify neoepitopes derived from differential splicing changes rely on 

computational prediction methods. However, these computational strategies are limited in their 

ability to discover splicing-derived neoepitopes. These rely on error-prone HLA binding prediction tools 

and use mass spectrometry datasets in which splice junction peptides are underrepresented (reviewed 

in chapter 4.1.4). Thus, I used mass spectrometry-driven immunopeptidomics, the only analytical 

methodology that allows the direct identification of HLA-I peptides naturally presented in vivo 

(Bassani-Sternberg and Coukos, 2016; Chong et al., 2020). Eventually, I combined high throughput HLA-

I IP, high-resolution mass spectrometry, and custom computational pipelines to explore the 

immunopeptidome of cell lines with alternating splicing burdens. 
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4.1.1 RPE-1 cells as a model to explore splicing-induced changes in the immunopeptidome 

For proof-of-concept experiments, I recovered the immunopeptidome of K562 cell lines. I chose this 

cell model of chronic myeloid leukemia (CML) since spliceosomal mutations are commonly found in 

hematopoietic malignancies (Dvinge et al., 2016). Two of the most frequently reported gain of 

functions mutations are found in spliceosomal core components SF3B1 and U2AF1, for which we had 

K562 cell models available at our lab. In addition, K562 are suspension cells and thus easy to expand 

to large numbers, which were needed as input for HLA-I IP experiments. 

 

Despite these advantages, the K562 cell model suffered from one major shortcoming. Since K562 cells 

do not express HLA-I at baseline, HLA-I expression must be induced by IFN-γ stimulation. I 

demonstrated that HLA-I expression can be induced and maintained in a concentration and time-

dependent manner at protein and cell surface level. Accordingly, I successfully recovered several 

thousands of peptides using HLA-I IP.  

 

However, when I explored the alternative splicing landscape of K562 cells by performing an isoform 

expression analysis, I observed that K562 WT and SF3B1K700E cells showed no difference in isoform 

expression patterns. I investigated this further by analyzing published RNA-seq data of unstimulated 

K562 cells (Seiler et al., 2018b). Here, I was able to detect isoform expression changes, which led me 

to conclude that IFN-γ treatment masked the largely subtle mutation-related splicing changes in my 

K562 dataset. Indeed, I discovered that the changes in gene expression level between the two K562 

sample groups primarily resulted from IFN-γ stimulation, indicated by activated interferon response 

gene transcription. Moreover, it has been reported that IFN-γ stimulation induces splicing of 

interferon-responsive transcripts (Condino-Neto and Newburger, 2000) and alternative splicing is 

connected to IFN-γ response during viral infections (Liao and Garcia-Blanco, 2021).  

 

To explore an alternative cell model where splicing is not affected by IFN-γ stimulation, I transitioned 

to RPE-1 cells. This also had the advantage that RPE-1 cells express HLA-I subtypes that frequently 

occur in the human population. For example, the HLA-A*02:01 allele occurs in 26.7% of registered 

German bone marrow donors and is used in common in vivo immunization models such as the 

transgenic mouse model we used in this study to measure immunogenicity of the identified 

neoepitope candidates. Another advantage was that I could compare an actual WT cell line with a 

‘cancer-like’ cell line carrying a knockout in TP53. Additionally, I could explore the immunopeptidome 

of RPE-1 cell lines with genetic deficiencies in the DNA damage repair pathway. The only disadvantage 
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of RPE-1 cells was the challenging aspect that these cells grew adherent and needed to be detached. 

As described above, this leads to a potential loss of splicing-derived peptides. I solved this issue by 

using an enzyme-free detachment buffer to obtain sufficient input material for HLA-I IP while avoiding 

potential damage to cell surface proteins. These combined advantages of the RPE-1 cell lines made 

them a superior cell model for discovering splicing-derived neoepitopes. 

 

4.1.2 HLA-I IP specifically recovers HLA-I bound peptides 

The protocol for HLA-I high-throughput immunopurification was based on previous studies (Bassani-

Sternberg, 2018; Chong et al., 2018) and adapted by a similar approach aiming at identifying frame-

shift neoepitopes (Becker et al., 2021). Following this strategy, I successfully recovered thousands of 

HLA-I-bound peptides from cell lines with splicing perturbations. By comparing the K562 and RPE-1 

datasets, I demonstrated haplotype-specificity of recovered peptides since only 1% of identified 

peptides overlapped between these two cell lines with completely different HLA-I haplotypes. In 

general, quality control procedures confirmed the accuracy of peptides identified from HLA-I IP 

samples. Thus, HLA-I IP has proven to be a suitable approach to explore the immunopeptidome of 

splicing-impaired cell lines. 

 

The bottleneck of the immunopeptidomics approach is the limited sensitivity of mass spectrometry 

(Frankiw et al., 2019). This is further exacerbated by the fact that HLA-I peptides all possess a similar 

sequence and length, making their identification from mass spectra very challenging. Indeed, when I 

compared the replicate overlap of sample groups, I noticed that – dependent on the sample group – 

only 28-47% of peptides were shared by all replicates. I explored this in more detail and clustered 

samples based on their similarity, which revealed that the sample size of identified peptides was critical 

for sample similarity. However, the number of identified peptides strongly varied between replicates. 

Due to the use of enzyme-free detachment buffer, which led to substantial cell clumping, it was difficult 

to determine exact cell numbers, leading to a different amount of input material for HLA-I IP. 

Additionally, the efficacy of HLA-I IP can vary based on technical difficulties during the HLA-I IP 

workflow. Notably, although the original publication of the HLA-I IP workflow reports a sample overlap 

of 84% (Chong et al., 2018), recent studies either do not show sample overlap (Becker et al., 2021) or 

present barely overlapping replicates (Lu et al., 2021). These discrepancies potentially result from 

differences in the mass spectrometry data acquisition strategy, where more sensitive approaches lead 

to a greater sample diversity. Furthermore, the low reproducibility across samples can be caused by 

the data-driven acquisition method used for mass spectrometry, as explained later in Section 4.1.5. 
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The limited mass spectrometry sensitivity highlights the challenge of detecting low abundant peptides 

robustly across all replicates. Thus, neoepitope identification started by comparing all peptides that 

passed quality control procedures. Given the limited sensitivity of mass spectrometry, in principle, all 

identified peptides could be considered as neoepitopes for further analysis. Indeed, a recent similar 

study followed this approach to broaden the candidate search space (Lu et al., 2021). Nevertheless, I 

decided to limit the candidate pool to neoepitopes detected in at least two out of three replicates per 

sample group. This allowed me to identify strong peptide candidates without ambiguities which were 

thus suitable for in vivo immunization experiments.   

 

 

4.1.3 Custom reference databases broaden the search space for peptide identification 

During peptide identification by PEAKS search, I determined peptides from mass spectra by de novo 

peptide sequencing. These de novo peptide sequences were then confirmed by matching them against 

a reference database. First, I used the UniProt database as reference because it already contains 

manually curated protein information from SwissProt as well as computationally annotated entries 

from RefSeq (Bateman et al., 2021). By applying a stringent cut-off of 1% FDR for identified peptides, I 

obtained thousands of HLA-I-presented peptides as confirmed by quality control steps.  

 

However, this did not include sample-specific peptides potentially generated by aberrant splicing 

induced by GEX1A treatment. Thus, I designed custom reference libraries that facilitated the 

identification of splicing-derived peptides by following two different approaches. First, I generated the 

Splice Junction-spanning DataBase (SJDB), consisting of short peptides representing all potential 

peptide sequences that could be generated from detected splice junctions in the samples. However, 

this database only covered splice junctions and there was no reading frame control when the genomic 

coordinates were translated into peptide sequences. Given the limited database size and the high 

proportion of potential false-positive entries, the SJDB was not suitable as primary reference database.  

I addressed the shortcomings of the SJDB by establishing a workflow that generated a sample-specific 

de novo proteome. By adapting the TransDecoder part of the ProteomeGenerator framework (Cifani 

et al., 2018), I was able to generate a robust sample-specific proteomic reference database, including 

peptide sequences derived from novel splice junctions. This database showed a similar performance 

as UniProt during PEAKS search, which was reflected by similar FDR values. Notably, a high proportion 

(> 98%) of TransDecoder peptides were already detected in UniProt, which was in line with published 

data (Cifani et al., 2018).  
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Eventually, I decided to perform a concatenated, multi-round PEAKS search against canonical and 

custom databases to allow peptide identification from the largest possible search space. The custom 

peptide reference libraries allowed me to identify hundreds of sample-specific peptides additionally. 

The presence of these peptides was confirmed by quality control steps in which peptides exhibited 

similar quality features as peptides identified by UniProt. Importantly, although these peptides 

accounted only for 1% of total peptides found, they represented 11 of 23 neoepitope candidates. 

Notably, after manual filtering, all remaining candidates were peptides identified from custom 

databases. These findings are supported by a previously published strategy, which also generated 

sample-specific reference databases to facilitate the identification of non-canonical peptides from 

mass spectrometry datasets (Chong et al., 2020). Hence, a sample-specific proteomic reference is 

essential for a comprehensive identification of neoepitopes from aberrant splice events.  

 

4.1.4 Peptide identification bias towards highly expressed genes 

As discussed above, the immunopeptidomics approach is limited by the sensitivity of mass 

spectrometry data acquisition methods (Frankiw et al., 2019). At the same time, most aberrant splice 

events, such as intron retention events, are found in low abundant transcripts (Pickrell et al., 2010). By 

matching the peptide information to gene expression data, I discovered that most peptides were 

indeed derived from highly expressed genes. Accordingly, genes matched to GEX1A-associated 

neoepitopes were differentially higher expressed in the GEX1A-treated condition. These data suggest 

that most potential neoepitopes result from gene expression changes rather than differential 

alternative splicing. This explains why I could only identify 23 splicing-derived peptide candidates from 

hundreds of detected neoepitopes in the GEX1A-treated condition. The majority of splicing-derived 

neoepitope candidates I identified were in-frame exon skipping events causing no disruption of the 

canonical reading frame. Since these transcripts are not targeted by nonsense-mediated decay, they 

occur more abundantly than transcripts derived from intron retention events or other splice events, 

causing reading frame errors and PTCs.  

 

The bias of peptide detection towards highly expressed gene products highlights the limitation of the 

mass spectrometry-driven approach. However, mass spectrometry is the only analytical methodology 

that allows the direct identification of HLA-I peptides naturally presented in vivo (Bassani-Sternberg 

and Coukos, 2016; Chong et al., 2020). Due to the advantages of immunopeptidomics for identifying 

neoepitopes, researchers in the field aim to improve the methodology for mass spectrometry data 

acquisition, as discussed in Section 4.1.5. 
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4.1.5 Data-independent acquisition during mass spectrometry enables immunopeptidomics for 

translational research 

The limited sensitivity of mass spectrometry prevents the identification of splicing-derived 

neoepitopes (Frankiw et al., 2019). Using immunopeptidomics, I could overcome technical burdens 

like the cleavage bias of Trypsin towards splice junctions. Still, discovery-driven peptide detection by 

mass spectrometry is biased towards abundant peptides of highly expressed transcripts, as discussed 

in Section 4.1.4. For explorative searches, this and other studies use data-dependent tandem 

acquisition (DDA) during mass spectrometry measurements. On the one hand, this method focuses on 

isolating peptide m/z before tandem mass spectrometry and thereby provides high-quality references 

of peptide fingerprints (Gatlin et al., 2000). On the other hand, the DDA method stochastically selects 

abundant ions and thus has a bias towards the detection of abundant peptides leading to an impaired 

sensitivity and reproducibility (Pak et al., 2021). This could be solved by using data-independent 

acquisition (DIA), which provides a sample-specific comprehensive digital map of fragment ions within 

given isolation m/z windows (Bruderer et al., 2017). These spectra are then compared to spectral 

libraries obtained from DDA datasets. Given the limited amount of input material retrieved from 

patients, the generation of DDA-based libraries is impractical, preventing the implementation of DIA 

for immunopeptidomics in translational research (Pak et al., 2021). In a recent study, Pak and 

colleagues developed a DIA immunopeptidomics workflow combining several data sources into a so-

called multi-HLA spectral library. Implementing this, they significantly improved peptide identification 

from DIA data and were able to detect clinically relevant HLA ligands (Pak et al., 2021). These data 

demonstrate the ability of DIA to increase the sensitivity and reproducibility of immunopeptidomics 

while requiring less input material, thereby also enabling the use of patient biopsies samples. 

Moreover, a more sensitive mass spectrometry approach will also facilitate to overcome the detection 

bias towards highly abundant peptides, which was observed in this study. Taken together, the progress 

in mass spectrometry methodology will enable the application of immunopeptidomics for translational 

purposes in the future. 

The technological advances in the mass spectrometry instruments and methodology will allow a more 

comprehensive and effective detection of HLA-I peptides, making immunopeptidomics a highly 

attractive approach for future studies. 
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4.2 Differential splicing analysis  
 

4.2.1 GEX1A induces pronounced changes in the alternative splicing landscape 

Recent studies reported altered alternative splicing patterns in tumor cells resulting from mutations 

and dysregulated expression of spliceosomal components and regulators (Baeza-Centurion et al., 

2019; Jayasinghe et al., 2018). This overburdens the splicing machinery in cancer cells and causes 

alternative junction usage in patients (Kahles et al., 2018). In addition, tumors frequently express 

‘neojunctions’ which are not typically found in normal tissue and are particularly attractive targets for 

neoepitope discovery (Kahles et al., 2018). By treating cells with splicing inhibitors, I aimed to 

recapitulate the aberrant alternative splicing phenotype observed in cancer cells.  

 

Indeed, GEX1A treatment effectively induced splicing aberrancies reflected by several thousands of 

significant differential splice events, from which approximately two-thirds of them were caused by 

exon skipping. This was contradictory to findings of a previous study where researchers reported that 

treatment with the splicing inhibitor H3B-8800 mainly caused intron retention events, followed by 

exon skipping events (Seiler et al., 2018b). Like GEX1A, H3B-8800 broadly inhibits splicing by binding 

SF3B1 to prevent the assembly of the spliceosome. The reason for the discrepancy between the 

numbers of detected intron retention events potentially lies in the detection criteria. For example, 

Seiler et al. did not introduce log fold change cut-offs to their data. When I re-analyzed their dataset 

using my parameters, I obtained mostly exon skipping events but notably almost no intron retention 

events (data not shown). Generally, intron retention events are not expected to be detected this 

frequently because they often cause PTCs and are thus degraded by NMD (Pickrell et al., 2010). Hence, 

in-frame exon skipping events are most promising for delivering a sufficient amount of protein that 

can be detected by mass spectrometry.  

 

Initially, I used the GR25 dose of GEX1A to recapitulate the aberrant alternative splicing phenotype in 

K562 cells for proof-of-concept experiments. Since I observed no lethality during the short time of drug 

treatment, I decided to use the GR75 dose in RPE-1 cells to obtain an even more pronounced 

phenotype. Moreover, the RPE-1 cells with genetic deficiencies were more susceptible to GEX1A 

treatment. Consequently, the same GEX1A dose caused more prevalent differential splicing in RPE-1 

TP53-/- cells. 
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Notably, the treatment-induced response resulted in a more pronounced aberrant splicing phenotype 

than mutation-induced changes, which was in line with reported findings (Seiler et al., 2018b). IFN-γ 

stimulation was able to mask the subtle splicing changes in K562 cells carrying SF3B1 mutations. 

Consequently, I decided to focus on splicing inhibitor GEX1A, which induced substantial differential 

splicing changes in all cell models. The clinical implications of splicing inhibitors are further discussed 

in Section 4.5. 

 

 

4.2.2 DJExpress is most suitable for detecting neoepitope-generating differential splice events 

To assess changes in the alternative splicing landscape, I performed a Salmon analysis based on isoform 

abundance. However, this approach did not include the detection of novel splice junctions. These were 

of particular interest since they can give rise to novel, (cancer-)specific peptide sequences and 

frequently occur in cancer patients (Kahles et al., 2018). Thus, I switched to count-based differential 

splicing analysis methods, which incorporate information on novel splice junctions obtained from STAR 

alignment. The first computational tool I used to detect differential splice events was rMATS. This tool 

provided inclusion level differences of splice events between two sample groups based on percent 

spliced in (PSI) values, reflecting the percentage variant transcripts relative to all transcripts covering 

the junction of interest. This approach allowed me to detect highly abundant splice events that appear 

upregulated compared to the canonical event. However, especially novel, non-annotated or cryptic 

splice events do not occur very frequently within transcripts’ structure. Although these splice events 

might not be highly relevant for the biological function of a gene/protein in the cell, the aberrant 

transcripts can be of high interest if they are translated into non-canonical peptide sequences. While 

the rMATS approach was helpful to determine different splice event types, such as exon skipping or 

intron retention events, it was limited in the ability to identify all relevant differential splice events in 

my datasets.  

 

To be able to include all relevant splice events for further evaluations, I performed JunctionSeq analysis 

to detect changes in splicing patterns involving lowly expressed exon-exon junctions. Here, significant 

splice events were determined by fold change differences of splice junction expression levels between 

the sample groups instead of inclusion level differences. I obtained ten thousand differentially 

expressed splice events, including low abundant and novel, non-annotated splice events. The 

JunctionSeq analysis provided information about all splice events found differentially expressed 

between two sample groups. However, it was not designed to take into account differential gene 

expression (Hartley and Mullikin, 2016). This was an important point to consider since GEX1A 
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treatment resulted in altered gene expression between sample groups and most of the detected 

neoepitopes originated from those differentially expressed genes (also see Section 4.1.4). Thus, it was 

crucial to determine whether the differences in splice junction expression were genuinely caused by 

junction usage or simply resulted from changes in total gene expression in order to identify bona fide 

splicing-derived neoepitopes. 

 

To include information about gene expression changes in the differential splicing analysis, our research 

group developed the limma-based DJExpress pipeline (Gallego-Paez & Mauer, 2022). Using this tool, I 

was able to determine whether the altered frequency of a detected splice event was explained by gene 

expression changes or by junction usage between the sample groups because the analysis allowed me 

to evaluate the expression of every splice event in the context of junction expression across a whole 

gene. Eventually, this approach allowed me to specifically select only events with differential junction 

usage. 

 

 

4.2.3 Limitations of count-based identification of splice events 

One challenging aspect of the count-based differential splicing analysis was that I was only able to 

detect a specific genomic region of a gene but could not unambiguously determine the respective 

transcript isoform (Figure 53). This introduced ambiguities when I translated the splice events into 

peptide sequences before matching them to identified neoepitopes. Since no reading frame control 

was available, these peptide libraries contained more than twice as many peptides than splice events. 

Thus, I had to consider that potentially non-existing peptides were also matched with neoepitopes. 

Moreover, the peptide reference libraries lacked coverage because these were limited to splice 

junction-spanning peptides originating from upregulated junctions. 

 

These shortcomings could be solved by isoform-based approaches for splicing analysis, where full-

length gene isoforms are accurately reconstructed. However, these tools are generally not suitable for 

detecting non-annotated splice events. One strategy that should be considered for future studies is 

the IsoformSwitchAnalyzeR workflow which determines isoform usage, for instance from Salmon 

analysis based on a sample-specific assembled transcriptome reference including novel splice junctions 

(Vitting-Seerup and Sandelin, 2018).  
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Alternatively, full-length transcripts can be obtained from long-read RNA-seq. However, this is a cost-

intensive method and was therefore not applicable to this large dataset. A cost-saving alternative 

would be Nanopore MinION sequencing which has become more established over the past years. For 

example, a recent study demonstrated that this method can provide robust information on isoform 

expression to identify differential splice events (Oka et al., 2021). However, until very recently, MinION 

sequencing achieves approximately only 90% sequencing accuracy (Seki et al., 2019), which is sufficient 

for the precise extraction of splice patterns but not for the identification of neoepitopes where 

accurate base calling of genomic sequences is critical. Consequently, Oka et al. combined short-read 

and long-read RNA-seq in their study to identify splicing-derived neoepitopes. Nevertheless, with the 

continuing progress in long-read RNA-seq technologies, these will become the method of choice to 

detect differences in alternative splicing patterns for neoepitope identification. 

 

 

Figure 53 | Overview on count-based and isoform-based approaches for differential alternative splicing 
analysis. Count-based tools were chosen to enable the identification of non-annotated alternative splice events. 
PSI = percent spliced in; LFC = log fold change. 
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4.3 Identification of splicing-derived neoepitopes  
 

4.3.1 Cell lines with genetic deficiencies in the DNA damage repair pathway produce more 

splicing-derived neoepitopes 

By merging information from immunopeptidomics and differential splicing analysis, I could identify 23 

individual splicing-derived neoepitope candidates across all RPE-1 cell lines. Here, the proportion of 

splicing-derived neoepitopes discovered from neoepitope candidates was higher in cell lines carrying 

genetic deficiencies in the DNA damage repair pathway. This is likely caused by a more pronounced 

aberrant splicing phenotype due to the increased susceptibility of these cell lines to GEX1A splicing 

inhibition. However, I did not analyze this at transcriptome level since the RNA-seq analysis was limited 

to RPE-1 WT and TP53-/- cell lines. Nevertheless, differential splicing analyses revealed that already loss 

of TP53-/- was able to cause a more prevalent aberrant splicing phenotype in response to splicing 

inhibition. 

 

In addition, the genetic deficiencies in components of the mismatch repair (MMR) pathway affect the 

genomic stability and facilitate the generation of aberrant transcripts (Bokhari et al., 2018). This affects 

the efficiency of the NMD pathway because it cannot cope with the number of error-prone transcripts. 

Consequently, more transcripts will escape this quality control mechanism explaining the higher 

proportion of splicing-derived neoepitopes in MMR-deficient cell lines. Accordingly, escape from NMD 

is connected to anti-tumor immunogenicity in clinical datasets (Litch et al., 2020) and modulating the 

NMD pathway to enhance encoding of immunogenic peptides is of great interest for cancer 

immunotherapy, particularly for microsatellite-instable colorectal cancer (Becker et al., 2021; Bokhari 

et al., 2018; Bongiorno et al., 2021). Given the interplay between mRNA transcription and the splicing 

machinery, modulating spliceosomal activity would be an equally attractive target to increase the 

number of neoepitope-producing transcripts in tumor cells. 

 

Manual filtering was still a critical step during candidate selection. Although all peptide candidates 

passed BLASTp search and HLA-I binding predicting, only 10 out of 23 peptides were derived from a 

novel splicing isoform. The other 13 peptide sequences matched the canonical isoform of the protein. 

This happened due to technical limitations during the generation of the Alternative Splicing Peptide 

Libraries. Since the genomic coordinates were extended by 29 nt, nine aa could match the canonical 

protein sequence. Therefore, the database also identified HLA-I peptides which were not derived from 

an alternative splice isoform. These peptides were most likely not detected in control samples due to 

gene expression changes between the sample groups, as discussed earlier (Section 4.1.4). This 
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shortcoming would be addressed by implementing an isoform-based approach for the generation of 

the Alternative Splicing Peptide Libraries to obtain full-length transcripts directly. Until then, manual 

curation of peptides candidates remains a critical step in this workflow to eliminate peptides matching 

canonical sequences. 

 

 

4.3.2 The workflow allows robust detection of splicing-derived neoepitope candidates 

The final neoepitope candidates were successfully validated on splicing and peptide level. Due to the 

limited sensitivity and specificity of the LC-MS/MS approach, the detection of short peptides with 

similar sequence patterns can still be error-prone. I was able to successfully confirm all peptide 

sequences of neoepitope candidates by comparing their experimental mass spectra to synthetic 

references. This demonstrated that the mass spectrometry data acquisition and the peptide 

identification from mass spectra using PEAKS both worked accurately.  

 

Moreover, I explored the abundance of differential splice events at transcript level by generating 

Sashimi plots. This revealed that the ANXA1 exon skipping event was the most promising candidate 

given its high expression in response to GEX1A treatment while it was (almost) absent in the control 

condition. Although all splice events showed expression differences between the conditions, a 

relatively high read coverage in the control condition was detected for the MXE event of ATP6V0E1. 

Detection of such events could be avoided by only choosing ‘neojunctions’ from the DJExpress results, 

which exclusively appear in the GEX1A-treated condition. However, these junctions were found to be 

expressed at low levels. Thus, it was unlikely to find matching peptide evidence in the dataset 

considering the limited sensitivity of mass spectrometry. In contrast, even a few mis-spliced transcripts 

in the control condition will be detected by a highly sensitive method like RNA-seq. However, it is 

questionable whether these few transcripts will be translated into peptide sequences (apart from the 

peptides from pioneer translation rounds, which are considerably rare events). Therefore, I decided to 

keep splice events with very low read evidence in the control condition if there was a distinct 

expression difference between the sample groups. The same rationale was followed by a study similar 

to this one (Lu et al., 2021).  

 

To further address whether the splice events have relevance in the control condition, I performed an 

independent experiment to validate detected splice events in vitro by RT-PCR. Here, I did not detect 

any candidate splice events in the untreated condition. Instead, I could observe that the splice events 

occurred in a concentration-dependent manner in response to GEX1A treatment. Importantly, also the 
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presence of novel, non-annotated splice events was confirmed. These validation experiments 

demonstrated the accuracy of DJExpress analysis to determine differential splice events. Overall, the 

combination of immunopeptidomics and differential splicing analysis accurately delivered promising 

splicing-derived neoepitope candidates. 

 

 

 

4.4 Clinical implications of splicing-derived neoepitopes 
 

Neoepitopes originating from dysregulated splice events are particularly attractive targets for 

immunotherapeutic approaches because they were described to occur highly frequently in tumors 

(Kahles et al., 2018) and are predicted to be shared between patients (Pellagatti et al., 2018). In 

addition, previous studies which explored dysregulated alternative splicing across tumors of TCGA 

patient data suggested a high immunogenic potential of splicing-derived neoepitopes (Jayasinghe et 

al., 2018; Kahles et al., 2018). Using a splice variant expression system, it was shown that 

pharmacological splicing modulation results in an altered immunopeptidome and thereby enhances 

antitumor immune response (Darrigrand et al., 2021). Other recent studies evaluated specific targets 

and showed the ability of splicing-derived neoepitopes to activate T cell response in mice (Lu et al., 

2021; Oka et al., 2021). Thus, I wanted to evaluate whether my approach also successfully identified 

immunogenic neoepitope candidates that could be considered for future clinical approaches. 

 

4.4.1 Identified splice events demonstrate clinical potential 

Since I investigated spliceosomal perturbations in cell models, I was curious to explore the clinical 

potential of differential splice events by detecting their expression in TCGA patient data. Indeed, I 

discovered that six out of nine detected splice events were significantly higher expressed in cancer 

patients across multiple cohorts. Notably, the other three events could also be present in patients but 

showed no differential expression between cancer and normal tissue. In a few cohorts, high expression 

of the neoepitope-producing isoform was associated with better disease outcome. This could 

potentially be explained by a higher immunogenicity of the tumors due to the generation of a splicing-

derived neoepitope. A previous study suggested that alternative splice isoforms are highly 

immunogenic because they were found to correlate with high T cell immune response and elevated 

PD-L1 expression (Jayasinghe et al., 2018). However, I did not observe a correlation between the 

expression of the neoepitope-producing variant of ANXA1 and immune infiltration in TCGA cancer 
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patients. Alternatively, the increased survival of patients expressing the skipped ANXA1 variant might 

be explained by an altered biological function of the transcript isoform. 

This was particularly interesting for ANXA1, as the alternative transcripts were highly abundant. ANXA1 

is involved in a variety of different cellular functions and can play an ambivalent role in cancer (Foo et 

al., 2019). At structural level, skipping of exon 8 shortens the AXNA1 repeat 3 (Rosengarth et al., 2003), 

which is involved in the activation of ANXA1 for signal transduction (Han et al., 2020). Further studies 

will be necessary to unravel the biological role of this novel ANXA1 isoform.   

 

Apart from ANXA1, the expression of the other splice variants might not have a strong biological 

relevance because these are expressed at a much lower level compared to the canonical isoform. In 

any case, due to their differential expression in cancer patients, the identified splice events are 

promising targets for future immunotherapeutic approaches.   

 

 

4.4.2 Splicing-derived neoepitopes show high immunogenic potential 

Ultimately, peptide immunogenicity will determine the suitability of the identified neoepitope 

candidates as potential targets for immunotherapeutic approaches. I followed the strategy of other 

publications in the field (Becker et al., 2021; Lu et al., 2021; Oka et al., 2021) to evaluate the T cell 

response towards the neoepitope candidates by in vivo immunization assays using the HLA-A*02:01-

transgenic mouse model (Pajot et al., 2004). This model was restricted to one HLA-I subtype, 

preventing me from investigating the immunogenic potential of all candidates. Still, HLA-A*02:01 is 

the most frequently occurring HLA-I subtype in humans and thus has the highest clinical relevance. 

Using HLA-I binding prediction, I identified five out of ten candidates as predicted HLA-A*02:01 

binders. However, the splice event of ATP6V0E1 was also detected in non-treated samples at a 

relatively high level and thus, the corresponding neoepitope candidate was not considered for 

immunization experiments. Instead, I included the peptide candidate of PSMA4 because it was 

predicted to bind the sister allele HLA-A*01:01 with a similar binding motif. However, the PSMA4 

candidate was the only of the five peptides that could not activate a T cell response. Apparently, the 

binding affinity of PSMA4 towards HLA-A*02:01 was too weak and thus, it was not presented on the 

cell surface. The four predicted HLA-A*02:01 binders all induced a strong T cell response captured by 

ELISpot measurements. This highlights not only the binding specificity of peptides for their respective 

HLA-I subtypes but also that peptides originating from differential splice events are able to induce an 

immune response.  
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In collaboration with Alejandro Hernandez-Sanchez, I further investigated the immunogenic potential 

of the splicing-derived neoepitope candidates. We observed that the candidate peptides caused 

specific T cell-mediated elimination of peptide-presenting target cells. This demonstrated that the 

identified splicing-derived peptides have indeed a high immunogenic potential. Of note, this mouse 

model provided evidence that peptides can interact with T cells and induce an immune response. 

However, it was not suitable to confirm the immunogenicity of the peptides in an environment with 

matured, haplotype-specific human T cells. This would be important to demonstrate considering the 

severe off-target effects of cell-based immunotherapies (Frankiw et al., 2019; Yarchoan et al., 2017b). 

Ultimately, a more sophisticated model needs to evaluate whether the neoepitope candidates show 

similar tumor-specific immunogenic potential in patients. Suitable protocols have been established to 

identify immunogenic frame-shift peptides (Leoni et al., 2020), but these were out of scope for this 

study. Nevertheless, the results from the in vivo immunization experiments strongly suggest that 

splicing perturbation broadens the neoepitope target space by generating highly immunogenic 

peptides derived from differential splice events.  

 

 

4.4.3 The potential role of splicing-derived neoepitopes for cancer immunotherapy 

The identified immunogenic neoepitope candidates could serve, for instance as targets for 

personalized adoptive cell therapies. Alternatively, it was suggested that splicing-derived neoepitopes 

increase the immunogenicity of a tumor cell and thereby facilitate the response to immune checkpoint 

inhibition therapies. A recent study demonstrated that combination treatment with anti-PD1 antibody 

and splicing inhibitor indisulam enhances anti-tumor response in mice and even has the potential to 

effectively target PD1-resistant tumors (Lu et al., 2021). Here, the researchers followed a strategy that 

combined immunopeptidomics with peptide identification from sample-specific reference databases, 

similar to the workflow presented in this thesis. However, they used different computational tools to 

generate sample-specific proteomes and predict differential splice events in mice. Nevertheless, the 

published data support the rationale of this thesis since the authors demonstrated that 

pharmacological modulation of splicing increases the anti-tumor immunogenicity (Lu et al., 2021).  

 

In the future, it will be decided whether pharmacological splicing modulation can be utilized to improve 

the response of existing immunotherapeutic approaches. Several compounds, such as GEX1A and H3B-

8800, were found to inhibit the assembly of the core spliceosome by binding SF3B1 (Seiler et al., 2018b; 

Sellin et al., 2019). Although several splicing inhibitor candidates were in clinical trials, none of them 

has been approved yet due to severe side effects. For example, patients treated with splicing inhibitor 
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E7107 unexpectedly exhibited toxicity of bilateral optic neuritis (Hong et al., 2013). Notably, in a more 

recent clinical trial of H3B-8800, no such side effects were observed (Steensma et al., 2021). Still, drugs 

that unspecifically inhibit splicing can affect not only tumors but also immune and hematopoietic 

compartments. Indeed, it was reported that these inhibitors were immunosuppressive, while more 

specific splicing modulators like indisulam and MS-023 were nontoxic at therapeutic concentrations 

(Lu et al., 2021). Future studies will show whether therapeutic targeting of RNA splicing can facilitate 

the clinical response to cancer immunotherapies. 

 

Moreover, the tumor splicing burden could become a predictive biomarker for response to immune 

checkpoint inhibition therapy. The TMB already serves as an important biomarker for clinical outcome, 

likely because the frequency of somatic mutation correlates with the number of neoepitopes that can 

be targeted by the immune system. However, there was no correlation between the tumor splicing 

burden and the response to immune checkpoint inhibitors detected so far (Jayasinghe et al., 2018; Oka 

et al., 2021). More comprehensive studies, including data from clinical trials of different solid and 

hematological tumor types, will be necessary for further evaluation.    
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4.5 Conclusions and perspectives on splicing-derived neoepitopes 
 

In this study, I established a workflow to specifically identify and validate neoepitope candidates 

derived from alternative splice variants. This was motivated by findings reporting that the process of 

alternative splicing is widely dysregulated across several cancer types resulting in cryptic splice sites 

that can give rise to neoepitopes (Jayasinghe et al., 2018). Accordingly, a comprehensive analysis of 

patient tumors revealed that the presence of novel splice junctions can generate peptides which 

increase the target space for immunotherapeutic approaches (Kahles et al., 2018). However, these 

studies solely on computational approaches that broadly explored the potential contribution of 

splicing-derived peptides to the neoepitope repertoire and suggested a high immunological potential 

of such candidates.  

 

In 2018, a proof-of-concept study focusing on cancer-specific intron retention events suggested that 

splicing-derived peptides can be indeed presented by HLA-I on the cell surface (Smart et al., 2018). 

Accordingly, another study identified hundreds of tumor-specific, non-canonical peptides presented 

by HLA-I (Chong et al., 2020). However, these studies prioritized specific targets to evaluate the 

immunogenicity of splicing-derived neoepitopes. 

 

To investigate the splicing-derived neoepitope repertoire, I increased the cellular splicing burden by 

inhibiting the spliceosomal assembly using the small molecule inhibitor GEX1A. With this, I aimed to 

increase splicing-derived neoepitope presentation since it was reported that pharmacological splicing 

modulation using a splice variant expression system results in an altered immunopeptidome and 

thereby enhances antitumor immune response (Darrigrand et al., 2021).  

 

The changes in the alternative splicing landscape induced by splicing modulation were determined by 

alternative splicing analysis. Here, I used the DJExpress pipeline that allowed me to robustly identify 

differentially expressed splice events independently of altered gene expression (Gallego-Paez & 

Mauer, 2022). However, this count-based analysis introduced ambiguities when translating genomic 

information into peptide sequences. This shortcoming could be addressed by using long-read 

sequencing data that facilitates the identification of transcript variants. A recent study used a 

combination of MinION sequencing and short-read sequencing to detect aberrant splice isoforms, 

which generate potential neoepitopes in small cell lung cancer (Oka et al., 2021). Future efforts will 

make long-read sequencing more accessible and robust for the identification of neoepitopes derived 

from splice variants. 
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Following the immunopeptidomics workflow, I was able to recover sample-specific HLA-I ligandomes. 

Here, it was particularly helpful to generate sample-specific reference libraries that enabled the 

identification of non-annotated splicing-derived peptides from mass spectra. Notably, all final 

neoepitope candidates were obtained from such custom databases highlighting the importance of 

sample-specific references for detecting peptides originating from non-annotated splice events. 

However, the immunopeptidomics approach was limited by its bias towards peptides derived from 

highly expressed genes. Since most alternative splicing events are found in low abundant transcripts 

(Pickrell et al., 2010), the contribution of splicing-derived neoepitopes to the immunopeptidome might 

be even more significant than it could be accessed in this study. Conventionally, it was thought that 

most aberrant splice events result in non-functional transcripts since these are targeted by NMD. 

Notably, it was reported that degradation occurs after a pioneer round of translation, making it the 

major source of antigenic peptides presented on HLA-I molecules (Apcher et al., 2011). Improved mass 

spectrometry methodology will benefit from an enhanced sensitivity and facilitate unraveling the 

overall contribution of splicing-derived peptides to the total neoepitope repertoire (Pak et al., 2021).  

Moreover, due to its limited sensitivity, the current immunopeptidomics approach requires extensive 

biological input material, making it incompatible with tumor biopsies material of patients (Bassani-

Sternberg and Coukos, 2016). The technological advances in the mass spectrometry instruments and 

methodology will increase the sensitivity and reproducibility of immunopeptidomics and make it 

accessible for translational research.  

 

Following the combined strategy of mass-spectrometry-based immunopeptidomics and differential 

splicing analysis, I was able to identify several neoepitope candidates that originated from aberrant 

splice events. I further demonstrated their high immunogenic potential by performing in vivo 

immunization assays. Here, the neoepitope candidates were able to induce T cell response as well as 

T cell-mediated killing if presented by HLA-I on the surface of target cells.  

 

Hence, my findings suggest that splicing-derived neoepitopes are promising targets for 

immunotherapeutic approaches. Beyond targeting these candidates for personalized adoptive cell 

therapies, they could enhance the intrinsic T cell response in combination with established immune 

checkpoint blockade therapies. Indeed, a very recent study investigating the benefits of such a 

combination therapy observed an increased anti-tumor immune response in mice and could also 

effectively target PD1-resistant tumors (Lu et al., 2021). This study indicates that the enhanced 

immune response results from an increased splicing burden, leading to aberrant splice events giving 

rise to neoepitopes. Here, Lu et al. followed a strategy that combined immunopeptidomics with 
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peptide identification from sample-specific reference databases, thereby supporting the rationale of 

the approach I developed in this thesis.  

Despite these promising results of this combination therapy, one needs to keep in mind that no splicing 

inhibitor has been approved for therapeutic use in patients yet. Although several splicing inhibitor 

candidates were in clinical trials, none of them succeeded due to severe side effects (Wang and 

Aifantis, 2020). While these off-target effects resulted from broad inhibition of the splicing machinery, 

the new generation of splicing inhibitors is more selective, thereby avoiding unwanted side effects. 

Future studies will evaluate the clinical potential of targeting the RNA splicing machinery for cancer 

(immuno)therapy.  

 

Taken together, the presented work provides a workflow to specifically detect splicing-derived 

neoepitopes with high immunogenic potential. The data demonstrate that pharmacological splicing 

modulation increases the anti-tumor immunogenicity by promoting the presentation of neoepitopes 

derived from alternative splice variants. These findings have potential implications for immunotherapy 

of cancer types with low tumor mutational burden, where exploration of the splicing-derived 

neoepitope repertoire could reveal novel therapeutic targets. In addition, the tumor splicing burden 

could become a predictive biomarker for response to immune checkpoint inhibitor therapy. 
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Supplement figure 1: Replicate overlap of identified peptides recovered by immunopeptidomics for all analyzed 
conditions and cell lines.  

 

 

 

 

 


