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Abstract

Purpose: Whole-body bone scintigraphy (WBS) is one of the most widely used modalities in diagnosing malignant bone
diseases during the early stages. However, the procedure is time-consuming and requires vigour and experience. More-
over, interpretation of WBS scans in the early stages of the disorders might be challenging because the patterns ofien
reflect normal appearance that is prone to subjective interpretation. To simplify the gruelling, subjective, and prone-
to-error task of interpreting WBS scans, we developed deep learning (DL) models to automate two major analyses,
namely (i) classification of scans into normal and abnormal and (ii) discrimination between malignant and non-
neoplastic bone diseases, and compared their performance with human observers.

Materials and Methods: After applying our exclusion criteria on 7188 patients from three different centers, 3772 and
2248 patients were enrolled for the first and second analyses, respectively. Data were split into two parts, including train-
ing and testing, while a fraction of training data were considered for validation. Ten different CNN models were applied
to single- and dual-view input (posterior and anterior views) modes to find the optimal model for each analysis. In addi-
tion, three different methods, including squeeze-and-excitation (SE), spatial pyramid pooling (SPP), and attention-
augmented (AA), were used to aggregate the features for dual-view input models. Model performance was reported
through area under the receiver operating characteristic (ROC) curve (AUC), accuracy, sensitivity, and specificity
and was compared with the DeLong test applied to ROC curves. The test dataset was evaluated by three nuclear medicine
physicians (NMPs) with different levels of experience to compare the performance of AI and human observers.
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Results: DenseNet121_AA (DensNetl21, with dual-view input aggregated by AA) and InceptionResNetV2_SPP achieved
the highest performance (AUC = 0.72) for the first and second analyses, respectively. Moreover, on average, in the first
analysis, Inception V3 and InceptionResNetV2 CNN models and dual-view input with AA aggregating method had supe-
rior performance. In addition, in the second analysis, DenseNet121 and InceptionResNetV2 as CNN methods and dual-
view input with AA aggregating method achieved the best results. Conversely, the performance of AI models was signif-
icantly higher than human observers for the first analysis, whereas their performance was comparable in the second anal-
ysis, although the AI model assessed the scans in a drastically lower time.

Conclusion: Using the models designed in this study, a positive step can be taken toward improving and optimizing WBS
interpretation. By training DL models with larger and more diverse cohorts, Al could potentially be used to assist physi-

cians in the assessment of WBS images.
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1 Introduction

Whole-body bone scintigraphy (WBS) is used to assess
the distribution of methylene diphosphonate (MDP) in
bones. Increases or decreases in tracer uptake are caused
by various physiological processes occurring in bones,
which can be indicators of malignant or benign diseases
under some circumstances. Overall, clinical indications for
WBS can be divided into three categories: (i) when a specific
bone disorder exists or is suspected, (i) handling of
unexplained symptoms, and (iii) metabolic evaluation
before the start of the treatment [1,2]. Despite the low
specificity, various advantages, such as high sensitivity,
low cost, and the ability to image the whole body
effortlessly, make WBS the most suitable imaging modality
for studying oncologic patients with skeletal disease
involvement [3].

Non-neoplastic diseases include a series of disorders that
involve the entire skeleton. These disorders generally
increased absorption of bisphosphonate and bone turnover
[4-7]. In the early stages of these disorders, it might be chal-
lenging to interpret WBS scans as they often reflect normal
appearance prone to subjective interpretation. As a result,
WBS is seldom used to detect non-neoplastic diseases in
the early stages [5—7]. Malignant bone diseases include bone
metastasis and rare primary bone tumours. Bone metastasis
commonly occurs in patients with frequent solid tumours,
such as lung, breast, prostate, and thyroid [8—12], with
65% of them having roots in breast and prostate cancers
for women and men, respectively [13]. Bone metastasis
mainly affects the spine, femur, and pelvis, though it is
not limited to these regions [14]. It also adversely affects
several characteristics of the patients, such as survival, mor-
bidity, and quality of life. In addition, it can provoke skeletal
complications, such as skeletal remodelling, pathologic frac-
tures, pain, and anemia [11]. Therefore, early and accurate

diagnosis of malignant disease is essential in survival
improvement and treatment management [12,15,16].

Several imaging modalities are currently available for the
detection of malignant bone diseases, including bone scintig-
raphy, radiography, magnetic resonance imaging (MRI),
computed tomography (CT), and positron emission tomogra-
phy (PET)/CT [17-19]. Among the various strategies, WBS
is the most common method for detecting bone involvement,
owing to its high sensitivity (95%) and ability to screen the
whole body in one session [1]. However, despite its high
sensitivity, WBS does not provide high specificity in the
sense that it is less reliable in distinguishing malignant dis-
orders from other causes of increased bone turnover, such
as osteomyelitis, healing fracture, etc. [20]. Moreover, inter-
preting WBS scans is time-consuming, increases workload,
and requires considerable experience [ 14]. Hence, automated
methods for clinical diagnosis and classification of bone dis-
eases using WBS scans are highly significant.

Recently, deep learning (DL) algorithms driven by devel-
opments in artificial intelligence (AI) have shown promising
results toward medical images analysis [21-26]. In particu-
lar, convolutional neural networks (CNNs) showed great
potential in analysing and classifying medical images
[14,17,18,27-29]. Although there has not been much
research on using DL to analyse WBS, few studies have
reported on the promising potential of DL algorithms in
diagnosing malignant bone diseases from WBS images
[14,17,27,28,30-33]. For example, Liu et al. [33] developed
a DL-based method to automatically evaluate bone metas-
tases on bone scintigraphy. They concluded that the accurate
identification and automatic analysis of bone metastases is
possible using DL. Han et al. [31] also investigated the per-
formance of DL to classify bone scan images in patients with
prostate cancer, demonstrating excellent discriminative per-
formance (presence vs. absence of metastases). Papandrianos
et al. [14,17,27] developed DL methods for diagnosing
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malignant bone diseases using WBS scans in breast and
prostate cancer patients, reporting a promising performance.
Their results showed that the DL model accurately distin-
guishes malignant bone diseases from degenerative changes
and normal tissue [14,17,27]. Zhao et al. [28] claimed that
their Al model saves time and improves diagnostic accuracy
for malignant bone diseases. In the study by Pi et al. [18],
high classification accuracy was achieved, indicating the
effectiveness of their proposed architecture for interpreting
WBS, suggesting that their model can be used as a clinical
decision support tool. Hence, DL can be utilized to conquer
WBS scanning challenges, such as the need for experience
and time for image interpretation and reporting.

WBS produces two planar scans, including anterior and
posterior views. These two views may contain complemen-
tary information for the diagnosis of bone complications.
Thus, an optimum model must simultaneously analyse both
views to exploit comprehensive information. Recently,
promising results have been obtained by DL methods with
multi-view inputs, specifically in applications relating to
mammography image analysis [34-36]. Concerning clinical
applications, Wang et al. [37] and Liu et al. [38] developed
multi-view CNN models using axial, sagittal, and coronal
views of CT images for lung nodule segmentation and clas-
sification, respectively. Inspired by these studies, Pi et al.
[18] and Zhao et al. [28] designed a methodology toward
automated diagnosis of malignant bone diseases using
multi-view strategies.

In this work, we developed multiple DL models to
achieve optimum performance targeting two main applica-
tions of WBS scanning using different CNN algorithms
and multi-view aggregation methods. The first part focused
on classifying patients into normal and abnormal subjects,
whereas the second part focused on discriminating patients
with malignant bone diseases from patients diagnosed with
other abnormalities (non-neoplastic). We compared the per-
formance of DL models with human observers for these two
tasks. The models proposed in this study can be used to
reduce the burden of WBS scan interpretation in clinical
setting.

2 Materials and methods

2.1 Patients selection

In this retrospective multicenter study, 7188 patients
referred to WBS with **™Tc-MDP from 1 October 2015 to
30 September 2019 were enrolled. However, patients with
incomplete or inaccessible records, low-quality images,
and those who had subcutaneous injections and skin surface
contamination were excluded. After applying the inclusion
and exclusion criteria, shown as a flowchart in Fig. 1,

Center 3
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N: 1200

Center 1
N: 2036

Whole Body Bone Scan
N: 7188

2782 cases excluded
because of physician
report availability

634 cases excluded because of:
Poor quality images,
Subcut: injections
Full bladder,
Urinary catheter

A

A\ 4

A 4
Clean Dataset
N:3772

A 4 v

Normal, N: 1459
Abnormal ,N:2313

Non-neoplastic, N: 1084
Malignant, N: 1164

y

alidation'
N: 360

Figure 1. Flowchart of inclusion and exclusion criteria.

3772 patients were enrolled in the first analysis. In the sec-
ond analysis, from the 2313 abnormal cases, 65 cases were
removed because they did not have a definite report to dis-
tinguish abnormality. Accordingly, the remaining 2248
abnormal cases were used in the second analysis. Table 1
shows the baseline characteristics of the enrolled patients.
Nuclear medicine physicians’ reports based on patient’s his-
tory, lab tests, pathology, and current WBS with additional
spot images were considered as ground truth conducted by
two nuclear medicine physicians’ readers. Abnormal cases
were patients who had one of the non-neoplastic bone dis-
eases (degenerative, infectious, spondylosis, traumatic
lesions, and inflammation) or malignant bone diseases (bone
metastasis and primary bone tumour); nevertheless, normal
cases did not belong to the abnormalities mentioned.
Fig. 2 shows cases for each category of normal and other
disorders included in this study. Two different analysis
strategies were implemented in this study. The purpose of
the first one was to distinguish normal from abnormal cases
based on physicians’ reports. The abnormal category
included non-neoplastic bone diseases and malignant bone
diseases. The second analysis intended to diagnose non-
neoplastic disorders against malignant bone diseases.
Fig. 1 shows the partitioning of patients for each analysis.
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Table 1

Characteristic of patients enrolled in the study protocol from the different clinical centers.

Characteristic Center 1 Center 2 Center 3 Total
Number 1152 701 1919 3772
Female 730 (63%) 450 (64%) 1302 (68%) 2482 (66%)
Male 422 (37%) 251 (36%) 617 (32%) 1290 (34%)
Age (Mean + Sd) 52.83 +17.53 52.51+£17.72 50.56 £ 17.21 51.61+17.40
Age Range 1.5-95 1-90 1.5-88 1-95

Bone Status

Normal 269 216 976 1461
Degenerative 237 138 196 571
Inflammation 96 56 53 205
Osteomyelitis 6 5 24 35

Trauma 136 70 92 298

Tumor 38 22 91 151
Metastatic 370 194 487 1051
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Figure 2. An instance of normal and pathological cases according to nuclear medicine physicians’ reports.
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2.2 Bone scintigraphy imaging

WBS scans were performed 2-4 hours post-injection fol-
lowing intravenous injection of 555 to 925 MBq of *™Tc-
MDP on a dual-head gamma camera (Siemens Symbia
Encore, Siemens ECAM IP1 and Mediso AnyScan S)
equipped with low-energy parallel-hole high-resolution col-
limators in supine arm-down position. The energy acquisi-
tion window was centered on 140 KeV with a 20%
window, a scan velocity of 12-15 cm/min in continuous
mode, and a matrix size of 1024 x 256.

2.3 Deep learning workflow

The data were split into three subsets, including train
(60%), validation (20%), and test (20%). Initially, all images
in the training dataset were resized to 768 x 256, followed
by normalization according to the maximum intensity.
Table 2 shows the number of cases used as train, validation,
and test sets for each analysis.

For each analysis, two strategies were pursued: single
input (anterior or posterior) and dual input. For the single
input strategy, ten CNN models including VGG19, Mobile-
NetV2, ResNet50V2, ResNet101V2, ResNet152V2, Incep-
tionV3, InceptionResNetV2, DenseNetl21, DenseNetl69
and DenseNet201 with squeeze-and-excitation (SE) [39]
were trained. For the dual input strategy, the combination
of the 10 aforementioned CNN models with three aggrega-
tion methods (dual input), including SE, spatial pyramid
pooling (SPP) [40], and attention-augmented (AA) [41],
was utilized. Hence, for each analysis, 50 different models
containing 20 from single-input strategy (10 models with
anterior and 10 models with posterior views) and 30 from
dual-input strategy (cross-combination of 10 CNN and 3
aggregation methods) were developed. Fig. 3 shows the
DL workflow. A fully connected layer for SPP and SE
inspired by [18,28] was utilized. All models were developed
in Python 3.6 (TensorFlow 2.2 and Keras 2.4.3) and Linux
operating system (Ubuntu 18.04) workstation with NVIDIA
GEFORCE 1080Ti with 11 GB of RAM.

2.4 Evaluation of the DL models performance

The results of the models were evaluated by four param-
eters, including accuracy (ACC), area under receiver operat-
ing characteristic (ROC) curve (AUC), sensitivity (SEN),
and specificity (SPE). We also compared the performance
of the proposed AI methods with humans’ performance.
The same analysis performed with DL methods was also
performed by three nuclear medicine physicians (NMPs)
with different levels of experience who were blind to the
results. This includes a 4™ year resident (NMP1), one with
5 years of experience (NMP2), and one with 21 years of
experience (NMP3). They only had access to the anterior
and posterior WBS images without access to patients’ his-

Table 2

Distribution of data in two analysis and evaluation strategies.
Dataset Total Train Validation Test
Analysis #1 3772 2413 604 755
Normal 1459 928 254 277
Abnormal 2313 1458 350 478
Analysis #2 2248 1438 360 450
Non-neoplastic 1084 692 171 221
Malignant 1164 746 189 229

tory or other examinations/scans. The anonymized images
in DICOM format were transferred to a medical imaging
workstation in one of the nuclear medicine imaging centers
and were viewed on a dedicated monitor. The workstation
allowed physicians to change the brightness, window level,
gamma, and zooming while offering different look-up tables
(color maps). In addition, they were allowed to perform
quantitative measurements, e.g., line profiles and regions
of interest analysis. Comparisons between AUCs achieved
by DL methods and NMPs were performed by the DeLong
test followed by false discoveries rate (FDR) correction with
the Benjamini Hochberg method applied on p-values, and
adjusted p-values (g-values) were reported. The p-values
(or g-values) less than 0.05 were considered statistically
significant.

3 Results

3.1 Normal vs. abnormal classification

Fig. 4 shows the results of various DL models used for
the first analysis. The best 5 models achieving the highest
performance (considering a compromise between perfor-
mance metrics) were identified. The accuracy, AUC, sensi-
tivity, and specificity achieved by the different models
were 0.66, 0.69, 0.58, and 0.80 for the InceptionV3_Ant
model, 0.66, 0.67, 0.63, and 0.71 for ResNet50V2_Post
model, 0.72, 0.72, 0.73, and 0.70 for DenseNetl21_AA
model, 0.72, 0.68, 0.82, and 0.54 for Incep-
tionResNetV2_SE model and finally 0.70, 0.70, 0.69, and
0.72 for InceptionV3_ SPP model. The ROC curves of the
best 5 models for the first analysis are illustrated in Fig. 5-
a-e. Fig. 5f compares ROCs achieved by NMPs and Dense-
Net121_AA, which achieved the highest AUC among all DL
models.

3.2 Malignant vs non-neoplastic discrimination

Fig. 6 shows the results of various models used in the sec-
ond analysis. The accuracy, AUC, sensitivity, and specificity
achieved by the 5 best performing models were 0.67, 0.67,
0.59, and 0.76 for DenseNet201_Ant, 0.64, 0.64, 0.62, and
0.66 for DenseNet121_Post, 0.70, 0.70, 0.61, and 0.79 for
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Figure 3. Workflow of applied deep learning models. Ant: anterior, Post: posterior, SPP: spatial pyramid pooling, SE: squeeze-and-

excitation, AA: attention-augmented.

InceptionResNetV2_AA, 0.64, 0.64, 0.52, and 0.76 for Den-
seNet121_SE, 0.71, 0.72, 0.55, and 0.88 for Incep-
tionResNetV2_SPP model. ROC curves of the best 5
models for the second analysis are illustrated in Fig. 7a-e.
Fig. 7f compares the ROC curves achieved by NMPs and
InceptionResNetV2_SPP, which achieved the highest AUC
among all DL models.

Since several models with various modes were employed
in this study, the best performing model has to be identified.
For this purpose, we did not limit ourselves to reporting con-
ventional metrics, such as AUC, ACC, SEN, and SPE.
Instead, the best performing models with respect to these
four metrics were also assessed in terms of the DeLong test.

All the models were compared using the DeLong test, run on
the model’s AUC, to identify the best models with a higher
margin of confidence. Therefore, Densenet121-AA of the
first strategy and InceptionResNetV2-SPP of the second
strategy were determined to be the best models.

For both analyses, the DeLong test was utilized to com-
pare the performance of each DL model with the remaining
49 models (a total of 50 DL models were developed for each
analysis). The results of these comparisons are presented as
binary significant/non-significant (color-coded) in Figs. 8
and 9 for the first and second analyses, respectively. In addi-
tion, for both strategies, the results of DeLong’s top five
models are presented in tabular format in Tables 3 and 4.
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Figure 4. Performance of the various models used in the first analysis in terms of accuracy, AUC, sensitivity, and specificity. Ant: anterior,
Post: posterior, SPP: spatial pyramid pooling, SE: squeeze-and-excitation, AA: attention-augmented.

Within the first analysis, the performance of Densenetl21-
AA (achieved the highest AUC in the first analysis) was sig-
nificantly higher than 43 models. However, it had compara-
ble results with InseptionV3-SPP, InseptionV3-SE,
InseptionV3-Ant, InceptionResNetV2-SPP,

InceptionResNetV2-SE, and  InceptionResNetV2-AA
models.
In the second analysis, the performance of

InceptionResNetV2-SPP (achieved the highest AUC in the
second analysis) was significantly higher than 46 models.
However, it performed comparably with InseptionV3-SPP,
InceptionResNetV2-AA, and DenseNet201-Ant models.
Table 5 summarizes the average performance (in terms of
AUQC) achieved by Al models for various CNN architectures
and inputs (anterior, posterior, AA, SE, and SPP) for each
analysis strategy. For example, in analysis one, Inception
V3 and InceptionResNetV2 CNN models and dual-view
input with AA aggregating method achieved superior perfor-
mance on average. In the second analysis, DenseNet121 and
InceptionResNetV2 as CNN methods and dual-view input
with AA aggregating method achieved the best performance.

3.3 Comparison of DL against human performance

To compare the performance of the proposed DL models
against human observers for the first analysis, 755 patients
from the test dataset were presented to three NMPs for eval-
uation. NMP1/NMP2/NMP3 achieved accuracy, AUC, sen-
sitivity, and specificity of 0.72/0.72/0.68, 0.65/0.64/0.60,
0.72/0.93/0.69, and 0.70/0.35/0.65, respectively. Con-
versely, the DenseNet121_AA model achieved 0.72, 0.72,
0.73, and 0.70, respectively (Table 6). In addition, the
DeLong test was performed to compare the performance
of DenseNetl21_AA and three NMPs with respect to the
ROC metric. DenseNet121_AA significantly outperformed
all NMPs (p < 0.05) (Table 7). In addition, the performance
of NMP1 vs. NMP3 (p-value < 0.005) and NMP2 vs. NMP3
(p-value < 0.01) were significantly different.

Regarding the second analysis, 450 patients from the test
dataset were used to compare Al and human observers.
NMP1/NMP2/NMP3 achieved accuracy, AUC, sensitivity,

and specificity of 0.74/0.70/0.77, 0.74/0.70/0.77,
0.85/0.79/0.83, and 0.68/0.62/0.72, respectively. Con-
versely, InceptionResNetV2_SPP achieved 0.71, 0.72,

0.55, and 0.88 for accuracy, AUC, sensitivity, and speci-
ficity, respectively (Table 6). Similar to the first analysis,
the DeLong test was performed to compare the performance
of three NMPs and Al models with respect to the ROC met-
ric. Unlike the first analysis, except for NMP2 vs. NMP3 (p-
value = 0.026), the performance of neither of them was sig-
nificantly different from the others (Table 7). In addition, the
comparison of true classifications within the different types
of abnormalities is shown in Table 8 for NMPs and Al mod-
els. In the first strategy, there were 214, 213, and 242 cases
misdiagnosed by NMP1, NMP2, and NMP3, respectively
(false negative and false positive). Nevertheless, our model
correctly diagnosed 125, 139, and 154 of the wrongly diag-
nosed cases by NMPs. In addition, 212 patients were
wrongly diagnosed by our model, of which NMP1 NMP2
correctly diagnosed 159, 176 and 170, and NMP3, respec-
tively. In the second strategy, 117, 133, and 105 cases were
misdiagnosed by NMP1, NMP2, and NMP3, respectively.
However, Al could correctly diagnose 30, 26, and 25 of
these cases. Moreover, 129 patients were wrongly diagnosed
by our model, of which 39, 80, and 55 were correctly diag-
nosed by NMP1, NMP2, and NMP3, respectively.

4 Discussion

Although WBS remains the most suitable imaging
modality for clinical diagnosis of malignant bone diseases
during the early stages, the procedure inherently bears a
number of challenges. The procedure is time-consuming
and requires vigour and experience [12,14—-16]. Moreover,
interpretation of WBS scans in the early stages of the disor-
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ders may be challenging because they often reflect a normal
appearance which is subject to subjective qualitative inter-
pretation [5—7]. As such, the development of automated
models that can be exploited by nuclear medicine physicians
to interpret WBS images is highly demanded. Innovations in
computer-aided diagnostic models to analyse WBS images
have been pursued for decades. Studies in the literature
can be categorised into three main branches [18], including
automatic bone scan index (BSI) calculation [42], delin-
eation of bone lesions [43—45], and automated diagnosis of
bone metastasis [46,47]. However, compared to traditional
image processing approaches for assisting the interpretation
of WBS scans, DL is considered more efficient and robust,
owing to their independence from segmentation of regions
of interest and automatic extraction of image features rather
than using hand-crafted ones. Nevertheless, few studies have
used deep neural networks to develop automated models for
the diagnosis of malignant bone diseases from WBS images.

This study was orchestrated to address the above-
mentioned challenges comprehensively. We pursued two
main analysis strategies, including the discrimination
between normal and abnormal WBSs and patients with
malignant bone diseases from non-neoplastic disorders. In
the first analysis, the purpose was to design a model
enabling to decrease the time and workload spent by physi-
cians for the discrimination between normal and abnormal
patients. However, our vision is that such models will be
able to classify all bone lesions independently in the near
future. Therefore, the intention behind conducting the sec-
ond analysis was to address a challenge faced in clinical
nuclear medicine: the differentiation of malignant bone dis-
eases from non-neoplastic lesions. Two different modes
were considered to find the optimal model for each analysis
strategy: single-view input (anterior or posterior) and
dual-view input. In addition, three different aggregating
methods were utilized for the dual-view input mode. Finally,

10 different CNN models were developed for each mode
resulting in 50 different models for each analysis.

In a study by Pi et al. [18], three DL models, including
Inception-V3, DenseNet-169, and SE-ResNet-50, were used
along with SE feature aggregation to detect malignant bone
diseases from WBS scans. They enrolled 16,211 patients and
used both single- and multi-view inputs using the Inception-
V3 model. Their best performance was achieved by
Inception-V3 combined with the SE method to aggregate
multi-view inputs. They reported accuracy, sensitivity, and
specificity of 95%, 93.17%, and 96.1%, respectively. In
the study of Zhao et al. [28], 12,222 patients were enrolled
where the ResNet-50 model with SPPs was used to detect
malignant bone diseases using WBS. They reported AUC
for the diagnosis of different types of cancer of 95.5%,
98.8%, 95.7%, and 97.1% for prostate, breast, lung, and
other, respectively, reaching an overall AUC of 96.4%. In
the study by Hsieh et al. [32], 19,041 patients were used
to implement and evaluate the DL framework. Each bone
scan image consisted of anterior and posterior planar images
used simultaneously for each patient. The posterior and ante-
rior images were first merged and fed to the models. They
used CNN, DenseNetl21, and ResNet50V2 models with
and without Supervised Contrastive Learning (SCL) to
detect bone metastasis. Their best model in both conditions
(with and without SCL) was ResNet50V2 (ACC =0.957,
SEN = 0.533, SPE = 0.995 and ACC =0.961,
SEN =0.599, SPE =0.993, respectively). In their study,
Aoki et al. [30] compared the performance of DL for detect-
ing bone metastases in prostate cancer patients with nuclear
medicine specialists. In this study, 139 prostate cancer
patients were evaluated. At first, a DL-based program was
used to segment and extract hot spots. The program used
butterfly-type networks (Btrfly-Nets) to fuse anterior and
posterior images. The nuclear medicine specialists achieved
a sensitivity, specificity, and accuracy of 100% (60 of 60),
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Figure 8. Model performance is compared using the DeLong test for the first strategy, which is run on the models’ AUCs. The models on
columns and rows were evaluated against each other. Light blue: if the row model outperformed significantly the column model in terms of
p-value. Purple: if the comparison between the row model and column model yielded a non-significant p-value. Ant: anterior, Post:
posterior, SPP: spatial pyramid pooling, SE: squeeze-and-excitation, AA: attention-augmented.

94.9% (75 of 79) and 97.1% (135 of 139), respectively,
while the DL approach reached 91.7% (55 of 60), 87.3%
(69 of 79) and 89.2% (124 of 139), respectively.

A DL architecture for automatic bone metastases interpre-
tation was suggested by Liu et al. [33] to classify, segment,
and extract features of metastatic bone lesions from bone
scintigrams and create preliminary reports automatically.
ResNet34 was used for classification, whereas U-net encod-
ing and decoding were applied to speed up model’s conver-
gence and segmentation. The performance of their model
was compared with 3 NMPs with different experience (less
than 2 years, 5 years, and 10 years of experience). The AUC
of the model was 0.9263, whereas the accuracy was 88.62%
which had no meaningful difference with NMPs with 5 and
10 years of experience. However, it was significantly better
than the less experienced NMP. Han et al. [31] used 9133
bone scans encompassing 2991 patients with bone metas-

tases and 6142 without, to feed 2D-CNN frameworks,
including whole body—based (WB) and tandem frameworks
using both whole-body and local patches, called global-local
unified emphasis (GLUE). The data were divided into train,
validation, and test using two strategies, namely 72%, 8%,
and 20% for training, validation, and test sets (abundant
training data set) and 10%, 40%, and 50% (limited training
dataset). Using abundant training dataset, the AUC of WB
and GLUE models were comparable (GLUE: 0.936-0.955,
WB: 0.933-0.957, p-value >0.05 in 4 of 5-fold). When
using limited training dataset, the GLUE model outper-
formed WB (GLUE: 0.894-0.908, WB: 0.870-0.877, p-
value < 0.0001).

In comparison, our best model for the diagnosis of malig-
nant disease was InceptionResNetV2 linked with SPP for
input combination, which achieved an AUC, accuracy, sen-
sitivity, and specificity of 72%, 71%, 55%, and 88%, respec-
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Table 3
Summary of DeLong test results of the top five models in the first
strategy.

Table 4
Summary of DeLong test results of the top five models in the
second strategy.

Models Significantly higher than N models =~ Models Significantly higher than N models
InceptionV3_Ant 37 DenseNet201_Ant 30
ResNet50V2_Post 32 DenseNet121_Post 28
DenseNet121_AA 43 InceptionResNetV2_AA 42
InceptionResNetV2_SE 35 DenseNet121_SE 29
InceptionV3_ SPP 39 InceptionResNetV2_SPP 46

tively. In addition, our best model in distinguishing normal
patients from abnormal ones was DenseNet121_AA, which
achieved an AUC, accuracy, sensitivity, and specificity of
72%, 72%, 73%, and 70%, respectively.

In our study, we developed two different sets of models
for two different analyses strategies of WBS images while
evaluating the performance of different DL algorithms, dif-

ferent input modes (single- and multi-view), and different
aggregating methods for dual input modes, resulting in a
total of 50 models for each analysis. We compare the perfor-
mance of these models with human observers using different
metrics. It should also be noted that the AA method for input
aggregation was not evaluated in previous studies related to
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Table 5

Average performance (AUC) of Al models for various CNN and input methods.

Method Analysis 1 Analysis 2

Deep learning method DenseNet121 0.559 0.643
DenseNet169 0.575 0.604
DenseNet201 0.556 0.611
InceptionResNetV2 0.663 0.641
InceptionV3 0.666 0.618
MobileNetV2 0.500 0.500
ResNet101V2 0.610 0.546
ResNet152V2 0.562 0.560
ResNet50V2 0.640 0.614
VGGI19 0.518 0.505

Input AA 0.661 0.649
Ant 0.578 0.580
Post 0.582 0.573
SE 0.620 0.604
SPP 0.590 0.625

Table 6

Comparison of the performance of three nuclear medicine physicians (NMP) vs. artificial intelligence (AI) models* with the highest AUC
in each analysis.

Analysis N TP FN FP ACC AUC SEN SPE Time

Analysis 1 (Normal vs. Abnormal) NMP1 111 430 166 48 0.72 0.65 0.72 0.70 180 min
NMP2 97 445 33 180 0.72 0.64 0.93 0.35 110 min
NMP3 77 436 200 42 0.68 0.60 0.69 0.65 210 min
Al 195 348 130 82 0.72 0.72 0.73 0.70 28 sec

Analysis 2 (Malignant Vs. Non-neoplastic) NMP1 198 135 23 94 0.74 0.74 0.85 0.68 112 min
NMP2 137 180 49 84 0.70 0.70 0.79 0.62 120 min
NMP3 189 156 32 73 0.77 0.77 0.83 0.72 180 min
Al 195 126 103 26 0.71 0.72 0.55 0.88 25 sec

* TN: true negative, TP: true positive, FN: false negative, FP: false positive, ACC: Accuracy, AUC: area under the ROC curve, SEN: sensitivity, SPE:
specificity. The Al model in analysis 1 and 2 was DenseNetl121_AA and InceptionResNetV2_SPP, respectively.

Table 7
DeLong p-values for the comparison of ROC curves between three nuclear medicine physicians (NMP) and artificial intelligence (Al)
models* with the highest AUC for each analysis.

Analysis Reader 1 Reader 2 DeLong p-value

Analysis 1 (Normal vs. Abnormal) NMP1 Al 0.007
NMP2 Al 0.003
NMP3 Al <0.001
NMPI1 NMP2 0.54
NMP1 NMP3 0.004
NMP2 NMP3 0.007

Analysis 2 (Malignant Vs. Non-neoplastic) NMP1 Al 0.41
NMP2 Al 0.65
NMP3 Al 0.14
NMP1 NMP2 0.14
NMP1 NMP3 0.28
NMP2 NMP3 0.026

* Al model in analysis 1 and 2 was DenseNet121_AA and InceptionResNetV2_SPP, respectively.
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Table 8

Comparison of true classification between three nuclear medicine physicians (NMPs) and artificial intelligence (AI) models* for the two

analysis strategies.

Analysis Classification Type NMP1 NMP2 NMP3 Al

Analysis 1 (Normal vs. Abnormal) Normal 1117277 97/277 771277 195/277
Degenerative 117/128 117/128 119/128 95/128
Inflammation 30/45 34/45 30/45 23/45
Osteomyelitis 3/4 4/4 3/4 1/4
Trauma 46/57 52/57 50/57 43/57
Metastasis 203/210 206/210 203/210 170/210
Tumor 31/34 32/34 31/34 16/34

Analysis 2 (Malignant vs. Non-neoplastic) Degenerative 98/105 74/105 97/105 97/105
Inflammation 41/44 26/44 39/44 42/44
Osteomyelitis 9/12 5112 9/12 11/12
Trauma 50/60 32/60 44/60 45/60
Metastasis 125/203 164/203 140/203 115/203
Tumor 10/26 16/26 16/26 11/26

* Al model in analyses 1 and 2 were DenseNet121_AA and InceptionResNetV2_SPP, respectively.

the diagnosis of malignant bone diseases. In this respect, this
study contributed an innovative approach toward finding the
optimum model. In addition, it brings up for the first time a
promising model designed to diagnose malignant bone dis-
eases or non-neoplastic disorders. In clinical routine, NMPs
use different information for bone scintigraphy assessment,
including history, lab tests, pathology, and current WBS
with extra spots and SPECT/CT images. In this and previous
studies, only images were used as input for DL models,
which do not contain all information needed for clinical
diagnosis. In our study, DL models achieved comparable
results with human observers’ performance for two different
tasks. Including the above-mentioned information is manda-
tory as it cannot be inferred from bone scintigraphy images
alone.

In the first analysis, the DenseNet121_AA model had the
highest number of correctly classified normal subjects
(195/277 reflecting correctly classified as normal/total num-
ber of normal cases), while this number was lower for the
three NMPs (111, 97, and 77 for NMP1-3, respectively).
Other Al models resulted in lower performance compared
to the three NMPs. In the second analysis, the Incep-
tionResNetV2_SPP model in inflammation (42/44) and
osteomyelitis (11/12) had superior true classification than
three NMPs (41, 26, 39, and 9, 5, 9 for NMP1-3, respec-
tively). In degenerative and trauma diseases, the Al model
(97/105 and 45/60, respectively) showed higher true classi-
fications than NMP2 (74/105 and 32/60, respectively) but
was almost equal to NMP1 (98/105 and 50/60, respectively)
and NMP3 (97/105 and 44/60, respectively). Unlikely, for
metastases and various tumour types, the Al model had
lower true classifications (115/203, 11/26) than NMP1
(125/203, 10/26), NMP2 (164/203, 16/26) and NMP3

(140/203, 16/26), respectively. DL models performed better
in both analysis strategies than the three NMPs for predicting
normal and non-neoplastic disorders. Nevertheless, the per-
formance decreased for tumours and malignant bone dis-
eases. However, Al outperformed humans’ performance in
the first strategy. The computational time for Al was 28 sec-
onds, while NMPs spent 180, 110, and 210 minutes examin-
ing the same images. For the second analysis, three NMPs
spent 112, 120, and 180 minutes to diagnose the 450
patients, while the designed Al model achieved comparable
results in only 25 seconds. Hence, the proposed models can
be utilized to reduce the workload of NMPs and save time in
routine clinical nuclear medicine. In this study, there were
cases that NMPs could not correctly diagnose. Yet, some
of them were correctly diagnosed by Al. There were also
cases where Al was not capable of detecting malignancies,
some of which were correctly detected by NMPs. It is hoped
that NMPs take advantage of Al tools to assist the decision-
making process. Al and NMP could also complement each
other to improve the overall performance.

The major limitation of our study was incomplete patient
demographics and lack of additional information, such as
three-phase imaging, static views, and SPECT/CT images.
Furthermore, WBS scans are always evaluated in the context
of correlated laboratory and clinical data; while we first
exclude low quality images, the approach shown here is
exclusively concerned with images, which can lead to possi-
ble artefacts and partial dosage extravasation issues. Further
studies should be performed considering this additional
information to improve Al models’ accuracy. Large data sets
could be enrolled from multiple centers using the federated
learning concept, which addresses privacy issues in data
sharing [48,49]. It is suggested that in future studies, physi-
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cian’s performance should be compared to outcomes of Al
models to see if Al can improve physicians’ performance
as an assistant. In this study, only Technetium 99m-methyl
diphosphonate (*’™Tc-MDP) was used. It is suggested to
use other radiopharmaceuticals in future studies to increase
the generalizability and robustness of the developed Al mod-
els. When datasets from different centers acquired with dif-
ferent protocols are used, it is recommended to harmonize
them before applying them to the models to avoid potential
errors in the DL process.

5 Conclusion

In this work, DL methods achieved promising results for
the classification of WBS scans into normal and abnormal
and the discrimination between malignant bone diseases
and non-neoplastic disorders. In fact, by using DL algo-
rithms, comparable results to humans are obtained without
the need for expertise and experience, while the diagnostic
time in DL is only a few seconds, which can significantly
reduce a physician’s workload. Furthermore, our models
can evaluate a huge number of images without the require-
ment for segmentation and preprocessing on individual
scans. Using the models designed in this study, a positive
step can be taken toward reducing WBS interpretation time
and improving the accuracy of clinical diagnosis. Further-
more, improving the accuracy of Al models through feeding
them with larger and more diverse datasets should enable
their clinical adoption to assist nuclear medicine physicians
in the routine interpretation of WBS scans.
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