
 

 

 

GreaseVision

Citation for published version (APA):

Datta, S., Kollnig, K., & Shadbolt, N. (2022). GreaseVision: Rewriting the Rules of the Interface. In M.
Bartolo, H. R. Kirk, P. Rodriguez, K. Margatina, T. Thrush, R. Jia, P. Stenetorp, A. Williams, & D. Kiela
(Eds.), DADC 2022 - 1st Workshop on Dynamic Adversarial Data Collection, Proceedings of the
Workshop (pp. 7-22). Association for Computational Linguistics (ACL).

Document status and date:
Published: 01/01/2022

Document Version:
Publisher's PDF, also known as Version of record

Document license:
Taverne

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can
be important differences between the submitted version and the official published version of record.
People interested in the research are advised to contact the author for the final version of the publication,
or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these
rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above,
please follow below link for the End User Agreement:
www.umlib.nl/taverne-license

Take down policy
If you believe that this document breaches copyright please contact us at:

repository@maastrichtuniversity.nl

providing details and we will investigate your claim.

Download date: 17 Nov. 2023

https://cris.maastrichtuniversity.nl/en/publications/82c8b1c8-20f2-4cf5-a69f-de5d9d161b85


Proceedings of the First Workshop on Dynamic Adversarial Data Collection, pages 7 - 22
July 14, 2022 ©2022 Association for Computational Linguistics

GreaseVision: Rewriting the Rules of the Interface

Siddhartha Datta
University of Oxford

siddhartha.datta@cs.ox.ac.uk

Konrad Kollnig
University of Oxford

konrad.kollnig@cs.ox.ac.uk

Nigel Shadbolt
University of Oxford

nigel.shadbolt@cs.ox.ac.uk

Abstract

Digital harms can manifest across any inter-
face. Key problems in addressing these harms
include the high individuality of harms and the
fast-changing nature of digital systems. We put
forth GreaseVision, a collaborative human-in-
the-loop learning framework that enables end-
users to analyze their screenomes to annotate
harms as well as render overlay interventions.
We evaluate HITL intervention development
with a set of completed tasks in a cognitive
walkthrough, and test scalability with one-shot
element removal and fine-tuning hate speech
classification models. The contribution of the
framework and tool allow individual end-users
to study their usage history and create person-
alized interventions. Our contribution also en-
ables researchers to study the distribution of
multi-modal harms and interventions at scale.

1 Introduction

The design of good user interfaces can be challeng-
ing. In a fast changing world, however, with some-
times highly individual needs, traditional one-fits-
all software development faces difficulty in keeping
up with the pace of change and the breadth of user
requirements. At the same time, the digital world
is rife with a range of harms, from dark patterns
to hate speech to violence. This paper takes a step
back to improve the user experience in the digital
world. To achieve this, we put forward a new de-
sign philosophy for the development of software
interfaces that serves its users: GreaseVision.
Contributions: Our work aims to contribute a
novel interface modification framework, which we
call GreaseVision. At a structural-level, our frame-
work enables end-users to develop personalized in-
terface modifications, either individually or collab-
oratively. This is supported by the use of screenome
visualization, human-in-the-loop learning, and an
overlay/hooks-enabled low-code development plat-
form. Within the defined scopes, we enable the

aggregation of distributionally-wide end-user digi-
tal harms (self-reflection for end-users, or analyz-
ing the harms dataset of text, images and elements
for researchers), to further enable the modification
of user interfaces across a wide range of software
systems, supported by the usage of visual overlays,
autonomously developed by users, and enhanced by
scalable machine learning techniques. We provide
complete and reproducible implementation details
to enable researchers to not only study harms and
interventions, but other interface modification use
cases as well.
Structure: We introduce the challenge of end-user
interface modification in Sections 1 and 2 to curb
digital harms. We share our proposed method –
GreaseVision – in Section 3. We evaluate our
method in Section 4, and share final thoughts and
conclusions in Section 5.

2 Related Works & Problem

We summarize key related work here; for detailed
related works, we refer the reader to Appendix:
Section 6.2. Our motivating problem is the high
individuality of digital harms across a distribu-
tion of users. The harms landscape is quickly
changing with ever-changing digital systems, rang-
ing from heavily-biased content (e.g. disinforma-
tion, hate speech), self-harm (e.g. eating disor-
ders, self-cutting, suicide), cyber crime (e.g. cyber-
bullying, harassment, promotion of and recruit-
ment for extreme causes (e.g. terrorist organiza-
tions), to demographic-specific exploitation (e.g.
child-inappropriate content, social engineering at-
tacks) (HM, 2019; Pater and Mynatt, 2017; Wang
et al., 2017; Honary et al., 2020; Pater et al., 2019).
Though interface modification frameworks exist,
the distribution of the interface modifications (in-
terventions) are constrained to the development
efforts of an intervention developer, the availabil-
ity of interventions are skewed towards desktop
browsers (much sparser on mobile), and the efforts

7



Figure 1: Walkthrough of using GreaseVision-modified interfaces.

(a) User authentication: Se-
cure gateway to the user’s
screenomes, personal devices,
and intervention development
suite.

(b) Interface & interventions
selection: Listings of all reg-
istered devices/emulators on
server, as well as interven-
tions contributed by the users
or community using the tool
in Figure 3.

(c) Interface access: Accessing a
Linux desktop from another (Linux)
desktop browser.

(d) Inter-
face access:
Accessing
an Android
emulator
from another
Android host
device.

are highly interface-specific (an app version update
breaks code-based modification; videos cannot be
perturbed in real-time). Moreover, low-code de-
velopment platforms, that enable end-users to use
visual tools to construct programs, are mostly avail-
able for software creation, but few options exist for
software modification.

Due to the non-uniform distribution of users, the
diverging distribution of harms would require a
wide distribution of interventions. We hypothesize
we can generate this matching distribution of inter-
ventions by enabling end-users to render person-
alized interventions by themselves (i.e. removing
intervention developers from the ecosystem). To
test this hypothesis, we attempt to bind the harms
landscape to the interventions landscape by devel-
oping a collaborative human-in-the-loop system
where end-users can inspect their browsing history
and generate corresponding interventions.

We pursue a visual overlay modifications ap-
proach, extending on the work of GreaseTermina-
tor (Datta et al., 2021). The framework renders
overlay graphics over an underlay screen based on
detected GUI elements, images or text (as opposed
to implementing program code changes natively),
hence changes the interface rather than the func-
tionality of the software. To provide end-users with
input for self-reflection (Cho et al., 2021; Lyngs
et al., 2020a) and source data for generating in-
terventions, users can be shown their screenome
(Reeves et al., 2020, 2021), a record of a user’s digi-
tal experiences represented as a sequence of screen
images that they view and interact with over time
To connect the input (screenome) and output (in-

tervention), Human-in-the-Loop (HITL) learning
can be used for users to annotate their screenomes
for harmful text, images or GUI elements, and
these annotations can be used to develop interven-
tions. Wu et al. (2021) offers a detailed review of
HITL. Specifically, the procedure to generate in-
terventions using visual overlays will require the
one-shot detection of masks (e.g. GUI elements)
and few-shot learning and/or model fine-tuning of
image/text classification models.
System requirements: Based on the problem
and our collaborative HITL interface modification
approach, we establish the following technical re-
quirement (Requirement 1) and systemic require-
ment (Requirement 2) for our framework:

1. (Req 1) A complete feedback loop between
user input (train-time) and interface re-render
(test-time).

2. (Req 2) Prospects for scalability across the
distribution of interface modifications (with
respect to both harms landscape and render-
ing landscape).

3 GreaseVision

3.1 System Architecture: Binding the Harms
Ecosystem to the Interventions Ecosystem

We define the GreaseVision architecture, with
which end-users (system administrators) interact
with, as follows (Figure 6(b)): (i) the user logs into
the GreaseVision system to access amongst a set of
personal emulators and interventions (the system
admin has provisioned a set of emulated devices,
hosted on a server through a set of virtual machines
or docker containers for each emulator/interface,

8



Figure 2: Hooks adapted in GreaseVision to occlude distracting elements, censor hate speech, and obscure child-
inappropriate content.

(a) Occlusion of recommended
items on Twitter (before left, af-
ter right)

(b) Occlusion of recommended
items on Instagram (before left, af-
ter right)

(c) Text censoring (YouTube left,
Reddit right)

(d) Content mod-
eration (Google
Images, Tik-
Tok, YouTube,
YouKu)

and handling streaming of the emulators, handling
pre-requisites for the emulators, handling data mi-
grations, etc); (ii) the user selects their desired in-
terventions and continues browsing on their inter-
faces; (iii) after a time period, the user accesses
their screenome and annotates interface elements,
graphics, or text that they would like to generate
interventions off of, which then re-populate the list
of interventions available to members in a network.

In addition to the contributions stated in Sec-
tion 1, GreaseVision is an improved visual overlay
modification approach with respect to interface-
agnosticity and ease of use. We discuss the specific
aspects of GreaseTerminator we adopt in Grease-
Vision (hooks and overlays), and the technical im-
provements upon GreaseTerminator in Appendix:
Section 6.1, specifically latency, device support,
and interface-agnosticity.

In our current implementation, the user accesses
a web application (compatible with both desktop
and mobile browsers). With their login creden-
tials, the database loads the corresponding map-
ping of the user’s virtual machines/containers that
are shown in the interface selection page. The
central server carries information on accessing a
set of emulated devices (devices loaded locally on
the central server in our setup). Each emulator is
rendered in docker containers or virtual machines
where input commands can be redirected. The
database also loads the corresponding mapping of
available interventions (generated by the user, or by
the network of users) in the interventions selection
page. The database also loads the screenomes (im-
ages of all timestamped, browsed interfaces) in the

screenome visualization page. Primary input com-
mands for both desktop and mobile are encoded,
including keystroke entry (hardware keyboard, on-
screen keyboard), mouse/touch input (scrolling,
swiping, pinching, etc); input is locked to the coor-
dinates of the displayed screen image on the web
app (to avoid stray/accidental input commands),
and the coordinates correspond to each virtual ma-
chine/container’s display coordinates. Screen im-
ages are captured at a configurable framerate (we
set it to 60FPS), and the images are stored under a
directory mapped to the user. Generated masks and
fine-tuned models are stored under an interventions
directory and their intervention/file access is also
locked by mapped users. Interventions are applied
sequentially upon a screen image to return a per-
turbed/new image, which then updates the screen
image shown on the client web app.

3.2 Low-code Development: Binding
Screenomes to Interface Modifications

We make use of the three hooks from GreaseTer-
minator (text, mask, and model hooks), and link
it with the screenome visualization tool. While in
GreaseTerminator the hooks ease the intervention
development process for intervention developers
with previous programming knowledge, we fur-
ther generalize the intervention development pro-
cess for intervention developers to the extent that
even an end-user can craft their own interventions
without developer support nor expert knowledge.
GreaseTerminator enables intervention generation
(via hooks) and interface re-rendering (via over-
lays). The added GreaseVision contribution of con-

9



Figure 3: Screenome visualization page: The page offers the end-user the ability to traverse through the sequence
of timestamped screen images which compose their screenome. They can use bounding boxes to highlight GUI
elements, images or text. They can label these elements with specific encodings, such as mask- or text-.

necting these components with HITL learning and
screenome visualization to replace developers is
what exemplifies end-user autonomy and scalabil-
ity in personalized interventions.

An intersecting data source that enables both
end-user self-reflection (Cho et al., 2021; Lyngs
et al., 2020a) and interface re-rendering via overlay
(Datta et al., 2021) is the screenome. Specifically,
we can orchestrate a loop that receives input from
users and generates outputs for users. Through
GreaseVision, end-users can browse through their
own screen history, and beyond self-analysis, they
can constructively build interface modifications to
tackle specific needs. Extending on the interface
rendering approach of overlays and hook-based
intervention development, a generalizable design
pattern for GreaseTerminator-based interventions
is observed, where current few-shot/fine-tuning
techniques can reasonably approach many digital
harms, given appropriate extensions to the end-
user development suite. In the current develop-
ment suite (Figure 3), an end-user can inspect their
screenomes across all GreaseVision-enabled inter-
faces (ranging from iOS, Android to desktops), and
make use of image segment highlighting techniques
to annotate interface patterns to detect (typically
UI elements or image/text) and subsequently inter-
vene against these interface patterns. Specifically,
the interface images being stored and mapped to a
user is shown in time-series sequence to the user.
The user can go through the sequence of images
to reflect on their browsing behavior. The current
implementation focuses on one-shot detection of
masks and fine-tuning of image and text classifica-

tion models. When the user identifies a GUI ele-
ment they do not wish to see across interfaces and
apps, they highlight the region of the image, and
annotate it as mask-<name-of-intervention>, and
the mask hook will store a mask of intervention
<name-of-intervention>, which will then populate
a list of available interventions with this option,
and the user can choose to activate it during a
browsing session. When a user identifies text (im-
ages) that they do not wish to see of similar vari-
ations, they can highlight the text (image) region,
and annotate it as text-<name-of-intervention>

(image-<name-of-intervention>). The text hook will
extract the text via OCR, and fine-tune a pretrained
text classification model specifically for this type
of text <name-of-intervention>. For images, the
highlighted region will be cropped as input to fine-
tune a pretrained image classification model. The
corresponding text (image) occlusion intervention
will censor similar text (images) during the user’s
browsing sessions if activated.

Extending on model few-shot training and fine-
tuning, we can scale the accuracy of the models,
not just through improvements to these training
methods, but also by improving the data collection
dynamics. More specifically, based on the spec-
trum of personalized and overlapping intervention
needs for a distribution of users, we can leverage
model-human and human-human collaboration to
scale the generation of mask and model interven-
tions. In the case of mask hooks, end-users who
encounter certain harmful GUI elements (perhaps
due to exposure to specific apps or features prior to
other users) can tag and share the mask intervention

10



with other users collaboratively.
To collaboratively fine-tune models, users tag

text based on a general intervention/category la-
bel, that is used to group text together to form a
mini-dataset to fine-tune the model. An example
of this would be a network of users highlighting
racist text they come across in their screenomes that
made them uncomfortable during their browsing
sessions, and tagging them as text-racist, which
aggregates more sentences to fine-tune a text classi-
fication model responsible for detecting/classifying
text as racist or not, and subsequently occluding the
text for the network of users during their live brows-
ing sessions. The current premise is that users in a
network know a ground-truth label of the category
of the specific text they wish to detect and occlude,
and the crowd-sourced text of each of N categories
will yield corresponding N fine-tuned models. Col-
laborative labelling scales the rate in which text of
a specific category can be acquired, reducing the
burden on a single user while also diversifying the
fine-tune training set, while also proliferating the
fine-tuned models across a network of users and
not wasting effort re-training already fine-tuned
models of other users (i.e. increasing scalability of
crafting and usage of interventions).

4 Evaluation

We evaluate the usability of (Req 1) the HITL com-
ponent (usability for a single user with respect to
inputs/outputs; or "does our system help gener-
ate interventions?"), and (Req 2) the collaborative
component (improvement to usability for a single
user when multiple users are involved; or "does our
system scale with user numbers?") with cognitive
walkthroughs and scalability tests respectively.

4.1 Cognitive Walkthrough

Qualitatively, we perform a cognitive walk-
through (John and Packer, 1995; Rieman et al.,
1995) of the user experience to simulate the cogni-
tive process and explicit actions taken by an end-
user during usage of GreaseVision to access inter-
faces and craft interventions. In our walkthrough,
we as researchers presume the role of an end-user.
We state the walkthrough step in bold, data per-
taining to the task in italics, and descriptive eval-
uation in normal font. To evaluate the process of
constructing an intervention using our proposed
HITL system, we inspect the completion of a set
of required tasks based on criteria from Parasura-

man et al.’s (Parasuraman et al., 2000) 4 types of
automation applications, which aim to measure the
role of automation in the harms self-reflection and
intervention self-development process. The four
required tasks to be completed are:

1. Information Acquisition: Could a user col-
lect new data points to be used in intervention
crafting?

2. Information Analysis: Could a user analyze in-
terface data to inform them of potential harms
and interventions?

3. Decision & Action Selection: Could a user
act upon the analyzed information about the
harms they are exposed to, and develop inter-
ventions?

4. Action Implementation: Could a user deploy
the intervention in future browsing sessions?

User logs in (Figure 1a): The user enters their
username and password. These credentials are
stored in a database mapped to a specific (set of)
virtual machine(s) that contain the interfaces the
user registered for access. This is a standard step
for any secured or personalized system, where a
user is informed they are accessing data and infor-
mation that is tailored for their own usage.

User selects active interface and interventions
(Figure 1b): The user is shown a set of available
interventions, be it contributed by themselves or
other users in a network. They select their target
interventions, and select an interface to access dur-
ing this session. Based on their own configurations
(e.g. GreaseVision set up locally on their own com-
puter, or specific virtual machines set up for the
required interfaces), users can view the set of inter-
faces that they can access and use to facilitate their
digital experiences. The interface is available 24/7,
retains all their personal data and storage, is record-
ing their screenome data for review, and accessible
via a web browser from any other device/platform.
They are less constrained by the hardware limi-
tations of their personal device, and just need to
ensure the server of the interfaces has sufficient
compute resources to host the interface and run the
interventions. The populated interventions are also
important to the user, as it is a marketplace and
ecosystem of personalized and shareable interven-
tions. Users can populate interventions that they
themselves can generate through the screenome vi-
sualization tool, or access interventions collabora-
tively trained and contributed by multiple members
in their network. The interventions are also modu-

11



Figure 4: Removal of GUI elements (YouTube sharing metrics/buttons) across multiple target interfaces and
operating systems.

(a) Element removal on emulated desktop (MacOS) (b) Element removal
on emulated Android

(c) Element removal on
emulated iOS

Mask Min. masks Android app iOS app Mobile browser Desktop browser
Stories bar
- Twitter 1 ✓ ✓ - -
- Linkedin 1 ✓ ✓ - -
- Instagram 1 ✓ ✓ - -
Metrics/Sharing bar
- Facebook 2 ✓ ✓ ✓ ✓

- Instagram 2 ✓ ✓ ✓ ✓

- Twitter 2 ✓ ✓ ✓ ✓

- YouTube 2 ✓ ✓ ✓ ✓

- TikTok 2 ✓ ✓ ✓ ✓

Recommended items
- Twitter 2 ✓ ✓ ✓ ✓

- Facebook 2 ✓ ✓ ✓ ✓

Table 1: ✓ if element removal is successful, ✗ if
element removal is unsuccessful, — if the element
not available on an interface.

0 20 40 60 80 100
Timesteps

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Te
st

 a
cc

ur
ac

y
Baseline
1 user, 5 sents/day
5 users, 5 sents/day
1 user, 10 sents/day
5 users, 10 sents/day 
= 10 user, 5 sents/day
10 user, 10 sents/day

Figure 5: Convergence of few-shot/fine-tuned mod-
els on sub-groups of hate speech

lar enough that users are not restricted to a specific
combination of interventions, and are applied se-
quentially onto the interface without mismatch in
latency between the overlay and underlying inter-
face. As the capabilities of generating interventions
(e.g. more hooks) and rendering interfaces (e.g.
interface augmentation) become extended, so do
their ability to personalize their digital experience,
and generate a distribution of digital experiences to
match a similarly wide distribution of users. The
autonomy to deploy interventions, with enhanced
optionality through community-contributed inter-
ventions, before usage of an interface satisfies Task
4.

The user accesses the interface and browses
(Figure 1c): The user begins usage of the interface
through the browser from their desired host device,
be it mobile or desktop. They enter input to the
system, which is streamed to the virtual machine(s),
and interventions render overlay graphics to make
any required interface modifications. After the
user has chosen their desired interventions, the user
will enjoy an improved digital experience through

the lack of exposure to certain digital elements,
such as undesired text or GUI elements. The altered
viewing experience satisfies both Task 1 and 4; not
only is raw screen data being collected, but the
screen is being altered by deployed interventions
in the wild. The user cannot be harmed by what
they previously chose not to see, and what they do
see but no longer wish to see in the future, they
can annotate to remove in future viewings in the
screenome visualization tool. It is a cyclical loop
where users can redesign and self-improve their
browsing experiences through the use of unilateral
or user-driven tools.

The user browses their screenome to gener-
ate interventions (Figure 3): After a browsing
period, the user may opt to browse and view their
personal screenome. They enter the screenome vi-
sualization page to view recorded intervals of their
browsing activity across all interfaces, and they
can choose to annotate certain regions (image or
text) to generate interventions to re-populate the in-
terventions available. The user is given autonomy
in selecting and determining what aspects of the

12



interface, be it the static app interface of dynamic
content provisioned, that they no longer wish to
see in the future. Enabling the user to view their
screenome across all used digital interfaces (ex-
tending to mobile and desktop) to self-reflect and
analyze browsing or content patterns satisfies Task
2. Though the screenome provides the user raw
historical data, it may require additional processing
(e.g. automated analysis, charts) to avoid informa-
tion overload. Rather than waiting for a feedback
loop for the app/platform developers or altruistic
intervention developers to craft broad-spectrum in-
terventions that may or may not fit their personal
needs, the end-user can enjoy a personalized loop
of crafting and deploying interventions, almost in-
stantly for certain interventions such as element
masks. The user can enter metadata pertaining to
each highlighted harm, and not only contribute to
their own experience improvement, but also con-
tribute to the improvement of others who may not
have encountered or annotated the harm yet. By de-
veloping interventions based on their analysis, not
only for themselves but potentially for other users,
they could successfully achieve Task 3. Though
previously-stated as out of scope, to further sup-
port Task 3, other potential intervention modalities
such as augmentation could also be contributed by
a community of professional intervention devel-
opers/researchers (who redirect efforts from indi-
vidual interventions towards enhancing low-code
development tools).

The four tasks, used to determine whether a
complete feedback loop between input collec-
tion/processing and interface rendering through
HITL by a single user, could all be successfully
completed, thus GreaseVision satisfies Require-
ment 1.

4.2 Scalability Testing

To evaluate the collaborative component, we mea-
sure the improvement to the user experience of a
single user through the efforts of multiple users.
We evaluate through scalability testing (Meerts and
Graham, 2010), a type of load testing that mea-
sures a system’s ability to scale with respect to the
number of users. We simulate the usage of the
system to evaluate the scalable generation of one-
shot graphics (mask) detection, and scalable fine-
tuning/few-shot training of (text) models. We do
not replicate the scalability analysis on real users:
the fine-tuning mechanism is still the same, and the

main variable (in common) is the sentences high-
lighted (and their assigned labels and metadata, as
well as the quality of the annotations), though error
is expectedly higher in the real-world as the data
may be sampled differently and of lower annota-
tion quality. The primary utility of collaboration to
an individual end-user is the scaled reduction of ef-
fort in intervention development. We evaluate this
in terms of variety of individualized interventions
(variations of masks), and the time saved in con-
structing a single robust intervention (time needed
to construct an accurate model intervention).

Breadth of interface-agnostic masks (Table
1): We investigate the ease to annotate graphically-
consistent GUI elements for few-shot detection.
We sample elements to occlude that can exist across
a variety of interfaces. We evaluate the occlusion
of the stories bar (pre-dominantly only found on
mobile devices, not desktop/browsers); some inter-
vention tools exist on Android (Happening, 2021;
MaaarZ, 2019; Kollnig et al., 2021; Datta et al.,
2021) and iOS (Friendly, 2022), though the tools
are app- (and version-) specific. We evaluate the
occlusion of like/share metrics; there are mainly
desktop browser intervention tools (Grosser, 2012,
2018, 2019; hidelikes, 2022), and one Android in-
tervention tool (Datta et al., 2021). We evaluate
the occlusion of recommendations; there are inter-
vention tools that remove varying extents of the
interface on browsers (such as the entire newsfeed)
(West, 2012; Unhook, 2022). Existing implemen-
tations and interest in such interventions indicate
some users have overlapping interests in tackling
the removal or occlusion of such GUI elements,
though the implementations may not exist across
all interface platforms, and may not be robust to
version changes. For each intervention, we evalu-
ate on a range of target (emulated) interfaces. We
aim for the real-time occlusion of the specific GUI
element, and evaluate on native apps (for Android
and iOS) and browsers (Android mobile browser,
and Linux desktop browser).

For each of the GUI element cases, we make use
of the screenome visualization tool to annotate and
tag the minimum number of masks of the specific
elements we wish to block across a set of apps.
There tend to be small variations in the design of
the element between browsers and mobile, hence
we tend to require at least 1 mask from each device
type; Android and iOS apps tend to have similar
enough GUI elements that a single mask can be

13



reused between them. We tabulate in Table 1 the
successful generation and real-time occlusion of
all evaluated and applicable GUI elements. We ap-
pend screenshots of the removal of recommended
items from the Twitter and Instagram apps on An-
droid (Figure 2(a,b)). We append screenshots of the
demetrification (occlusion of like/share buttons and
metrics) of YouTube across desktop browsers (Ma-
cOS) and mobile browsers (Android, iOS) (Figure
4).

Convergence of few-shot/fine-tune trained
text models (Figure 5): We investigate the ac-
curacy gains from fine-tuning pretrained text mod-
els as a function of user numbers and annotated
sentence contributions. Specifically, we evaluate
the text censoring of hate speech, where the pri-
mary form of mitigation is still community stan-
dard guidelines and platform moderation, with a
few end-user tooling available (Bodyguard, 2019;
Datta et al., 2021). The premise of this empirical
evaluation is that we have a group of simualated
users N who each contribute N inputs (sentences)
of a specific target class (hate speech, specifically
against women) per timestep. With respect to a
baseline, which is a pretrained model fine-tuned
with all available sentences against women from a
hate speech dataset, we wish to observe how the test
accuracy of a model fine-tuned with M ×N sen-
tences varies over time. Our source of hate speech
for evaluation is the Dynamically Generated Hate
Speech Dataset (Vidgen et al., 2021), which con-
tains sentences of non-hate and hate labels, and also
classifies hate-labelled data by the target victim of
the text (e.g. women, muslim, jewish, black, disabled).
As we expect the M users to be labelling a spe-
cific niche of hate speech to censor, we specify
the subset of hate speech of women (train set count:
1,652; test set count: 187). We fine-tune a publicly-
available, pre-trained RoBERTa model (Hugging-
Face, 2022; Liu et al., 2019), which was trained on
a large corpus of English data (Wikipedia (Wiki-
media), BookCorpus (Zhu et al., 2015)). For each
constant number of users M and constant sentence
sampling rate N , at each timestep t, M × N × t
sentences are acquired of class hate against target
women; there are a total of 1,652 train set sentences
under these constraints (i.e. the max number of
sentences that can be acquired before it hits the
baseline accuracy), and to balance the class dis-
tribution, we retain all 15,184 train set non-hate

sentences. We evaluate the test accuracy of the fine-

tuned model on all 187 test set women-targeted
hate speech. We also vary M and N to observe
sensitivity of these parameters to the convergence
towards baseline test accuracy.

The rate of convergence of a finetuned model
is quicker when the number of users and con-
tributed sentences per timestep both increase, ap-
proximately when we reach at least 1,000 sentences
for the women hate speech category. The difference
in convergence rates indicate that a collaborative
approach to training can scale interventions devel-
opment, as opposed to training text classification
models from scratch and each user annotating text
alone.

The empirical results for this section are stated
in Table 1 and Figure 5. The data and evaluations
from the scalability tests indicate that the ease of
mask generation and model fine-tuning, further cat-
alyzed by performance improvements from more
users, enable the scalable generation of interven-
tions and their associated harms, thus GreaseVision
satisfies Requirement 2.

5 Conclusion

To enable end-user autonomy over interface de-
sign, and the generation and proliferation of a dis-
tribution of harms and interventions to analyze and
reflect upon, we contribute the novel interface mod-
ification framework GreaseVision. End-users can
reflect and annotate with their digital browsing ex-
periences, and collaboratively craft interface inter-
ventions with our HITL and visual overlay mech-
anisms. With respect to Requirements 1 and 2,
we find that our GreaseVision framework allows
for scalable yet personalized end-user development
of interventions against element, image and text-
based digital harms. We hope GreaseVision will
enable researchers and end-users to study harms
and interventions, and other interface modification
use cases.

14



References
Samira Abnar, Mostafa Dehghani, Behnam Neyshabur,

and Hanie Sedghi. 2022. Exploring the limits of large
scale pre-training. In International Conference on
Learning Representations.

Yuvraj Agarwal and Malcolm Hall. 2013. ProtectMyPri-
vacy: Detecting and mitigating privacy leaks on iOS
devices using crowdsourcing. In Proceeding of the
11th Annual International Conference on Mobile
Systems, Applications, and Services - MobiSys ’13,
page 97, Taipei, Taiwan. ACM Press.

Armen Aghajanyan, Sonal Gupta, and Luke Zettle-
moyer. 2021. Intrinsic dimensionality explains the
effectiveness of language model fine-tuning. In Pro-
ceedings of the 59th Annual Meeting of the Associa-
tion for Computational Linguistics and the 11th Inter-
national Joint Conference on Natural Language Pro-
cessing (Volume 1: Long Papers), pages 7319–7328,
Online. Association for Computational Linguistics.

Ionut Andone, Konrad Błaszkiewicz, Mark Eibes,
Boris Trendafilov, Christian Montag, and Alexander
Markowetz. 2016. Menthal: A framework for mobile
data collection and analysis. In Proceedings of the
2016 ACM International Joint Conference on Perva-
sive and Ubiquitous Computing: Adjunct, UbiComp
’16, page 624–629, New York, NY, USA. Association
for Computing Machinery.

Michael Backes, Sebastian Gerling, Christian Ham-
mer, Matteo Maffei, and Philipp von Styp-Rekowsky.
2014. AppGuard – Fine-Grained Policy Enforce-
ment for Untrusted Android Applications. In Joaquin
Garcia-Alfaro, Georgios Lioudakis, Nora Cuppens-
Boulahia, Simon Foley, and William M. Fitzgerald,
editors, Data Privacy Management and Autonomous
Spontaneous Security, volume 8247 of Lecture Notes
in Computer Science, pages 213–231. Springer Berlin
Heidelberg, Berlin, Heidelberg.

Inc Bodyguard. 2019. Bodyguard.

Hyunsung Cho, DaEun Choi, Donghwi Kim, Wan Ju
Kang, Eun Kyoung Choe, and Sung-Ju Lee. 2021.
Reflect, not regret: Understanding regretful smart-
phone use with app feature-level analysis. Proc.
ACM Hum.-Comput. Interact., 5(CSCW2).

Siddhartha Datta. 2021. Learn2weight: Weights trans-
fer defense against similar-domain adversarial at-
tacks.

Siddhartha Datta, Konrad Kollnig, and Nigel Shad-
bolt. 2021. Mind-proofing your phone: Navigating
the digital minefield with greaseterminator. CoRR,
abs/2112.10699.

Siddhartha Datta and Nigel Shadbolt. 2022. Low-
loss subspace compression for clean gains against
multi-agent backdoor attacks. arXiv preprint
arXiv:2203.03692.

Benjamin Davis and Hao Chen. 2013. RetroSkeleton:
Retrofitting android apps. In Proceeding of the 11th
Annual International Conference on Mobile Systems,
Applications, and Services - MobiSys ’13, page 181,
Taipei, Taiwan. ACM Press.

Benjamin Davis, Ben S, Armen Khodaverdian, and Hao
Chen. 2012. I-arm-droid: A rewriting framework for
in-app reference monitors for android applications.
In In Proceedings of the Mobile Security Technolo-
gies 2012, MOST ’12., pages 1–9, New York, NY,
United States. IEEE.

William Enck, Peter Gilbert, Byung-Gon Chun, Lan-
don P. Cox, Jaeyeon Jung, Patrick McDaniel, and
Anmol N. Sheth. 2010. TaintDroid: An Information-
flow Tracking System for Realtime Privacy Mon-
itoring on Smartphones. In Proceedings of the
9th USENIX Conference on Operating Systems De-
sign and Implementation, OSDI’10, pages 393–407,
Berkeley, CA, United States. USENIX Association.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. 2017.
Model-agnostic meta-learning for fast adaptation of
deep networks.

flxapps. 2021. Detoxdroid.

Jay Freeman. 2020. Cydia substrate.

App Studio Friendly. 2022. Friendly social browser.

Tomer Galanti, András György, and Marcus Hutter.
2022. On the role of neural collapse in transfer learn-
ing. In International Conference on Learning Repre-
sentations.

Kovacs Geza. 2019. HabitLab: In-The-Wild Behavior
Change Experiments at Scale. Stanford Department
of Computer Science.

Vegard IT GmbH. 2021. Gray-switch.

Google. 2007. Tesseract.

Google. 2010a. Chrome web store.

Google. 2010b. recaptcha faq.

Google. 2021. Android accessibility suite.

Colin M. Gray, Yubo Kou, Bryan Battles, Joseph Hog-
gatt, and Austin L. Toombs. 2018. The dark (pat-
terns) side of ux design. In Proceedings of the 2018
CHI Conference on Human Factors in Computing
Systems, CHI ’18, page 1–14, New York, NY, USA.
Association for Computing Machinery.

Benjamin Grosser. 2012. Facebook demetricator.

Benjamin Grosser. 2018. Twitter demetricator.

Benjamin Grosser. 2019. Instagram demetricator.

Studios Happening. 2021. Swipe for facebook.

hidelikes. 2022. Hide likes.

15

https://openreview.net/forum?id=V3C8p78sDa
https://openreview.net/forum?id=V3C8p78sDa
https://doi.org/10.1145/2462456.2464460
https://doi.org/10.1145/2462456.2464460
https://doi.org/10.1145/2462456.2464460
https://doi.org/10.18653/v1/2021.acl-long.568
https://doi.org/10.18653/v1/2021.acl-long.568
https://doi.org/10.1145/2968219.2971591
https://doi.org/10.1145/2968219.2971591
https://doi.org/10.1007/978-3-642-54568-9_14
https://doi.org/10.1007/978-3-642-54568-9_14
https://www.bodyguard.ai/
https://doi.org/10.1145/3479600
https://doi.org/10.1145/3479600
https://openreview.net/forum?id=1-j4VLSHApJ
https://openreview.net/forum?id=1-j4VLSHApJ
https://openreview.net/forum?id=1-j4VLSHApJ
http://arxiv.org/abs/2112.10699
http://arxiv.org/abs/2112.10699
https://doi.org/10.1145/2462456.2464462
https://doi.org/10.1145/2462456.2464462
http://arxiv.org/abs/1703.03400
http://arxiv.org/abs/1703.03400
https://github.com/flxapps/DetoxDroid
http://www.cydiasubstrate.com/
https://apps.apple.com/us/app/friendly-for-facebook/id400169658
https://openreview.net/forum?id=SwIp410B6aQ
https://openreview.net/forum?id=SwIp410B6aQ
https://stacks.stanford.edu/file/druid:qq438qv1791/Thesis-augmented.pdf
https://stacks.stanford.edu/file/druid:qq438qv1791/Thesis-augmented.pdf
https://play.google.com/store/apps/details?id=com.vegardit.grayswitch
https://github.com/tesseract-ocr/tesseract
https://chrome.google.com/webstore/
https://web.archive.org/web/20100705103425/http://www.google.com/recaptcha/faq
https://play.google.com/store/apps/details?id=com.google.android.marvin.talkback
https://doi.org/10.1145/3173574.3174108
https://doi.org/10.1145/3173574.3174108
https://bengrosser.com/projects/facebook-demetricator/
https://bengrosser.com/projects/twitter-demetricator/
https://bengrosser.com/projects/instagram-demetricator/
https://play.google.com/store/apps/details?id=com.happening.studios.swipeforfacebookfree&hl=en_GB&gl=US
https://chrome.google.com/webstore/detail/hide-likes/ebamaffgiechnomghfojkmlkaipoadni


Niklas Higi. 2020. apk-mitm.

Alexis Hiniker, Sungsoo (Ray) Hong, Tadayoshi Kohno,
and Julie A. Kientz. 2016. Mytime: Designing and
evaluating an intervention for smartphone non-use.
In Proceedings of the 2016 CHI Conference on Hu-
man Factors in Computing Systems, CHI ’16, page
4746–4757, New York, NY, USA. Association for
Computing Machinery.

Government HM. 2019. Online Harms White Paper.
Government Report on Transparency Reporting.

Mahsa Honary, Beth Bell, Sarah Clinch, Julio Vega, Leo
Kroll, Aaron Sefi, and Roisin McNaney. 2020. Shap-
ing the design of smartphone-based interventions for
self-harm. In Proceedings of the 2020 CHI Confer-
ence on Human Factors in Computing Systems, CHI
’20, page 1–14, New York, NY, USA. Association for
Computing Machinery.

HuggingFace. 2022. roberta-base.

Andrey Ignatov. 2021. Ai-benchmark.

Jinseong Jeon, Kristopher K. Micinski, Jeffrey A.
Vaughan, Ari Fogel, Nikhilesh Reddy, Jeffrey S. Fos-
ter, and Todd Millstein. 2012. Dr. Android and Mr.
Hide: Fine-grained permissions in android applica-
tions. In Proceedings of the Second ACM Workshop
on Security and Privacy in Smartphones and Mobile
Devices - SPSM ’12, page 3, Raleigh, North Carolina,
USA. ACM Press.

Bonnie E. John and Hilary Packer. 1995. Learning
and using the cognitive walkthrough method: A case
study approach. In Proceedings of the SIGCHI Con-
ference on Human Factors in Computing Systems,
CHI ’95, page 429–436, USA. ACM Press/Addison-
Wesley Publishing Co.

Minsam Ko, Subin Yang, Joonwon Lee, Christian Heiz-
mann, Jinyoung Jeong, Uichin Lee, Daehee Shin,
Koji Yatani, Junehwa Song, and Kyong-Mee Chung.
2015. Nugu: A group-based intervention app for
improving self-regulation of limiting smartphone use.
In Proceedings of the 18th ACM Conference on Com-
puter Supported Cooperative Work & Social Com-
puting, CSCW ’15, page 1235–1245, New York, NY,
USA. Association for Computing Machinery.

Gregory Koch, Richard Zemel, and Ruslan Salakhut-
dinov. 2015. Siamese neural networks for one-shot
image recognition.

Konrad Kollnig, Siddhartha Datta, and Max Van Kleek.
2021. I want my app that way: Reclaiming
sovereignty over personal devices. In Proceedings
of the 2021 CHI Conference on Human Factors in
Computing Systems Late-Breaking Works, Yokohama,
Japan. ACM Press.

AV Tech Labs. 2019. Auto logout.

Heyoung Lee, Heejune Ahn, Samwook Choi, and Wan-
bok Choi. 2014. The sams: Smartphone addiction
management system and verification. J. Med. Syst.,
38(1):1–10.

Lawence Lessig. Code 2.0, 1 edition. Basic Books.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized BERT pretraining
approach. CoRR, abs/1907.11692.

Markus Löchtefeld, Matthias Böhmer, and Lyubomir
Ganev. 2013. Appdetox: Helping users with mobile
app addiction. In Proceedings of the 12th Interna-
tional Conference on Mobile and Ubiquitous Multi-
media, MUM ’13, New York, NY, USA. Association
for Computing Machinery.

LuckyPatcher. 2020. Lucky patcher.

Yajing Luo, Peng Liang, Chong Wang, Mojtaba Shahin,
and Jing Zhan. 2021. Characteristics and challenges
of low-code development: The practitioners’ perspec-
tive. Proceedings of the 15th ACM / IEEE Interna-
tional Symposium on Empirical Software Engineer-
ing and Measurement (ESEM).

Ulrik Lyngs, Kai Lukoff, Petr Slovak, William Sey-
mour, Helena Webb, Marina Jirotka, Jun Zhao, Max
Van Kleek, and Nigel Shadbolt. 2020a. ’I Just Want
to Hack Myself to Not Get Distracted’: Evaluating
Design Interventions for Self-Control on Facebook,
page 1–15. Association for Computing Machinery,
New York, NY, USA.

Ulrik Lyngs, Kai Lukoff, Petr Slovak, William Sey-
mour, Helena Webb, Marina Jirotka, Jun Zhao, Max
Van Kleek, and Nigel Shadbolt. 2020b. ’I Just Want
to Hack Myself to Not Get Distracted’: Evaluating
Design Interventions for Self-Control on Facebook.
In Proceedings of the 2020 CHI Conference on Hu-
man Factors in Computing Systems, pages 1–15, Hon-
olulu HI USA. ACM.

MaaarZ. 2019. Instaprefs.

Joris Meerts and Dorothy Graham. 2010. The history
of software testing.

Meta. 2022. Content restrictions based on local law.

Behnam Neyshabur, Hanie Sedghi, and Chiyuan Zhang.
2020. What is being transferred in transfer learning?
In Advances in Neural Information Processing Sys-
tems, volume 33, pages 512–523. Curran Associates,
Inc.

Fabian Okeke, Michael Sobolev, Nicola Dell, and Deb-
orah Estrin. 2018. Good vibrations: Can a digital
nudge reduce digital overload? In Proceedings of the
20th International Conference on Human-Computer
Interaction with Mobile Devices and Services, Mo-
bileHCI ’18, New York, NY, USA. Association for
Computing Machinery.

16

https://github.com/shroudedcode/apk-mitm/
https://doi.org/10.1145/2858036.2858403
https://doi.org/10.1145/2858036.2858403
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/793360/Online_Harms_White_Paper.pdf
https://doi.org/10.1145/3313831.3376370
https://doi.org/10.1145/3313831.3376370
https://doi.org/10.1145/3313831.3376370
https://huggingface.co/roberta-base
https://ai-benchmark.com/ranking_deeplearning_detailed.html/
https://doi.org/10.1145/2381934.2381938
https://doi.org/10.1145/2381934.2381938
https://doi.org/10.1145/2381934.2381938
https://doi.org/10.1145/223904.223962
https://doi.org/10.1145/223904.223962
https://doi.org/10.1145/223904.223962
https://doi.org/10.1145/2675133.2675244
https://doi.org/10.1145/2675133.2675244
https://arxiv.org/abs/2102.11819
https://arxiv.org/abs/2102.11819
https://chrome.google.com/webstore/detail/auto-logout/affkccgnaoeohjnojjnpdalhpjhdiebh?hl=en
https://doi.org/10.1007/s10916-013-0001-1
https://doi.org/10.1007/s10916-013-0001-1
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
https://doi.org/10.1145/2541831.2541870
https://doi.org/10.1145/2541831.2541870
https://www.luckypatchers.com/
https://doi.org/10.1145/3313831.3376672
https://doi.org/10.1145/3313831.3376672
https://doi.org/10.1145/3313831.3376672
https://doi.org/10.1145/3313831.3376672
https://doi.org/10.1145/3313831.3376672
https://doi.org/10.1145/3313831.3376672
https://forum.xda-developers.com/t/app-xposed-instaprefs-the-ultimate-instagram-utility.4005051/
http://www.testingreferences.com/testinghistory.php
http://www.testingreferences.com/testinghistory.php
https://transparency.fb.com/data/content-restrictions/
https://proceedings.neurips.cc/paper/2020/file/0607f4c705595b911a4f3e7a127b44e0-Paper.pdf
https://doi.org/10.1145/3229434.3229463
https://doi.org/10.1145/3229434.3229463


R. Parasuraman, T.B. Sheridan, and C.D. Wickens. 2000.
A model for types and levels of human interaction
with automation. IEEE Transactions on Systems,
Man, and Cybernetics - Part A: Systems and Humans,
30(3):286–297.

Jessica Pater and Elizabeth Mynatt. 2017. Defining dig-
ital self-harm. In Proceedings of the 2017 ACM Con-
ference on Computer Supported Cooperative Work
and Social Computing, CSCW ’17, page 1501–1513,
New York, NY, USA. Association for Computing
Machinery.

Jessica A. Pater, Brooke Farrington, Alycia Brown, Lau-
ren E. Reining, Tammy Toscos, and Elizabeth D. My-
natt. 2019. Exploring indicators of digital self-harm
with eating disorder patients: A case study. Proc.
ACM Hum.-Comput. Interact., 3(CSCW).

Aniruddh Raghu, Maithra Raghu, Samy Bengio, and
Oriol Vinyals. 2020. Rapid learning or feature reuse?
towards understanding the effectiveness of maml. In
International Conference on Learning Representa-
tions.

Siegfried Rasthofer, Steven Arzt, Enrico Lovat, and
Eric Bodden. 2014. DroidForce: Enforcing Com-
plex, Data-centric, System-wide Policies in Android.
In 2014 Ninth International Conference on Availabil-
ity, Reliability and Security, pages 40–49, Fribourg,
Switzerland. IEEE.

Byron Reeves, Nilam Ram, Thomas N. Robinson,
James J. Cummings, C. Lee Giles, Jennifer Pan, Ag-
nese Chiatti, Mj Cho, Katie Roehrick, Xiao Yang,
Anupriya Gagneja, Miriam Brinberg, Daniel Muise,
Yingdan Lu, Mufan Luo, Andrew Fitzgerald, and
Leo Yeykelis. 2021. Screenomics: A framework
to capture and analyze personal life experiences
and the ways that technology shapes them. Hu-
man–Computer Interaction, 36(2):150–201. PMID:
33867652.

Byron Reeves, Thomas Robinson, and Nilam Ram.
2020. Time for the human screenome project. Na-
ture, 577(7790):314–317. Funding Information: The
US National Institutes of Health (NIH) is Publisher
Copyright: © 2020, Nature.

John Rieman, Marita Franzke, and David Redmiles.
1995. Usability evaluation with the cognitive walk-
through. In Conference Companion on Human Fac-
tors in Computing Systems, CHI ’95, page 387–388,
New York, NY, USA. Association for Computing
Machinery.

rovo89. 2020. Xposed framework.

Christian Simon, Piotr Koniusz, Richard Nock, and
Mehrtash Harandi. 2020. Adaptive subspaces for
few-shot learning. In 2020 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR),
pages 4135–4144.

Unhook. 2022. Unhook - remove youtube recom-
mended videos.

Bertie Vidgen, Tristan Thrush, Zeerak Waseem, and
Douwe Kiela. 2021. Learning from the worst: Dy-
namically generated datasets to improve online hate
detection. In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics
and the 11th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 1667–1682, Online. Association for Computa-
tional Linguistics.

VrtualApp. 2016. Virtual xposed.

Eric Wallace, Pedro Rodriguez, Shi Feng, Ikuya Ya-
mada, and Jordan Boyd-Graber. 2019. Trick me if
you can: Human-in-the-loop generation of adversar-
ial examples for question answering. Transactions of
the Association for Computational Linguistics, 7:387–
401.

Yilin Wang, Jiliang Tang, Jundong Li, Baoxin Li, Yali
Wan, Clayton Mellina, Neil O’Hare, and Yi Chang.
2017. Understanding and discovering deliberate self-
harm content in social media. In Proceedings of the
26th International Conference on World Wide Web,
WWW ’17, page 93–102, Republic and Canton of
Geneva, CHE. International World Wide Web Con-
ferences Steering Committee.

Jordan West. 2012. News feed eradicator for facebook.

Foundation Wikimedia. Wikimedia downloads.

Xingjiao Wu, Luwei Xiao, Yixuan Sun, Junhang Zhang,
Tianlong Ma, and Liang He. 2021. A survey of
human-in-the-loop for machine learning.

Rubin Xu, Hassen Saïdi, and Ross Anderson. 2012.
Aurasium: Practical policy enforcement for android
applications. In 21st USENIX Security Symposium
(USENIX Security 12), pages 539–552, Bellevue, WA.
USENIX Association.

Shanshan Zhang, Lihong He, Eduard Dragut, and Slobo-
dan Vucetic. 2019. How to invest my time: Lessons
from human-in-the-loop entity extraction. In Pro-
ceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining,
KDD ’19, page 2305–2313, New York, NY, USA.
Association for Computing Machinery.

Xinyu Zhou, Cong Yao, He Wen, Yuzhi Wang,
Shuchang Zhou, Weiran He, and Jiajun Liang. 2017.
East: An efficient and accurate scene text detector.

Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhut-
dinov, Raquel Urtasun, Antonio Torralba, and Sanja
Fidler. 2015. Aligning books and movies: Towards
story-like visual explanations by watching movies
and reading books. In The IEEE International Con-
ference on Computer Vision (ICCV).

17

https://doi.org/10.1109/3468.844354
https://doi.org/10.1109/3468.844354
https://doi.org/10.1145/2998181.2998224
https://doi.org/10.1145/2998181.2998224
https://doi.org/10.1145/3359186
https://doi.org/10.1145/3359186
https://openreview.net/forum?id=rkgMkCEtPB
https://openreview.net/forum?id=rkgMkCEtPB
https://doi.org/10.1109/ARES.2014.13
https://doi.org/10.1109/ARES.2014.13
https://doi.org/10.1080/07370024.2019.1578652
https://doi.org/10.1080/07370024.2019.1578652
https://doi.org/10.1080/07370024.2019.1578652
https://doi.org/10.1038/d41586-020-00032-5
https://doi.org/10.1145/223355.223735
https://doi.org/10.1145/223355.223735
https://xposed.info/
https://doi.org/10.1109/CVPR42600.2020.00419
https://doi.org/10.1109/CVPR42600.2020.00419
https://chrome.google.com/webstore/detail/unhook-remove-youtube-rec/khncfooichmfjbepaaaebmommgaepoid?hl=en
https://chrome.google.com/webstore/detail/unhook-remove-youtube-rec/khncfooichmfjbepaaaebmommgaepoid?hl=en
https://doi.org/10.18653/v1/2021.acl-long.132
https://doi.org/10.18653/v1/2021.acl-long.132
https://doi.org/10.18653/v1/2021.acl-long.132
https://virtualxposed.org/
https://doi.org/10.1162/tacl_a_00279
https://doi.org/10.1162/tacl_a_00279
https://doi.org/10.1162/tacl_a_00279
https://doi.org/10.1145/3038912.3052555
https://doi.org/10.1145/3038912.3052555
https://chrome.google.com/webstore/detail/news-feed-eradicator-for/fjcldmjmjhkklehbacihaiopjklihlgg?hl=en
https://dumps.wikimedia.org
https://doi.org/10.48550/ARXIV.2108.00941
https://doi.org/10.48550/ARXIV.2108.00941
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/xu_rubin
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/xu_rubin
https://doi.org/10.1145/3292500.3330773
https://doi.org/10.1145/3292500.3330773
http://arxiv.org/abs/1704.03155


6 Appendix

6.1 GreaseTerminator
In response to the continued widespread presence
of interface-based harms in digital systems, Datta
et al. (Datta et al., 2021) developed GreaseTermina-
tor, a visual overlay modification method. This ap-
proach enables researchers to develop, deploy and
study interventions against interface-based harms
in apps. This is based on the observation that
it used to be difficult in the past for researchers
to study the efficacy of different intervention de-
signs against harms within mobile apps (most pre-
vious approaches focused on desktop browsers).
GreaseTerminator provides a set of ‘hooks’ that
serve as templates for researchers to develop inter-
ventions, which are then deployed and tested with
study participants. GreaseTerminator interventions
usually come in the form of machine learning mod-
els that build on the provided hooks, automatically
detect harms within the smartphone user interface
at run-time, and choose appropriate interventions
(e.g. a visual overlay to hide harmful content, or
content warnings). The GreaseTerminator archi-
tecture is shown in Figure 6(a) in contrast to the
GreaseVision architecture.
Technical improvements w.r.t. GreaseTerminator
The improvements of GreaseVision with respect to
GreaseTerminator are two-fold: (i) improvements
to the framework enabling end-user development
and harms mitigation (discussed in detail in Sec-
tions 4.2, 4.3, 5 and 6), and (ii) improvements to
the technical architecture (which we discuss in this
section). Our distinctive and non-trivial technical
improvements to the GreaseTerminator architec-
ture fall under namely latency, device support, and
interface-agnosticity. GreaseTerminator requires
the end-user device to be the host device, and over-
lays graphics on top. A downside of this is the
non-uniformity of network latency between users
(e.g. depending on the internet speed in their loca-
tion) resulting in a potential mismatch in rendered
overlays and underlying interface. With Grease-
Vision, we send a post-processed/re-rendered im-
age once to the end-user device’s browser (stream
buffering) and do not need to send any screen im-
age from the host user device to a server, thus there
is no risk of overlay-underlay mismatch and we
even reduce network latency by half. Images are re-
layed through an HTTPS connection, with a down-
load/upload speed ∼ 250Mbps, and each image
sent by the server amounting to ∼ 1Mb). The theo-

retical latency per one-way transmission should be
1×1024×8bits
250×106bits/s = 0.033ms. With each user at most re-
quiring server usage of one NVIDIA GeForce RTX
2080, with reference to existing online benchmarks
(Ignatov, 2021) the latency for 1 image (CNN) and
text (LSTM) model would be 5.1ms and 4.8ms
respectively. While the total theoretical latency
for GreaseTerminator is (2 × 0.033 + 5), that of
GreaseVision is (0.033 + 5) = 5.03ms. Another
downside of GreaseTerminator is that it requires
client-side software for each target platform. There
would be pre-requisite OS requirements for the
end-user device, where only versions of GreaseTer-
minator developed for each OS can be offered sup-
port (currently only for Android). GreaseVision
streams screen images directly to a login-verified
browser, allowing users to access desktop/mobile
on any browser-supported device. Despite varia-
tions in the streaming architecture between Grea-
seVision and GreaseTerminator, the interface mod-
ification framework (hooks and overlays) are re-
tained, hence interventions (even those developed
by end-users) from GreaseVision are compatible in
GreaseTerminator. In addition to improvements
to the streaming architecture to fulfil interface-
agnosticity, adapting the visual overlay modifica-
tion framework into a collaborative HITL imple-
mentation further improves the ease-of-use for all
stakeholders in the ecosystem. End-users do not
need to root their devices, find intervention tools
or even self-develop their own customized tools.
We eliminate the need for researchers to craft in-
terventions (as users self-develop autonomously)
or develop their own custom experience sampling
tools (as end-users/researchers can analyze digi-
tal experiences from stored screenomes). We also
eliminate the need for intervention developers to
learn a new technical framework or learn how to
fine-tune models. Running emulators on docker
containers and virtual machines on a (single) host
server is feasible, and thus allows for the browser
stream to be accessible cross-device without re-
striction, e.g. access iOS emulator on Android
device, or macOS virtual machine on Windows de-
vice. Certain limitations are imposed on the current
implementation, such as a lack of access to the de-
vice camera, audio, and haptics; however, these
are not permanent issues, and engineered imple-
mentations exist where a virtual/emulated device
can route and access the host device’s input/output
sources (VrtualApp, 2016).

18



Figure 6: Architecture of GreaseTerminator (left) and GreaseVision (right).

Interface Rendering Interventions
Development

Server

Client

User Device & Screen

Screen
Underlay

Screen
Overlay

input
frames

+ Selected Visual Interventions

output
frames

Text
Hook

Mask
Hook

Model
Hook

(a) The high-level architecture of GreaseTerminator. De-
tails are explained in Section 2.3 and 4.2.

Interface Rendering Interventions Development

Server

Client
Web Application

User Database

User Virtual Machines & Containers

Fr
am

e t
Fr
am

e t+
1

Fr
am

e t+
2

…

Fr
am

e t
Fr
am

e t+
1

Fr
am

e t+
2

…

Raw Screen ImagesUpdated Screen Images
access

render

input
commands

overlay

generate
access

Screenome Visualization

populate
screenome

annotate Masks, Models
à (Personal) Interventions

activate interventions

Network Interventions

(b) The high-level architecture of GreaseVision, both as a sum-
mary of our technical infrastructure as well as one of the collabo-
rative HITL interventions development approach.

Hooks The text hook enables modifying the text
that is displayed on the user’s device. It is imple-
mented through character-level optical character
recognition (OCR) that takes the screen image as
an input and returns a set of characters and their
corresponding coordinates. The EAST text detec-
tion (Zhou et al., 2017) model detects text in im-
ages and returns a set of regions with text, then
uses Tesseract (Google, 2007) to extract charac-
ters within each region containing text. The mask
hook matches the screen image against a target tem-
plate of multiple images. It is implemented with
multi-scale multi-template matching by resizing an
image multiple times and sampling different subim-
ages to compare against each instance of mask in
a masks directory (where each mask is a cropped
screenshot of an interface element). We retain the
default majority-pixel inpainting method for mask
hooks (inpainting with the most common colour
value in a screen image or target masked region).
As many mobile interfaces are standardized or uni-
form from a design perspective compared to images
from the natural world, this may work in many in-
stances. The mask hook could be connected to
rendering functions such as highlighting the inter-
face element with warning labels, or image inpaint-
ing (fill in the removed element pixels with newly
generated pixels from the background), or adding
content/information (from other apps) into the in-
painted region. Developers can also tweak how the
mask hook is applied, for example using the multi-
scale multi-template matching algorithm with con-
tourized images (shapes, colour-independent) or
coloured images depending on whether the mask
contains (dynamic) sub-elements, or using few-
shot deep learning models if similar interface ele-
ments are non-uniform. A model hook loads any
machine learning model to take any input and gen-

erate any output. This allows for model embedding
(i.e. model weights and architectures) to inform
further overlay rendering. We can connect models
trained on specific tasks (e.g. person pose detection,
emotion/sentiment analysis) to return output given
the screen image (e.g. bounding box coordinates
to filter), and this output can then be passed to a
pre-defined rendering function (e.g. draw filtering
box).

6.2 Related Works (extended)

6.2.1 Motivation: Pervasiveness and
Individuality of Digital Harms

It is well-known that digital harms are widespread
in our day-to-day technologies. Despite this, the
academic literature around these harms is still de-
veloping, and it remains difficult to state exactly
what the harms are that need to be addressed. Fa-
mously, Gray et al. (Gray et al., 2018) put forward
a 5-class taxonomy to classify dark patterns within
apps: interface interference (elements that manipu-
late the user interface to induce certain actions over
other actions), nagging (elements that interrupt the
user’s current task with out-of-focus tasks) forced
action (elements that introduce sub-tasks forcefully
before permitting a user to complete their desired
task), obstruction (elements that introduce subtasks
with the intention of dissuading a user from per-
forming an operation in the desired mode), and
sneaking (elements that conceal or delay informa-
tion relevant to the user in performing a task).

A challenge with such framework and tax-
onomies is to capture and understand the mate-
rial impacts of harms on individuals. Harms tend
to be highly individual and vary in terms of how
they manifest within users of digital systems. The
harms landscape is also quickly changing with
ever-changing digital systems. Defining the spec-

19



trum of harms is still an open problem, the range
varying from heavily-biased content (e.g. disin-
formation, hate speech), self-harm (e.g. eating
disorders, self-cutting, suicide), cyber crime (e.g.
cyber-bullying, harassment, promotion of and re-
cruitment for extreme causes (e.g. terrorist organi-
zations), to demographic-specific exploitation (e.g.
child-inappropriate content, social engineering at-
tacks) (HM, 2019; Pater and Mynatt, 2017; Wang
et al., 2017; Honary et al., 2020; Pater et al., 2019),
for which we recommend the aforementioned cited
literature. The last line of defense against many
digital harms is the user interface. This is why we
are interested in interface-emergent harms in this
paper, and how to support individuals in develop-
ing their own strategies to cope with and overcome
such harms.

6.2.2 Developments in Interface Modification
& Re-rendering

Digital harms have long been acknowledged as a
general problem, and a range of technical inter-
ventions against digital harms are developed. In-
terventions, also similarly called modifications or
patches, are changes to the software, which result
in a change in (perceived) functionality and end-
user usage. We review and categorize key technical
intervention methods for interface modification by
end-users, with cited examples specifically for dig-
ital harms mitigation. While there also exist non-
technical interventions, in particular legal reme-
dies, it is beyond this work to give a full account
of these different interventions against harms; a
useful framework for such an analysis is provided
by Lawrence Lessig (Lessig) who characterised the
different regulatory forces in the digital ecosystem.

Interface-code modifications (Kollnig et al.,
2021; Higi, 2020; Jeon et al., 2012; Rasthofer et al.,
2014; Davis and Chen, 2013; Backes et al., 2014;
Xu et al., 2012; LuckyPatcher, 2020; Davis et al.,
2012; Lyngs et al., 2020b; Freeman, 2020; rovo89,
2020; Agarwal and Hall, 2013; Enck et al., 2010;
MaaarZ, 2019; VrtualApp, 2016) make changes
to source code, either installation code (to modify
software before installation), or run-time code (to
modify software during usage). On desktop, this
is done through browser extensions and has given
rise to a large ecosystem of such extensions. Some
of the most well-known interventions are ad block-
ers, and tools that improve productivity online (e.g.
by removing the Facebook newsfeed (Lyngs et al.,
2020b)). On mobile, a prominent example is App-

Guard (Backes et al., 2014), a research project by
Backes et al. that allowed users to improve the pri-
vacy properties of apps on their phone by making
small, targeted modification to apps’ source code.
Another popular mobile solution in the commu-
nity is the app Lucky Patcher (LuckyPatcher, 2020)
that allows to get paid apps for free, by removing
the code relating to payment functionality directly
from the app code.

Some of these methods may require the highest
level of privilege escalation to make modifications
to the operating system and other programs/apps
as a root user. On iOS, Cydia Substrate (Freeman,
2020) is the foundation for jailbreaking and fur-
ther device modification. A similar system, called
Xposed Framework (rovo89, 2020), exists for An-
droid. To alleviate the risks and challenges af-
flicted with privilege escalation, VirtualXposed (Vr-
tualApp, 2016) create a virtual environment on the
user’s Android device with simulated privilege es-
calation. Users can install apps into this virtual
environment and apply tools of other modification
approaches that may require root access. Protect-
MyPrivacy (Agarwal and Hall, 2013) for iOS and
TaintDroid (Enck et al., 2010) for Android both
extend the functionality of the smartphone oper-
ating system with new functionality for the anal-
ysis of apps’ privacy features. On desktops, code
modifications tend not to be centred around a com-
mon framework, but are more commonplace in
general due to the traditionally more permissive se-
curity model compared to mobile. Antivirus tools,
copyright protections of games and the modding of
UI components are all often implemented through
interface-code modifications.

Interface-external modifications (Geza, 2019;
Bodyguard, 2019; Lee et al., 2014; Ko et al., 2015;
Andone et al., 2016; Hiniker et al., 2016; Löchte-
feld et al., 2013; Labs, 2019; Okeke et al., 2018) are
the arguably most common way to change default
interface behaviour. An end-user would install a
program so as to affect other programs/apps. No
change to the operating system or the targeted pro-
grams/apps is made, so an uninstall of the program
providing the modification would revert the device
to the original state. This approach is widely used
to track duration of device usage, send notifications
to the user during usage (e.g. timers, warnings),
block certain actions on the user device, and other
aspects. The HabitLab (Geza, 2019) is a prominent
example developed by Kovacs et al. at Stanford.

20



This modification framework is open-source and
maintained by a community of developers, and pro-
vides interventions for both desktop and mobile.

Visual overlay modifications render graphics
on an overlay layer over any active interface in-
stance, including browsers, apps/programs, videos,
or any other interface in the operating system. The
modifications are visual, and do not change the
functionality of the target interface. It may ren-
der sub-interfaces, labels, or other graphics on top
of the foreground app. Prominent examples are
DetoxDroid (flxapps, 2021), Gray-Switch (GmbH,
2021), Google Accessibility Suite (Google, 2021),
and GreaseTerminator (Datta et al., 2021).

We would like to establish early on that we pur-
sue a visual overlay modifications approach. Inter-
ventions should be rendered in the form of over-
lay graphics based on detected elements, rather
than implementing program code changes natively,
hence focused on changing the interface rather
than the functionality of the software. Interven-
tions should be generalizable; they are not solely
website- or app-oriented, but interface-oriented. In-
terventions do not target specific apps, but general
interface elements and patterns that could appear
across different interface environments. To sup-
port the systemic requirements in Section 2.4, we
require an interface modification approach that is
(i) interface-agnostic and (ii) easy-to-use. To this
extent, we build upon the work of GreaseTermina-
tor (Datta et al., 2021), a framework optimized for
these two requirements.

In response to the continued widespread pres-
ence of interface-based harms in digital sys-
tems, Datta et al. (Datta et al., 2021) developed
GreaseTerminator, a visual overlay modification
method. This approach enables researchers to
develop, deploy and study interventions against
interface-based harms in apps. This is based on the
observation that it used to be difficult in the past
for researchers to study the efficacy of different
intervention designs against harms within mobile
apps (most previous approaches focused on desk-
top browsers). GreaseTerminator provides a set of
‘hooks’ that serve as templates for researchers to
develop interventions, which are then deployed and
tested with study participants. GreaseTerminator
interventions usually come in the form of machine
learning models that build on the provided hooks,
automatically detect harms within the smartphone
user interface at run-time, and choose appropriate

interventions (e.g. a visual overlay to hide harmful
content, or content warnings). A visualisation of
the GreaseTerminator approach is shown in Fig-
ure 6(a).

6.2.3 Opportunities for Low-code
Development in Interface Modification

Low-code development platforms have been de-
fined, according to practitioners, to be (i) low-
code (negligible programming skill required to
reach endgoal, potentially drag-and-drop), (ii) vi-
sual programming (a visual approach to develop-
ment, mostly reliant on a GUI, and "what-you-
see-is-what-you-get"), and (iii) automated (unat-
tended operations exist to minimize human involve-
ment) (Luo et al., 2021). Low-code development
platforms exist for varying stages of software cre-
ation, from frontend (e.g. App maker, Bubble.io,
Webflow), to workflow (Airtable, Amazon Honey-
code, Google Tables, UiPath, Zapier), to backend
(e.g. Firevase, WordPress, flutterflow); none ex-
ist for software modification of existing applica-
tions across interfaces. According to a review of
StackOverflow and Reddit posts analysed by Luo
et al. (Luo et al., 2021), low-code development
platforms are cited by practitioners to be tools that
enable faster development, lower the barrier to us-
age by non-technical people, improves IT gover-
nance compared to traditional programming, and
even suits team development; one of the main limi-
tations cited is that the complexity of the software
created is constrained by the options offered by the
platform.

User studies have shown that users can self-
identify malevolent harms and habits upon self-
reflection and develop desires to intervene against
them (Cho et al., 2021; Lyngs et al., 2020a). Not
only do end-users have a desire or interest in self-
reflection, but there is indication that end-users
have a willingness to act. Statistics for content
violation reporting from Meta show that in the Jan-
Jun 2021 period, ∼ 42,200 and ∼ 5,300 in-app
content violations were reported on Facebook and
Instagram respectively (Meta, 2022) (in this report,
the numbers are specific to violations in local law,
so the actual number with respect to community
standard violatons would be much higher; the num-
bers also include reporting by governments/courts
and non-government entities in addition to mem-
bers of the public). Despite a willingness to act,
there are limited digital visualization or reflection
tools that enable flexible intervention development

21



by end-users. There are visualization or reflec-
tion tools on browser and mobile that allow for
reflection (e.g. device use time (Andone et al.,
2016)), and there are separate and disconnected
tools for intervention (Section 2.2), but there are
limited offerings of flexible intervention develop-
ment by end-users, where end-users can observe
and analyze their problems while generating cor-
responding fixes, which thus prematurely ends the
loop for action upon regret/reflection. There is a
disconnect between the harms analysis ecosystem
and interventions ecosystem. A barrier to binding
these two ecosystems is the existence of low-code
development platforms for end-users. While such
tooling may exist for specific use cases on spe-
cific interfaces (e.g. web/app/game development)
for mostly creationary purposes, there are limited
options available for modification purposes of exist-
ing software, the closest alternative being extension
ecosystems (Kollnig et al., 2021; Google, 2010a).
Low-code development platforms are in essence
"developer-less", removing developers from the
software modification pipeline by reducing the bar-
rier to modification through the use of GUI-based
features and negligible coding, such that end-users
can self-develop without expert knowledge.

Human-in-the-Loop (HITL) learning is the
procedure of integrating human knowledge and ex-
perience in the augmentation of machine learning
models. It is commonly used to generate new data
from humans or annotate existing data by humans.
Wallace et al. (Wallace et al., 2019) constructed
a HITL system of an interactive interface where a
human talks with a machine to generate more Q&A
language and train/fine-tune Q&A models. Zhang
et al. (Zhang et al., 2019) proposed a HITL system
for humans to provide data for entity extraction,
including requiring humans to formulate regular
expressions and highlight text documents, and an-
notate and label data. For an extended literature
review, we refer the reader to Wu et al. (Wu et al.,
2021). Beyond lab settings, HITL has proven it-
self in wide deployment, where a wide distribution
of users have indicated a willingness and ability
to perform tasks on a HITL annotation tool, re-
CAPTCHA, to access utility and services. In 2010,
Google reported over 100 million reCAPTCHA in-
stances are displayed every day (Google, 2010b)
to annotate different types of data, such as deci-
phering text for OCR of books or street signs, or
labelling objects in images such as traffic lights or

vehicles.
While HITL formulates the structure for human-

AI collaborative model development, model fine-
tuning and few-shot learning formulate the algo-
rithmic methods of adapting models to changing
inputs, environments, and contexts. Both adap-
tation approaches require the model to update its
parameters with respect to the new input distribu-
tion. For model fine-tuning, the developer re-trains
a pre-trained model on a new dataset. This is in
contrast to training a model from a random ini-
tialization. Model fine-tuning techniques for pre-
trained foundation models, that already contain
many of the pre-requisite subnetworks required
for feature reuse and warm-started training on a
smaller target dataset, have indicated robustness
on downstream tasks (Galanti et al., 2022; Abnar
et al., 2022; Neyshabur et al., 2020). If there is an
extremely large number of input distributions and
few samples per distribution (small datasets), few-
shot learning is an approach where the developer
has separately trained a meta-model that learns how
to change model parameters with respect to only a
few samples. Few-shot learning has demonstrated
successful test-time adaptation in updating model
parameters with respect to limited test-time sam-
ples in both image and text domains (Raghu et al.,
2020; Koch et al., 2015; Finn et al., 2017; Datta,
2021). Some overlapping techniques even exist
between few-shot learning and fine-tuning, such as
constructing subspaces and optimizing with respect
to intrinsic dimensions (Aghajanyan et al., 2021;
Datta and Shadbolt, 2022; Simon et al., 2020).

The raw data for harms and required interface
changes reside in the history of interactions be-
tween the user and the interface. In the Screenome
project (Reeves et al., 2020, 2021), the investigators
proposed the study and analysis of the moment-by-
moment changes on a person’s screen, by captur-
ing screenshots automatically and unobtrusively
every t = 5 seconds while a device is on. This
record of a user’s digital experiences represented
as a sequence of screens that they view and interact
with over time is denoted as a user’s screenome.
Though not mobilized widely amongst users for
their self-reflection or personalized analysis, in-
tegrating screenomes into an interface modifica-
tion framework can play the dual roles of visual-
izing raw (harms) data to users while manifesting
as parseable input for visual overlay modification
frameworks.

22


