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Abstract

This paper deals with the complex relationship between innovation and the labor
market,  analyzing  the  impact  of  new  technological  advancements  on  overall
employment, skills and wages. After a critical review of the extant literature and
the available empirical studies, novel evidence is presented on the distribution of
labor-saving  automation  (namely  robotics  and  AI),  based  on  natural  language
processing  of  US  patents.  This  mapping  shows  that  both  upstream  high-tech
providers  and  downstream  users  of  new  technologies—such  as  Boeing  and
Amazon—lead the underlying innovative effort.
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1. Introduction

While  technological  progress  is  unanimously  considered  as  the  main  driver  of  productivity  gains  and

ultimately economic growth,  the  relationship between innovation and the labor  market  is  a  much more

controversial issue, since substitution and complementary forces are simultaneously at play, both in terms of

the overall employment and wage impact of innovation and its effects on specific occupations, skills and

tasks.

Indeed,  nowadays  the  world  economy  is  on  the  edge  of  a  new technological  revolution,  dramatically

accelerated in the direction of automation by the pervasive diffusion of robots and Artificial Intelligence (AI)

(Brynjolfsson and McAfee, 2014; Frey and Osborne, 2017; Acemoglu and Restrepo, 2019). Henceforth, the

fear of massive technological unemployment and increasing inequality characterizes the current debate.

However, the relationship between technological change and employment is a very old and “classical topic”

and the debate about the possible occurrence of “technological unemployment” cyclically comes out in ages

of  both  radical  technological  change  and  considerable  unemployment  levels,  such  as  the  current  one

(Staccioli  and  Virgillito,  2021a,b).  On the  other  hand,  in  the  history  of  modern  economies,  periods  of

intensive automation have often coincided with the emergence of new jobs, tasks, activities and industries.

Therefore, both “substitution” and “complementarity” forces are at play and the challenging questions are

related to the overall impact of innovation on the level and composition of employment: is technology labor-

friendly or labor-threatening? Which skills and tasks are displaced and which ones are expanding? Which is

the ultimate effect in terms of wages and income distribution?

Given  this  context,  this  paper  aims  to  unfold  the  following  issues.  In  the  next  section,  a  theoretical

framework will be proposed and critically discussed: in particular, the direct labor-saving impact of process

innovation will be opposed to the possible market compensation mechanisms and the labor-friendly nature of

product innovation. Section 3 will move to the empirical evidence and will focus on firm level analyses,

discussing  the  extant  literature  on  the  links  between  innovation  (automation)  on  the  one  side  and

employment, skills and wages on the other side. Section 4 will discuss novel evidence on the geographical

and sectoral distribution of labor-saving innovation, on the basis of a textual analysis applied to US patents.

Finally, Section 5 briefly concludes.

2. A theoretical framework

To  evaluate  the  overall  effect  of  technological  change  on  employment,  different  direct  and  indirect

mechanisms must be taken into account.
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In general, the innovative effort is focused on reducing production costs as it happens in the case of process

innovations. The aim is producing the same amount of output, reducing the use of production inputs, mainly

labor; therefore, the very first direct effect of a process innovation is labor-saving, by definition. 

However, since the XIX century, economists have put forward a theory that Marx called the “compensation

theory” (see Marx, 1961, vol. 1, chap. 13; Marx, 1969, chap. 18; Say, 1964; Ricardo, 1951, chap. 31). This

theory was based on different market compensation mechanisms which were generated by technological

change  itself  and  which  might  counterbalance—partially  or  entirely—the  initial  labor-saving  impact  of

process innovation (see Freeman et  al.,  1982;  Dosi,  1984;  Petit,  1995;  Vivarelli,  1995,  chaps.  2 and 3;

Vivarelli and Pianta, 2000, chap. 2; Pianta, 2005; Vivarelli, 2013, 2014; Dosi et al. 2022). This theory will be

discussed in detail in this Section.

Moreover, the way mainstream economists look at technological change is often limited to the obtained

efficiency gains in input-output relationships, generally embedded in a standard production function (for

instance,  a  Cobb-Douglas).  On  the  one  hand,  this  view  may  help  in  our  understanding  of  both  the

productivity gains obtained by the economic systems over time and the secular shifts of employment away

first from agriculture and then from industrial sectors (de-industrialization, see UNIDO, 2013). On the other

hand (leaving apart legitimate epistemological concerns in using a traditional production function approach),

the sole focus on input-output efficiency gains appears quite narrow, namely limited to process innovation

(and so neglecting intangible R&D investments and product innovation, see Vivarelli, 1995, Edquist et al.,

2001;  Pianta,  2005),  mainly  implemented  through  “embodied  technological  change”,  that  is  machinery

incorporating new technologies (such as robots in present time, see Barbieri et al., 2019; Pellegrino et al.,

2019; Barbieri et al., 2020). Indeed, in so doing this view only points to the initial employment substitution

effect, neglecting possible complementary (labor-friendly) impacts which may arise from R&D investments

and product innovation (see below).

Let us start from singling out the main market forces which can (potentially) counterbalance the initial labor-

saving impact of process innovation (and then scanning them critically) . 

Indeed,  from the very beginning of the history of economic thought (see Vivarelli, 1995, 2014) classical

economists (with the notable exception of Karl Marx) have provided a theoretical framework (the so-called

“compensation theory”) able to figure out how both general equilibrium and partial equilibrium forces may

restore steady state full employment in the long-run. The main point put forward by the economic analysis is

that when a process innovation is introduced, the same technological change triggers market compensation

mechanisms which may counterbalance the initial labor-saving impact of innovation (Freeman et al., 1982;

Freeman and Soete, 1987; Simonetti et al., 2000; Vivarelli, 1995, 2015). These countervailing forces can be

classified as follows.
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Compensation via new machines

If new machines (say robots) are adopted widely, they might replace workers in some or all of their tasks.

Nevertheless, in order to have robots available, additional production is needed. As a consequence, a sectoral

shift of workers from the downstream robot-using industry towards the upstream robot-producing sectors

may counterbalance the initial negative effect on employment (Dosi et al., 2021). This mechanism can be

represented in a general equilibrium model, where compensation takes the form of inter-sectoral shifts in

employment  (see,  for  instance,  the  role  played  by  tractors  in  the  dramatic  reduction  in  agriculture

employment in the first half of the past century).

However, there are at  least  three counter-arguments with regard to this mechanism. Firstly, profitability

requires that the total cost of labor associated with the construction of the new machinery has to be lower

than the total cost of labor displaced by the new capital goods. Secondly, labor-saving process innovation

spreads around within the capital goods sector, as well. For instance, nowadays, robots are used to produce

robots and so this compensation mechanism can be end out into an endless upward shifting of a possible

labor-friendly effect which eventually turns out to be very limited. Thirdly and more important, the new

machines can be implemented either through additional investments or simply by substitution of the obsolete

ones (scrapping). In the latter case—which is indeed the most frequent one—there is no compensation at all

(Vivarelli, 2013).

Compensation via decrease in prices

The productivity increase determined by the broadly adoption of machinery and robots able to run automated

tasks might induce a decline of the average production costs. This effect, under the strong assumption of

highly competitive markets, can be translated into a subsequent reduction of prices. Lower prices should

determine a higher demand which might induce new hiring for labor in non-automated tasks (Acemoglu and

Restrepo, 2018b). This mechanism operates both in a partial equilibrium setting (where decreasing prices

implies an increase in the demand for the sector directly affected by process innovation) and in a general

equilibrium framework (where the larger purchasing power due to decreasing prices in sector  i is actually

spent in sector j).

Obviously  enough,  this  line  of  reasoning  does  not  take  into  account  possible  demand  constraints:  for

instance, pessimistic expectations by investors and households may involve a delay in expenditure decisions

and a lower demand elasticity. If such is the case, this compensation mechanism is dramatically hindered and

technological  unemployment  becomes  structural:  in  fact,  since  process  innovation  are  continuously

introduced in the economy, a delay in compensation is sufficient to create a component of unemployment

that persists over time. Moreover, the effectiveness of the mechanism “via decrease in prices” depends on the

hypothesis of perfect competition. If an oligopolistic regime is dominant, the whole compensation is strongly

weakened since cost savings are not necessarily and entirely translated into decreasing prices (Vivarelli,

1995; Feldmann, 2013).
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Compensation via re-investment of extra-profits

The accumulated extra-profits which may emerge in non-perfectly competitive markets (where the elasticity

between decreased unit costs and subsequent decreasing prices is less than one, limiting the scope of the

previous  mechanism)  may  be  invested  into  capital  formation,  expanding  both  the  productive  capacity

(supply) and the intermediate demand, in both cases implying an increase in employment. As was the case of

the previous mechanism, this market force also operates both in a partial equilibrium framework (where

additional  profits  are  invested  in  the  same  sector  affected  by  technological  change)  and  in  a  general

equilibrium one (where diversified companies may invest the extra-profits in a different sector).

However, also this compensation mechanism (“via new investments”) is based on an apodictic assumption:

that  accumulated  profits  due  to  innovation  are  entirely  and  immediately  translated  into  additional

investments. In fact, cautious or even gloomy expectations (the so-called “animal spirits”, as defined by

Keynes) may involve the decision either  to  cancel  investment  plans (diverting the obtained profits  into

purchasing luxury goods) or to postpone them; here again, a substantial delay in compensation may imply

structural technological unemployment. Moreover, the intrinsic nature of the new investments does matter; if

these are capital-intensive and labor-saving themselves, “compensation effects […] operate only imperfectly

and often with long delays” (Freeman et al., 1982, p.189).

Compensation via decrease in wages

With regard to the labor market, the technological unemployment generated by the initial labor-saving effect

leads to an excess of labor supply which might determine a reduction of wages; the consequent labor demand

increase is supposed to re-equilibrate the labor market and absorb the initial labor supply surplus. Although

originating within the labor market, this mechanism operates at the level of the entire economy and can be

fully captured only by a general equilibrium setting.

This mechanism (“via decrease in wages”) clashes against the Keynesian theory of “effective demand”:

while—in a partial equilibrium framework—one expects that a decrease in wages may induce firms to hire

additional  workers,  in  a  general  equilibrium framework it  must  also  to  be  taken  into  account  that  the

consequent decreasing aggregate demand may lower employers’ business expectations and so their willing to

hire additional workers; depending on which of these effects will prevail, total employment in the steady-

state  may  be  higher  or  lower  than  in  the  initial  stage.  Moreover,  this  mechanism  assumes  perfect

substitutability  between  capital  and  labor  and  this  is  not  often  the  case,  especially  when  cumulative,

irreversible, path-dependent and localized technological progress is going on (Atkinson and Stiglitz, 1969;

Freeman and Soete, 1987; Capone et al., 2019).

Compensation via new products

As emphasized by Schumpeter (1912) and briefly mentioned above, technological change cannot be reduced

to the sole (potentially labor-saving) process innovation. Indeed, the introduction of new products entails the
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raise of new branches of production and stimulates additional consumption and employment. For instance,

Dosi and Virgillito (2019) and Acemoglu and Restrepo (2019) suggest that AI—since it is not just a narrow

set of technologies with specific, predetermined applications and functionalities—can be deployed for much

more  than  automation.  With  AI  applications  creating  new  tasks  for  labor  (for  instance  in  education,

healthcare, augmented reality), there would be potential gains in terms of labor demand. This compensation

mechanism can actually be considered an alternative form of technological change, often neglected by the

standard economic analysis. Although captured by a partial-equilibrium analysis (since new products creates

new industries or increase differentiation within a given industry), this kind of technological change may

imply huge labor-friendly impacts (think about the introduction and diffusion of the automobile in the past

century).  This  compensation “via  new products”  is  often  called by the current  literature  “reinstatement

effect” (see Acemoglu and Restrepo, 2019 and Hötte et al., 2022).

However, even the labor-friendly nature of product innovation needs to be qualified. First, the intensity of its

impact depends on the weight that new products have in the baskets of consumption and on the income

elasticities of their demand. Second, goods which are new products for those producing them might well

represent efficiency enhancing processes for their users (robots are an example). Third, in order to exert a

compensating  effect,  new products  should  not  exclusively  replace  obsolete  ones:  if  new products  just

cannibalize the sales of older ones, the net result might be ambiguous (Katsoulacos, 1986; Vivarelli, 1995). 

Interestingly enough, the current economic debate on the labor market consequences of automation closely

resembles the “classical” compensation theory. In particular, the main reference is the theoretical framework

recently designed by Acemoglu and Restrepo (2018a; 2018b, 2019; 2020; AR in what follows); since it is

extremely influential, it deserves a closer critical scrutiny.

The AR model  moves from a “displacement effect” triggered by a process innovation (for instance the

introduction  of  robots)  affecting  a  workforce  mapped  in  terms  of  tasks.  These  tasks  are  ordered

(continuously) by their degree of “automatability”; in more detail, tasks can be automated or not, depending

on relative factor prices and the elasticity of substitution between capital and labor:

“When the wage rate is above the opportunity cost of labor (due to labor market frictions), firms

will choose automation to save on labor costs” (Acemoglu and Restrepo, 2018a, p. 1492).

Therefore, the employment technological shock is mediated by relative factor prices. This has important

implications: on the one hand, innovation is not considered in its intrinsic nature (as in a Schumpeterian

approach) but is actually “induced” by market prices; on the other hand, the compensation mechanism “via

decrease in wages” is put forward in a very conventional way, as previously discussed (see above). Since the

relative price of labor (in contrast with capital) is driving the entire process of task substitution, it  also

follows that:
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“These economic incentives then imply that by reducing the effective cost of labor in the least

complex tasks, automation discourages further automation and generates self-correcting force

towards stability” (Acemoglu and Restrepo, 2018a, p. 1526; see also Acemoglu and Restrepo,

2019, p. 9).

A second main self-correcting force formalized by the AR model is what they call the “productivity effect ”:

“[…] capital performs certain tasks more cheaply than labor used to. This reduces the prices of

the goods and services whose production processes are being automated, making households

effectively  richer,  and  increasing  the  demand  for  all  goods  and  services.”  (Acemoglu  and

Restrepo, 2018b, p. 6).

As the reader may well recall, this is exactly what classic and neoclassic economists call the compensation

mechanism “via decreasing prices” (see above). Obviously enough, the “productivity effect” is more or less

powerful, according to the very nature of the implemented technologies: in the case of the so-called “so-so

technologies” (see Acemoglu and Restrepo, 2019, p. 10; Acemoglu, 2021, p. 22), the impact in terms of

productivity may result particularly limited.

A third self-correcting correcting mechanism put forward by AR is “capital accumulation” which,

“[…] triggered by increased automation (which raises the demand for capital) will also raise the

demand for labor” (Acemoglu and Restrepo, 2018b, p. 1).

This is very similar to what discussed above as the compensation mechanism “via new investments”. Taken

together,  the  productivity  and capital  accumulation  effects  can  be  considered  as  “real  income effects”,

accordingly to Hötte et al. (2022). 

Finally, a fourth main self-correcting force in the AR model is the so-called “reinstatement effect”: 

“We argue that there is a more powerful countervailing force that increases the demand for

labor as well as the share of labor in national income: the creation of new tasks, functions and

activities in which labor has a comparative advantage relative to machines” (Acemoglu and

Restrepo, 2018b, p. 2)

For instance, this applies to education, healthcare, augmented reality (see Acemoglu and Restrepo, 2022, pp.

29–30). Although proposed in a peculiar way, this countervailing force implicitly refers to the compensation

mechanism “via  new products”,  which is  also discussed above.  Agrawal et  al.  (2019) provide different

examples  of  new tasks  associated  to  new products  associated  with  the  application  of  AI  and machine

learning, such as medical devices for brain surgery, machine learning algorithms used in academic research

in  fields  external  to  computer  science  (economics  being  an  example),  AI  applications  to  predict  the
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trajectories of space debris. In general terms, new products in the AI domain may generate complementary

effects, resulting in an increase in the demand for particular tasks/occupations/workers.

As  can  be seen,  the  AR framework can be considered a  formalization of  the  compensation  theory put

forward by the founders of the economic discipline (see above). Interestingly enough, both the Marxian

critique and the rejection of Say’s law put forward by Keynes are totally neglected in re-proposing the

classical compensation theory. As a consequence, all the theoretical critiques and the possible hindrances

related  to  market  failures  discussed  above  fully  affect  the  AR  framework;  in  more  detail,  the  major

shortcomings of the AR approach are the following.

Firstly, as common to the standard economic approach, innovation is not explicitly treated in their model, but

assumed as exogenous in nature (albeit characterized by a pace of implementation fully responsive to market

forces, in accordance with the standard “induced bias approach”, see above).

Secondly,  only  process  innovation  is  considered  (and  generally  just  robots),  neglecting  the  important

distinction between process and product innovation (see Schumpeter 1912; Freeman et al., 1982; Freeman

and Soete, 1987, 1994) and the possible labor-friendly impact of the latter. In this respect, the “reinstatement

effect” discussed above is a very reductionist way to take into account product innovations, that imply not

only the occurrence of an additional labor demand for new tasks, but rather the emergence of new sectors

and the related increase in aggregate demand (see, for instance, the role played by new products such as the

automobile in the Fordist regime and the PC and internet in the ICT era). Indeed, when Schumpeter (new

product and new supply) meets Keynes (effective demand) and a new institutional matching arises, new

technologies can trigger revolutionary changes with unprecedented consequences on the labor market, which

cannot be surely reduced to the extension of the available tasks (see Perez, 1983; Freeman and Soete, 1987;

Dosi, 1988; Dosi et al., 2022).

Thirdly, as detailed above, market failures are totally neglected, ignoring the critical thinking put forward by

Marx in the classical era, by Keynes (the role of animal spirits and effective demand) in the ‘30s and by non-

mainstream economists in recent times (see also the conclusions below).

Therefore, if we are not true believers and we take into account market failures, we have to conclude that

economic theory is inconclusive about the employment effect of technological change, since this depends on

a number of factors, assumptions, parameters,  elasticities,  model  calibrations. Indeed, theoretical  models

should be integrated by empirical studies (more radically: in order to be evidence-based, theoretical settings

should be “disciplined” by empirical studies; cf. following sections).
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3. The extant empirical evidence

3.1 Macroeconomic evidence

Section 2 has highlighted the sectoral and economy-wide compensation mechanisms that can balance the

direct  labor-saving effect  of  technologies on employment and make the final  outcome ambiguous.  This

ambiguity is reflected in the mixed evidence coming from macro-, sectoral and firm-level empirical studies,

as reviewed, for example, in Calvino and Virgillito (2018) and Dosi and Mohnen (2019). A few stylized

facts  emerge  from the  literature.  First,  there  is  a  positive  relationship  between  product  innovation  and

employment growth in all the different levels of analysis. Second, the effects of process innovations are more

controversial:  they tend to  be non-negative at  the  firm level,  whereas they can become negative at  the

sectoral level. Third, the effects of innovations can be different across economies, depending on country and

technological characteristics. These results confirm, on the one hand, that the distinction between product

and process innovation is theoretically fruitful—even if, in practice, product innovations in one industry are

often process innovations in other downstream sectors (see Dosi, 1984; Dosi et al., 2021, and the discussion

put  forward  in  the  conclusions  below)—as  well  as  the  distinction  between  different  units  of  analysis

(countries, sectors, firms). On the other hand, focusing on process innovation, we should note that most of

the studies reviewed there fall short of providing a direct measure of labor-saving technologies adopted at the

firm  level,  primarily  relying  on  general  definitions  of  process  innovation.  In  this  respect,  while  the

automation of production activities can be considered a sort of “natural trajectory” of process technologies

(Nelson and Winter, 1977), process innovation can also be related to other aspects of the production process,

for example, growing rates of utilization of capital or falling “idleness” of intermediate inputs such that one

could  consider  automation  as  part  of  a  more  general  trend  of  time-saving  technological  change  (Von

Tunzelmann, 1995a,b).

Granted this, what do we know from the more recent evidence related to the latest wave of labor-saving

process innovations? At the aggregate level (economy- and sector-wide), they tend to display mixed results.

Using variation across local  labor markets,  thus taking into account potential compensation mechanisms

across sectors, Acemoglu and Restrepo (2020) report robust adverse effects of robots on employment and

wages across US local labor markets, whereas Dauth et al. (2021) find no overall effect of the adoption of

robots  on  German local  labor  markets,  even  if  they  highlight  a  compensation  mechanism:  workers  are

displaced in manufacturing, but new jobs in services fully offset this effect. In Graetz and Michaels (2018),

who use variation in a sample of countries and industries from 1993 to 2007, robots are not found to decrease

employment, even if they reduce low-skilled workers’ employment share. Interestingly, using very similar

data, Klenert et al. (2020) find the opposite results: robots increase aggregate employment, without reducing

the share of low-skill workers.

Even if most of the recent literature has dealt with the effects of robot adoption, it is essential to note that

robots are still at an early stage of the diffusion process. According to data from the International Federation
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of  Robotics  (IFR),  robots  are  currently  concentrated  in  a  few  specific  industries,  such  as  automotive

manufacturing, electronics, and machinery. These industries account for the majority of robot installations

worldwide. Additionally, robots are primarily being adopted in advanced economies, such as Japan, South

Korea, Germany, and the United States (see also Fernandez-Macias et al., 2021). Moreover, automation may

take  many other  forms  and  is  only  performed by  robots  in  some work  processes,  for  example,  in  the

automotive industry, in welding, painting, and material handling (Krzywdzinski, 2021). Looking at the long-

term effects of computer numerical control (CNC) technologies, Boustan et al. (2022) find that industries

more exposed to CNC increased total employment, and the employment gains are the strongest in the case of

unionized jobs. 

Taken together, these results seem to suggest that the employment effects of automation technologies might

be country-specific and industry-specific (Gentili et al. 2020; Dottori, 2021), possibly as results of different

systems of social relations and institutions (Dosi, 1984), and/or differences in corporate strategies across

countries (Krzywdzinski, 2021). 

3.2 Firm-level mechanisms

This mixed evidence also calls for a better investigation of the underlying micro process brought about by

technological change. In the following, we will offer such a complementary perspective, looking in particular

at the role of firms. Firms are, after all, the locus in which most technological activity is carried out (Pavitt,

1987), including the adoption of labor-saving technologies. As firms exhibit heterogeneous adoption patterns

of new emergent technologies (Dosi and Nelson, 2010), and the diffusion of those technologies takes time,

the sectoral and the economy-wide effects of labor-saving technologies are the consequences, at each point

in time, of the interaction between adopting and non-adopting firms. In this respect, we do not expect, in

general, that granular micro evidence maps one-to-one into more aggregate (say, industry or economy-wide

level) results. In particular, sector- or economy-level effects are not informative about the adjustment process

that firms and workers go through. Since these adjustments can have profound distributional consequences, it

is also crucial for policymakers to be informed about them (Raj and Seamans, 2018).

To better interpret the recent and increasing empirical evidence from micro-level studies, we can make some

hypotheses about the effects of labor-saving technologies on firms and workers. To begin with, only some of

the above-mentioned mechanisms (see Section 2) can be expected to exert  a direct  compensation effect

within adopting firms. First, firms adopting labor-saving technologies can enjoy an increase in productivity

which, under specific market conditions (e.g. non-monopolistic markets), can be translated into lower prices

and so into an increase in market share for the adopting firm, possibly at the expense of non-adopting firms

—what  the  mainstream literature  calls  the  “business  stealing  effect”  (see  Bloom et  al.,  2013)  and  the

evolutionary tradition simply and clearly calls “selection” (see Nelson and Winter, 1982). Therefore, the net

effect  could be a  net  employment increase at  the level  of  the single firm. Second,  adopting firms may
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introduce new products or new tasks, which again could more than compensate for the displacement effect of

the adoption of the new technologies. Also, the compensation via re-investment of extra-profits could work

as a compensation mechanism at the firm level. 

Recent labor-saving technologies can also have heterogeneous effects across workers depending on their

occupations. One of the most investigated hypotheses holds that the recent phenomenon of job polarization,

documented in several countries in the last decades (see, for example, Autor and Dorn, 2013 for the United

States and Goos et al., 2014 for Western European countries), is partly due to technological change, which

would be replacing labor in routine tasks (the so-called routine-biased technical change, RBTC), decreasing

the demand for  middle relative  to  high-skilled and low-skilled occupations  (Autor and Dorn,  2013).  In

general, displacement and compensation effects could work in favor of workers performing non-automated

tasks and against workers performing automated tasks, thus leaving room for unequal effects across workers

performing different tasks, both across and within firms (see also Frey and Osborne, 2017).

3.3 Microeconomic evidence: employment

Most of the extant firm-level studies show a possible labor-friendly impact of new technologies; however,

some qualifications are needed.

Firstly,  the  job-creation  effect  of  new  technologies—although  statistically  significant—is  generally

negligible in magnitude (Piva and Vivarelli, 2005; Vivarelli, 2015) and often limited to the high-tech sectors

(Coad and Rao, 2011; Bogliacino et al., 2012).

Secondly, most of the extant microeconometric evidence is based on studies where process innovation is

either systematically underscored, as in those works using R&D or patent data which are innovative proxies

much more correlated to product rather than to process innovation (Buerger et al., 2010; Van Roy et al.,

2018);  or  constrained  to  be  measures  through  a  mere  discrete  variable  or  even  by  a  simple  dummy

(Lachenmaier and Rottmann, 2011; Harrison et al., 2014; Dachs et al., 2016; Hou et al., 2019; Lim and Lee,

2019); or limited to a very narrow typology (as robots, see below). Indeed, in the few studies where a more

comprehensive and continuous measure of process innovation is considered (that is the whole amount of

“embodied technological change” incorporated in new machinery, intermediate goods and software; well

beyond the sole robots) a labor-saving impact of new technologies clearly emerges, at least in traditional

downstream sectors and SMEs (see Barbieri et al., 2019; Pellegrino et al., 2019).

Thirdly, the positive relationship between innovation and employment at the firm-level is not a guarantee

that technological change will not lead to job displacement at the industry-level. According to the "growth of

the fitter" concept, rooted in different heterogeneous firms’ models (from “equilibrium evolution” models à

la Jovanovic, 1982, to Schumpeterian evolutionary models as in Nelson and Winter, 1982), more efficient

firms should grow more (see also Dosi et al., 2015). Within this framework, it is possible that firms adopting
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new technologies,  by improving their  productivity,  grow at  the expense of non-adopting firms.  Limited

existing evidence confirms the existence of a significant “business stealing” effect: Acemoglu et al. (2020),

provide evidence that automation leads to firms’ expansion at the expense of competitors. Because of the

intra-industry reallocation, firm-level effects do not necessarily translate into similar industry-level impacts.

In Acemoglu et al. (2020), robot adoption is indeed associated to an overall decline in industry employment,

whereas Aghion et al. (2020), find that positive firm-level effects are maintained at the industry-level.

Turning our attention to the recent literature devoted to the employment consequences of automation, a

critical limitation in studying the adoption of automation technologies at the firm level has usually been the

lack of reliable data. Most empirical evidence was previously based on innovation surveys, where firms were

asked to say yes or no to questions concerning whether the firm introduced new or improved processes that

differ  significantly  from  previous  processes.  Although  these  surveys  provide  a  first  picture  of  the

heterogeneous  adoption  of  new technologies,  they  usually  fail  to  provide  a  more  fine-grained  picture.

Emerging literature has started to work around this problem by leveraging different sources and measuring

adoption through specific surveys on robot adoption and other automation technologies, or through imports.

Taking stock of this recent literature, let us summarize a few points.

First, cross-sectional firm-level evidence has confirmed that, at each point in time, firms adopting automation

technologies are different compared to non-adopters. Using a survey on Chinese firms in 2015, Cheng et al.

(2019)  document  that  robot  adoption  varies  considerably  across  industries  and  regions  and  firm

characteristics. In particular, adopting firms tend to be larger, more capital-intensive and pay higher wages;

interestingly, their data does not support the conjecture that robots are more likely to replace routine tasks as

the  only  significant  correlation  is  between  robot  adoption  and  manual  task  measure.  This  evidence  is

confirmed in other countries and datasets (see, for example, Koch et al., 2021 and Deng et al., 2021 for robot

adoption in Spain and Germany, and Dinlersoz and Wolf,  2018 and Domini et al.,  2021 for automation

technologies  in  US and  France).  This  is  consistent  with  the  idea  that,  in  market-based  economies,  the

adoption of new technologies depends, among other things, on the capabilities and the stimuli embodied

within each firm (Dosi, 1988) and with the established empirical evidence reporting significant intra-industry

differences across firms both on the input and the output side (see, among many others, Bartelsman and

Doms, 2000; Dosi and Nelson, 2010).

Second, the investment in automation tends to occur in spikes at firm-level. In recent studies, Domini et al.

(2021, 2022) used product-level custom data to create a measurement of a firm's investment in automation.

Building on the classification system outlined by Acemoglu and Restrepo (2022)  the  authors  identified

imports  of  capital  goods equipped with automation technology through their  6-digit  harmonized system

product  code  (these  goods,  which  are  a  narrow subset  of  the  more general  category  of  machinery  and

equipment, include industrial robots, numerically controlled machines, automatic machine tools, and other

automatic  machines).  They show that,  similarly  to  physical  investment  in  general  (Grazzi  et  al.  2016),

imports of capital goods embedding automation technologies are rare both across firms and within firms.
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Among firms who import automated goods at least once, close to 30% does it only once; when it happens

more than once, the concentration of investment in a single year is close to 70%. The same evidence is

reported in Bessen et al. (2023), who use annual automation costs among Dutch firms, and Humlum (2021),

who similarly report that in sample of Danish firms, 70.6 percent invest in a single year only, and the peak

year of investment accounts on average for 90.7 percent of total firm robot expenditures. 

Third, automation tend to be concentrated in some sectors. In Domini et al. (2021, 2022), the manufacturing

sectors, in particular, electronics, machinery and automotive sectors, are the more represented in automation-

related imports, but there are also some service sectors, including IT and retail sectors, that play an important

role. Similar evidence is reported in Bessen et al. (2023).

However, to gain a comprehensive understanding of the impact of automation adoption, it is necessary to

analyze longitudinal evidence. Recent research by Domini et al. (2021) examines the before-and-after effects

of an automation spike within French importing manufacturing firms over the period 2002–2015. The study

reveals that  in the year of the automation spike,  firms experience higher employment growth,  which is

attributed to a rise in the hiring rate and a decrease in the separation rate. Although the effects tend to fade

over time, two years after the automation event the automating firms are larger than they were before. These

findings align with what has been found, both in France and in other countries, for more specialized forms of

automation, like robot adoption, as seen in Acemoglu et al. (2020), Dixon et al. (2021), Koch et al. (2021),

Benmelech  and Zator  (2022),  respectively  in  France,  Canada,  Spain,  and  Germany.  Additionally,  these

results  are consistent  with the findings in Aghion et  al.  (2020) concerning the effects of  automation in

France. However, some studies, such as Bessen et al. (2023), have suggested the opposite. Using a Dutch

firm-level survey on automation expenditure between 2000 and 2016, they found that after an automation

event, the firm-level employment contracts. 

Despite this, the overall positive relationship between automation and firm-level employment suggests that

compensating mechanisms, which favor the relative competitiveness of firms and, thus, their expansion, tend

to outweigh the direct labor-saving effects, as observed in earlier studies. Focusing on France, which has

more  evidence  available,  this  pattern  appears  to  hold  across  different  technologies  and  identification

strategies,  and  even in  the  short-term,  ruling  out  the  possibility  of  temporary  negative  effects  on  labor

demand. 

However,  a  possible  labor-friendly  impact  of  innovation  at  the  firm-level  cannot  be  generalized  at  the

sectoral and, a fortiori, at the macroeconomic level. As pointed out by Freeman et al. (1982), particularly in

recessionary periods, the overall labor-saving impact of new technologies in the adopting firms may well

turn out to be dominant in comparison with the limited labor-friendly effect of product innovation in the

innovative companies (ibidem, p.141).
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3.4 Microeconomic evidence: skills and wages

Even if automation may increase employment at the firm level, it could have different impacts on different

workers.  Various  studies  have  predicted  that  certain  jobs  and  tasks  will  be  more  susceptible  to

computerization and automation compared to others (Frey and Osborne, 2017; Arntz et al., 2016). These

predictions have led to concerns that the Fourth Industrial Revolution, characterized by the emergence of

new technologies such as robots and AI, could exacerbate existing inequalities or even create new ones. In

particular, the introduction of these technologies could lead to the displacement of certain jobs, particularly

those that are based on routines and repetitive in nature, and accelerate the polarization of the labor market,

resulting in increased benefits for workers at the top and bottom of the wage and skill  spectrum, while

leaving those in the middle behind (Piva and Vivarelli, 2004; Acemoglu and Autor, 2011; Autor and Dorn,

2013; Goos et al., 2014). 

All  these  concerns  are  not  new as  they  echo  what  happened  in  the  history  of  previous  technological

revolutions. For example, during the First Industrial Revolution, the adoption of labor-saving technologies

profoundly  impacted  the  organization  of  labor  and  the  market  structure  within  the  cotton  industry,

transforming the economy from a landscape of small cottagers to an industry of factories. 

By the end of the eighteenth century, England had seen an increase in large production units, often near

towns and always marked by a much finer division of labor. The factories of the Industrial Revolution helped

to  shift  the  barycenter  of  economic  output  from the  rural  to  urban  centers,  while  also  bringing  about

significant  changes  in  labor  and  social  organization.  Furthermore,  the  organization  of  the  labor  force

involved establishing rules regarding working hours, methods, wages, and movement within and between

positions.1 

Relatedly,  history  also  shows  that  the  process  of  deskilling  is  not  just  a  matter  of  human-machine

relationship but also co-evolves with the reorganization process of hierarchical layers within the firms. For

example, at the beginning of the twentieth century, Taylorism emerged as a new archetype for dividing labor

within an organization. Taylor's  principles of “scientific management” were a prerequisite for codifying

previously  implicit  knowledge  held  by  workers  into  a  set  of  elementary  procedures  and routines.  This

codification  became essential,  in  turn,  for  exerting control  over  such  knowledge,  which  had  previously

resided solely in the collective experience of skilled workers. The transfer of tasks from skilled workers to

“specialized”  workers  was accompanied by  the establishment  of  new rules  for  hiring,  firing,  and  labor

mobility to support the implementation of the new working procedures within the organizations. Taylorism

defined a new economy of time and a new economy of control, thus becoming the organizational capability

of collectively simplifying what was previously individually complex (see Dosi, 2023, pp. 245–256).

1 See, for example, Gragnolati et al. (2014). For an overview of the literature on the transition toward factory productions, see

Mokyr (2001). 
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Granted this—and based on the evidence available at the country-level—it appears that recently there is a

positive correlation between automation and shifts in the skill composition of the workforce. Specifically, the

data  suggests  that  jobs that  are  routine-intensive and require  low to middle  level  skills  are particularly

susceptible to being replaced by automated technologies such as robots (Barbieri et al., 2020, Cirillo et al.,

2021a,b).

Looking at the impact of automation within firms, it is clear that there are several ways in which it can lead

to changes in organizational structure. For example, it can affect how production activities are organized and

how human capital is managed (Dixon et al., 2021). Additionally, automation can result in changes to the

composition of the workforce, both across and within occupations (Freeman et al., 2020). Furthermore, it can

have an impact on the distribution of wages and on the hiring and separation rates (Cirillo et al., 2022). 

However, using French data, Domini et al.  (2021) found that automation spikes do not have significant

effects on the composition of the workforce, in terms of 1-digit and 2-digit occupational categories, and

routine-intensive vs.  non-routine-intensive jobs.  Domini  et  al.  (2022)  further  examined how automation

affects wage inequality within firms. They showed that investments in capital goods embedding automation

did not lead to an increase in within-firm wage inequality. Instead, wages increased by 1% three years after

the events at various percentiles of the distribution. These findings were also confirmed by Aghion et al.

(2020). 

A series of country-specific studies show the relevance of institutional  differences across countries. For

instance, Humlum (2021) used an event study to measure the impact of industrial robot adoption in Danish

firms. He found that the overall positive effect on wages was driven by the impact on tech workers, while

production workers experienced wage loss. In a study of Norwegian firms in the manufacturing sector, Barth

et  al.  (2020)  found  that  robots  increased  wages  for  high-skilled  workers  and  managerial  occupations,

positively affecting wage inequality. Dixon et al. (2021), using Canadian data, show that robot adoption

affects skill polarization of non-managerial workforce, with decreases in middle-skilled employment and

increase  in  low-  and  high-  skilled  employment.  Interestingly,  they  also  find  a  decline  in  managerial

employment and an increase in the span of control for supervisors. Chung and Lee (2023), using data on

Korean firms, find that the adoption of automation technologies differently affects the risk of job separation

of young and old employees, favoring the former over the latter. 

Overall, the impact of automation on the workforce composition and wages within adopting firms appears to

be complex, and the results can vary depending on factors such as the type of industry, the skills of workers,

and the institutions of the country, for example the prevalence of collective bargaining in determining wage,

and future works should take into account all the different facets of this relationship. And, relatedly, this also

highlights the importance of distinguishing technological conditions, input prices, and the demand for those

inputs more clearly.  Indeed,  when all  these aspects are singled out and the relevant  issues are properly
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separated, general theoretical settings such as the AR framework discussed in Section 2 appear, at  best,

oversimplified (see Dosi, 2023, pp. 328–333).

Here, we mention some possible challenges that appear to be relevant. A first important aspect concerns the

existence of gender wage gap and the role of automation in affecting it. Indeed, there is some evidence of a

decline in routine tasks among women, which partially explains the declining of the gender wage gap (Black

and Spitz-Oener, 2010). However, as such gap continue to be very relevant and is especially large in the

upper  tail  of  the  wage  distribution  (Blau  and  Kahn,  2017),  there  are  rising  concerns  about  how new

technologies are expected to affect the gender wage gap, even within the same firm, and to date there exists

very little evidence to support policy making. Using data from 20 European countries, Aksoy et al. (2021)

find that robot adoption increases both male and female earnings but also increases the gender pay gap. They

argue that such an affect  can be explained by the fact  that  men at medium- and high-skill  occupations

disproportionately benefit  from robotization, through a productivity effect.  Emerging firm-level evidence

provides mixed results. Domini et al. (2022) do not find any effect of automation spikes on within-firm

gender wage inequality. On the other hand, Pavlenkova et al. (2023) report a positive effect. They study the

effects of imports embedding automation technologies within Estonian manufacturing and services firms

over the period 2006–2018. They find that automation increases the wage of male employees more than

female employees, thus enlarging the gender pay gap.

Another emerging issue is  related to the fact  that  automation and technological  change affects not only

incumbent workers, but also workers that leave the firm. In this respect, more work is needed to understand

the main driver of this dynamics. Bessen et al. (2023), using a firm-level measure of automation for Dutch

firms, find that workers separating after an automation event experience a 5-year cumulative wage income

loss of 9 percent of one year’s earnings, driven by decreases in days worked. One possible driver of this

income wage loss is the characteristic of the occupation. Martins-Neto et al. (2023) use a rich Brazilian panel

dataset to examine the effect of job displacement in different groups of workers, classified according to their

tasks. They show that following a layoff,  workers previously employed in routine-intensive occupations

suffer a more significant decline in wages and more extended periods of unemployment. 

Finally, national and local institutions play a role in shaping the relationship between wage dynamics and

technological change. As mentioned before, institutions are important in determining, for example, the extent

to which wages respond to technological change. Additionally, labor-market institutions can also influence

the nature of technological change. For instance, El-Hamma et al. (2023) show that the interaction between

the adoption of digital technologies and learning capacity is crucial in determining the innovative outcomes

of EU countries and industries. On the other hand, Zhou et al. (2011), show that flexible labor markets are

linked to better performance for firms that specialize in imitative new products, but worse performance for

those creating innovative new products.  Hoxha and Kleinknecht (2023) provide firm-level evidence that

removing labor market rigidities can harm productivity growth in industries that depend on the accumulation

of tacit knowledge. Turning our attention to the regional level, Dughera et al. (2023) show that workers
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employed  in  regions  with  a  multi-specialized  knowledge  structure  earn  positive  wage  premia,  while

technological specialization has a negative effect on compensation levels.

4. Mapping labor-saving technologies

While in  the previous sections  we have discussed-both theoretically and empirically-  the possible labor

market impacts of new labor-saving technologies, an often neglected issue in current research concerns the

origins of these labor-saving innovations. Indeed, most of the extant literature (see above) “assumes” the

notion of labor-saving automation (sometimes including the overall capital formation, sometimes focusing

on  the  sole  robots),  without  any  effort  to  precisely  single  out  the  source  and  nature  of  labor-saving

technologies.

This  section  is  one  of  the  first  attempts  to  fill  this  gap,  investigating  where  labor-saving  automation

technologies originate by means of the textual analysis of actual patents. For doing so, we identify explicit

labor-saving (hereafter, LS) heuristics embedded in American patents related to automation technologies and

characterize their emergence across sectors, innovative actors, and geographic location.

In  particular,  we  leverage  on  natural  language  processing  of  patents  full-texts  (including  title,  abstract,

summary, description, claims, and drawings captions) and we follow a methodological approach similar to

Montobbio et al. (2022), which we extend along three main directions. First, while Montobbio et al. (2022)

only focused on robotics, here we adopt a broader definition of automation, which encompasses artificial

intelligence (hereafter, AI). Second, while their timeframe was limited to relatively new patents, published at

the USPTO (United States Patent and Trademark Office) between 2009 and 2018, here we look at the long-

term evolution of automation innovations, granted from the mid 1970s onward. Third, in place of a manual

and prone-to error validation of each (potentially) LS patent, we exploit an automated validation routine

based  on  part-of-speech tagging  and rule-based  matching,  along the  lines  of  Rughi  et  al.  (2023).  This

methodological innovation enables the aforementioned enlargement in the time period and technology scope.

Our main data sources are PatentsView (USPTO), which provides all patent full-texts, and Orbis IP (Bureau

Van Dijk), which we use to match patents to their corporate owners. At the time of writing, PatentsView

contains data for a total of 8,169,776 patents granted between January 6th 1976 and 28th June 2022. From

this  universe,  we  single  out  automation  patents  by  means  of  CPC (Cooperative  Patent  Classification)

technological classification codes. In particular, we select patents which are assigned at least one of a list of

367 (full-digit) CPC codes which are known to be relevant to either robotics (124) or AI (243). These codes

come from statistical concordance tables relative to USPC (United States Patent Classification—a legacy

classification scheme) Classes 901 (“Robots”) and 706 (“Data Processing: Artificial Intelligence”) which

have been extensively used in the past to identify patents thereof. This search step returns a total of 286,283
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patents, of which 32,588 belong to robotics, 255,863 to AI, and 2,178 to both. Similar orders of magnitude

and degree of overlap are observed in Santarelli et al. (2022).

Figure 1: Lists of keywords used for the labor-saving query.

The textual content of each patent document is queried, sentence by sentence, against a triplet of words,

among  the  Cartesian  product  of  the  three  lists  outlined  in  Figure  1.  These  keywords,  borrowed  from

Squicciarini and Staccioli (2022), extend the ones used originally by Montobbio et al. (2022). A patent is

deemed potentially LS if a verbal predicate from the first list, a direct object from the second list, and an

attribute from the third list simultaneously belong to at least one of its sentences. In fact, the query checks for

the  presence of  the  morphological  root  (or  stem)  of  each keyword,  so that  the  matching  is  established

regardless  of  inflectional  changes (e.g.  conjugation or  declension).  The  additional  validation  routine by

Rughi et al. (2023) further checks the coherence between these keywords, requiring that the logical analysis

of the sentence reflects certain corroborated patterns. A total of 5,162 LS patents are singled out, of which

4,640 are related to AI (approximately 1.7% of all AI patents), 638 to robotics (approximately 2% or all

robotics patents), and 116 to both (approximately 5.3% of the previously computed overlap). For the sake of

example, an excerpt from a LS patent is reported below, with emphasis added to highlight the matched

keywords.

“The proposed methodology is completely  automated, requiring no  human intervention, as

compared to traditional mesh-based methods that often require manual input.” (US10013797B1)

The bar plot in Figure 2 depicts the time evolution in the number of LS automation patents granted each

year. Since data is available up to mid-2022, the figure for that year is not represented in the picture. An

overall increasing trend is apparent, with a sudden acceleration in the past decade and notable peaks around
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2013 and 2020.  It  seems useful,  in  the  following analysis,  to  use  year  2010 as a  watershed to make a

comparison between the preceding period (1976 to 2009) and recent times. Indeed, 2010 is both a post-

financial-crisis divide and a turning point in Figure 2.

Figure 2: Number of LS patents per year; reference period is 1976–2021 inclusive.

# LS Company name Country NAICS code NAICS title # < 2010 LS < 2010

1 220 IBM US 541512
Computer Systems
Design Services

1 31

2 108 Accenture US 921130
Public Finance 
Activities

2 28

3 88 Boeing US 336411
Aircraft 
Manufacturing

23 6

4 78 Bank of America US 551111

Offices of Bank 
Holding 
Companies

17 7

5 71 Microsoft US 511210
Software 
Publishers

5 16

6 70 JPMorgan US 551111

Offices of Bank 
Holding 
Companies

4 17

7 68 Amazon US 443142 Electronics Stores 70 3

7 68 Google US 541511 Custom Computer 
Programming 
Services

35 4
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9 65 Headwater US n/a
[Technology 
Research]

n/a n/a

10 61 Oracle US 511210
Software 
Publishers

11 9

11 47 Strong Force US 523910
Miscellaneous 
Intermediation

n/a n/a

12 44 SAP DE 334614 Software [Misc.] 12 8

13 43 StateFarm US 524113
Direct Life 
Insurance Carriers

n/a n/a

14 41 HP US 334118

Computer 
Terminal and 
Peripheral Manuf.

8 12

15 39 Hitachi JP 335999

[Misc.] Electrical 
Equipment and 
Component 
Manuf.

3 18

15 39 WinView US 511210
Software 
Publishers

n/a n/a

17 34 Fujitsu JP 334111

Electronic 
Computer 
Manufacturing

8 12

18 26
Rockwell 
Automation

US 334419

Other Electronic 
Component 
Manufacturing

70 3

19 24 Carma IE 541618

Other 
Management 
Consulting 
Services

n/a n/a

20 23 Micro Focus GB 511210
Software 
Publishers

35 4

Table 1: Top 20 corporate owners of LS patents, their 6-digit NAICS industry classification, and their

ranking only considering patents granted before 2010.

Our  next  step consists  in  identifying the corporate  innovative actors  behind LS automation patents and

characterizing them in terms of industry and geographic location. To this purpose, we retrieve from Orbis IP

the relevant firm level information. The total number of firms which hold at least one automation LS patent
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is 1,702. Table 1 lists the top 20 holders, ranked by the number of LS patents in their portfolio, their main

sector of activity, represented by a 6-digit NAICS 2017 code, and their rank and number of LS patents held

before year 2010, for temporal  comparison. The chart is  dominated by American high-tech firms which

either develop software or manufacture computer hardware. Remarkably, the top holder, IBM, has twice as

many LS patents as any other assignee. A few notable exceptions are Boeing, an aircraft  manufacturer,

consulting firms Accenture and Carma, and banks and insurance companies such as JPMorgan, Bank of

America, and StateFarm. It is worth mentioning that Boeing was found by Montobbio et al. (2022) to be the

single largest holder of robotics LS patents; additionally, although the company is more than a century old,

its ranking has increased substantially in the past decade, from a 23 rd position before 2010 to an overall third

place. Similar specialization patterns apply to Amazon, another archetypal case in Montobbio et al. (2022),

and Google, both established in the 1990s (i.e. around halfway in our time window), Rockwell Automation,

and Micro Focus, founded in 1903 and 1976, respectively. Finally, a few companies were either established

after  2010 or  did  not  hold  any LS  patents  beforehand,  including  Headwater,  Strong Force,  StateFarm,

WinView,  and Carma,  meaning that  they have either produced or acquired a  substantial  amount  of  LS

patents within a relatively short period of time.

The top 15 sectors of economic activity of patents holders are reported in Table 2, aggregated at the 3-digit

level.  The picture broadly echoes the overall  concentration of LS patents in the high-tech and financial

industries (cf. codes  541,  334,  522, and  511, the latter of which is predated by software publishers in our

sample).  However,  it  is  apparent  that  more  traditional  manufacturing  sectors  also  rank  high,  namely

machinery (code  333) and transportation equipment (code  336), respectively at the 5th and 6th place. This

partially reflects the findings of previous studies on robotics LS patents (Montobbio et al., 2022; Montobbio

et al., 2023; Squicciarini and Staccioli, 2022) which single out occupations in automotive and logistics as the

potentially most exposed to LS innovation. Given the roughly 90%-to-10% imbalance between the number

of LS patents related to AI and robotics in our sample, it seems intuitive to deduce that AI and robotics act as

complementary technologies for the underlying innovators, which include Caterpillar and Siemens regarding

machinery  manufacturing,  and  General  Electric,  Bosch,  Honda,  and  Ford,  alongside  Boeing,  regarding

transportation equipment manufacturing. Over time, the software and the telecommunication industries have

gained importance, respectively with code 511 jumping from 8th place before 2010 to 4th place overall, and

code  517 gaining 6 positions from 20th to 14th. On the other hand, most of LS innovations in “Electrical

Equipment, Appliance, and Component Manufacturing” took place before the past decade, making code 335

to slip from 5th to 13th place.
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# Frequency Code Title # < 2010 Freq. < 2010

1 869 541 Professional, Scientific, and Technical Services 2 126

2 682 334 Computer and Electronic Product Manufacturing 1 173

3 317 522 Credit Intermediation and Related Activities 4 72

4 301 511 Publishing Industries (except Internet) 8 36

5 251 333 Machinery Manufacturing 3 90

6 227 336 Transportation Equipment Manufacturing 7 41

7 174 561 Administrative and Support Services 6 43

8 136 551 Management of Companies and Enterprises 12 26

9 122 921
Executive, Legislative, and Other General 
Government Support

9 30

10 113 524 Insurance Carriers and Related Activities 14 20

11 107 926 Administration of Economic Programs 10 28

12 105 925
Administration of Housing Programs, Urban 
Planning, and Community Dev.

10 28

13 104 335
Electrical Equipment, Appliance, and Component 
Manufacturing

5 44

14 90 517 Telecommunications 20 11

15 70 523
Securities, Commodity Contracts, and Other 
Financial Investments and Rel. Act.

16 16

Table 2: Top 15 3-digit NAICS sectors of belonging of LS patents’ owners, and their ranking only

considering patents granted before 2010.

Table 2 clearly provides only a partial picture with respect to the sectoral dispersion of LS patents. Figure 3

depicts the frequency distribution of 3-digit NAICS codes in our sample. The figure tells a twofold story. On

the one hand, most patents are concentrated within a small number of sectors: around 82% of patents belong

to (at least one) of the top 15 industries of Table 2. On the other hand, LS patents permeate as many as 76 3-

digit  sectors,  out  of  99  of  the  NAICS  classification.  This  seem  to  suggest  an  extensive  degree  of

pervasiveness of LS technologies across the supply chain. In this respect, the fact that a certain industry owns

less than a handful of LS patents may indicate either the infancy of a technological development, or an

abandoned strand of research.
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Figure 3: Frequency distribution of 3-digit NAICS codes across corporate owners of LS patents.

Figure 4: Number of LS patents by country of ownership.

Finally, we assess the geographic penetration of automation LS technologies by looking at the distribution of

LS patents across countries, given the location of their assignees. It is worth remembering that our sample

only includes patents granted by the USPTO, and therefore a positive bias towards American companies is to

be expected. In fact, 3,483, i.e. roughly two thirds of LS patents in our sample, are owned by American

assignees. However, it is well known that the US jurisdiction has also proven to constitute one of (if not) the

most preferred outlet for protecting inventions by non-US firms, outside of their domestic market. Figure 4

shows a World heatmap representing the overall number of LS patents in each country. Alongside the US,

this picture is in line with traditional top-tier competence centers in high-tech innovation, which include
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Japan (393 patents), China (130), and Germany (118). Ireland appears as an outlier, ranking third with 151

LS patents, although its reputation as a tax haven makes it likely that companies doing most of their business

elsewhere decide to be incorporated therein.

Figure 5: Number of LS patents by country of ownership, rescaled by population (in millions).

A more telling picture, which allows for better international comparisons, is provided in Figure 5, which

rescales the number of LS patents by the population in each country, expressed in millions. Population data

is taken from the United Nations dataset and refers to year 2022. Besides Ireland, which for said reasons tops

the chart with more than 30 LS patents per million people, and excluding micro-nations which are likely to

be over-represented (Luxembourg and Barbados), the US is the only country to reach, and stop at, the 10 LS

patents per million mark, the figure reading 10.40. Next come Switzerland (5.23), Singapore (4.75), Iceland

(3.33), which is however biased by a small population, Israel (3.26), Japan (3.13), and Canada (2.68). For the

rest of the World, rescaling by population acts as an equalizer, and the bigger picture of countries engaged in

LS automation innovations embraces most of Europe (excluding Portugal, the Balkans and Baltic Republics),

more and less developed Asian countries (alongside Japan, South Korea, India and China), selected Central

and South American nations, (Mexico, Panama, Venezuela, Brazil, and Chile), Oceania (Australia and New

Zealand), and, only partially, the Middle-East (Israel and Saudi Arabia).

5. Main findings and conclusions 

In the first part of this paper, a theoretical framework has been proposed and critically discussed; moreover,

it has been shown that the recent debate is not so different from the optimistic and market oriented approach

that was put forward by the proponents of the classical compensation theory. However, if we take properly

into account the critical thinking pointing to the role of expectations, the possible occurrence of demand
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constraints and the overall market failures connected to the widespread presence of non-competitive markets

(which may render compensation mechanisms partial or even ineffective), we should depart from the array

of the true-believers and admit that market mechanisms may fail in assuring full employment as a long-term

steady state. In this respect, the lessons from Keynes are the cornerstones.

Moreover, the sources and nature of new technologies should be properly taken into account, starting from

the basic distinction between product and process innovation and then investigating how new technologies

are produced by the supplier firms and then adopted by downstream companies. In this respect, the lessons

from Schumpeter are seminal.

In this framework, Keynes+Schumpeter agent based models, able to properly take into account innovation,

market forces, market failures and “effective” demand” are much more flexible in framing the complex

relationship between technological change and employment evolution (for instance, in Dosi et al., 2022 the

interdependency  between  two  vertically  integrated  macro-sectors  may  indeed  generates  persistent

technological unemployment when a systematic mismatch occurs between the Schumpeterian provision of

new product and process innovation on the one side and the Keynesian demand generation on the other side).

Moreover, these models are not aiming to obtain any kind of steady state equilibrium, but they rather give

account  of  the  continuous  “disequilibrium”  characterizing  the  supply  and  implementation  of  new

technologies in dynamic and imperfect markets. Finally, this theoretical framework is “open” in terms of

empirical outcomes: for instance, the model put forward by Dosi et al. (2021) gives account of both a labor-

friendly effect of innovation in the upstream and high-tech sectors, and a labor-saving impact of process

innovation in the downstream more traditional industries.

The second part of this study has been devoted to discussing the extant empirical literature, which is affected

by two serious shortcomings. First, the very recent debate appears to be characterized by a sort of obsession

about robots, which does not take into account the fact that process innovation is a much broader category

that should be measured by more comprehensive indicators of “embodied technological change”. Second, the

dominant role of firm-level studies in the current literature is conducive to a widespread optimistic bias,

particularly when estimates do not properly take into account the “business stealing effect” which can entail

an opposite  outcome (i.e.  job destruction)  at  the  sectoral  and/or  aggregate  level. However,  this  general

aptitude turns out to be less optimistic when the focus is turned to skill and wages, where unbalances and

inequalities are largely recognized within the available evidence.

The  third  part  of  this  work  presents  and  discusses  novel  evidence  on  the  geographical  and  sectoral

distribution of labor-saving automation (comprising both robots and AI), on the basis of natural language

processing applied to the full text of US patents. To summarize just some of our findings, we can recall that:

i)  robots  are  just  a  minority  of  automation  patents  (see  above  about  the  current  over-emphasis  on

robotization); ii) an acceleration in labor-saving automation is obvious since 2010; iii) although relatively

pervasive, labor-saving automation is geographically and sectorally concentrated; iv) interestingly enough,
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among the leading sectors and companies, upstream high-tech providers are listed together with some main

users of the new technologies (such as Boeing in aircraft manufacturing or Amazon in retail and logistics).
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