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Modular and hierarchical community structures are pervasive in real-world complex systems. A great deal of
effort has gone into trying to detect and study these structures. Important theoretical advances in the detection of
modular have included identifying fundamental limits of detectability by formally defining community structure
using probabilistic generative models. Detecting hierarchical community structure introduces additional chal-
lenges alongside those inherited from community detection. Here we present a theoretical study on hierarchical
community structure in networks, which has thus far not received the same rigorous attention. We address the
following questions. (1) How should we define a hierarchy of communities? (2) How do we determine if there
is sufficient evidence of a hierarchical structure in a network? (3) How can we detect hierarchical structure
efficiently? We approach these questions by introducing a definition of hierarchy based on the concept of
stochastic externally equitable partitions and their relation to probabilistic models, such as the popular stochastic
block model. We enumerate the challenges involved in detecting hierarchies and, by studying the spectral
properties of hierarchical structure, present an efficient and principled method for detecting them.

DOI: 10.1103/PhysRevE.107.054305

I. INTRODUCTION

Hierarchical organization has been a central theme in the
study of complex systems, dating back to the seminal work
of Herbert Simon [1], who observed that a large proportion
of complex systems exhibit hierarchical structure. Decom-
posing a complex system into such a hierarchy provides an
interpretable summary, or coarse-grained description of the
system at multiple resolutions. As networks have become
ubiquitous for modeling complex systems, these ideas have
re-emerged as the identification of hierarchical groups, or
communities, of nodes within a network [2–5]. Community
detection in networks has received a lot of attention because it
can reveal important insights about social [6–8] and biological
[8–11] systems, among others. A hierarchical description of
communities provides the additional utility that it enables a
consistent multiscale description, linking the organizational
structure of a system across multiple resolutions. Hierarchical
communities thereby circumvent a prominent issue of com-
munity detection, namely, deciding an appropriate resolution
[12–14] or number of communities to detect [15,16]. On
the other hand, detecting hierarchical communities inherits,
and even exacerbates, many of the theoretical and computa-
tional challenges of detecting network communities at a single
scale. Specifically, major challenges for detecting hierarchical
communities are (i) how should we define a hierarchy of
communities, (ii) how should we determine if a hierarchical
structure exists in a network, and (iii) how can we detect
hierarchical structure efficiently? Recently, we have seen im-
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portant developments in the theory of community detection
and its limitations [17–21] (see also Refs. [22,23] for reviews).
Here we lay the foundations for developing such theory for
detecting hierarchical community structure in networks.

The notion of hierarchy in networks is widespread and
has been discussed from a plethora of different perspectives
[24]. For instance, if edges denote some type of flow (e.g.,
information, data, mass, nutrients, money) this may induce
a hierarchy among the nodes [25,26] in which nodes higher
up in the hierarchy have more links directed towards nodes
at lower levels of the hierarchy (or vice versa, depending
on the convention of the directionality). To be clear, these
types of nodal rankings are not the hierarchies we are looking
for. Rather, we are interested in the hierarchical organiza-
tion of community structure, i.e., communities that are again
composed of communities etc. Existing models and methods
for detecting hierarchical structure are often constrained to
find dense assortative community structures [27–29]. Here
we consider general probabilistic descriptions of mesoscopic
hierarchical group structures, which can be combinations of
assortative and disassortive structure.

There are currently many methods available that perform
“hierarchical” community detection. Some methods are algo-
rithmically hierarchical [30–32] and produce a hierarchy as
a by-product and without guarantees of hierarchical structure
in the network. Yet another class of methods involve fitting
a hierarchical model [2–5,33]. However, in some cases, the
design of these models have been motivated by objectives
other than detecting hierarchies such as to produce networks
with certain statistical properties [33] or to identify communi-
ties beyond the resolution limit [4]. Consequently, whenever
we use one of these approaches (either a hierarchical algo-
rithm or hierarchical model), we run the risk of identifying
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(a) (b) (c)

FIG. 1. A hierarchical model does not guarantee hierarchical
community structure. (a) An adjacency matrix of a network with 64
groups of fully connected nodes (cliques), each containing ten nodes
each. This network contains an unambiguously “flat” partition that
contains no hierarchy. (b) The dendrogram representing the hierarchy
found by detecting communities using a hierarchical model. (c) An
adjacency matrix containing hierarchically structured block densities
that is consistent with the dendrogram structure in (b).

a hierarchy that has greater complexity than the data can
support.

To demonstrate this point, Fig. 1 illustrates a network
containing 64 cliques that each contain ten nodes. It is rela-
tively uncontroversial to suggest that the desired output of a
community detection algorithm for this network would be to
recover those sixty-four cliques as communities. Furthermore,
because the cliques are structurally identical, any hierarchical
grouping is compatible—any clique can be swapped with any
other, all putative hierarchical configurations are effectively
equivalent and there exists no preferred hierarchical grouping.
Naïvely applying a hierarchical community detection method
may produce a hierarchical clustering, as shown in Fig. 1(b).
We can consider this detection of superfluous hierarchical
levels as analogous to identifying spurious communities in an
Erdős-Rényi random graph.

These issues typically arise when we simply optimize
an objective function, e.g., maximizing modularity, likeli-
hood or posterior probability. For instance, the maximum
a posteriori solution may contain multiple hierarchical levels
that provide a more compact description within the chosen
model class, i.e., a “simpler” description of the data, and is
therefore optimal with respect to chosen objective. However,
this notion of simplicity conflicts with the intuition that there
is no further structure beyond partitioning the network into
sixty-four groups. Note that this is not to say that the maxi-
mum a-posteriori solution is bad, as it does present a plausible
model that is compatible with the observed data, but rather
that it presents an unintuitive interpretation of the hierarchical
structure in the data. Some solutions to this problem exist in
the realm of Bayesian inference, where we can take an average
or form a consensus according to a distribution over solutions.
Such solutions have been successfully demonstrated for both
the regular [34,35] and hierarchical [2,36] variants of the
community detection problem. However, these methods of
statistical inference can be computationally demanding. Pre-
vious approaches either employ Markov chain Monte Carlo
methods [2,4], for which convergence can be slow and diffi-
cult to diagnose, or rely on approximate heuristics that scale
quadratically with the number of nodes in the network [3]
and are thus limited to relatively small networks. Recently,

however, fast spectral methods based on the nonbacktracking
[37] and Bethe Hessian [38] operators have been developed
that can efficiently detect communities right down to the the-
oretical limit of detectability [37].

Spectral algorithms have also been studied in the context
of hierarchical communities. [5,39–41]. For instance, White
and Smyth [31] and Newman [32] present spectral algorithms
based on the modularity matrix that recursively bipartition a
network. These algorithms output a hierarchy in the form of
a binary dendrogram, but with the goal of simply recovering
a single partition of the network. Lyzinski [5] analyze the
performance of spectral algorithms under a hierarchical gen-
erative model based on a random dot product graph model.
Local spectral algorithms have also been shown to provide
good solutions when optimizing conductance based scores
[42–44], which are of particular interest for very large graphs
in case we do not need to partition the graph as a whole.

In this work, we propose a number of important theoret-
ical advances for the detection of hierarchical communities.
We first provide a definition of hierarchical communities by
introducing the concept of stochastic externally equitable par-
titions and drawing a connection to the popular stochastic
block model and various node equivalence classes (Sec. II).
Second, we discuss specific challenges that pertain to the
detection of hierarchical communities with a specific fo-
cus on identifiability issues, which demonstrate that even
well-defined hierarchies do not have a unique representation
(Sec. III). Then we turn our attention to the spectral proper-
ties of networks with planted hierarchical structures. Using
these spectral properties, we develop an efficient method for
detecting if a hierarchy of communities exists and identify-
ing a hierarchy when it is present (Sec. IV). We conduct
numerical experiments that demonstrate the efficacy of our
approach on synthetic networks (Sec. V) and real-world net-
works (Sec. VI). Finally we conclude with a discussion of
possible extensions of our work, including theoretical consid-
eration and extensions to other type of network models.

II. HIERARCHICAL STRUCTURE IN NETWORKS

Before we can detect hierarchies, it is necessary to define
precisely what we mean by a hierarchical structure. Any hier-
archy can be represented as a rooted tree, sometimes referred
to as a dendrogram. The root of this tree represents the group
of all nodes in the network. Starting from the root, at each
branch of the dendrogram each parent group is partitioned into
child subgroups (see Fig. 2 for a schematic example).

In hierarchical community detection, as considered here,
we aim to identify groups of similar nodes in a network, such
that with each further subdivision of the nodes, the resulting
groups should contain increasingly similar nodes. Each sub-
group should therefore also have inherited certain similarities
from its parent group. A relevant way to define similarity is in
terms of stochastically equivalent nodes, i.e., groups of nodes
r and s such that any node in group r has the same probability
�rs of linking to any node in group s. In this setting one can
represent the community structure of a network with n nodes
using the stochastic block model (SBM) [45,46]. The SBM
defines the probability of a link existing between two nodes
depending on their community assignment. We represent this
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FIG. 2. Schematic representation of the link probabilities in a
hierarchical graph model. The dendrogram on the left represents the
hierarchical partition associated with the hierarchical organization of
the edge probabilities on the right. At each branch of the dendrogram
the link probabilities pattern within the diagonal blocks is refined,
as indicated by the smaller block patterns on branch (a’)–(c’). The
resulting in an overall edge probability pattern is shown on the right.

group assignment as a group indicator matrix H ∈ {0, 1}n×k ,
in which H ir = 1 if node i is assigned to group r and H ir = 0
otherwise. Then the probability of nodes i and j being linked
is given by

P[Ai j = 1] = H i·�H�
j·, (1)

where H i· is the ith row of H and A ∈ {0, 1}n×n is the adja-
cency matrix in which Ai j = 1 if there is a link between i and j
and Ai j = 0 otherwise. Ordering the rows and columns of the
adjacency matrix according to the group assignment of nodes
allows us to represent A as a set of blocks with link densities
given by the affinity matrix �. Note that in the above descrip-
tion we have allowed self-loops and we will only consider
undirected graphs, for simplicity. Some comments on exten-
sions to directed graphs are provided in the discussion section.
Based on such an SBM, one way to generate a hierarchy of
communities is by recursively subdividing a block into more
blocks and describe it as a type of a hierarchical random graph
(HRG) model [2] (or its generalized variant [47]). Figure 2
illustrates such a hierarchy of communities. Starting at the
root of the dendrogram in the left of the figure, we generate the
total expected number of edges in the network m, the number
of groups k(1), and a k(1) × k(1) expected edge count matrix
m(1)

rs that describes how the m links are distributed between
the groups, i.e.,

∑
rs m(1)

rs = m. Note that by convention m(1)
rr

is equal to twice the number of (undirected) edges in group
r (1). The process continues by subdividing each of the groups
in the same manner. For instance, we can subdivide the n(1)

r
nodes in group r (1) by defining an edge count matrix m(2)

rs
that describes how the m(1)

rr edges are distributed among the
subgroups, i.e.,

∑
rs m(2)

rs = m(1)
rr .

Multiple branches may occur simultaneously at the same
level of the hierarchy, e.g., branches (a’), (b’), and (c’) occur at
the same level in the example in Fig. 2. We can represent each
level u by an assignment of nodes to groups and an affinity
matrix,

�(u)
rs = m(u)

rs

n(u)
r n(u)

s

,

of connection probabilities that includes all groups in the
network at level u. In other words, each level may be seen
as an SBM that captures a particular resolution of the system.
Each of the subgroups shares the stochastic equivalence in-
herited from the parent group, such that all child subgroups
of the same parent share the same set of external connection
probabilities to other groups. Specifically, the probability of
a link between two nodes will be governed by the nearest
common ancestor in the dendrogram.

Describing hierarchical communities in this way suggests
that we should observe a particular pattern of edge densi-
ties in the adjacency matrix when the rows and columns
are ordered appropriately. We observe such an example in
Fig. 2, in which there is a hierarchical refinement of the block
structure in the block diagonal of the adjacency matrix and a
homogeneous density of edges in the off-diagonal. This notion
of hierarchical group structure is one of the most common
conceptualizations of hierarchical structure encountered in the
literature [2,3,5]. We refer to this type of hierarchy as an
assortative hierarchy.

These assortative hierarchical communities, however, may
be limited in their representation of network connection
patterns. For instance, Fig. 3(a) illustrates an assortative hi-
erarchy, which allows us to capture disassortative structures
only to some extent, i.e., the off-diagonal blocks can have
a higher density than the diagonal blocks. But the assorta-
tive hierarchy may fail to capture the community structure
when the distinction between resolutions is contained in the
off-diagonal, e.g., Fig. 3(b) in which the diagonal blocks
are homogeneous. A common example of networks of this
type are bipartite networks in which the diagonal blocks
contain no edges. A more general hierarchical structure may
be constructed, as depicted in Fig. 3(c), by combining both
assortative and disassortive hierarchical features.

A. Stochastic externally equitable partitions

To capture these types of generalized hierarchies, we de-
fine hierarchical communities by introducing the concept of
stochastic externally equitable partitions, and describe their
relationship to the stochastic block model. Figure 4 provides
an overview of relevant concepts and equivalence relations
and how they relate to each other.

For a given set of parameters, the SBM provides a para-
metric probability distribution over adjacency matrices. The
expected adjacency matrix of this distribution can be calcu-
lated from the affinity matrix � and group indicator matrix
H ,

E[A] = H�H�. (2)

The expected adjacency matrix E[A] induces a connected
weighted graph, in which all nodes in the same group are
associated with exactly the same pattern of weighted edges. In
the network described by E[A], nodes in the same group are
therefore structurally equivalent [48] as they have the exact
same set of neighbors and the same set of edge weights. In
a network, represented by an adjacency matrix A generated
from the SBM, nodes in the same group are stochastically
equivalent as they connect to the rest of the nodes in the
network according to the same set of probabilities (which are
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FIG. 3. The block structure of configurations of hierarchical communities. (a) A simple assortative hierarchy of communities in which the
refinement of the block structure between levels of the hierarchy occurs along the block diagonal and the off-diagonal blocks have homogeneous
density. This type of hierarchy is the most frequently considered in the literature. Although we refer to this structure as an assortative hierarchy,
the communities may be disassortative if the off-diagonal blocks are higher density than the diagonal blocks. (b) A disassortative hierarchy
of communities in which the refinement of the block structure between levels of the hierarchy occurs in the off-diagonal blocks. Note that for
the disassortative hierarchy to be an externally equitable partition, it must satisfy the stricter constraint that the sum of densities of the refined
off-diagonal blocks should be equal along the rows and along the columns, i.e., mad + mae = mbc + mbe and mad = mbc = mae + mbe. (c) A
generalized hierarchy in which the refinement occurs in both the diagonal and off-diagonal blocks.

precisely E[A]). Put differently, groups of nodes in a network
that share the exact same set of connections are structurally
equivalent. When groups of nodes share the exact same set of
connections in expectation then they are stochastically equiv-
alent. In this way, we can consider stochastic equivalence as
a probabilistic relaxation of structural equivalence [Fig. 4(a)
top row].

When we partition an adjacency matrix A such that every
node in a group r has simply the same number of links to
nodes in group s, then we call such a partition of a graph an
equitable partition [49]. Equitable partitions are a generaliza-
tion of structural equivalence in which each node in the same
group has the same sum of weights connecting it to every
other group. (Note that here we will use the convention that
the number of links, or degree, of a node refers to the sum of
edge weights when the graph is weighted.) However, it is not
necessary that nodes in the same group have exactly the same
connections. Equitable partitions are closely related, but not
identical to, graph automorphism groups [49,50], and regular
equivalence [51,52]. Regular equivalence, for instance, does
not require equivalent nodes to have the same number of links
to equivalent nodes, whereas equitable partitions do have this
requirement.

We can extend the concept of equitable partitions to ran-
dom graph models by introducing a probabilistic relaxation,
which we will call a stochastic equitable partition [Fig. 4(a)
middle row]. Partitioning the expected adjacency matrix E[A]
according to H creates a stochastic equitable partition such
that every node in group r has the same expected number of
links to nodes in group s.

We can define equitable partitions algebraically using an
aggregated graph with adjacency matrix Ag ∈ Rk×k in which
each node represents a group and the weighted links indicate
the sum of link weights between groups in a graph A:

Ag = H�AH. (3)

However, since groups may be of different sizes it is of-
ten more practical to use the quotient graph with weighted
adjacency matrix Aπ in which the aggregated graph Ag is

normalized by the size of the groups:

Aπ = N−1H�AH = H†AH, (4)

where N := H�H is a diagonal matrix in which Nrr is
the number of nodes in group r and H† := N−1H� is the
Moore-Penrose pseudoinverse of H . Then each element of the
adjacency matrix of the quotient graph Aπ

rs tells us the mean
number of edges connecting a node in group r to nodes in
group s. When H represents an equitable partition of A the
value Aπ

rs is the actual number of links that every node in
group r has with nodes of group s, i.e., we have the following
algebraic relation:

AH = HAπ for all H ∈ HA
EP, (5)

where HA
EP is the set of equitable partitions of A.

When we consider partitions that are equitable only be-
tween different groups r �= s, then the partition is called an
externally equitable partition (EEP). We can characterize
EEPs algebraically by following Eqs. (3)–(5) and substituting
the combinatorial graph Laplacian L = D − A in place of
the adjacency matrix [53], where D = diag(A1) is a diagonal
matrix of degrees. This substitution gives

LH = HLπ , H ∈ HA
EEP, (6)

where HA
EEP is the set of external equitable partitions of A, Lπ

is the Laplacian of the quotient graph,

Lπ = N−1H�(D − A)H (7)

= Dπ − Aπ , (8)

and Dπ = diag(Aπ1) is the diagonal matrix of node degrees
by group. Substituting the Laplacian for the adjacency ma-
trix enables us to ignore the internal connectivity and only
constrain the external connections to be equitable. The reason
that the quotient Laplacian ignores the internal connectivity
is its invariance under the addition of edges in the diagonal
blocks of the adjacency matrix A, as the following proposition
illustrates.

Proposition 1. Let H be the indicator matrix of an EEP
and A′ = A + �A be an adjacency matrix with additional
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FIG. 4. Overview of network partition equivalence relationships.
(a) The left column describes partitions (represented by a partition
indicator matrix H) into groups of equivalent nodes in a given graph
(represented by an adjacency matrix A). The right column presents
the corresponding probabilistic relaxation in which the equivalence
relation is considered in terms of the expected adjacency matrix E[A]
over the ensemble of networks generated by a random graph model
(∗ Note that for simplicity we allow for graphs with self-loops in
the algebraic expressions of structural and stochastic equivalence).
Structural equivalence: nodes are equivalent if they link to the same
neighbors. Here � is a {0, 1} matrix. Stochastic equivalence: nodes
are structurally equivalent in expectation. Equitable partition: nodes
are equivalent if they have the same number of links to equivalent
nodes. Stochastic equitable partition: the partition is an EP in expec-
tation. Externally equitable partition: nodes are equivalent if they
have the same number of links to equivalent nodes, outside their own
group. Stochastic externally equitable partition: the partition is an
EEP in expectation. (b) Example of a network model with a partition
into 6 and 2 groups. The partition into 6 groups is consistent with
an SBM and an sEP. The partition into 2 groups is consistent with an
sEP (and an sEEP) but not an SBM because the link probabilities are
not uniform within the blocks.

within-group edges, i.e., edges that occur within the diagonal
blocks. Then Lπ (A′) = Lπ (A).

Proof.

Lπ (A′) = N−1H�(D′ − A′)H

= N−1H�(D − A + �D − �A)H

= Dπ − Aπ + 0 = Lπ (A), (9)

where �D is the diagonal matrix diag(�A1). The final equal-
ity in Eq. (9) is due to the fact that �A only contains edges in
the diagonal blocks and so the diagonal matrix H��A′H =
H��D′H is equal to the group sum of degrees. �

As for the EP, we propose a probabilistic relaxation for an
EEP: a stochastic externally equitable partition (sEEP) is a
partition that is externally equitable in expectation [Fig. 4(a)
bottom row]. A stochastic EEP is precisely the type of rela-
tionship we find at each level of a simple assortative hierarchy.
For instance, the internal structure within the block diago-
nal of an assortative hierarchy may be further refined, but
the probability of connections within the off-diagonal blocks
should be uniform. This construction can be precisely cap-
tured by an sEEP. As a concrete example, in Fig. 3(a), both
the partition {a, b, c, d, e} and the partition {{a, b}, {c, d, e}}
of the expected adjacency matrix are externally equitable.
However, stochastic EEPs also enable us to describe the more
general forms of hierarchical structure shown in Figs. 3(b) and
3(c). Specifically, in an sEEP the links between nodes inside
a block do not need to be uniformly distributed but merely
the expected degree with respect to every external block has
to be the same. Together with the fact that the distribution
of the parameters inside the diagonal blocks in an sEEP is
flexible this constitutes the main difference from the SBM
[see Fig. 4(b)]. Specifically, in the canonical SBM all elements
within a block of E[A] have equal weight, in an sEEP all rows
and all columns within a block of E[A] sum to the same value,
whereas in the microcanonical SBM [54] it is the number of
edges (or sum of weights) in a block of A that is fixed. This
difference allows for a more flexible modeling of hierarchies
than the canonical SBM, while maintaining a conceptually
well defined setup.

We therefore use the concept of a stochastic externally
equitable partition (sEEP) as the basic building block for
hierarchical modular structure in networks. Specifically, we
say the communities of a graph are hierarchically organized,
if the graph’s adjacency matrix can be partitioned into a
sequence of nested stochastic externally equitable partitions.
More precisely, there is sufficient evidence for a hierarchical
partition if at each level of the putative hierarchy the partition
is a stochastic externally equitable partition (an EEP in expec-
tation).

If we want to recover such a hierarchy, our goal is there-
fore to obtain the partitions at each of the hierarchical levels,
including the number of levels and number of groups at each
level. However, before we discuss any specific method of
inference, it is important to discuss some conceptual issues
we face when inferring hierarchical structure from a network.
In particular, we need not only determine when a hierarchy
exists, but also how many levels are contained within the
hierarchy and in which order those levels occur. As we will
see in the next section, it is in general not possible to identify
these aspects uniquely, even if we have access to the expected
adjacency matrix.

III. IDENTIFIABILITY OF HIERARCHICAL
CONFIGURATIONS

Our discussion above provides us with the necessary con-
dition for defining a set of hierarchical partitions, i.e., that they
form a nested sEEP structure. However, this condition alone is
insufficient to fully define a set of hierarchical communities,
as we still need to resolve issues of identifiability, which we
will discuss here in this section.
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Identifiability is a necessary condition to guarantee that we
can recover the model parameters and the hierarchy given suf-
ficient data. Models of community detection (and clustering,
more generally) suffer from a certain degree of nonidentifia-
bility because the community labels are permutation invariant.
This means that there are k! ways to label the same k groups.
However, this nonidentifiability does not pose any problems
in practice as our interpretation of each of these k! solutions is
identical. When we detect hierarchical communities, we face
similar issues of identifiability. At any given level u of the hi-
erarchy, the labels of the k(u) groups are permutation invariant
and, as with community detection, all possible labellings of
these groups represent an identical solution. On top of this,
we can represent a hierarchy as multiple distinct dendrograms
by changing how we assign branches to hierarchical levels,
the order of agglomeration and/or the number of levels.

A. Assigning branches to levels

Let us assume that we already know the dendrogram struc-
ture, i.e., the rooted tree of splits of the nodes into groups, and
the assignment of nodes to the groups at each branch. All that
remains is to determine how to assign each of the branches
to levels in the hierarchy. Figure 5 shows some examples of
different ways to assign branches of a dendrogram to levels
in a hierarchy. Figures 5(a)–5(c) shows three different assign-
ments for the same dendrogram, one assignment into three
levels and two assignments into four levels. In each case, the
main left and right branches are independent of each other and
do not provide information about how we should arrange their
subbranches relative to each other. All three provide the same
information about the hierarchical group assignment. When
confronted with equivalent solutions, a natural strategy is to
take an Occam’s razor approach and choose the simplest or
most compact solution. In this case, we might therefore decide
that the configuration displayed in Fig. 5(a) is the best choice
since it has only two levels.

In other situations the “simplest” assignment of branches
to levels may be more ambiguous. Figures 5(d) and 5(e) show
a dendrogram for which we can align the split in the left
branch with either the second level (i) or the third level (ii)
of the right branch. Both representations contain the same
information about how the nodes are partitioned. However,
the choice between (d) and (e) provides different aggregated
affinity matrices �(2) [see Figs. 5(d) and 5(e)] that describe
how the groups of the system interact.

It may be that in these situations a specific choice of model
selection may prefer one configuration over another. However,
as we recover the same set of groups the solutions are equiva-
lent and therefore we should treat both solutions as the same,
just as we treat partitions with different permutations of labels
as being the same. Stated differently, the tree structure of the
dendrogram remains the same, even though we interpret its
branching points differently.

B. Order of agglomeration

Now consider the setting in which, instead of knowing the
dendrogram, we know the desired number of layers � in the
hierarchy. We will also assume that we are given the partition
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(c)

FIG. 5. Assigning dendrogram branches to levels. [(a)–(c)]
Three possible assignments of hierarchical levels based on the same
dendrogram. Note that (a) provides a simpler description (in terms
of number of levels) and may thus be preferable. [(d) and (e)] Two
possible hierarchical configuration for the same network. As the
assignment of the dendrogram to levels has the same complexity,
unless additional information is provided we cannot decide on a
specific hierarchy based on the network alone. Note that the matrices
�(u) correspond to level u of the hierarchy, with groups a to f as
indicated for �(1).

at the finest resolution. All that remains is to decide which
communities we should aggregate and in which order, i.e., we
want to identify the dendrogram that describes the hierarchy
of communities. Figure 6 displays two example configurations
for which this question is a priori ambiguous.

Figure 6(a) shows an example in which the parameter ma-
trix �(1) of the finest level is the same for both configurations
(i) and (ii), where one is just a simple permutation of the other.
However, the affinity matrices �(2) at the coarser level are
different and so the decision of which configuration to pick
depends on which version of �(2) we prefer. An appropriate
form of model selection may prefer one configuration over
another. For instance, configuration (i) has more zero blocks
than configuration (ii) and so will have a higher likelihood if
we assume the network was created from a nested SBM [4].

The situation is different in Fig. 6(b). Even though we have
different affinity matrices �(2), the difference simply amounts
to a different permutation of the same values and so the
hierarchical configuration is nonidentifiable, unless we once
again include additional criteria, e.g., instead of maximising
zero blocks, we might include a preference for assortative
communities [55,56]. Stated differently, in both cases, had we
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a b c d

Configuration (i)

a c b d

Configuration (ii)

Reordering

a b c d

Configuration (i)

a d b c

Configuration (ii)

Reordering

(a)

(b)

FIG. 6. Deciding the order of hierarchical agglomeration. We
display the pattern of two possible orderings of an affinity matrix
�(1) (and its possible aggregated version �(2)), indicating two pos-
sible ways of hierarchical aggregation. Blue represents an arbitrary
link probability, white color represents zero link probability. (a) A
network with two possible perfect hierarchical configurations: the
ordering displayed as configuration (i) may be described as two
communities with inherent core-periphery structure, the ordering dis-
played as configuration (ii), might be thought of as a core-periphery
organization with an inherent assortative modular structure. (b) A
network with two possible hierarchical configurations, interpretable
as a bipartite structure of bipartite structures; or an assortative parti-
tion of bipartite structures.

planted one or the other hierarchy in a synthetic network, de-
termining which hierarchy was planted would be impossible
to infer from the observed data.

C. Number of levels

Finally, let us consider the setting in which all we know
is the finest partition of the network and we need to decide
how to aggregate groups and how many levels there should be
in the hierarchy. Similar to the task of assigning branches to
levels, it may be desirable to identify the simplest hierarchy.
However, in this case, we do not know the branches and must
decide if adding levels to the hierarchy will be meaningful.
As previously demonstrated in Fig. 1, aggregating groups into
any hierarchy with a particular number of levels � > 1 does
not imply evidence of a unique hierarchical arrangement of
communities (as defined previously) in the network. At the
very least we would like to avoid including vacuous levels

in the hierarchy, as in the case of Fig. 1. A clear signal of a
vacuous level is a degeneracy with respect to which groups
we choose to agglomerate.

As a concrete example, consider a flat partition generated
from a planted partition model with k groups. In a planted
partition model the affinity matrix � = (a − b)I + b11� can
be described with only two parameters: a, the probability
that a pair of nodes in the same group will connect, and b,
the probability that a pair of nodes in different groups will
connect. Note that the example given in Fig. 1 is a special
case of the planted partition model with k = 64, a = 1, and
b = 0. The partition of E[A] into k groups will be an EEP.
If we form a new partition into κ groups (where κ < k) by
simply merging some of the k groups, then the new partition
will also be an EEP. In fact any partition formed by merging
these groups will create an EEP and so every partition into
κ groups will be equivalent to each other. This degeneracy
of partitions therefore indicates the absence of a meaningful
level in the hierarchy.

D. Dealing with nonidentifiability and degenerate hierarchies

As our above discussion shows, even if we had per-
fect knowledge about the expected adjacency matrix E[A],
uniquely identifying an underlying hierarchy is in general
impossible without imposing further assumptions. In other
words, we need to impose some rules on how to break the
nonidentifiability issues encountered above. In the following,
we will develop a set of tools based on spectral properties
associated to sEEPs, both in terms of eigenvectors as well
as eigenvalues, which we will employ to detect hierarchical
block structures in networks. We emphasize that the discus-
sion above applies generally and is not tied to any of these
developments. Specifically, our spectral approach is not the
only way to resolve these issues of nonidentifiability and other
methods using different assumptions are conceivable as well,
e.g., the already mentioned nested blockmodel by Peixoto [4].

IV. DETECTING HIERARCHIES VIA
SPECTRAL METHODS

Thus far we have conceptualized hierarchical modular
structure in terms of sequences of sEEPs based on the ex-
pected adjacency E[A] that relates to the affinity matrix of the
finest partition �(1). When we want to perform community
detection in practice, however, we typically only have access
to an observed sample adjacency matrix A. Therefore we have
to either infer the precise affinity matrix �(1), which is only
possible in the thermodynamic limit under certain conditions
[20], or we have to define conditions for concluding that an
sEEP is present based on the observed adjacency matrix A.
In combination with the identifiability issues described in the
previous section the problem of detecting hierarchical com-
munities is thus, in general, an ill-posed problem.

In the following we will employ spectral methods to in-
fer hierarchical community structure in a network, which
correspond to a particular way of resolving the above non-
identifiability issues. Before we address these issues directly,
we first outline our overall strategy to detect hierarchical com-
munity structure.
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A. Identify the initial finest-grained network partition. We
first identify the finest level of the hierarchy (i.e., the level
furthest from the root of the dendrogram) such that all nodes
within a group are stochastically equivalent and ignoring the
trivial partition into n groups that each contain a single node.
Using this initial partition we can estimate the affinity matrix
of the finest partition:

�̂
(u) = H†(u)A(H†(u) )�, (10)

where u = 1 (Sec. IV A).
B. Identify possible agglomerations and hierarchical lev-

els. Treating the estimated affinity matrix �̂
(u)

as a weighted
adjacency matrix, we then identify candidate partitions to
form the next level in the hierarchy H (u+1) by merging groups
in the current partition such that they form an approximate
sEEP (Sec. IV B).

C. Agglomerate and repeat. Based on the identified parti-
tions we select the most suitable agglomeration and estimate
an affinity matrix at the next level:

�̂
(u+1) = H†(u+1)N (u)�̂

(u)
N (u)(H†(u+1))�.

Note that H (u+1) maps the nodes in the aggregated graph at
level u in the hierarchy to the nodes in level (u + 1) and
so the dimensions of H (u+1) will be n(u) × n(u+1), where the
number of nodes at a given level are n(u+1) = k(u) the number
of groups at the previous level. We then return to the previous
step and repeat until no further agglomerations are found
(Sec. IV C).

The key elements for addressing the nonidentifiability is-
sues are contained in steps B and C. First, we consider an
order of agglomeration (cf. Sec. III B) that is induced by a
singular value (or spectral) decomposition associated with the
estimated affinity matrices. This step may be interpreted as
trying to find an agglomeration into κ groups (where κ < k(u))
that are compatible with the best rank-κ approximation of
the affinity matrix. Second, we assess the significance of any
putative agglomeration via spectral criteria to avoid inserting
“vacuous” levels into the hierarchy (cf. Sec. III C). This step
makes use of certain degeneracies that may exist in the spec-
trum, which we will discuss. In the next sections we explain
each of the above outlined steps in detail.

A. Establishing an initial partition

At this stage, one may wonder why the identification of
the initial partition is different from identifying partitions at
subsequent levels in the hierarchy. Typically the networks we
observe are sparse, meaning that the number of edges tends to
scale linearly with the number of nodes O(n), rather than scale
according to the number of possible edges O(n2). In contrast,
when detecting subsequent partitions we will use a (weighted)
denser aggregated graph, in which nodes represent groups
in the partition of the previous level. Different methods are
better suited to sparse or dense graphs. In particular, sparsity is
known to cause issues for detecting communities, particularly
when employing spectral methods [37,57].

For detecting the initial partition we will perform spectral
clustering using the Bethe Hessian, which can detect com-
munities in sparse networks right down to the theoretical

limit of detectability [38]. Furthermore, the Bethe Hessian
comes equipped with a simple spectral model selection cri-
terion that enables us to infer the number of groups [38,58].
Our experimental results confirm these theoretical studies and
empirically we find that spectral clustering with the Bethe
Hessian reliably identifies the finest detectable partition.

Given the adjacency matrix A of a graph and the associ-
ated degree matrix D = diag(A1), the Bethe Hessian [38] is
defined as follows:

Bη = (η2 − 1)I + D − ηA, (11)

where η is a regularization parameter, which allow us to mod-
ify the spectral properties of Bη so that we can use it to detect
community structure even for sparse graphs and graphs with
heterogeneous degree distributions [59]. Notice that when
η = 1, we recover the combinatorial graph Laplacian B1 = L.

Setting the regularization parameter η to a positive value
favors the discovery of assortative communities, whereas a
negative value favors disassortative communities. As we are
interested in both forms of community structure, we set the
regularization parameter to the positive and negative square
root of the average degree η = ±

√
1�A1/n [38,58]. For these

settings, the number of negative eigenvalues provide a consis-
tent estimate of the number of groups according to the SBM
(see Theorem 4.3. in Ref. [58]). Therefore we can use the
spectral clustering with the Bethe Hessian to infer both the
number of groups and the node assignments to groups at the
finest hierarchical level.

We describe the exact algorithm to establish an initial par-
tition using the Bethe Hessian in Algorithm 1 in Appendix E.

B. Identifying candidate levels in the hierarchy

Having found an initial partition H (1), we can estimate the

affinity matrix �̂
(1)

at the finest level of the hierarchy. Treating

�̂
(1)

as a weighted adjacency matrix A(2) for the second level

(i.e., A(2) = �̂
(1)

), our task is now to evaluate whether or not
there is sufficient evidence for a hierarchy of communities in
the network.

Like other graph partitioning problems, finding all EEPs
within a graph can be a computationally demanding task due
to its combinatorial nature. If we had access to the exact affin-
ity matrix, we could adopt tools from computational group
theory, which have recently shown great promise in the related
problem of identifying orbit partitions within graphs [60–62].
However, these tools are not suitable for our task as they
are only able to identify exact EEPs of the adjacency matrix,
whereas we need to identify stochastic EEPs, which are exact
EEPs but only of the unobserved expected adjacency matrix
E[A(2)] = �(1). In the best case, when a network is generated
from a hierarchical model using an affinity matrix �(1) that

contains a nested set of exact EEPs, our estimate �̂
(1) → �(1)

only converges asymptotically. Even if we knew the true finest
partition H (1) of the generating model, statistical variation
will result in minor perturbations in the estimated affinity

matrix �̂
(1)

relative to the true �(1). We therefore require a
new approach that enables us to define and identify stochastic

EEPs within �̂
(1)

. To do so, we introduce the notion of an
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approximate EEP. Noting that �̂ ≈ �, a partition that is an
exact EEP of � will be approximately an EEP of �̂. We now
turn our attention to detecting approximate EEPs as a proxy
for sEEPs.

1. Finding approximate EEPs

Central to our pursuit of identifying approximate EEPs is
the fact that the presence of an (exact) EEP induces a particu-
lar structure on the eigenspaces of the Laplacian [53,63].

Proposition 2. Let L be the graph Laplacian of a weighted,
undirected graph with an EEP consisting of k groups, de-
scribed by the indicator matrix H . Then, there exist k
eigenvectors V k = [v·1, . . . , v·k] and corresponding eigenval-
ues [λ1, . . . , λk], where Lv·i = λiv·i, such that the values of
v·i are piecewise constant for nodes within each group.

Proof. If H represents an EEP and the corresponding
quotient Laplacian Lπ has a matrix of eigenvectors V π

k =
[vπ

·1, . . . , v
π
·k], then

LV k = LHV π
k = HLπV π

k = HV π
k �π = V k�

π , (12)

where �π is the diagonal matrix of eigenvalues of Lπ . �
The above proposition tells us that when a network con-

tains an EEP, then there exists a set of eigenvectors V k that
can be written as a linear combination of the group indica-
tor matrix H , i.e., there exists a matrix Q ∈ Rk×k such that
V k = HQ. Thus V k = HV π

k is a valid set of eigenvectors of
the Laplacian L that are constant for nodes within the same
group. We will refer to these eigenvectors that contain this
special piecewise structure as structural eigenvectors.

For an exact EEP the variation of any structural eigen-
vector v within each group is zero. It follows then that we
can characterize an approximate EEP according to the er-
ror of approximating the eigenvectors as piecewise constant.
To calculate this error, we use the matrix H H†, in which
[H H†]i j = 1/nr if nodes i and j belong to the same group
r and 0 otherwise, to define a projection orthogonal to the
partition H

PH := [I − H H†], (13)

in which H H† is used to calculate a groupwise mean such that
the operator PH computes the matrix of residuals. Then we
can calculate the squared projection error using the Frobenius
norm || · ||F:

ε(H,V k ) := ‖PHV k‖2
F. (14)

In Sec. A, we provide evidence that minimizing this pro-
jection error is consistent with finding approximate EEPs.
Consequently we can search for an approximate EEP Ĥ by
minimizing the projection error:

Ĥ = arg min
H∈Hk

‖PHV k‖2
F, (15)

where Hk is the set of all partition indicators matrices with k
nonempty groups.

Geometrically, the above optimization problem amounts to
finding k group-indicator vectors in an n-dimensional space,
such that the k vectors V k will have the smallest possible
variation within each group (i.e., they will be approximately
constant in each group). Interestingly, rather than having to
devise a new optimization algorithm for the above problem,

we can solve the above problem using k-means to cluster the
rows of the matrix V k . We provide this proof in Sec. B.

Since there exist well developed algorithms to solve the
k-means problem this duality enables us to efficiently search
for a candidate EEP when given a set of putative structural
eigenvectors. In particular, there exist algorithms that can
provide us with a provable (1 + δ) approximation of the true
solution of the k-means problem [64].

Connections between spectral clustering of graphs and k-
means have previously been reported in the literature (see,
e.g., Ref. [65]), but only in relation to simple assortative
clusters. The duality we present here shows that the k-means
procedure, when applied to the relevant eigenvectors of the
Laplacian, is also related to the identification of more general
EEP structures, both assortative and disassortative.

2. Selecting relevant eigenvectors

We have established that if a network contains an approx-
imate EEP then we can use k-means with a relevant set of
k eigenvectors V k to identify the partition. In principle, we
could search all possible combinations of k eigenvectors to
determine the relevant set, but this approach becomes increas-
ingly inefficient as the network size increases.

The usual approach to selecting relevant eigenvectors for
spectral clustering is to choose the eigenvectors associated
with the first k eigenvalues [66], where “first” refers to either
the smallest or largest values (either in terms of the real or
absolute value) depending on the specific operator used. If we
take this approach using the combinatorial Laplacian L then
we would be constrained to identify either only assortative
groups (if we use the lowest) or only disassortative groups
(if we use the highest). In order to detect both assortative
and disassortative groups at the same time, we propose to
use the eigenvectors associated to eigenvalues with the k
largest absolute values of the uniform random walk transition
matrix W :

W = I − 1

dmax
L, (16)

where dmax = maxi(Dii ) is the maximal weighted degree of
any node in the graph. Notice that W is simply a shifted
and scaled version of the Laplacian, which has previouly
been considered in the analysis of consensus dynamics and
distributed averaging [67].

The matrix W is a doubly stochastic matrix that describes
a diffusion process on the network. Specifically, a diffusion
process that has a uniform stationary distribution such that all
nodes are visited with equal probability. Importantly, W has
the same eigenvectors as L and so the aforementioned desir-
able spectral properties of L also apply to W . The difference
is that the set of eigenvalues {λi} of W are normalized such
that λi ∈ [−1, 1]. Eigenvectors associated with positive eigen-
values correspond to assortative partitions. The eigenvector
associated with the largest possible positive eigenvalue λi = 1
is the vector of ones 1 and groups all nodes into a single group
(assuming the network comprises a single connected com-
ponent). Eigenvectors associated with negative eigenvalues
correspond to disassortative partitions, where an eigenvector
associated with eigenvalue λi = −1 will describe a bipartite
split in a network with a uniform degree distribution, if such
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a partition is possible. Choosing the eigenvectors of W as-
sociated with the k eigenvalues with the largest magnitude
therefore allows us to detect both assortative and disassorta-
tive groups.

Note that the choosing the top k eigenvectors according
to absolute value may equivalently be interpreted in terms of
choosing the top k singular values and associated singular
vectors of the matrix W , i.e., performing the best possible
rank-k of W . Rewriting Eq. (16) in terms of the affinity matrix
� and its degree matrix D� = diag(�1):

W (�) = I − 1

dmax
D� + 1

dmax
�, (17)

we see that our choice of eigenvectors corresponds essentially
to performing a rank-k approximation of the affinity matrix,
i.e., we try to find partitions into k groups that best approxi-
mate the (rescaled and shifted) affinity matrix.

C. Assembling the hierarchy

We have described an approach to detect approximate
EEPs with a prescribed number of groups within an estimated

affinity matrix �̂
(i)

. We now describe how we can use this
approach to detect and construct a hierarchy of communities
from a network. Specifically, in the following we discuss how
to determine if a partition into k groups is significant enough
to be included in the hierarchy and how we can identify
degeneracies to avoid constructing misleading hierarchies.

1. Assessing the significance of approximate EEPs

Using the duality between k-means clustering and mini-
mizing the projection error we can efficiently search for the
partition closest to an EEP given a set of k eigenvectors V k .
Optimizing Eq. (15) via k-means will however always provide
a result, even if the inferred partition Ĥ is far from being
an EEP. Therefore it is necessary to check if the resulting
partition Ĥ is significantly close to being an EEP.

We test for significance by comparing the projection error
ε(Ĥ,V k ) against the expected projection error E[ε(Ĥ,U )]
under the null hypothesis that the set of eigenvectors is
sampled uniformly at random from the set of all orthog-
onal matrices U ∈ Rn×k , i.e., those matrices U for which
U�U = I.

To see how we can calculate this expectation, let us start
by examining a random matrix U ∈ Rn×k of k orthonormal
vectors of dimension n. The squared Frobenius norm ‖U‖2

F =
trace(U�U ) of such a matrix will be equal to k. We can
compute the expectation of the square of each individual entry
of U as

k = E
[‖U‖2

F

] = E

⎡⎣ k∑
j=1

n∑
i=1

U 2
i j

⎤⎦ =
k∑

j=1

n∑
i=1

E
[
U 2

i j

]
= kn · E[

U 2
i j

]
, (18)

where in the last step we used the fact all of the entries Ui j are
statistically equivalent. We can conclude by symmetry that

E
[
U 2

i j

] = 1/n, (19)

for all indices i = 1, . . . , n and j = 1, . . . , k.

Now, let us consider the spectral decomposition of the
projection matrix PH associated with a partition into k groups:

PH = I − HH† = Q�Q�, (20)

where Q ∈ Rn×n is an orthogonal matrix and � is a diagonal
matrix with 
ii = 1 for i = 1, . . . , n − k and 
ii = 0 other-
wise. We can then write the expected projection error in terms
of the spectral decomposition:

ε0(k) = E
[‖PHU‖2

F

] = E
[∥∥Q�Q�U

∥∥2

F

]
. (21)

We can remove the left Q from this equation because it is
an orthogonal matrix and so does not change the norm. Fur-
thermore, as Q�U is simply an orthogonal transformation of
unit vectors, it will have the same distribution as U . We can
therefore simplify the above as

ε0(k) = E
[‖�U‖2

F

] = E

⎡⎣n−k∑
i=1

k∑
j=1

U 2
i j

⎤⎦
= (n − k)k · E[

U 2
i j

] = (n − k)k

n
, (22)

where we have made use of the fact that � simply picks out
the first n − k rows from U and then used our previously
established result on E[U 2

i j].
The above derivation assumes that U and H are statistically

independent of each other. However, in our actual calculations
the eigenvectors will correspond to dominant eigenvectors of
the uniform random walk matrix. Hence, we know that 1 is
always included in V k and moreover, since H1 = 1 for any
partition indicator matrix H , we know that there is always
a one-dimensional subspace shared between the subspace
spanned by PH and V k . As we show in Appendix C, we thus
have to adjust the expected error to

E[ε(Ĥ,U )] = E
[‖PĤU‖2

F

] = (n − k)(k − 1)

n − 1
.

The intuition here is that we have to exclude the subspace
spanned by 1 and are now looking for the projection of
a (k − 1)-dimensional (rather than k-dimensional) subspace
in an (n − 1) − (k − 1) = (n − k)-dimensional space. More-
over, both of these subspaces are restricted to be orthogonal to
1 and thus the degree of freedom for choosing such subspaces
is reduced, resulting in the change of the denominator from
n to n − 1. In other words, our calculations have to account
for the fact that we know that there is a one-dimensional
EEP present in any connected graph. Since the expected error
only depends on the number of groups k and not the specific
partition Ĥ , we will refer to the above expected error simply
as ε0(k),

ε0(k) := (n − k)(k − 1)

n − 1
. (23)

The error ε0(k) above is a good null model to test the hy-
pothesis that a single approximate EEP exists in the network
because it is the expected error when there are no approximate
EEPs in the network. However we are ultimately interested in
detecting hierarchies, i.e., nested sequences of approximate
EEPs, so we need to create an alternative hypothesis that
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(a) (b) (c)

FIG. 7. Identifying levels in the hierarchy. (a) The expected projection error ε0(k) [Eq. (23)] assuming there are no hierarchical levels and
the conditional expected errors ε0(k|κ ) for κ = {3}, {3, 9} [Eq. (24)]. (b) A spy plot of the adjacency matrix for a network with hierarchical
partitions into 3, 9 and 27 groups. (c) Comparison of mean perturbed error against the expected error of the null hypothesis (no EEPs) σε0(k)
and an alternative hypothesis σε0(k|3, 9) (EEPs into 3 and 9 groups). We set σ in each case to minimize the mean squared logistic error
[Eq. (29)]. We clearly see the correspondence between mean error and ε0(k|3, 9). Crosses indicate the distribution of projection errors for 102

random perturbations [Eq. (27)].

accounts for the presence of other potential EEPs in the net-
work. Specifically, if we would like to test the hypothesis that
the eigenvectors V k include a subset of κ eigenvectors of a
coarser-grained approximate EEP into κ groups (i.e., κ < k).
Then we calculate the expected error ε0(k|κ ) conditioned on
an existing EEP into κ groups as (see Appendix C for details)

ε0(k|κ ) =
{ (n−k)(k−κ )

n−κ
if κ � k � n

(κ−k)(k−1)
κ−1 if 1 � k � κ

. (24)

Figure 7(a) illustrates these expected error functions. The
expected error ε0(k) for when there are no further approximate
EEPs is shown as the dotted parabola. However, if there is
clear evidence for other levels in the hierarchy, then we need
to adjust our expected error to account for these. For exam-
ple, the network represented by the spy plot in Fig. 7(b) has
hierarchical partitions into 3, 9, and 27 groups. To account
for these possible levels we can calculate the conditional ex-
pected errors ε0(k|κ1 = 3) and ε0(k|κ1 = 3, κ2 = 9) shown in
Fig. 7(a), according to the general formula:

ε0(k|κ1, . . . , κc) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(n−k)(k−κc )

n−κc
if κc � k � n,

...
(κ2−k)(k−κ1 )

κ2−κ1
if κ1 � k � κ2,

(κ1−k)(k−1)
κ1−1 if 1 � k � κ1,

(25)

which can be derived analogously to Eq. (24) for the general
case.

We can decide if our candidate EEP Ĥ is significant by
comparing the expected error without EEPs ε0(k) and with
EEPs ε0(k|κ ) with the observed error. However, before we do
so, we must take precautions to prevent detecting degenerate
hierarchies.

2. Spectral signatures of degenerate EEPs and hierarchies

By comparing the observed projection error for each puta-
tive partition using the above derived formulas, we can assess
whether or not a partition is significantly close to being an
sEEP. However, as stated previously, we want to avoid con-
structing degenerate hierarchies, and thus we do not want to
accept all possible sEEP as new hierarchical levels.

To see how this can be done, let us return to the example
of a flat, nonhierarchical partition generated from a planted
partition model. After we found the split into k groups, we
treat the affinity matrix � = (a − b)I + b11�, as a k × k
weighted adjacency matrix. The corresponding Laplacian is
L(�) = (k − 1)bI − b11� and is easily identifiable as a flat
partition from its spectrum: the Laplacian L(�) has an eigen-
value λ1 = 0, associated with the constant eigenvector 1, and
(k − 1) repeated eigenvalues λr = kb, for 2 � r � k, associ-
ated with an invariant subspace of dimension k − 1. These
repeated eigenvalues of L(�) clearly identify that there is
no further structure in � and there is an inherent symmetry
associated to the groups. The implication for our flat partition
is that there exists a set of orthogonal matrices V ,

V = {V ∈ Rk×(k−1)|V �V = I and V �1 = 0}, (26)

where the columns of every matrix in V form a valid set of
linearly independent eigenvectors for L.

Consider now assessing the projection error of an EEP with
indicator matrix Hκ that forms a partition on � into κ groups,
where 1 < κ < k. We know that there exists a matrix V κ

containing κ dominant eigenvectors for which the projection
error PHκ

V κ is exactly zero. Based on the above observation
it is easy to see that these κ eigenvectors correspond to a
particular choice of the first κ dominant eigenvectors that are
associated with one possible way to partition the network into
κ groups. Given that we have a flat partition, we know that
any partition into κ groups will form an EEP and that for each
partition there exists a corresponding set of κ eigenvectors
for which the projection error is zero. However, any given
eigenvector matrix V κ can only be piecewise constant on one
of the S(k, κ ) possible EEPs into κ groups, where the Sterling
partition number S(n, k) is the number of ways to partition a
set of n objects into k nonempty subsets. So although we can
only obtain κ independent dominant eigenvectors, there are
far more possible EEPs with κ groups, which indicates that
the eigenspace is degenerate.

The above argument can be applied analogously to situ-
ations where there are more than one level in the hierarchy
and a nonidentifiable set of compatible EEPs. To capture
such situations, we say that an EEP into κ groups with in-
dicator matrix H is degenerate, if some of the structural
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eigenvectors associated to H are contained within a degen-
erate eigenspace. Notably, the situation here is analogous to
the situation we already considered before: we are effectively
picking an arbitrary subspace (corresponding to degenerate
structural eigenvectors of an EEP) out of a larger degenerate
eigenspace.

3. Avoiding degenerate hierarchies

We can use the degeneracy of EEPs to our advantage to
avoid finding “spurious” hierarchical levels within our frame-
work as follows. Recall that to find an EEP into κ groups
based on �, we consider the first dominant eigenvectors of
W (�). Now assume that the obtained EEP into κ groups is
indeed degenerate. When we numerically compute the first
dominant κ eigenvectors, we are presented with one specific
(but arbitrary) choice of eigenvectors, which depends on the
specific details of the algorithm implemented. However, ap-
plying a small random perturbation to the affinity matrix will,
with high probability, result in a different set of eigenvectors
that relate to a different EEP. This idea also readily applies
to the practical case in which we only have an estimate of
the affinity matrix, �̂. The corresponding eigenspaces are
only approximately degenerate since the eigenvalues will, in
general, be only approximately equal.

Consider the uniform random walk matrix W of an es-
timated affinity matrix �̂

(u)
and a perturbed version W p :=

W (�̂
(u)
p ) corresponding to an affinity matrix with a slight

perturbation. We can estimate a partition Ĥ using spectral

clustering on W (�̂
(u)

). Based on the Davis-Kahan theorem
(and following an argument analogous to that in Appendix A),
we see that the difference between the eigenvectors of W
and W p will depend on how close the eigenvalues of W are
to being degenerate. Specifically, if the obtained eigenvec-
tors of W p and W are very similar, and the partition Ĥ is
indeed an approximate EEP of W , then both the projection
error ε(Ĥ,V (W )) and the projection error ε(Ĥ,V (W p)) will
be small and significant (in the manner described in Sec-
tion IV C 1). The robustness to small perturbations indicates
that the found EEP is nondegenerate. However, if a small
perturbation creates a W p whose eigenvectors have large pro-
jection error with respect to the partition Ĥ estimated from
W , then we know that the EEP corresponds to a degenerate
configuration.

In practice, once we have inferred the finest level par-

tition into k(u) groups and estimated �̂
(u)

, for each ki ∈
{2, . . . , k(u) − 1}, we estimate a partition Ĥki using the ki

dominant eigenvectors of W . We then add a perturbation to
the estimated affinity matrix such that

�̂
(u)
p = �̂

(u) + γ�, (27)

γ = γ ′ ‖�̂
(u)‖2

‖�‖2
, (28)

where � is a symmetric matrix of i.i.d. random pertubations,
‖ · ‖ stands for the induced 2-norm (operator norm), and the
prefactor γ scales the perturbation of the affinity matrix to
have a constant relative strength of γ ′ (measured in terms of
the �2 norm).

Taking the average over perturbations gives us a mean error
ε(Ĥki ,V ki ) that we can compare against the expected errors
described in the previous section. We perform this comparison
using the mean squared logistic error (MSLE):

MSLE(k) = 1

k

k∑
ki=1

(
ln

[
ε
(
Ĥki ,V ki

)+1
] − ln[σε0(ki ) + 1]

)2
,

(29)

where σ is a scale parameter that we set by minimizing the
MSLE. The MSLE is a regularized relative error that has the
property of incurring a greater penalty when the expected er-
ror is small. This is desirable because we are more concerned
with identifying the troughs, to locate approximate EEPs, than
we are with matching the curvature of the peaks. Figure 7(c)
illustrates this comparison between the mean perturbed error
and the expected error without EEPs, σε0(k) (σ = 0.40), and
with EEPs, σε0(k|3, 9) (σ = 0.82). The mean error clearly
is a better match with σε0(k|3, 9) indicating that there are
significant EEPs into 3 and 9 groups.

4. Building a dendrogram

Putting all of the above together, we can detect hierarchies
by first identifying the finest partition and using this to esti-

mate the affinity matrix �̂
(1)

, which we treat as a weighted
network. Next we use this weighted network to identify possi-
ble partitions into ki ∈ {2, . . . , k(1) − 1} groups and compute
the corresponding projection errors (averaged over 20 pertur-
bations) as a function of ki. We then build up a set of candidate
partitions {Ĥκi} using a greedy heuristic. First we find the
κ1 that minimizes the MSLE between the mean perturbed
projection error ε(Ĥk,V k ) and the expected error σε0(k|κ1),
i.e.,

arg min
κ1

= MSLE(k|κ1), κ1 ∈ {2, . . . , k − 1}. (30)

If MSLE(k|κ1) < MSLE(k) then we add Ĥκ1 to the set of
candidate partitions. We repeat this process to add significant
partitions (into κ2, κ3 etc.) until there is no further reduction
in the MSLE. Note that there is no restriction on the ordering
of these candidate partitions, so κi > κi+1 or κi < κi+1. This
results in a set of candidate agglomerations into {κ} groups.
We pick the maximal maxi{κi}, i.e., the finest approximate
EEP to form the next level in the hierarchy and form the new

affinity matrix �̂
(2)

. We repeat this whole process until we no
longer identify significant partitions.

Full details of the precise algorithm are given in Ap-
pendix E. A reference PYTHON implementation of the here
presented algorithms will be made available in Ref. [68].

V. NUMERICAL EXPERIMENTS ON SYNTHETIC DATA

We validate the spectral algorithm introduced above for
hierarchical community detection on a number of classes of
synthetic networks with planted hierarchies: assortative, dis-
assortative, symmetric, and asymmetric hierarchies.
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Symmetric Hierarchy Asymmetric Hierarchy

FIG. 8. Schematic: expected adjacency matrices of synthetic
hierarchical test networks. We consider a symmetric and an asym-
metric hierarchical network construction. Both start from a planted
partition model with a specified signal to noise ratio. We then itera-
tively refine the hierarchy by treating the network induced by each
subnetwork as another instance of a planted partition model with the
same signal to noise ratio. Here we impose the additional contraint
that the expected degree (the average connection probability) of the
nodes in this subnetwork is such that it matches with the specification
of the layer above (see text for details). In the symmetric variant of
our model, each group is recursively subdivided such that we obtain
a hierarchy of 3 × 3 × 3 = 27 groups. In the asymmetric varianot
of the model, only one of the groups is subdivided further, leading
highly skewed group sizes at the lowest level of the hierarchy (see
the indicated dendrogram).

A. Experimental setup

The synthetic network models are based on iteratively ap-
plying a planted partition model structure as follows. We start
with a planted partition model for a graph with n nodes and
k = 3 groups. We denote the probability of a link between a
pair of nodes in the same group by α/n, and denote the prob-
ability of a link between a pair of nodes in different groups by
β/n. We set the parameters α, β by fixing an expected degree
c1 for each node and signal-to-noise ratio SNR, defined as

SNR(α, β ) = (α − β )2

kα + k(k − 1)β
. (31)

SNR = 1 corresponds precisely to the detectability limit
of the SBM [18,22]. For each node, the expected number of
connections to nodes in the same group is a1 = α/k, and the
expected number of connections to nodes in different groups
is b1 = β(k − 1)/k, such that the total expected degree for
each node is c1 = a1 + b1.

Next we recursively plant finer partitions, while maintain-
ing the average node degree. We divide each of the k groups
again into k subgroups, such that the expected degree of
the nodes in this subnetwork is c2 = a1 = a2 + b2, consistent
with the coarser, initial planted partition. Figure 8 illustrates a
schematic of these parameters for the symmetric and asym-
metric hierarchies. The parameters a2 and b2 (respectively
their connection probabilities) within each subnetwork are
chosen such that the specified SNR is maintained.

We validate our method for each class of network models
for varying levels of SNR. To evaluate the similarity of two
partitions we use the adjusted mutual information score [69]
defined as

AMI(H1,H2)= I (H1, H2) − E[I (H1, H2)]

(Ent(H1) + Ent(H2))/2 − E[I (H1, H2)]
,

FIG. 9. Detecting the absence of hierarchy (flat partitions). We
plant a flat partition into 64 groups, similar to the example in Fig. 1.
Overall our method is consistent in identifying a flat partition across
the full range of SNR values.

where I (H1, H2) and E[I (H1, H2)] are the mutual informa-
tion and its expected value respectively, and Ent(·) is the
Shannon entropy of the partition assignment. Here the expec-
tation is taken over the so-called permutation null model [69],
in which partitions are generated uniformly at random subject
to the constraint that the number of clusters and points in each
clusters are commensurate with the inputs [69,70]. Note that
the AMI score typically lies in the range [0,1]1 with 0 denoting
a result as expected by chance and 1 perfect recovery.

We denote the � planted partitions within our model net-
works as H1, . . . , H� and denote �̂ hierarchical partitions
detected by our algorithm as Ĥ1, . . . , Ĥ �̂. Using the AMI
score, we define the score matrix � with entries

�i, j = AMI(H i, Ĥ j ) for i = 1, . . . , �, j = 1, . . . , �̂,

(32)
that measures the pairwise matching between any of the
planted and recovered partitions. We summarize the detection
performance in the score matrix using precision and recall,
defined as

Precision = 1

�̂

∑
j

max
i

�i, j, (33)

Recall = 1

�

∑
i

max
j

�i, j . (34)

The precision is large if, for every estimated partition, there
is a planted partition that provides a good match. The recall
is large if for every planted partition, there is an estimated
partition that matches closely.

B. Results

In our first experiment we confirm that our approach does
not identify degenerate hierarchies. We plant a flat partition
into 64 groups using a planted partition model, akin to the
example in Fig. 1, and vary the SNR. Figure 9 shows that our

1It is possible to have slightly negative AMI values due to the
adjustment for chance.
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(a)

(c) (d)

(b)

FIG. 10. Detecting assortative and disassortative hierarchical communities planted in synthetic test networks. Synthetic networks are drawn
from the assortative and disassortative hierarchical random graph model with n = 214 ≈ 16, 400 nodes with average degree 50. Levels in the
hierarchy are partitioned into 2, 4, and 8 groups. (a) Results for the assortative hierarchical network model (see inset for schematic). We show
the precision and recall statistic of the overall hierarchy, as defined in the text, as a function of the signal-to-noise ratio (SNR). Stars denote the
number of hierarchical levels identified by our algorithm (right y axis). (b) The corresponding results for the disassortative hierarchical network
model (see inset for schematic). (c) The mean adjusted mutual information (AMI) of the best matching inferred partition with each level in the
planted assortative hierarchy. The dotted lines indicate the performance of spectral clustering with the Bethe Hessian with known number of
groups. (d) The mean AMI of the best matching inferred partition with each level in the planted disassortative hierarchy. We observe poorer
performance in recovering the disassortative hierarchy, in particular the level into k = 4 groups because of the degeneracy of disassortative
groups (see text for details).

approach is broadly consistent at identifying a single partition
in the absence of a hierarchy.

Next we consider assortative and disassortative hierarchies.
In both cases we generate symmetric hierarchical partitions
into 2, 4, and 8 groups. We generate the disassortative hier-
archies in the same way as the assortative hierarchies, except
that we reverse the columns of the affinity matrix �(1) before
generating the network [see insets Figs. 10(a) and 10(b)].

Figure 10 shows the performance in recovering the assor-
tative [(a) and (c)] and disassortative [(b) and (d)] hierarchies.
In the case of the assortative hierarchy we see that the per-
formance increases monotonically with the SNR, both overall
[Fig. 10(a)] and at each level [Fig. 10(c)]. We observe poorer
overall performance in recovering the disassortative hierar-
chies and require a much higher SNR to consistently identify
three levels in the hierarchy [Fig. 10(b)]. Closer inspection of
the performance at individual levels [Fig. 10(d)] shows that we
can recover the finest partition into 8 groups using the Bethe
Hessian with comparable performance as the assortative case.
We can also detect the coarsest partition into 2 groups rela-
tively well, particularly at SNR > 4. However the middle level
is harder to detect. The reason for the poorer performance is
due to a degeneracy that occurs for disassortative partitions

meaning that we have multiple distinct ways to form an EEP
into 4 groups [71]. This degeneracy creates an identifiability
issue, similar to the one described in Fig. 6 (see Appendix D
for a visual description), and means that our algorithm
often fails to detect a level in the hierarchy that partitions the
network into 4 groups. Identifiability issues notwithstanding,
these results indicate that our approach is still effective at
recovering disassortative hierarchies.

Finally, we examine the performance of recovering sym-
metric versus asymmetric hierarchies. Figure 11 displays the
results for a symmetric hierarchy with three partitions into 3,
9, and 27 groups [Figs. 11(a) and 11(c)] alongside results for
an asymmetric hierarchy partitioned into 3, 5, and 7 groups.
Our algorithm shows overall good performance: not only do
we recover the correct partition at the finest level, we can
also detect right until the detectability limit. The fact that the
precision and recall measures are well aligned indicates that
our algorithm successfully rejects spurious hierarchical levels,
as can also be seen from the number of hierarchical levels
found (indicated by orange asterisks in Fig. 11). We detect
additional levels only in a limited number of cases where the
SNR increases sufficiently such that the intermediate levels
become well defined.
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(a) (b)

(d)(c)

FIG. 11. Detecting symmetric and asymmetric hierarchical communities planted in synthetic test networks. Synthetic networks drawn are
from the symmetric and asymmetric hierarchical random graph model with n = 39 ≈ 19, 700 nodes with average degree 50. Levels in the
symmetric hierarchy are partitioned into 3, 9, and 27 groups, whereas the levels in the asymmetric hierarchy are partitioned into 3, 5, and 7
groups. (a) Precision and recall for the symmetric hierarchical networks as a function of signal-to-noise ratio (SNR). Stars denote the number
of hierarchical levels detected by our algorithm (right y axis). (b) Precision and recall for the asymmetric hierarchical networks as a function
of SNR. (c) The mean adjusted mutual information (AMI) of the best matching inferred partition with each level in the planted symmetric
hierarchy. The dotted lines indicate the performance of spectral clustering with the Bethe Hessian with known number of groups. (d) The mean
AMI of the best matching inferred partition with each level in the planted asymmetric hierarchy.

VI. DETECTING HIERARCHICAL STRUCTURES
IN REAL-WORLD DATA

To validate our method on real-world networks, we con-
sider a face-to-face contact network and a word-association
network, described in the subsequent sections. The standard
SBM has a well-known weakness for modeling real-world
networks because, for network generated by the SBM, the
degrees of nodes within a group are Poisson distributed [15].
Real-world networks tend to have a more heterogeneous de-
gree distribution, which has motivated various forms of degree
correction [15,72]. However, the Bethe Hessian is more ro-
bust to degree heterogeneity, but we further improve this by
adjusting the regularization parameter according to Ref. [59]
(see Algorithm 5 in Appendix E for details). Because our
approach is agglomerative, where subsequent steps of the
algorithm simply merge groups from the previous level, it
is only necessary to account for degree heterogeneity in the
initial detection of communities.

A. High-school network

We first consider a social contact network within a high
school [73] to identify the presence of possible hierarchi-
cal structure. The network consists of n = 327 nodes and
m = 5818 edges, denoting face-to-face contacts between

students wearing RFID tags. The students are divided into
nine classes according to their subject specialization: math
and physics (MP, 3 classes), biology (BIO, 3 classes),
physics and chemistry (PC, 2 classes), and engineering (PSI,
1 class).

Figure 12 shows the hierarchy that we identify using our
spectral algorithm. We see that the hierarchical organization
in the social contact structure of the network matches the
class structure of the school. Specifically, individual classes
are identified as individual communities at the finest level,
which in turn merge with classes with the same specializa-
tion. Finally, the coarsest partition splits the students into
two groups: those that specialize in biology and those whose
specializations involve physics.

B. Word associations network

We constructed a network of English word associations
using data from The Small World of Words project [74], a
scientific project to map word meaning in various languages.
The dataset was created based on a word association task,
in which participants are asked to give three associated re-
sponses to a given cue word. The dataset includes over 3
million responses obtained from over 90 000 participants, for
more than 12 000 cues. We created a network of stemmed

054305-15



MICHAEL T. SCHAUB, JIAZE LI, AND LETO PEEL PHYSICAL REVIEW E 107, 054305 (2023)

FIG. 12. Hierarchical community structure in a high-school
social contact network. Using spectral clustering, we find 9 com-
munities corresponding to the classes in the high-school network
(as indicated by colors above). There are 3 classes specialized on
math and physics (MP), 3 biology focused classes (BIO), 2 physics
and chemistry focused classes (PC), and 1 class specialized for
engineering (PSI). As depicted above we find a hierarchical structure
commensurate with these specializations, using our spectral method.

words as nodes and cue–response pairs as edges, and ap-
plied our algorithm to identify the hierarchical structure of
communities.

Figure 13 shows the dendrogram representing the detected
hierarchical structure. Here we see at the coarsest level a
partition into three groups that forms a core-periphery type
of structure. The nodes in the dense core have a higher pro-
portion of in-group links and are more likely to represent a
cue word. The finer partitions of the core represent groups
of words that are clearly associated, whereas the periphery
contains groups of words that are less clearly associated due
to the disassortative nature of the communities (i.e., lower
proportion of in-group links).

VII. CONCLUSION

We have presented a thorough investigation on hierarchical
community structure in networks. By introducing the concept
of a stochastic externally equitable partition, we have pro-
vided a formal definition of hierarchical community structure
that consists of a series of nested, nondegenerate stochastic
externally equitable partitions. Stochastic externally equitable
partitions provide a natural generalization of several concepts
of node equivalence. In particular, it has a close relationship to
the stochastic equivalence relation that underlies the stochas-
tic block model. In light of our new definition of hierarchical
community structure, we have discussed several identifiability
issues that apply in general to the detection of hierarchical
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FIG. 13. Hierarchical structure in a word association network. Using our spectral method developed here, we find a hierarchical core-
periphery structure in this network, as depicted above. Each node in the network corresponds to a word (either a cue or a response), and two
words are connected if they form a cue-response pair. Color depicts the amount of cue-words within a group. The core is formed of densely knit
set of words corresponding mostly to cue words, whereas the more peripheral communities are formed mostly from response words (noncue
words).
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community structure. Specifically, we have identified a num-
ber of scenarios for which multiple good solutions exist. In
these cases, the choice of which hierarchy is detected will be
based on the specific bias of the detection method employed.
We have also discussed how naïve use of hierarchical models,
such as Ref. [4], may identify spurious hierarchies, in much
the same way that community detection algorithms might
identify spurious communities in an Erdős-Rényi network.
In addition, we have identified characteristic spectral proper-
ties of hierarchical stochastic EEPs and developed a simple,
efficient algorithm for hierarchical community detection that
exploits these properties.

Our work opens a number of avenues for future research.
On a theoretical level, our work lays the foundations for more
detailed analysis of the asymptotic limits of detectability of
community structure, particularly for networks that contain
communities at multiple resolutions, as is the case for hier-
archical communities [71]. Our experimental results further
emphasize the issues of identifiability, in particular for dis-
assortative hierarchies. We see that disassortative hierarchies
are more likely to have degenerate solutions that make it
harder to detect levels in the hierarchy and/or identify the
specific planted partition over an equivalently good alternative
solution. These observations warrant further investigation into
the degeneracy of disassortative partitions, something that has
been largely overlooked so far, possibly due to the bias in
the literature towards assortative community structure. One
potential solution to deal with the identifiability issues might
be to incorporate a notion of equivalent hierarchies into the
scoring functions we use to evaluate performance. We already
employ a similar approach in community detection to deal
with the fact that communities are invariant to their specific
label assignment. However, this is not a consideration we
have encountered so far in the body of work concerned with
evaluating (hierarchical) community detection performance
[75–77]. From an algorithmic perspective, we have focused on
an agglomerative procedure that relies on accurately detecting
the finest level in the hierarchy. Any errors in recovering the
finest partition will be propagated to subsequent levels. How-
ever, it may be that a divisive algorithm could perform better
in some settings, particularly if the coarser partitions contain
a stronger community structure that is easier to detect. Inves-
tigating the relative benefits and weaknesses of agglomerative
versus divisive algorithms may thus be a fruitful avenue for
future research.
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APPENDIX A: CONSISTENCY OF THE
PROJECTION ERROR CRITERION

Central to our approach is the identification of stochastic
EEPs, which satisfy

L(�)H = HLπ H ∈ H�
EEP, (A1)

where H�
EEP is the set of external equitable partitions of �, Lπ

is the Laplacian of the quotient graph,

Lπ = N−1H�(D − �)H. (A2)

Since we do not observe the affinity matrix �, we estimate the
corresponding affinity matrix �̂ as

�̂ = N−1H�AHN−1 ∈ [0, 1]k×k, (A3)

and assume that if H is an EEP of � then H will be approxi-
mately an EEP of �̂, i.e.,

L(�̂)H ≈ HLπ H ∈ H�
EEP. (A4)

Our question now is whether or not this is a reasonable
assumption and if we can use the projection error as a mea-
sure of how well a partition of �̂ approximates an EEP of
�. We make this argument below by demonstrating that (as
n → ∞) stochastic fluctuations in the realization of the ad-
jacency matrix A ∈ {0, 1}n×n cannot lead to a quotient graph
whose Laplacian eigenvectors have a large projection error.

Since each entry of �̂ correspond to a sum over indepen-
dent Bernoulli random variables, by the central limit theorem
each entry �̂i j will, for large n, be well approximated by
a Gaussian random variable N (μi j, σi j ), if the number of
groups stays bounded, i.e., each group becomes sufficiently
large. The empirical mean is an unbiased estimator, so the
mean of each of these Gaussians will be given by the corre-
sponding entry of true affinity matrix μi j = �i j . Similarly, the
variance of each entry will be σ 2

i j = �i j (1 − �i j )/nin j , where
ni, n j are the number of nodes in group i and j, respectively
(where

∑
j n j = n). It follows that the spectral properties of

�̂ will closely approximate the true affinity matrix �. More
precisely, it can be shown that the spectral norm ‖�̂ − �‖2

will be small with high probability (see, e.g., Ref. [78]).
Now, let V κ be a matrix containing κ structural eigen-

vectors (out of k total eigenvectors) of L(�), where V κ is
associated with κ consecutive eigenvalues λi, . . . , λ j . Here,
we have ordered the eigenvalues in ascending order such that
λ1 � λ2 � . . . � λk . The Davis-Kahan theorem [79] implies
that the corresponding eigenvectors V̂ κ of L(�̂) are indeed
close to eigenvectors of the true quotient Laplacian L(�) (cf.
Eq. 3 of Ref. [80]):

‖V̂ κO − V κ‖F �
√

8k‖L(�̂) − L(�)‖2

�λ
, (A5)

where O is a unitary matrix, ‖ · ‖2 is the operator norm and

�λ = min(λi − λi−1, λ j+1 − λ j ) (A6)

is the eigenvalue gap associated with the true quotient
Laplacian. To make the above formula valid for any set of con-
secutive eigenvalues we define λ0 = −∞ and λk+1 = +∞.
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As our estimated partition was such that L(�̂) ≈ L(�), it
follows that if the eigenvalue decomposition is unique and the
eigenvalue gap is thus nonzero, the projection error [Eq. (14)]
associated with the estimated structural eigenvectors V̂ κ will
be small

‖PHV̂ κ‖F = ‖PHV̂ κO‖F

= ‖PHV̂ κO − PHV κ‖F

= ‖PH (V̂ κO − V κ )‖F

= ‖V̂ κO − V κ − HH†(V̂ κO − V κ )‖F

� ‖V̂ κO − V κ‖F + ‖HH†‖F‖V̂ κO − V κ‖F

� (1 +
√

k)

√
8k‖L(�̂) − L(�)‖2

�λ
,

where the first equality uses the fact that multiplication with a
unitary matrix does not change the norm; the second equality
comes from the fact that V κ are structural eigenvectors, which
means that PHV κ = 0 because the projection error is zero; the
third equality is a simple rearrangement; the fourth equality
follows from using the definition of the projection opera-
tor PH := I − HH†; the first inequality uses the subadditive
property of the norm; and the final inequality follows from
the Davis-Kahan theorem and the fact that ‖HH†‖F = √

k.
We can see from the above that ‖PHV̂‖F will be small for
large enough graphs with large enough groups as ‖L(�̂) −
L(�)‖2 → 0, which follows from the fact that the estimated
entries �̂i j → �i j for large enough group sizes.

APPENDIX B: k-MEANS IS THE DUAL OF
MINIMIZING PROJECTION ERROR

Let us write out the objective function of k-means in
which we take the rows v1·, v2·, . . . , vn· of V as k × 1
vectors representing the elements to be clustered (V � =
[v1·, v2·, . . . , vn·]):

min
H

k∑
j=1

n∑
i=1

Hi j‖vi· − μ j‖2, with μ j = 1

n j

n∑
i=1

vi·Hi j,

(B1)

where n j is the number of points in cluster j. Now observe
that we can write μ j as:

μ j = [V �HN−1]· j . (B2)

Accordingly, we can see that [V �HN−1H�] = V �HH† ∈
Rk×n corresponds to the matrix whose ith column represents
the mean of the cluster that node i is assigned to. We can thus
rewrite the k-means objective above as

min
H

n∑
i=1

∥∥V �
·i − [V �HH†]·i

∥∥2
. (B3)

Using the Frobenius norm we can more compactly write this
as

min
H

‖V �−V �HH†‖2
F = min

H
‖V �[I − HH†]‖2

F. (B4)
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FIG. 14. Nonidentifiability of hierarchical configurations for a
disassortative hierarhical network model. We show two (noniden-
tifiable) possible partitions of the affinity matrix �(1). The left
corresponds to the “planted” hierarchical partition, the right to an
equivalent partition, that is commensurate with a different hierarchy
that preserves the coarsest and finest partition.

Finally, by noting that the Frobenius norm is unchanged by
taking the transpose of its arguments we can establish the
desired equality to our projection error criterion given in
Eq. (15).

The above result shows that there is an striking duality
between the problem of finding an EEP with minimal pro-
jection error and the k-means problem on the rows of the
Laplacian eigenvectors: instead of searching for k partition
indicator vectors in an n-dimensional space that minimize the
projection error, we can consider a dual problem of finding
the k centroids of n points in a k-dimensional space (where
the centroids minimize the quantization error defined via the
squared 2-norm).

APPENDIX C: EXPECTED PROJECTION ERROR

In this section, we derive the expressions for the expected
projection errors given in Eqs. (23) and (24).

1. Accounting for shared subspaces

The derivation of ε0 in Eq. (22) in the main text assumes
that U and H are statistically independent of each other. How-
ever, this will not generally be true in the context of a partition
indicator matrix H and a set of Laplacian eigenvectors V k .
Of particular concern is that 1 is always an eigenvector of a
Laplacian and 1 ∈ span(H ) (because H1k = 1). We therefore
need to adjust the above argument slightly to incorporate

Algorithm 1. ClusterWithBetheHessian.
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Algorithm 2. InferHierarchy.

the fact that our eigenvectors will include the eigenvector 1.
Consequently, we are actually looking for the projection of a
(k − 1)-dimensional (rather than k-dimensional) subspace in
an (n − 1) − (k − 1) = (n − k)-dimensional space. In other
words, we have to account for the fact that we know that there
is a one-dimensional EEP present in any connected graph.

In general, if we know there is a κ-dimensional EEP
present in the network and we are looking for the projection
error associated with a set of k > κ eigenvectors we obtain the
expected error:

ε0(k|κ ) = (n − k)(k − κ )

n − κ
for κ � k � n, (C1)

which can be derived in a similar way as before by replacing n
with (n − κ ) and k with (k − κ ) in the above derivation. Note
that the changed denominator corresponds to the fact that the
effective dimension of the space in which we calculate the
projection error shrinks, since we have to exclude the shared
subspace from the calculation.

To see this, let us revisit our earlier calculation and con-
sider a random matrix of U ∈ Rn×k of k orthonormal vectors
of dimension n, i.e., U�U = I. This time, however, we will
assume that we know a κ dimensional subspace Uκ ⊂ U =
im(U ) of the space spanned by the vectors in the matrix
U = [u1, . . . , uk]. Without loss of generality, we may assume
that we know the first κ of these vectors and that these are
simply given by standard unit vectors (otherwise we can find
an orthogonal transformation Q1 such that Ũ = Q1U is of the
desired form). Thus we can consider a matrix U of the form:

U =
[

Iκ 0κ×(n−κ )

0(n−κ )×κ U sub

]
, (C2)

Algorithm 3. IdentifyPartitionsAndErrors.

where U sub is an orthogonal matrix of size (n − κ ) × (n − κ ).
Following a similar calculation as above, we obtain

k = E
[‖U‖2

F

] = κ + E

⎡⎣k−κ∑
j=1

n∑
i=κ+1

[Usub]2
i j

⎤⎦
= κ + (n − κ )(k − κ )E

[
U 2

i j

]
. (C3)

Hence, the expected value E[[U sub]2
i j] that determines the de-

nominator in the expected error calculation is now 1/(n − κ )
instead of 1/n.

APPENDIX D: NONIDENTIFIABILITY FOR
DISASSORTATIVE HIERARCHIES

As discussed in Sec. V B, when trying to detect a dis-
assortative hierarchical partition planted in a network, such
the networks generated for Figs. 10(b) and 10(d), we are
confronted with certain nonidentifiability issues. In such cases
an algorithm can pick any of the alternative hierarchies that
provide an equivalent hierarchical description, instead of the
“planted”, dissassortative hierarchy. Figure 14 depicts the
planted hierarchical affinity matrix (left) used in our experi-
ments and one specific reordering of the affinity matrix (right)
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Algorithm 4. FindRelevantMinima.

that meets the nested sEEP requirement. Note how both the
finest partition into 8 groups as well as the coarsest partition
into 2 groups are preserved by this reordering. However, the
two partitions into 4 groups are inconsistent with one another.
This degeneracy means that, under small perturbations of the
affinity matrix, we recover a mixture of these partitions, which
effectively cancels each other out and means that we often do
not detect the middle level of the hierarchy.

APPENDIX E: IMPLEMENTATION DETAILS

To detect the initial (finest) partition, we use the Bethe
Hessian as described in Algorithm 1.

Algorithm 5. ClusterWithDegreeCorrectedBetheHessian.

We take the partition thus found as our finest partition
and build a hierarchy by agglomeration as described in
Algorithm 2.

Here Algorithm 2 makes use of two subroutines. The first
one (Algorithm 3) creates the (best) possible subpartitions
of the affinity matrix of the currently considered hierarchical
level, and computes the associated projection errors. Based on
the computed projection errors we then decide whether there
is evidence that there is a hierarchical refinement (Algorithm
4) and keep the finest such partition. We then build the affinity
matrix of the next hierarchical level and repeat the procedure
until no more additional hierarchical levels are found.
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