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Introduction 

Burden of chronic kidney disease 

Chronic kidney disease (CKD) is a growing global health concern. CKD is described by 
the permanent decline in renal function, defined  by the accumulation of uremic 
retention solutes in the blood and/or loss of albumin in the urine.1,2 CKD is an 
important non-communicable disease that can be caused by primary abnormalities of 
the kidney or be secondary to diabetes, vascular diseases and is aggravated by 
hypertension. In 2017, the global prevalence of CKD had increased by 29.3% compared 
to 1990 with roughly 700 million cases globally. The increase in mortality from CKD 
since 1990 was 41.5%. CKD was the 12th leading cause of death globally in 2017.3  
 
People who have CKD that progresses to End Stage Kidney Disease (ESKD) require renal 
replacement therapy (RRT) to remove excess fluid and uremic toxins from the body, to 
correct and as such to sustain life. RRTs comprise kidney transplantation or dialysis 
therapies, such as hemodialysis (HD), hemodiafiltration or peritoneal dialysis. Most 
people are treated with HD for their dialysis therapy. With HD, the blood is perfused 
through a dialyzer filter that consists of a semipermeable membrane to allow diffusive 
transport of excess body fluids and retention solutes from blood into dialysate fluids. 
Conversely, basic anions pass from the dialysate into the blood, neutralizing the acidic 
imbalance associated with the catabolism of proteins into uremic toxins.4-6 Excess fluid 
is removed by ultrafiltration based on pressure difference between the blood and 
dialysate compartments. HD treatments are typically performed three times per week 
for 4 hours each session in an outpatient setting, although the length or frequency of 
the sessions can be individualized according to the needs of the patient. HD treatments 
can also be performed at home, often with a higher frequency of treatments (e.g. 3-7 
days per week) and shorter treatment times.7 Peritoneal dialysis (PD) is another 
modality that involves the routine administration of dialysate fluids into the 
peritoneum via a catheter. This dialysate dwells in the peritoneum to accumulate 
retention solutes and deliver base predominantly through diffusion. Fluid is removed by 
osmotic pressures, typically by addition of glucose to the dialysis fluid. After a dwell, 
the dialysate and excess fluids are flushed out of the body along with the absorbed 
toxins.8 PD and home HD are common forms of modalities patients’ can choose to 
perform in a remote setting outside of a dialysis clinic such as their home. Patients may 
have to change modalities, especially, patients on home modalities often transition to 
in-center modality due to technique failure. Patients who switched from home to in-
center modality have shown significant reduction in quality of life.9 Monitoring patients 
on home modality remotely is important but can be a clinical challenge. Remote digital 
technologies such as applications where patients can remotely report issues or use 
wearable devices so that clinical teams can track patients may play an important role in 
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addressing this challenge. Such remote digital technologies can expand clinicians reach 
through providing more active monitoring and creating more frequent touch points 
with patients.  
 
The frequency of dialysis yields large amounts of clinical data on the patients, 
treatments, and outcomes associated with differing care paradigms. For instance, vital 
signs are commonly measured before, every 30 minutes during, and after each HD 
treatment performed multiple times per week. Fluid removal and other metrics can be 
captured from the HD machine every 10 seconds. This robust data could be used to 
define the risks associated with higher and lower values for vital signs, fluid removal 
and other negative outcomes among patients who frequently experience hypotension 
episodes during dialysis and fluid overload, compared to those who are more 
hemodynamically stable and achieve euvolemia. It is known that removing excess fluid 
from the body faster can alter cardiac stability and induce intradialytic hypotension due 
to rapid decline in blood volume, however identification of which patients are at a 
higher risk is an ongoing clinical dilemma.10-12 Digital technologies and algorithms may 
be able to assist in early identification of patients at a higher risk who might need 
slower fluid removal rates to optimize their cardiac stability during fluid removal.13 
 
Although dialysis therapies can help patients who progress to ESKD sustain life, they 
often have a poor quality of life (QOL) and have some of the poorest outcomes among 
all chronic diseases. For example, people with ESKD exhibit mortality rates that are 
higher than people with cancer, diabetes, heart failure, myocardial infarction, or stroke 
that do not have ESKD.14-16 Global data from 2013 estimated ESKD is attributable to 
about 960,000 deaths per year.17 Because of increase in morbidity burden, there is also 
higher than average hospitalization and rehospitalization rates in CKD and ESKD. 
Amongst all Medicare beneficiaries in the United States, 15.6% of people without CKD 
have a rehospitalization within 30 days; in CKD and ESKD, this rate is 21.5% and 32.0% 
respectively.18 Overall, dialysis patients on average have about 1.8 hospitalizations per 
person year.18 With large amounts of data collected in Electronic Medical Records 
(EMR), algorithms can be developed to assess risk of various outcomes (e.g., 
hospitalization and mortality). 
 
With the Coronavirus Disease (COVID-19) pandemic, patients suffering from ESKD had 
some of the worst outcomes of any chronic disease.19 This might be since many of 
these patients are older and have weakened immune system, in addition to the chronic 
disease state of ESKD. Receiving HD in a dialysis clinic may also increase the risk of 
exposing the patient to SARS-COV-2 virus.20 Studies have shown the excess mortality in 
ESKD patients during the pandemic was 30% higher among patients on dialysis in US 
and UK compared to all-cause mortality in the prior years.21 Studying the trajectories of 
clinical parameters and identifying high risk patients can likely help in curbing the 
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spread of the communicable disease and may be able to improve QOL for ESKD 
patients. 
 
In summary, ESKD patients are unique and may experience unique challenges through 
their journey as CKD and ESKD patient. Having the ability to detect small signals in from 
the data already being routinely collected in EMR may have the potential to help in 
providing proactive care for such patients. 

Big data and artificial intelligence in healthcare 

Health care is entering a new era where the advent of “big data” brings tremendous 
opportunities to revolutionize the field. Digital Technologies enable generation, 
storage, and processing of large volumes of data. In order to be purposeful, data must 
be analyzed, interpreted, and used to improve patient care. Exploring the associations 
among different pieces of information derived from large and diverse datasets to 
enable intelligent and informed decisions is now possible with the emergence of 
artificial intelligence (AI).22 
 
AI is “the science and engineering of making intelligent machines, especially intelligent 
computer programs” as described by the pioneer Alan Turing in 1950.23 AI is considered 
the fourth generation of the industrial revolution, since it is anticipated to transform 
and impact every possible sector of our lives, just like electricity did in the early 1900s 
(Figure 1.1). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.1 Phases of the industrial revolution: First phase of the Industrial Revolution shows the 

introduction of mechanical production using steam powered engines. Second Phase of the 
revolution shows the introduction of mass production of goods using electricity. Third Phase 
shows further automation of production using Information and Technology and the fourth 
phase of the revolution shows the automation using AI techniques. 
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AI in kidney care, and health care in general, uses algorithms and software engineering 
principles to approximate the decisions made by clinicians in the analysis of complex 
health care data. Traditionally computer-based algorithms in health care include a set 
of rules encoding expert knowledge on medical decisions. These rules are subsequently 
applied to draw conclusions about specific clinical scenarios. AI algorithms, however, 
strive to learn from the data without concrete rules.   
 
AI is an umbrella term that brings together concepts from several fields such as 
statistics, algorithmics, machine learning, information retrieval, and data science at 
large. Machine learning (ML), a sub-discipline of AI, is the scientific study of algorithms 
and statistical models that can learn how to perform a specific task without using 
explicit instructions by relying on patterns and inference instead. Consequently, ML 
algorithms are highly “data hungry,” often requiring thousands of observations to reach 
acceptable performance.24  
 
The vast amounts of data collected in EMR at the point of care provide a rich platform 
to employ ML. ML thrives in handling enormous numbers of predictors and can 
combine them in nonlinear and highly interactive ways. This capacity allows for 
employing new kinds of data (e.g. text, images, sound, temporal data), whose sheer 
volume or complexity would previously have made analyzing them untenable.  
 
Deep learning (DL) is another subset of ML that uses multi-layered artificial neural 
networks (ANN) to create more advanced non-linear feature engineering than 
traditional ML methods.25 
 
In a recent bibliometric study on the global evolution of research of AI in health care 
and medicine, it is evident that AI techniques and clinical applications of AI are 
relatively more common in fields like ophthalmology, oncology, and cardiology.26 It is 
less prevalent in nephrology, even though the daily disease burden for CKD and ESKD 
patients is higher compared to the other diseases.27 
 
In ophthalmology, multiple AI-based grading algorithms have been developed to screen 
fundus photographs obtained from diabetic patients and identify who should be 
referred to the ophthalmologist for treatment. DL models developed had 94% to 98% 
sensitivity and 93% to 98% specificity across differing models.28,29 
 
The first AI based device that was approved and permitted for marketing by the Food 
and Drug Administration (FDA) was the IDx-DR (IDx Technologies Inc., Coralville, IA), 
which combines DL image recognition software to analyze retinal images and provide 
recommendations to refer patients for evaluation of diabetic retinopathy.30 In 
oncology, AI has helped with tumor imaging, pathology, and clinical decision making.31  
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AI has also entered the lives of patients in the form of wearable devices to monitor 
patients remotely and make personalized recommendations. A current health’s AI-
enabled wearable device measures multiple vital signs and has recently received FDA 
authorization for patients to use at home.32 The device can measure pulse, respiration, 
oxygen saturation, temperature, and mobility. The device provides patients and 
physicians real-time updates and alerts on vital signs, which empowers patients in their 
care and allows physicians to address complications promptly. This technology uses ML 
to analyze continuous vital sign and kinetic data to detect unusual trends. Currently, 
this device is mostly used by patients with chronic obstructive pulmonary disease 
(COPD) and heart failure. AI-enabled remote monitoring may help improve 
hospitalization and mortality in such patients.33 

Rise of digital technologies in healthcare 
Digital technologies include hardware and software applications and services such as 
telemedicine, mobile phone applications, text messaging, monitoring health via 
wearable devices and cloud based real time applications and analytics. There have been 
significant enhancements in all areas of digital technologies for use in the field of health 
care34,35. This is critical in the development of interconnected health systems to aid 
healthcare professionals and patients in managing health. Digital health is the 
convergence of all these digital technologies to provide personalized care and enhance 
effective delivery of health care services. Cloud computing in healthcare offers 
increased scalability to store big data from EMR  and to develop/execute applications in 
real time36. 

Application of AI and digital technology in nephrology 
In the field of nephrology, various initiatives have incorporated ML. One such example 
is with a ML model developed to predict CKD progression. The model was developed 
and validated using demographic, clinical, and most recent laboratory data from two 
independent Canadian cohorts of patients with CKD stages 3 to 5.37 This CKD 
progression model has been validated externally and in international 
populations,38,39and is currently used for triage of CKD care in Canada.40,41 Other studies 
have developed ML models to accurately predict outcomes and graft survival after 
kidney transplant.42,43 ML models have just begun to be applied in health care and they 
have the potential to improve patient care paradigms when implemented at the point 
of care in clinical applications in nephrology. 
 
As part of this dissertation, we present several applications related to AI and digital 
technologies that demonstrate potential and impact in addressing several challenges 
within Nephrology. 
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In chapter 2, we begin by reviewing AI related concepts and present several different 
applications of AI in Kidney Disease. We provide an overview of the AI application 
process in a clinical setting and provide brief descriptions of select advanced ML 
algorithms. We also present the current state of AI in research towards kidney disease 
and dialysis and explore future pathways for AI within the discipline of nephrology. The 
review paper introduces most of the concepts used in the rest of the following chapters 
of this thesis. 
 
In chapter 3, historic patient data from an integrated kidney disease company is 
leveraged to direct care in quality improvement efforts at its national network of 
dialysis clinics. The provider has developed and operationally deployed a set of ML 
models that identify in-center HD patients at an increased risk for multiple all-cause 
hospitalizations within the next 12 months. The models were used in a pilot called the 
Dialysis Hospitalization Reduction Program (DHRP) that provides risk directed 
interdisciplinary team root cause evaluations and personalized interventions to HD 
patients predicted to be at risk of ≥6 hospital admissions within the next 12 months. 
 
We investigated the impact of the DHRP on clinic-wide hospitalization rates in HD 
patients. Moreover, considering other analysis supporting the use of behavioral health 
interventions, we explored profiles of psychosocial barriers that included patient 
reported outcomes for depression, sleep, and psychological stress status related to one 
of the DHRP interventions that was explicitly recorded in the EMR.44 
 
In chapter 4, a ML application is presented to identify patients at risk of having their 
relative blood volume (RBV) decrease at a rate of at least -6.5% per hour anytime 
during HD. HD involves removal of fluid from the circulating blood by ultrafiltration and 
refilling from the extravascular compartments.45 This process helps preserve blood 
pressure and tissue perfusion.46 However, inadequate refilling could lead to a variety of 
intradialytic symptoms, such as intradialytic hypotension (IDH), fatigue, and 
cramping.47,48 IDH can lead to cardiac complications and an increased risk of death.49-52 
 
Studies have shown the role of RBV and how adapting the ultrafiltration rate has a 
positive effect on intradialytic symptoms.53,54 However, it has been clinically challenging 
to identify changes in RBV in real time to proactively intervene and reduce potential 
negative consequences of volume depletion. Hence leveraging advanced technologies 
to process large volumes of dialysis and machine data in real time and developing 
prediction models using machine learning (ML) is critical in identifying these signals. 
 
In chapter 5, we assess the associations between the level of utilization of the Remote 
treatment monitoring (RTM) application and hospitalization and technique failure rates 
to actively identify urgent concerns in PD patients. The modality of PD is suggested to 
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associate with favorable outcomes compared to in-center HD, however, technique 
failure is common and adjusted rates for the hospital length of stay tends to be longer 
in PD.27,55,56 Remote monitoring systems may improve the care team’s ability to actively 
identify urgent concerns in PD patients and react in a timely manner with diagnostic 
examinations, interventions, or patient education.57 A large integrated kidney disease 
healthcare company started using a RTM application throughout its dialysis 
organization in the United States since October 2016. The provider constructed and 
integrated the RTM system into its clinical systems as a quality improvement process. 
The RTM is an online portal-based treatment record application, whereby patients can 
create an online account and record the details of individual PD treatments, associated 
vital signs, and complications. The data from this RTM application are used as part of 
this study. 
 
In chapter 6, we evaluate the trajectories of clinical and laboratory parameters in HD 
patients due to the COVID-19 pandemic. Dialysis patients appear to be at increased risk 
for viral transmission with relatively high mortality rates ranging from 11% to 30%.58-63 
During the first half of 2020, there were over 11,200 COVID-19 hospitalizations among 
Medicare beneficiaries undergoing dialysis in the United States.64 Various parameters 
such as pulse, body temperature, C-reactive protein (CRP) and lymphocyte counts at 
presentation were found to be associated to COVID-19 mortality in kidney failure.59 
 
Albeit the clinical presentations in COVID-19 have been somewhat established, the 
changes in clinical parameters before presentation that characterize disease onset in 
humans are unknown secondary to a scarcity of longitudinal data available in the 
general population or collected in registries in the kidney failure population. HD 
patients have robust routine data collected in EMR affording the opportunity to define 
the pathophysiological disturbances characterizing the onset and course of COVID-19 in 
kidney failure patients. The goal of this analysis was to compare trends in clinical and 
laboratory parameters between HD patients who tested positive or negative for SARS 
CoV-2. The second goal of this study was to compare clinical trends between survivors 
and non-survivors who were diagnosed with COVID-19. 
 
In chapter 7, we use our findings from chapter 6 to develop a ML model that predicts 
the risk of a HD patient having an undetected SARS-CoV-2 infection that is identified 
after the following 3 or more days. The model was built as part of a healthcare 
operations effort in response to the COVID-19 outbreak. 
 
In chapter 8, we developed ML models to predict mortality in HD patients using a large 
globally representative dialysis Monitoring Dialysis Outcome (MONDO) database 
examining various input parameters from the nutritional, inflammatory, hydration, 
anemia, and mineral metabolism domains. In this effort, we assessed advanced 
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analytical ML methods as well as traditional statistical methods to highlight the 
advantages and disadvantages of each modeling technique for mortality prediction. 
 
We conclude the dissertation with a discussion of the ability, implication, and 
challenges of AI in its applicability in dialysis care.  
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Abstract 

Artificial Intelligence (AI) is considered as the next natural progression of traditional 
statistical techniques. Advances in analytical methods and infrastructure enable AI to 
be applied in healthcare. While AI applications are relatively common in fields like 
ophthalmology and cardiology, its use is scarcely reported in nephrology. We present 
the current status of AI in research towards kidney disease and discuss future pathways 
for AI. The clinical applications of AI in progression to end stage kidney disease and 
dialysis can be broadly subdivided into 3 main topics: (1) predicting events in the future 
such as mortality and hospitalization (2) providing treatment and decision aids such as 
automating drug prescription (3) identifying patterns such as phenotypical clusters and 
arteriovenous fistula aneurysm (AVFA). At present, the use of prediction models in 
treating patients with kidney disease is still in its infancy and further evidence is needed 
to identify its relative value. Policies and regulations need to be addressed before 
implementing AI solutions at the point of care in clinics. AI should not replace the 
Nephrologists’ medical decision making, but instead assist them in providing optimal 
personalized care for their patients. 
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Introduction 

Artificial intelligence (AI) is anticipated to transform healthcare through advancements 
in clinical decision support. Rapid advancements in computational power and 
improvements in statistical techniques ultimately enable AI to be leveraged to identify 
hidden interactions and patterns within large, complex, multi-level datasets. AI has 
been suggested as the next natural progression of traditional statistical techniques (e.g. 
logistic regression, linear regression, etc.), and these analytical advancements can be 
applied to the practice of medicine.1,2 An AI based “virtual coach” using a diverse set of 
inputs and algorithms may have the potential to aid in personalized medical guidance 
for patients.3 AI medical decision support tools for clinicians may also improve efficiency 
by optimizing routine workflows and aid them in the process of providing care.4 
 
In a recent bibliometric study on the global evolution of AI in healthcare and medicine, 
it is shown that clinical applications of AI are relatively common in fields like 
ophthalmology, oncology, and cardiology.5 However, the use of AI is scarcely reported 
in nephrology, despite attributes of large datasets6 and one of the highest disease 
burdens.7 In-center hemodialysis (HD) is typically performed three times per week for 3-
5 hours, thus amassing a large volume of clinical data captured in electronic medical 
records (EMR). These large treatment datasets are ideal for AI applications. With 
advances in technology, remote treatment monitoring applications allow clinical data 
to be collected from patients dialyzing at home. Recently, it has also become possible 
to measure and store beat-to-beat hemodynamic and respiratory values during dialysis 
treatment.8 Furthermore, the emerging field of medical grade wearables is anticipated 
to yield even more robust data in all populations.9 
 
The aim of this review is to: 1) provide an overview of the AI application process in a 
clinical setting, 2) provide brief descriptions of select advanced machine learning 
algorithms, 3) present the current status of AI in research towards kidney disease and 
dialysis and 4) explore future pathways for AI within the discipline of nephrology. This 
review focusses on the applications of AI in progression to end stage kidney disease and 
dialysis omitting the unique acute kidney injury population. 

Types of AI 

There is no universal definition of AI, but central to most definitions is the ability of a 
learning system to mimic human behavior. As depicted in Figure 2.1, AI is an umbrella 
term that brings together concepts from several fields such as computer science, 
statistics, algorithmic, machine learning (ML), information retrieval, and data science at 
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large.10 ML techniques are very powerful in their ability to detect hidden patterns in 
large datasets that are otherwise difficult to identify by traditional statistical 
techniques. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.1 The relationship between AI, ML and Deep Learning (DL). ML is a subset of AI and DL is a subset 

of ML. ML is a sub-discipline of AI that uses training examples of how to perform a specific task 
without explicit instructions to identify associations for a given outcome measure. DL is a 
subfield of ML that mimics neural networks to learn. 

 
 
The types of ML techniques that currently exist for building AI applications broadly fall 
into three families (Figure 2.2), namely, Supervised Learning (SL), Unsupervised 
Learning (UL), and Reinforcement Learning (RL). SL and UL are briefly discussed below 
although technical details are beyond the scope of this review.11 Most of the 
applications of RL are in the fields of board and video games and beyond the scope of 
this paper. 
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Supervised Learning (SL) 

SL is the most frequently used type of ML. The objective of SL is to build a predictive 
model that takes historical input features to predict a specific output. For example, one 
may want to predict if a patient will miss their next dialysis treatment (binary output 
Yes/No) or predict how long it would take until a patient will transition to dialysis 
(continuous output). 
 
SL can be divided into two categories (classification and regression) depending on the 
type of the output (Figure 2.2). In classification, the output belongs to a set of distinct 
classes (e.g. missed treatment vs. not missed treatment). In regression, the output is 
usually a continuous numerical quantity (e.g. N days until transitioning to dialysis). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.2 Supervised Learning (SL) and Unsupervised Learning (UL) are the two main categories of 

Machine Learning (ML). Deep Learning (DL) is a subset of ML. SL algorithms are used to learn the 
optimal parameters of the predictive model by investigating past examples with known inputs 
and known outputs. UL algorithms learn about patterns in the input data itself and does not 
have a known output. 

 
 
There are many ML algorithms for building predictive models ranging from traditional to 
more advanced methods. Prediction performance of these models are usually 
presented as area under the receiver operating characteristic curve (AUROC).12 The 
most common traditional SL methods are logistic regression (for classification) and 
ordinary least squares regression.13 These traditional methods are popular analysis 
techniques within healthcare and hence not discussed here for brevity. Over the past 
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decade, more advanced techniques such as tree-based methods and deep learning 
algorithms have grown in popularity. 
 
The foundation of tree-based methods is the decision tree, a ML technique for 
sequentially dividing the samples based on determining if a selected feature is greater 
than, or less than, a threshold determined by the model. At every level of the decision 
tree, the ML model learns which feature to use, and which threshold is the best. 
Unfortunately, a single decision tree can memorize the training data, resulting in poor 
performance on unseen data. As a result, many advanced analytical techniques (e.g. 
Random Forest and Gradient Boosting Classifier) have been created to improve upon 
traditional single decision trees, increasing generalization to new data.14 In Random 
Forest methods, multiple decision trees are created using random subsets of samples 
(i.e. by bootstrapping) and random subsets of the input features (i.e. bagging). On the 
other hand, Gradient Boosting methods sequentially add decision trees with few levels 
of nodes (shallow) that leads to a progressive improvement in model performance. One 
Gradient Boosting method known as XGBoost is currently one of the top performing 
models in the machine learning field.15 
 
An extensive bibliography of new SL techniques, their application, and performance 
compared to traditional techniques are becoming available. Akbilgic et al. compared 
several different ML modeling techniques to predict risk of death in incident dialysis 
patients16. The random forests model outperformed logistic regression with an AUROC 
of 0.76 compared to an AUROC of 0.68. 
 
Deep Learning (DL), which uses artificial neural networks (ANN), is another SL technique 
that has grown in popularity in the last decade. ANN began in the 1950s with the 
MADALINE algorithm17, but it wasn’t until recently with advances in computational 
power that ANN/DL could be computed in a reasonable time. The name ANN refers to 
its core functional unit, call neuron (Figure 2.3). ANN’s neurons usually receive multiple 
inputs that are mathematically combined through non-linear (e.g. sigmoidal) activation 
functions F(x). A simplest neural network is the standard logistic regression. On the 
other hand, DL consists of stacking multiple layers of these units in the hidden layer 
(Figure 2.4). These layers connect to units of an output layer serving as the final output 
of the model. 
 
The weights of the inputs are the parameters learned in ANN throughout the entire 
neural network. Given a set of weights, the training input features are fed forward 
through the neural network to create a set of predictions. The predictions are then 
compared to the actual output labels and this difference (i.e. the error) is fed backward 
through the hidden layers. Over several iterations the network “learns from its 
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mistakes” and optimally adjusts its unit weights to a point where it can accurately 
predict the outcome. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.3 A very simple artificial neural network (ANN) with an input layer comprised of 3 inputs, hidden 

layer comprised of 1 neuron, and the output layer. ANN’s neuron usually combines input from 
multiple sources through non-linear activation functions F(x). 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.4 Deep Learning Network. Input layer with 3 inputs, multiple hidden layers of neurons and 
2 output layers. Higher the number of hidden layers deeper is the network. 

 
 
To optimize these weights, the DL algorithm uses a technique known as Back 
Propagation which was invented in the 1980s.18 As the number of layers are added to 
the neural network, the number of weights and connections increases dramatically. 
Convolutional Neural Networks (CNN) and Recurrent Neural Networks (RNN) as shown 
in Figure 2.5 and Figure 2.6 are two variants of ANN that have also been created to 
reduce the number of weights, resulting in increases in performance, and decreases 
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training time. A CNN is mostly used for image processing and RNN is widely for natural 
language processing (NLP).19 
 
 
 
 
 
 
Figure 2.5 Convolution Neural Network (CNN) is a class of Deep Learning (DL) neural networks that is 

widely used for image classification. A CNN includes an input layer (image data), multiple hidden 
layers (convolution to extract features, pooling for subsampling features, and fully connected 
layer to classify images), and an output layer. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.6 Recurrent Neural Network (RNN). In RNN the output from the function are fed back in the model 

in order to minimize error. 
 
 
In the medical field, DL20 (specifically CNN) has been mainly applied for image 
processing in the fields of radiology, histology, dermatology and retinopathy, which has 
been able to demonstrate at or above clinical performance.21-23 For example, in 
Cardiology, DL has been used to predict outcomes after cardiac arrest.24 
 
Support Vector Machine (SVM) is a form of supervised learning, where the ML 
algorithm performs complex data transformations on the labeled data and defined 
output to draw boundaries within the input data. SVMs can be used to solve 
classification problem as well as a regression problem.25 
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Un-Supervised Learning 

In UL, there is no output label, but rather the objective is to learn about patterns in the 
input data itself. UL techniques usually focus on clustering, dimensionality reduction, or 
anomaly detection.26 A commonly used clustering technique is k-means clustering.27 
k-means clustering utilizes an iterative refinement algorithm with assignment step and 
update step to partition the data into k clusters, the algorithm aims to minimize the 
within-cluster variance and maximize the between-cluster variance. It is critical to 
determine an appropriate number of clusters k when using k-means clustering method. 
 
Hierarchical clustering28 is another commonly used clustering technique that creates a 
hierarchy of clusters from top to bottom. For example, using hierarchical clustering Liu 
et al. identified clusters of US states based on unhealthy behaviors, preventive 
measures and CKD related outcomes in adults living in cities.29 They concluded that 
such information may be of interest to policy makers to understand socio-demographic 
factors and other risk factors could contribute to the prevalence of CKD. 
 
Table 2.1. shows a very high level overview of the differences between the traditional 
statistical techniques and advanced analytical methods. 
 
Table 2.1 Differences between traditional statistical methods versus advanced analytical techniques. 

Factors Traditional statistical techniques Advanced analytical techniques 
Training Data Works with Smaller Data Sets Better with Large Data Sets 
Usability Exploratory and baseline analysis Iterative, complex and ready to be 

deployed in clinical application 
Interpretability Easily interpretable Complex techniques can be difficult 

to interpret 
Hardware and Training 
Time 

Requires simple hardware configuration 
and less training time 

Complex models require powerful 
computing hardware and more training 
time 

Types of Input Data Works well only with categorical and 
numerical data 

Works with all types of data 
including audio, image, free text 

Examples Logistic and Linear Regression, 
Generalized Additive Models, single 
decision tree 

Neural Network, complex decision trees 
with several layers 

 

AI Application Process 

The AI application process in a clinical setting generally consists of a series of stages 
(Figure 2.7). For ML, the process begins by defining the problem. This includes 
understanding the context of the clinical problem at hand and transforming the clinical 
problem into a relevant ML problem. 
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The next stage consists of understanding the quality and quantity of the clinical data 
available and preparation for modeling. Data preparation consists of collection, 
integration, cleaning, and using clinical knowledge to build predictors (feature 
engineering) for the ML model. In hemodialysis, the enormous amounts of EMR data 
collected at the point of care provides a rich platform to employ ML. ML thrives on 
processing a huge number of variables combing them in nonlinear interactive ways. This 
capability allows new kinds of data (e.g. free text, images, videos, sound, temporal data) 
to be utilized. The volume and complexity of such data adds additional challenges in 
analyzing the data. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.7 Process for Application of AI with 4 phases: Problem Definition, Data Preparation, Model 

Building and Production. 
 
 
With a set of well-engineered features, the predictive models are trained and tuned 
until acceptable performance is achieved. It is anticipated some steps of the process 
have bi-directional arrows because they can result in modifications for previous steps 
(Figure 2.7). If the model meets the needs of the clinical problem, the trained model can 
be deployed in production. During production, it is advisable to monitor the predictions 
and retrain the model when necessary. 
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Applications in kidney disease 

There are several unmet needs in nephrology and there is a huge potential for use of 
big data and AI in patients with kidney disease. The applications of AI kidney disease 
can be broadly subdivided into 3 main topics: (1) predicting events in the future, (2) 
treatment and decision aids and (3) identification of existing, but unrecognized, 
patterns. Table 2.2 shows a summary of key AI related studies that have been 
published in the field of kidney disease. Currently, only one published study reports the 
clinical application, although the use of AI in kidney disease is reported more commonly 
in conference abstracts suggesting the scientific community has more contributions on 
the horizon. 
 
Table 2.2 Key publications of AI applications in kidney disease. 

Author, year AI techniques No of 
patients 

Outcome predicted Performance Clinical 
application use 

Akbilgic et al.16 2019 Random forest 27,615 Risk of death AUROC: 0.70-0.76 NA 
Goldstein BA et al.32 
2014 

Random forest 826 Sudden cardiac death AUROC:0.78-0.79 NA 

Mezzatesta et al.33 
2019 

Support vector 
machine 

1216 Cardiovascular 
disease 

Accuracy: 92.15%- 
92.25.% 
AUROC:0.50-0.74 
Precision:72%-89% 
Recall:73%-94% 

NA 

Chauhan et al.392020 Random forest 1369 CKD progression AUROC: 0.77-0.80 
PPV: 62% in high-risk 
group 
NPV:92%-96% in 
low- 
risk group 

NA 

Norouzi J et al. 422016 Artificial neural 
networks 

465 CKD progression MSE: 58.63-64.00 
MAE:4.77 – 5.93 
NMSE:4.77%- 4.88% 

NA 

Barbieri C et al.46 
2016 

Artificial neural 
networks 

752 Anemia management MAE:0.59 g/dL Yes 

Zhang J et al.74 2017 Random forest 83 Immune fingerprints AUROC: 0.993 
Sensitivity:98.5% 
Specificity:92.6% 

NA 

AUROC: Area Under the Receiver Operating Curve, MSE: Mean Square Error; MAE: Mean Absolute Error; NMSE: 
Normalized MSE; PPV: Positive Predicted Value; NPV: Negative Predicted Value. 
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Predicting the future 

Predicting outcomes 

Patients with end stage kidney disease (ESKD) have high mortality as well as 
hospitalization rates.7 Prediction Models can assist with early care planning and triaging 
resources where there is the potential for the greatest clinical benefit. Interventions 
performed based on predictions would be specific to the outcome and may warrant ad-
hoc and/or extra evaluations and clinical screenings in addition to routine care. Early 
mortality and hospitalization prediction models using traditional statistical techniques 
built on a select number of features have been reported.30 The AUROC for traditional 
statistical mortality and hospitalization prediction models usually fall in the range 
between 0.65 and 0.75.31 In Nephrology, prediction of sudden cardiac death in older 
hemodialysis (HD) patients was an early example of employing an advanced ML method 
where a random forest model yielded a AUROC of 0.79.32 In another example, 
Mezzatesta et al. used SVM, to predict risk of ischemic heart disease in dialysis patients 
with an accuracy of approximately 92%.33 
 
Recent studies show a large set of features and their interactions with other features 
can be employed using advanced ML methods to better estimate potential risk factors 
preceding mortality and/or hospitalization.34 For instance, a large dialysis organization 
(LDO) of Fresenius Medical Care (FMC), an integrated kidney disease care organization, 
has developed and deployed a predictive model that includes more than 200 variables 
to identify patients treated with in-center HD who have an increased risk of 
hospitalization in the next 12 months. The model is built using XGBoost classifier with 
an AUROC of 0.81. 
 
As part of a pilot study reported in a congress abstract, the LDO has suggested use of 
the predictive model to assist clinicians with targeting additional interdisciplinary 
assessments and interventions resulted in a decrease of the average yearly hospital 
admission rate and average yearly hospital days rate compared to controls in the 
neighboring region that did not participate in the pilot and receive predictive model 
reports.35 Such prediction model appears to have the potential to provide an intelligent 
method of triaging additional resources in dialysis clinics. 
 
Advanced AI applications are powerful in analyzing vast amounts of clinical data to look 
for subtle changes in a patient’s condition or worsening status for short-term 
outcomes. Dialysis disease exacerbations sometimes exhibit clear symptoms in the days 
prior to an event, however, the occurrence of minor signals of a worsening condition 
that do not clearly warrant any immediate intervention or appear unrelated to the 
cause of the event that takes place soon after can be a clinical challenge. Recent efforts 
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by the LDO reported in a congress abstract led to the development and implementation 
of a model to predict imminent hospitalizations in ESKD patients who are at risk of 
getting hospitalized within the next 7 days.36 The model uses over 1500 variables from 
a range of data sources (e.g. treatment vitals, laboratory measurements, 
comprehensive assessments, and nursing clinical notes). 
 
The unstructured clinical notes are converted into numerical data using NLP 
techniques, specifically word2vec and CNN. The output of the CNN is then combined 
with other structured numerical data to train an XGBoost tree classifier. The final model 
has an AUROC of 0.78. As reported in another congress abstract, this model is currently 
used by a team of nurses and has improved their workflow significantly 
37. Although the effectiveness of this imminent hospitalization model and subsequent 
interventions are unknown and being evaluated, its potential to assist clinicians with 
near real time insights of risk levels and predictors driving the risk determination is 
promising and could help them with targeting interventions and transitional care 
planning before and after hospitalization episodes. 

Predicting chronic kidney disease progression 

Chronic kidney disease (CKD) is a growing health crisis across the world.7 Detecting it 
early and managing the progression of the disease is critical for positive patient 
outcomes and controlling healthcare costs. Due to challenges in understanding the 
trajectory of this disease, providing care planning before initiation of dialysis and 
helping patients make appropriate vascular access and modality choices may be 
difficult. 
 
Traditional and AI techniques are being developed to predict CKD progression. Tangri et 
al. have developed a traditional regression model for prediction of kidney failure from 
CKD stages using demographic, clinical and the most recent clinical data from two 
independent cohorts of CKD patients stages 3 to 5.38 In two other recent studies, 
random forest models have been developed to generate a prognostic risk score by 
combining data from EMR and circulating biomarkers such as plasma tumor necrosis 
factors and kidney injury molecule-1 to predict CKD progression.39,40 The AUROC in one 
of the studies by Chauhan et al. was 0.77-0.80. Xiao et al. compared several ML 
methods to predict the risk of proteinuria >1 g/day in CKD patients using demographic 
data and blood biochemical features.41 In this case the traditional logistic regression 
model outperformed other ML models with AUROC 0.87. They conclude that advanced 
ML models are best when the amount of data is large, whereas linear models perform 
better in relatively smaller datasets. On the other hand, Jamshid Norouzzi et al. 
developed an ANN to predict renal failure progression in patients with CKD. The model 
could accurately (>95%) predict the eGFR in 6, 12 and 18th months interval.42 
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As reported in a congress abstract, the Renal Research Institute used data from 
28,608 patients with CKD from 2000 to 2011 to construct two linear and spline models 
that utilize up to 6 months of historic estimated glomerular filtration rates (eGFRs), or 
logarithm of eGFRs (log-eGFRs), for prediction of CKD progression to ESKD.43 The results 
of the model were integrated in the CKD Forecaster Tool used at the point of care for 
nephrologists in clinical decision support system (CDSS). This helped in-patient 
education and care planning for the transition from CKD to ESKD. As reported in a 
congress abstract, nephrologists who used the CKD Forecaster Tool had less patients 
transitioning to HD with a Central Venous Catheter(CVC).44 

Treatment aid 

Treatment and drug prescription 

Prescription of drugs such as erythropoietin in patients with ESKD by clinicians is both 
time consuming and error prone. Automation of part of the prescription process could 
increase efficiency and improve patient care. Several approaches have been published 
in the literature to reduced erythropoietin dose and increase the percentage of patients 
within target.45 One example is adoption of ANN for anemia management, which was 
able to increase the percentage of patients in target while reducing hemoglobin 
variability and erythropoietin dose.46 
 
Understanding which drugs are most appropriate for certain patient categories is 
another area where historic data can guide a decision-making process for the clinicians. 
For example, informed by results of virtual clinical trials utilizing advanced physiology-
based mathematical models of parathyroid gland biology, an LDO of FMC, an integrated 
kidney disease care organization has afforded nephrologists working in its clinics the 
opportunity to prescribe off-label 3x weekly directly observed in-center administration 
of cinacalcet as an alternative to daily dosing.47,48 Subsequent observations in currently 
over 11,000 patients indicate that 3x weekly in-center administration of cinacalcet is 
non-inferior to prescribed daily cinacalcet in controlling parathyroid hormone levels, 
corroborating the virtual clinical trial results.49 Although speculative, efforts like this 
may potentially further optimize and personalize the treatment of secondary 
hyperparathyroidism, as well as expand the understanding of the debated influence of 
mineral bone disorder medications on hard outcomes.50,51 In oncology, several studies 
show successful predictions of which patients would respond to immunotherapy using 
AI algorithms.52,53 
 
Further, ML algorithms have been used to predict which medications would work for 
which patients with mood disorders.54 
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Identifying medical errors 

Although there are not many references in literature on the use of AI in identifying 
medical errors in a nephrology setting, it is important to highlight how it can be used. 
Medical errors are a third leading cause of death in the U.S.; in 2016, they contributed 
to more than 251K deaths in the U.S. alone and accrued $17.8 billion dollars in 
unnecessary spend.55,56 Different causes of medical errors exist such as (a) complexity of 
the healthcare system, (b) system and process design issues, (c) competency, education, 
and training, and (d) human factors and ergonomics. 
 
Traditional approach to correct medical errors is to create new rules and procedures 
that need to be utilized in a healthcare setting.57 However, data-driven, AI approaches 
can also be applied particularly when historic evidence already exists. Most common 
application of AI in minimizing medical errors is to guide what therapeutic approaches 
may or may not be ideal for a given patient. Paredes et al.56 explored this in the context 
of U.S. Intensive Care Units(ICU) and concluded that ML could aid physicians by 
providing better predictions about the effect of certain treatments and the likely 
evolution of sepsis patients. 
 
Further, ML algorithms can assist in guiding decisions where complex, time-dependent 
or uncommon medication interactions are at play (such as, drug-drug or drug-allergy 
interactions, therapeutic duplication, etc.). Traditional rule-based decision support 
systems may be insufficient to resolve such issues. AI and technology solutions are likely 
to be best fitted in these applications.58 Specific examples of these applications have 
been successfully demonstrated by prediction algorithms developed at Stanford 
University.59 Many technology companies have services that supports physicians as 
they interact with their patients’ data that may assist in minimizing medical errors. 
 
Outlier management and outlier detection can also assist with minimizing medication 
errors. This can be completed through AI-driven algorithms or through Clinical Decision 
Support models. A team at the Brigham and Women’s Hospital evaluated a medication 
error detection system that uses a probabilistic ML model to identify prescriptions that 
are outliers based on populations of patients in their EMR system with similar 
characteristics.60 

Identifying patterns 

Identifying phenotypical patterns 

In patients with ESKD, several patterns such as the malnutrition-inflammation-
atherosclerosis syndrome have been discovered by traditional statistical methods. It 
has thus increased our pathophysiological understanding and were shown to be strong 
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prognostic indicators. Recently, studies have showed that fluid overload also can be 
part of a pathophysiologic spectrum including malnutrition and inflammation.61,62 The 
concomitant presence of these three risk factors yielded a near 6-fold increase in 
mortality risk. However, unlike other chronic diseases, pattern detection based on UL 
techniques have not yet been published in nephrology. In patients with heart failure 
with preserved ejection fraction (HFpEF), three different phenotypical patterns were 
identified based on clinical, laboratory and echocardiographic parameters by 
agglomerative hierarchical clustering. These clusters differed greatly in mortality risk. In 
cardiology, the use of UL techniques to detect phenotypical patterns was termed 
“phenomapping” by the authors.63 Another example from infection medicine is based 
on k-means clustering on a cohort of patients with sepsis. Four different phenotypes 
were observed with a distinct difference in outcome, of which one was characterized by 
older patients with more chronic illness and renal dysfunction (β phenotype). The 
highest 28-day mortality (40%) was observed in the δ phenotype, characterized by 
patients with septic shock and liver dysfunction, as compared to 13% in the 
β phenotype and 5% in the α phenotype with the lowest risk64. Another study identified 
different metabolic clusters based on k-means clustering including a set of clinical 
parameters and biomarkers in older adults without diabetes. In the clusters 
characterized by lower eGFR and albuminuria and the cluster with the highest 
inflammation, the risk of cardiovascular end points was comparable to the diabetic 
cluster.65 Whether phenomapping in different diseases has relevance for personalized 
treatment prescription needs to be addressed in future trials. 

Identifying unknown comorbidities 

In addition to making predictions about the future, the power of AI can be utilized to 
comb through vast amounts of information to uncover hidden patterns in high 
dimensional data otherwise too complex to identify manually. While an incredible 
resource of clinical data, EMR consist of both structured and unstructured data, with 
contributions often added by multiple care providers with different documentation 
styles and levels of thoroughness. Variations and inconsistencies in a patient’s record 
likely increase with the complexity of their health. 
 
One area of concern involves patient comorbidities. ESKD patients with multiple 
medical comorbidities face decreased survival likelihoods.66,67 Prognostic comorbidity 
indexes indicating patient mortality risk have been used and adapted for renal 
replacement populations68-70, which highlights the critical role that comorbidities play 
in the complexity of a patient’s health picture. In addition to prognostics, comorbidity 
information is a necessary component involved in medical billing. Medicare’s bundled 
fee- for-service coverage for beneficiaries with ESKD includes payment multipliers for 
patients with complex health pictures based on specific comorbidities. In order to 
receive appropriate payment for the extra level of support and services tied to these 



Applications of Artificial Intelligence (AI) in Kidney Disease 

37 

populations, comorbidities must be properly documented in medical records. In 
Nephrology, one LDO within its integrated kidney disease care organization addressed 
this clinical need by using ML to find patterns in physician notes common across 
diseases to identify potential undocumented comorbidities or to remove comorbidities 
that are unlikely to exist.71 Using lab test results, natural language processing of 
physician notes, and demographic information, the LDO was able to improve coding 
over the previous method of randomly chosen manual medical record reviews. 

Image classification for arteriovenous fistula aneurysm and biomarker fingerprints 

The Renal Research Institute developed a CNN to automatically classify arteriovenous 
fistula aneurysm (AVFA) stages. They collected 15-20 sec panning videos from 
30 patients to train a CNN model. CNN was able to automatically classify AVFA stages 
with >90% classification accuracy. As reported in a congress abstract, using this model 
in a clinical application will reduce workload for physicians, provide timely AVFA 
diagnosis and improve patient care.72 
 
Advances in biochemical analytics, such as liquid chromatography-mass spectrometry 
(LC-MS) provide an unparalleled amount of data from biological samples, giving rise to 
the rapidly evolving field of metabolomics. A major area of research is to explore if 
specific compound patterns are correlated with clinical outcomes of interest or if 
patterns differ between clinical phenotypes. Given the enormous number of 
metabolites, this question lends itself to the use of AI. Very recently, several groups 
have successfully applied ML to metabolomics data.73 Another example of a potential 
clinical application for AI in peritoneal dialysis was presented by Zhang et al., who used 
a combination of supervised ML methods to detect specific immune fingerprints 
allowing rapid detection of causative organisms in peritonitis, potentially facilitating 
earlier prescription of specific antibiotic treatment.74 This study demonstrated the 
power of using advanced analytical model for mining complex biomedical data set 
where traditional statistical methods fail to yield satisfactory results. 

Reflection 

Rapid advances in computing, mathematics and statistics have resulted in the evolution 
of AI and ML methods. Cloud computing resources might be a more cost-effective way 
of analyzing large volumes of data and building ML models. Ideally, ML algorithms 
should be available for use in the community. 
 
Traditional statistical modeling techniques are most appropriate in building simple 
predictive models, where one has a well-defined problem, good observation set and 
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established knowledge expertise about the strengths and limitations of the outcomes. 
Furthermore, traditional techniques learn from data which are static in time, and thus 
tend to “overfit” to their training, and fare reasonably poorly when they encounter 
anomalous instances. 
 
However, in an ever-evolving renal care landscape where the problems posed are 
complex, AI provides several techniques to derive meaningful results. It is very powerful 
in identifying unknown patterns and anomalies. 
 
Therefore, traditional statistical and advanced AI techniques are both complementary. 
It is a widely accepted practice to initially build a model using traditional statistical 
techniques and use that model as a baseline against which AI models are compared 
against for performance. In a systematic review in the general population, no major 
differences were found between various advanced AI-techniques and traditional 
statistical modeling techniques in clinical prediction.75 A prudent approach is to choose 
a model appropriate for the problem at hand and not necessarily bias oneself to one 
methodology. 
 
Beyond methodologies, it is important to translate modeling results into actionable 
decisions points for patients and care providers. At present, the use of prediction 
models in dialysis treatment is still in its infancy and further evidence is needed to 
identify its relative value. 
 
AI techniques can allow for large datasets to be leveraged with minimal efforts. Such 
techniques have the power to process large volumes of data to identify patterns and 
features which may impact the outcome. However, outcome selection and follow up 
timeframes need to be carefully determined to optimize the performance and potential 
clinical value. AI model that can predict short term outcomes may not allow time for 
interventions to change the course of an event. 
 
AI solutions must follow ethical guidelines and consider at the time of conception 
whether software programs are medical devices that require formal regulatory 
pathways and trials.76,77 Furthermore, before implementation of AI solutions at the 
point of care, policies and regulations need to be established for delivery of the outputs 
to clinicians and patients. Models are never 100% accurate, and thus there will be 
instances where models will predict incorrectly. In such situations a precedent of 
accountability needs to be established. AI solutions should be transparent and 
traceable. It is important that the predictive models use data collected routinely in 
standard of care or it will likely produce models that include bias by indication. Teams 
developing and using AI solutions should be aware of this limitation. Thorough 



Applications of Artificial Intelligence (AI) in Kidney Disease 

39 

evaluation of the input data variables should be conducted as a key step in the 
selection of outcomes and the process of building predictive models. 
 
While a lot of emphasis is placed into developing powerful and accurate models, more 
emphasis should be directed towards building an end-to-end team of practitioners in 
data analytics, data engineering, trainers, care providers and patients to create 
effective solutions which would be beneficial for all stakeholders. The effectiveness of 
the prediction models depends heavily on the ability to use insights to make clinical 
interventions. On the other hand, interventions need to be thoroughly thought through 
depending on unique factors driving the clinical outcome and personalized for every 
patient. 
 
Lastly, AI solutions when implemented at the point of care for nephrologists should be 
viewed as a clinical decision support tool to extend providers insights about the 
patients. AI should not replace providers’ medical decision making, but instead assist 
them in providing optimal personalized care for their patients. 
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Abstract 

Background 
An integrated kidney disease company uses machine learning (ML) models that predict 
the 12-month risk of an outpatient hemodialysis (HD) patient having multiple 
hospitalizations to assist with directing personalized interdisciplinary interventions in a 
Dialysis Hospitalization Reduction Program (DHRP). We investigated the impact of risk 
directed interventions in the DHRP on clinic-wide hospitalization rates. 
 
Methods 
We compared the hospital admission and day rates per-patient-year (ppy) from all HD 
patients in 54 DHRP and 54 control clinics identified by propensity score matching at 
baseline in 2015 and at the end of the pilot in 2018. We also used paired t test to 
compare the between group difference of annual hospitalization rate and 
hospitalization days rates at baseline and end of the pilot. 
 
Results 
The between group difference in annual hospital admission and day rates was similar at 
baseline (2015) with a mean difference between DHRP versus control clinics of 
-0.008±0.09 ppy and -0.05±0.96 ppy respectively. The between group difference in 
hospital admission and day rates became more distinct at the end of follow up (2018) 
favoring DHRP clinics with the mean difference being -0.155±0.38 ppy and -0.97±2.78 
ppy respectively. A paired t-test showed the change in the between group difference in 
hospital admission and day rates from baseline to the end of the follow up was 
statistically significant (t-value=2.73, p-value<0.01) and (t-value=2.29, p-value=0.02 ) 
respectively. 
 
Conclusions 
These findings suggest ML model-based risk-directed interdisciplinary team 
interventions associate with lower hospitalization rates and hospital day rate in HD 
patients, compared to controls. 
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Introduction 

End Stage Kidney Disease (ESKD) patients frequently experience emergent 
complications requiring hospitalization. In the United States, ESKD patients treated by 
dialysis had on average 1.7 admissions during 2018.1 In addition to the negative 
consequences to the patient from the onset/exacerbation of a disease requiring 
inpatient care, hospitalizations are economically impactful to the healthcare system 
accounting for about 30% of all ESKD Medicare expenditures.1 An array of clinical 
parameters associate with hospitalization events in dialysis patients, including 
potentially modifiable factors related to the patients’ dietary, psychosocial, and other 
needs.2-6 However, classifying a dialysis patient’s risk for hospitalization, understanding 
the root cause of likely complications, and providing timely interventions can be 
challenging based on standard practices. 
 
Most ESKD patients in the United States are treated by outpatient hemodialysis (HD) 
performed thrice weekly, which amasses large volumes of longitudinal clinical data in 
electronic medical records (EMR). This robust data collected on HD patients affords 
opportunities to use Artificial Intelligence (AI) methods to assist with individualized 
hospitalization risk classifications. AI is an overarching group of advanced analytical 
techniques bringing together concepts from fields such as computer science, statistics, 
algorithmics, machine learning (ML), information retrieval, and data science at large.7 
ML techniques are very powerful in their ability to quickly detect hidden patterns in 
large datasets8 and have been reported to have the ability to assist with prediction of 
likely future outcomes for mortality, transplant failure, and other events in ESKD.9-13 
 
An integrated kidney disease company has been leveraging historic patient data with 
advanced analytics to direct care in quality improvement efforts at its national network 
of dialysis clinics. The provider has developed and operationally deployed a set of ML 
models that identify in-center HD patients at an increased risk for multiple all-cause 
hospitalizations within the next 12 months. The models were used in.a pilot called the 
Dialysis Hospitalization Reduction Program (DHRP) that provides risk directed 
interdisciplinary team root cause evaluations and personalized interventions to HD 
patients predicted to be at risk of ≥6 hospital admissions within the next 12 months. 
 
We investigated the impact of the DHRP on clinic-wide hospitalization rates in HD 
patients. Moreover, in light of other analysis supporting the use of behavioral health 
interventions, we explored profiles of psychosocial barriers that included patient 
reported outcomes for depression, sleep, and psychological stress status related to one 
of the DHRP interventions that was explicitly recorded in the EMR.14 
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Materials and methods 

General design 

An integrated kidney disease company (Fresenius Medical Care, Waltham, MA, United 
States) developed a set of ML prediction models for classification of individual dialysis 
patients at risk for multiple hospitalizations within the next 12 months. These ML 
models have been used since 2016 to direct interdisciplinary evaluations and 
interventions in the DHRP quality improvement pilot being performed at select dialysis 
clinics among a national network (Fresenius Kidney Care, Waltham, MA, United States). 
 
We performed an analysis to evaluate the rolling annual hospital admission and day 
rates per-patient- year (ppy) in clinics before (2015) and after (2016-2018) the initiation 
of DHRP and compared rates to matched control clinics not involved in the DHRP. 
 
This analysis was performed under a protocol reviewed by New England Institutional 
Review Board (Needham Heights, MA, United States; Version 1.0 NEIRB# 17-1305247-1; 
Revised Version 1.1 NEIRB# 17-1344262-1) who determined this analysis of existing 
patient data that was de-identified by the investigator was exempt and did not require 
informed consent. This analysis was conducted in adherence with the Declaration of 
Helsinki. 

Patient population 

In this analysis, we included data from HD patients treated in a clinic participating in the 
DHRP quality improvement pilot implemented across the United States. For the 
selection of control clinics, we assessed data from the national network and matched 
clinics with similar attributes that were not involved in the DHRP. Control clinics were 
matched in a 1:1 ratio to DHRP clinics on the logit of the propensity score for the 
number of HD patients in the clinic, average age, percentage of male/female, 
percentage of white/black patients, average albumin, presence of comorbidities 
(congestive heart failure (CHF), diabetes, ischemic heart disease), and the hospital 
admission and day rates during the baseline period (2015). We excluded data from all 
clinics that were managed via the ESKD Seamless Care Organization (ESCO) program, 
irrespective of their participation in the DHRP. 

ML models 

ML model was developed to classify an individual’s 12-month risk of multiple 
hospitalizations using historical EMR data from nearly 150,000 in-center HD patients. 
Overall, there were close to 300 input variables used in the ML models. The input 
variables included HD patient data on demographics (e.g. age, height, gender, race, 
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ethnicity), comorbidities, hospitalization history, treatment history, clinical laboratory 
parameters collected in the EMR, responses from quality of life (QOL) surveys, as well 
as publicly available data on social, economic, environmental, and geographical factors 
based on the patient’s zip code. (Figure 3.1). Many of the treatment, laboratory, and 
quality of life survey related input variables from the model are described in 
Supplemental Table S3.1, which include the top predictors identified. Additional 
features were derived from the numeric input variables using coefficient of variations, 
standard deviations, and monthly linear slopes to identify changes over the month for 
certain input parameters. Categorical variables such as comorbidities, quality of life and 
certain socio-economic factors were converted into additional binary variables with a 1 
or 0. For development of the ML models, the historic data for all patients were 
randomly split into 50% training, 20% validation, and 30% test dataset. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.1 Various input sources for developing a machine learning (ML) model to predict patients at risk of 

hospital admissions in the next 12 months. 
 
 
The ML model to predict patients having ≥6 hospitalizations within the following 
12 months were categorized into two binary classification tasks. One was developed for 
patients who received in-center HD treatments for at least 120 days, and the other one 
was developed for patients with less than 120 days of in-center HD treatments. Both 
models were built using gradient boosting models built using XGboost package.15 
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A 5-fold cross validation on the combination of training and validation data set was 
used in the model development and the final model took the average of the cross-
validation steps to avoid overfitting. Hyperparameters are model-specific internal 
parameters that are initially set to certain default values to cover general use cases. 
These parameters must be tuned for the problem at hand to get optimal model 
performance.16 The internal parameters such as the maximum tree depth, number of 
trees and minimum child weight in the XGBoost modeling technique were optimized 
using exhaustive grid search to iteratively achieve the best AUROC performance.17 
 
For each patient, if the models predicted the probability of the patient having at least 6 
hospital admissions in the following 12 months; we defined those patients as high-risk. 
The threshold selected for the model was 0.20. For the ML model directed 
interventions in the DHRP, the interdisciplinary teams utilized the two high risk models 
that identified patients at risk of at least 6 hospital admissions in the next 12 months. 
Top three predictors of the ML model were the QOL Survey Response related to 
general wellbeing of health, treatment rate accounting treatments missed in the prior 
year and the average albumin for the patient. 
 
The performance of the model was evaluated using area under the receiver operating 
characteristic curve (AUROC).18 The AUROC for the first model for patients with at least 
120 days of in-center HD treatments was 0.81, precision of 0.28, recall of 0.57 and 
F1 score of 0.38 on the test data. The AUROC for the second model for patients less 
than 120 days of in-center HD treatments was 0.80, precision of 0.29, recall of 0.70 and 
a F1 score of 0.41 on the test data. 

Interventions 
Starting in 2016, DHRP clinics received a list of high-risk patients via a secured email 
and spreadsheet every month. The clinic manager, or a nurse assigned to lead the 
program, partnered with an interdisciplinary team of social workers, dieticians, and 
nurses to triage evaluations/interventions to high-risk patients. The interdisciplinary 
team performed a root cause analysis of risk for hospitalization for each patient 
identified as high-risk by the ML model. Each team member formulated individualized 
goals to address any medical instability that could lead to a hospitalization. Also, routine 
brief meetings were scheduled to discuss team actions taken and next steps for each 
high-risk patient. 
 
For patients classified to be high-risk by ML model, social workers provided intensive 
assessment of psychosocial and quality of life barriers, and when appropriate, offered 
select high-risk patients additional psychosocial evaluations/interventions to target 
identified barriers through the Social Work Intensive (SWI) program. In the SWI, patient 
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reported outcome questionnaires were administered before and after the intervention, 
and social workers charted additional notes on the encounters in the EMR. Dietitians 
utilized a high-risk assessment workflow looking at weight, nutrition, and access to food 
and supplements. Nurses assessed high-risk patients focusing on anemia, adequacy, 
dialysis access, blood pressure, fluid management, prior hospitalizations, glycemic 
control, and risk of skin ulcers and blood stream infection. Although additional 
interventions were intended to have been performed by social workers, nurses, and 
dietitians, the visits were charted in free text fields for routine notes without ability to 
decipher distinct areas of interventions in the EMR. 

Social worker intensive program 
The SWI program was one of several components of the DHRP intervention. SWI was a 
previously established program throughout the provider’s national network of clinics, 
whereby social workers provided additional psychosocial evaluations/interventions 
(without the ML model) based on identified issues with treatment adherence, 
achievement of clinical quality targets, and/or other complications. This program 
demonstrated positive quality of life and hospitalization outcomes.19,20 
 
In the DHRP, social workers used the ML model report to direct the SWI behavioral 
health interventions and dedicated additional time for all patients identified to be at a 
high risk of hospitalization. High-risk patients with psychosocial concerns were 
screened with a sleep quality survey (Supplemental File S3.1), psychological stress 
survey (Supplemental File S3.2) and the Centre for Epidemiological Studies Depression 
Scale (CES-D-10) survey 21, all of which are rated on a 1-10 Likert scale. Patients that 
screened positive for any barriers with sleep, distress, or depressive symptoms were 
eligible to participate in an 8-week SWI program with an optional 8-week extension 
(total of 16 weeks) for patients with continuing barriers in self-reported psychosocial 
outcomes. In the SWI program, the social workers delivered individually tailored 
cognitive, behavioral, sleep and interpersonal counseling to reduce any patient distress 
identified by the screening. At the end of the 8-week period, patients were re-screened 
with the surveys to assess intervention associated improvements in the outcomes. 
Social workers entered the pre and post screening measurements in the EMR. 

Statistical methods 

Descriptive statistics 

Descriptive statistics were tabulated for demographics and clinical parameters for 
patients in DHRP clinics and patients in control clinics. 
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Measuring social worker intervention 

We were unable to measure most DHRP related interventions performed by the 
interdisciplinary team members explicitly due to the limitations in the EMR 
documentation systems. However, we were able to use social worker evaluation notes 
and the psychosocial screeners administered in the SWI program as a measure of 
interventions performed for select high-risk patients. We used the number of 
assessment and intervention notes recorded by the social workers in the EMR to 
measure the SWI intervention before and after being identified as high-risk by the ML 
model. A two-sample T-statistic was used to evaluate the difference between the 
average number of EMR notes before and after being identified as high-risk. Similarly, 
T-statistics were used to see if there is a difference in the average depression, stress, 
and sleep scores before and after the SWI program. 

Clinic wide hospital admission and hospitalization days rate 

Data from patients at participating clinics were collected and clinic level rolling yearly 
hospital admission and hospital day rates per patient year (ppy) were calculated at 
baseline (2015) and 3 years after (2016- 2018) the DHRP program started. Outcomes of 
the DHRP clinics were compared against control clinics that did not receive the high-risk 
patient report generated from the ML model. We computed the difference between 
annual hospital admission and day rates in DHRP and control clinics at baseline (2015) 
and at the end of follow up (2018). Paired t-tests were used to evaluate the change in 
the between group difference in the hospital admission and day rates from baseline 
(2015) to the end of the analysis period (2018). 

Results 

Clinic and patient characteristics 
We used data from all active in-center HD patients in a DHRP and control clinics across 
the United States over the analysis period from 2016-2018. There were 54 DHRP clinics 
that had 7767 to 8189 active patients per year during the analysis period. There were 
54 control clinics that had 7484 to 7705 active patients each year during the analysis 
period. The characteristics of patients at DHRP and control clinics is shown for all 
distinct patients in the clinic groups at baseline during 2015 (Table 3.1) and during the 
follow up period between 2016-2018 (Table 3.2). 
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Table 3.1 Demographic and comorbidities breakdown of patients in DHRP and control clinics at baseline. 

 DHRP Control Mean Standard 
Difference 

Number of clinics 54 54  
Average number of patients 182 188 -0.067 
Average age 61.6 61.0 0.201 
Male (%) 57% 56% 0.113 
White (%) 61% 60% 0.027 
Black (%) 33% 37% -0.156 
CHF (%) 21.5% 23.5% -0.252 
Diabetes (%) 68.1% 68.8% -0.083 
Hypertension (%) 65.5% 70.1% -0.368 
IHD (%) 18.6% 20.1% -0.138 
Average albumin 3.75 3.74 0.275 
Hospital admission rate in 2015 1.35 1.35 0 
Hospital admission days in 2015 9.26 9.26 0 

CHF: Chronic Heart Failure, IHD: Ischemic Heart Disease. 
 
 
Table 3.2 Demographic and comorbidities breakdown of patients in DHRP and control clinics during 

follow-up period 2016-2018. 

 DHRP Control 
Number of clinics 54 54 
Average number of patients 245 251 
Average age 61.3 60.8 
Male (%) 58% 58% 
White (%) 60% 59% 
Black (%) 33% 39% 
CHF (%) 19.3% 22.8% 
Diabetes (%) 69.1% 69.5% 
Hypertension (%) 67.6% 73.0% 
IHD (%) 18.6% 23.2% 
Average albumin 3.7 3.7 

CHF: Chronic Heart Failure, IHD: Ischemic Heart Disease. 
 
 
During the analysis period, 1084 unique patients were identified as high-risk (predicted 
to have ≥6 hospital admissions in the following 12 months) by the ML model in the 
DHRP clinics. Within the DHRP clinics, the interdisciplinary teams evaluated and 
intervened on all high-risk patients. Fourteen percent (14%) of the patients (n=150) 
predicted to be at a high-risk by the ML model received the behavioral health screening 
by the social workers. The remaining ten percent (10%) of the total patients identified 
as high risk (n=111) were enrolled in the SWI program. 
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Measuring social worker intervention 

Among the subset of high-risk patients identified who received behavioral health 
screening by the social workers (n=150), we found the average number of social work 
assessment and intervention notes charted in the EMR increased from 1.34±1.02 notes 
per month in 90 days before to 1.70±1.24 notes in the 90 days after the risk 
classification (p=0.01). 
 
In the select subset of high-risk patients who received the SWI intervention to address a 
psychosocial barrier identified (n=111), we found improvements in patient reported 
outcomes for depressive symptoms, sleep quality, and psychological stress. We 
observed 62% of high-risk patients enrolled in the SWI program reported a reduction in 
their depressive symptoms as seen by CESD-10 scores, 64% patients reported an 
improvement in their sleep quality scores, and 56% patients reported a reduction in 
their psychological stress scores (Table 3.3). After the 8-week SWI intervention, the 
average CESD-10 scores decreased from 11.4 to 8.12 (CESD-10 scale from 0 to 60 with 
lower values representing fewer depressive symptoms), sleep scores decreased from 
23.2 to 19.7 (sleep screener scale 5 to 50 with lower values representing better sleep 
quality), and stress scores decreased from 17.0 to 15.9 (stress screener scale 4 to 40 
with lower values representing less psychological stress). 
 
Table 3.3 Average Scores Before and After Social Worker Intervention. 

Survey Number of 
patients 

Before intervention Mean±SD 
(Range) 

After intervention Mean±SD 
(Range) 

P-value 

CESD-10 score 81 11.42±6.17 (0-27) 8.12 +6.32 (0-21.5) <0.0001 
Sleep score 72 23.22+10.69 (5-50) 19.68 +11.51 (5-49) 0.0019 
Stress score 67 17.01+10.17 (1-40) 15.85+8.28 (1-35) 0.0055 
     
SD: Standard Deviation 

Clinic wide hospitalization rate 
Annual rolling hospital admission rates had increasing trends over the analysis period in 
DHRP and control clinics. Cumulatively, the DHRP clinics exhibited a lower growth in 
admission and day rates as compared to control clinics (Figure 3.2A and 3.2B). At the 
end of follow up in 2018, the annual admission rate among DHRP clinics was 10% lower 
and the hospital day rate was 8% lower than control clinics. The DHRP clinics had a 5% 
and 2% increase in the hospital admission and day rates from 2015 to 2018, 
respectively. The control clinics showed a 15% and 10% increase in the hospital 
admission and day rates from 2015 to 2018, respectively. 
 
The between group difference in rolling annual hospital admission and day rates was 
similar at baseline (2015) with a mean difference between DHRP versus control clinics 
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of -0.008±0.09 ppy for the admission rate and -0.05±0.96 ppy for the hospital day rate. 
The between group difference in hospital admission and day rates became more 
distinct at the end of follow up (2018) with the mean difference in DHRP clinics being 
-0.155±0.38 ppy and -0.97±2.78 ppy lower than control clinics, respectively. A paired 
t-rates from baseline to the end of the follow up was statistically significant 
(t-value=2.73, p-value<0.01 for admission rates; t-value=2.29, p-value=0.02 for hospital 
day rates). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.2A Hospitalization rate for DHRP clinics and control clinics at baseline and in follow-up period. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.2B Hospitalization days rate for DHRP clinics and control clinics at baseline and in follow-up period. 
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Discussion 

We found ML directed care in outpatient dialysis clinics participating in the DHRP was 
associated with lower annual rolling all-cause hospitalization rates compared to 
matched control clinics. DHRP and control clinics exhibited consistent hospitalization 
rates at baseline in 2015. Although both groups of clinics had increases in 
hospitalization rates over time, the DHRP clinics had smaller increases compared to 
control clinics. At the end of follow up in 2018, the between group difference in 
hospitalization rates was distinct as compared to baseline and showed DHRP clinics had 
significantly lower hospital admission and day rates versus control clinics. In 2018, this 
distinction suggests that DHRP was potentially associated with 495 avoided hospital 
admissions and 2074 avoided hospital days as compared to matched control clinics. It 
appears monthly ML classifications for patients at a high-risk for multiple 
hospitalizations (≥6 admissions) in the next year helped direct interdisciplinary team 
interventions in the DHRP program and lessened the rising trends in the clinics’ 
hospitalization rates over the years. We found 14% of high risk patients were assessed 
for psychosocial barriers and social workers charted a higher number of notes 90 days 
after individual patients were identified to be at a high-risk for multiple 
hospitalizations. Among this subset of high-risk patients, 74% had a psychosocial barrier 
identified and received tailored behavioral health interventions from the social workers 
and we observed improvements in patient-reported outcomes for depressive 
symptoms, sleep quality, and psychological stress. Overall, it appears the ML model was 
able to aid the DHRP care teams in identifying the right individuals to target for 
personalized interventions at the right time, overall yielding improvements observable 
in outcomes at the clinic level. 
 
The risk of hospitalization in ESKD patients is multifactorial and dependent on the 
etiology of the individual’s complication(s). Oftentimes the onset of a disease requiring 
inpatient care is marked by subtle temporal changes in patient presentations and 
clinical markers making it a challenge to universally classify hospitalization risk levels 
during standard of care dialysis practices. To the best of the authors’ knowledge, there 
are no other examples of AI/ML based hospitalization risk models being used to direct 
care in quality improvement efforts in dialysis. In general, the clinical application of AI 
in nephrology is scarce with only one report identified in a recent bibliometric study on 
the global evolution of AI in healthcare.22,23 The all-cause hospitalization risk models 
implemented in the DHRP appeared to suitably assist care teams with classifying the 
subset of individual patients in their clinic at the highest risk. Due to the nature of all-
cause risk classification, effective root cause assessment methods to identify 
complications and target them with effective interventions was essential to yielding the 
positive results observed. 
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A recent review article on the factors and barriers related to decreasing admission rates 
in dialysis patients proposed three key clinical categories driving hospitalization risk that 
are potentially actionable.24 These categories include volume control, infection, and 
psychosocial risks. The DHRP root cause assessments covered these categories, as well 
as other key areas such as nutrition, dialysis access, glycemic control, and ulcers. While 
most of these are fundamental areas of focus in dialysis care, psychosocial and 
behavioral health barriers are often not fully identified in standard care and span 
outside the field of nephrology.25,26 High risk patients, in fact, are often seen by the 
medical team as “too ill” to receive behavioral health intervention and, thus its value is 
forfeited. Depressive affect and sleep disturbances are known to associate with 
hospitalization rates and poor outcomes in chronic kidney disease patients.27-29 The 
targeted interventions designed to improve mood, sleep quality and perceived stress 
appear to be possible contributors to the favorable hospitalization rates observed, 
albeit they were only performed in a small proportion of high-risk patients. 
Independent analyses are needed to understand the impacts of improvements for each 
patient reported measure, which include proprietary measures for sleep and 
psychological stress that have not been validated. Nonetheless, in general it appears 
the use of ML risk classifications for directing assessments and interventions selected by 
the patients’ care team may help personalize care and improve outcomes. 
 
Although these findings on the application of ML directed care in the DHRP are of 
importance, there are some limitations to be considered. We only had data to define 
ML directed assessments specifically by social worker notes charted for concerns of 
psychosocial barriers, and sleep, depressive symptom, and stress scores were only 
available on a small subset of patients who received the SWI behavioral health 
intervention. Although we had some data on select social worker assessments/ 
interventions, the EMR system of the provider was not structured in a manner that 
other ML directed assessments/interventions by social workers, dieticians, and nurses 
could be estimated. Nonetheless, the delivery of personalized interventions in line with 
needs, preferences, and goals of individuals adds to the novelty of the DHRP and is 
consistent with the paradigm shifts towards more patient centric care models.30,31 
Having clinicians use their medical discretion to select interventions based on their 
assessment of each patient is fundamental in healthcare and appeared effective in this 
experience. 
 
During development of the ML model presented in this paper, we compared advanced 
ML Techniques such as XGBoost to more traditional techniques such as Generalized 
Additive Models and found better performance with the advanced ML models. The AUC 
of the XGBoost model was 0.80-0.81 and the one using GAM was 0.64-0.68 for the 
different variations of the model. 
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The successful application of ML directed care in the DHRP holds promise for further 
development and adoption of ML models that have the potential to provide an 
intelligent and timely triage of additional resources. Personalized interventions appear 
prudent to consider in ML directed endeavors, along with a toolbox of assessments and 
interventions that are anticipated to be effective in improving the quality of life and 
outcomes of patients. It may be important for the renal care industry to identify ways 
to increase early access to behavioral health care as patient’s increase their risk of 
hospitalization; using ML modeling might be helpful in directing patients toward this 
goal. However, ML based risk classification and other clinical decision support tools are 
never perfect. We believe it is of importance for clinical teams to understand the 
outputs generated and consider the limitations of the models in the design of directed 
assessments and interventions. 

Conclusions 

We found ML directed assessment and personalized interventions in the DHRP, which 
included behavioral health intervention for some high-risk patients, were associated 
with lower all-cause hospitalization rates compared to control clinics. The DHRP efforts 
and findings detail an example of how the clinical application of AI directed care can be 
successfully conducted and will be of importance for considerations by payors, 
providers, and clinicians. 
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Table S3.1 Important treatment, laboratory and quality of life related input variables. 

 N Mean (±Std Dev) 
Pre treatment systolic blood pressure [mmHg] 157467 148.92(±18.63) 
Pre treatment diastolic blood pressure [mmHg] 157464 77.88(±11.69) 
Pre treatment weight [kg] 157467 85.42(±23.9) 
Pre Temperature [F] 157467 97.43(±0.42) 
Treatment time [min] 157468 223.9(±32.67) 
Inter dialytic weight gain [kg] 156647 2.41(±0.96) 
Ultrafiltration rate [mL/hr/kg] 157357 8.08(±3.02) 
Albumin [g/dL] 155226 3.81(±0.38) 
Bicarbonate [mEq/L] 155103 23.25(±2.23) 
Calcium [mg/dL] 155421 9(±0.57) 
Ferritin [ng/mL] 153321 981.03(±513.9) 
Hemoglobin [g/dL] 156561 10.69(±0.96) 
Lymphocytes [%] 113741 20.18(±7.25) 
Neutrophils [%] 113741 65.99(±8.41) 
Phosphorous [mg/dL] 155464 5.25(±1.25) 
Potassium [mEq/L] 155505 4.74(±0.51) 
Serum sodium[mEq/L] 151071 138.13(±2.74) 
Neutrophil lymphocyte ratio [NLR] 113741 4.3(±3.76) 
ekTV 149496 1.49(±0.27) 
Creatinine [mg/dL] 154302 8.41(±2.97) 
Count of comorbidities 157468 21.02(±15.85) 
Age [yrs] 157468 61.62(±14.45) 
Vintage [yrs] 157468 3.31(±3.84) 
QOL Ans 01: General wellbeing of health [ranked percentile] 139910 44.19(±19.12) 
QOL Ans 02: Issues with moderate activities, such as moving a table, pushing a 
vacuum cleaner, bowling or playing golf [ranked percentile] 

139917 51.08(±32.58) 

QOL Ans 03: Issues with climbing several flights of stairs [ranked percentile] 139914 42.33(±33.29) 
QOL Ans 04: Accomplished less than you would like due to physical health 
[ranked percentile] 

139899 47.55(±39.02) 

QOL Ans 05: Were limited in the kind of work or other activities due to physical 
health [ranked percentile] 

139889 42.83(±38.97) 

QOL Ans 06: Accomplished less than you would like due to emotional health 
[ranked percentile] 

139898 71.07(±35.39) 

QOL Ans 07: Didn't do work or other activities as carefully as usual due to 
emotional health [ranked percentile] 

139873 77.29(±31.84) 

QOL Ans 08: How much did pain interfere with your normal work? [ranked 
percentile] 

139895 67(±25.65) 

QOL Ans 09: Have you felt calm and peaceful? [ranked percentile] 139903 68.69(±20.8) 
QOL Ans 10: Did you have a lot of energy? [ranked percentile] 139905 48.12(±22.92) 
QOL Ans 11: Have you felt downhearted and blue? [ranked percentile] 139888 77.69(±20.29) 
QOL Ans 12: How much of the time has your physical health or emotional 
problems interfered with your social activities? [ranked percentile] 

139894 71.69(±24.1) 

QOL Ans 13: My kidney disease interferes too much with my life [ranked 
percentile] 

139833 44.91(±29.02) 
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Table S3.1 (contiued) 

 N Mean (±Std Dev) 
QOL Ans 14: Too much of my time is spent dealing with my kidney disease 
[ranked percentile] 

139827 49.56(±29.1) 

QOL Ans 15: I feel frustrated dealing with my kidney disease [ranked percentile] 139822 56.1(±30.02) 
QOL Ans 16: I feel like a burden on my family [ranked percentile] 139821 64.91(±30.62) 
QOL Ans 17: Soreness in your muscles? [ranked percentile] 139788 72.39(±23.51) 
QOL Ans 18: Chest pain? [ranked percentile] 139793 92.17(±13.94) 
QOL Ans 19: Cramps? [ranked percentile] 139790 75.58(±21.48) 
QOL Ans 20: Itchy skin? [ranked percentile] 139790 75.02(±23.25) 
QOL Ans 21: Dry skin? [ranked percentile] 139795 72.12(±23.64) 
QOL Ans 22: Shortness of breath? [ranked percentile] 139808 82.86(±20.32) 
QOL Ans 23: Faintness or dizziness? [ranked percentile] 139802 86.67(±17.12) 
QOL Ans 24: Lack of appetite? [ranked percentile] 139804 84.42(±19.31) 
QOL Ans 25: Washed out or drained? [ranked percentile] 139775 70.85(±23.17) 
QOL Ans 26: Numbness in hands or feet? [ranked percentile] 139792 75.09(±24.79) 
QOL Ans 27: Nausea or upset stomach? [ranked percentile] 139787 83.41(±20.16) 
QOL Ans 28A: (Hemodialysis patient only) Problems with your access site? 
[ranked percentile] 

138719 90(±16) 

QOL Ans 28B: (Peritoneal dialysis patient only) Problems with your catheter 
site? [ranked percentile] 

6721 84.3(±25.58) 

QOL Ans 29: Fluid restriction? [ranked percentile] 139771 72.7(±25.07) 
QOL Ans 30: Dietary restriction? [ranked percentile] 139777 76.64(±22.38) 
QOL Ans 31: Your ability to work around the house? [ranked percentile] 139758 73.61(±24.97) 
QOL Ans 32: Your ability to travel? [ranked percentile] 139751 67.99(±28.66) 
QOL Ans 33: Being dependent on doctors and other medical staff? [ranked 
percentile] 

139759 79.02(±23.59) 

QOL Ans 34: Stress or worries caused by kidney disease? [ranked percentile] 139759 76.9(±24.14) 
QOL Ans 35: Your sex life? [ranked percentile] 138405 80.78(±26.94) 
QOL Ans 36: Your personal appearance? [ranked percentile] 139674 84.43(±21.39) 
Physical component score 139703 37.93(±9.07) 
Treatment rate 157468 0.42(±0.08) 
Number of monthly foot checks 157468 1.14(±1.02) 

QOL: Quality of Life. 
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Abstract 

Background 
Inadequate refilling from extravascular compartments during hemodialysis can lead to 
intradialytic symptoms, such as hypotension, nausea, vomiting, and cramping/myalgia. 
Relative blood volume (RBV) plays an important role in adapting the ultrafiltration rate 
which in turn has a positive effect on intradialytic symptoms. It has been clinically 
challenging to identify changes RBV in real time to proactively intervene and reduce 
potential negative consequences of volume depletion. Leveraging advanced 
technologies to process large volumes of dialysis and machine data in real time and 
developing prediction models using machine learning (ML) is critical in identifying these 
signals. 
 
Method 
We conducted a proof-of-concept analysis to retrospectively assess near real-time 
dialysis treatment data from in-center patients in six clinics using Optical Sensing Device 
(OSD), during December 2018 to August 2019. The goal of this analysis was to use real-
time OSD data to predict if a patient’s relative blood volume (RBV) decreases at a rate 
of at least -6.5% per hour within the next 15 minutes during a dialysis treatment, based 
on 10-second windows of data in the previous 15 minutes. A dashboard application was 
constructed to demonstrate how reporting structures may be developed to alert 
clinicians in real time of at-risk cases. Data was derived from three sources: (1) OSDs, 
(2) hemodialysis machines, and (3) patient electronic health records. 
 
Results 
Treatment data from 616 in-center dialysis patients in the six clinics was curated into a 
big data store and fed into a Machine Learning (ML) model developed and deployed 
within the cloud. The threshold for classifying observations as positive or negative was 
set at 0.08. Precision for the model at this threshold was 0.33 and recall was 0.94. The 
area under the receiver operating curve (AUROC) for the ML model was 0.89 using test 
data. 
 
Conclusion 
The findings from our proof-of concept analysis demonstrate the design of a cloud-
based framework that can be used for making real-time predictions of events during 
dialysis treatments. Making real- time predictions has the potential to assist clinicians 
at the point of care during hemodialysis. 
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Introduction 

Hemodialysis (HD) involves removal of fluid from the circulating blood by ultrafiltration 
and refilling from the extravascular compartments.1 This process helps preserve blood 
pressure and tissue perfusion.2 However, inadequate refilling could lead to a variety of 
intradialytic symptoms, such as intradialytic hypotension (IDH), fatigue, and 
cramping.3,4 IDH can lead to cardiac complications and an increased risk of death.5-8 
 
Studies have shown the role of relative blood volume (RBV) and how adapting the 
ultrafiltration rate has a positive effect on intradialytic symptoms.9,10 However, it has 
been clinically challenging to identify changes in RBV in real time to proactively 
intervene and reduce potential negative consequences of volume depletion. Hence 
leveraging advanced technologies to process large volumes of dialysis and machine 
data in real time and developing prediction models using machine learning (ML) is 
critical in identifying these signals. 
 
A network of dialysis clinics routinely captured hematocrit, oxygen saturation, and 
intravascular blood volume during dialysis using Optical Sensing Device (OSD) device.11-

13 The OSD provides clinicians with the ability to have near real-time monitoring of the 
patient’s clinical status during HD. During dialysis treatments, data is collected every 
ten seconds, which is required to be stored, curated, and analyzed timely interventions. 
There is a dearth of knowledge about utilizing this machine data for monitoring 
treatment level parameters and personalizing care for HD patients. This may be 
secondary to traditional storage and computing resources being unable to handle the 
processing of such large data stores. 
 
Big data technologies and cloud-based services are novel tools that can provide the 
necessary infrastructure to support such near real-time applications. Big data is a field 
that incorporates ways to analyze, systematically extract information from, or 
otherwise deal with data sets that are too large or complex to be dealt with by 
traditional software.14 Cloud technology moves big data processing off local computers 
and onto shared web services, allowing for greater optimization of resources and faster 
processing as a result. Cloud platforms provides a secure, efficient, and reliable way to 
process and analyze data. 
 
We conducted a retrospective analysis to assess dialysis treatment data from 2019. This 
analysis was used to develop a proof-of-concept that cloud infrastructure can be used 
in clinical care and provide necessary data to consider if implementation in the future is 
warranted. The model developed in this proof-of-concept was not utilized in clinical 
practice. 
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We created a ML application to identify patients at risk of having their RBV decrease at 
a rate of at least -6.5% per hour anytime during HD. A dashboard application was 
constructed demonstrate how reporting structures may be developed to alert clinicians 
in real time of at-risk cases. 

Methods and design 

General design 
For this proof-of-concept analysis, we used data from adult patients treated at six 
clinics (Fresenius Kidney Care, Waltham, MA, United States) that universally used OSD 
during HD as a standard of care between December 2018 through August 2019. In these 
six clinics, there was hardware previously setup to transfer data from the OSD device to 
a secure Internet of Things (IoT) private server on Amazon Web Services (AWS; Amazon 
Web Services, Inc., Seattle, WA, United States) using IoT software.15,16 The AWS server 
was compliant with the Health Insurance Portability and Accountability Act (HIPAA).15 
Amazon Web Services (AWS), Microsoft Azure, and Google’s cloud platforms are the 
most broadly adopted web services platform in the world.17-19 
 
The goal of this analysis was to use historic OSD data to build a prediction model that 
can actively classify patients at risk of having their RBV decrease at a rate of at least -
6.5% per hour within the next 15 minutes of HD throughout the entire treatment. Also, 
we aimed to construct a dashboard to that could be considered for delivery of alerts for 
patients predicted at risk. 
 
This analysis was performed under a protocol that was approved by New England 
Institutional Review Board under a waiver of informed consent per title 45 of the United 
States Code of Federal Regulations part 46.116(f) (Needham Heights, MA, United 
States; NEIRB# 17-1311567-1). The analysis was conducted in adherence with the 
Declaration of Helsinki. 

Patient population 
We included data from patients who were greater than or equal to 18 years of age and 
females were not known to be pregnant. 

Optical sensing device 
The OSD (Crit-Line®, Bad Homburg, Germany) profiles patient’s intradialytic status to 
assist clinicians monitor the treatment assessment and intervention during 
hemodialysis.20 By monitoring blood volume percent changes, caregivers can adjust 
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treatment as necessary to maximize fluid removal and prevent common intradialytic 
symptoms, such as IDH, nausea, vomiting, and cramping9,21-24, as well as minimize the 
risk of worse outcomes.12,25 
 
Per the manufacture’s specifications for RBV thresholds20, when the rate of change in 
RBV, based on the latest 15 minutes of data, is decreasing less than -3% per hour, the 
ultrafiltration rate might be increased without immediate risk of intradialytic 
symptoms. In this case the patient's plasma refill rate is occurring at the same or a 
greater rate than the ultrafiltration rate. When the rate of change in RBV, based on the 
latest 15 minutes of data, is decreasing between -3% and -6.5% per hour, it indicates a 
suitable compromise between a high ultrafiltration rate and the prevention of 
intradialytic symptoms. When the rate of change in RBV, based on the latest 
15 minutes of data, is greater than -6.5% per hour, there is a rapid decrease in RBV and 
bears a higher risk for intradialytic symptoms, such as lightheadedness, nausea, 
vomiting, cramping, or hypotension. Prior studies have shown reductions in 
intradialytic complications with ultrafiltration based on RBV targets in relatively 
consistent ranges9,21-24, and that ultrafiltration performed targeting RBV deceases 
between -3% and - 6.5% per hour associates with better patient outcomes.12,25 

Model data and features 
The ML model was trained and tested on a static set of historical observations from our 
system. Data was derived from three sources: (1) OSDs, (2) HD machines, and (3) patient 
electronic health records. 
 
OSD data and treatment data from the 2008 T® dialysis machines were collected every 
10 seconds during dialysis treatments. OSD data included variables like blood volume 
alert level, RBV, changes in hematocrit, hemoglobin, oxygen saturation, minimum 
oxygen saturation, and oxygen alert level. 
 
Dialysis machine data included variables such as systolic blood pressure, diastolic blood 
pressure, mean arterial blood pressure, pulse, delivered equilibrated (e)Kt/V, average 
small molecular clearance [Kecn], projected single pool (sp) Kt/V, first plasma serum 
sodium, body volume, blood flow rate, conductivity, dialysate flow rate, intervention 
performed on the machine, arterial pressure, dialysate temperature, venous pressure, 
ultrafiltration rate, blood volume processed, ultrafiltration goal, ultrafiltration volume 
removed, and remaining time on dialysis in minutes (RTD). 
 
Patient demographic information such as age, height, access type, and clinic ID were 
referenced from the on-premises clinical data warehouse. Patient measures in the clinic 
on the day of treatment included pre-dialysis/post-dialysis weight and the type of 
dialyzer used in treatment. 
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OSD and 2008T® dialysis machine data from five separate time windows: 1, 5, 10, 15 
minutes, and since-start-of-treatment windows were used to derive additional intra-
treatment features using average, minimum, maximum and standard deviation for each 
time window. The final dataset spanned 751,354 treatment records and 493 input 
variables including features for average, minimum, maximum, and standard deviation 
for the continuous variables at each time point. 

Predictive model 
The model was built using the AWS SageMaker 26 development platform. The curated 
final dataset of 751,354 treatment records was randomly split into training data (80%), 
validation data (10%) and test data (10%). The target variable was a binary indicator of 
patients who experienced a decrease in RBV at a rate of at least -6.5% per hour during a 
dialysis treatment within the next 15 minutes. 
 
Figure 4.1 shows the ascertainment period and the prediction period for the model. 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.1 Ascertainment period and prediction period. 
 
 
The data showed a 22% prevalence within observations in which RBV decreased at rate 
of at least 6.5% per hour during a dialysis treatment. Given the imbalanced nature of 
our data, we limited our ML model selection to algorithms that deal well with such data, 
including support vector and random forest families.27,28 The final model was trained 
using a ML tool known as an extreme gradient boosting (XGBoost) algorithm.29 
Hyperparameters are model-specific internal parameters that are initially set to certain 
default values to cover general use cases. These parameters must be tuned for the 
problem at hand to get optimal model performance.30 After model selection, the 
Bayesian optimization strategy implemented by Amazon SageMaker was used to tune 
the model hyperparameters to maximize the AUROC.31 In the Bayesian tuning strategy 
ML algorithms performance is modeled as a sample of a Gaussian process.32,33 This 
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allows information from prior iterations to inform the next parameters to try to 
optimize model performance, balancing both exploration of values not yet used with 
exploitation of the best-known results. 
 
The predicted probability output by the model was converted to a binary prediction to 
predict positive and negative cases of RBV decreasing at rate of at least -6.5% per hour 
during a dialysis treatment. The cut-off threshold for the binary prediction was set to 
0.08, so if the prediction score was above 0.08, then the patient was flagged to be at 
risk of decreasing RBV. The threshold was set by evaluating the results of the training 
and validation data. 
 
Feature importance from the gradient boosting algorithm was used to derive top 
features (variables) that were considered highly predictive of the outcome. The feature 
importance is calculated using the gain method, or the relative contribution of the 
corresponding feature for each tree in the model. The method works by averaging the 
training loss reduction caused by feature utilization for each split in the decision tree.34 

Conceptional analysis design 
Figure 4.2 shows a general design of the analysis setup. Conceptually, the analysis 
consisted of three main components: (1) Hardware and devices needed to monitor 
patients, (2) Cloud-based Service for real-time data analysis and communication, and 
(3) On-premises secure Data Warehouse to reference patient-protected information 
needed for data analysis. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.2 Analysis design. 
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In the cloud, IoT software processed incoming data from the clinic. The data was then 
curated into a big data store within the cloud. The big data store referenced on-
premises data warehouse to securely extract patient-protected information and other 
clinical data and then to securely feed into the ML model. These multiple sources of 
data were made available to the Machine Learning Engine (MLE) which was also hosted 
in the cloud. The MLE would then make a prediction based on the data and generate an 
alert to the clinicians and nurses for identified at-risk cases. The entire analysis pipeline 
had to be optimized to ensure low latency (i.e. ensure timeliness of near real-time 
prediction). This optimization process is beyond the scope of the current discussion. 

Cloud computing infrastructure flow for generating real time dashboard 

The data flow for the entire modeling pipeline within AWS is shown in Figure 4.3. Green 
arrows in Figure 4.3 show how the data flows from the clinics using OSD, the dialysis 
machines, and the warehouse into the cloud to train a model and provide data to the 
endpoint interface. The orange arrows show how the data flows in real time from the 
clinic using OSD and the data warehouse. Each new message in the cloud data store 
triggers a function, which creates 493 different features used in the trained model. 
These features are then provided as an input data parameter to the endpoint interface 
to generate a prediction and store the results in another data store. The prediction 
results are then used in a dashboard to generate a proof-of-concept clinical user 
interface. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.3 Data flow for real-time prediction using the AWS cloud environment. 
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Analysis of ML model performance 

Performance of ML model was measured by the area under the receiver operating 
curve (AUROC) in the training, validation, and testing datasets, as well as the recall and 
precision in the testing datasets. AUROC measures the rate of true and false positives 
classified by the prediction model across probability thresholds. Table 4.1 shows the 
definition of true/false positive and negative predictions classified by the model in the 
assessment of performance in the testing dataset. 
 
Table 4.1 Definition of true/false positive and negative predictions classified by the model in the 

assessment of performance in the testing dataset. 

True positives Patients correctly classified as having a risk of their relative blood volume (RBV) decrease at 
a rate of at least -6.5% per hour within the next 15 minutes by the 
model. 

False positives Patients incorrectly classified as having a risk of their RBV decrease at a rate of 
at least -6.5% per hour within the next 15 minutes by the model. 

True negatives Patients correctly classified as not having a risk of their RBV decrease at a rate 
of at least -6.5% per hour within the next 15 minutes by the model. 

False negatives Patients incorrectly classified as not having a risk of their RBV decrease at a 
rate of at least -6.5% per hour within the next 15 minutes by the model. 

 
 
Recall (sensitivity) measures the rate of true positives classified by the model at a 
specified threshold and is calculated as follows: 
 

𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 / (𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 
+ 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 ) 

 
Precision measures the positive predictive value for the model at a specified threshold 
and is calculated as follows: 
 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 / (𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 
+ 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) 

 
Similarly, Specificity for the model is defined as: 
 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 / (𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 
+ 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ) 

 
And the Negative Predictive Value (NPV) is defined as: 
 

𝑁𝑁𝑁𝑁𝑁𝑁 = 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 / (𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 
+ 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 ) 
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AUROC, recall, precision, specificity and NPV metrics yield scores on a scale of 
0 (lowest) to 1 (highest). A model performing at chance would yield an AUROC of 0.5. 
The cut-off threshold for classifying predictions was selected to optimize recall and 
precision according to the use case. 

Results 

Patient characteristics 
We obtained data from 616 adult in-center HD patients that were treated in six clinics 
to build the prediction model. Patient demographics are shown in Table 4.2. The 
descriptive statistics of numeric input variables used to train the model are shown in 
Table 4.3. 
 
Table 4.2 Demographics of patients at the start of the study period (entire cohort). 

Patient characteristics Value 
Number of patients 616 
Average age 64.5(SD: ±14.83) 
Male 57.8% 
Black 27.5% 
White 68.6% 
Hispanic 22.1% 
Congestive heart failure 24.7% 
Diabetes 39.1% 
Hypertension 77.5% 
Ischemic heart disease 24.5% 
Average albumin [g/dL] 3.8(SD: ±0.38) 
 

ML model performance and feature importance 

The resulting predictive model was tested on 10% (75072 records) of the treatment 
data from all 616 patients, which was withheld during training. 
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Table 4.3 Descriptive statistics of numeric input variables (Training data). 

Variable N Mean ± SD 
Diastolic blood pressure [mmHg] 562012 70.13±14.42 
Mean arterial blood pressure [mmHg] 562012 96.72±18.13 
Mean pulse [bpm] 562012 71.83±11.08 
Systolic blood pressure [mmHg] 562012 133.75±24.27 
Delivered equilibrated (E)Kt V 415498 0.62±0.24 
Mean Kecn 539626 252.38±33.25 
Projected single pool (sp)Kt V 533226 0.78±0.54 
First plasma Na [mEq/L] 537453 140.24±3.78 
Body volume [L] 533226 34.84±8.46 
Critline relative blood volume alert [%] 601210 -12.42±3.95 
Relative blood volume (RBV) [%] 601210 -4.16±6.87 
Changes in hematocrit [%] 601210 26.83±15.42 
Hemoglobin [g/dL] 601210 8.96±5.33 
Oxygen saturation [%] 601210 69.39±39.25 
Minimum oxygen saturation [%] 601210 88.37±16.84 
Oxygen alert level [%] 601210 68.29±34.64 
Blood flow rate [mL/min.] 601210 348.99±142.23 
Conductivity [mS/cm] 601210 13.7±1.09 
Dialysate flow rate [mL/min.] 601210 643.03±182.94 
Monitor temp [°C] 601210 36.49±0.88 
Arterial pressure [mmHg] 601210 -162.43±77.12 
Dialysate temperature [°C] 601210 32.86±52.96 
Venous pressure [mmHg] 601210 156.84±71.85 
Ultrafiltration rate [mL/Hr] 601210 550.6±350.28 
Blood volume processed [L] 601210 420.41±271.47 
Remaining time on dialysis [min] 601210 95.46±71.16 
Ultrafiltration goal [mL] 601210 2506.46±1042.49 
Ultrafiltration volume removed [mL] 601210 1280.32±999.72 
Age [yrs] 560899 66.57±14.35 
Height [cm] 535433 168.1±11 
Most recent post-dialysis weight [kg] 552865 80.12±24.05 
Most recent pre-dialysis weight [kg] 552865 82.08±24.55 
Average 30 days post dialysis weight [kg] 552865 80.06±24.08 
Average 30 days pre dialysis weight [kg] 552865 82.03+/-24.59 

SD: Standard Deviation. 
 
 
Using a low threshold of 0.08, the model had a recall rate of 0.94, meaning the model 
was able to capture 94% of the observations that had a decrease in RBV at a rate of at 
least -6.5% per hour within the next 15 minutes. The precision of the model was 0.33. 
The specificity for the model was 0.52 and the NPV was 0.97. The AUROC (Figure 4.4) 
for the final hyperparameter tuned model was 0.89. The red dot on the figure shows 
the true positive rate and the false positive rate at a threshold of 0.08. 
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Figure 4.4 Area under the receiver operating curve for the prediction model. 
 
 
Figure 4.5 shows a list of the top 10 features from the tuned model that were most 
predictive of a patient experiencing their RBV decrease at a rate of at least -6.5% per 
hour during a dialysis treatment in the next 15 minutes. It shows how valuable each 
feature was to the model in predicting the outcome. Higher value of the feature implies 
it is more important in calculating the outcome of the model. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.5 Top 10 features from prediction model and the feature importance score. 
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Proof-of-concept dashboard 

Figure 4.6 shows the proof-of-concept dashboard for a patient during dialysis 
treatment. The patient goes through various stages of having a risk of RBV decreasing at 
rate of at least -6.5% per hour (that is entering Profile C as shown in the figure). The 
probability of the prediction of profile C generated from the model is above 80% before 
the actual occurrence of the event denoted in red under the Profile header. The RBV % 
at this point drops below -6.5% as shown under the Blood Volume % header. This 
dashboard illustrates that the model was able to predict the occurrence of the event 
before it happened. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4.6 Proof-of-concept dashboard for monitoring risk during dialysis treatment. 
 

Discussion 

The findings from our proof-of-concept analysis suggest the potential for real-time 
reporting and prediction of treatment blood volume profiles that are associated with an 
increased risk of intra-dialytic symptoms and would subsequently be amenable to 
intervention. Furthermore, the architectural framework demonstrated in this paper can 
be used for making real-time predictions of other events during dialysis treatments; and 
as such this analysis serves as a proof-of-concept. 
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Making real-time predictions can help clinicians and nurses to provide proactive support 
at the point of care during dialysis treatment. A practical implication for the present 
would be that, if nurses and clinicians are alerted to the risk of a drop in the blood 
volume 15 mins prior to the RBV decreasing at rate of at least -6.5% per hour during a 
dialysis treatment, they would have ample time to intervene and adjust the 
ultrafiltration rate in order to prevent that patient from entering the risk zone for 
intradialytic symptoms like IDH.20 
 
Prior studies have been attempted to monitor hematocrit and reduce intradialytic 
symptoms, however, they were not used in standard practice because of the difficulty 
in interpreting the OSD outputs updated every 10 seconds.9,35 The ML model presented 
in this analysis enhances the findings and delivers them in a comprehendible way. The 
top predictors of a RBV decreasing at a rate of at least -6.5% per hour were shown to 
include the variability in RBV in the prior 10 and 15 mins, minimum arterial pressure in 
the prior 1 min, mean hemoglobin in the prior 1 and 10 min(s), and minimum blood 
flow rate in the prior 15 mins, as well as other metrics related to atrial pressure, 
hemoglobin, and total blood volume processed (Figure 4.5). The feature importance of 
these parameters appears to be identifying combinations of minor signals providing 
early signs of issues with ultrafiltration (e.g. peristaltic pump being starved of flow due 
to higher resistance in the access circuit). Ultimately, this model may have the potential 
to support the clinicians by classifying risk levels in near real-time. This analysis also 
adds onto the proof-of-concept analysis from Barbieri et al., where they developed an 
artificial neural network model predicting session-specific Kt/V, fluid volume removal, 
heart rate, and BP based on patient characteristics, historic hemodynamic responses, 
and dialysis-related prescriptions.36,37 
 
Cloud Computing Resources provide seamless tools to build, analyze, and integrate 
real-time predictive models without investing in many hardware and software 
resources on premise. This allows for a secure and cost-effective way of building 
predictive models when resources are limited. These applications can also be scaled on-
demand, where support can be expanded from tens to hundreds of clinics seamlessly. 
 
Along with the disease burden, inadequate dialysis process may play a role in the 
pathophysiology of cardiac injury, cognitive impairment, and brain injury in HD 
patients.38-40 Large amounts of data collected from the dialysis machines to build and 
deploy ML models can be used in personalizing dialysis treatments for HD patients. 
Optimizing dialysate temperature, monitoring access flows, modeling retention solute 
clearance and electrolyte profiling, and predicting IDH are other examples of how 
machine data can be utilized to personalize treatments for patients. Successful 
applications of analyzing and modeling large amounts of clinical data from the 
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machines will require technology and a framework like what has been presented in this 
paper. 
 
This paper provides an important proof-of-concept for the application of a ML-based 
model in the prevention of intradialytic complications. However, it should be stressed 
that while the decline in RBV during dialysis is an important risk factor for IDH, the 
critical decline in RBV and the level at which the patient experiences IDH also differs 
significantly between patients.7,21 IDH is an important risk factor for mortality, as well as 
for ischemia of vital organs, such as heart and brain, which may lead to long-term organ 
damage. Therefore, methods to reduce the risk for this complication are of vital 
importance 25, 40-42. Other factors, such as an impairment in vascular reactivity or the 
cardiovascular status of the patient play an important role in the sensitivity of the 
patient to a decline in RBV. Moreover, there is a possibility of misclassification of 
patients at risk, where the model predicts that the RBV will decrease at a rate of at least 
-6.5% per hour during a dialysis treatment whereas it does not; hence the clinical 
intervention should be designed in such a way that it does not have an adverse impact 
on the treatment or the patient. In this respect, it is also important that profiles with a 
small decline in RBV may carry the risk of adverse outcomes, possibly because of its 
relationship with fluid overload 25. Therefore, the results of the model should always be 
interpreted in the context of the patient. 
 
The goal of this proof- of-concept project was to demonstrate the architecture of how 
machine data can be utilized in real time. The goal of the dashboard if implemented is 
to capture as many patients as possible who would have an adverse intradialytic event 
or have the risk of dropping RBV at the rate of at least -6.5% per hour. Hence, the focus 
was on sensitivity rather than specificity or precision when determining the threshold 
used to evaluate model performance. However, in a real-world implementation, the 
optimal threshold can be selected to minimize either false positives or false negatives, 
which will depend on the intervention and reporting demands. 
 
This architecture also demonstrates the capabilities of a cloud-based framework in 
handling the large amounts of patient and treatment data collected from dialysis 
machines. ML models can be utilized for personalizing care in dialysis patients in real 
time. However, there will be instances when the ML model will predict incorrectly, so 
teams developing interventions using ML models need to be aware of this limitation. 
This proof-of-concept could also be used for predicting low or differing ranges of RBV. 
The clinical team responsible for designing interventions will need to interpret RBV 
targets and adjust ultrafiltration rate in a personalized manner considering each 
patient’s unique history of intradialytic complications. Also, the true performance of 
the ML model can only be demonstrated after conducting randomized clinical trials. 
The cloud-based framework should allow scaling of this proof-of-concept analysis; 
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however, this has not been tested in real world application. Models deployed at point 
of care could also be used to receive feedback from the nurses and clinicians to serve as 
refined input to retrain the model. 

Conclusion 

This proof-of-concept analysis demonstrated the potential of the creation and 
deployment of a real- time predictive model based on patient and dialysis treatment 
data. The mechanics for triggering a model endpoint based on real-time message 
capture and to produce real-time reporting that includes treatment metrics coupled 
with model inferences were successfully implemented. The challenge will be to scale 
for large amounts of data and to design appropriate interventions. 
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Abstract 

Background 
An integrated kidney disease healthcare company implemented a peritoneal dialysis 
(PD) remote treatment monitoring (RTM) application in 2016. We assessed if RTM 
utilization associates with hospitalization and technique failure rates. 
 
Methods 
We used data from adult PD patients (age ≥18 years) treated from Oct 2016 through 
May 2019 who registered online for the RTM. Patients were classified by RTM use 
during a 30-day baseline after registration. Groups were: non-users (never entered 
data), moderate users (entered 1-to-15 treatments), and frequent users (entered >15 
treatments). We compared hospital admission/day and sustained technique failure 
(required >6 consecutive weeks of hemodialysis) rates over 3, 6, 9, and 12 months of 
follow-up using Poisson and Cox models adjusted for patient/clinical characteristics. 
 
Results 
Among 6,343 patients, 64.5% were non-users, 10.6% were moderate-users, and 24.9% 
were frequent- users. Incidence rate of hospital admission was 22% (incidence rate 
ratio (IRR)=0.775; p=0.002), 24% (IRR=0.762; p<0.001), 23% (IRR=0.768; p=<0.001), and 
26% (IRR=0.737; p=<0.001) lower in frequent-users after 3, 6, 9, and 12 months 
respectively versus non-users. Incidence rate of hospital days was 38% (IRR=0.618; 
p=0.013), 35% (IRR=0.654; p=0.001), 34% (IRR= 0.657; p=<0.001), and 32% (IRR=0.680; 
p<0.001) lower in frequent-users after 3, 6, 9, and 12 months versus non-users. 
Sustained technique failure risk at 3, 6, 9, and 12 months was 33% (hazard ratio 
(HR)=0.671; p=0.020), 31% (HR=0.686; p=0.003), 31% (HR=0.687; p=0.001), and 27% 
(HR=0.726; p=0.001) lower in frequent-users versus non-users. Among a sub-group of 
survivors of the 12-month follow-up, sustained technique failure risk was 26% 
(HR=0.736; p=0.023) and 21% (HR=0.793; p=0.054) lower after 9 and 12 months in 
frequent-users versus non-users. 
 
Conclusions 
Our findings suggest frequent use of a RTM application associates with less hospital 
admissions, shorter hospital length of stay, and lower technique failure rates. Adoption 
of RTM applications may have the potential to improve timely identification/ 
intervention of complications. 
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Introduction 

The modality of peritoneal dialysis (PD) is suggested to associate with favorable 
outcomes compared to in-center hemodialysis (HD), however, technique failure is 
common and adjusted rates for the hospital length of stay tends to be longer in PD.1-3 In 
the United States, home dialysis patients typically have monthly clinic visits where their 
clinical status, assessment of treatment quality and adherence is assessed based on 
written treatment records and self-reported complications.4,5 This monitoring process 
poses limits to the clinicians view of complications and clinical needs, which can impede 
timely medical decisions. 
 
Remote monitoring systems may improve the care teams ability to actively identify 
urgent concerns in PD patients and react in a timely manner with diagnostic 
examinations, interventions, or patient education.6 Remote monitoring systems broadly 
include an array of technologies and processes in the areas of telemedicine/telehealth 
such as telephonic/video assessments, connected health sensors, and health record 
portals.6 Prior reports of various types of remote monitoring systems tested in the PD 
population suggest they associate with improvements in patient satisfaction, quality of 
life, nutrition, exit site infection rates, peritonitis rates, and hospitalization rates.7-13 
However, patient groups included in the evaluations of remote monitoring systems to 
date are small and the findings may not be generalizable. 
 
A large integrated kidney disease healthcare company started using a remote 
treatment monitoring (RTM) application throughout its dialysis organization in the 
United States since October 2016. The provider constructed and integrated the RTM 
system into its clinical systems as a quality improvement process. The RTM is an online 
portal-based treatment record application, whereby patients can create an online 
account and record the details of individual PD treatments, associated vital signs, and 
complications. We aimed to assess the associations between the level of utilization of 
the RTM application and hospitalization and technique failure rates. 

Materials and methods 

General design 
We performed a retrospective analysis to assess the longitudinal associations between 
the frequency of use of the RTM in PD patients and outcomes after deployment in a 
dialysis organization in the United States. This analysis was performed under a protocol 
that was reviewed by New England Independent Review Board who determined it was 
an exempt assessment of existing patient data from a quality improvement process, 
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which was anonymized and did not require informed consent per title 45 of the United 
States Code of Federal Regulations part 46.102 (Needham Heights, MA, United States; 
NEIRB# 1- 9652-1). The analysis was conducted in adherence with the Declaration of 
Helsinki. 

Patient population 

We used data from adult PD patients (age ≥18 years) treated anytime during 01 Oct 
2016 to 31 May 2019 at the dialysis organization (Fresenius Kidney Care, Waltham, MA, 
United States) of a large integrated kidney disease healthcare company (Fresenius 
Medical Care, Bad Homburg, Germany). We included data from all PD patients who: 
1) registered online and created a RTM account on, or before 31 May 2018, 2) were 
treated continuously with PD for at least 30 days after registration, and 3) were not 
hospitalized within 30 days after registration. We excluded patients with: 1) a body 
mass index (BMI) >65 Kg/m2, or 2) missing data for any covariates used for the 
adjustment of the analysis (refer to the variables section of the materials and methods). 

RTM application 
The RTM named the “PatientHub” is a health record portal technology available to all 
PD patients treated by the dialysis organization in the United States who have internet 
access. The RTM can be used through either a secure personal website portal, or mobile 
device application. After the creation of a personal RTM account and profile, patients 
can: 1) view their dialysis orders, laboratory results, concomitant medications, and 
supply orders, and 2) document their daily PD treatment data, vital signs, and 
complications. A schematic of the prior monitoring process and RTM process is shown 
in Figure 5.1A and 5.1B. 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.1A Schematic of how the paper flowsheets were submitted manually for review by clinicians once a 

month. 
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Figure 5.1B Schematic of how electronic flowsheets are submitted via PatientHub RTM for daily review by 

clinicians. 
 
 
The daily PD treatment data documented in the RTM includes the treatment date, total 
ultrafiltration from cycler, dialysate type, bag size and number of bags used, 
medications added to the dialysate, as well as details on any manual exchanges 
performed. The daily clinical data documented includes weight, blood pressure, pulse, 
temperature, blood glucose, and confirmation of routine exit site care. The data on 
complications documented daily includes drain/fill, PD fluid, or exit site issues. Once 
submitted by the patient, the data is displayed in the electronic medical record (EMR) 
for the care team to review. The care team is instructed to review patient RTM entries 
on at least a daily basis on business days, but the timing of the daily review is at the 
discretion of the clinician. A preview of the PatientHub RTM application is shown in 
Figure 5.2. 

Variables 

The dependent variables were hospital admission counts per patient year (PPY), 
hospital days PPY, and sustained technique failure counts (PPY) from 30 days after RTM 
registration to 3, 6, 9, and 12 months of follow-up. Sustained technique failure was 
defined as PD complications that required patients to receive >6 consecutive weeks of 
treatment with HD. 
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Figure 5.2 Preview of the PatientHub RTM application. 
 
 
The independent variables were the frequency of RTM use during the baseline period 
30 days after online registration. We defined non-users as patients who never 
documented any treatment record in the RTM within 30 days of registration, moderate-
users as patients who documented 1 to 15 treatment records in the RTM within 30 days 
of registration, and frequent-users as patients who documented more than 
15 treatment records in the RTM within 30 days of registration. These cut points for 
classification of the frequency of baseline RTM use were chosen based on the 
distribution of data; most patients tended to use the RTM more than 15 times, or never 
within 30 days of registration. 
 
Covariates used for the description of the baseline patient characteristics and for 
adjustment of statistical models included age, sex, race, ethnicity, dialysis vintage, 
alcohol use, urbanicity of residence, education level, congestive heart failure, diabetes, 
ischemic heart disease, albumin, residual kidney function (RKF), and weekly Kt/V. The 
most recent categorical variables to the date of registration were recorded. The mean 
value of continuous variables during 30 days from RTM registration was computed and 
recorded, with exception of RKF that was determined from the most recent value. 
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Statistical methods 

Adjusted Poisson regression models were constructed to assess the associations in 
hospital admission and day rates at the 3, 6, 9, and 12 months of follow-up periods for 
non-users (reference) versus moderate-users and frequent-users. The number of days 
patients were actively receiving dialysis during the follow-up period (patient exposure 
days) was used to calculate the hospital admission and day rates PPY. 
 
An adjusted Cox regression model was constructed to assess the associations in 
sustained technique failure rates at the 3, 6, 9, and 12 months of follow-up periods for 
non-users versus moderate-users and frequent-users. A Kaplan Meier curve with log-
rank tests was used to assess the associations in the time on PD modality over the 
12 months follow-up for non-users versus moderate-users and frequent-users. 
 
For hospitalization and technique failure rates, we censored data on patients who died, 
received a transplant, or where discharged from the providers clinic network at end of 
each respective 3-month period of the 12-month follow-up. 
 
Like the previous analysis, adjusted Cox regression methods were used in a sub-analysis 
of survivors of the 12-month follow-up period to assess the associations in technique 
failure rates and the time on PD modality in a group of patients who had equivalent 
opportunities to experience a technique failure. This sub-analysis of survivors excluded 
all attrition (patients who died, received a transplant, or where discharged from the 
providers clinic network). 

Results 

Patient characteristics 
In a population of 36,577 PD patients treated at a large dialysis provider during the 
analysis period, 11,079 adult patients were treated by PD for 30 days without being 
hospitalized during baseline and completed the online registration creating a RTM 
profile. Among this cohort, we included data from 6,343 patients at 931 clinics, and 
excluded 4,736 patients due to incomplete/missing data on covariates used in the 
adjustment of the analysis (Figure 5.3; Table 5.1). Among eligible patients (n=6,343), 
64.5% never entered treatment data (non-users), 10.6% entered 1 to 15 treatment 
records (moderate- users), and 24.9% entered more than 15 treatment records 
(frequent-users) during a 30 day baseline period after registration. Patients mean age 
ranged from 54 to 58 years old between groups (Table 5.2). Frequent-users tended to 
more often be of a white race, non-Hispanic ethnicity, educated, and had a shorter 
dialysis vintage. The within group trends of RTM usage were fairly sustained over the 
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12-month follow-up, as compared to baseline, yet frequent-users had decreases in the 
mean number of entries (Figure 5.4). On the 12th month of follow up, frequent-users on 
average documented 10 treatments in the RTM. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.3 Patient flow diagram. 
 

 

Included Excluded 
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Table 5.1 Comparison of baseline characteristics among participants included versus patients excluded due 
to only missing data for adjustment of event analysis. 

Cohort Included Excluded due to missing 
variables for adjustment 

Included versus 
excluded p-value 

Patient count 6343 4736  
Demographics    
Age (yrs) 56.9±15.2 57.2±14.7 0.310 
Males (%) 57% 57% 0.933 
Black race (%) 23% 25% 0.003 
White race (%) 72% 68% <0.001 
Other race (%) 5% 7% 0.008 
Hispanic ethnicity (%) 10% 11% 0.022 
Dialysis vintage (days) 690 472 <0.001 
Alcohol use (%) 57% 57% 0.934 
Urbanicity    
Metropolitan (%) 81% 83% 0.028 
Micropolitan (%) 11% 10% 0.146 
Rural (%) 8% 7% 0.131 
Education    
College or beyond (%) 58% 58% 0.972 
High school or equivalency (%) 33% 32% 0.654 
Less than high school or equivalency (%) 9% 10% 0.507 
Comorbidities    
Congestive heart failure (%) 11% 11% 0.666 
Diabetes (%) 54% 54% 0.983 
schemic heart disease (%) 13% 11% 0.028 
Laboratory    
Albumin (g/dL) 3.55±0.45 3.58±0.47 0.002 
Residual kidney function (mL/min) 4.26±3.32 4.67±4.69 <0.001 
Weekly Kt/V 2.43±1.05 2.39±1.04 0.113 

Comparisons between groups were made using t-tests. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.4 Trend in the mean number of RTM entries in each month of the follow-up period by baseline 

RTM use group category. 
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Longitudinal hospitalization rates associated with RTM use 

Higher RTM usage in the 30 days following the start date was found to be associated 
with progressively lower unadjusted hospital admission and day rates in the follow up 
periods (Figures 5.5a and Figure 5.5b). A Poisson analysis showed the incidence rate of 
hospital admission was 22%, 24%, 23% and 26% lower in frequent users of the RTM 
application after 3, 6, 9, and 12 months of follow-up, as compared to non- users (Table 
5.3). The incidence rate of a greater hospital length of stay in days was found to be 38%, 
35%, 34% and 32% lower in frequent-users of the RTM application after 3, 6, 9, and 12 
months of follow-up versus non-users (Table 5.4). Albeit qualitative differences were 
observed favoring moderate-use of the RTM, there were not significant differences 
compared with non-users. 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.5A Hospital admission rate by baseline RTM use after 3, 6, 9, 12 months of follow-up. 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.5B Hospital day rate by baseline RTM use after 3, 6, 9, 12 months of follow-up. 
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Longitudinal technique failure rates associated with RTM use 

We observed higher RTM usage in the 30 days following the start date was associated 
with lower rates of sustained PD technique failure (i.e. required >6 consecutive weeks 
of treatment with HD) in all follow up periods (Figure 5.6). A Cox analysis showed the 
adjusted risk of sustained PD technique failure at 3, 6, 9, and 12 months of follow-up 
was 33%, 31%, 31% and 27% lower in frequent-users of the RTM versus non-users 
(Table 5.5). Kaplan–Meier estimate for PD duration days without sustained PD 
technique failure identified frequent-users remained on PD longer compared to non-
users (log-rank test frequent-users p=0.024; Figure 5.7A). No significant differences 
were found in sustained technique failure rates in moderate-users compared to non-
users. 
 
A Cox analysis of a subgroup patients who survived the entire 12 month follow-up 
period and continued to be treated in the providers clinics confirmed higher RTM usage 
was associated with 26% and 21% lower adjusted risk of sustained PD technique failure 
in frequent-users versus non-users at the 9 and 12 month follow up periods (Table 5.6). 
However, we did not find significant differences between moderate- users and non-
users of the RTM. In this subgroup of survivors, we also observed the adjusted risk of 
sustained technique failure was 51% and 42% lower in moderate-users of the RTM at 3 
and 6 months of follow-up compared to non-users, yet no significant differences were 
found at later timepoints. The Kaplan–Meier estimate of PD duration days without 
sustained PD technique failure showed that frequent-users of the RTM in the survivor 
subgroup remained on a PD modality longer than non-users (log-rank test frequent-
users p<0.001; Figure 5.7B). 
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Figure 5.7A Kaplan Meier curve plot to assess the associations in the time on PD modality over the 
12 months follow-up for non-users, moderate-users and frequent-users. Frequent-users of the 
RTM remained on a PD modality 13 days longer in comparison to the non-users group. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.7B Kaplan-Meier plot for survivors of the 12-month follow-up period to assess the associations in 

technique failure rates and the time on PD modality in a group of patients who had equivalent 
opportunities to experience a technique failure. Frequent-users of the RTM in the survivor 
subgroup remained on a PD modality 11 days longer than non-users. 
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Discussion 

In a large population of PD patients who registered online for the PatientHub RTM 
application, we found higher RTM use was associated with lower hospitalization and 
sustained technique failure rates. 
 
Hospital admission and day rates were observed to be 22% and 38% lower within 
3 months, respectively, and continued to decrease in frequent-users of the RTM over 
the 12 months of follow-up compared to non-users. The risk of sustained PD technique 
failure (i.e. required >6 consecutive weeks of HD) was about 30% lower during follow-
up for frequent-users versus non-users of the RTM. Assessment of a subgroup of 
survivors of the 12-month follow-up period found consistent trends, but significant 
differences were only observed at the 9- and 12-month follow-up periods in frequent-
users versus non-users. Consistent trends were seen with respect to moderate-users of 
the RTM versus non-users, albeit outcomes did not significantly differ with exception of 
sustained PD technique failure rates in the subgroup of survivors at the 3- and 6-month 
follow-up periods. These results further substantiate prior findings suggesting use of 
other RTM systems in PD patients may reduce hospital rates14,15, and reveal frequent 
RTM use may also have the potential to increase sustained use of PD as a modality. 
 
The associations between RTM use in PD patients and hard outcomes has been 
reported in a limited number of small cross-sectional analyses. A study of 63 patients 
who had a RTM system incorporated in their PD cycler found that the incidence of 
hospital admissions was 39% (IRR=0.61; 95% confidence interval (CI) 0.39 to 0.95) lower 
and hospital days was 54% (IRR=0.46; 95% CI 0.23 to 0.92) lower compared to 63 
matched patients who did not have a RTM system in their cycler.14 Another study of 
269 PD patients who received an intervention of daily RTM of blood pressure and 
weight coupled with video conferencing telehealth care showed that the adjusted risk 
of hospital admission was 46% (OR=0.54; 95% CI 0.33 to 0.89) lower and hospital days 
was 54% (OR=0.46; 95% CI 0.26 to 0.81) lower compared to before the intervention.15 It 
has been estimated that adoption of RTM systems to monitor PD treatments may also 
yield some economic benefits to the healthcare system in various countries.13,15 
 
The influence of RTM on technique failure rates has not been reported previously in PD, 
yet the improvements we found are consistent with observations from RTM in the 
home HD population.16 Notably, technique failure rates in all groups for our analysis 
were lower than many reports in the literature17,18, which could be in part due to our 
definition of a sustained technique failure event that required >6 consecutive weeks of 
HD and appropriately did not count technique failures as composite outcomes including 
death. These findings could also be in part representative of patients included in our 
analysis being a highly select healthier population compared to the overall PD 
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population. Despite the differences in our technique failure rates with some reports, 
they are relatively consistent with technique failure rates reported in Japan and Asia 
that exclude mortality events from the definition.18 
 
RTM has been suggested to have the potential to improve patient-care team 
communications, timely interventions, and patient outcomes in PD for more than a 
decade.19 Despite this, the dialysis population has been known to have barriers to 
access the internet along with inadequate understanding of online systems.20-22 It is 
estimated that about 35% to 90% of dialysis patients use the internet.20-22 In our 
analysis we included 17% of patients from the overall active PD population based on 
inclusionary restrictions to have created an online account, age ≥18 years, and BMI <65. 
Prior reports suggest similar adoption with 18% of PD patients in Columbia using a 
different remote monitoring system incorporated via connected health sensors in the 
cycler.14 Given PD patients are typically younger, it would be expected that there might 
be a larger proportion of PD patients with access to the internet. If this is a correct 
assumption, RTM might have the potential to be used in a larger proportion of the PD 
population, and as smartphone and computer technology advances and becomes more 
universally affordable, it could become an option for treatment monitoring in most of 
the patients. 
 
Our analysis design that included a group of PD patients who universally had internet 
access to create a RTM account, along with temporal assessments of outcomes 
adjusted for confounding variables related to demographics, urbanicity, education, 
comorbidities, and laboratories, adds to the strength of these findings. The relative age 
of patients did not differ in PD patients who were non-users versus frequent- users, 
which was expected given the inclusion of only patients with internet access and the 
ability to use online applications. Most of the analysis population (65%) never used the 
RTM to enter clinical information within 30 days of creating an account online. RTM use 
groups tended to have a sustained higher or lower pattern of RTM use over time 
compared to baseline, albeit the frequent-user group had some temporal decreases in 
entries. Both non-users and moderate-users of the RTM may be specific patient types 
that could be encouraged and trained to become more active in their care monitoring, 
and if frequent use is adopted as an adjunct, it may have the potential to yield 
improvements in outcomes. 
 
Given non-users of RTM were more commonly of a black race, Hispanic, with less 
education, and a longer dialysis vintage compared to frequent-users, it may be import 
to target interventions to increase RTM use in patients with these attributes who 
initially elect to capture their treatment data using an RTM. However, further studies 
would be needed to test if targeting interventions based on patient profiles would be 
effective. 
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The RTM evaluated in this study is an application-based patient and clinician portal that 
we qualitatively believe required relatively minimal resources to construct, deploy, and 
maintain, as compared to modem-based systems integrated into cyclers. The flexible 
ability of the RTM to allow patients to enter records when it works the best for them 
during/around their treatment, combined with the ability for providers to review 
patients’ entries around their daily workflows may be advantageous attributes of this 
type of connected health technology. These characteristics of the application-based 
RTM platform appear to allow it to be rapidly beneficial for the smaller percentage of 
patients with internet access who adopt RTM and allows for scalability over time. 
 
Although this analysis has many strengths, there are some limitations including the 
inclusion a sub- group of the PD population who had access to the internet and 
registered for the RTM online. 
 
Therefore, these findings are not anticipated to be generalizable to PD patients without 
access to the internet. We excluded patients with missing data on covariates to 
provided groups with equivalent adjustments for comparisons, yet this made our 
population have a higher representation of patients with a White race and longer 
dialysis vintage, among other distinctions. Neither the RTM, nor EMR, captured data on 
interventions performed due to findings from RTM entries, so we are not able to assess 
if interventions are being performed in a more timely manner before monthly clinic 
visits. Also, we cannot rule out that the favorable associations of higher RTM use might 
be due to patients being more engaged and having a higher health literacy. However, 
given the inclusion requirements of the design and the adjustments for education, 
these are not clear confounders. It is possible that more use of the RTM could be a 
driver influencing engagement and literacy, thereby teaching the patient to become 
more of a partner in their care. However, this concept would require further 
investigations. 

Conclusions 

Our findings suggest frequent use of a RTM application associates with less hospital 
admissions, shorter hospital length of stay, and lower rates of sustained technique 
failure requiring HD exposure for more than 6 weeks. It appears prudent for PD care 
teams and providers to consider adopting RTM applications to better engage patients 
in their care, recognize and manage potential complications in a timely manner, 
improve the sustainability on the modality, and improve patient outcomes. 
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Abstract 

Introduction 
The clinical impact of COVID-19 has not been established in the dialysis population. We 
evaluated the trajectories of clinical and laboratory parameters in hemodialysis (HD) 
patients. 
 
Methods 
We used data from adult HD patients treated at an integrated kidney disease company 
who received a RT-PCR test to investigate suspicion of a SARS-CoV-2 infection between 
01 May and 01 Sep 2020. Nonparametric smoothing splines were used to fit data for 
individual trajectories and estimate the mean change over time in patients testing 
positive or negative for SARS-CoV-2 and those who survived or died within 30 days of 
first suspicion or positive test date. For each clinical parameter of interest, the 
difference in average daily changes between COVID-19 positive versus negative group 
and COVID-19 survivor versus non-survivor group was estimated by fitting a linear 
mixed effects model based on measurements in the 14 days before (i.e., day -14 to 
day 0) day 0. 
 
Results 
There were 12,836 HD patients with a suspicion of COVID-19 who received RT-PCR 
testing (8,895 SARS- CoV-2 positive). We observed significantly different trends 
(p<0.05) in pre-HD systolic blood pressure (SBP), pre-HD pulse rate, body temperature, 
ferritin, neutrophils, lymphocytes, albumin, and interdialytic weight gain (IDWG) 
between COVID-19 positive and negative patient. For COVID-19 positive group, we 
observed significantly different clinical trends (p<0.05) in pre-HD pulse rate, 
lymphocytes, neutrophils and albumin between survivors and non-survivors. We also 
observed that, in the group of survivors, most clinical parameters returned to pre-
COVID-19 levels within 60-90 days. 
 
Conclusion 
We observed unique temporal trends in various clinical and laboratory parameters 
among HD patients who tested positive versus negative for SARS-CoV-2 infection and 
those who survived the infection versus those who died. These trends can help to 
define the physiological disturbances that characterize the onset and course of COVID-
19 in HD patients. 
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Introduction 

The Coronavirus Disease (COVID-19) pandemic has greatly affected the dialysis 
community. Dialysis patients appear to be at increased risk for viral transmission with 
relatively high mortality rates ranging from 11% to 30%.1-6 During the first half of 2020, 
there were over 11,200 COVID-19 hospitalizations among Medicare beneficiaries 
undergoing dialysis in the United States.7 Various parameters such as pulse, body 
temperature, C-reactive protein (CRP) and lymphocyte counts at presentation were 
found to be associated to COVID-19 mortality in kidney failure.4 However, the 
incubation time has not been clearly defined and patients may be infected with Severe 
Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) and potentially infectious 
weeks before presentation with symptoms. Early detection of changes in physiological 
parameters have been suggested to aid the identification/prediction of patients at risk 
for COVID-19.8 Apart from early detection, trends in clinical and laboratory parameters 
may also have prognostic significance. For example, distinct differences in trajectories 
of clinical and laboratory parameters before the start of kidney replacement therapy 
have been shown for patients who survived versus died during the first year on 
hemodialysis (HD).9 
 
Albeit the clinical presentations in COVID-19 have been somewhat established4, the 
changes in clinical parameters before presentation that characterize disease onset in 
humans are unknown secondary to a scarcity of longitudinal data available in the 
general population or collected in registries in the kidney failure population. HD 
patients have robust routine data collected in Electronic Health Records (EHRs) 
affording the opportunity to define the pathophysiological disturbances characterizing 
the onset and course of COVID-19 in kidney failure patients. The goal of this analysis 
was to compare trends in clinical and laboratory parameters between HD patients who 
tested positive or negative for SARS CoV-2. The second goal of this study was to 
compare clinical trends between survivors and non-survivors who were diagnosed with 
COVID-19. 

Methods 

General design 
We used data from HD patients treated at a dialysis network in the United States of an 
integrated kidney disease company (Fresenius Medical Care, Waltham, MA, United 
States) between May and November 2020. HD patients who were suspected to have a 
SARS-CoV-2 infection at the outpatient dialysis clinics universally received reverse 
transcription polymerase chain reaction (RT-PCR) testing to diagnosis COVID-19. For 



Chapter 6 

110 

this analysis, we retrospectively evaluated the trends in clinical and laboratory 
parameters 90 days before the date of suspicion for SARS-CoV-2 infection among HD 
patients who were diagnosed RT-PCR COVID-19 positive versus those that were 
negative. Among HD patients with RT-PCR confirmed COVID-19, we also assessed at the 
trajectories for those who survived versus died within 30 days after suspicion of SARS-
CoV-2 infection. 
 
This analysis was performed under a protocol reviewed by New England Institutional 
Review Board (Needham Heights, MA, United States; Version 1.0 NEIRB# 17-1376378-1) 
who determined this analysis of existing patient data that was de-identified by the 
investigator was exempt and did not require informed consent. This analysis was 
conducted in adherence with the Declaration of Helsinki. 

Patient population 
We included data from adult (age ≥18 years) HD patients who received RT-PCR testing 
to investigate suspicion of a SARS-CoV-2 infection between 01 May and 01 September 
2020. We required patients to have a minimum follow-up period of 90 days; follow-up 
data was captured through 30 November 2020 as applicable. Suspicion of SARS-CoV-2 
infection was determined at presentation by active signs and symptoms of a flu-like 
illness. We excluded data from patients under investigation for SARS-CoV-2 that did not 
have a documented RT-PCR result, which included asymptomatic patients who were 
exposed to someone with known COVID-19 and were monitored for symptoms, as well 
as patients who were diagnosed with COVID-19 outside the outpatient clinic. 
 
We used the first reported suspicion date to define the day 0 among COVID-19 positive 
patients. In limited cases without a documented suspicion date, we used the RT-PCR 
positive test date to define the day 0. For a control group, we identified patients who 
had one or more negative COVID-19 test result without any positive result during the 
analysis period. We used the first COVID-19 negative test date to define the day 0 since 
the date of suspicion for negative patients was not recorded in the provider’s EHR. 
Patients with invalid/inconclusive test results were excluded from the analysis. 

Statistical methods 

We computed mean daily values for an array of clinical variables across the 90 days 
before day 0 for COVID-19 positive and COVID-19 negative groups. We reported 
findings from a priori selection of variables that appeared to have notable changes 
before COVID-19; these included pre-HD systolic blood pressure (SBP), pre-HD pulse, 
pre-HD body temperature, lymphocytes, neutrophils, ferritin, albumin, interdialytic 
weight gain (IDWG), and creatinine. 
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All data was collected during provision of standard medical care for HD patients. Data 
on SBP, pulse, body temperature, IDWG was collected on a per HD treatment basis. 
Laboratories were collected monthly with exception of ferritin that was collected on a 
quarterly basis. 
 
Nonparametric smoothing splines10 were constructed to fit data for individual 
trajectories and estimate the mean change over time since first suspicion/COVID-19 
positive or negative date. Among COVID-19 positive patients, we stratified data for 
those who survived or died within 30 days of first day 0; trajectories were plotted 
90 days after day 0 in survivors and up to 30 days after day 0 in COVID-19 in patients 
who died. 
 
For each clinical parameter of interest, the difference in average daily changes between 
COVID-19 positive versus negative group and COVID-19 survivor versus non-survivor 
group was estimated by fitting a linear mixed effects model based on measurements in 
the 14 days before (i.e., day -14 to day 0) day 0. The analysis used all available data 
without any imputation. 
 
Average value of clinical and laboratory parameters on day 0 were compared using 
unpaired t-test. Average value of clinical and laboratory parameters on day 0 between 
survivors and non-survivors was also compared using unpaired t-test. 
 
Analyses were performed using SAS version 9.4 (SAS, Cary, NC, USA). Smoothing splines 
and visualizations were conducted using R version 3.5.2 (R Foundation, Vienna, 
Austria). 

Results 

Characteristics of HD patients who received COVID-19 testing 

There were 12,836 HD patients with a suspicion of COVID-19 who received RT-PCR 
testing (8,895 COVID- 19 positive and 3,941 COVID-19 negative patients) between 01 
May and 01 Sep 2020. The demographics and comorbidities for the two groups of 
patients are shown in Table 6.1. There was a slightly lower proportion of patients with 
a white race and higher proportion of patients with diabetes in the COVID- 19 positive 
group compared to the negative group. The mean number of days between the 
suspicion date and the positive test date in COVID-19 positive group was 5.6 days. 
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Table 6.1 Demographics and comorbidities of patients who tested COVID-19 positive and negative. 

Parameter COVID-19 positive COVID-19 negative 
Total number of patients 8,895 3,941 
Male 54% 55% 
White 37% 43% 
Mean age as of first symptom date (std dev) 61.8 (14.2) 60.3 (14.7) 
Mean vintage as of first symptom date (std dev) 4.0 (4.1) 3.8 (3.8) 
Diabetes 69% 66% 
Congestive heart failure 21% 22% 
Ischemic heart disease 24% 24% 
 

Trajectories of vital signs before COVID-19 testing 
We observed the COVID-19 positive group had decreases in pre-HD SBP weeks before 
day 0; the SBP was around 5 mmHg lower at the suspicion date versus 14 days prior 
(Figure 6.1). Contrary to this, the COVID-19 negative group had trends for increases in 
pre-HD SBP in the weeks before testing. The linear mixed effects model estimated the 
daily change in pre-HD SBP during the 14 days before day 0 and identified the COVID-19 
positive group had an average decrease of -0.3 mmHg/day; this was distinct compared 
to the average increase of 0.2 mmHg/day found in the COVID-19 negative group 
(p<0.0001) (Table 6.2). 
 
Table 6.2 Average daily change in clinical and laboratory parameters 14 days prior to day 0. 
Parameter Mean daily change 

COVID-19 positive 
Mean daily change 
COVID-19 negative 

p-value 

Pre-HD SBP (mmHg) -0.2873 0.2293 <0.0001 
Pre-HD pulse rate (BPM) 0.1728 0.0880 <0.0001 
Pre-HD body temp (F) 0.0259 0.0140 <0.0001 
Ferritin (ng/mL) 26.1162 3.6907 <0.0001 
Lymphocytes (%) -0.1772 -0.1208 0.0063 
Neutrophils (%) 0.2445 0.1438 0.0002 
Albumin (g/dL) -0.0123 -0.0035 0.0004 
IDWG (kg) -0.0441 0.0068 <0.0001 
Creatinine (mg/dL) 0.0127 0.0222 0.5561 

Average daily changes are compared using linear mixed effects model in 14 days prior day 0. *P-value 
compares slopes in COVID-19 positive versus COVID-19 negative patients. 
 
 
The COVID-19 positive group was also found to have subtle increases in the pre-HD 
pulse and body temperature in the week before day 0. These trends were consistent 
with the COVID-19 negative group, but less pronounced. The average daily change in 
pulse rate and body temperature was found to be significantly larger in the COVID-19 
positive versus COVID-19 negative group (p<0.0001). 
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Figure 6.1 Trajectories of Pre-HD vital signs (SBP, pulse rate, body temperature) in COVID-19 positive and 

negative patients. 
 
 
The average values for the pre-HD SBP, pulse, and body temperature on day 0 is shown 
in Table 6.3. There were significant differences between groups for pre-HD SBP and 
body temperature (p<0.0001). 
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Table 6.3 Average value of clinical and laboratory parameters on day 0. 

Parameter COVID-19 positive COVID-19 negative p value 
Pre-HD SBP (mmHg) 143.28 150.74 <0.0001 
Pre-HD pulse rate (BPM) 80.93 81.32 0.3266 
Pre-HD body temp (F) 98.10 97.89 <0.0001 
Ferritin (ng/mL) 1500.78 1038.42 0.0004 
Lymphocytes (%) 17.42 18.01 0.1794 
Neutrophils (%) 70.19 68.67 0.0064 
Albumin (g/dL) 3.52 3.63 0.0074 
IDWG (kg) 1.53 2.30 <0.0001 
Creatinine (mg/dL) 9.04 8.76 0.3725 
 

Trajectories of inflammatory markers before COVID-19 testing 
Serum ferritin levels were found to have increased by around 400ng/ml in the COVID-19 
positive group in the 14 days prior to day 0 (Figure 6.2). There was a daily change in 
ferritin of 26.12 ng/mL/day during the 14 days before day 0 in the COVID-19 positive 
group, which was distinct compared to the COVID-19 negative group that exhibited no 
remarkable changes (p<0.0001). 
 
The percentage of lymphocytes were found to decrease below 20% in both COVID-19 
positive and negative groups with a significant difference in trends of daily change 
(p=0.0063). Neutrophils showed an increasing trend in the COVID-19 positive and 
negative group 14 days prior to day 0 and the difference between the groups was 
significant (p=0.0002). 
 
On day 0, ferritin and neutrophils were significantly higher in the COVID-19 positive 
group compared to the negative group (p<0.05). 

Trajectories of nutritional markers before COVID-19 testing 
Among both groups, there was a decline in serum albumin in the 14 days prior to day 0, 
yet the decline was more pronounced in the COVID-19 positive group compared to 
COVID-19 negative group. The decline in albumin was an average of 0.012g/dL per day 
in the COVID-19 positive group compared to the decline of an average of 0.004 g/dL in 
the COVID-19 negative group (p=0.0004) (Figure 6.3). Notably, IDWG decreased by of 
0.6kg per day in the COVID-19 positive group in the 14 days prior to day 0 compared to 
almost no change in COVID-19 negative group (p<0.0001). There were no differences in 
the trends of creatinine between the COVID-19 positive and negative group. 
 
Albumin and IDWG were significantly lower in the COVID-19 positive group on day 0 
compared to COVID-19 negative group on the negative test date. 
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Figure 6.2 Trajectories in inflammatory markers (ferritin, lymphocytes, neutrophils) in COVID-19 positive 

and negative patients. 
 

Characteristics of HD patients with COVID-19 by survival 

Table 6.4 shows the demographics and comorbidities for patients diagnosed with 
COVID-19 who died within 30 days of COVID-19 positive date (non-survivors) versus 
those who survived (survivors). There were 7,897 survivors out of the 8,895 COVID-19 
positive patients. The 998 non-survivors were more often older, male, white race, and 
had a higher comorbidity burden and longer dialysis vintage. 
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Figure 6.3 Trajectories in nutritional markers (albumin, IDWG, creatinine) in COVID-19 positive and 

negative patients. 

Trajectories of vital signs before and after COVID-19 by survival 

We observed a significant increase in the pre-HD pulse rate in the non-survivors versus 
the survivors with COVID-19. The linear mixed effects model showed an average 
increase of 0.29 BPM per day in the 14 days prior day 0 in the non-survivors compared 
to an average increase of 0.16BPM per day in survivors (p<0.0001) (Table 6.5). There 
was a difference in the pre-HD pulse rate between the survivors and non-survivors on 
day 0 (p=0.0528) (Table 6.6). Among survivors, it took 60 or more days after day 0 for 
pre-HD pulse to return to levels observed in the months before COVID-19. 
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Table 6.4 Demographics and comorbidities of COVID-19 survivors and non-survivors. 

Parameter Survivors Non-survivors 
Total number of patients 7,897 998 
Male 53% 60% 
White 37% 42% 
Mean age as of first symptom date (std dev) 60.8 (14.1) 69.1 (12.5) 
Mean vintage as of first symptom date (std dev) 3.9 (4.1) 4.7 (4.0) 
Diabetes 68% 80% 
Congestive heart failure 21% 28% 
Ischemic heart disease 23% 29% 
 
 
Table 6.5 Average daily changes in clinical and laboratory parameters 14 days prior to day 0. 

Parameter Survivors slope Non-survivors slope p-value 
Pre-HD SBP (mmHg) -0.2786 -0.3575 0.2222 
Pre-HD pulse rate (BPM) 0.1582 0.2862 <0.0001 
Pre-HD body temp (F) 0.0261 0.0245 0.5362 
Ferritin (ng/mL) 24.4168 41.1784 0.1998 
Lymphocytes (%) -0.1569 -0.3420 <0.0001 
Neutrophils (%) 0.2207 0.4345 <0.0001 
Albumin (g/dL) -0.0125 -0.0126 0.9854 
IDWG (kg) -0.0443 -0.0438 0.9365 
Creatinine (mg/dL) 0.0129 0.0067 0.8301 

Average daily changes are compared using linear mixed effects model in 14 days prior to day 0 in COVID-19 
positive patients. *P-value compares slopes in survivors versus non-survivors. 
 
 
Table 6.6 Average value of clinical and laboratory parameters on day 0. 

Parameter Survivors Non-survivors p value 
Pre-HD SBP (mmHg) 143.98 136.5 0.0002 
Pre-HD Pulse Rate (BPM) 80.73 82.77 0.0528 
Pre-HD Body Temp (F) 98.1 98.07 0.7363 
Ferritin (ng/mL) 1497.37 1567.57 0.7386 
Lymphocytes (%) 17.75 14.45 0.0038 
Neutrophils (%) 69.67 74.77 0.0003 
Albumin (g/dL) 3.54 3.21 0.0204 
IDWG (kg) 1.56 1.26 0.0432 
Creatinine (mg/dL) 9.06 8.68 0.7392 
 
 
There difference in the daily change of pre-HD DBP and body temperature in survivors 
versus non- survivors during the 14 days prior to day 0 was not significant. On day 0 
there were distinctions in pre- HD SBP between the survivors and non-survivors 
(p=0.0002). Among survivors, pre-HD SBP began to increase back up again around 
10 days following day 0 and it took 30 days or more to return to levels observed before 
the infection; trends in non-survivors showed further and more pronounced decreases 
in pre-HD SBP during the 30 days after day 0 (Figure 6.4). There were no differences in 
pre-HD body temperature between the survivors and non-survivors on day 0 
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(p=0.7363). Pre-HD body temperature returned to levels seen in the months before 
COVID-19 around 60 days after day 0. 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.4 Trajectories in pre-HD vital signs (SBP, pulse rate, body temperature) in COVID-19 positive 
survivors and non-survivors 
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Trajectories of inflammatory markers before and after COVID-19 by 
survival 
There were significant differences in inflammatory markers like lymphocytes and 
neutrophils in both COVID-19 positive survivors and non-survivors. The average 
decrease in the percentage of lymphocyte was about 0.34% in the 14 days prior to day 
0 in non-survivors compared to 0.16% in survivors (p<0.0001). Similarly, there was a 
difference in the 14-day trend for neutrophils between the survivors and non-survivors 
(p<0.0001). There were also significant differences in the percentage of lymphocytes 
and neutrophils between the survivors and non-survivors on day 0. 
 
As shown in Figure 6.5, the disturbances in inflammatory markers returned to the levels 
seen in the months before the infection within about 30 days after day 0 in patients 
who survived. Patients who died experienced more robust decreasing trends in 
lymphocyte levels as well as more robust increasing trends in neutrophil levels during 
the 30 days following day 0, as compared to those who survived. 
 
Difference in Ferritin between survivors and non-survivors was not significant during 
14 days prior to day 0 and on day 0. 

Trajectories of nutritional markers before and after COVID-19 by survival 
Albumin levels among patients who died decreased steadily during the 30 days 
following day 0, whereas albumin levels began to rise after approximately 15 days 
following day 0 for patients who survived. 
 
Patients who died also experienced a larger decline in IDWG than the group who 
survived. Survivors experienced a decline in creatinine shortly after day 0, which 
remained lower than in the months before COVID-19 throughout the following 90 days. 
The average daily change was significantly different between groups for all nutritional 
markers (albumin and IDWG) in the 14 days prior to day 0 test date between the 
survivors and non-survivors (p<0.05). The difference in the slope of creatinine between 
the survivors and non-survivors was not significant(p=0.7392). 
 
There were also significant differences in albumin and IDWG between the survivors and 
non-survivors on day 0. Among survivors, the nutritional parameters took around 
60-90 days to return to the same levels as in the months before the infection 
(Figure 6.6). 
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Figure 6.5 Trajectories in inflammatory markers (ferritin, lymphocytes, neutrophils) in COVID-19 positive 

survivors and non-survivors. 
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Figure 6.6 Trajectories in nutritional markers (albumin, IDWG, creatinine) in COVID-19 positive survivors 

and non-survivors. 

Discussion 

We observed unique temporal trends in various clinical and laboratory parameters 
among HD patients who tested positive versus negative for SARS-CoV-2 infection. 
Ultimately, these trends help to define the physiological disturbances that characterize 
the onset and course of COVID-19 in HD patients. The disturbances in various 
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parameters commonly started around 14 days before presentation and were more 
pronounced in patients who tested positive for COVID-19. We identified statistically 
distinct daily changes in vital signs, inflammatory, and nutritional markers across the 
weeks before presentation among patients who tested COVID-19 positive versus 
negative, as well as unique differences between groups on the date of 
suspicion/testing. Albeit statistically significant, the differences were often clinically 
subtle for many parameters. Nonetheless, these findings are anticipated to be of use in 
development of diagnostic support risk scores and prediction models. Among patients 
in the COVID-19 negative group, there were observed in various parameters which 
were anticipated since these patients likely underwent testing due to presentation with 
symptoms of a flu-like illness; however, we cannot exclude that some were tested 
secondary to exposure to someone with known COVID-19. Among the COVID-19 
positive group, we identified clinically remarkable disturbances in vital signs, 
inflammatory, and nutritional markers after being diagnosed with COVID-19 that 
commonly took more than one month to return to normal among those who survived. 
The trajectories in parameters were statistically distinct between survivors and non-
survivors brining insights that will be of importance to consider in the development of 
prognostic support risk scores and prediction models. 
 
Published studies showing clinical trends before and at onset in COVID-19 HD patients 
are scarce. We recently showed how a machine learning predictive model that uses 
changes in clinical parameters before diagnosis had reasonable performance in 
classification of patients with a SARS-CoV-2 infection three days before symptoms onset 
(area under the curve is the testing dataset was 0.68). The model developed showed 
changes in IDWG had the highest variable feature importance (reflecting the impact of 
the value to the prediction).11 Our present analysis adds to previous findings by showing 
quantitative trends in key parameters during the period before and after presentation 
with COVID-19. One of the novel findings we identified was the inverse trends in pre-
HD SBP before presentation between COVID-19 positive versus negative patients. The 
decreases in SBP specifically associated with the onset of COVID-19 may be 
representative of some potential direct or indirect influences of the disease on the 
heart that caused a decompensation in cardiovascular system. The specificity of trends 
in physiological parameters for COVID-19 diagnosis should be assessed in future 
studies. 
 
When comparing survivors and non-survivors, we found that mean age, dialysis vintage, 
and the proportion of males was higher in non-survivors, as was the presence of 
comorbidities such as diabetes and congestive heart failure and this consistent with 
previous findings.3,4,12 Previous studies also have showed that higher body temperature, 
lower lymphocyte counts, higher levels of C-reactive protein and white blood cell 
counts were related to mortality in HD patients.3,4,12-15 However, we observed that 
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average change in temperature 14 days prior to day 0 was not significantly different in 
survivors compared to non-survivors. The body temperature on day 0 for non-survivors 
was also slightly higher than survivors, although the difference was not significant. 
 
In patients testing positive for COVID-19, the laboratory parameters anticipated to be 
directly related to the infection, such as neutrophils, lymphocytes, and ferritin, returned 
to their baseline values within 30 days after suspicion/testing. The relatively long time 
for infection related parameters to persist may be because SARS-CoV-2 infection may 
persist for longer period in HD patients. In a study of 19 HD patients with COVID-19 
with repeat RT-PCR testing, SARS-CoV-2 tests remained positive in 68% patients after 
20 days and in 32% after 40 days.16 
 
We found a modest decline in IDWG in the weeks before presentation that was specific 
to the COVID-19 positive group. Among patients who contracted COVID-19, the decline 
in IDWG was more pronounced in non-survivors versus survivors, which may be a 
prognostic signal for malnutrition when accompanied by a deterioration in other 
nutritional parameters.17 Parameters related to nutrition appear to take longer to 
return to the baseline in patients who survived suggesting the systemic effects of 
COVID-19 may be prolonged. Serum creatinine, which can also be considered a marker 
of lean tissue mass18, even had not return to baseline 90 days after diagnosis. This 
suggests profound catabolic effects of COVID-19, which are due to multiple 
mechanisms such as anorexia, hypoxia, immobilization and increased levels of pro- 
inflammatory cytokines.19 In our analysis, it also took 2-3 months for serum albumin to 
return to the baseline values seen in the months before infection. 
 
This analysis assessed a large group of COVID-19 positive HD patients and provides 
novel information. However, it is important to note that patients could have been 
tested for presentation with symptoms or exposure to someone with known COVID-19, 
which cannot be fully deduced in cases where there is missing/unavailable data on the 
date of suspicion. Although most patients were likely tested for clinical reasons, which 
is known for most of the COVID-19 positive patients, this is a limitation of the analysis. 
In general, absolute differences in trends, although significant, were small and we 
therefore suggest using multiple markers in combination for risk prediction, as shown in 
our previous paper regarding a machine learning prediction model developed for early 
detection of patients with COVID-19.11 Moreover, it is important to realize that the 
trends do not show the mean of individual trajectories, but an aggregate of the cohort 
groups. We cannot rule out that there might be some minimal temporal bias secondary 
to the definition of the reference date/day 0 for suspicion/testing that may have an 
impact on the trajectories. Also, there is a possibility that the incubation period of the 
virus was prolonged due to low immunity in dialysis patients. Nonetheless, the 
comparisons in trends in daily changes during the weeks prior suspicion/testing are 
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anticipated to have reasonably captured signals. Further investigations should consider 
inclusion of these insights to improve the precision of COVID-19 risk scores and 
prediction models being developed and used in care paradigms. 

Conclusion 

We found the trajectories of several clinical/laboratory parameters distinctly changed in 
patients during the weeks before presentation with COVID-19, as compared to patients 
who were tested for a SARS- CoV-2 infection and found negative. Many parameters 
changed in similar directions for both groups, yet significantly more for patients found 
to be COVID-19 positive versus negative. These included increasing pulse, body 
temperature, and neutrophils, along with decreasing lymphocytes and albumin. 
However, several factors uniquely changed in patients who were found to be COVID-19 
positive, which included decreasing SBP and IDWG, as well as increasing ferritin. Among 
patients who were diagnosed with COVID-19, the survivors appeared to have 
statistically distinct trajectories showing less robust increases in pulse and neutrophils, 
and decreases in lymphocytes, compared to patients who died within 30 days after 
COVID-19 suspicion/testing. In patients with COVID-19 who survived, inflammatory and 
cardiovascular parameters returned to baseline levels in 1 month, however, the effect 
of COVID-19 on nutritional status appeared to be more prolonged and disturbances 
were seen up to 90 days. These findings appear to reveal some of the pathophysiologic 
trends defining the onset and course of the disease in the HD population, however, 
many changes were small. These insights are anticipated to be of high importance for 
development of prediction models for early identification and prognosis of COVID-19. 
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Abstract 

Background 
We developed a machine learning (ML) model that predicts the risk of a hemodialysis 
(HD) patient having an undetected SARS-CoV-2 infection that is identified after the 
following 3 or more days. 
 
Methods 
As part of a healthcare operations effort, we used patient data from a national network 
of dialysis clinics (February-September 2020) to develop a ML model (XGBoost) that 
uses 81 variables to predict the likelihood of an adult HD patient having an undetected 
SARS-CoV-2 infection that is identified in the subsequent ≥3 days. We used a 60:20:20% 
randomized split of COVID-19 positive samples for the training, validation, and testing 
datasets. 
 
Results 
We used a select cohort of 40,490 HD patients to build the ML model (11,166 COVID-19 
positive cases and 29,324 unaffected (control) patients). The prevalence of COVID-19 in 
the cohort (28% COVID-19 positive) was by design higher than the HD population. The 
prevalence of COVID-19 was set to 10% in the testing dataset to estimate the 
prevalence observed in the national HD population. The threshold for classifying 
observations as positive or negative was set at 0.80 to minimize false positives. 
Precision for the model was 0.52, the recall was 0.07, and the lift was 5.3 in the testing 
dataset. Area under the receiver operating characteristic curve (AUROC) and area 
under the precision-recall curve (AUPRC) for the model was 0.68 and 0.24 in the testing 
dataset, respectively. Top predictors of an HD patient having a SARS-CoV-2 infection 
were the change in interdialytic weight gain from the previous month, mean pre- HD 
body temperature in the prior week, and the change in post-HD heart rate from the 
previous month. 
 
Conclusions 
The developed ML model appears suitable for predicting HD patients at risk of having 
COVID-19 at least three days before there would be a clinical suspicion of the disease. 
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Introduction 

The 2019 coronavirus disease (COVID-19) pandemic is challenging the world’s 
healthcare systems, including bringing complexities to the maintenance of dialysis in 
people with end stage kidney disease (ESKD).1-5 In the United States, most ESKD 
patients are treated by outpatient hemodialysis (HD) where social distancing can be 
difficult and heightened infection control measures are required (e.g. temperature 
screenings, universal masking, isolation treatments/shifts/clinics).1-5 ESKD patients are 
typically older and have multiple comorbidities, placing the population at higher risk for 
requiring intensive care and dying if affected by COVID-19.6-12 
 
Early reports from the United States show an 11% COVID-19 mortality in ESKD13, which 
is higher than the 3% COVID-19 mortality shown in the national population.14,15 This is 
not unexpected with reports from Asia and Europe suggesting a 16% to 23% COVID-19 
mortality in ESKD.16-19 Albeit the high mortality rate, an impaired immune response may 
render dialysis patients more frequently asymptomatic when infected by SARS-
CoV-2.16,17 In both the general and ESKD populations, the most prevalent symptoms of 
COVID-19 at presentation are fever (11%-66% in dialysis; 82% in general population) 
and cough (37%-57% in dialysis; 62% in general population).16,20-22 The less frequent 
occurrence of signs and symptoms indicative of COVID-19 in dialysis patients could be 
making the outbreak even more challenging to manage. 
 
Dialysis providers routinely capture patient/clinical data during care. The robust data 
collected during HD treatments (generally thrice weekly) provide unique opportunities 
to leverage artificial intelligence (AI) in predicting COVID-19 outcomes. AI modeling 
helped identify onset of the outbreak in China23,24 and is currently being used to help 
with early detection of areas and individuals in the general population at risk for 
COVID-19.25-27 
 
As part of an healthcare operations effort in response to the COVID-19 outbreak, an 
integrated kidney disease healthcare company aimed to develop a machine learning (ML) 
prediction model that identifies the risk of an HD patient having an undetected severe 
acute respiratory syndrome coronavirus-2 (SARS- CoV-2) infection. We analyzed the 
model performance to determine the possible utility for testing in the HD population. 
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Materials and methods 

General 

An integrated kidney disease healthcare company (Fresenius Medical Care, Waltham, 
MA, United States) used retrospective real-world data from its national network of 
dialysis clinics to develop a ML model that predicts the risk of an adult HD patient 
having an undetected SARS-CoV-2 infection that is identified after the following 
≥3 days. 
 
This analysis was performed in adherence with the Declaration of Helsinki under an 
initial and revised protocol reviewed by New England Independent Review Board 
(NEIRB). This retrospective analysis was determined to be exempt and did not require 
patient consent (Needham Heights, MA, United States; Protocol version 1.0 NEIRB#1-
17-1302368-1; Protocol revision version 1.1 NEIRB#17-1348994-1). 

COVID-19 mitigation and testing practices 
The national network of dialysis clinics (Fresenius Kidney Care, Waltham, MA, United 
States) started implementing modified infection control measures in late Feb 2020 in 
response to the COVID-19 outbreak in the general population. Universal mitigation 
efforts at the provider included screening patients/staff before entry into the dialysis 
facility for high body temperature, signs or symptoms of flu- like illness, exposure to 
others with COVID-19, or a known infection diagnosed elsewhere.28 Patients and staff 
were required to thoroughly wash their hands upon entering and leaving the facility. 
Patients were provided surgical masks and were required to wear them while in any 
area of the facility. Staff were required to wear enhanced personal protective 
equipment including use of masks, face shields, gowns, and gloves while being in the 
proximity of patients in any area. The first dialysis patients (n=2) at the provider were 
identified as COVID-19 positive on 03 Mar 2020. 
 
All patients and staff with an elevated body temperature or symptoms of a flu-like 
illness were considered under investigation and had reverse transcription polymerase 
chain reaction (RT-PCR) laboratory testing for SARS-CoV-2 performed at a laboratory 
contracted by the dialysis provider. Patients under laboratory investigation for a SARS-
CoV-2 infection were treated in dedicated isolation areas (rooms, shifts, or clinics) for 
suspected patients until confirmed negative by two RT-PCR tests that were more than 
24 hours apart. Patients who had been exposed to others with COVID-19 were moved 
to unique isolation areas for exposed patients under investigation for 14 days and 
received RT-PCR testing if they presented with signs or symptoms of a flu-like illness. 
Patients with RT-PCR confirmed COVID-19 were treated in dedicated isolation areas for 
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infected patients until two negative RT-PCR tests more than 24 hours apart were 
documented. 

Population and outcome 

We considered data from adult (age ≥18 years) HD patients treated throughout the 
national network for development of a model to predict individuals with an undetected 
SARS-CoV-2 infection. The observation period started on 27 Feb 2020. Positive arm 
included data from patients who had ≥1 confirmed positive RT-PCR COVID-19 test as of 
the end of the observation period (08 Sep 2020, n=11,166). Negative arm included data 
from patients who: 1) were found COVID-19 negative (n=7,959), or 2) were randomly 
sampled from all active patients at the dialysis provider without a reported suspicion of 
COVID-19 as of the end of the observation period (n=21,365). The random sampling was 
performed using the ’sample’ function from the ‘pandas’ Python package. 
 
We defined the index date of a HD patient having a SARS-CoV-2 infection as the date of 
the COVID-19+ test. In control patients with a negative COVID-19 test result, the test 
date was used as the index date. In controls without a test, the index date was 
randomly sampled from the positive cases’ index dates occurring before 25 Aug 2020, 
two weeks before the end of the observation period. This cutoff was chosen to 
minimize the possibility that control patients were infected but had not displayed signs 
or symptoms leading to testing before the end of the observation period. We included 
data from patients with 1) ≥1 hemoglobin sample collected both 1-14 days and 31-60 
days before the individual’s prediction date (3 days prior to index date, further defined 
below), and 2) ≥1 HD treatment both 1-7 days and 31-60 days preceding the prediction 
date. This was done to ensure we included only active patients as hemoglobin draws 
are conducted weekly for in-center HD (typically thrice weekly treatments). We 
excluded data from patients suspected to have COVID-19 who were pending laboratory 
testing or were classified as person under investigation (PUI) where no laboratory 
testing was performed or documented. 

AI model development 

Software and ML model logic 

We used Python version 3.7.7 (Python Software Foundation, Delaware, United States) 
to build the ML model utilizing the XGBoost package (29). The XGBoost Python package 
used input variables from the training dataset to construct multiple decision trees, 
giving each a random sample, and established a series of thresholds that split variables 
to maximize the information gain. Decision trees were constructed iteratively, and new 
decision trees were added to predict prior errors. The decision trees made by the 
XGBoost ML model are inherently able to handle missing values without imputation by 
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including their presence when determining the splits (e.g. splitting observations with 
temperatures ≥98.0°F (≥36.7°C) from temperatures <98.0°F (<36.7°C) or missing 
temperatures). After no further improvements in performance were achieved using the 
validation dataset (also used for hyperparameter tuning), the ensemble of decision 
trees produced the final ML model that was assessed with the testing dataset. 

Undetected SARS-CoV-2 prediction model 

We used 81 a priori selected treatment/laboratory variables up to the individually 
defined prediction date (3 days prior to the index date defined above) to predict the 
risk of a SARS-CoV-2 infection being identified in the following ≥3 days (Figure 7.1). This 
is intended to yield individual predictions at least 3 days in advance of symptoms that 
warranted testing. We used a 60:20:20% randomized split of COVID-19+ samples for 
the training, validation, and testing datasets, and added the same number of COVID-19 
negative patients to only the training and validation datasets. The testing dataset used 
to evaluate final model performance had a higher number of COVID-19 negative 
samples added to more closely match the prevalence observed in the overall national 
HD population.30,31 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7.1 Prediction timeline for data ascertainment and prediction of HD patients with and without 

SARS-CoV-2 infection identified in the subsequent ≥3 days. ML model used HD treatment 
variables († mean values 1-7 days before the prediction date; ‡ difference in mean values 
31-60 days to 1-7 days before the prediction date) and laboratory variables (◊ mean values 
1-14 days before the prediction date; ○ difference in mean values 31-60 days to 1-14 days 
before the prediction date) for prediction of SARS-CoV-2 infection. 
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Statistical methods 

Descriptive statistics 

Descriptive statistics for HD patients were tabulated for demographics and variables at 
the time of the prediction for an undetected SARS-CoV-2 infection. Data are stratified 
by HD patients who did, or did not, have laboratory confirmation of COVID-19 after the 
date of prediction. 
 

Analysis of ML model feature importance 

Shapley values32,33 were calculated using the SHAP python package to determine the 
influence of each variable on the predictions.34,35 SHAP values are calculated for each 
variable and each observation, representing a measure of impact (positive or negative 
value) of the observed value on each individual prediction. SHAP methods withhold and 
include individual inputs in all possible combinations, and compare differences 
between withheld and included data, to compute the mean value of all possible 
differences for attributing the feature importance. SHAP values are output as log odds 
(i.e. the logarithm of the odds ratio), meaning they are additive explanations of feature 
importance. SHAP values for each variable are summed for each set of observations (in 
this case, for each patient) and converted from log odds to probability, which is then 
output by the model as the prediction. Thus, the more positive SHAP values increase 
the predicted probability, while more negative SHAP values decrease it. Overall feature 
importance for individual variables in the model were calculated from the SHAP values 
using the mean absolute values for each variable across all observations. 

Analysis of ML model performance 

Performance of ML model was measured by the area under the receiver operating 
characteristic curve (AUROC) in the training, validation, and testing datasets, as well as 
the recall, precision, and lift in the testing datasets. Additionally, we evaluated the area 
under the precision-recall curve (AUPRC) in the testing dataset. 
 
AUROC measures the rate of true and false positives classified by the prediction model 
across probability thresholds. The definition of true/false positives and negatives is 
shown in Table 7.1. 
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Table 7.1 Definition of true/false positive and negative predictions classified by the model in the 
assessment of performance in the testing dataset. 

True positives Patients classified as COVID-19 positive by the model who were in the COVID-19 
positive group 

False positives Patients classified as COVID-19 positive by the model who were in the COVID-19 
negative group 

True negatives Patients classified as COVID-19 negative by the model who were in the COVID-19 
negative group 

False negatives Patients classified as COVID-19 negative by the model who were in the COVID-19 
positive group 

 
 
Recall (sensitivity) measures the rate of true positives classified by the model at a 
specified threshold and is calculated as follows: 
 

Recall = number of true positives classified by model / 
(number of true positives classified by model + number of 

false negatives classified by model) 
 
Precision measures the positive predictive value for the model at a specified threshold 
and is calculated as follows: 
 

Precision = number of true positives classified by model / 
(number of true positives classified by model + number of false 

positives classified by model 
 
Lift measures the effectiveness of the model compared to random sampling and is 
calculated as follows: 
 

Lift = model precision / proportion of positives in dataset 
 
AUPRC measures the ratio of precision for corresponding recall values across probability 
thresholds.36 
 

AUROC, AUPRC, recall, and precision metrics yield scores on a scale of 0 (lowest) to 1 
(highest). A model performing at chance would yield an AUROC of 0.5, an AUPRC equal 
to the proportion of positives in the dataset, and a lift value of 1. The cutoff threshold 
for classifying predictions were selected to optimize recall, precision, and lift according 
to the use case. 
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Results 

Patient characteristics 

We identified data from a select cohort of 40,490 HD patients meeting eligibility criteria 
(11,166 COVID- 19+ cases and 29,324 unaffected (control) patients). The prevalence of 
COVID-19 in the cohort (28% COVID-19 positive) was by design higher than the HD 
population. The prevalence of COVID-19+ cases (about 28% COVID-19+) in the training 
and validation datasets was consistent within the cohort. For the testing dataset used 
to evaluate final model performance, there was a 10% prevalence of COVID-19+ cases 
based on the designed data split that was made to estimate the prevalence observed in 
the national HD population.30,31 
In the cohort, there was a higher proportion of HD patients with a SARS-CoV-2 infection 
of black race, Hispanic ethnicity, and with diabetes (Table 7.2). Mean values for the 81 
treatment and laboratory variables before a SARS-CoV-2 infection being identified in 
the subsequent ≥3 days (or concurrent index date in controls) are shown in Tables 7.3 
& 7.4. 
 
Table 7.2 Demographics and comorbidities of HD patients with and without an undetected SARS- CoV-

infection dentified in the ubsequent ≥3 Days 

Variable Unaffected patients N (%) or 
Mean±SD 

COVID-19+ patients N (%) or 
Mean±SD 

Number of HD patients 29,324 11,166 
Age (yrs) 62.66±14.25 62.62±13.92 
Male 16,614 (56.66%) 6,149 (55.07%) 
White race 12,021 (40.99%) 4,338 (38.85%) 
Black race 7,838 (26.73%) 3,354 (30.04%) 
Other race 1,223 (4.17%) 372 (3.33%) 
Unknown race 8,242 (28.11%) 3,102 (27.78%) 
Hispanic ethnicity 2,849 (14.03%) 1,831 (23.34%) 
BMI (kg/m2) 29.26±7.71 29.45±7.83 
Dialysis vintage (yrs) 3.75±4.11 3.96±4.09 
Diabetes 19,186 (65.58%) 8,085 (73.11%) 
CHF 6,710 (22.93%) 2,595 (23.47%) 
Ischemic heart disease 7,647 (26.14%) 2,830 (25.59%) 
Central venous catheter access 6,799 (23.19%) 2,738 (24.52%) 

Age, gender, and catheter access variables were included in the ML prediction model to classify the risk of an 
individual HD patient having a SARS-CoV-2 infection being identified in the following ≥3 days. HD: 
hemodialysis; CHF: congestive heart failure; BMI: body mass index; N: patient count; SD: standard  deviation. 

 
HD patients who contracted COVID-19 had only subtle, clinically unremarkable 
distinctions in treatment and laboratory characteristics before being suspected to have 
a SARS-CoV-2 infection compared to unaffected patients. Mean pre-/post-HD body 
temperatures (Table 7.3) and inflammatory markers (white blood cell (WBC) count and 
differential) (Table 7.4) before a SARS-CoV-2 infection being identified did not did not 
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show a clinically relevant difference differ between groups. HD patients who had a 
SARS-CoV-2 infection identified in the following 3 days did appear to have somewhat 
higher ferritin levels compared to unaffected patients. 
 
Table 7.3 Clinical and treatment characteristics of HD patients with and without an undetected SARS-

CoV-2 infection dentified in the ubsequent ≥3 Days. 

Variable Unaffected patients 
Mean±SD; N 

COVID-19+ patients 
Mean±SD; N 

Number of HD patients 29,324 11,166 
Pre-HD sitting SBP (mmHg)† 148.31±22.83; 29,324 146.03±23.03; 11,166 
Change in pre-HD sitting SBP (mmHg)‡ -0.40±15.78; 29,324 -1.95±16.72; 11,166 
Pre-HD sitting DBP (mmHg)† 76.87±13.86; 29,322 75.44±13.58; 11,166 
Change in pre-HD sitting DBP (mmHg)‡ -0.32±9.03; 29,322 -0.88±9.48; 11,166 
Pre-HD weight (kg)† 85.71±24.51; 29,323 85.09±24.51; 11,165 
Change in pre-HD weight (kg)‡ -0.17±2.24; 29,323 -0.66±2.73; 11,165 
Pre-HD body temperature (°F)† 97.56±0.61; 29,324 97.76±0.66; 11,166 
Change in pre-HD body temperature (°F)‡ 0.07±0.56; 29,324 0.22±0.65; 11,166 
Post-HD sitting SBP (mmHg)† 140.40±21.60; 29,321 144.44±21.62; 11,166 
Change in post-HD sitting SBP (mmHg)‡ 0.43±14.98; 29,320 1.55±15.74; 11,166 
Post-HD sitting DBP (mmHg)† 73.91±12.58; 29,319 73.56±12.33; 11,166 
Change in post-HD sitting DBP (mmHg)‡ 0.15±8.49; 29,318 0.41±8.79; 11,166 
Post-HD body temperature (°F)† 97.58±0.56; 29,318 97.70±0.62; 11,166 
Change in post-HD body temperature (°F)‡ 0.03±0.50; 29,317 0.14±0.57; 11,165 
Pre-HD respirations per minute† 17.64±1.16; 29,324 17.72±1.15; 11,166 
Change in pre-HD respirations per minute‡ -0.001±0.97; 29,324 0.01±1.02; 11,166 
Pre-HD pulse (BPM)† 79.00±12.11; 29,324 79.02±11.90; 11,166 
Change in pre-HD pulse (BPM)‡ 0.11±7.26; 29,324 1.06±7.56, 11,166 
Post-HD respirations per minute† 17.56±1.15; 29,320 17.65±1.13; 11,165 
Change in post-HD respirations per minute‡ -0.007±0.95; 29,319 0.0004±0.99; 11,165 
Post-HD pulse (BPM)† 75.80±11.23; 29,321 77.23±11.16; 11,166 
Change in post-HD pulse (BPM)‡ -0.32±7.16; 29,320 1.30±7.87; 11,166 
IDWG (kg)† 2.24±1.21; 29,083 1.95±1.29; 11,039 
Change in IDWG (kg) ‡ 0.01±0.90; 29,004 -0.26±1.09; 10,991 
Post-HD weight loss (kg)† -2.26±1.07; 29,317 -2.06±1.07; 11,160 
Change in post-HD weight loss (kg)‡ -0.01±0.68; 29,316 0.18±0.77; 11,159 
Post-HD body temperature change† 0.01±0.66; 29,318 -0.06±0.70; 11,165 
Change in post-HD body temperature change‡ -0.04±0.66; 29,317 -0.07±0.71; 11,165 
Post-HD respirations per minute change† -0.08±0.97; 29,320 -0.07±0.97; 11,165 
Change in post-HD respirations per minute change‡ -0.01±1.04; 29,319 -0.01±1.07; 11,165 
Post-HD pulse change (BPM)† -3.20±8.86; 29,321 -1.79±8.77; 11,166 
Change in post-HD pulse change (BPM) ‡ -0.43±7.75; 29,320 0.24±8.06; 11,166 
% HD treatments with nasal oxygen administered† 5.23±18.52; 29,324 5.67±19.16; 11,166 
Change in % HD treatments with nasal oxygen administered‡ 0.37±13.40; 29,324 0.72±14.12; 11,166 

All variables were included in the ML prediction model to classify the risk of an individual HD patient having a 
SARS-CoV-2 infection being identified in the following ≥3 days. † Mean values of HD treatment variables 
1-7 days before the prediction date (i.e. 3 days before suspicion of SARS-CoV-2 infection in standard clinical 
practice). ‡ Mean values of the difference in HD treatment variables 31-60 days to 1-7 days before the 
prediction date. HD: hemodialysis; SBP: systolic blood pressure; DBP: diastolic blood pressure; IDWG: 
interdialytic weight gain; Post-HD Weight Loss: post-HD minus pre-HD weight (kg); N: patient count; SD: 
standard deviation. (100°F − 32) × 5/9 = 37.8°C 
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Table 7.4 Laboratory characteristics of HD patients with and without an undetected SARS-CoV-2 infection 
identified in the subsequent ≥3 days. 

Variable Unaffected patients 
Mean±SD, N 

COVID-19+ patients 
Mean±SD, N 

Number of HD patients 29,324 11,166 
Albumin (g/dL)† 3.79±0.40; 13,723 3.69±0.46; 5,252 
Change in albumin (g/dL)‡ -0.002±0.25; 13,139 -0.03±0.27; 5,012 
Creatinine (mg/dL)† 8.42±3.06; 13,323 8.41±3.14; 5,113 
Change in creatinine (mg/dL)‡ 0.08±1.40; 12,711 0.16±1.52; 4,860 
Bicarbonate (mmol/L)† 24.24±3.05; 13,395 24.22±3.22; 5,137 
Change in bicarbonate (mmol/L)‡ 0.02±2.97; 12,772 -0.16±3.12; 4,864 
BUN (mg/dL)† 56.21±18.53; 14,941 56.17±19.27; 5,631 
Change in BUN (mg/dL)‡ -0.21±15.50; 14,400 -0.13±16.55; 5,416 
URR† 74.92±6.52; 14,273 75.05±6.61; 5,348 
Change in URR‡ 0.09±5.89; 13,548 0.07±6.08; 5,054 
Sodium (mmol/L)† 137.50±3.37; 13,139 137.08±3.52; 5,046 
Change in sodium (mmol/L)‡ -0.10±2.83; 29,324 -0.25±3.10; 4,772 
Potassium (mmol/L)† 4.80±0.68; 16,051 4.78±0.70; 6,217 
Change in potassium (mmol/L)‡ 0.01±0.60; 15,499 -0.01±0.63; 6,003 
Phosphate (mg/dL)† 5.55±1.74; 15,489 5.37±1.71; 5,913 
Change in phosphate (mg/dL)‡ 0.01±1.48; 14,918 -0.03±1.46; 5,692 
Chloride (meq/L) † 98.66±4.14; 12,602 98.33±4.13, 4,702 
Change in chloride (meq/L) ‡ -0.19±3.35; 11,708 -0.24±3.50; 4,450 
Calcium (mg/dL)† 8.89±0.69; 15,420 8.78±0.73; 5,878 
Change in calcium (mg/dL)‡ 0.02±0.58; 14,882 -0.07±0.60; 5,659 
Corrected calcium (mg/dL)† 9.06±0.66; 12,865 9.04±0.71; 4,903 
Change in corrected calcium (mg/dL)‡ 0.01±0.54; 12,148 -0.03±0.59; 4,608 
iPTH (pg/mL)† 489.46±454.13; 10,090 497.22±490.12; 3,801 
Change in iPTH (pg/mL)‡ -21.39±280.41; 7,245 -21.84±296.17; 2,734 
Ferritin (ng/mL)† 1029.94±576.07; 8,229 1197.32±900.22; 3,138 
Change in cerritin (ng/mL)‡ 52.90±505.99; 4,400 142.00±739.89; 1,589 
TSAT (%)† 33.07±14.10; 13,051 31.29±14.42; 5,008 
Change in TSAT (%)‡ 0.17±15.33; 12,310 -1.59±16.54; 4,689 
Hgb (g/dL)† 10.76±1.24; 29,324 10.61±1.26; 11,166 
Change in Hgb (g/dL)‡ 0.05±1.07; 29,324 0.01±1.13; 11,166 
Platelet count (x 109/L)† 195.49±72.47; 11,378 192.35±77.10; 4,293 
Change in platelet count (x 109/L)‡ -1.93±49.23; 10,595 -7.82±55.06; 3,963 
WBC count (x 109/L)† 6.93±2.36; 13,043 6.55±2.39; 5,027 
Change in WBC count (x 109/L)‡ 0.03±1.76; 12,344 -0.36±1.93; 4,733 
% of neutrophils† 66.11±9.50; 17,215 66.59±9.53; 6,941 
Change in % of neutrophils‡ 0.06±6.72; 14,931 0.47±7.37; 5,997 
% of lymphocytes† 20.22±7.98; 17,215 19.76±7.96; 6,941 
Change in % of lymphocytes‡ -0.04±4.99; 14,931 -0.53±5.57; 5997 
% of monocytes† 6.38±1.90; 17,215 6.69±2.14; 6,941 
Change in % of monocytes‡ 0.02±1.48; 14,931 0.37±1.82; 5,997 
% of eosinophils† 4.29±2.88; 17,212 3.95±2.84; 6,939 
Change in % of eosinophils‡ -0.10±2.03; 14,927 -0.40±2.28; 5,995 
% of basophils† 0.75±0.47; 17,206 0.73±0.45; 6,934 
Change in % of basophils‡ 0.05±0.54; 14,917 0.03±0.52; 5,988 
All variables were included in the ML prediction model to classify the risk of an individual HD patient having a  
SARS-CoV-2 infection being identified in the following ≥3 days. † Mean values of laboratory variables 1-14 days 
before the prediction date (i.e. 3 days before suspicion of SARS- CoV-2 infection in standard clinical practice). 
‡ Mean values of the difference in laboratory variables 31-60 days to 1-14 days before the prediction date. 
HD: hemodialysis; Hgb: hemoglobin; WBC: white blood cell; TSAT: transferrin saturation; URR: urea reduction 
ratio; iPTH: intact parathyroid hormone; BUN: blood urea nitrogen; N: patient count; SD: standard deviation. 
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Prediction model feature importance 

Calculation of variable feature importance with SHAP values found the top three 
predictors of HD patients having a SARS-CoV-2 infection were the change in interdialytic 
weight gain (IDWG) from the previous month, mean pre-HD body temperature in the 
prior week, and the change in post-HD pulse from the previous month (Figure 7.2A). 
 
The SHAP value plot in Figure 7.2B further shows the degree of positive or negative 
impact of each individual measurement for each individual prediction. Each dot 
corresponds to an individual patient, where the dot’s position on the x-axis represents 
that feature’s impact on the model prediction while the color indicates how high or low 
that feature’s value was. Features with missing values are indicated in gray. 
 
For the top predictor of the change in interdialytic weight gain in the week before 
compared to the month before a SARS-CoV-2 infection, smaller (negative) values 
(cooler colors) were associated with a positive SHAP value, while larger values (warmer 
colors) were associated with a negative SHAP value. These results showed for each 
individual prediction, the model generally considered decreases in interdialytic weight 
gain from the previous month to be associated with a greater probability of an 
undetected SARS-CoV-2 infection and an increase in interdialytic weight gain to be 
associated with a lower likelihood of an undetected SARS-CoV-2 infection. In other 
words, patients who do not gain as much weight as usual in between dialysis 
treatments are deemed more likely to have an undetected SARS-CoV-2 infection by the 
model. 
 
Along with highlighting directional effects as previously stated, Figure 7.2B also 
highlights different distributions of effects that might not be apparent when viewing 
the mean absolute values as in Figure 7.2A. For example, the eighth most important 
variable, change in monocytes from the previous month, produces the largest (most 
positive) SHAP values out of all the variables shown. This long, rightward tail along the 
x-axis indicates that despite having a lower mean absolute value in comparison to other 
variables, for some individuals this is very important. Specifically, the model assessed 
that patients with increased monocyte levels from the previous month are deemed 
more likely to have a SARS-CoV-2 infection, whereas the SHAP values for those with 
similar or lower levels of monocytes do not significantly decrease the prediction. 

Prediction model performance 
The ML model had adequate performance in prediction of the 3-day risk for having an 
undetected SARS- CoV-2 infection. The ML model had an AUROC of 0.77, 0.67, and 0.68 
in the training, validation, and testing datasets respectively (Figure 7.3). The ML model 
had an AUPRC of 0.24 in the testing dataset (Figure 7.4). 
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Figure 7.2 SHAP value plots for the ML model showing the extent each predictor contributes (positively or 

negatively) to each individual prediction. A) Bar plot of the mean absolute SHAP values for the 
top 10 predictors in descending order. B) SHAP value plot for the degree of the positive or 
negative impact of each individual measurement on the prediction (x-axis), with warmer colors 
representing higher observed values for that measurement, cooler colors indicating lower 
values for that measurement, and gray color representing a missing value for that 
measurement. 
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Figure 7.3 Area under the receiver operating characteristic curve (AUROC) plot for the ML model showing 
the rate of true and false positives classified by the prediction model across probability 
thresholds. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7.4 Area under the precision-recall curve (AUPRC) plot for the ML model showing the ratio of 

precision for corresponding recall values across probability thresholds. 
 
 
Setting the threshold for classifying observations as positive or negative at 0.80 to 
minimize false positives, the precision for the ML model in the testing dataset was 0.52 
showing 52% of patients predicted to have a SARS-CoV-2 infection actually had 
symptoms in the subsequent ≥3 days and were confirmed to have COVID-19. Given the 
high threshold, recall was 0.07 showing the model correctly predicted true positives for 
a SARS-CoV-2 infection in 7% of positive HD patients. The lift was 5.3, suggesting model 
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use is 5.3 times more effective in predicting a HD patient who contracts COVID-19, as 
compared to not having a model (Figure 7.5). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7.5 Lift curve for the ML model showing the lift value (y-axis) by the proportion of the population 

predicted to have an undetected SARS-CoV-2 infection (x-axis). 

Discussion 

We successfully developed a ML prediction model using retrospective data that appears 
to have suitable performance in identifying HD patients at risk of having an undetected 
SARS-CoV-2 infection that is identified in the following ≥3 days. The top predictors of a 
patient having a SARS-CoV-2 infection were the change in interdialytic weight gain from 
the previous month, mean pre-HD body temperature in the prior week, and the change 
in post-HD pulse from the previous month. 
 
Albeit some top predictors are not surprising, the observed distinctions were subtle. 
Without insights from the model considering an array of variables, it would not be clear 
where one should classify a higher or lower risk for an individual patient that is 
meaningful. For instance, assessing for a decrease in weekly IDWG of about 0.3 kg alone 
may not be considered actionable, and the same is true for assessing for an increase of 
about 0.2°F (0.1°C) in weekly pre-HD body temperature, or an increase in pulse of 
about 1 beat per min (BPM). Notably, the average pre-HD body temperature was 97.6°F 
(36.4°C) (primarily oral measurements) in our analysis and has been previously 
reported as 98.2°F (36.7°C).37 Given 98.6°F (37°C) is the expected average in healthy 
populations, the lower body temperature of HD patients is of importance with the 
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rather low incidence of fever presenting in dialysis patients with COVID-19 (11%-to-66% 
with fever16,20,22). Overall, the small changes observed for each individual variable 
suggest any one parameter alone has minimal value for detecting a patient’s risk of 
having COVID-19, especially since every affected patient will not have every symptom 
of COVID-19 consistently. However, the combinations of minor changes appear to be 
meaningful in the individualized ML model we developed, with each small change being 
one piece of the puzzle for each patient’s unique prediction. 
 
Individual predictions can be further used to identify the risk level for dialysis clinics 
through the proportion of patients classified with an undetected SARS-CoV-2 infection. 
We anticipate using a combination of individual predictions along with reporting of the 
percent of patients at risk in each clinic may yield the greatest early insights on: 1) what 
otherwise asymptomatic HD patients might be most appropriate for enhanced 
screening, COVID-19 testing, and triage to an isolation area, and 2) where providers can 
focus additional resource allocations to combat COVID-19. Furthermore, flagging 
patients as potentially infectious may cut through some of the ‘COVID fatigue’ occurring 
during this prolonged pandemic. By adding this additional novelty and warning, the 
hope is additional care may be given in identifying of potential symptoms during 
screening. Prospective evaluation of ML model directed mitigation is currently being 
piloted at the national network of dialysis clinics. 
 
The authors propose a conceptual workflow for the application of the ML model 
predictions to assist with directing care to individual patients and assisting with 
directing resource allocations to clinics (Figure 7.6). The model was trained using a 
target date of three days prior to patients presenting with COVID-19 symptoms to alert 
clinicians at least one dialysis treatment earlier. Given this timeline, we believe it is 
prudent to run the prediction model on a per treatment basis. The delivery of reports 
on individual patient predictions to clinic staff would optimally be delivered on 
interdialytic days to provide the care team time to prepare for a more comprehensive 
screening by an advanced clinician at the next encounter and potential isolation of 
subsequent HD treatments. The delivery of reports on the percent of patients in each 
clinic at risk can be performed on a weekly basis to allow leadership and regional 
managers to meet with clinical managers and prepare for allocation of resources 
including additional staff, protective equipment, and isolation areas. We propose 
categorizing clinic-level reports to detail facilities with more than 5% of patients at risk 
for undetected SARS-CoV-2 infection. 
 
Mitigation efforts at the national dialysis network include universal RT-PCR testing of 
patients with symptoms of a flu-like illness along with distinct isolation areas (rooms, 
shifts, clinics) for suspected patients under investigation and COVID-19 positive 
patients. We propose patients predicted to be at risk receive a comprehensive 
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screening for signs and symptoms of a flu-like illness by an advanced practitioner (e.g. 
physician, physician assistant, nurse practitioner, experienced dialysis nurse) since 
there is a possibility of false positives. However, the comprehensive assessments 
should consider any minor sign or symptoms of a flu-like illness that may otherwise be 
considered normal based on the patient’s uremia and medical history38,39 to be a reason 
for suspicion of COVID-19. Given the predictions are derived for each individual patient, 
the reasons underlying the risk predictions can be provided for each patient, as well as 
the global importance of features for the model (Figure 7.2). This may help to provide 
additional insight into what the what a the more comprehensive screening assessment 
should focus on for each individual patient. For example, if a patient is classified by the 
model at risk with the top reason being related to a decrease in intradialytic weight 
gain, the next screening before entry to the clinic could include assessment of any 
change in appetite or fluid intake. High risk patients suspected with any mild sign of a 
flu-like illness could be triaged to unique isolation areas for patients under investigation 
and receive RT-PCR testing. HD would be continued in a distinct isolation area until 
diagnosis of COVID-19 or not (determined by two negative RT-PCR tests >24 hours 
apart), whereby laboratory positive patients would be triaged to unique isolation areas 
for COVID-19, and negative patients would return to be treated with the general HD 
population (Figure 7.6), which is consistent with the providers practices without the 
model. Patients diagnosed with COVID-19 at the provider are treated in distinct 
isolation areas until they have two negative RT-PCR tests >24 hours apart, after which 
recovered patients are transferred back to receive HD with the unaffected HD 
population. 
 
The developed model has potential to provide a data-driven way for providers to 
identify individuals with undetected SARS-CoV-2 infections. The conceptual workflow 
provides a hypothetical strategy that can be adapted within the practice patterns of 
other providers, which may not include universal testing and require periods of 
isolation. Different strategies could utilize different thresholds for flagging patients 
depending on the intervention and implications of false positives and false negatives. 
 
Considering the possibility of prolonged viral shedding observed in the general and 
dialysis populations40-42, the optimal period for isolation of dialysis patients affected by 
COVID-19 appears to be longer than 14 days.42 In countries or areas with testing 
limitations, especially those with a high positive-to- negative testing ratio (e.g. >25% 
positive test rate), it may be reasonable to consider having separate isolation areas for 
patients predicted at risk in addition to isolation areas for patients with symptoms of a 
flu-like illness. In this scenario, the 14-day timeframe for isolation of patients predicted 
to be at risk is anticipated to be appropriate if no signs or symptoms of a flu-like illness 
arise. 
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As more data is captured in the COVID-19 outbreak, further prediction models that can 
classify the risk of morbid/mortal outcomes in dialysis patients affected by COVID-19 
need to be developed. The potential applications of AI for COVID-19 have been 
previously detailed43; the first priority was suggested as “early detection and diagnosis 
of the infection”. The robustness of data and an a priori selection of variables to be 
included in our ML model bring value through assessment of feature importance; this 
allows for interpretation of meaningfulness of predictors, albeit it does not determine 
causality. The selection of input variables was focused on biological changes reflected in 
clinical presentations and biomarkers allowing the model to be generalizable to all 
individual HD patients in the overall population, and not specific to the characteristics 
of outbreaks or the local population where patients reside. Although this approach 
yields more generalizability for the model to be used in the HD populations worldwide, 
external factors such as local incidence rates or social determinants of health are 
anticipated to impact the likelihood of a patient contracting COVID-19 and can be 
considered as appropriate. Ultimately, this strategy has the potential to allow for 
COVID-19 to be detected sooner than HD patients show symptoms, and for a localized 
HD population, earlier than it would be reported by national authorities. 
 
A systematic review identified several models developed using data from China for early 
detection of COVID-19 in suspected individuals in the general population.27 One is an 
externally validated ML model that predicts COVID-19 in suspected asymptomatic 
patients (AUROC validation=0.872).44 
 
Another effort used a prediction model (AUROC validation=0.966) to develop logic for 
an 8 variable COVID-19 risk chart.45 A further model with an AUROC of 0.938 was 
created to detect COVID-19 pneumonia in patients admitting to a fever clinic.46 Other 
models used genomic/computed tomography data to diagnose COVID-19.27 An effort 
using data from China not included in prior reviews developed various ML models to 
predict (AUROC testing=0.87 to 0.95) and identify features indicative of COVID-19 
status across age categories among people in the general population presenting to a 
clinic/hospital.47 This model found the most important features for prediction of 
COVID-19 at presentation were lung infection, cough, pneumonia. Consistent variables 
used across models for predictions included age, body temperature, and flu-like illness 
symptoms.27,47 Another distinct effort reported in the literature included the 
development of ML and traditional models using only full blood count data to predict 
the likelihood of a COVID-19 among people in the general population presenting to the 
emergency department (AUROC training=0.80 to 0.86) of, or patients admitted at 
(AUROC training=0.94 to 0.95), a large hospital in Brazil.48 Although these models were 
all reported to have suitable performance, all were subject to bias due to non-
generalizable sampling of controls without COVID-19 and possible overfitting. We 
cannot rule out that our ML model may have similar bias, although it included a large 
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sample and the testing dataset had relatively generalizable sampling for the dialysis 
population with respect to positives and negatives.30,31 Also, since we randomly 
selected a subset of patients for the negative arm who never had symptoms of COVID-
19 and did not receive PCR testing, it is possible that we might have unintentionally 
included a small number of patients who were asymptomatic. However, this would 
have required patients to have had an asymptomatic SARS-CoV-2 infection that aligned 
with the randomly sampled time window. Given the balanced class design of the 
training and validation data splits, it is unlikely this introduced a remarkable bias in the 
model during training and validation. Yet, there is a possibly this could have introduced 
a minimal bias in evaluation of performance in the testing data since there were fewer 
positive cases to identify to offset any impact of an incorrectly labeled negative patient 
as positive. Additionally, the reported model performance may be on the conservative 
side when considering the constraints of the “ground truth” labels as they relate to how 
positive patients are identified by conventional screening. The extent of this depends 
on how well the model identifies individuals not included in the training sample but 
might show similar patterns and on the intervention. In any case, our model is unique in 
its ability to identify the risk of SARS-CoV-2 infection in patients without any suspicion 
of being affected with the disease. 
 
The developed model holds promise to help providers through the COVID-19 pandemic 
and subsequent wave(s) of outbreak.49,50 We recommend model use as augmentation 
and not replacement of symptom screening, as AI modeling is never 100% accurate and 
model risk classifications need to be interpreted within the extent of the model’s 
performance. 

Conclusions 
The developed AI model showed a clinically meaningful performance in prediction of 
individual HD patients at risk of having an undetected SARS-CoV-2 infection at least 
three days before there would be any suspicion of the disease. Prospective testing is 
needed and underway at the national network of dialysis clinics. We proposed a 
conceptual workflow for application of ML model directed mitigation and testing. These 
efforts should provide key insights for consideration by healthcare providers. 
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Abstract 

Introduction 
Several factors affect the survival of End Stage Kidney Disease (ESKD) patients on 
dialysis. Machine learning (ML) models may help tackle multivariable and complex, 
often non-linear predictors of adverse clinical events in ESKD patients. In this study, we 
used advanced ML method as well as a traditional statistical method to develop and 
compare the risk factors for mortality prediction model in hemodialysis (HD) patients. 
 
Materials and methods 
We included data HD patients who had data across a baseline period of at least one 
year and one day in the internationally representative Monitoring Dialysis Outcomes 
(MONDO) Initiative dataset. Twenty-three input parameters considered in the model 
were chosen in an a priori manner. The prediction model used 1 year baseline data to 
predict death in the following 3 years. The dataset was randomly split into 80% training 
data and 20% testing data for model development. Two different modeling techniques 
were used to build the mortality prediction model. 
 
Findings 
A total of 95,142 patients were included in the analysis sample. The area under the 
receiver operating curve (AUROC) of the model on the test data with XGBoost ML 
model was 0.84 on the training data and 0.80 on the test data. AUROC of the logistic 
regression model was 0.73 on training data and 0.75 on test data. Four out of the top 
five predictors were common to both modelling strategies. 
 
Discussion 
In the internationally representative MONDO data for HD patients, we describe the 
development of a ML model and a traditional statistical model that was suitable for 
classification of a prevalent HD patient’s three-year risk of death. While both models 
had a reasonably high AUROC, the ML model was able to identify levels of hematocrit 
(HCT) as an important risk factor in mortality. If implemented in clinical practice, such 
proof-of-concept models could be used to provide pre- emptive care for HD patients. 
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Introduction 

There are several factors affecting the survival of End Stage Kidney Disease (ESKD) 
patients on dialysis. In addition to demographic factors such as age and gender, fluid 
overload, inflammation, serum phosphate levels, indications of malnutrition and loss of 
lean tissue mass assessed by bioimpedance spectroscopy (BIS) have a strong 
association with clinical outcomes.1-5 Adding to the complexities related to such 
multiple prognostic markers, many of them have a bimodal relation with clinical 
outcomes and are also dependent on the interaction with other parameters. For 
example, blood pressure, inter-dialytic weight gain (IDWG), and phosphate have non-
linear, bimodal, associations with worse outcomes. Also illustrative, the association 
between systolic blood pressure and clinical outcomes are modified by the fluid status, 
whereas the associations between phosphate and clinical outcomes are influenced by 
nutritional state.6,7 While we know inflammatory, nutritional, body composition, and 
fluid overload markers are associated to clinical outcomes in hemodialysis (HD) 
patients, they have not been studied together in a multi-modal analysis using advanced 
analytical models. Furthermore, current risk prediction models lack detailed 
assessments of fluid state and body composition. 
 
There are several differences between traditional statistical methods vs advanced 
analytical techniques.8 Traditional statistical methods are easily interpretable, while 
advanced machine learning (ML) techniques are powerful at analyzing complex data 
formats such as audio or images. Advanced ML models can deal with such non-linear 
relationships, efficiently handle missing data, and thus could be used to enhance risk 
prediction models in HD patients. 
 
The goal of this study is to understand if it is feasible to develop a prediction model to 
predict mortality in HD patients using a large globally representative dialysis database 
with clinical parameters such as nutritional, inflammatory, hydration, anemia, and 
mineral metabolism related parameters collected consistently across different regions 
in various electronic medical records (EMR). In this effort, we also assessed the 
application of advanced analytical ML method as well as simple traditional statistical 
method and highlighted how the output of the two approaches are similar and/or 
different. We further attempted to explain the results of the advanced ML model while 
comparing it to the output of the traditional model which has been generally well 
understood in the clinical community. 
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Materials and design 

Patient cohort 

This was a retrospective observational cohort study that used the Monitoring Dialysis 
Outcomes (MONDO) Initiative dataset.9,10 We included data from all unique HD patients 
who had data across a baseline period of at least one year and one day (i.e., ≥2 HD 
treatment records ≥1 year & 1 day apart). The follow-up period for the assessment of 
mortal outcomes was up to three years. The research activities conducted in the 
MONDO Initiative comply with all applicable national and international ethical 
standards. Western Institutional Review Board (Puyallup, WA, United States) approved 
a protocol on the MONDO initiative study projects and determined analyses are exempt 
due to use of de-identified data (Work Order 1-939512-1). Furthermore, the MONDO 
dataset has had a re-identification risk assessment performed by Privacy Analytics 
(Ottawa, ON, Canada) and has been fully anonymized using techniques that satisfy the 
concept of anonymization by the European Union General Data Protection Regulation 
(GDPR) and satisfy the concept of de-identification by the United States Department of 
Health and Human Services (HHS). This study was performed in adherence with the 
Declaration of Helsinki. 

Model data and features 

The outcome of all-cause mortality (dependent variable) was recorded during a 3-year 
follow-up period after baseline. The clinical data was collected per the standard 
practices in each country. 
 
While most patients in regions receive HD treatment thrice a week, it could vary from 
region to region. Only those input parameters that were consistently captured across 
regions were chosen in an a priori manner and considered in the model (independent 
variables). Patient characteristics such as age and body mass index (BMI) were 
calculated as the maximum recorded value during the baseline period. BMI was 
calculated by dividing maximum of the post HD weight and the square of maximum 
height in meters. Laboratory and clinical parameters such as albumin, normalized 
protein catabolic rate (NPCR), bicarbonate, calcium, creatinine (CREAT), c reactive 
protein (CRP), ferritin, hematocrit (HCT), phosphate, potassium, pre-HD weight, post-
HD weight, white blood cell (WBC) count, and residual renal function (RRF) were 
derived from the average value during the baseline period. RRF was captured as the 
glomerular filtration rate determined by urine collection. BIS measurements such as fat 
tissue mass (FTM), lean tissue mass (LTM), and total body water (TBW) were also 
averaged over the baseline period. IDWG was calculated as the difference between pre- 
HD weight at the index treatment and post-HD weight at the prior treatment, and the 
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IDWG values were averaged over the baseline period. Overhydration (OH) was 
calculated as the difference between pre-weight and normal hydration weight 
measured by the BIS, and were averaged over the baseline period. Figure 8.1 shows 
categories of various input parameters used in the model. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8.1 Groups of input parameters. 
 

Predictive model 
The prediction model used 1 year baseline data for in-center HD patients to predict 
death in the following 3 years. Figure 8.2 shows the ascertainment period and 
prediction period of the advanced ML and logistic regression prediction model. The 
model only predicts mortality for patients who survived and have data for at least one 
year. The cohort dataset was randomly split into 80% training data and 20% testing 
data for model development. 
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Figure 8.2 Ascertainment period and prediction period 
 

Advanced analytical model development 
Python version 3.7.7 (Python Software Foundation, Delaware) was used to develop the 
advanced ML model utilizing the XGBoost package.11 The XGBoost Python package uses 
input parameters based on the training dataset to construct decision trees. Each 
decision tree provided a random sample and a series of thresholds that split 
parameters to maximize information gain. These decision trees are created iteratively 
and new decision trees are developed to minimize prior prediction errors.12 The 
decision trees made by the XGBoost ML model can handle missing values without 
imputation by recognizing their presence when determining the splits. The ML model 
was constructed using the training data (80% of the cohort) and the final model was 
assessed using the unseen testing data (20% of the cohort). 

Traditional analytical model development 
SAS 9.4 was used to build the logistic regression model. Stepwise logistic regression 
model ( slentry=0.3 and slstay=0.35)was developed using the same input parameters 
and the training data as the advanced ML model.13 
 
Imputation in the form of mean or median was used to fill in data where it was 
incomplete. The stepwise logistic regression model was also tested on the 20% test 
data. 

Analysis of ML and logistic regression models performance 
Performance of the advanced ML model and the logistic regression model was 
evaluated by the area under the receiver operating curve (AUROC) in the training and 
testing datasets.14 
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Analysis of feature importance advanced ML model 

Shapley values are calculated using the SHAP Python package to define the effect of 
each parameter on the predictions.15,16 SHAP values are computed for each input 
parameter, representing a measure of effect (positive or negative value) of the input 
parameter on each individual prediction. SHAP methods withhold and include all 
combinations of individual input parameters and then compare differences between 
withheld and included data. Mean value of all possible differences is then used to 
calculate the feature importance. SHAP values are additive explanations of feature 
importance and are presented as log odds (i.e., the logarithm of the odds ratio). SHAP 
values for each set of observations are summed, and converted from log odds to 
probability, which is then output by the model as the prediction. Positive SHAP values 
increase the predicted probability, whereas negative SHAP values decrease the 
predicted probability. 
 
Partial dependence plots (PDP) were created using the SHAP values to analyze the 
bimodal associations between two parameters and the impact on mortality. It shows 
the localized effects of two parameters on the predicted outcome. It also shows 
whether the associations are linear or more complex. 

Analysis of feature important in traditional model 
The summary statistics from the logistic regression model shows a list of the input 
parameters from the training dataset in the order of importance. P-value of <0.05 was 
considered statistically significant. Odds Ratio Estimates (OR) estimate from the 
stepwise logistic regression model shows the association between the risk factor and 
outcome. It represents the odds or the probability of the risk factor altering the 
predicted outcome.17 

Results 

Patient characteristics 

Out of 150,496 unique patients in the MONDO Initiative dataset, 95,142 patients who 
had data recorded across a baseline period of one year and one day were included and 
assessed during a three year follow up period. Figure 8.3 shows a flow diagram of the 
data used in the study. The overall follow up time was an average 2.8 years. Among 
patients who died, the average follow-up time was years. Among those who survived, 
the average follow- up time was 3 years. The majority was male (57.4%) with an 
average age of 61.7 years and 62% of them were diagnosed with diabetes mellitus. 
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Table 8.1 shows the regional spread of the 95,142 patients. Table 8.2 shows the 
descriptive statistics of the numeric input parameters during the baseline period. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8.3 Flow diagram of study data. 
 

ML model performance and feature importance 
The resulting advanced analytical predictive model was tested on 20% of the patient’s 
data, which was withheld and unseen during training. The AUROC of the model on the 
test data with XGBoost ML model was 0.84 on the training data and 0.80 on the test 
data. Figure 8.4 shows the AUROC of the XGBoost ML model. Similarly, Figure 8.5 shows 
the AUROC curve from the logistic regression model. It was 0.73 on the training and 
0.75 on the test data. 
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Table 8.1 Distribution of patients by region. 

Region Count Percentage 
Southern Europe  20178 21.21% 
Eastern Europe  19705 20.71% 
South America  17530 18.43% 
Eastern Asia  12402 13.04% 
Western Asia  9465 9.95% 
Northern Europe  7046 7.41% 
Northern America  4419 4.64% 
Western Europe  2825 2.97% 
Southeastern asia  805 0.85% 
Oceania  731 0.77% 
Other  36 0.04% 
Total Worldwide  95142 100% 

 
 
Table 8.2 Descriptive statistics of numeric input parameters. 

 Count Mean Std Min 25% 50% 75% Max 
Albumin [g/L] 52099 3.78 0.42 1.36 3.54 3.81 4.05 6.00 
NPCR [g/kg/day] 37324 1.00 0.24 0.01 0.92 1.01 1.08 22.64 
Bicarb [mEq/L] 22361 22.41 2.86 2.00 20.67 22.43 24.20 45.00 
Calcium [mg/dL] 43821 8.86 0.64 4.01 8.48 8.84 9.21 14.92 
Creat [mg/dL] 44172 7.40 2.48 0.30 5.67 7.15 8.84 25.00 
CRP [mg/dL] 39576 11.07 16.12 0.10 1.65 5.10 13.35 160.00 
Ferritin [ng/mL] 52340 418.08 257.85 2.00 230.72 370.03 551.40 1650.00 
HCT [%] 38380 34.19 3.62 15.00 32.14 34.39 36.50 53.00 
Phosph [mg/dL] 54362 4.27 1.59 1.00 3.47 4.46 5.27 18.29 
Postweight [kg] 46141 69.95 16.49 22.35 58.51 67.97 78.93 212.12 
Preweight [kg] 46284 71.95 16.73 31.70 60.38 69.96 81.09 214.40 
Potassium [mEq/L] 54151 4.87 0.62 2.15 4.45 4.84 5.26 8.70 
IDWG [kg] 46128 1.99 0.83 0.00 1.43 1.95 2.48 14.38 
WBC [1000/mc] 35527 6.91 2.72 0.00 5.63 6.81 8.13 100.00 
RRF [mL/min] 3168 5.77 5.75 0.00 2.48 4.40 8.00 97.00 
BSI FTM [%] 2297 22.72 10.08 5.06 15.11 21.43 29.04 54.39 
BSI LTM [%] 2308 46.96 6.09 40.00 42.47 45.29 49.70 84.50 
BSI TBW [%] 2345 41.83 5.15 30.11 38.20 41.21 44.84 71.62 
Age [Yrs] 64313 61.73 15.08 18.00 52.00 64.00 73.00 90.00 
BMI [kg/m^2] 18706 25.13 5.53 11.68 21.49 24.22 27.63 83.19 
OH [kg] 2334 1.36 3.11 -14.74 -0.11 1.49 2.90 14.65 

NPCR: normalized protein catabolic rate; Bicarb: bicarbonate; Creat: Creatinine; CRP: C reactive protein;HCT: 
heamtocrit; IDWB: inter-dialytic weight Gain; WBC: white blood cell; RRF: residual renal function; BIS: 
bioimpendance spectroscopy; FTM: fat tissue mass; LTM: lean tissue mass; TBW: total body water; BMI: body 
mass index; OH: overhydration = preweight – normal hydration weight (BIS measurement). 
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Figure 8.4 Area under the curve for XGBoost model. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 8.5 Area under the receiver operating curve(AUROC) for logistic regression model with training and 

test data. 

Important features using SHAP values 

Figure 8.6A shows the magnitude of the SHAP value for the top predictors identified by 
the XGBoost Model in a descending order of importance. Warmer colors on the figure 
shows a higher impact of the parameter in predicting mortality, while cooler colors 
show a the negative (i.e., protective) impact of the parameter on predicting mortality. 
Patients with higher age, lower HCT, lower albumin, lower CREAT, higher CRP, lower 
NPCR, higher IDWG, higher ferritin, higher phosphorous, higher WBC, presence of 
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diabetes, lower potassium, lower BMI, low RRF, lower pre and post weight have a 
higher chance of mortality in the following three years. Similarly, higher CREAT, higher 
HCT, higher NPCR, higher BICARB, lower overhydration, higher BIS measurements of 
FTM, lower LTM and slightly higher TBW have a lower chance of mortality in the 
following three years. Figure 8.6B shows the absolute value of the average SHAP value 
that is the value shows on average how much each predictor impacts the mortality 
prediction either in the positive or negative direction. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8.6A SHAP value plots show the size and direction (more positive=higher risk or more 

negative=lower risk) of each variable’s influence on the outcome for each unique patient on the 
x- axis, with warmer colors representing higher observed values for that measurement, cooler 
colors indicating lower values for that measurement, and gray representing a missing value for 
that measurement. SHAP values are presented in the unit of log odds (i.e. logarithm of the odds 
ratio). 
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Figure 8.6B Absolute value of the average SHAP value shows on average how much each predictor impacts 

the mortality prediction 
 
 
Figures 8.7A and 8.7B show a couple of PDP plots for individual parameters used in the 
model. These plots help understand the interaction of select top predictors in predicting 
mortality among different domains shown in Figure 8.1. Each dot corresponds to an 
individual person in the study. The dot’s position on the x-axis shows the impact that 
parameter has on the model’s prediction for that person. Multiple dots in the same 
position show density. Risk of mortality based on the SHAP value of the parameter on 
the X axis is shown on the Y axis. 
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Figure 8.7 Partial Dependence Plots: Each dot corresponds to an individual person in the study. The dot’s 
position on the x-axis shows the impact that parameter has on the model’s prediction for that 
person. Multiple dots in the same position show density. Risk of mortality based on the SHAP 
value of the parameter on the X axis is shown on the Y axis. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8.7A Partial dependence plots for nutrition related parameters. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8.7B Partial dependence plots for hydration related parameters. 
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The first PDP plot shows the association between a selected nutrition related 
parameter (albumin) and an anemia related parameter (HCT). The graph shows the 
associations between variables, as well as the impact on mortality. Patients with lower 
albumin and lower HCT have the highest risk of mortality predicted as shown by the 
dark red dots on the top left corner of the first subplot Figure 8.7A. Patients with higher 
albumin and higher HCT have the lowest impact on mortality as shown by the cluster of 
light-yellow colored dots on the bottom right corner of the plot. 
 
The second PDP plots show the association between a selected inflammation related 
parameter (CRP) and a hydration related parameter (IDWG) on mortality. Higher CRP 
and higher IDWG have a higher impact on mortality as indicated by the dark red color 
clusters in the top righthand corner of the graph. Patients with lower CRP have lower 
risk of mortality regardless of the IDWG. 

Results from the logistic regression model 

Table 8.3 shows the parameters from the stepwise logistic regression model in a 
descending level of significance along with the odds ratio estimate and 95% confidence 
interval. The results show most of the input parameters other than LTM, FTM, TBW, 
HCT and pre-weight have a statistically significant (p<0.05) impact on the output of the 
logistic regression model. Male gender, higher age, higher levels of CRP, ferritin, 
phosphorous, IDWG, WBC, RRF, LTM, OH and BMI associates with an increased risk of 
mortality in the follow-up period. The assessment between the directionality provided 
by the odds ratio estimates and the SHAP values is presented by the color coding in 
Table 8.3. The odds ratio estimates shown in red font indicate the risk of mortality 
increases with the increasing value of the input parameter in a consistent manner with 
the results shown in the SHAP values from the XGBoost model. The odds ratio estimates 
shown in a blue font indicate the risk of mortality decreases with increasing value of 
the input parameter in a consistent manner with the results shown by SHAP values. The 
odds ratio estimates without any color indicate that the directionality of mortality risk 
in the SHAP value and the logistic regression are not the same. 

Discussion 

In the internationally representative MONDO Initiative cohort of hemodialysis patients 
from dialysis providers throughout 37 countries in 5 continents10, we describe the 
development of a ML model and a traditional statistical model that was suitable for 
classification of a prevalent HD patient’s three- year risk of death. The performance of 
both techniques (AUROC 0.80 for ML model 0.75 for traditional model) was high and 
much better than chance (i.e., AUROC 0.50). Furthermore, due to the inherent ability 
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of the ML modeling technique to account for collinearity between input variables and 
handle missing data, we were able to identify important predictors for death events, 
such as HCT – the third most important prognostic risk factor. Importantly, the 
prediction model used a set of input parameters that is frequently collected in the 
standard care of HD patients by most dialysis providers worldwide. Thus, our proof-of-
concept model and findings are generalizable, and the model may be scalable for 
prognostic decision support in the care of dialysis patients. 
 
There have been other mortality prediction models developed in dialysis patients, 
however, most models have overestimated the probability of death.18 Table 8.4 
references several of these studies along with the size and the geographic distribution 
of the cohort. The AUROC, or the C-statistic, of most models described is lower than the 
AUROC of the advanced ML model described in this paper. There are a couple reports 
on mortality models where the AUROC was comparable with our ML model, however, 
they were tested on considerably smaller cohorts.19,20 A strength of our model is it was 
trained and tested on a large cohort of patients geographically distributed across the 
globe who were treated by multiple providers.10 
 
It is worthwhile to detail the ML modeling technique we used is not based on linear 
relationships for the input variables. This can be advantageous since the method does 
not assume linearity and can avoid bias from u-, j-, and other irregular-shaped 
associations with an independent variable and an outcome, yet the interpretability of 
the coefficients can be difficult since they are reported in log odds. Unlike the ML model 
in this study, traditional modeling models (e.g., logistic regression, Cox proportional 
hazards) frequently assume linearity in relationships and are unable to handle missing 
data. Hence, imputation of missing data becomes necessary like we performed for the 
logistic regression model assessed in our study. Traditional models can be easier to 
interpret with odds or hazards ratios providing the proportion of risk per unit of change 
in the parameter based off an assigned reference point. ML models are best suited for 
complex datasets especially with missing data. 
 
Table 8.3 shows how the important variables identified by each modeling technique. 
Four out of the top five predictors from both models are common and display similar 
directionality. Patients with higher age, lower albumin, higher CRP, and lower 
creatinine have higher risk of mortality in the following three-years. Other studies 
have shown age, albumin and CRP are significant factors in predicting mortality in 
HD patients.21 HCT did not appear significant in the logistic regression model yet was 
the third most important risk factor in the ML model. Anemia is a strong predictor of 
worse clinical and patient-reported outcomes, yet anemia correction has not been 
shown to improve clinical outcomes, except at severely low hemoglobin levels for 
currently available interventions.22,23 As anemia interventions, such as iron deficiency 
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management and erythropoietic stimulating agent prescription, may be linked to 
clinical outcomes regardless of hemoglobin levels, observational analysis of achieved 
hemoglobin levels may lead to important heterogeneity.24-26 Thus, it may be that the 
interaction(s) with other parameters in the traditional models have obscured this 
association. 
 
Table8.3 Summary of step-wise selection and Odds Ratio estimate. 

Step Entered Chi- 
Square 

Significance Odds 
Ratio 

95% Confidence 
Limits 

1 Age 2743.08 <.0001 1.050 1.048 1.053 
2 CRP 901.22 <.0001 1.017 1.015 1.019 
3 Albumin 560.65 <.00001 0.486 0.452 0.523 
4 Creat 367.45 <0.0001 0.835 0.822 0.849 
5 Cdiabetes 431.76 <0.0001 0.555 0.517 0.596 
6 Phosph 190.47 <0.0001 1.129 1.106 1.154 
7 IDWG 129.52 <0.0001 1.255 1.204 1.308 
8 Ferritin   59.04 <0.0001 1.000 1.000 1.001 
9 MaleE   43.28 <0.0001 1.18 1.124 1.239 
10 NPCR   25.82 <0.0001 0.406 0.323 0.511 
11 Bicarb   12.84 0.000 0.970 0.955 0.986 
12 BMI   11.23 0.000 1.030 1.020 1.041 
13 Postweight   33.08 <0.0001 0.993 0.990 0.995 
14 WBC     7.52 0.006 1.018 1.006 1.031 
15 OH 7.2225 0.0072 1.094 1.038 1.154 
16 Potassium 4.0704 0.0436 0.949 0.903 0.998 
17 Calcium 3.9427 0.0471 0.95 0.902 1.001 
18 RRF 3.7162 0.0539 1.016 0.999 1.033 
19 BCM_TBW 1.9393 0.1637 0.956 0.913 1.001 
20 BCM_LTM 1.5422 0.2143 1.046 1.008 1.085 

Red: Risk of mortality increases with the increasing value of the input parameter in a consistent manner with 
the results shown in the SHAP values from the XGBoost model; Blue: Risk of mortality decreases with the 
increasing value of the input parameter in a consistent manner with the results shown in the SHAP values 
from the XGBoost model; Black: The direction of the risk of mortality between the logistic regression model 
and the XGBoost model is not consistent. 
 
 
Fluid related parameters identified by the ML model were IDWG, OH and TBW. OH and 
IDWG were statistically significant in the conventional logistic regression model and had 
similar direction as the advanced ML model. Patients with higher IDWG and higher OH 
had higher risk of mortality, thus emphasizing the essential role of fluid control in 
dialysis. The traditional model also suggests that the TBW is associated with lower 
mortality, however, it is important to note that this is not an important predictor 
(p=0.1637) in the logistic regression model. The ML model on the other hand shows 
TBW is the 22nd most important factor suggesting that it may be important for a select 
group of patients where the data is available. So having a TBW measurement itself may 
decrease the risk due to a more targeted therapy being delivered with the BIS. We see 
similar results for all other BIS parameters, where high OH slightly increases the risk of 
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death, but low OH is highly protective for those who have the data. For all these BIS 
measures, missing values are in the center suggesting they do not affect the risk and are 
missing at random. 
 
Our ML model also showed patients with higher BMI had lower risk of mortality, which 
is consistent with previous findings.27,28 Surprisingly, our logistic model found opposite 
signals with a small positive association in the risk of mortality with higher BMI. There 
were also contrasts between modeling techniques with higher RRF, where the ML 
model showed higher RRF was protective as expected, while the traditional model 
showed the risk of mortality slightly increased with increasing RRF. This result is likely 
the secondary to the imputation of missing values in traditional models. Advanced 
imputation techniques may have resulted in a different outcome. The inclusion of 
multiple covariates in a model can lead to biases if each associated parameter is 
interpreted causally often referred to as Table 8.2 fallacy.29 Thus, caution is warranted 
in the interpretation of specific associations in our models, since the goal of our 
analysis is predictive, rather than causal.30 For instance, inclusion in the model of any 
downstream variable in a causal pathway starting with RRF can potentially lead to 
collider bias, which can reverse the direction of expected associations.31 
 
Table8.4 Summary of other mortality prediction models in HD patients. 

Author ML model Number of patients/region AUROC on test data 
Siga et al.35 Bayesian Network 9010 (Europe) 0.78 
Jung et al.36 Cox Proportional Hazards 

Regression Analysis 
3309 (Korea) 0.74 

Zhu et al.37 Cox Model 173 (China) 0.79 
Wang et al.38 Long short Term Memory 

Autoencoder 
1200 (China) 0.57 

Tapak et al.39 Randon Survival Forests 785 (Iran) 0.80 
Thijssen et al.40 Logistic Regression 6838 (North America) 0.72 
Hemke et al.41 Cox Regression Analysis 1835 (Netherlands) 0.78 
Doi et al.20 Logisitc Regression 688 (Japan) 0.83 
Floege et al.42 Cox Model 11508 (Europe) 0.73 
Cohen et al.19 Cox Model 512 (North America) 0.80 
Holme et al.43 Cox Model 868 (Region Not Available) 0.72 
 
 
The partial dependence plot created using the SHAP values show if bi-modal 
interactions between parameters exist in more than one domain. Although this paper 
presents only two of these relations amongst the important domains from the top 
predictors common to both the models, other interactions between input parameters 
from other domains could be evaluated. Another limitation of the model is that it did 
not study the impact and interaction of the cardiovascular parameters such as blood 
pressure measurements. There may be many other potentially important parameters 
including comorbidity burden that could be evaluated, and optimization for specific 
parameters more readily available at specific providers could be considered. This model 
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has only been tested on HD patients and may not be applicable to patients who are on 
peritoneal dialysis or other forms of home or in-center dialysis. Albeit death events 
were recorded during the provision of dialysis care worldwide in MONDO, the database 
did not capture data on patients who transitioned to other kidney replacement 
modalities (e.g. peritoneal dialysis, transplant), left the provider, or became lost to follow 
up and this could have the potential to introduce bias in the classification of survival. 
The model currently predicts death in the 3 years following the baseline period, 
however, the model could be designed to predict death at various other time periods. It 
is also important to note that in this analysis we have not considered interactions 
between the input parameters when developing the traditional models, it is possible 
that the performance of the traditional may have improved if we considered these 
interactions. Advanced ML model automatically disentangles these complexities of the 
relationship between input parameters. Many traditional models, when compared to 
ML models, assume linearity, and avoid known interactions. Thus, we may not be 
comparing the best traditional method with ML technique.32 ML models are often 
considered a black box that are difficult to interpret how the model arrives at its 
prediction.33 Since the goal of this paper is to study the risk factors associated with 
mortality and to compare the outputs of the two modeling techniques, the ML model 
was not optimized for performance using hyperparameter tuning and this could yield 
further improvements.34 If fully optimized and implemented in clinical practice, ML 
models could provide a suitable method to help identify a patient’s prognosis and drive 
pre-emptive interventions and/or care planning efforts. Additionally, MONDO database 
is undergoing an update with most recent data and additional data points being 
captured. This proof-of-concept model can be scaled to adapt to additional input 
parameters or different follow-up time periods. 

Conclusion 

This paper demonstrates the successful use of ML and traditional statistical techniques 
in predicting mortality on a large cohort of international HD patients using clinical 
parameters collected consistently across regions. It shows how the risk factors compare 
between the ML techniques and conventional modeling techniques. If implemented in 
clinical practice, such models could be used to provide pre- emptive care for HD 
patients. 
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Discussion 

This thesis demonstrated several applications of how Artificial Intelligence (AI) and 
digital technologies can be used in clinical care of End Stage Kidney Disease (ESKD) 
patients. Advances in computing, mathematics and statistics have resulted in the 
evolution of AI methods. With advancing technology and Electronic Medical Records 
(EMR) for ESKD patients, large volume of clinical and lab data is being collected. AI 
techniques can allow us to derive small signals from large volumes of data.  
 
We introduce some high-level concepts related to AI in chapter 2, we also look at 
several examples of how AI has been implemented in caring for patients with kidney 
disease. In chapter 3, we demonstrated that a Machine Leaning (ML) driven decision 
support model used to direct care in outpatient dialysis clinics participating in a pilot 
program Dialysis Hospital Reduction Program (DHRP) was associated with lower 
annualized all-cause hospitalization rates compared to matched control clinics. ML 
model used historical patient data to identify patients who were at high risk of at least 
6 hospitalizations in the following 12 months. There are no other examples of AI/ML 
based hospitalization risk models being used to direct care in quality improvement 
efforts in dialysis care. In general, the clinical application of AI in dialysis is scarce with 
only one report identified in a recent bibliometric study on the global evolution of AI in 
healthcare.1,2 The all-cause hospitalization risk models implemented in the DHRP pilot 
assisted care teams in identifying the subset of individual patients in their clinic at the 
highest risk of hospitalization and thus prioritizing personalized care for these patients 
to improve outcomes. Other areas of healthcare frequently demonstrate the use of 
risk-based prediction models to identify patients needing intervention.3,4 A major 
challenge however is to integrate the risk score in regular clinical workflow of clinical 
staff performing interventions on the output of the model. 
 
In chapter 4 and chapter 5 we presented examples of advancing digital technologies to 
make ML based decision support tools available on demand at the point of care. In 
chapter 4 we propose a new proof of concept architecture to run ML models in real 
time. The findings from our proof-of-concept analysis suggest the potential for real-
time reporting and prediction of treatment blood volume profiles that are associated 
with an increased risk of intra-dialytic symptoms and would subsequently be amenable 
to intervention. Furthermore, the architectural framework demonstrated in this paper 
can be used for making real-time predictions of other events during dialysis treatments. 
Making real-time predictions can provide proactive decision support to clinicians and 
nurses at the point of care during dialysis treatment. A practical implication for the 
present would be that, if nurses and clinicians are alerted to the risk of a drop in the 
blood volume 15 minutes prior to the RBV decreasing at rate of at least -6.5% per hour 
during a dialysis treatment, they would have sufficient time to intervene and adjust the 
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ultrafiltration rate in order to prevent that patient from entering the risk zone for 
intradialytic symptoms like intra dialytic hypotension (IDH).5 Prior studies have been 
attempted to monitor hematocrit and reduce intradialytic symptoms, however, they 
were not used in standard practice because of the difficulty in interpreting the Optical 
Sensing Device (OSD) outputs updated every 10 seconds.6,7 The ML model presented in 
this analysis enhances the findings and delivers them in a comprehendible way. Near 
real time analytics is crucial for care in emergency rooms and intensive care units (ICU) 
where decisions need to be made faster. Other attempts to develop real time analytics 
architecture have been made in the field of ICU care using a different analytics 
platform.8 
 
In chapter 5 we studied the clinical outcome of application of the digital technology on 
a cohort of patients treated with peritoneal dialysis (PD). In a large population of 
patients on PD who registered online for the Patient Hub Remote Treatment 
Monitoring (RTM) application, we found that higher RTM use was associated with lower 
hospitalization and sustained technique failure rates. These results further substantiate 
prior findings suggesting that employing RTM systems in PD patients may reduce 
hospitalization rates9,10, and reveal frequent RTM use may also have the potential to 
increase sustained use of PD as a modality. RTM has also shown that it can reduce 
healthcare utilization and associated costs in a simulation study for PD patients.11 Given 
PD patients are typically younger, it would be expected that there might be a larger 
proportion of PD patients with access to the internet. Under this assumption, RTM 
might have the potential to be used in a larger proportion of the PD population, and as 
smartphone and computer technology advances and becomes more universally 
affordable, it could become a conducive option for treatment monitoring for most 
patients. There are several examples in other fields of healthcare where RTM has 
shown to improve patient compliance and outcomes.12,13 
 
In chapter 6 and chapter 7, we studied the application of ML concepts for ESKD 
patients during the Coronavirus Disease (COVID) pandemic. We first observed unique 
temporal trends in various clinical and laboratory parameters among Hemodialysis (HD) 
patients who tested positive versus negative for SARS-CoV-2 infection. Ultimately, 
these trends helped to define the physiological disturbances that characterize the onset 
and course of COVID-19 in HD patients. The disturbances in various parameters 
commonly started several days before presentation and were more pronounced in 
patients who tested positive for COVID-19. We identified statistically distinct daily 
changes in vital signs, inflammatory, and nutritional markers across the weeks before 
presentation among patients who tested COVID-19 positive versus negative, as well as 
unique differences between groups on the date of suspicion/testing. We used these 
findings to successfully develop a ML prediction model using retrospective data that 
appears to have suitable performance in identifying HD patients at risk of having an 
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undetected SARS-CoV-2 infection that is identified in the following ≥3 days. The top 
predictors of a patient having a SARS-CoV-2 infection were the change in interdialytic 
weight gain from the previous month, mean pre-HD body temperature in the prior 
week, and change in post-HD pulse from the previous month. Our analysis augmented 
previous findings by showing quantitative trends in key parameters during the period 
before and after presentation with COVID-19. Digital technologies have played a critical 
role in diagnosing, monitoring, and managing COVID-19 remotely.14,15 Individual 
predictions can be further used to identify the risk level for dialysis clinics based on 
proportion of patients classified with an undetected SARS-CoV-2 infection. We 
proposed a conceptual workflow for the application of the ML model predictions to 
assist with directing care to individual patients and assisting with directing resource 
allocations to clinics. It is important to note that this analysis was done in the early 
stages of the pandemic before the various SARS-CoV-2 variants existed and 
vaccinations were available. However, the framework for intervention presented in the 
paper can be expanded to current situation.  
 
In chapter 8, we developed a mortality prediction model based on a large 
internationally representative cohort of hemodialysis patients from dialysis providers 
throughout 37 countries in 5 continents.16 Importantly, the prediction model developed 
here used a set of input parameters that is frequently collected in the standard care of 
HD patients by most dialysis providers worldwide. We describe the development of a 
ML model and a traditional model that was suitable for classification of a prevalent HD 
patient’s three-year risk of death. We assessed the risk factors from both techniques 
and compared the output of the advanced ML model to output from the traditional 
model that is generally well understood in the clinical community. Traditional statistical 
and advanced ML techniques could be used in a complementary way. It is a widely 
accepted practice to initially build a baseline model using traditional statistical 
techniques and subsequently use that model to benchmark against advanced ML 
models to compare performance.  
 
XGBoost is a widely adopted advanced modeling technique and is also used in many ML 
models presented in this thesis.17 It is based on building several decision trees with a 
random sample training data and a series of thresholds that split the parameters to 
maximize information gain. New decision trees are created iteratively to minimize prior 
prediction errors. It can handle collinearity between input parameters and handle 
missing data for such parameters by recognizing the missingness when determining the 
splits. 
 
Figure 9.1 shows a vision of how clinical care in chronic kidney disease (CKD) and ESKD 
can transition from a reactive care to a proactive care. Traditionally, patients seek care 
from nephrologist when they see a drop in their kidney function or when they 
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unexpectedly have medical conditions that require dialysis. The clinicians make several 
decisions for the patients along the care continuum on a need basis. The patients who 
transition to dialysis perform dialysis mostly three times a week and use resources such 
as a hospital setting when needed.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9.1 Future of ESKD and CKD Care. 

 

 

In a proactive care setting the patient is at the center of the care and has full control of 
his or her health. The patient is surrounded by digital applications, remote monitoring 
technologies and artificial intelligence applications helping the clinicians make proactive 
decision for the patient and stay in constant contact with the patient through their CKD 
and ESKD journey. 
 
AI and digital applications in other fields of healthcare have made some significant 
advancements in measuring outcomes of clinical applications in the last couple of 
years. For example, a review paper looked at 21 studies using AI based systems and 
robotic applications in managing advanced stages of Parkinson’s disease. The studies 
used AI and digital technologies for autonomous management of pharmacologic 
therapy, home-based telemedicine systems and robot-assisted gait training systems. It 
was shown that there was significant evidence demonstrating that current AI-based 
technologies are feasible for improving quality of care and reducing cost of patients 
with advanced stages of Parkinson’s disease.18 
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Similarly, for hospitalizations related to Acute Myocardial Infarction, a non-randomized 
controlled trial was conducted at 4 US hospitals between 2015 to 2019. Digital health 
interventions such as medication reminders and activity tracking after hospitalization 
was integrated into smartphones, smart watch, and blood pressure monitors. It was 
shown that such digital health intervention may be associated lower risk of all-cause 
unplanned 30-day readmissions.19 
 
The COVID-19 pandemic has shown us that remote technologies and digital 
applications are of high importance in caring for patients especially the elderly and 
vulnerable population. One important example of telemonitoring in cardiology include 
the use of implanted devices such as pacemakers, defibrillators, and wearable sensors 
for arrythmia detection and to remotely monitor patients with heart failure.20,21 
 
In another randomized controlled trial, patients with inflammatory bowel disease were 
randomly assigned to care via a telemedicine system that monitors and registers 
disease activity. It was observed that, telemedicine reduced outpatient visits and 
hospital admissions compared with standard care.22 
 
These examples support the fact that AI and digital technologies have the potential to 
change care for patients in the field of nephrology. 

Limitations and Strengths 

Limitations 
In all applications presented, it is important to note that the clinicians should use their 
medical judgement to make decisions with assistance from ML tools. It is also 
important for clinical teams to understand the outputs generated and consider the 
limitations of the models in the design of directed assessments and interventions. ML 
based risk classification and other clinical decision support tools are never perfect, 
there will be instances when the ML model will predict incorrectly, so teams developing 
interventions using ML models need to be aware of this limitation. Furthermore, 
incorrect predictions should have a feedback mechanism to ML models to improve 
their accuracy. The effectiveness of the prediction models depends heavily on the 
ability to use insights to make clinical interventions. Also, in cases where the model has 
predicted incorrectly, a precedent of accountability needs to be established. ML models 
should be transparent and traceable.  
 
True performance of ML models can only be demonstrated after conducting 
randomized clinical trials (RCT), whereas none of the applications presented in this 
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thesis were studied with randomized clinical trials. Creative design of pilots that include 
cluster randomization during rollout may be able to strengthen results in a randomized 
way in practice of medicine as opposed to hypothesis driven tests performed in formal 
RCTs.23 
 
AI and digital solutions must also follow ethical guidelines and consider at the time of 
conception whether software programs are medical devices that require formal 
regulatory pathways and trials.24,25 Ethical and legal governing bodies should be setup 
to evaluate and monitor the impact of the AI and digital applications on the patient and 
the society at large.26 We should consider what aspects of care are important for the 
patient and how it impacts them psycho-socially when implementing AI and digital 
solutions.27 Data security is also a major concern with data collected via digital 
applications. There should be checks in place to ensure health data is not sold to third 
parties. 
 
It is critical that the predictive models use data collected routinely in standard of care 
or it will likely produce models that are biased by indication. Teams developing and 
using AI solutions should be aware of this limitation. Thorough evaluation of the input 
data variables should be conducted as a key step in the selection of outcomes and the 
process of building predictive models. 
 
We should be cautious about generalizing the outcomes for ESKD patients who use 
digital technologies and applications at home as it may not be true representative of 
the entire population as they may be healthier and hence technology savvy.  
 
When comparing traditional methods with advanced ML techniques, it is essential to 
consider interactions between the input parameters. It is possible that the performance 
of the traditional model may improve if we considered these interactions, we may not 
be comparing the best traditional method with advanced ML technique.  
 
When models are implemented in clinical practice it is important to evaluate if the 
model is making a difference on the clinical outcome of the patients. Most ML models 
are built on retrospective data and such models must be tested prospectively and re-
trained on newer data periodically. 
 
Lastly, knowledge about applications of AI and digital applications in nephrology is 
limited, we must continue to bridge the gap between medical and analytical insights 
through educational programs for clinicians. 
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Strengths 

Most of the AI and digital applications presented here were developed and tested using 
large cohorts of ESKD patients that are mostly representative of international dialysis 
populations. All applications use advanced models to gain insights about ESKD patients. 

ML models that have the potential to provide an intelligent and timely triage of 
additional resources to proactively assist in directing medical decision making and 
personalized care for ESKD patients and thus improve quality of life/clinical outcomes 
of patients. With access to large amounts of data collected in EMR and from the dialysis 
machines, ML models can harness this vast amount of data to personalizing dialysis 
treatments for ESKD patients.  

Cloud computing resources and digital applications provide seamless tools to build, 
analyze, and integrate real-time predictive models without investing in many hardware 
and software resources on premise. This allows for a secure and cost-effective way of 
building predictive models when resources are limited. These applications can also be 
scaled on-demand, where support can be expanded from tens to hundreds of clinics 
seamlessly. However, such cloud resources should be compliant with local regulations 
like GDPR and HIPAA. Data stored on such cloud platforms should be anonymized and 
independent security/privacy risk assessments may be warranted to confirm 
anonymization strategies. 

The flexible ability of the RTM like digital applications allow patients to enter records 
when it works the best for them during/around their treatment. Connected health 
technologies also provide the ability for clinical staff to review patients’ entries around 
their daily workflows and intervene if there are any exceptions. Digital applications 
allow patients to take control of their care, becoming an active participant and creating 
synergies with their clinical care teams. 

In summary, applications of AI and digital technologies in caring for dialysis patients 
have several advantages and disadvantages. Following Table 9.1 provides a summary of 
the advantages and disadvantages. 

Conclusion 

Advancements in AI and digital applications have the potential to change the way care 
is provided for patients in nephrology. It should be viewed as a decision support tool to 
extend human insight and not something that will replace human medical decision 
making. 
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Table 9.1 Advantages and Disadvantages of using Digital Technologies and AI Enabled Applications. 

Advantages Disadvantages 
Can be used to develop proactive care for patients Not all patients may have access to or understand 

how to use and interpret advanced digital technology 
and applications 

Patient is at the center of the treatment and can help 
empower patients to make decisions 

Not all patients may be open to embracing change in 
how they are cared 

Can help with better adherence and clinical to patient 
communication 

Can be perceived as a threat to the health care 
professionals 

Digital can AI applications can help with personalized 
treatment plans 

If AI applications are not trained optimally, it could 
result in some bias towards certain population 

Can help reduce cost of care in the long run Requires lots of historical data and the initial cost to 
setup may be high 

Can help with real time analysis of the data captured Some diagnosis may be wrong 
 

Advanced digital technologies can integrate analytics 
at the point of care in real time 

With advance in technology there are security 
concerns with transmitting and storing data digitally 
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Summary 

Healthcare around the world is under tremendous pressure, with rising costs of care 
and limited resources. This is also true in providing care for End Stage Kidney Disease 
(ESKD) patients. Coronavirus Disease (COVID) pandemic has added further burden to 
these vulnerable patients and clinical care teams caring for these patients. It is 
therefore particularly timely to look for ways to cut the cost and improve care with the 
help of technology driven solutions. With rise in healthcare data collected in Electronic 
Medical Records (EMR), we can use advancing technologies to harness this data. 
Traditionally computer-based algorithms in health care include a set of rules encoding 
expert knowledge on medical decisions. These rules are subsequently applied to draw 
conclusions about specific clinical scenarios. Artificial Intelligence (AI) algorithms, 
however, strive to learn from the data without concrete rules. In Chapter 2 We 
summarized high level concepts related to AI and presented several areas where AI has 
been applied in the field of Nephrology. 
 
While there are many articles in literature that present how AI can be applied in small 
cohort of patients, there are very few articles where outcomes are measured 
retrospectively in a large clinical application. Dialysis Hospitalization Risk Pilot (DHRP) 
application presented in Chapter 3 is one such example. In this retrospective analysis of 
the clinical application, we found ML directed assessment and personalized 
interventions in the DHRP, were associated with lower all-cause hospitalization rates 
compared to control clinics. The DHRP findings detail how such applications can reduce 
the cost of care and should be considered by payors, providers, and clinicians. 
 
In the future, AI application will be more impactful if such models are run in real time as 
the patient is receiving dialysis. This proof-of-concept analysis demonstrated in Chapter 
4 shows the potential of the creation and deployment of a real-time predictive model 
based on patient and dialysis treatment data. 
 
The success of AI in the future will also depend on the data beyond the data collected 
in traditional EMR. Data collected from wearable devices, genomic data and other 
digital applications will be very important in deriving additional insights. Our findings in 
Chapter 5 provide an example of one such digital application that can be used by 
Peritoneal Dialysis (PD) patients at home. We conclude frequent use of a Remote 
Treatment Monitoring (RTM) application associates with less hospital admissions, 
shorter hospital length of stay, and lower rates of sustained technique failure. 
 
Similar to identifying patients at high risk of hospitalization, AI can also help with 
identification of high risk of other events such as SARS-CoV-2 infection and mortality. In 
Chapter 6 and 7 we showed how such models can be developed using the data 



 

190 

collected in EMR and utilized during the Coronavirus Disease Pandemic. In Chapter 8 
we demonstrated the successful use of AI in predicting mortality on a large cohort of 
international HD patients. 
 
AI has the potential to assist clinical teams in improving the quality of life of ESKD 
patients and reduce the overall cost of care. However, factors such as clinical 
effectiveness of an AI solution, and accountabilities in case of error, need to be 
carefully considered before implementing such solutions. Furthermore, policies and 
regulations need to evolve to guide the development of AI at an acceptable scale. Most 
importantly, the value of an AI solution to effectively deliver better outcomes needs to 
be demonstrated to patients, physicians, and providers to foster their trust. 
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Valorization 

We showed several examples of how data collected in Electronic Medical Record (EMR) 
can be utilized to build applications for patients with kidney disease. Artificial 
Intelligence (AI) techniques can allow for large datasets to be leveraged with minimal 
efforts. We have shown several examples in this thesis of how such applications can be 
developed and implemented at the point of care for End Stage Kidney Disease (ESKD) 
patients. AI and digital applications can be developed and integrated within EMR caring 
for ESKD as well as Chronic Kidney Disease (CKD) patients.  
 
From a patient’s perspective, AI based applications can help provide proactive care by 
identifying problems before they occur throughout their journey as a CKD or ESKD 
patient. Digital applications keep the patients engaged in their personal care. Further, 
digital applications and AI models can be developed to incorporate genomic. Proactive 
and personalized care can improve the overall quality of life for ESKD and CKD patients. 
As shown in chapters 3 and 5, AI models can reduce health care resource utilization and 
remote monitoring applications can prolong the length of stay for peritoneal dialysis 
patients. Additionally, timing of when the predictions are made and how they are 
integrated in the clinical workflow is of utmost importance, such frameworks have been 
discussed in chapters 4 and 7. 
 
From a dialysis provider’s perspective, offering proactive and personalized care can 
help lower the overall cost of care. AI based risk models can be used to negotiate 
contracts with governments, private insurance companies and providers by identifying 
high risk ESKD patients and designing cost saving clinical interventions around such 
high-risk patients. In the United States, ESKD Seamless Care Organization (ESCO) was 
such an attempt to allow nephrologists, dialysis providers and other partners to test a 
new care delivery paradigm aimed at improving clinical outcomes and patient 
experience under a shared savings structure. 
 
Lastly, from a clinician’s perspective, the AI and digital applications can be viewed as a 
decision support tool that will help them guide their clinical decisions. It is not meant to 
replace the clinical judgement of a medical professional; however, it is meant to aid 
them in the process of providing care. AI applications can identify patterns in vast 
amounts of data and derive insights that are not often comprehendible to a human 
brain. If successfully adopted in medical practice, this can reduce the time it takes to 
care for patients. Thus, such applications have the potential to help the clinicians and 
reduce their overall burn out and turn over. 
 
In summary, AI and digital applications harness vast amounts of clinical data that is 
currently being collected across EMRs. Mining clinical data using advanced method and 
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AI application can help improve communication, make smarter decisions, and improve 
the overall efficiency in providing care for patients suffering from kidney disease.  
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