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Approximately 35% of rapeseedmeal (RSM) dry matter (DM) are carbohydrates,

half of which are water-soluble carbohydrates. The cell wall of rapeseed meal

contains arabinan, galactomannan, homogalacturonan, rhamnogalacturonan

I, type II arabinogalactan, glucuronoxylan, XXGG-type and XXXG-type

xyloglucan, and cellulose. Glycoside hydrolases including in the degradation

of RSM carbohydrates are α-L-Arabinofuranosidases (EC 3.2.1.55),

endo-α-1,5-L-arabinanases (EC 3.2.1.99), Endo-1,4-β-mannanase (EC

3.2.1.78), β-mannosidase (EC 3.2.1.25), α-galactosidase (EC 3.2.1.22),

reducing-end-disaccharide-lyase (pectate disaccharide-lyase) (EC

4.2.2.9), (1→ 4)-6-O-methyl-α-D-galacturonan lyase (pectin lyase) (EC

4.2.2.10), (1→ 4)-α-D-galacturonan reducing-end-trisaccharide-lyase

(pectate trisaccharide-lyase) (EC 4.2.2.22), α-1,4-D-galacturonan lyase

(pectate lyase) (EC 4.2.2.2), (1→ 4)-α-D-galacturonan glycanohydrolase

(endo-polygalacturonase) (EC 3.2.1.15), Rhamnogalacturonan hydrolase,

Rhamnogalacturonan lyase (EC 4.2.2.23), Exo-β-1,3-galactanase (EC

3.2.1.145), endo-β-1,6-galactanase (EC 3.2.1.164), Endo-β-1,4-glucanase

(EC 3.2.1.4), α-xylosidase (EC 3.2.1.177), β-glucosidase (EC 3.2.1.21)

endo-β-1,4-glucanase (EC 3.2.1.4), exo-β-1,4-glucanase (EC 3.2.1.91),

and β-glucosidase (EC 3.2.1.21). In conclusion, this review summarizes the

chemical and nutritional compositions of RSM, and the microbial degradation

of RSM cell wall carbohydrates which are important to allow to develop

strategies to improve recalcitrant RSM carbohydrate degradation by the gut

microbiota, and eventually to improve animal feed digestibility, feed e�ciency,

and animal performance.
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rapeseed meal, animal performance, cell wall polysaccharides, carbohydrates, gut

microbial degradation
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Introduction

The main ingredients of animal feeds are plant
carbohydrates, which consist of more than 70% of dry matter
(DM). Plant carbohydrates can be classified as non-structural
carbohydrates (low molecular weight sugars, oligosaccharides,
and storage polysaccharides) and structural polysaccharides
(non-starch polysaccharides) (1). Non-starch polysaccharides
(NSP) cannot be broken down by endogenous digestive
enzymes, nor be absorbed in the upper gastrointestinal tract
(GIT). However, they can be (partly) degraded by the gut
microbiota in the large intestine, and absorbed by the host
in the form of short-chain fatty acids (SCFA), in this manner
contributing to additional energy extraction from the diet.
In addition, NSP may affect the digestion of other nutrients
by the means of physical hindrance or physiological changes
in the gut, such as increased digesta viscosity (2). Thus, it is
vital to understand the NSP composition and structure of feed
ingredients to improve animal feed efficiency.

Rapeseed meal (RSM), a byproduct of rapeseed oil
production, is not only a suitable protein source but also
a potential energy source as animal feed. Non-structural
carbohydrates make up ∼3–5% of the DM. Meal production
processes could affect fiber production from RSM. These
include expeller pressed (rapeseed oil is physically extracted
using heat), cold pressed (rapeseed oil is physically extracted
without heat treatment) and solvent extraction (rapeseed oil
is extracted from the meal by physical expeller extraction
followed by solvent washing). Previous research showed that
expeller-pressed meal had more crude fiber compared to
the cold-pressed meal (3). Another research demonstrated
that solvent-extraction meal had more neutral detergent
fiber and acid detergent fiber compared to the cold-
pressed meal (4). Non-starch polysaccharides constitute
20–40% of RSM (5, 6), which are represented by pectic
polysaccharides (homogalacturonan, rhamnogalacturonan I,
arabinan, galactomannan, and arabinogalactan), hemicelluloses
(xyloglucan and glucuronoxylan), and cellulose (7). Reports
show that the NSP can only be degraded for 3–6% in chickens
(5, 8, 9), and around 58–68% in pigs. This is rather low
compared to other NSP-rich feed ingredients, such as sugar beet
pulp (∼85% of NSP is degraded by pigs) (1). Knowledge about
the relationship between the chemical structure of NSP and GIT
degradation is scant.

Plant cell walls are composed of a primary and a secondary
layer, which are both built from polysaccharides, lignin,
and protein. Polysaccharides contribute the most to the cell
wall composition. The primary cell wall of RSM contains
pectin, cellulose, and xyloglucan. The cellulose microfibrils are
interlinked with xyloglucan via hydrogen bonds forming a stiff
network (10). Pectins are linked to each other and cross-linked
with (Hemi)cellulose (11, 12). In the secondary cell wall of

RSM, the main carbohydrates are 4-o-methyglucuronoxylan,
xyloglucan, and cellulose (13). This review aims to provide an
overview of the carbohydrate composition of RSM, as well as the
microbial degradation of RSM. Rapeseed derives from several
species belonging to the genus Brassicaceae. In the current
review, B. napus is discussed.

Nutritional characteristics of RSM
carbohydrates

Carbohydrates in rapeseed meal (B. napus) are mainly
pectins and (Hemi)celluloses and comprise 35–36% of the
RSM dry matter (DM) (7, 14). The common feedstuff analysis
shows commercial RSM contains 12.1% crude fiber and
34%nitrogen-freee extract (NFE) (Table 1). Carbohydrates of
RSM can be categorized into non-structural carbohydrates and
structural carbohydrates: a portion of the NFE is non-structural
carbohydrates, whereas the crude fiber and the remainder of
the NFE are structural polysaccharides. The composition of the
different categories of RSM carbohydrates is displayed in Table 1.

Non-structural carbohydrates

The non-structural carbohydrates in RSM are comprised
of low molecular weight sugars, oligosaccharides, and storage
polysaccharides (Figure 1).

Low molecular weight sugars

Lowmolecular weight sugars mainly are sucrose (2.3–2.9%),
fructose (0.05–0.16%), and glucose (0.05–0.16%) (15).

Oligosaccharides

The primary oligosaccharides found in RSM are raffinose,
stachyose, galactinol, and Myo-inositol. Of those, stachyose
has the highest concentration (0.4–0.5%), followed by raffinose
(0.05–0.16%), galactinol (0.1%), and Myo-inositol (0.1%) (6).

Storage polysaccharides

Only low concentrations of storage polysaccharides are
present in RSM. The primary storage polysaccharide is starch.
The starch content of the seed approaches 50% during early
development, but starch almost completely disappears when
energy stores are converted into oil as the seed matures. Rommi
et al. (14) reported that starch concentrations found in the
intact seed were the same as dehulled rapeseed press cakes
(0.2% of DM), while the starch content of canola meal was
up to 2.5% of DM (17). Starch granules are comprised of two
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main macromolecules: amylose and amylopectin. Amylose is a
linear polymer consisting of α-1,4-linked D-glucose units (GU)
and includes 500–600 GU in its native form, which can be
subdivided into 1–20 chains. Amylopectin is a large branched
macromolecule (molecular weight 107-109 kDa), with ∼5% of

TABLE 1 Carbohydrates composition of rapeseed meal (oil-free dry

matter)a.

Component, % RSM

Crude fiber 12.1

Ether extract 3.8–4.1

Acid detergent fiber 17.3

Neutral detergent fiber 22.7

Lignin 2.6

Non-structural carbohydratesb 3.2

Structural carbohydratesc 29

Nitrogen free extract 34

Monosaccharides composition, mol %

Glucose 40

Arabinose 17

Galactose 10

Xylose 9

Fructose 1

Mannose 2

Rhamnose 2

Uronic acid 20

Water-soluble carbohydrates 18.7

Monosaccharides and sucrose 16.7

Polysaccharides 2.0

Insoluble carbohydrates 15.8

Carbohydrate total 34.5–36

aAdapted from references (7, 14–16).
bFructose, glucose, galactose, sucrose, galactinol, raffinose and stachyose.
cPectins, cellulose residue, amylose, arabinan, arabinogalactan, xyloglucan.

its total linkages consisting of β-1,6-linked GU plus a large
number of short α-1,4-linked linear GU chains (12–70 GU) (18).

Structural polysaccharides

The largest part of the RSM carbohydrates is made
up of structural polysaccharides (Figure 1). These include
cellulose, hemicellulose (xyloglucan and xylan), and pectic
polysaccharides (homogalacturonan, rhamnogalacturonan I,
arabinan, and arabinogalactan).

Polysaccharides composition

RSM contains 34.5% NSP of its DM, and RSM is
high in glucosyl (40 mol%), arabinosyl (19 mol%), and
uronyl residues (18 mol%) (7, 19). Water-soluble and water-
insoluble carbohydrates comprise 18.7 and 15.8% of the total
carbohydrates content of RSM, respectively (Table 1). Water-
soluble carbohydrates mainly contain glucosyl (64 mol%) and
some galactosyl residues (17 mol%) (7), while water-insoluble
carbohydrates are mainly glucosyl (32 mol%), arabinosyl (25
mol%), uronyl (18 mol%), and xylosyl residues (12%) (Table 2).

The detailed monosaccharide constituent compositions of
the Water unextractable solids (WUS), which were sequentially
extracted with (i) chelating agent (ChSS) to release calcium-
bound pectins, (ii) dilute alkali (DASS) to release pectins
tightly bound to hemicellulose, (iii) 4, and (iv) 6 molar
alkali (4 MASS and 6 MASS) to release hemicelluloses,
leaving cellulose that remains in the residue (RES), are
presented in Table 2. The composition of the glycosidic residues
indicates the presence of α-1,5-linked arabinan branched at
O-2, galactomannan, homogalacturonan, rhamnogalacturonan
I, type II arabinogalactan, glucuronoxylan, XXGG-type and
XXXG-type xylo(X)glucan(G), and cellulose in RSM (7, 14,
20). Arabinan consists of a linear backbone of α-L-1,5-linked
arabinose (Ara) units with α-1,2-linked or α-1,3-linked Ara
units (Figure 2). Galactomannan has a backbone of β-1,4-linked

FIGURE 1

Schematic representation of carbohydrates presented in rapeseed meal.
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TABLE 2 Molar sugar composition of RSM fractionsa.

Molar composition (mol%)

Rha Ara Xyl Man Gal Glc UA

RSM 2 19 8 6 10 40 15

WSS Trb 7 1 7 17 64 5

WUS 1 25 12 4 8 32 18

CHSS 2 15 4 2 4 3 71

DASS Tr 44 6 3 10 9 29

4MASS Tr 17 20 15 13 30 5

6MASS 1 29 22 2 13 23 11

RES 4 10 6 4 6 40 20

aAdapted from reference (7).
bTrace amounts.

mannose units, substituted with α-1,6-linked galactose units
(Figure 1). Homogalacturonan (HG) is the simplest form of
pectin, consisting of a linear chain of α-1,4-linked galacturonic
acid, and part of its carboxyl groups esterified with acetyl
or methyl groups (Figure 2). Rhamnogalacturonan I (RG-
I) consists of alternating rhamnose (Rha) and galacturonic
acid (GalA) residues [-,2)-α-Rha-(1,4)-α-D-GalA-(1,-], which
is highly ramified with single terminal β-D-Gal and/or α-D-
Ara at position O-4 or O-3 of the rhamnosyl residues where
the α-D-GalA residues are often O-acetyl esterified at O-2
and/or O-3 (Figure 2) (21). Type II arabinogalactan (AG) is
composed of a β-1,3-galactan backbone and β-1,6-galactan side
chains (Figure 2). The side chains are variably decorated with L-
arabinose. Glucuronoxylan (GX) has a linear backbone of β-(1-
4)-linked D-xylosyl (Xyl) residues, which can be ramified with
acetyl and arabinosyl residues, and some of the Xyl residues
are decorated with a single α-D-glucuronic acid (GlcA) or 4-
O-methyl-D-glucuronic acid (MeGlcA) residue at O2 (Figure 2)
(22, 23). Both XXGG- and XXXG-type xyloglucan (XG) exist
in RSM. XXGG (Figure 2) consists of a β-1,4-linked D-glucosyl
(Glc) backbone carrying various side chains of D-β-1,2-Gal-
D-α-1,6-Xyl and L-α-1,2-Ara-D-β- D-α-1,6-Xyl (24), whereas,
XXXG (Figure 2) comprises a β-1,4-linked D-glucosyl backbone
carrying continuous side chains of D-α-1,6-Xyl, D-β-1,2-Gal-D-
α-1,6-Xyl, and L-α-1,2-Ara-D-β-1,2-Gal-D-α-1,6-Xyl in every
4 residues of D-β-1,4-Glc (24). Cellulose consists of long
linear chains of β-1,4-linked D-Glc residues, with a degree of
polymerization between 2,000 and 14,000 residues (Figure 2).
The backbone of these polysaccharides can also be esterified with
methyl-esters, ethyl-esters, and glycosyls (arabinosyl, galactosyl,
mannosyl, gucosyl, xylosyl, or frucosyl).

Except for containing glucosyl residues, RES (Table 2) also
has quite some arabinosyl and uronyl residues (10 and 20%,
respectively), which indicates that some pectic polysaccharides
are tightly associated with cellulose microfibrils. This suggests

that the cell wall polysaccharide matrix of rapeseed meal is
strongly interlinked. The specific structures of dietary fibers
of RSM are still not entirely understood. The main restriction
may be the analysis method, but nowadays, the comprehensive
microarray polymer profiling (CoMPP) technique is a powerful
tool for probing cell wall structure studies (25). The profiles
generated by CoMPP provide a global snapshot of cell-wall
composition. It cannot only detect the amount of the particular
polysaccharides but also their linkage type as discussed in the
next section.

Glycosidic linkage type

A covalent link between one carbohydrate molecule and
a second carbohydrate molecule is called a glycosidic bond.
Glycosidic linkage is the type of bond between two adjacent
glycosides in the chain of polysaccharides (26).

The proposed sugar linkage compositions of RSM fractions
are shown in Table 3. The data can only be used in a qualitative
manner instead of quantitative, due to the poor DMSO solubility
of the fractions and the high amount of uronic acids (which are
not detected with this method) present in some samples (27).

Microbial degradation of RSM cell
wall carbohydrates

Low molecular weight sugars and starch can be 100%
digested and/or absorbed, while (oligo- and poly-)saccharides
are considered indigestible in the small intestine due to the
lack of the necessary enzymes in monogastric animals (8).
Indeed, mammalian genomes do not encode most of the
enzymes needed to degrade the structural polysaccharides
present in plant material. Instead, a complexmutual dependence
has developed between the mammalian host and symbiotic
gut microorganisms that do possess the ability to access the
abundant source of energy in carbohydrates that are indigestible
by the host. The gut microbiota has glycoside hydrolases (GH)
that can degrade the oligo- and polysaccharides into small
oligomers and monosaccharides which are subsequently taken
up and fermented.

Glycoside hydrolases

Glycoside hydrolases (GHs) are a vast repertoire of cell wall-
degrading enzymes that hydrolyze glycosidic bonds between
two or more carbohydrate modules or sugar and a non-sugar
moiety within carbohydrates or oligosaccharides (28, 29). GH
families widely exist in prokaryotic, eukaryotic, and archaea
species. A total of 173 GH families have been identified until
now (accessed on May-2022, http://www.cazy.org/Glycoside-
Hydrolases.html).
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FIGURE 2

Schematic representation of structures of polysaccharides in RSM. RSM, rapeseed meal; WSS, water soluble solids; WUS, water unextractable

solids; ChSS, Chelating Agent Soluble Solids; DASS, Dilute Alkali Soluble Solids; 4 MASS, 4 Molar Alkali Soluble Solids; 6 MASS, 6 Molar Alkali

Soluble Solids; RES, residue; Ara, arabinose; Xyl, xylose; Man, mannose; Fuc, fucosyl; Gal, galactose; Glc, glucose; UA, uronic acids.

Carbohydrate binding modules (CBMs) are the non-
catalytic part of cell-wall-degrading enzymes, and they are
attached to the GH catalytic modules. Usually, CBMs have to
recognize and bind to the specific polysaccharides first, before
the GHs cleave the polysaccharides (30).

Degradation of arabinan

Arabinan can be hydrolyzed by α-L-Arabinofuranosidases
(EC 3.2.1.55) and endo-α-1,5-L-arabinanases (EC 3.2.1.99),
which are found in GH families 3, 43, 51, 54, and 62,
and which release arabinosyl oligomers and L-arabinose (31).
A previous study reported that Bacillus subtilis contained
a series of arabinan-degrading genes, abnA, abn2, abfA,
and abf2, which were induced by arabinose and arabinan,
repressed by glucose, and subjected to temporal regulation (32).
AbnA and abn2 encode extracellular endo-α-1,5-L-arabinanases
belonging to GH43, which hydrolyzes arabinan (branched)
and linear α-1,5-L-arabinan and produces arabinose and
arabino-oligosaccharides (33). These resulting products, are
subsequently transported into the cell by different transport
systems. Arabinose enters the cell mainly through the araE

permease (34), and the uptake of arabinose oligomers occurs
most likely via araNPQ, an ABC-type transporter (35). These
products are further digested into themonosaccharide arabinose
by two intracellular arabinofuranosidases, abfA and abf2, which

are α-L-arabinofuranosidases (EC 3.2.1.55) belonging to GH51.
AbfA acts preferentially on (1→ 5) arabinofuranosyl linkages,
and in contrast, abf2 is most active on (1→ 2) and (1→
3) linkages (36). After this, L-arabinose is converted into D-
xylulose-5-phosphate, which is further catabolized through the
pentose phosphate pathway. The induction mechanism of these
genes is mediated through negative control by the key regulator
of arabinose metabolism, araR. The transcriptional repression
of the abfA and abf2 genes is achieved by a tightly controlled
mechanism but the regulation of abnA is more flexible.

The presence of α-L-arabinofuranosidases (Table 4) has also
been determined in Bifidobacterium longum subsp. longum

(37), Bacteroides thetaiotaomicron VPI-5482 (38), Sulfolobus
solfataricus P2 (39), Anoxybacillus kestanbolensis AC26Sari
(40), Monoglobus pectinilyticus (41), and Roseburia faecis

M72/1 (42). Endo-α-1,5-L-arabinanases (Table 4) are present
in Paenibacillus polymyxa (43), Bacillus licheniformis (44),
Caldicellulorsiruptor saccharolyticus (45), Bacillus subtilis (36),
Bacillus thermodenitrificans (46), Pseudomonas fluorecens subsp.
cellulosa (47), Monoglobus pectinilyticus (41), and Roseburia

faecisM72/1 (42).

Degradation of galactomannan

Endo-1,4-β-mannanase (EC 3.2.1.78), β-mannosidase
(EC 3.2.1.25) and α-galactosidase (EC 3.2.1.22) are involved
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TABLE 3 Sugar linkage composition of RSM fractions (mol%)a.

WUS DASS 4 MASS 6 MASS

t-Arab 18 41 16 15

1,2-Ara – 1 1 –

1,5-Ara 10 9 2 11

1,2,5-Ara 6 29 10 4

Total Ara 34 80 29 30

t-Xyl 9 3 7 12

1,2-Xyl 2 1 10 3

1,4-Xyl 3 1 3 7

Total Xyl 14 5 20 22

1,4,6-Man – – 3 1

Total Man – – 3 1

t-Fuc 2 1 2 5

1,2,4-Fuc 7 3 – 8

Total Fuc 9 4 2 13

t-Gal 3 – 4 6

1,2-Gal – – 5 7

1,3-Gal – – 7 –

1,3,6-Gal – 7 4 –

Total Gal 3 7 20 13

1,4-Glc 25 5 17 6

1,4,6-Glc 16 – 11 15

Total Glc 41 5 28 21

T/Bc 1.10 1.15 1.04 1.36

aAdapted from reference (14).
bt, terminal.
cT/B, ratio terminally linked residues: branching points.
Ara, arabinose; Xyl, xylose; Man, mannose; Fuc, fucose; Gal, galactose; Glc, glucose; UA,
uronic acid.

in the degradation of galactomannan into monosaccharides
(48). β-mannanase degrades randomly within the main chain
of galactomannans and produces shorter galactomanno-
oligosaccharides that can be further hydrolyzed by
β-mannosidase and α-galactosidase. β-mannosidase hydrolyses
β-1,4-linked mannose residues from the non-reducing end
of the galactomanno-oligosaccharides and α-galactosidase
hydrolyses terminal α-1,6-linked galactose residues from
galactomannans or the galactomanno-oligosaccharides. The
gut microbes Bacillus subtilis YH12 (49), Bacillus subtilis TD7
(50), Bacillus subtilis Bs5 (51), Bacillus licheniformis DSM13
(52), Sphingomonas sp. JB13 (53), Sphingobacterium sp. GN25
(54), Klebsiella oxytoca KUB-CW2-3 (55), Enterobacter sp.
strain N18 (56), Flavobacterium sp. (57), Pseudomonas cellulosa

(47), Monoglobus pectinilyticus (41), and Bacteroides ovatus

(58) are reported to have endo-1,4-β-mannanase (Table 4).
While Bifidobacterium sp. (59), Bifidobacterium longum subsp.
longum NCC2705 (60), Bacteroides ovatus (61, 62), Cellvibrio
mixtus (63), Bacteroides thetaiotaomicron (64), Pseudomonas

cellulose (47), and Kitasatospora sp. (65) are reported to have

β-mannosidase (Table 4). Moreover, Lactobacillus acidophilus

NCFM (66), Lactobacillus crispatus ST1 (67), Lactobacillus

brevis (68), Bifidobacterium animalis subsp. lactis Bl-04
(66), Arthrobacter sp. C2-2 (69), Bacillus megaterium (70),
Dictyoglomus thermophilum (71), Bacillus stearothermophilus

NCIM-5146 (72), Bacillus stearothermophilus NUB 3621
(73), Bacteroides ovatus 0038-1 (74), ?ifidobacterium bifidum

NCIMB41171 (75), ?ifidobacterium adolescentis DSM20083
(76), ?ifidobacterium breve 203 (77), Clostridium stercorarium

(78), and Monoglobus pectinilyticus (41) are reported to have
α-galactosidases (Table 4).

Asperigillus niger contains galactomannan-degradation
genes, aglA, algB, and algC (encoding α-galactosidases), and
mndA (encoding a β-mannosidase). AglA and aglB have
been classified into GH27, while aglC has been classified
into GH36, and mndA belongs to GH2. The metabolism
mechanism of galactomannan is that α-galactosidase (encoded
by aglC) and β-mannosidase (encoded by mndA) hydrolyze the
galactomannan to the oligosaccharide Gal2Man5, where mndA

cleaves single mannose units from the non-reducing end of
the substrate until it reaches a galactose side-group (79), and
afterward the non-reducing galactose group is hydrolyzed by
α-galactosidase (aglA, aglB, or aglC). AglB and mndA play a
major role in the degradation of galactomannan in A. niger. The
expression of aglA is high on galactose and galactose-containing
oligosaccharides, but is fully repressed in the presence of glucose
(80). Little is known about genes, and especially their regulation,
in members of the gut microbiota.

Degradation of homogalacturonan

Homogalacturonan (HG) can be cleaved by α-1,4-
L-galacturonan reducing-end-disaccharide-lyase (pectate
disaccharide-lyase) (EC 4.2.2.9), (1→ 4)-6-O-methyl-α-D-
galacturonan lyase (pectin lyase) (EC 4.2.2.10), (1→ 4)-α-
D-galacturonan reducing-end-trisaccharide-lyase (pectate
trisaccharide-lyase) (EC 4.2.2.22), α-1,4-D-galacturonan lyase
(pectate lyase) (EC 4.2.2.2), and (1→ 4)-α-D-galacturonan
glycanohydrolase (endo-polygalacturonase) (EC 3.2.1.15)
(89, 124–128). Pectin lyase (EC 4.2.2.10) provides cleavage of α-
1,4-linked D-galacturonan methyl ester to give oligosaccharides
with 4-deoxy-6-O-methyl-α-D-galact-4-enuronosyl groups at
their non-reducing ends, while α-1,4-D-galacturonan lyase
(EC 4.2.2.2) cleaves α-1.4-linked D-galacturonan to give
oligosaccharides with 4-deoxy-α-D-galact-4-enuronosyl groups
at their non-reducing ends. Afterwards, pectate disaccharide-
lyase (EC 4.2.2.9) hydrolyzes these oligosaccharides to
(1,4-α-D-galacturonosyl)n−2 and 4-(4-deoxy-α-D-galact-4-
enuronosyl)-D-galacturonate, and (1,4-α-D-galacturonosyl)n−2

will be cleaved by pectin lyase (EC 4.2.2.10 or EC 2.2.2) again
until the disaccharide results. Polygalacturonase (EC 3.2.1.15)
randomly hydrolyzes (1→ 4)-α-D-galactosiduronic linkages
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TABLE 4 Gut microbes containing the indicated plant cell wall degrading enzymes.

Microbial

enzymes

Microorganism

α-L-

arabinofuranosidases

Bifidobacterium longum subsp. longum (37), Bacteroides thetaiotaomicron VPI-5482 (38), Sulfolobus solfataricus P2 (39), Anoxybacillus

kestanbolensis AC26Sari (40),Monoglobus pectinilyticus (41), and Roseburia faecisM72/1 (42)

endo-α-1,5-L-

arabinanases

Paenibacillus polymyxa (43), Bacillus licheniformis (44), Caldicellulorsiruptor saccharolyticus (45), Bacillus. Subtilis (36), Bacillus.

Thermodenitrificans (46), Pseudomonas fluorecens subsp. cellulosa (47),Monoglobus pectinilyticus (41), and Roseburia faecisM72/1(42)

endo-1,4-β-

mannanase

Bacillus subtilis YH12 (49), Bacillus subtilis TD7 (50), Bacillus subtilis Bs5 (51), Bacillus licheniformis DSM13 (52), Sphingomonas sp. JB13

(53), Sphingobacterium sp. GN25 (54), Klebsiella oxytoca KUB-CW2-3 (55), Enterobacter sp. strain N18 (56), Flavobacterium sp. (57),

Pseudomonas cellulosa (47),Monoglobus pectinilyticus (41), and Bacteroides ovatus (58)

β-mannosidase Bifidobacterium sp. (59), Bifidobacterium longum subsp. longum NCC2705 (60), Bacteroides ovatus (61, 62), Cellvibrio mixtus (63),

Bacteroides thetaiotaomicron (64), Pseudomonas cellulose (47), Kitasatospora sp. (65)

α-Galactosidases Lactobacillus acidophilus NCFM (66), Lactobacillus crispatus ST1 (67), Lactobacillus brevis (68), Bifidobacterium animalis subsp. lactis

Bl-04 (66), Arthrobacter sp. C2-2 (69), Bacillus megaterium (70), Dictyoglomus thermophilum (71), Bacillus stearothermophilus

NCIM-5146 (72), Bacillus stearothermophilusNUB 3621 (73), Bacteroides ovatus 0038-1 (74), ?ifidobacterium bifidumNCIMB41171 (75),

?ifidobacterium adolescentisDSM20083 (76), ?ifidobacterium breve 203 (77), Clostridium stercorarium (78), andMonoglobus pectinilyticus

(41)

Pectate

disaccharide-lyase

Caldicellulosiruptor bescii (81), Bacteroides thetaiotaomicron (82), Bacteroides ovatus (83), Bacillus pumilus BK2 (84), Eubacterium

eligens, Faecalibacterium prausnitzii (85), andMonoglobus pectinilyticus (41)

pectate lyase in Caldicellulosiruptor bescii (81), genus Bacillus: Bacillus subtilis, B. licheniformis, B. cereus, B. circulans, B. pasteurii, B. amyloliquefaciens,

and B. pumilus (86, 87), Paenibacillus sp. (88), Clostridium cellulovorans (89), Streptomyces thermocarboxydus (90), Bacteroides

thetaiotaomicron (82), Bacteroides ovatus (83), Eubacterium eligens, Faecalibacterium prausnitzii (85), andMonoglobus pectinilyticus (41)

endo-

polygalacturonase

Caldicellulosiruptor bescii (81), Bacteroides thetaiotaomicron (82), Bacteroides ovatus (83), Eubacterium eligens, Faecalibacterium

prausnitzii (85),Monoglobus pectinilyticus (41), and Bifidobacterium longum subsp. longum (91)

rhamnogalacturonan

lyase and hydrolase

Caldicellulosiruptor bescii (81), Bacteroides thetaiotaomicron (82), Bacteroides ovatus (83), Bacillus subtilis (92), Bacillus licheniformis (93),

Cellvibrio japonicus (94), Clostridium cellulolyticum (95), Bacillus licheniformis DSM13 (93), Pseudomonas cellulose (94), Penicillium

chrysogenum (96), andMonoglobus pectinilyticus (41)

exo-β-1,3-

galactanase

Monoglobus pectinilyticus (41), Bifidobacterium longum subsp. longum (91), Clostridium thermocellum (97), Phanerochaete chrysosporium

(98), Sphingomonas sp. (99), Bacteroides thetaiotaomicron (100), Bacteroides ovatus (100), Bacteroides caccae (101), and Bacteroides

cellulosilyticus (101)

endo-β-1,6-

galactanase

Streptomyces avermitilis NBRC14893 (102), Bacteroides ovatus (100), Bacteroides caccae (101), Bacteroides cellulosilyticus (101), and

Bifidobacterium longum subsp. longum (91)

exo-β-1,6-

galactobiohydrolase

Monoglobus pectinilyticus (41), Bacteroides thetaiotaomicron (101), Streptomyces avermitilis (102), Bacteroides ovatus (100), Bacteroides

caccae (101), Bacteroides cellulosilyticus (101), and Bifidobacterium longum subsp. longum (91)

endo-β-1,4-

xylanase

Pseudomonas boreopolis G22 (103), Bacteroides ovatus (82),Monoglobus pectinilyticus (41), Bacteroides thetaiotaomicron (100),

Bacteroides caccae (101), Bacteroides cellulosilyticus (101), Clostridium thermocellum (104), Bacillus subtilis (105), and Streptomyces

turgidiscabies (106)

exo-β-1,4 xylanase Monoglobus pectinilyticus (41), Luteimicrobium xylanilyticum (107), Amycolatopsis mediterranei (107), Clostridium thermocellum (104),

Bacillus subtilis (105), and Streptomyces turgidiscabies (106)

endo and

exo-β-1,4-glucanase

Monoglobus pectinilyticus (41), Caldicellulosiruptor kronotskyensis (108), Roseburia sp. (42), Eubacterium rectale group (42),

Ruminococcus champanellensis (109), Ruminococcus bromii (110), Ruminiclostridium cellulolyticum (111), and Phaeoacremonium

minimum (112)

α-D-xylosidase Sulfolobus solfataricus P2 (39), Talaromyces thermophilus (113), Cellvibrio japonicus (114), Bacteroides thetaiotaomicron (82), Bacteroides

ovatus (82), andMonoglobus pectinilyticus (41)

β-glucosidase Bifidobacterium adolescentis (115), Bacteroides ovatus (116), Listeria innocua (117), Streptomyces venezuelae (118), Pyrococcus furiosus

(119), Cellvibrio japonicus (114), Caldicellulosiruptor saccharolyticus (120),Microbispora bispora (121), Thermoanaerobacter brockii (122),

Thermobifida fusca (103), Pseudomonas sp. (123),Monoglobus pectinilyticus (41), Ruminococcus champanellensis (109), and

Ruminococcus bromii (110)
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in pectate and other galacturonans. Pectate disaccharide-
lyase (Table 4) has been reported in Caldicellulosiruptor

bescii (81), Bacteroides thetaiotaomicron (82), Bacteroides

ovatus (83), Bacillus pumilus BK2 (84), Eubacterium

eligens, Faecalibacterium prausnitzii (85), and Monoglobus

pectinilyticus (41). Pectate lyase (Table 4) has been reported
in Caldicellulosiruptor bescii (81), genus Bacillus: Bacillus

subtilis, B. licheniformis, B. cereus, B. circulans, B. pasteurii, B.
amyloliquefaciens, and B. pumilus (86, 87), Paenibacillus sp. (88),
Clostridium cellulovorans (89), Streptomyces thermocarboxydus

(90), Bacteroides thetaiotaomicron (82), Bacteroides ovatus

(83), Eubacterium eligens, Faecalibacterium prausnitzii (85),
and Monoglobus pectinilyticus (41). Endo-polygalacturonase
(Table 4) has been reported in Caldicellulosiruptor bescii

(81), Bacteroides thetaiotaomicron (82), Bacteroides ovatus

(83), Eubacterium eligens, Faecalibacterium prausnitzii (85),
Monoglobus pectinilyticus (41), and Bifidobacterium longum

subsp. longum (91).

Degradation of rhamnogalacturonan I

Utilization of rhamnogalacturonan I (RG-I) by microbes
is mediated by a series of enzymes, which is well-studied
in Bacillus subtilis (92). Two main enzymes, a hydrolase,
and a lyase are involved in the degradation of the RG-I
backbone, whereas a few other enzymes are responsible for
the breakdown of the RG-I side chains. Rhamnogalacturonan
hydrolase (rhamnogalacturonan α-L-rhamnopyranohydrolase)
cleaves α-1,2 linkages between GalA and Rha (129).
Rhamnogalacturonan lyase [-L-rhamnopyranosyl-(1→ 4)-
alpha-D-galactopyranosyluronate endolyase (EC 4.2.2.23)]
cleaves the α-1,4 linkages of RG-I resulting in a double bond in
the on-reducing GalA residue (130). Rhamnogalacturonan
lyase and hydrolase (Table 4) have been reported in
Caldicellulosiruptor bescii (81), Bacteroides thetaiotaomicron

(82), Bacteroides ovatus (83), Bacillus subtilis (92), Bacillus

licheniformis (93), Cellvibrio japonicus (94), Clostridium

cellulolyticum (95), Bacillus licheniformis DSM13 (93),
Pseudomonas cellulose (94), Penicillium chrysogenum (96), and
Monoglobus pectinilyticus (41).

Degradation of type II arabinogalactan

Exo-β-1,3-galactanase (EC 3.2.1.145) cleaves the β-
1,3-galactan backbone of type II arabinogalactan via

bypassing the β-1,6-galactan side chains and releasing β-
1,6-galactooligosaccharides and their derivatives (131).
The β-1,6-galactan side chains are hydrolyzed to β-1,6-
galactooligosaccharides of various degrees of polymerization
(DP) by endo-β-1,6-galactanase (EC 3.2.1.164) (132, 133). On

the other hand, exo-β-1,6-galactobiohydrolase releases β-1,6-
galactobiose (β-1,6-Gal2) from the non-reducing terminal end
of β-1,6-galactooligosaccharides, and α-L-arabinofuranosidase
(EC 3.2.1.55) releases arabinofuranose (Araf) from α-
1,3-Araf-substituted β-1,6-galactooligosaccharides (134).
Exo-β-1,3-galactanase (Table 4) has been reported in
Monoglobus pectinilyticus (41), Bifidobacterium longum subsp.
longum (91), Clostridium thermocellum (97), Phanerochaete

chrysosporium (98), Sphingomonas sp. (99), Bacteroides

thetaiotaomicron (100), Bacteroides ovatus (100), Bacteroides
caccae (101), and Bacteroides cellulosilyticus (101). Endo-β-
1,6-galactanase (Table 4) had been reported in Streptomyces

avermitilis NBRC14893 (102), Bacteroides ovatus (100),
Bacteroides caccae (101), Bacteroides cellulosilyticus (101),
and Bifidobacterium longum subsp. longum (91). Exo-β-
1,6-galactobiohydrolase (Table 4) has been reported in
Monoglobus pectinilyticus (41), Bacteroides thetaiotaomicron

(101), Streptomyces avermitilis (102), Bacteroides ovatus (100),
Bacteroides caccae (101), Bacteroides cellulosilyticus (101), and
Bifidobacterium longum subsp. longum (91).

Degradation of glucuronoxylan

Two enzymes, β-(1, 3–5)-D-xylan xylanohydrolase
(endo-β-1,4 xylanase) (EC 3.2.1.8) and 1,4-β xylohydrolase
(exo-β-1,4 xylanase) (EC 3.2.1.37), are involved in degrading
the β-1,4 xylosyl linkages in unsubstituted domains along
the xylan backbone of glucuronoxylan (GX) (135, 136).
Glucuronoxylanase cleaves glucuronosyl moietes which are
substituted as monomeric side chains on the xylan backbone
(137). Endo-β-1,4-xylanase (Table 4) has been reported in
Pseudomonas boreopolis G22 (103), Bacteroides ovatus (82),
Monoglobus pectinilyticus (41), Bacteroides thetaiotaomicron

(100), Bacteroides caccae (101), Bacteroides cellulosilyticus

(101), Clostridium thermocellum (104), Bacillus subtilis (105),
and Streptomyces turgidiscabies (106). Exo-β-1,4 xylanase
(Table 4) has been reported in Monoglobus pectinilyticus

(41), Luteimicrobium xylanilyticum (107), Amycolatopsis

mediterranei (107), Clostridium thermocellum (104), Bacillus
subtilis (105), and Streptomyces turgidiscabies (106).

Degradation of xyloglucan

A set of glucanases and glycosidases are involved in
cleaving xyloglucan (XG) into monosaccharides by two-step
degradation (138, 139). Endo-β-1,4-glucanase (EC 3.2.1.4)
hydrolyzes XG into large fragments, which are further degraded
into monosaccharides by α-xylosidase (EC 3.2.1.177) and
β-glucosidase (EC 3.2.1.21) (140). Endo-β-1,4-glucanase
(Table 4) has been reported in Monoglobus pectinilyticus (41),
Caldicellulosiruptor kronotskyensis (108), Roseburia sp. (42),
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Eubacterium rectale group (42), Ruminococcus champanellensis

(109), Ruminococcus bromii (110), Ruminiclostridium

cellulolyticum (111), and Phaeoacremonium minimum (112).
Exo-β-1,4 xylanase (Table 4) has been reported in Monoglobus

pectinilyticus (41), Luteimicrobium xylanilyticum (107),
Amycolatopsis mediterranei (107), Clostridium thermocellum

(104), Bacillus subtilis (105), Streptomyces turgidiscabies (106),
Ruminiclostridium cellulolyticum (111), and Phaeoacremonium

minimum (112). While α-D-xylosidase (Table 4) has been
reported in Sulfolobus solfataricus P2 (39), Talaromyces

thermophilus (113), Cellvibrio japonicus (114), Bacteroides

thetaiotaomicron (82), Bacteroides ovatus (82), and Monoglobus

pectinilyticus (41). Moreover, β-glucosidase (Table 4) has been
reported in Bifidobacterium adolescentis (115), Bacteroides

ovatus (116), Listeria innocua (117), Streptomyces venezuelae

(118), Pyrococcus furiosus (119), Cellvibrio japonicus (114),
Caldicellulosiruptor saccharolyticus (120), Microbispora bispora

(121), Thermoanaerobacter brockii (122), Thermobifida fusca

(103), Pseudomonas sp. (123), Monoglobus pectinilyticus (41),
Ruminococcus champanellensis (109), and Ruminococcus

bromii (110).

Degradation of cellulose

The enzymes of the cellulase system consist of endo-β-
1,4-glucanase (EC 3.2.1.4), exo-β-1,4-glucanase (EC 3.2.1.91),
and β-glucosidase (EC 3.2.1.21). Endo-β-1,4-glucanase and
exo-β-1,4-glucanase cleave cellulose to cellodextrins and
cellobiose, which are then degraded to glucose by β-glucosidase
(141, 142). Endo and exo-β-1,4-glucanase (Table 4) have been
reported in Monoglobus pectinilyticus (41), Caldicellulosiruptor
kronotskyensis (108), Roseburia sp. (42), Eubacterium

rectale group (42), Ruminococcus champanellensis (109),
Ruminococcus bromii (110), Ruminiclostridium cellulolyticum

(111), Paenibacillus sp. (143), and Phaeoacremonium minimum

(112). The enzyme β-glucosidase (Table 4) has been reported
in Bifidobacterium adolescentis (115), Bacteroides ovatus

(116), Listeria innocua (117), Streptomyces venezuelae

(118), Pyrococcus furiosus (119), Cellvibrio japonicus (114),
Caldicellulosiruptor saccharolyticus (120), Microbispora bispora

(121), Thermoanaerobacter brockii (122), Thermobifida fusca

(103), Pseudomonas sp. (123), Monoglobus pectinilyticus (41),
Ruminococcus champanellensis (109), and Ruminococcus

bromii (110).

Processing to increase use of
recalcitrant fibers

Our previous studies have already shown that physical
processing technologies cannot significantly increase fiber
degradability in monogastric animals (19, 144, 145). However,

the utilization of enzymes added to feed is a promising method
to improve fiber fermentability.

Enzymatic and chemical modification

Supplementation of cell wall degrading enzymes to improve
feed efficiency for pigs gets more and more attention from the
feed industry nowadays. Supplementation of cell wall degrading
enzymes can remove side-chains of polysaccharides in plant cell
wall, which make them more accessible to bacterial enzymes
(145). In addition, cell wall degrading enzymes are able to reduce
the digesta viscosity, which might affect absorption of other
nutrients, by cleaving the viscous polysaccharides (e.g., pectin).
In the end, carbohydrases can depolymerize polysaccharides to
oligosaccharides, which have potential prebiotic effects on the
gut microbiota, leading to the health benefits for the host animal.

A previous study showed that pre-processing with
sulfuric acid could increase utilization of carbohydrates from
lignocellulosic biomass (146). Mild acid-treated rye (together
with heat treatment) was reported to improve the release of
arabinosyl residues in chickens (147). Alkaline pretreatment of
rapeseed meal in the feed improved its fermentation in pigs (7).
Therefore, chemical treatment in feed might be a promising
method to improve fiber fermentation in pigs.

We have shown recently that RSM processed by enzymatic
and chemical treatment led to modulation of the gut microbiota
using a newly developed in vitro swine large intestinal model
(SLIM) (148). In brief, our studies demonstrated that both
enzymatic (cellulase or 2 different pectinases) and chemical
(6N sodium hydroxide) pretreatment on RSM shifted its cell
wall polysaccharide structure, subsequently altering microbial
community composition and functional profile compared to
untreated RSM, and eventually increased fiber degradability
as evaluated by SCFA production in SLIM. Moreover, it was
validated in pigs, by the mobile nylon bag technique, that
cellulase and alkaline treatment on RSM improved the overall
degradation of RSM (149–151).

Potential emerging technologies

High hydrostatic pressure, a non-thermal pasteurization
technology, is applied to physical modification of chemical
structure of compound (e.g., polysaccharides). High hydrostatic
pressure could promote the water into interior of the matrix.
As a result, high pressure (100–1,000 MPa) leads to the
destruction of cell wall matrix (affecting non-covalent bonds,
including hydrophobic interactions, hydrogen bonds, and van
der Waals forces) and reduce substrate particle size. Research
demonstrated that pectin (extracted from potato peel waste)
could increase galacturonic acid content and decrease the
esterification degree of pectin after high hydrostatic pressure
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at 200 MPa for 5min (152). Another study reported that high
hydrostatic pressure could significant reduce the molecular
weight, degree of esterification and degree of acylation of
sugar beet pectin at 250–500 MPa for 30min (153). These
reports have shown that high hydrostatic pressure could modify
the polysaccharide structure, which might have a potential
application value in improving fiber degradability of RSM in
monogastric animals.

Cold plasma (CP) processing is a technology that causing
the ionization of neutral gas (argon, helium, and nitrogen) and
generating active species (free radicals, electrons, ions), which
could induce oxidative damage in the cell wall compounds,
such as polysaccharides. Therefore, CP could change structure
and properties of polysaccharides. Study showed that CP could
increase the viscosity and enhance the emulsion stabilization
capacity of xanathan gum (154). Prasertsung et al. (155)
reported that CP could degrade starches and cellulose into
sugars and glucose (155). Therefore, CP might modify
polysaccharides of RSM by inducing oxidative damage in its cell
wall polysaccharides.

Conclusions and perspectives

Rapeseed meal is not only a promising protein ingredient
but also a potentially energy source for non-ruminant animal
diets. RSM contains a high amount of cell wall polysaccharides,
even higher when compared to soybean meal commonly used
in the feed industry. However, information on degradation
and utilization of RSM carbohydrates upon feeding these diets
is insufficient, and for this it is essential to understand the
characterization and quantification of RSM carbohydrates. For
the sake of improving the degradation of RSM carbohydrates,
it is necessary to understand the mode of actions of RSM
polysaccharide degradation by microbes, discover factors
that limit their utilization and absorption in the GIT, and
develop strategies to improve efficiency and productivity.
The use of exogenous enzymes, carbohydrases, becomes a
good solution to improve RSM carbohydrate degradation, and
eventually to improve animal digestibility, feed efficiency, and
animal performance.

The current review summarized the polysaccharide types of
RSM, gut microbiota which could degrade the polysaccharides,
and glycoside hydrolases which used by the microorganism.
The information offered above could be used to develop novel

engineering microbes and enzymic preparations to improve
RSM utilization in the future studies. One possible way is
to deep mine the genomes of theses microbes for encoded
the carbohydrases by bioinformatic tools. What is more, these
enzymes can be overexpressed in an expression host and
subsequently used to process RSM to investigate its degradability
in livestock.
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